n=9382: c4654(5850746026......) = 9300968916181881256379682557271761 * c4620(6290469389......)
# ECM B1=1e6, sigma=0:5919480135446658
n=9388: c4663(2486558516......) = 6367464694402438045010892622442009 * c4629(3905099809......)
# ECM B1=1e6, sigma=0:7946659145174239
n=9404: c4684(1593586001......) = 22051978558725308479114046671949 * c4652(7226498959......)
# ECM B1=1e6, sigma=0:5927629009860808
n=13891: c13351(5654989593......) = 3783946127200973031121 * c13330(1494468843......)
# P-1 B1=150e6
n=100243: c83993(1539468945......) = 2801869717572335479993639 * c83968(5494434434......)
# P-1 B1=23e6
n=100247: c85896(2605876004......) = 2270707106604318898415803 * c85872(1147605517......)
# P-1 B1=23e6
n=100248: c33409(1000099999......) = 137328742232380242793 * c33388(7282525010......)
# P-1 B1=55e6
n=100249: c94320(1895935945......) = 3589469193300853 * c94304(5281939594......)
# P-1 B1=23e6
n=100251: c64570(5898663677......) = 57734074812011041 * c64554(1021695367......)
# P-1 B1=23e6
n=100252: c49281(1009999999......) = 288219713789126385282941 * c49257(3504271053......)
# P-1 B1=55e6
n=158761: c158748(3660574234......) = 672701845713258917 * c158730(5441599807......)
n=158849: c158831(2868561497......) = 1725374401029737483 * c158813(1662573349......)
n=159233: c159199(5220278980......) = 529647323937549359 * c159181(9856141519......)
n=159589: c159581(1822599165......) = 5519361762904215599 * c159562(3302191890......)
n=159673: c159642(4600104144......) = 86101299875254837 * x159625(5342665152......)
n=159673: x159625(5342665152......) = 4106033786290026523 * c159607(1301174181......)
# gr-mfaktc
# via factordb.com
n=2342: c1135(4552526416......) = 1277793770824393367115298917352334092381609 * c1093(3562802167......)
n=2966: c1482(9090909090......) = 95981284857953712560599708643474527 * c1447(9471543441......)
n=110158: c55078(9090909090......) = 745282464034481898056474303437 * c55049(1219793773......)
n=111854: c55926(9090909090......) = 177644219562011245398893 * c55903(5117480947......)
# via factordb.com
n=1322: c652(1498294678......) = 32428891213264191224745951834819424405467767 * p608(4620246399......)
n=1322: p608(4620246399......) is proven prime
# 1273 of 300000 Φn(10) factorizations were finished. 300000 個中 1273 個の Φn(10) の素因数分解が終わりました。
n=5681: c4753(1111111111......) = 107401683479315589206835972735096277 * c4718(1034537890......)
# ECM B1=1e6, sigma=0:4319425451299188
n=9374: c4537(1099999999......) = 106678980116741885690755417326646783 * c4502(1031130967......)
# ECM B1=1e6, sigma=0:5204325677688199
n=13855: c10360(8545915907......) = 456647776571096966682457032601 * c10331(1871445859......)
# P-1 B1=200e6
n=13865: c10673(1111099999......) = 18952458289368990140570605351 * c10644(5862564016......)
# P-1 B1=175e6
n=13875: c7152(2513747859......) = 20231400133345763391573474001 * c7124(1242498217......)
# P-1 B1=175e6
n=13877: c13863(1217055110......) = 2665599110827931151219887243864069553535617569 * c13817(4565784501......)
# P-1 B1=175e6
n=13881: c7911(3600326525......) = 613342693696505872009 * c7890(5870008011......)
# P-1 B1=175e6
n=14319: c9073(1001000999......) = 10344827787841879150524132169 * c9044(9676342811......)
# P-1 B1=23e6
n=33411: c18144(9009009909......) = 3967059885436254664099519 * c18120(2270953847......)
# P-1 B1=23e6
n=157561: c157523(1328933416......) = 5998484463028396333 * c157504(2215448627......)
n=157889: c157881(8377728803......) = 6489787974242716681 * c157863(1290909477......)
n=157999: c157942(9459748359......) = 98725868644107347 * c157925(9581833504......)
n=158591: c158555(2790751960......) = 1270898937718055791 * c158537(2195888184......)
n=158731: c158703(1611068019......) = 2774590512897177347 * c158684(5806507347......)
# gr-mfaktc
# via Kurt Beschorner
n=1651: c1481(3265062187......) = 275217017911139624191776255507977127851519 * c1440(1186359118......)
# ECM B1=1e6, sigma=1:2194818103
n=1841: c1572(9000000900......) = 13025697981837238885482617576986077347 * c1535(6909419297......)
# ECM B1=2e6, sigma=1:2177576267
n=1891: c1765(1234886272......) = 25728430999471065289640031125872987 * c1730(4799695219......)
# ECM B1=5e5, sigma=1:3646079215
n=2099: c2070(1623529005......) = 904895108749261583158479086319155797 * c2034(1794162648......)
# ECM B1=1e6, sigma=120529647102471
n=2305: c1790(8887563402......) = 216435273116164865199941012008081 * c1758(4106337785......)
# ECM B1=1e6, sigma=1:2792610879
n=2321: c2090(8139938846......) = 7819586608885407861280912213052933 * c2057(1040967925......)
# ECM B1=2e6, sigma=144531525929635
n=2361: c1520(9099634074......) = 15093661730388660744164111101395889 * c1486(6028778328......)
# ECM
n=2413: c2268(9000000000......) = 945153149166264948533842733420136547 * c2232(9522266320......)
# ECM B1=1e6, sigma=30278076774429
n=2453: c2199(1414011668......) = 805882633277252112088879931097297947 * p2163(1754612408......)
# ECM B1=2e6, sigma=116639200445373
$ ./pfgw64 -tc -q"9*(10^2453-1)/5129337941570220915834482952864279885533502777195040484557/(10^11-1)/(10^223-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing 9*(10^2453-1)/5129337941570220915834482952864279885533502777195040484557/(10^11-1)/(10^223-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N+1 test using discriminant 5, base 1+sqrt(5) Calling N+1 BLS with factored part 0.50% and helper 0.36% (1.87% proof) 9*(10^2453-1)/5129337941570220915834482952864279885533502777195040484557/(10^11-1)/(10^223-1) is Fermat and Lucas PRP! (0.1964s+0.0004s)
n=2495: c1955(7429792655......) = 14339967467738136676523658916529111 * c1921(5181178180......)
# ECM B1=1e6, sigma=1:3516144215
n=2817: c1806(6171071017......) = 19763398523108376154207863498493214803 * c1769(3122474614......)
# ECM B1=2e6, sigma=1:1298358369
n=2849: c2129(7867546209......) = 1066161704325642263898000395207191477 * c2093(7379317956......)
# P-1 B1=1e8
n=2921: c2769(1540304638......) = 2318555267727405835742851813721 * p2738(6643381158......)
# ECM B1=5e5, sigma=1:4248825949
$ ./pfgw64 -tc -q"9*(10^2921-1)/13547318429331232298245483147571803/(10^23-1)/(10^127-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing 9*(10^2921-1)/13547318429331232298245483147571803/(10^23-1)/(10^127-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N+1 test using discriminant 5, base 5+sqrt(5) Calling N-1 BLS with factored part 0.32% and helper 0.04% (1.03% proof) 9*(10^2921-1)/13547318429331232298245483147571803/(10^23-1)/(10^127-1) is Fermat and Lucas PRP! (0.3019s+0.0004s)
n=2995: c2359(7378562894......) = 284277203341019855415851097076878001 * c2324(2595552090......)
# ECM B1=2e6, sigma=53292640982751
n=3303: c2159(1953694834......) = 17001394447702258475801953896133 * c2128(1149137995......)
# ECM B1=1e6, sigma=1:164161343
n=3403: c3265(1137149558......) = 7709805385433232909996248569396122289 * c3228(1474939381......)
# ECM B1=1e6, sigma=756340299292
n=3613: c3578(1935038392......) = 791933522809774878033488285297044583803 * c3539(2443435385......)
# ECM B1=5e5, sigma=1:799608949
n=3811: c3579(9488882300......) = 29858372234782008133506150260148517 * c3545(3177963696......)
# ECM B1=1e6, sigma=1:2792610879
n=3911: c3882(1605469189......) = 18918639432157448162617460631131878973 * c3844(8486176793......)
# ECM B1=5e5, sigma=1:443161973
n=3923: c3908(4950216854......) = 44626167058457804083500990661961 * c3877(1109263282......)
# ECM B1=5e5, sigma=1:2340622139
n=3941: c3369(1141697437......) = 156231445687689775996693860568271 * c3336(7307731375......)
# ECM B1=1e6, sigma=1:121282519
n=3977: c3833(8604608762......) = 2354312200678631452069214594821314015641 * c3794(3654829108......)
# ECM B1=1e6, sigma=756340299292
n=4125: c1986(1432401381......) = 86059536640000496045815898721001 * c1954(1664430738......)
# ECM B1=1e6, sigma=1:2200366123
n=4319: c3696(9000000900......) = 9422301660512506090795954466290799 * c3662(9551807216......)
# ECM B1=3e6, sigma=1:177065869
n=4393: c4155(4081433798......) = 865255910975605274092556312523773 * c4122(4717025040......)
# ECM B1=3e6, sigma=1:173734405
n=4543: c3475(1421954525......) = 588604060502740427330089290043351 * c3442(2415808215......)
# ECM B1=1e6, sigma=1:2991743399
n=4673: c4673(1111111111......) = 4345443283056620687247864599302382797 * c4636(2556956882......)
# ECM B1=1e6, sigma=1:3966327997
n=4757: c4553(3182703923......) = 2801002227013271452145195299558637776841 * c4514(1136273257......)
# ECM B1=1e6, sigma=192084558329613
n=4805: c3660(1999411967......) = 110892774637887477659990433599099441 * c3625(1803013743......)
# ECM B1=5e5, sigma=1:3281332265
n=5239: c4666(1231844950......) = 48210422609883103613072789653231729 * c4631(2555142402......)
# ECM B1=1e6, sigma=80482442127625
n=5331: c3521(1587458188......) = 2816300997574793172646729775188850191 * c3484(5636678003......)
# ECM B1=5e5, sigma=1:1564726371
n=5699: c5494(9302446663......) = 64766941561181774734373002834423813 * c5460(1436295498......)
# ECM B1=5e5, sigma=1:1274567173
n=5785: c4212(3320266223......) = 39654135024926477843166872734614906521 * c4174(8373064300......)
# ECM B1=5e5, sigma=1:1199392889
n=5871: c3662(1711309222......) = 65942014250649795606197848118521 * c3630(2595172806......)
# ECM B1=1e6, sigma=52967061287689
n=5935: c4726(1243689235......) = 712210020588854919195548201211311 * c4693(1746239451......)
# ECM B1=5e5, sigma=1:3855436389
n=5989: c5818(1109863268......) = 36923066507963101716971022287147 * c5786(3005880533......)
# ECM B1=1e6, sigma=52967061287689
n=6001: c5574(1804192358......) = 695816812023656477562394175892797 * c5541(2592912857......)
# ECM B1=5e5, sigma=1:1088594985
n=6323: c6311(2450716538......) = 315438813996319438031657566306729 * c6278(7769229497......)
# ECM B1=25e4, sigma=1:1373130007
n=6367: c6361(4847504771......) = 21345380483323818968803525877502810443 * c6324(2270985412......)
# ECM B1=5e5, sigma=1:1564726371
n=6413: c5693(2171762018......) = 69615667805021500294627143908293 * c5661(3119645457......)
# ECM B1=5e5, sigma=1:1064874425
n=6425: c5095(6969606177......) = 27345173228035282739638463755096201 * c5061(2548751883......)
# ECM B1=5e5, sigma=1:916047441
n=6459: c4251(2429998820......) = 4627697372220068903113651202699449 * c4217(5250989045......)
# ECM
n=6463: c6138(6060549797......) = 33976933348129210891637803696471 * c6107(1783724780......)
# ECM B1=5e5, sigma=1:1064874425
n=6505: c5200(9000090000......) = 771799133272450765286793118681 * c5171(1166118179......)
# ECM
n=6531: c3715(1023846294......) = 20515216490975134970589492865957 * c3683(4990667757......)
# ECM B1=5e5, sigma=1:3134844861
n=6547: c6538(3850113763......) = 26082784537768285040784962616203 * c6507(1476113011......)
# ECM B1=5e5, sigma=1:3186806677
n=6579: c3972(1413158239......) = 30501891916761369005083200765507831649 * c3934(4633018317......)
# P-1 B1=1e8
n=6627: c4292(5732038696......) = 207229602677110354999505334024037 * c4260(2766032759......)
# ECM B1=1e6, sigma=1:3318069251
n=6633: c3953(2376570918......) = 59925833228400736755484667890693 * c3921(3965853773......)
# ECM B1=5e5, sigma=1:4049122495
n=6635: c5228(1365387565......) = 496404891911358902350041179362831 * c5195(2750552195......)
# ECM B1=5e5, sigma=1:1293962689
n=6711: c4437(8966957367......) = 7144586569612918208700259798639 * c4407(1255070154......)
# ECM B1=1e6, sigma=1:1318957861
n=6749: c6320(6409836124......) = 10793463478838927967624074051197 * c6289(5938627705......)
# ECM B1=1e6, sigma=0:180146487010777
n=6827: c6821(2393413517......) = 50807343997336659532852562053547 * c6789(4710762911......)
# ECM B1=1e6, sigma=1:4261948433
n=6853: c5244(2799689690......) = 4407897845005598926599049755323 * c5213(6351530341......)
# ECM B1=1e6, sigma=1:105806636643035
n=6855: c3631(1596817267......) = 813532341364371691666368330069631 * c3598(1962819652......)
# ECM B1=5e5, sigma=1:3404967785
n=6863: c6840(3225399979......) = 45576442660261405454027843005099279363 * c6802(7076901554......)
# ECM B1=5e5, sigma=1:4017018739
n=6885: c3441(3430902391......) = 1199045447656509408148014511681 * c3411(2861361425......)
# ECM B1=1e6, sigma=0:105806636643035
n=6895: c4698(6294751968......) = 345254099442479690466807243161 * c4669(1823222947......)
# ECM B1=5e5, sigma=1:3951530911
n=6983: c6983(1111111111......) = 1016624078655033790209211909154053 * c6950(1092941958......)
# ECM B1=5e5, sigma=1:562663719
n=7011: c4283(3345911144......) = 308573070164753259193607112742747 * c4251(1084317287......)
# ECM B1=5e5, sigma=1:3092943329
n=7027: c6978(1415865114......) = 3270662421470064751270391979111641 * c6944(4328985790......)
# ECM B1=25e4, sigma=1:1767257015
n=7041: c4682(2226830614......) = 350676874085293214078098349707 * c4652(6350092575......)
# ECM B1=1e6, sigma=0:145129032457365
n=7077: c4021(2265560723......) = 13016598920031794002941702559 * c3993(1740516656......)
# ECM B1=5e5, sigma=1:2078807511
n=7079: c7030(3066144079......) = 211936457265809995565760245520973 * c6998(1446728004......)
# ECM B1=5e5, sigma=1:262151673
n=7115: c5637(4620212515......) = 69481578807619036204623270154076561 * c5602(6649550276......)
# ECM B1=5e5, sigma=1:1051968875
n=7155: c3738(6719341833......) = 2363421643121012840509778918901271 * c3705(2843056740......)
# ECM B1=5e5, sigma=1:3855436389
n=7259: c5722(2237391972......) = 8189484816570707340091163330635453 * c5688(2732030185......)
# ECM B1=5e5, sigma=1:3485439623
n=7371: c3825(1969061401......) = 7595905095301842399593540737711 * c3794(2592266987......)
# ECM B1=5e5, sigma=1:3087225587
n=7403: c6713(1195166475......) = 102810485748819791639879926615169 * c6681(1162494727......)
# ECM B1=5e5, sigma=1:714400689
n=7451: c7405(5685462840......) = 1258746002886628455412882180639 * c7375(4516767343......)
# ECM B1=5e5, sigma=1:1210794309
n=7505: c5582(4112525354......) = 1744960597338433533447362115952081 * c5549(2356801271......)
# ECM B1=1e6, sigma=1:1393014461
n=7627: c7286(1606118442......) = 10280281551935956005167840871450787 * c7252(1562329235......)
# ECM B1=5e5, sigma=1:1559371313
n=7751: c7324(1636456105......) = 147104989244161239270656842614006284071 * c7286(1112440926......)
# ECM B1=5e5, sigma=1:4130667131
n=7773: c5155(6223681136......) = 624701770395169312585090935732649 * c5122(9962643666......)
# ECM B1=5e5, sigma=1:1157681981
n=7827: c5199(3019977937......) = 7293854796500084099657229729157 * c5168(4140441538......)
# ECM B1=1e6, sigma=1:1156762131
n=7847: c6238(8915168484......) = 99557767070717924371208413000293881 * c6203(8954769423......)
# ECM
n=7861: c6732(9000000900......) = 898119705955942710848729642627 * c6703(1002093689......)
# ECM B1=5e5, sigma=1:2790569943
n=7889: c6441(2337642263......) = 215231103155467706279277026425453 * c6409(1086108015......)
# ECM B1=5e5, sigma=1:202868745
n=7897: c7696(9000000000......) = 385449578021310700390256413787 * c7667(2334935751......)
# ECM
n=7987: c6769(6351212283......) = 8883682708391634937679236698173 * c6738(7149301131......)
# ECM B1=5e5, sigma=1:2489921303
n=8041: c6708(1005694142......) = 15477413700845533672594920389159 * c6676(6497817798......)
# ECM B1=5e5, sigma=1:3116732165
n=8053: c8026(3692782853......) = 41902595593620392086855271026079 * c7994(8812778305......)
# ECM B1=1e6, sigma=1:1368566913
n=8115: c4291(1475343226......) = 1769701865578466450153518679881 * c4260(8336676675......)
# ECM B1=5e5, sigma=1:3003735203
n=8201: c7966(5430050611......) = 17770709819243095708975667749958463949643 * c7926(3055618299......)
# ECM B1=5e5, sigma=1:3446626047
n=8237: c8205(3084098720......) = 219464278700937029463657983203 * c8176(1405285060......)
# ECM B1=5e5, sigma=1:2790569943
n=8245: c6110(1685109817......) = 4595241096933927040005468109324991 * c6076(3667075963......)
# ECM B1=5e5, sigma=1:4134148097
n=8257: c7863(1008815527......) = 29619972904892450273922341588641 * c7831(3405862424......)
# ECM B1=1e6, sigma=80482442127625
n=8421: c4757(3427432356......) = 891574094727581152824232840516519 * c4724(3844248477......)
# ECM B1=5e5, sigma=1:1903005545
n=8457: c5612(1320470901......) = 16591431242812670951237114925751 * c5580(7958752214......)
# ECM B1=1e6, sigma=9291063370823
n=8477: c7206(4594348897......) = 13155977065160004722127813180227 * c7175(3492214127......)
# ECM B1=5e5, sigma=1:1088594985
n=8537: c8483(1297062658......) = 7068078234757599410245923277 * c8455(1835099465......)
# ECM B1=5e5, sigma=1:1428254743
n=8545: c6832(9000090000......) = 101646283310197475908829512121 * c6803(8854322763......)
# ECM B1=5e5, sigma=1:3087225587
n=8575: c5851(5318117368......) = 5293740271005338383592716601 * c5824(1004604891......)
# ECM B1=5e5, sigma=1:190540483
n=8577: c5707(8319522989......) = 634815482288444139636540572011003 * c5675(1310541916......)
# ECM B1=5e5, sigma=1:149514197612885
n=8639: c8396(1476185028......) = 818877774370128142691864096231 * c8366(1802692752......)
# ECM B1=5e5, sigma=1:2043845067
n=8735: c6947(9297620100......) = 12192865776540531965438812912547431 * c6913(7625459240......)
# ECM B1=5e5, sigma=1:2256808913
n=8737: c8640(1945322428......) = 13361685887895082160085395228039 * c8609(1455895943......)
# ECM B1=5e5, sigma=1:3738655573
n=8745: c4150(1439024999......) = 2272528654159007646526616145391 * c4119(6332263385......)
# ECM B1=1e6, sigma=1:2923719129
n=8829: c5797(2634244196......) = 1513085581534586859396871232498095957759 * c5758(1740975017......)
# ECM B1=5e5, sigma=1:2044862669
n=8869: c7553(1603872975......) = 1628099806387144273085256658529 * c7522(9851195662......)
# ECM B1=5e5, sigma=1:1772750603
n=8959: c8118(8220033671......) = 749539463454661849173837786563 * c8089(1096677903......)
# ECM B1=1e6, sigma=1:2780467357
n=9283: c9218(5725231413......) = 8013308143108550298429503948087441 * c9184(7144654006......)
# ECM B1=5e5, sigma=1:562663719
n=9419: c9414(5897930416......) = 5684469744053776020964152035591 * c9384(1037551553......)
# ECM B1=5e5, sigma=1:121282519
n=9437: c9354(1809502077......) = 1624851391389487899053479556237 * c9324(1113641583......)
# ECM B1=5e5, sigma=1:799608949
n=9473: c9443(4789578625......) = 136213632400294112039787697679 * c9414(3516225609......)
# ECM B1=1e6, sigma=113918028976573
n=9485: c6383(5317559409......) = 308062384945102512389982980881 * c6354(1726130702......)
# ECM B1=25e4, sigma=1:3226404411
n=9655: c7714(3128082216......) = 304548237530189995568241284486281 * c7682(1027122088......)
# ECM B1=5e5, sigma=1:4248825949
n=9725: c7747(6302689926......) = 6266679657139037831692848478951 * c7717(1005746307......)
# ECM B1=5e5, sigma=1:153953135
n=9777: c6470(1306966923......) = 1707913452762899722866250746001 * c6439(7652418928......)
# ECM B1=1e6, sigma=1:1368566913
n=9885: c5256(5500647940......) = 1373181471814143351694865705521 * c5226(4005769123......)
# ECM B1=5e5, sigma=1:2610241785
n=9935: c7899(1373142975......) = 7881330031472834202922901774150160151 * c7862(1742273156......)
# ECM B1=5e5, sigma=1:153953135
# 1272 of 300000 Φn(10) factorizations were finished. 300000 個中 1272 個の Φn(10) の素因数分解が終わりました。
# 213279 of 300000 Φn(10) factorizations were cracked. 300000 個中 213279 個の Φn(10) の素因数が見つかりました。
n=9442: c4689(3567170598......) = 4052157023046612121139511209683398529 * c4652(8803140101......)
# ECM B1=1e6, sigma=0:3565740379605301457
n=9448: c4619(9347200822......) = 7338135276821871674079344603010953 * c4586(1273784206......)
# ECM B1=1e6, sigma=0:11602320950923801947
n=14317: c14058(2109056324......) = 6244588599937216531003831 * c14033(3377414365......)
# P-1 B1=23e6
n=100217: c92333(1016662830......) = 177461650174240446229859314688317 * c92300(5728915678......)
# P-1 B1=23e6
n=100219: c84442(6469029997......) = 1267861060221281 * x84427(5102317754......)
# P-1 B1=23e6
n=100219: x84427(5102317754......) = 1312970789851169 * c84412(3886086266......)
# P-1 B1=23e6
n=100221: c60702(1827007087......) = 13832902008141117617827 * c60680(1320769196......)
# P-1 B1=23e6
# via Kurt Beschorner
n=14369: c14369(1111111111......) = 6252123219579321033213298399 * c14341(1777174044......)
# ECM B1=1e6, sigma=2508837445113559
n=20963: c20963(1111111111......) = 679855362627476703188888563288481 * c20930(1634334554......)
# ECM B1=1e6, sigma=2476641858178927
n=21929: c21929(1111111111......) = 1442656925526309675517766997677 * c21898(7701838818......)
# ECM B1=1e6, sigma=8039991546359893
n=21937: c21937(1111111111......) = 8472869234992293321112289 * c21912(1311375261......)
# ECM B1=1e6, sigma=4102916080405166
n=14316: c4761(1991260545......) = 57346926970351862773268747899315323798217129 * c4717(3472305581......)
# P-1 B1=55e6
n=33404: c14291(8136203416......) = 2842302772256147755172610821669 * c14261(2862539309......)
# P-1 B1=55e6
n=100216: c50080(3353336442......) = 4723351119100314857559865270748770769 * c50043(7099485848......)
# P-1 B1=55e6
n=156817: c156775(2646371892......) = 108632521422322241 * c156758(2436077021......)
n=156913: c156905(1966962392......) = 5023303367908589107 * c156886(3915675100......)
# gr-mfaktc
Largest known factors that appear after the previous one 1 n=604: 188981422179250214477885038956646476812007525220846625175628245017547495717341304519447280552146559165713534073382085460954497219653965265520569 (NFS@Home / Mar 16, 2017) 2 n=730: 209567419815575088893039502374017044565180465719504614143239653652312239618655809712098924957353042723741728874079596356118568603287093812371 (NFS@Home / Jul 26, 2024) 3 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 4 n=816: 3178246571075235723080972275640135632212436318968968029466533249264048115754831736073020454216579035062833710671458881 (Yousuke Koide / Apr 5, 2020) 5 n=1420L: 247950328172294050136754481538951409190364075674960071233394038784474817867352415168199452660754962688866321901 (NFS@Home / Mar 17, 2024) 6 n=1420M: 150068993718936038588227244574366404285884513639444374982663085901463237698274075317154251769989823397761 (NFS@Home / Mar 13, 2024) 7 n=1540M: 647799461893729229242068652342456021003805852058736425973158141325454469108253161834095467738437014341 (NFS@Home / Sep 18, 2013) 8 n=1740M: 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner / Jun 27, 2021) 9 n=2340L: 54416219768345058780693800256182138078138198676424989328564702046179663087831396313663972761 (Bo Chen, Wenjie Fang, Maksym Voznyy and Kurt Beschorner / Feb 15, 2016) 10 n=2700M: 71618803865606542412383896587352242997259054038820075447553395780556284501401142201 (Bo Chen, Maksym Voznyy, Wenjie Fang, Alfred Eichhorn and Kurt Beschorner / May 7, 2017) 11 n=2940M: 1044845694645532615440579579338650347038975456315052342814839763722781 (George Bradshaw / Feb 19, 2023) 12 n=5900M: 593243597135622945022444401922545308692618865123732027101 (pi / Sep 17, 2018) 13 n=13980M: 21166873440679239162423181074773929272724025103001 (Kurt Beschorner / Jul 14, 2011) 14 n=14316: 57346926970351862773268747899315323798217129 (Kurt Beschorner / Aug 5, 2024) 15 n=103748: 1941549624124837091592820526305327246593529 (Makoto Kamada / Jun 18, 2018) 16 n=112666: 356334694333381082120764457775238849699 (Makoto Kamada / Oct 17, 2018) 17 n=120833: 79670409416595961896605938971188364397 (Maksym Voznyy / Nov 27, 2015) 18 n=135070: 9855589830288396166509564150666175361 (Makoto Kamada / Dec 6, 2017) 19 n=253620L: 1221015147166230558535777472152845661 (Alfred Reich / Oct 23, 2023) 20 n=268140L: 60348364918187687874129722715181 (Alfred Reich / Oct 23, 2023) 21 n=283706: 526153303629299051259344033783 (Alfred Reich / Oct 23, 2023) 22 n=295980M: 98690902056965040529354491601 (Alfred Reich / Oct 23, 2023) 23 n=298740L: 66173162995033300571567659861 (Alfred Reich / Oct 23, 2023) 24 n=299420L: 33569847171752615806052144021 (Alfred Reich / Oct 23, 2023) 25 n=299996: 38693214591429090355181 (Alfred Reich / Oct 23, 2023) 26 n=299999: 246755644878443 (Makoto Kamada / Oct 23, 2021) 27 n=300000: 47847600001 (Makoto Kamada / Feb 15, 2019)
n=9428: c4691(4084384200......) = 2370468745271779901326864609926829 * c4658(1723028075......)
# ECM B1=1e6, sigma=0:1560246379640767270
n=9705: c5137(8500756602......) = 76753429826310638321101265149201 * c5106(1107540942......)
# ECM B1=1e6, sigma=0:861848002098196
n=9795: c5217(1109988900......) = 40441561262801004062488422962196368791 * c5179(2744673710......)
# ECM B1=1e6, sigma=0:4001697049805009211
n=13799: c13789(1316298408......) = 225884482231168124105632363243 * c13759(5827307814......)
# P-1 B1=150e6
n=13809: c9204(9009009009......) = 254549964727519328742841 * c9181(3539190829......)
# P-1 B1=150e6
n=13837: c13595(2322958313......) = 4585227773759256410020228867 * c13567(5066178667......)
# P-1 B1=150e6
n=33402: c10480(1287250179......) = 42216466210272128093191353979 * c10451(3049166108......)
# P-1 B1=55e6
n=100191: c52682(2617553847......) = 255101965378397273674357 * c52659(1026081411......)
# P-1 B1=23e6
n=100194: c33397(1098901098......) = 426230986986026617893247 * c33373(2578182094......)
# P-1 B1=55e6
n=155579: c155564(3025920411......) = 9514397111067708403 * c155545(3180359592......)
n=156059: c156028(1823523467......) = 635634025160003827 * c156010(2868826077......)
n=156227: c156183(4491285445......) = 8590295976939445399 * c156164(5228324445......)
n=156347: c156326(3899593333......) = 13071673667955473161 * c156307(2983239509......)
n=156539: c156531(4175283773......) = 6844820953215681911 * c156512(6099916714......)
n=156619: c156613(1773586438......) = 12648044075298729563 * c156594(1402261430......)
n=156679: c156658(3959827130......) = 13136467037721548159 * c156639(3014377548......)
n=156733: c156717(6135612513......) = 791344277329055227 * c156699(7753404793......)
# gr-mfaktc