Previous month前月 | September 2003 2003 年 9 月 | July 2024 2024 年 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新 | Recent changes最近の更新

December 30, 2024 2024 年 12 月 30 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=4088: c1682(5225289894......) = 250902753410151083582444742209747302001 * c1644(2082595676......)

# ECM B1=1e6, sigma=0:11729994368027355515

n=10842: c3269(6660625029......) = 18480241459390614104154011531517059809 * c3232(3604187230......)

# ECM B1=1e6, sigma=0:843139686750319389

n=16170: c3340(3090188283......) = 424937041000027357322232272909041 * c3307(7272108536......)

# ECM B1=2e6, sigma=0:1532006757853797433

n=21783: c14120(3430562550......) = 1919862794823049 * c14105(1786879020......)

n=22917: c15262(4049530865......) = 35564640113769391 * c15246(1138639629......)

n=23659: c23187(9747416992......) = 973546256998517 * c23173(1001227925......)

n=25155: c12079(2776955008......) = 13851135618403591 * c12063(2004857280......)

n=29645: c18470(8825137942......) = 39024719697234041 * c18454(2261422506......)

n=30825: c16321(1000000000......) = 60163421690019601 * c16304(1662139505......)

n=32035: c24846(1037520276......) = 61765838762421721 * c24829(1679763922......)

n=37543: c34111(8254997072......) = 1011322632217679 * c34096(8162575235......)

n=38987: c35971(3847419877......) = 32642721203845637 * c35955(1178645571......)

n=40194: c10067(4891216721......) = 721993907480077 * c10052(6774595561......)

n=40486: c19556(2716921480......) = 15871954277393573 * c19540(1711775017......)

n=40494: c12639(1350901329......) = 3427951911369487 * c12623(3940840957......)

n=40672: c19190(1647694007......) = 13088431735072769 * c19174(1258893381......)

n=47320: c14934(3317535424......) = 14556463911436721 * c14918(2279080582......)

n=48054: c15997(2855510581......) = 1109630868600757 * c15982(2573387838......)

n=48768: c16129(1000000000......) = 252407264072449 * c16114(3961851112......)

n=48778: c23529(6057554174......) = 3634254942130139 * c23514(1666793956......)

n=51094: c25051(3075555207......) = 1089320473478917 * c25036(2823370424......)

n=54872: c25978(8815689909......) = 1837358218622153 * c25963(4798024587......)

n=54880: c18810(2222142718......) = 7017583656153281 * c18794(3166535416......)

n=58554: c19513(1000999998......) = 16784696526010201 * c19496(5963765847......)

n=61646: c28430(7684113534......) = 7512802331706179 * c28415(1022802570......)

n=63278: c30515(1241684943......) = 9675097112651237 * c30499(1283382408......)

n=64464: c19935(5131423362......) = 604053106084273 * c19920(8494987130......)

n=64484: c27038(5350128803......) = 626898396273689 * c27023(8534283761......)

n=65250: c16782(1739819097......) = 4665091201650001 * c16766(3729442838......)

n=65632: c28020(1432118934......) = 4086033691152449 * x28004(3504912201......)

n=65632: x28004(3504912201......) = 61838239187915009 * c27987(5667871931......)

n=66546: c22161(2955769325......) = 27341936366301343 * c22145(1081038769......)

n=67004: c28679(6544569000......) = 17736847496498341 * c28663(3689815228......)

n=67452: c17272(2664340898......) = 19262560230250261 * c17256(1383170703......)

n=68328: c20736(9999999999......) = 1826996856186529 * c20721(5473463167......)

n=71742: c21690(1518102354......) = 4765313425373689 * c21674(3185734533......)

n=72162: c22665(8124531749......) = 24793323157924291 * c22649(3276903099......)

n=72974: c31769(1936885509......) = 11542829506970059 * c31753(1677998889......)

n=74668: c33911(4145940097......) = 4559224384382009 * c33895(9093520626......)

n=77166: c25699(6479495642......) = 3798627384658609 * c25684(1705746572......)

n=77568: c25581(3280951720......) = 14790346066212097 * p25565(2218306256......)

$ ./pfgw64 -tc -q"(10^128+1)*(10^25856-10^12928+1)/450794383007958078489509751381188353/(10^384+1)"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

Primality testing (10^128+1)*(10^25856-10^12928+1)/450794383007958078489509751381188353/(10^384+1) [N-1/N+1, Brillhart-Lehmer-Selfridge]

Running N-1 test using base 5
Running N+1 test using discriminant 13, base 8+sqrt(13)

Calling N+1 BLS with factored part 0.03% and helper 0.02% (0.11% proof)
(10^128+1)*(10^25856-10^12928+1)/450794383007958078489509751381188353/(10^384+1) is Fermat and Lucas PRP! (24.4707s+0.0006s)

n=78396: c25385(3431921318......) = 12834487998344029 * c25369(2673983815......)

n=78400: c26881(1000000000......) = 41654708346496001 * c26864(2400688996......)

n=100079: c77922(8232052699......) = 1741992688904791 * c77907(4725652841......)

n=100661: c91475(1583449103......) = 4348516574159759 * c91459(3641354648......)

n=100735: c80572(4552785149......) = 7612832559804401 * c80556(5980408886......)

n=100739: c99840(9000000000......) = 67389237929363569 * x99824(1335524822......)

n=100739: x99824(1335524822......) = 88048700018847163 * c99807(1516802430......)

n=200126: c97857(2861701734......) = 4810562510671573 * c97841(5948788168......)

n=200144: c85690(6991458879......) = 100633165616945249 * c85673(6947469889......)

n=200146: c90281(1846397842......) = 5808338022150733 * c90265(3178874637......)

n=200150: c80026(2977076683......) = 2154983211739201 * c80011(1381484861......)

n=200292: c66750(7759090176......) = 8514644751981241 * c66734(9112641105......)

n=200304: c61056(9999999999......) = 20621420414208433 * c61040(4849326476......)

n=200448: c64506(2625696695......) = 177264084522954241 * c64489(1481234454......)

n=200458: c98785(1099999999......) = 198766695368299573 * c98767(5534126318......)

n=200462: c99224(3877967676......) = 4530305418868459 * c99208(8560057915......)

n=200464: c84480(9999999900......) = 3426618570742049 * c84465(2918328869......)

n=200468: c95823(2816845905......) = 1469616185630081 * c95808(1916722156......)

n=200478: c66825(1098901098......) = 104299414915652659 * c66808(1053602361......)

n=200770: c75507(1697019661......) = 59640901662587801 * c75490(2845395717......)

n=200772: c56153(2862513832......) = 4542999109768549 * c56137(6300934170......)

n=200800: c80001(1000000000......) = 11106730503926401 * x79984(9003549691......)

n=200800: x79984(9003549691......) = 1507134887865601 * c79969(5973950814......)

n=200802: c57288(9999999000......) = 90597206698200931 * c57272(1103786680......)

n=200944: c95041(1000000009......) = 9800808608048641 * c95025(1020323985......)

n=200970: c40315(4970871419......) = 19933596925988131 * x40299(2493715227......)

n=200970: x40299(2493715227......) = 92223257449082761 * c40282(2703998206......)

n=201148: c100554(1589420541......) = 183270593061359689 * c100536(8672534500......)

n=201296: c96077(1802504914......) = 1066871988528641 * c96062(1689523141......)

n=201310: c78395(1128978777......) = 5584293307861091 * x78379(2021703939......)

n=201310: x78379(2021703939......) = 8322799262656841 * c78363(2429115343......)

n=201314: c91200(9090909090......) = 58483569212004169 * c91184(1554438146......)

n=201320: c68905(4533769941......) = 12701952108297761 * c68889(3569348949......)

n=201472: c100581(8894477856......) = 116677959129881089 * c100564(7623100303......)

n=201482: c100726(9644338757......) = 93349110864484859 * c100710(1033147361......)

n=201494: c100714(7615527656......) = 5484757869535099 * c100699(1388489307......)

n=201636: c67170(9918853856......) = 7491421164870289 * c67155(1324028330......)

n=201638: c98321(1099999999......) = 89060298119253731 * c98304(1235118254......)

n=201794: c100117(1099999999......) = 1125577295927779 * c100101(9772762865......)

n=201796: c86473(1009999999......) = 3891580170963269 * c86457(2595346763......)

n=201810: c44641(1000000000......) = 146826634400911081 * c44623(6810753403......)

n=201988: c100980(3165436268......) = 51134687322496229 * c100963(6190389408......)

# TD

# 1289 of 300000 Φn(10) factorizations were finished. 300000 個中 1289 個の Φn(10) の素因数分解が終わりました。

# 213505 of 300000 Φn(10) factorizations were cracked. 300000 個中 213505 個の Φn(10) の素因数が見つかりました。

December 30, 2024 2024 年 12 月 30 日 (Richard G.)

n=5104: p2160(5741345143......) is proven

December 29, 2024 2024 年 12 月 29 日 (Kurt Beschorner)

n=2566: c1270(1023025853......) = 9363177041081675586149469978848294892066649 * c1227(1092605479......)

# ECM B1=11e6, sigma=3:575457524

n=5104: c2196(4534517864......) = 789800604338394847356888738027046369 * p2160(5741345143......)

# ECM B1=3e6, sigma=3:248512855

n=6816: c2229(6830678129......) = 7073696804154818526251957667217832449 * c2192(9656447425......)

# ECM B1=3e6, sigma=3:92531786

n=11140M: c2224(3576409999......) = 5581732709080022367761423044635043421 * c2187(6407347298......)

# ECM B1=3e6, sigma=3:2039813465

n=14211: c9447(8068299439......) = 416584646729059618925061481 * c9421(1936773115......)

# P-1 B1=180e6

n=14221: c14135(4523543069......) = 2260309114950544017542647249 * c14108(2001293999......)

# P-1 B1=140e6

n=14271: c9227(1577637722......) = 1667812086397547787358297351 * c9199(9459325397......)

# P-1 B1=150e6

n=14277: c9473(1897961519......) = 87268391339263160814840529 * c9447(2174855626......)

# P-1 B1=140e6

# 1288 of 300000 Φn(10) factorizations were finished. 300000 個中 1288 個の Φn(10) の素因数分解が終わりました。

December 28, 2024 2024 年 12 月 28 日 (Maksym Voznyy)

n=16954: p7172(1101835829......) is proven

December 28, 2024 2024 年 12 月 28 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=3472: c1320(2336728115......) = 1048530627493108495318230179569672433 * c1284(2228574019......)

# ECM B1=1e6, sigma=0:5843840336490529065

n=5357: c4839(3608977932......) = 37128194902355123242887349025662902403 * c4801(9720316170......)

# ECM B1=1e6, sigma=0:4371711997130561509

n=5458: c2723(8766293251......) = 42916956419425907809207009823553205607 * c2686(2042617646......)

# ECM B1=1e6, sigma=0:5843840336490529065

n=5685: c2982(1932404697......) = 13915809256720491480462108721098961 * c2948(1388639828......)

# ECM B1=1e6, sigma=0:4371711997130561509

n=6922: c3414(6851021146......) = 287783802850618729867983838114988887 * c3379(2380613877......)

# ECM B1=1e6, sigma=0:6609442546217

n=7746: c2562(1094545926......) = 999834846605804572383239072305693 * c2529(1094726724......)

# ECM B1=1e6, sigma=0:5843840336490529065

n=8870: c3487(1628428852......) = 29103824289411241732401916508081 * c3455(5595240119......)

# ECM B1=1e6, sigma=0:16827356974158932289

n=11476: c5401(1009999999......) = 858335298921297983074233898450109 * c5368(1176696334......)

# ECM B1=1e6, sigma=0:14006905292424342943

n=11622: c3531(6834616044......) = 100742700888271653569656131148303 * c3499(6784229512......)

# ECM B1=1e6, sigma=0:14006905292424342943

n=11774: c4831(4807542382......) = 126522839676838465009619996520877 * c4799(3799742714......)

# ECM B1=1e6, sigma=1:969203853

n=12088: c6014(1372235378......) = 20682109931331253533477930951673 * c5982(6634890651......)

# ECM B1=1e6, sigma=1:969203853

n=12328: c5785(2571564054......) = 361423185950455950609741909581497 * c5752(7115105379......)

# ECM B1=2e6, sigma=0:12519953074245729239

n=13440: c3050(2623216906......) = 99087220216974025399020866325411841 * c3015(2647381670......)

# ECM B1=1e6, sigma=0:4400189835950871363

n=13888: c5741(1639424287......) = 2009089384031949675910450871617 * c5710(8160036585......)

# ECM B1=1e6, sigma=0:5843840336490529065

n=15434: c7693(1555597792......) = 166323646543568040267848393582327 * c7660(9352836021......)

# ECM B1=2e6, sigma=0:11194674213229265519

n=15892: c7566(6733403424......) = 340891338613867829488016905524989 * c7534(1975234528......)

# ECM B1=1e6, sigma=0:8895881568553147137

n=16108: c8039(7492823845......) = 7471738988511916017181983831233189 * c8006(1002821947......)

# ECM B1=1e6, sigma=1:1344096391

n=16408: c6997(5350814139......) = 24937475978223379099006521944713 * c6966(2145691947......)

# ECM B1=1e6, sigma=0:4400189835950871363

n=17376: c5756(5754733268......) = 158998952542555746843218261308609 * c5724(3619352942......)

# ECM B1=1e6, sigma=1:4262560105

n=17522: c8730(2017202661......) = 7415159707169960327739692881117 * c8699(2720376554......)

# ECM B1=1e6, sigma=0:8895881568553147137

n=17714: c8321(1099999999......) = 365828987667937784349919416743 * c8291(3006869431......)

# ECM B1=1e6, sigma=0:63736944202539147

n=18184: c9023(1073008750......) = 10197387434675980856966444458961 * c8992(1052238876......)

# ECM B1=1e6, sigma=1:4262560105

n=18844: c8007(4126265433......) = 1572506719634759625081474596533315669 * c7971(2624004961......)

# ECM B1=1e6, sigma=0:14006905292424342943

n=19028: c9156(2555520927......) = 426660783960948210572616892129 * c9126(5989584754......)

# ECM B1=2e6, sigma=0:12519953074245729239

n=19192: c9592(9999000099......) = 8254466919421117066297733761 * c9565(1211344136......)

# ECM B1=1e6, sigma=0:5556858040243039497

n=19744: c9842(2879703894......) = 6192819045917123367581302493153 * c9811(4650069497......)

# ECM B1=1e6, sigma=0:14006905292424342943

n=20033: c17378(7295075983......) = 28084425384907919 * c17362(2597552160......)

n=36183: c20665(1109999889......) = 15871482737416321 * c20648(6993674802......)

n=51072: c13824(9999999999......) = 16555071942151681 * c13808(6040444907......)

n=51621: c34412(9009009009......) = 16375561312626049 * c34396(5501496307......)

n=56440: c20992(9999000099......) = 6300745539326881 * c20977(1586955073......)

n=74001: c46371(7569372151......) = 4513506979081333 * c46356(1677048952......)

n=81305: c52788(2413791209......) = 6946078120861601 * c52772(3475041839......)

n=81321: c54212(9009009009......) = 23150840311240231 * c54196(3891439311......)

n=88012: c43978(2260024505......) = 2411420983451749 * c43962(9372169027......)

n=100711: c90721(1111111111......) = 10927755436955449 * c90705(1016778896......)

n=100803: c67200(9009009009......) = 20564674459379671 * c67184(4380817710......)

n=100809: c64132(6439112334......) = 36072637943436163 * c64116(1785040601......)

n=100883: c99528(9000000000......) = 1125376797936277 * c99513(7997321445......)

n=100895: c75892(4787147635......) = 7801946461145401 * c75876(6135837587......)

n=100979: c100320(9000000000......) = 1635840412233959 * c100305(5501759176......)

n=103246: c41010(7980687933......) = 19730236411554241 * x40994(4044902335......)

n=103246: x40994(4044902335......) = 24475701253467179 * c40978(1652619589......)

n=132848: c60177(9061673607......) = 7771412042557601 * c60162(1166026657......)

n=132872: c62465(1000099999......) = 11183801098544929 * c62448(8942397948......)

n=132878: c63328(4588841604......) = 1431232984002223 * c63313(3206215658......)

n=147976: c72379(6758482737......) = 10365727647041113 * c72363(6520027312......)

n=148004: c73203(1274621993......) = 24917135301268741 * c73186(5115443560......)

n=148006: c72223(1379311215......) = 12678279779799041 * c72207(1087932463......)

n=177254: c68965(1047886919......) = 14801838346741139 * c68948(7079437665......)

n=177280: c70647(1188386260......) = 6413338272328961 * c70631(1852991702......)

n=191406: c57017(8442947993......) = 3492553650244441 * c57002(2417413972......)

n=191430: c50976(9999999990......) = 3916096001764651 * c50961(2553563545......)

n=200106: c66676(7297322054......) = 8176293124852051 * c66660(8924976077......)

n=200118: c66696(1112718468......) = 120980379642351013 * c66678(9197511793......)

n=200122: c89712(9090909090......) = 15234068570887063 * c89696(5967485999......)

n=200568: c65260(2636346400......) = 168896414736164377 * c65243(1560925022......)

n=200596: c88320(9900990099......) = 31501016530386569 * c88304(3143070030......)

n=200734: c99577(5873225558......) = 7659188339379607 * c99561(7668208821......)

n=200748: c66899(8947631893......) = 17509100622784909 * c66883(5110274985......)

n=201078: c67021(1000999998......) = 7648337817600463 * c67005(1308781101......)

n=201116: c99520(1167057221......) = 147562697539537541 * c99502(7908890531......)

n=201252: c64791(3605762723......) = 14494128288281269 * c64775(2487740312......)

n=201282: c67093(1098901098......) = 20166192900176689 * c67076(5449224374......)

n=201442: c98512(8817048105......) = 1546283635052329 * x98497(5702089775......)

n=201442: x98497(5702089775......) = 6311205878366339 * c98481(9034865738......)

n=201446: c86329(1099999890......) = 13822069649622263 * c86312(7958286406......)

n=201448: c92353(1000000000......) = 8348401720548553 * c92337(1197834068......)

n=201598: c100792(5010468622......) = 2104233877202419 * c100777(2381136753......)

n=201600: c46072(6685063918......) = 11192343147820801 * c46056(5972890421......)

n=201772: c99345(1282885829......) = 3409540517953961 * c99329(3762635530......)

n=201780L: c25057(1105097795......) = 57110580917678341 * c25040(1935014102......)

n=201922: c86527(1361910203......) = 9803721537523579 * c86511(1389176750......)

n=201950: c69114(1125379692......) = 1568415908434201 * c69098(7175263186......)

n=201954: c66409(4101347855......) = 68367302609738647 * c66392(5998990304......)

n=205758: c55426(1221673526......) = 33978291696293491 * c55409(3595453054......)

n=205760: c82165(8724179652......) = 53274168514744321 * c82149(1637600340......)

n=205782: c68572(1893875113......) = 45778928724905419 * c68555(4137001818......)

n=205784: c99216(3017305347......) = 92433927811919489 * c99199(3264283385......)

n=205788: c62314(9622514799......) = 97697031601519549 * c62297(9849342033......)

n=205792: c100180(4888894559......) = 6713214759483329 * c100164(7282493908......)

# TD

December 28, 2024 2024 年 12 月 28 日 (Maksym Voznyy)

n=16898: p6640(1115690142......) is proven

December 27, 2024 2024 年 12 月 27 日 (Maksym Voznyy)

n=11542: p5496(1290414533......) is proven

December 27, 2024 2024 年 12 月 27 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=72316: c35601(1009999999......) = 55106382914251049 * c35584(1832818534......)

n=72324: c20146(1592874015......) = 234240505457869 * c20131(6800164694......)

n=87960: c23424(9999000100......) = 9111929554368721 * c23409(1097352656......)

n=66407: c60360(9000000000......) = 3933064407529511 * c60345(2288292045......)

n=73967: c65655(1563068538......) = 43627993857300163 * c65638(3582719260......)

n=147938: c63391(3717760724......) = 2390041859908333 * x63376(1555521176......)

n=147938: x63376(1555521176......) = 4069624661122357 * c63360(3822271844......)

n=147944: c73941(2641972759......) = 32080307466136609 * x73924(8235497000......)

n=147944: x73924(8235497000......) = 135774162316585361 * c73907(6065584835......)

n=73981: c73372(9000000000......) = 16036922774377963 * c73356(5612049223......)

n=162578: c73009(1000000000......) = 1218635102035157 * c72993(8205901818......)

n=162594: c54181(1000000000......) = 5598379732456207 * c54165(1786231103......)

n=162598: c81259(4749249115......) = 151148422071281699 * c81242(3142109623......)

n=177222: c59061(1943785101......) = 4441637490009397 * c59045(4376280383......)

n=177228: c58952(2025119450......) = 1811152759919329 * c58937(1118138400......)

n=177230: c68812(5400015045......) = 1203169028936921 * c68797(4488159947......)

n=88621: c76779(1159420786......) = 1978150024951439 * c76763(5861136780......)

n=177242: c76800(9090909090......) = 112229804188796659 * c76783(8100262810......)

n=191372: c95684(9900990099......) = 32486884596751901 * c95668(3047688389......)

n=191382: c63080(9100000000......) = 27490748998292611 * c63064(3310204462......)

n=200006: c99978(2618759425......) = 15916514128499423 * c99962(1645309647......)

n=200008: c95557(1606362609......) = 8025693006079649 * c95541(2001525112......)

n=200012: c96714(3366463556......) = 5369000821722061 * c96698(6270186331......)

n=200020M: c39169(2796100000......) = 1087291974725641 * c39154(2571618355......)

n=200022: c59890(3629342165......) = 14224798530737251 * c59874(2551419028......)

n=200036: c97609(1009999999......) = 195176377742016989 * c97591(5174806560......)

n=200060L: c34263(5947527487......) = 2586550693288241 * c34248(2299404957......)

n=200076: c66689(1009998990......) = 2482668729756121 * c66673(4068198780......)

n=200080: c76783(3076554640......) = 80744687638671041 * c76766(3810225452......)

n=200170: c77755(4541616917......) = 77642008535345281 * x77738(5849432547......)

n=200170: x77738(5849432547......) = 102592332029416121 * c77721(5701627433......)

n=200172: c57168(9901000000......) = 14356622545354741 * c57152(6896468837......)

n=200242: c85798(7653408263......) = 12529715333968211 * c85782(6108206020......)

n=200326: c83520(9090910000......) = 12606678859563517 * c83504(7211185516......)

n=200328: c62720(9999000100......) = 47343300447880369 * c62704(2112020075......)

n=200330: c69697(1099989000......) = 165195129375985411 * c69679(6658725376......)

n=200380M: c38971(1767133610......) = 8518847484300721 * c38955(2074381087......)

n=200396: c80622(1992017506......) = 6927447412178581 * c80606(2875543310......)

n=200502: c64584(9999999990......) = 10262894622122521 * c64568(9743839684......)

n=200504: c98548(5063594698......) = 165998721696594529 * c98531(3050381741......)

n=200538: c61624(4785402939......) = 148513571635922299 * c61607(3222199080......)

n=200556: c66731(8910944385......) = 1137341389200769 * c66716(7834889743......)

n=100329: c65521(1109999999......) = 15463357568134843 * c65504(7178259929......)

n=200660M: c39298(6509534206......) = 158266034604577381 * c39281(4113032984......)

n=200670: c53477(2032150927......) = 60594593989303531 * c53460(3353683544......)

n=200672: c100320(9999999999......) = 75267503241050657 * c100304(1328594621......)

n=200676: c57292(3159660631......) = 45645862214951629 * c57275(6922118408......)

n=200714: c100344(3760970292......) = 27970594039010383 * c100328(1344615808......)

n=200818: c93580(1641159381......) = 2131405226047103 * c93564(7699893768......)

n=200824: c92616(9983219522......) = 15659912834528873 * c92600(6375016022......)

n=200854: c96926(3775179297......) = 26262748348964773 * c96910(1437465434......)

n=200866: c98838(1546818578......) = 29140795906135327 * c98821(5308086241......)

n=200872: c80628(4167210281......) = 43673648341020769 * c80611(9541704069......)

n=200892: c66954(5586187998......) = 68085244672252321 * c66937(8204696957......)

n=201002: c100478(7539896010......) = 150211008247689127 * c100461(5019536249......)

n=201006: c61764(8790017294......) = 43875888911200009 * c61748(2003382156......)

n=201026: c84602(3603469348......) = 20087749123839601 * c84586(1793864173......)

n=201058: c77705(1202924618......) = 1309376978092613 * c77689(9186999916......)

n=201062: c99855(7155308992......) = 1076644602807209 * c99840(6645934019......)

n=201068: c83654(1362248066......) = 15965335411158421 * c83637(8532536472......)

n=201168: c60472(6167455964......) = 1543040499548593 * c60457(3996950155......)

n=201170: c80465(1099989000......) = 8487524217709601 * c80449(1296006906......)

n=201172: c95257(1009999999......) = 10488058154279261 * c95240(9629999997......)

n=201220M: c40226(5602594862......) = 15751680850599181 * c40210(3556823500......)

n=201222: c57438(1363652986......) = 30342386564138503 * c57421(4494217961......)

n=201230: c80489(1099989000......) = 20162636911200331 * c80472(5455581057......)

n=201232: c100597(1175937805......) = 22304075499696337 * c100580(5272300147......)

n=201238: c99936(2456146611......) = 24236285446696493 * c99920(1013417100......)

n=201360: c53619(8016955494......) = 6056862562105921 * c53604(1323615223......)

n=201364: c100673(1024366942......) = 39350427702472129 * c100656(2603191380......)

n=100687: c99640(9000000000......) = 2240179451512117 * c99625(4017535288......)

n=201410: c73200(9091000000......) = 2219528418926171 * c73185(4095915115......)

n=201502: c83808(9090910000......) = 112354727552418317 * c83791(8091257215......)

n=201506: c98787(1002947621......) = 56202654151709207 * c98770(1784520031......)

n=201514: c95437(1099999999......) = 14582860043682881 * c95420(7543101947......)

n=201528: c66961(1000000000......) = 104885038461698137 * x66943(9534248303......)

n=201528: x66943(9534248303......) = 120868063905173113 * c66926(7888145135......)

n=201532: c100742(5635321342......) = 24367818069046601 * c100726(2312608099......)

n=201538: c100768(9090909090......) = 3355806256648367 * c100753(2709008922......)

n=100773: c67171(4956660238......) = 6672179427073921 * x67155(7428847338......)

n=100773: x67155(7428847338......) = 45085099739545963 * c67139(1647738916......)

n=201552: c55297(1000000009......) = 2074218037937137 * x55281(4821093981......)

n=201552: x55281(4821093981......) = 2226701352987697 * x55266(2165128240......)

n=201552: x55266(2165128240......) = 2256168469234369 * c55250(9596483018......)

n=201554: c100031(1091517815......) = 2025692428765703 * c100015(5388368932......)

n=100783: c99627(4881618979......) = 30854229925881841 * c99611(1582155507......)

n=201578: c93005(1326174378......) = 1916057581652059 * c92989(6921370167......)

n=100791: c67162(8916353836......) = 2437446944364427 * c67147(3658070940......)

n=201714: c67237(1098901098......) = 19152879314845333 * c67220(5737524268......)

n=201728: c100352(9999999999......) = 9326334316874753 * c100337(1072232632......)

n=201732: c67225(1172608414......) = 1399572455654809 * c67209(8378333036......)

n=201736: c99576(8844696812......) = 17461266643040153 * c99560(5065323721......)

n=201740L: c31173(3186768169......) = 91082704646231761 * c31156(3498763219......)

n=201742: c95523(2620659383......) = 7385990072588063 * c95507(3548149074......)

n=100917: c67272(9990000009......) = 113681298233860507 * c67255(8787725127......)

n=201834: c67273(1000999998......) = 3098573054695927 * c67257(3230519278......)

n=201842: c98479(1385771950......) = 84207152892178093 * c98462(1645670115......)

n=201846: c67257(1368489653......) = 1558168485862369 * c67241(8782680857......)

n=100929: c63269(5753632495......) = 1475745444608401 * c63254(3898797395......)

n=201866: c86502(6811444280......) = 22080943906595687 * x86486(3084761371......)

n=201866: x86486(3084761371......) = 23721655296756971 * c86470(1300398868......)

n=201898: c95815(1694915254......) = 161598727446174451 * c95798(1048841956......)

n=201900L: c26881(1010050099......) = 177934792901294701 * c26863(5676518252......)

n=201904: c100937(8254747367......) = 55404389631894049 * c100921(1489908547......)

n=201912: c65463(1828610208......) = 2719346075913889 * c65447(6724448294......)

n=205720: c79477(1954907342......) = 50384959844233121 * c79460(3879942245......)

n=205744: c79654(4266643695......) = 65334211745129713 * c79637(6530489282......)

n=205746: c67184(9100000000......) = 113466409365431929 * c67167(8019994684......)

# TD

December 24, 2024 2024 年 12 月 24 日 (Maksym Voznyy)

n=14622: p4802(8071433312......) is proven

December 23, 2024 2024 年 12 月 23 日 (Maksym Voznyy)

n=9924: p3273(7217852534......) is proven

n=17420M: p3137(4127815785......) is proven

December 23, 2024 2024 年 12 月 23 日 (Alfred Eichhorn)

n=26557: c26557(1111111111......) = 325068914583970604174219483 * c26530(3418078632......)

# ECM B1=1e6, sigma=301337878726116

n=26591: c26591(1111111111......) = 19805467754928023182991498761 * c26562(5610123047......)

# ECM B1=1e6, sigma=3688813377903101

n=26683: c26683(1111111111......) = 895706913433002695935759 * x26659(1240485134......)

# ECM B1=1e6, sigma=2815208668740065

n=26683: x26659(1240485134......) = 1972471481131513582044721351729 * c26628(6288988948......)

# ECM B1=1e6, sigma=6565175501251538

# 213433 of 300000 Φn(10) factorizations were cracked. 300000 個中 213433 個の Φn(10) の素因数が見つかりました。

# 20088 of 25997 Rprime factorizations were cracked. 25997 個中 20088 個の Rprime の素因数が見つかりました。

December 22, 2024 2024 年 12 月 22 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=2357: c2310(2589124273......) = 146188004829564079935369590143016368951 * c2272(1771092146......)

# ECM B1=1e6, sigma=0:6362053803524562081

n=3518: c1717(6400499534......) = 1011620405120508476886840343145787659088889 * c1675(6326977492......)

# ECM B1=1e6, sigma=0:13028934786405838209

n=3551: c3398(1153417846......) = 867341452457333632390186176264375804053 * c3359(1329831340......)

# ECM B1=1e6, sigma=0:6362053803524562081

n=4647: c3096(9009009009......) = 18403324229189558262448973304524550403 * c3059(4895316137......)

# ECM B1=1e6, sigma=0:4300356454926965785

n=6264: c1976(2133831491......) = 84125714562553759295568605593921 * c1944(2536479485......)

# ECM B1=1e6, sigma=0:3311199115642302581

n=6566: c2721(2398166140......) = 19910955958140724377896700064675436647 * c2684(1204445505......)

# ECM B1=1e6, sigma=0:3278889093822592239

n=6812: c3121(1009999999......) = 48645099938949186648164544850997736469 * c3083(2076262565......)

# ECM B1=2e6, sigma=0:12519953074245729239

n=7232: c3523(5957170687......) = 44249049847806454650862830764737 * c3492(1346282170......)

# ECM B1=1e6, sigma=0:13028934786405838209

n=7874: c3729(1161896036......) = 1374059866153311045538206184195539917 * c3692(8455934602......)

# ECM B1=1e6, sigma=1:2221835707

n=9230: c3344(1365415357......) = 1713572748649544779239666898355921 * c3310(7968236879......)

# ECM B1=1e6, sigma=1:3737694971

n=9716: c4095(3068084827......) = 164303319163523173774266972831749 * c4063(1867329791......)

# ECM B1=2e6, sigma=0:11194674213229265519

n=9996: c2616(7933754702......) = 113714128305866595319462604093909981569 * c2578(6976929622......)

# ECM B1=1e6, sigma=0:13028934786405838209

n=11212: c5567(1669316235......) = 18191062526507355739164649982993741 * c5532(9176573565......)

# ECM B1=1e6, sigma=0:1719613745761193059

n=12036: c3692(2411580290......) = 4583802703404407579302493085229 * c3661(5261090946......)

# ECM B1=1e6, sigma=0:8895881568553147137

n=12278: c5241(1331679018......) = 144609160649270037483509107312253 * c5208(9208815075......)

# ECM B1=1e6, sigma=0:13028934786405838209

n=12314: c5931(3506081611......) = 2614942241622278167748582418415663 * c5898(1340787400......)

# ECM B1=1e6, sigma=0:1719613745761193059

n=12694: c5728(2945489279......) = 4472068163672630357783103792580573 * c5694(6586414096......)

# ECM B1=1e6, sigma=1:3948794741

n=13910: c5019(2673017512......) = 57512156418537792267901372724321 * c4987(4647743501......)

# ECM B1=1e6, sigma=1:3737694971

n=13938: c4297(1037034482......) = 4002313030115676324227546170365806944933 * c4257(2591087890......)

# ECM B1=1e6, sigma=0:15804014769450298843

n=14090: c5610(1225610900......) = 3743731974685814894235683368811 * c5579(3273767750......)

# ECM B1=1e6, sigma=0:8651912424077867755

n=14518: c5753(2272892796......) = 249737712172752265423023503304843281 * c5717(9101119636......)

# ECM B1=1e6, sigma=0:15804014769450298843

n=14570: c5470(3770475433......) = 79458795282328805760756093475613174011 * c5432(4745195820......)

# ECM B1=2e6, sigma=0:12519953074245729239

n=14818: c7096(4237400798......) = 11473432653324442588006578380011 * c7065(3693228458......)

# ECM B1=1e6, sigma=0:8972623471821003081

n=15104: c7424(9999999999......) = 145100928046678148739950409473 * c7395(6891754680......)

# ECM B1=1e6, sigma=1:2221835707

n=15388: c7656(1825649687......) = 48365095655669411995539069174837901 * c7621(3774725683......)

# ECM B1=1e6, sigma=0:241276996728401

n=18094: c8851(1519838731......) = 40113417032107213657808026099 * c8822(3788853814......)

# ECM B1=1e6, sigma=1:2221835707

n=18118: c9028(4476205831......) = 584160600316384432445918982533 * c8998(7662628785......)

# ECM B1=1e6, sigma=0:5428778321152765231

n=18238: c8222(2581684522......) = 257630890436388285259619811865583 * c8190(1002086557......)

# ECM B1=1e6, sigma=0:8972623471821003081

n=19504: c9129(1379694369......) = 59517739421284248273615315370561 * c9097(2318122937......)

# ECM B1=1e6, sigma=0:4745995418294684783

n=19546: c9382(1865897600......) = 998614366166657104680861041 * c9355(1868486638......)

# ECM B1=1e6, sigma=0:4745995418294684783

December 18, 2024 2024 年 12 月 18 日 (Kurt Beschorner)

n=3993: c2405(5836426332......) = 317212554879625666555681413967780157769991 * c2364(1839910256......)

# ECM B1=3e6, sigma=3:392698896

n=4646: c2201(1099999999......) = 1143810372347099732382133626245176404841223 * c2158(9616978710......)

# ECM B1=3e6, sigma=3:3576190896

n=6095: c4557(6729799498......) = 62613791831395206213853824854817521 * c4523(1074811044......)

# ECM B1=1e6, sigma=0:138738400773068

n=6110: c2208(9091000000......) = 4230133760814934394873981127361372051 * c2172(2149104617......)

# ECM B1=1e6

n=7404: c2453(4130869390......) = 2836616111253687843065217734069859469 * c2417(1456266631......)

# ECM B1=1e6, sigma=3:2256334323

n=14170: c5116(2350683664......) = 50004564468803129271253981321 * c5087(4700938183......)

# P-1 B1=475e6

n=14195: c10625(1111099999......) = 144445281460599056707371630074427705074521 * c10583(7692186195......)

# P-1 B1=26e6

n=14375: c10918(1732425994......) = 5632055950225869423751 * c10896(3076009915......)

# P-1 B1=26e6

n=20125: c13181(4312832038......) = 12817731806036622636291751 * c13156(3364738865......)

# P-1 B1=26e6

n=33535: c25331(1803489138......) = 285117646147236600957489361 * c25304(6325420973......)

# P-1 B1=26e6

n=33537: c19129(7113063850......) = 2262534033569840726347 * c19108(3143848333......)

# P-1 B1=26e6

n=100601: c97099(4473094337......) = 41620636947190397 * c97083(1074729909......)

# P-1 B1=26e6

n=100603: c97848(9000000000......) = 3508093235456662597 * c97830(2565496238......)

# P-1 B1=26e6

n=100607: c90690(2612711757......) = 1460739899696923 * c90675(1788622161......)

# P-1 B1=26e6

n=100615: c80455(6284439941......) = 5821803684571125746332841 * c80431(1079466138......)

# P-1 B1=26e6

n=100631: c99544(2084747337......) = 41387250260362933 * c99527(5037172859......)

# P-1 B1=26e6

n=172351: c172333(2763756966......) = 5195290925545045307 * c172314(5319734748......)

# gr-mfaktc

December 16, 2024 2024 年 12 月 16 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=6727: c5574(2064647840......) = 1047877990715454452835324744683683 * c5541(1970313203......)

# ECM B1=1e6, sigma=0:2274522631687552841

n=6998: c3436(6059991797......) = 4825222440522736932802753826870909063213 * c3397(1255898950......)

# ECM B1=1e6, sigma=1:3357214821

n=7322: c3124(9971602324......) = 1098219798184752353515357893709903 * c3091(9079787434......)

# ECM B1=1e6, sigma=0:2491697219115282787

n=7475: c5245(3675580544......) = 15505472455016759587508459597470951 * c5211(2370505352......)

# ECM B1=1e6, sigma=0:18431048725826748845

n=8550: c2142(3780273794......) = 50792678843997103125564228953098051 * c2107(7442556447......)

# ECM B1=1e6, sigma=1:3948794741

n=8989: c8740(6660681131......) = 102580747840939619646439725223666751 * c8705(6493110326......)

# ECM B1=1e6, sigma=0:15569226960371882803

n=9298: c4640(1359068360......) = 1563165388202378790609422243615950333 * c4603(8694335036......)

# ECM B1=1e6, sigma=0:8200969374073451735

n=10698: c3533(2001678159......) = 60422310915370446522185091859841143 * c3498(3312812980......)

# ECM B1=1e6, sigma=0:9025799004291895975

n=11740M: c2333(4667164215......) = 26079940960803251242773920141621 * c2302(1789560882......)

# ECM B1=1e6, sigma=0:2491697219115282787

n=12226: c6055(1514206454......) = 89608107762061515506843876482939463 * c6020(1689809652......)

# ECM B1=1e6, sigma=1:779994301

n=12566: c6073(1313383621......) = 31603495155368462761237537133957 * c6041(4155817623......)

# ECM B1=1e6, sigma=1:655833659

n=12736: c6299(2387190110......) = 22097757830929209295739749880257 * c6268(1080286121......)

# ECM B1=1e6, sigma=0:7381242002067033701

n=12812: c6399(2664787174......) = 21077242196429525361186824449 * c6371(1264295940......)

# ECM B1=1e6, sigma=0:5240098279965081931

n=13102: c6510(4513168459......) = 11234156335481531452871344377931 * c6479(4017363052......)

# ECM B1=1e6, sigma=0:15001379438198087481

n=13996: c6987(1072519602......) = 204890785219035979427957584202935049 * c6951(5234591695......)

# ECM B1=1e6, sigma=0:5002578937860814667

n=14682: c4872(8539751468......) = 308423623644519438261578158376407 * c4840(2768838316......)

# ECM B1=1e6, sigma=0:18220973016383062643

n=14938: c5714(1950399937......) = 50507197481999694181649427499207 * c5682(3861627718......)

# ECM B1=1e6, sigma=0:14388761652548964991

n=15034: c7508(3549274949......) = 4195633154739939146871605469049729 * c7474(8459450143......)

# ECM B1=1e6, sigma=0:7381242002067033701

n=15036: c4184(1145518682......) = 19960909424761606195431498285633121 * c4149(5738810083......)

# ECM B1=1e6, sigma=0:9025799004291895975

n=15576: c4594(2457573732......) = 1021215882940763716023660860358793 * c4561(2406517342......)

# ECM B1=1e6, sigma=1:3357214821

n=15680: c5336(2877063281......) = 237640398462598725110168022608455681 * c5301(1210679370......)

# ECM B1=1e6, sigma=1:3357214821

n=16642: c8113(1099999999......) = 510275338872837943503226436340757 * c8080(2155698926......)

# ECM B1=1e6, sigma=1:655833659

n=16762: c7600(5015575211......) = 892945963278215927708265523253 * c7570(5616885475......)

# ECM B1=1e6, sigma=0:15715615220306035161

n=16836: c5267(1630328933......) = 1708559249210108153689680151069 * c5236(9542126995......)

# ECM B1=1e6, sigma=0:5002578937860814667

n=16882: c8012(4767999568......) = 74070097854246176082005476567 * c7983(6437144956......)

# ECM B1=1e6, sigma=0:8200969374073451735

n=17470: c6922(2859972704......) = 51142479417505833766068185041 * c6893(5592166702......)

# ECM B1=1e6, sigma=0:5240098279965081931

n=19496: c9721(3130714080......) = 4484551381589952548623003000369 * c9690(6981108731......)

# ECM B1=1e6, sigma=0:8200969374073451735

n=19634: c9807(1718958630......) = 62996090673261196878035187361 * c9778(2728675084......)

# ECM B1=1e6, sigma=1:779994301

n=19770: c5257(5183535478......) = 3712624882400509567017878191602121 * c5224(1396191547......)

# ECM B1=1e6, sigma=0:5002578937860814667

Dec 13, 2024 (USTL-FIL (Lille Fr))

# via yoyo@home

n=2420M: c383(1737659923......) = 44505227443958852066177332104248534163442141717888361 * c330(3904395109......)

# ECM B1=535737247-850000000

December 11, 2024 2024 年 12 月 11 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=5448: c1756(6261074342......) = 51278642145604467093822938103548209 * c1722(1220990665......)

# ECM B1=1e6

n=9608: c4749(2095517973......) = 8707877193463091134765720576950241 * c4715(2406462478......)

# ECM B1=1e6

n=10528: c4379(2722980648......) = 1140860950517154006542133524802017 * c4346(2386776974......)

# ECM B1=1e6

n=11428: c5702(4514462363......) = 213464738891827136781453788693029 * c5670(2114851561......)

# ECM B1=1e6

n=11874: c3923(4659573886......) = 4474652592213101963261049956287 * c3893(1041326402......)

# ECM B1=1e6

n=12894: c3621(5999190081......) = 3364181690127541423617629098854302497117 * c3582(1783253888......)

# ECM B1=1e6

n=13048: c5547(4147538187......) = 7156481208941164087579325103329 * c5516(5795499305......)

# ECM B1=1e6

n=13430: c4909(2458504069......) = 697310374083635934181072120743731 * c4876(3525695530......)

# ECM B1=1e6

n=13670: c5443(1869598825......) = 45877095104379039785304744963120481 * c5408(4075233668......)

# ECM B1=1e6

n=14150: c5624(9232599634......) = 1329358319189638483639181035972001 * c5591(6945155043......)

# ECM B1=1e6

n=14228: c7106(2017044994......) = 916860194915205211551756819707549 * c7073(2199948264......)

# ECM B1=1e6

n=14610: c3873(3372260753......) = 4431413788420445723452726601182681 * c3839(7609898137......)

# ECM B1=1e6

n=15756: c4757(6974432889......) = 1045538729636300313001097608801 * c4727(6670659529......)

# ECM B1=1e6

n=15808: c6898(2777857258......) = 104413314723119774544094458576769 * c6866(2660443512......)

# ECM B1=1e6

n=16014: c4967(2173290297......) = 31547981662215854119939823173543597 * c4932(6888841006......)

# ECM B1=1e6

n=16052: c7966(3084447777......) = 4658319375280038836593342482714709 * c7932(6621374638......)

# ECM B1=1e6

n=16456: c7005(1230665090......) = 641359059804856802486136586885249 * c6972(1918839489......)

# ECM B1=1e6

n=17238: c4959(7233133879......) = 9720515831946074230321672288201 * c4928(7441100867......)

# ECM B1=1e6

n=17472: c4608(9999999999......) = 1798709127344704286700852409729 * c4578(5559542589......)

# ECM B1=1e6

n=17546: c8417(3846439903......) = 18868093412308627087881461714317 * c8386(2038594901......)

# ECM B1=1e6

n=18920: c6660(1802605942......) = 142880673582937612166323754051041 * c6628(1261616352......)

# ECM B1=1e6

n=19544: c8252(2041413226......) = 47939256572463779828811661121 * c8223(4258333092......)

# ECM B1=1e6

n=19636: c9799(3774609940......) = 198103141961222669858001101319081529 * c9764(1905376110......)

# ECM B1=1e6

n=19646: c8280(9090909091......) = 237519600329120397627415243893025961 * c8245(3827435326......)

# ECM B1=1e6

n=19668: c5863(2016392101......) = 9261343726322928500159380669 * c5835(2177213330......)

# ECM B1=1e6

n=19738: c9630(1257830070......) = 161071998002651899743307439651 * c9600(7809116953......)

# ECM B1=1e6

n=19902: c6321(1674646820......) = 4888214799925202813776931453797 * c6290(3425886317......)

# ECM B1=1e6

December 5, 2024 2024 年 12 月 5 日 (Takahiro Nohara)

# via Wilfrid Keller

n=65536: c32757(2645761938......) = 1117030621680408054480405874459772649473 * c32718(2368567063......)

# ECM B1=11000000, sigma=8785798547043211

# This is a prime factor of the generalized Fermat number F_15(10).

# http://www.prothsearch.com/GFN10.html

December 7, 2024 2024 年 12 月 7 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=4016: c1986(6931836081......) = 112307930407718559571758910725882966689 * c1948(6172169726......)

# ECM B1=3e6

n=5208: c1429(3690121883......) = 182066509594642808999128205413986012487177 * c1388(2026798828......)

# ECM B1=3e6

n=5863: c4765(1566203602......) = 7818544465087625000498070685898788129 * c4728(2003190759......)

# ECM B1=1e6

n=5958: c1968(9941345611......) = 63830192035862979527206502002215961 * c1934(1557467601......)

# ECM B1=1e6

n=6438: c1960(2559820103......) = 1923513602081405979027442765270321 * c1927(1330804263......)

# ECM B1=1e6

n=6954: c2150(1845017037......) = 6119309542892638024782453879771234478819 * c2110(3015073881......)

# ECM B1=3e6

n=9924: c3305(1009998990......) = 13993067676745836500583168665329 * p3273(7217852534......)

# ECM B1=1e6

$ ./pfgw64 -tc -q"(10^3308-10^1654+1)/138545363067460527192273952955422429"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

Primality testing (10^3308-10^1654+1)/138545363067460527192273952955422429 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 13
Running N+1 test using discriminant 29, base 4+sqrt(29)

Calling N-1 BLS with factored part 0.31% and helper 0.18% (1.14% proof)
(10^3308-10^1654+1)/138545363067460527192273952955422429 is Fermat and Lucas PRP! (0.5038s+0.0003s)

n=10122: c2831(9526847758......) = 56318968260288413993111664013 * c2803(1691587763......)

# ECM B1=1e6

n=11222: c5342(8917056861......) = 101525808624828813955100986283569 * c5310(8783044412......)

# ECM B1=1e6

n=11336: c5162(5235501542......) = 48543089529707007606940079456713 * c5131(1078526643......)

# ECM B1=3e6

n=11494: c4883(1530330281......) = 45527012989769020736163797329894099247 * c4845(3361367638......)

# ECM B1=1e6

n=11650: c4598(4194731153......) = 7407396523803245840396003274358451 * c4564(5662895377......)

# ECM B1=1e6

n=11728: c5856(9999999900......) = 7494260664694500139703858016593 * c5826(1334354427......)

# ECM B1=1e6

n=11748: c3493(1649848047......) = 91989151900159169448979045154989 * c3461(1793524576......)

# ECM B1=1e6

n=13104: c3427(1376658878......) = 880655645796768439492733079697 * c3397(1563220408......)

# ECM B1=1e6

n=13934: c6966(9090909090......) = 205513835321465414030896669223853997 * c6931(4423502231......)

# ECM B1=3e6

n=14062: c6852(2975904610......) = 46074847886707782459951938818441 * c6820(6458848475......)

# ECM B1=1e6

n=14188: c7073(1017024830......) = 555797467940454639105794726350386569 * c7037(1829847901......)

# ECM B1=1e6

n=14754: c4836(3655293469......) = 5533722289095384677947125556459 * c4805(6605487733......)

# ECM B1=1e6

n=14822: c7343(3099766109......) = 12885303139791837181140400104263 * c7312(2405660213......)

# ECM B1=1e6

n=15078: c4237(4835208376......) = 8940875609688780733739035058641 * c4206(5407980814......)

# ECM B1=1e6

n=15378: c4635(8453556532......) = 347244936369913663790395948338580801 * c4600(2434465026......)

# ECM B1=1e6

n=15672: c5178(8585672897......) = 2172163531093464286375305939361 * c5148(3952590481......)

# ECM B1=3e6

n=15988: c6811(6578339058......) = 270610104811353384383257216874309 * c6779(2430928831......)

# ECM B1=3e6

n=16674: c4747(1010665396......) = 17215617442390236245549872720450293691 * c4709(5870631128......)

# ECM B1=3e6

n=16910: c6310(1783045372......) = 16892696391545847655248155508864691 * c6276(1055512590......)

# ECM B1=1e6

n=16986: c5292(1897148822......) = 1071926280952327242714105033769 * c5262(1769850088......)

# ECM B1=3e6

n=17702: c8572(6447942093......) = 2448553878357819744731652063583 * c8542(2633367454......)

# ECM B1=1e6

n=18416: c9153(1981528675......) = 328292252056973513701559791141457 * c9120(6035867930......)

# ECM B1=1e6

n=18556: c9262(9113653401......) = 11310808142943366831346758833140729 * c9228(8057473247......)

# ECM B1=1e6

n=18628: c9304(1299665421......) = 3342695072935155510074562097481 * c9273(3888076515......)

# ECM B1=1e6

n=19348: c8256(3748123039......) = 14317257982594134178011397216081 * c8225(2617905638......)

# ECM B1=1e6

# 1287 of 300000 Φn(10) factorizations were finished. 300000 個中 1287 個の Φn(10) の素因数分解が終わりました。

December 5, 2024 2024 年 12 月 5 日 (Kurt Beschorner)

n=1515: c784(2430222420......) = 177186747784485365721785152780571372881201 * c743(1371559922......)

# ECM B1=43e6, sigma=3:2470984999

n=4954: c2441(1660977058......) = 33171702358997510112359311069243384093 * c2403(5007210784......)

# ECM B1=3e6, sigma=3:2533550017

n=5162: c2455(5761149420......) = 17821515535893080292044375734574549971 * c2418(3232693318......)

# ECM B1=3e6, sigma=3:161741031

n=5336: c2448(8268566280......) = 33958082351539364799574631597444432756808529 * c2405(2434933219......)

# ECM B1=3e6, sigma=3:3253116463

n=14145: c7012(4049412494......) = 7888109751073943149402226551 * c6984(5133565102......)

# P-1 B1=200e6

n=33526: c16752(1473297528......) = 578367809593219644206504259419 * c16722(2547336666......)

# P-1 B1=55e6

n=33528: c10062(1648723766......) = 14915519317285509793729 * c10040(1105374698......)

# P-1 B1=55e6

n=100580L: c19505(2796100000......) = 5390464273856107327441481 * c19480(5187122774......)

# P-1 B1=55e6

n=100587: c67043(1702576099......) = 111324946991076079 * c67026(1529375171......)

# P-1 B1=26e6

n=100590: c22906(1064167910......) = 14911854297232761331 * c22886(7136388870......)

# P-1 B1=55e6

n=100595: c69595(1118355636......) = 376464670048512505862711 * c69571(2970678858......)

# P-1 B1=26e6

December 2, 2024 2024 年 12 月 2 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=2234: c1015(1536789484......) = 1445186809706740542550789335667900069209733 * p973(1063384660......)

# ECM B1=1e6

n=3278: c1459(8399560307......) = 2157697221847899424424458252991851 * c1426(3892835483......)

# ECM B1=3e6

n=3962: c1679(2178056184......) = 3983899972382950675490061976611893 * c1645(5467145760......)

# ECM B1=3e6

n=5426: c2643(2049247740......) = 2109798893991278941664139480607 * c2612(9713000353......)

# ECM B1=3e6

n=6136: c2785(1000099999......) = 662599496748626238734309791458355897 * c2749(1509358224......)

# ECM B1=1e6

n=6170: c2399(1355054091......) = 977551585141899205184634315312811 * c2366(1386171442......)

# ECM B1=3e6

n=6772: c3384(9900990099......) = 186763741814089255834917574142376769 * c3349(5301344898......)

# ECM B1=3e6

n=7492: c3727(1413492884......) = 138394395399915400069845901461229 * c3695(1021351247......)

# ECM B1=3e6

n=7862: c3885(1504639070......) = 44693791374140318283734999777207216623 * c3847(3366550529......)

# ECM B1=1e6

n=8388: c2742(6095253936......) = 134688426473691429084817972025926249 * c2707(4525447431......)

# ECM B1=3e6

n=9096: c3025(1000099999......) = 1529712162385306709282432672390233 * c2991(6537831263......)

# ECM B1=1e6

n=9134: c4556(8647808741......) = 25854551191035295754193658612317653 * c4522(3344791668......)

# ECM B1=3e6

n=10212: c3108(3698158276......) = 18991721501941386445681615468491929029 * c3071(1947247528......)

# ECM B1=3e6

n=10370: c3817(9836666978......) = 7628614856290469023577714786281 * c3787(1289443387......)

# ECM B1=1e6

n=10832: c5408(9999999900......) = 7841177492454314988778424265889 * c5378(1275318650......)

# ECM B1=3e6

n=11060M: c1856(3566535791......) = 37719150517049197803985020844031720302235341 * c1812(9455504013......)

# ECM B1=3e6

n=11240: c4443(5137614098......) = 7708819233454301917322106725844119281 * c4406(6664592777......)

# ECM B1=1e6

n=13340L: c2451(6179141036......) = 1598271964841370741795383513073187001581 * c2412(3866138662......)

# ECM B1=3e6

n=14346: c4708(8005775977......) = 5236932463474286267607873472687 * c4678(1528714764......)

# ECM B1=3e6

n=14802: c4888(7591735367......) = 1554378630311446714614875023012561 * c4855(4884096589......)

# ECM B1=3e6

n=16596: c5511(2420406811......) = 2068548304517379029499883521178878109 * c5475(1170099246......)

# ECM B1=3e6

n=16858: c8410(5202050006......) = 2059242764914935150535059457966741837 * c8374(2526195597......)

# ECM B1=3e6

n=17680: c6115(4530956348......) = 8009782669511468438840517543521 * c6084(5656778136......)

# ECM B1=1e6

n=18184: c9061(3333351370......) = 310654630797806515830381131044662827041 * c9023(1073008750......)

# ECM B1=3e6

n=18664: c9299(8657169263......) = 3838314599403480974995790999177 * c9269(2255461098......)

# ECM B1=1e6

n=19706: c9629(1099999999......) = 1200366132434749096552768256047 * c9598(9163870674......)

# ECM B1=3e6

# 1286 of 300000 Φn(10) factorizations were finished. 300000 個中 1286 個の Φn(10) の素因数分解が終わりました。

# 213416 of 300000 Φn(10) factorizations were cracked. 300000 個中 213416 個の Φn(10) の素因数が見つかりました。

# 130 of 25997 Rprime factorizations were finished. 25997 個中 130 個の Rprime の素因数分解が終わりました。

# 20085 of 25997 Rprime factorizations were cracked. 25997 個中 20085 個の Rprime の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | July 2024 2024 年 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新 | Recent changes最近の更新