n=5935: c4693(1746239451......) = 895577649718240766851420771286431 * c4660(1949847064......)
# ECM B1=1e6, sigma=0:2558740426237798
n=14008: c6523(1081739999......) = 7557466138018613887752839718241 * c6492(1431352757......)
# P-1 B1=425e6
n=14025: c6383(5259342355......) = 494799595468837592912765329951 * c6354(1062923737......)
# P-1 B1=200e6
n=20069: c16548(7215549935......) = 625888769768322182081 * c16528(1152848602......)
# P-1 B1=26e6
n=20071: c20039(3010810649......) = 10717561504971990516345053 * c20014(2809231044......)
# P-1 B1=26e6
n=33445: c26746(8970031425......) = 1469336791608911 * c26731(6104816456......)
# P-1 B1=26e6
n=33447: c22267(8139645793......) = 491608830005525988853 * x22247(1655715946......)
# P-1 B1=26e6
n=33447: x22247(1655715946......) = 187416928712199166553464081 * c22220(8834399101......)
# P-1 B1=26e6
n=33448: c16103(7910940976......) = 1351418898150824104130233 * c16079(5853803722......)
# P-1 B1=55e6
n=100336: c50131(1392564660......) = 330028917981567723303942673 * c50104(4219523152......)
# P-1 B1=55e6
n=100338: c28639(1508262856......) = 206912510296423 * c28624(7289374887......)
# P-1 B1=55e6
n=100339: c95040(9000000000......) = 54223021923540945759365761 * c95015(1659811585......)
# P-1 B1=26e6
n=100346: c49654(3321838764......) = 383728351907091520013 * c49633(8656745711......)
# P-1 B1=55e6
n=100349: c95964(9000000000......) = 2394463284595550867 * x95946(3758671121......)
# P-1 B1=25e6
n=100349: x95946(3758671121......) = 571773078188199797711 * x95925(6573711259......)
# P-1 B1=25e6
n=100349: x95925(6573711259......) = 2170923897743298135871 * c95904(3028070797......)
# P-1 B1=25e6
n=100354: c50162(3145478343......) = 7017770946180281805900997 * c50137(4482161597......)
# P-1 B1=55e6
n=100367: c99600(9000000000......) = 437309391825563618085106691353003 * c99568(2058039495......)
# P-1 B1=25e6
n=165059: c165049(2678284266......) = 1412576064729866441 * c165031(1896028350......)
n=165367: c165351(1518219773......) = 219042871356182639 * c165333(6931153542......)
n=165559: c165521(2649968073......) = 3022209644667383591 * c165502(8768313205......)
n=165887: c165873(1538067096......) = 2103548727932086601 * c165854(7311773083......)
# gr-mfaktc
n=8820L: c954(1066605303......) = 38472335154641256621987535647777642463066081 * c910(2772395539......)
# ECM B1=43e6, sigma=0:1776896642260120
n=13981: c12001(1111111111......) = 41959916167823776617032638519 * c11972(2648029864......)
# P-1 B1=180e6
n=15010: c5572(4572640214......) = 2247135913811251472757731281 * c5545(2034874787......)
# P-1 B1=475e6
n=33439: c26881(1111110999......) = 53111770394178347969857294969 * c26852(2092024031......)
# P-1 B1=26e6
n=33443: c32739(7096238420......) = 136477096357797438371266784827 * c32710(5199581915......)
# P-1 B1=26e6
n=100310: c34353(7293519128......) = 1212708762180807686728089786270481 * c34320(6014238006......)
# P-1 B1=55e6
n=100315: c80248(9000090000......) = 50361950805780701077241 * c80226(1787081289......)
# P-1 B1=26e6
n=100319: c97916(1208652804......) = 912888165648139220039 * x97895(1323987811......)
# P-1 B1=26e6
n=100319: x97895(1323987811......) = 1057846236716005776317 * c97874(1251588146......)
# P-1 B1=26e6
n=100322: c49544(6596859906......) = 8108488733399443679408089 * c49519(8135745295......)
# P-1 B1=55e6
n=100325: c80226(5864047064......) = 5827663597974964201 * x80208(1006243233......)
# P-1 B1=26e6
n=100325: x80208(1006243233......) = 25321797375061892351 * x80188(3973822312......)
# P-1 B1=26e6
n=100325: x80188(3973822312......) = 56630897862009020083404551 * c80162(7017056875......)
# P-1 B1=26e6
n=100326: c31939(1133802386......) = 783039991400508236893 * c31918(1447949529......)
# P-1 B1=55e6
n=100327: c97840(9000000000......) = 35281606932001009 * x97824(2550904219......)
# P-1 B1=26e6
n=100327: x97824(2550904219......) = 12828554947389278628650883738942364921 * c97787(1988457959......)
# P-1 B1=26e6
n=100331: c78110(2223214426......) = 21467063211868121 * x78094(1035639763......)
# P-1 B1=26e6
n=100331: x78094(1035639763......) = 4862518420072955027 * c78075(2129842344......)
# P-1 B1=26e6
n=163567: c163559(2573107112......) = 539641922197237843 * c163541(4768174982......)
n=163643: c163631(1041807982......) = 8742778098628924369 * c163612(1191621210......)
n=163871: c163854(6693677642......) = 81434437414508879 * c163837(8219713741......)
n=164363: c164351(4061391446......) = 318453441593001283 * x164334(1275348580......)
n=164363: x164334(1275348580......) = 7249093626119332237 * c164315(1759321435......)
# gr-mfaktc
# 213308 of 300000 Φn(10) factorizations were cracked. 300000 個中 213308 個の Φn(10) の素因数が見つかりました。
n=7714: c3016(9520883276......) = 674756255553554784010629810684186001 * c2981(1411010746......)
# P-1 B1=55e6
n=13959: c8225(1438565069......) = 10908706960626889587131773 * c8200(1318731060......)
# P-1 B1=200e6
n=13967: c13959(7576437216......) = 1546739122898324683549717612079311 * c13926(4898329074......)
# P-1 B1=150e6
n=14329: c11608(2381975029......) = 183712653538982131518024939751 * c11579(1296576465......)
# P-1 B1=26e6
n=20059: c18498(1438065169......) = 80375529458480386963639 * c18475(1789182826......)
# P-1 B1=26e6
n=33428: c16293(3839001903......) = 598073364853609567951344661 * c16266(6418948123......)
# P-1 B1=55e6
n=33430: c13348(1488332194......) = 1940207172302679533640091 * c13323(7670996249......)
# P-1 B1=55e6
n=33431: c32976(9298196351......) = 2986536836872837600454184202658521 * c32943(3113370723......)
# P-1 B1=26e6
n=33433: c32846(1613302257......) = 40818089630691856577333 * c32823(3952419802......)
# P-1 B1=26e6
n=33435: c17797(6218233396......) = 105983936158364548054452631 * c17771(5867147061......)
# P-1 B1=26e6
n=100281: c66852(9009009009......) = 1815632202447883 * c66837(4961912989......)
# P-1 B1=26e6
n=100283: c94112(9999999999......) = 42379862892338239 * c94096(2359611220......)
# P-1 B1=26e6
n=100302: c32826(1564241239......) = 163812185449385920151179 * c32802(9548991942......)
# P-1 B1=55e6
n=100307: c97560(9000000000......) = 821138291293898067154050639683 * c97531(1096039497......)
# P-1 B1=26e6
n=161503: c161497(1719951628......) = 446701045025113763 * c161479(3850341626......)
n=161831: c161799(2144367799......) = 3150992875204990759 * c161780(6805371779......)
n=161923: c161899(1521245029......) = 265409454752698439 * c161881(5731691173......)
n=161983: c161975(7621588787......) = 3102607059593915561 * c161957(2456511134......)
n=162053: c162031(3117380273......) = 455764003592207053 * c162013(6839900144......)
n=162263: c162247(1858883693......) = 16573976462383659653 * c162228(1121567716......)
n=162709: c162700(6163198449......) = 6151846505317453609 * c162682(1001845290......)
n=162821: c162815(3412052803......) = 533085113807320037 * c162797(6400577909......)
n=163147: c163131(5702797603......) = 226382336474367907 * c163114(2519100073......)
n=163243: c163227(5791027631......) = 450452936170769321 * x163210(1285601039......)
n=163243: x163210(1285601039......) = 1158816080244718243 * c163192(1109409044......)
n=163351: c163333(1621694346......) = 655996977828896117 * c163315(2472106429......)
# gr-mfaktc
# via Kurt Beschorner
n=1213: c1169(7642013827......) = 3802200856589814744657128636563499435894999 * c1127(2009892195......)
# ECM B1=1e6, sigma=0:14488647671416981951
n=1815: c877(2754062241......) = 4098441872200433015045042676505414155509641 * c834(6719778705......)
# ECM B1=1e6, sigma=0:11990104957816418499
n=2285: c1803(3795280466......) = 2051498341294060742933143147274846947443401 * c1761(1850004160......)
# P-1 B1=1e9, B2=6084866733918
n=2391: c1547(3044508346......) = 103182654083788921684537334713499683 * c1512(2950600925......)
# ECM B1=1e6, sigma=0:12020620644682256341
n=2449: c2315(2926565858......) = 600858453913730403856532541976772589443 * c2276(4870641062......)
# P-1 B1=1e9, B2=6084866733918
n=2527: c2011(2076778741......) = 647353766385319691857417203558887401 * c1975(3208104824......)
# ECM B1=1e6, sigma=0:3621277789841061197
n=2535: c1219(3635690525......) = 156754634687052062764416759087670471 * c1184(2319351216......)
# ECM B1=1e6, sigma=1:3393956487
n=2543: c2525(1890946834......) = 753304164049013002621804486735652843 * c2489(2510203613......)
# ECM B1=1e6, sigma=1:1466944611
n=2705: c2136(1391017077......) = 109195685007337483022299748369716146161 * c2098(1273875498......)
# ECM B1=1e6, sigma=0:8906779298094550009
n=2745: c1424(3270025958......) = 28485167471844891801410276138004175081 * c1387(1147974980......)
# ECM B1=1e6, sigma=0:8604497436349318999
n=2829: c1756(2179761600......) = 16410236115549830906505363137937169 * c1722(1328293868......)
# ECM B1=1e6, sigma=0:1951234959635419041
n=2937: c1705(3571617425......) = 18896097703630454952291685509584942533 * c1668(1890134927......)
# ECM B1=1e6, sigma=1:759148817
n=3021: c1834(4557057975......) = 27330873097344696912154806989332483 * c1800(1667366409......)
# ECM B1=1e6, sigma=0:3201172410425856953
n=3569: c3428(2183376647......) = 11400139053302182410990498057327124417267 * c3388(1915219312......)
# ECM B1=3e6, sigma=0:10865405958817156427
n=3585: c1863(7826086355......) = 58085336248307618498777162746561 * c1832(1347342868......)
# ECM B1=1e6, sigma=0:15009441137241804824
n=3667: c3416(3536073635......) = 2080475367504865290478276992253031 * c3383(1699646960......)
# ECM B1=1e6, sigma=0:12437885057015613011
n=3757: c3242(1474080211......) = 33694379761057967269754016089273036507 * c3204(4374854863......)
# ECM B1=1e6, sigma=1:273908683
n=3787: c3208(1025566888......) = 7055345299224159172828355011806649 * c3174(1453602686......)
# ECM B1=1e6, sigma=0:2830813724368277207
n=4055: c3209(2813674769......) = 1948787780852220980547111695444679761 * c3173(1443807682......)
# ECM B1=1e6, sigma=0:17455056067453863873
n=4103: c3700(2530510939......) = 1741547372143431977118494290270117837 * c3664(1453024465......)
# ECM B1=1e6, sigma=0:5025907934834844875
n=4165: c2653(4958384644......) = 14502689303731246267058119792968671 * c2619(3418941508......)
# ECM B1=1e6, sigma=0:5727017555073026671
n=4191: c2516(4414045412......) = 22984383232857352472100689865991849 * c2482(1920454148......)
# ECM B1=1e6, sigma=0:12310506994298116883
n=4265: c3375(6599422633......) = 14287864954281769595031262840766686391 * c3338(4618900482......)
# ECM B1=1e6, sigma=0:16892259785869631342
n=4507: c4480(1938486490......) = 144033826328835512829127544710780565639 * c4442(1345855025......)
# ECM B1=1e6, sigma=0:449790939880095147
n=4509: c2949(4345615927......) = 2460235364293681340814960094035702961 * c2913(1766341542......)
# ECM B1=3e6, sigma=0:15501487315860969557
n=4739: c4003(1851058454......) = 169909323009560405443119802808507 * c3971(1089439014......)
# ECM B1=1e6, sigma=0:5951338009732668807
n=4869: c3226(1332576993......) = 486782628447541143585231274986757711 * c3190(2737519614......)
# ECM B1=1e6, sigma=0:7300925068061572311
n=4919: c4915(1129292723......) = 6530957056632063748192085275662319 * c4881(1729138186......)
# ECM B1=1e6, sigma=0:6603285319019973935
n=5215: c3545(1383496501......) = 125442818692110058393659177580154599647431 * c3504(1102890157......)
# ECM B1=1e6, sigma=1:177897093
n=5465: c4360(8719080911......) = 165659419307517545705863974768344231 * c4325(5263256956......)
# ECM B1=1e6, sigma=0:6603285319019973935
n=5593: c4391(2314946094......) = 30774474478303908730228394315801 * c4359(7522292854......)
# ECM B1=1e6, sigma=0:78372119094033
n=5651: c5610(1041194805......) = 253153202072068480481374624902090462157 * c5571(4112903951......)
# ECM B1=1e6, sigma=0:12798764993499092605
n=5711: c5686(1258915791......) = 1458424360860342794605064778192559441 * c5649(8632026625......)
# ECM B1=1e6, sigma=0:5963013522829996799
n=5743: c5691(2198576767......) = 14811624013463002360724048056372841 * c5657(1484359018......)
# ECM B1=1e6, sigma=0:78372119094033
n=5831: c4692(5762935117......) = 318654001333309317352041936803 * c4663(1808524322......)
# ECM B1=1e6, sigma=1:3393956487
n=5917: c5738(2633244994......) = 62128869315196783538931039009211738481 * c5700(4238359757......)
# ECM B1=1e6, sigma=1:1474470163
n=6011: c5998(1011571216......) = 5656607367075011571023869359496363 * c5964(1788300214......)
# ECM B1=1e6, sigma=1:273908683
n=6093: c4028(2817843599......) = 1336143863663099786889758180375119 * c3995(2108937275......)
# ECM B1=1e6, sigma=1:3616795357
n=6173: c6128(1436951503......) = 5053071098890826667938286305293 * c6097(2843719147......)
# ECM B1=1e6, sigma=0:199762724765272745
n=6237: c3235(6680517606......) = 14089779120825363590790687940304359 * c3201(4741392713......)
# ECM B1=1e6, sigma=0:15637767851225334323
n=6327: c3829(1583590286......) = 1596489365351468828532617242104403 * c3795(9919203480......)
# ECM B1=1e6, sigma=1:759148817
n=6407: c6216(9000000000......) = 373939098107201919765478843483 * c6187(2406809035......)
# ECM B1=1e6, sigma=0:11362242212281988111
n=6417: c3961(1001000999......) = 294088177038615753783998327225437 * c3928(3403744448......)
# ECM B1=1e6, sigma=1:3425686205
n=6465: c3433(2078092657......) = 221112688029324217201473060951751 * c3400(9398341975......)
# ECM B1=1e6, sigma=0:8473284529095742021
n=6509: c6148(7475606839......) = 100936144535747450211445731409 * c6119(7406273415......)
# ECM B1=1e6, sigma=0:1532057093235231923
n=6579: c3934(4633018317......) = 14928911404373501386802247002821217191 * c3897(3103386571......)
# ECM B1=1e6, sigma=0:1532057093235231923
n=6747: c4120(1930821339......) = 6723829837620032920626623393563 * c4089(2871609464......)
# ECM B1=1e6, sigma=0:11914725518606056737
n=6767: c6586(3790989235......) = 1943538884462222777971431975683519 * c6553(1950560015......)
# ECM B1=1e6, sigma=0:11914725518606056737
n=6775: c5370(1015626397......) = 7651560979032194699667735601 * c5342(1327345362......)
# ECM B1=1e6, sigma=0:7938031375900419525
n=6785: c5091(5413631108......) = 8367957136701535535458360493059871 * c5057(6469477580......)
# ECM B1=1e6, sigma=0:8253462866479087135
n=6799: c6252(8641990996......) = 170625890566634686201590537198169 * c6220(5064876712......)
# ECM B1=1e6, sigma=0:189873710409027
n=6827: c6789(4710762911......) = 605563853021030672629776013561 * c6759(7779134914......)
# ECM B1=1e6, sigma=0:15042871998340189925
n=6873: c4343(1445891162......) = 11732138724635366578685236204921 * c4312(1232419080......)
# ECM B1=1e6, sigma=1:77461235
n=6933: c4555(1025887252......) = 2056666694145181286351906929282494283 * c4518(4988106510......)
# ECM B1=1e6, sigma=1:1753592501
n=6955: c5083(4698673410......) = 4770123797091402986659534165081 * c5052(9850212720......)
# ECM B1=1e6, sigma=0:7545309159719229623
n=7011: c4251(1084317287......) = 40932492158522147916939842503117 * c4219(2649038038......)
# ECM B1=1e6, sigma=0:15428700728936867661
n=7047: c4486(1079798263......) = 2721713105317415253764995487154864151 * c4449(3967347851......)
# ECM B1=1e6, sigma=0:14957306403135743853
n=7203: c4106(5121299051......) = 358477182201157632404210989262323 * c4074(1428626229......)
# ECM B1=1e6, sigma=0:1899485105162830283
n=7225: c5391(3354548116......) = 4302621570884152909003933564616551 * c5357(7796521403......)
# ECM B1=1e6, sigma=0:263415883537725
n=7389: c4858(1160698409......) = 2898661596886202374101295254853 * c4827(4004256346......)
# ECM B1=1e6, sigma=0:18401888294117552977
n=7405: c5906(8447240300......) = 1000777605747316235823378402467201 * c5873(8440676781......)
# ECM B1=1e6, sigma=1:182620923
n=7435: c5925(4335080638......) = 31538057598641330421637379793605858911 * c5888(1374555368......)
# ECM B1=1e6, sigma=0:17646512381195540761
n=7453: c7144(6132896153......) = 519352817483043973396038245141801 * c7112(1180872799......)
# ECM B1=1e6, sigma=0:17646512381195540761
n=7455: c3320(3044893699......) = 491214058175515798301044852544161 * c3287(6198710418......)
# ECM B1=1e6, sigma=0:1038547052753189993
n=7481: c7451(1299806526......) = 4972615427247872817986627484420443 * c7417(2613929320......)
# ECM B1=1e6, sigma=0:12798764993499092605
n=7497: c4020(9596480253......) = 120992296050473892227494196483557 * c3988(7931480405......)
# ECM B1=1e6, sigma=0:3207401511136924985
n=7571: c7351(3403547135......) = 18698117426765456482515727025468521 * c7317(1820261932......)
# ECM B1=1e6, sigma=0:8906779298094550009
n=7579: c6199(2521757591......) = 19746693354511063241762048385799 * c6168(1277053097......)
# ECM B1=1e6, sigma=1:2923719129
n=7657: c6413(1724850336......) = 23156299845678068145104500838792479 * c6378(7448730357......)
# ECM B1=1e6, sigma=0:11914725518606056737
n=7707: c4365(1056153842......) = 10239935254977661685645752476121 * c4334(1031406758......)
# ECM B1=1e6, sigma=0:14778809121148116955
n=7709: c7104(9000000000......) = 3603902959985554170713863151227 * c7074(2497292546......)
# ECM B1=1e6, sigma=0:78372119094033
n=7735: c4561(6040367395......) = 7852631810215021420841043096031 * c4530(7692156643......)
# ECM B1=1e6, sigma=1:1664073337
n=7751: c7286(1112440926......) = 2508815958146815988829093095690279 * c7252(4434127275......)
# ECM B1=1e6, sigma=0:10977665072412782587
n=7885: c5868(3751352944......) = 19715636275865932733299589027883883203241 * c5828(1902729839......)
# ECM B1=1e6, sigma=1:3605802901
n=8065: c6427(2000194131......) = 60524026956189845504863462287391241 * c6392(3304793536......)
# ECM B1=1e6, sigma=0:13156499177556375355
n=8087: c8087(1111111111......) = 676176399587129808611509701831277 * c8054(1643226696......)
# ECM B1=1e6, sigma=0:7093308573280539123
n=8123: c8116(4652576524......) = 4814330511191140848342973783129 * c8085(9664015617......)
# ECM B1=1e6, sigma=0:10440896923169321451
n=8357: c8138(8736351484......) = 20176718421494524195035668600213 * c8107(4329916938......)
# ECM B1=1e6, sigma=0:12798764993499092605
n=8377: c8377(1111111111......) = 5687690333174390215382594316043 * c8346(1953536578......)
# ECM B1=1e6, sigma=1:1156762131
n=8387: c8364(1579400177......) = 10938520602149818569869171575609 * c8333(1443888287......)
# ECM B1=1e6, sigma=1:1664073337
n=8449: c6675(1387692313......) = 1866759297062204231700511602262397 * c6641(7433697082......)
# ECM B1=1e6, sigma=0:10547514346612664537
n=8527: c8494(4882485445......) = 243375472861762690397991792264917 * c8462(2006153450......)
# ECM B1=1e6, sigma=0:11990104957816418499
n=8549: c8323(3640430113......) = 15925358773101069259411105353519319 * c8289(2285932872......)
# ECM B1=1e6, sigma=0:6603285319019973935
n=8665: c6921(5874839366......) = 25409864545263329255648473295928871 * c6887(2312030965......)
# ECM B1=1e6, sigma=0:9616308672479705735
n=8781: c5827(1484496198......) = 416828196947164610392504584224599 * c5794(3561410214......)
# ECM B1=1e6, sigma=0:17365221873064881403
n=8833: c7865(3873036547......) = 1063599702251709943979714751587 * c7835(3641441925......)
# ECM B1=1e6, sigma=1:1652174903
n=8857: c8296(2462064908......) = 3112229527773266800727250108835512151 * c8259(7910936153......)
# ECM B1=1e6, sigma=0:12466699163099994441
n=8861: c8842(1020803831......) = 514228458427027657041198238405757 * c8809(1985117344......)
# ECM B1=1e6, sigma=0:8906779298094550009
n=9295: c6234(3039115544......) = 13812317980966297693444361767795561 * c6200(2200293642......)
# ECM B1=1e6, sigma=0:5963013522829996799
n=9581: c7899(1228011972......) = 95233941496960508695109319521 * c7870(1289468810......)
# ECM B1=1e6, sigma=1:1751343877
n=9879: c6307(9011312099......) = 622083644065230480047758412090677 * c6275(1448569205......)
# ECM B1=1e6, sigma=0:1038547052753189993
n=9965: c7948(6248166555......) = 50664542210486897314398938301663311 * c7914(1233242477......)
# ECM B1=1e6, sigma=0:17127812835675519603
n=8655: c4609(1109988900......) = 127381682260506697042031958031 * c4579(8713881621......)
# ECM B1=1e6, sigma=0:9616308672479705735
n=471: c301(1965855492......) = 1640259175221723797786233348156700513564345502781851447654042775375772294825108377125627674387206196531834389323135517030822828838413 * p169(1198502969......)
# 1275 of 300000 Φn(10) factorizations were finished. 300000 個中 1275 個の Φn(10) の素因数分解が終わりました。
# via Kurt Beschorner
n=15091: c15091(1111111111......) = 14845413823789711008287828293 * c15062(7484541180......)
# ECM B1=1e6, sigma=2136717002765025
n=15149: c15149(1111111111......) = 12301910027669319512906185199 * c15120(9032021113......)
# ECM B1=1e6, sigma=8122641535983119
n=6655: c4840(9999999999......) = 47002315541332120475432927835118351 * c4806(2127554756......)
# ECM B1=1e6, sigma=0:3671949798087517
n=13908: c4320(9901000000......) = 4796645886147946366365200759449 * c4290(2064150707......)
# P-1 B1=500e6
n=13917: c9270(5993870416......) = 1946882395844921741959 * x9249(3078701841......)
# P-1: B1 =150e6
n=13917: x9249(3078701841......) = 479634834466543489354729 * p9225(6418845379......)
# P-1: B1 =150e6
$ ./pfgw64 -tc -q"(10^13917-1)/155791258534161207680682613894702422837812665874936877/(10^4639-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^13917-1)/155791258534161207680682613894702422837812665874936877/(10^4639-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N+1 test using discriminant 5, base 4+sqrt(5) Calling N-1 BLS with factored part 0.14% and helper 0.01% (0.42% proof) (10^13917-1)/155791258534161207680682613894702422837812665874936877/(10^4639-1) is Fermat and Lucas PRP! (2.9458s+0.0005s)
n=33423: c20526(9385343668......) = 1431696564802773760921 * c20505(6555400005......)
# P-1 B1=23e6
n=100256: c46061(5043816717......) = 2129531546192902994273 * c46040(2368509978......)
# P-1 B1=55e6
n=100259: c99199(1185283307......) = 7373367128510290221763 * c99177(1607519721......)
# P-1 B1=23e6
n=100261: c85932(9000000900......) = 2578509001157321 * c85917(3490389560......)
# P-1 B1=23e6
n=100265: c72875(1846935875......) = 1081414204698376192537440361 * c72848(1707889416......)
# P-1 B1=23e6
n=100268: c42952(3623382846......) = 510114955101536530235729 * c42928(7103071199......)
# P-1 B1=55e6
n=100270: c38880(9091000000......) = 92110972364038616356834631775642121 * c38845(9869616796......)
# P-1 B1=55e6
n=100271: c100234(7103395288......) = 22605675903598064150949502733 * c100206(3142306082......)
# P-1 B1=23e6
n=159977: c159960(6332816691......) = 16055910264628866119 * c159941(3944227756......)
n=160481: c160472(3074436173......) = 3061777772635910203 * c160454(1004134330......)
n=160619: c160599(8018608022......) = 12625299179729486347 * c160580(6351222183......)
n=160637: c160628(9222541937......) = 6622464926200147133 * c160610(1392614689......)
n=160687: c160675(1034381616......) = 14217364466292133721 * c160655(7275480761......)
n=160723: c160698(1881339432......) = 1053461002320903707 * c160680(1785865284......)
n=160781: c160773(8638388745......) = 10091891125422883573 * c160754(8559732401......)
n=160879: c160853(5522722568......) = 1363625823793966609 * c160835(4050027854......)
# gr-mfaktc
# 1274 of 300000 Φn(10) factorizations were finished. 300000 個中 1274 個の Φn(10) の素因数分解が終わりました。
# 213293 of 300000 Φn(10) factorizations were cracked. 300000 個中 213293 個の Φn(10) の素因数が見つかりました。