# via Kurt Beschorner
n=20143: c20143(1111111111......) = 195336622099383139974192234034547 * c20110(5688186368......)
# ECM B1=1e6, sigma=3729048310073734
# 213246 of 300000 Φn(10) factorizations were cracked. 300000 個中 213246 個の Φn(10) の素因数が見つかりました。
# 20053 of 25997 Rprime factorizations were cracked. 25997 個中 20053 個の Rprime の素因数が見つかりました。
n=6565: c4781(9540104812......) = 967455252377753723469264601 * c4754(9861029530......)
# ECM B1=1e6, sigma=5085665109651225
n=7209: c4752(9999999999......) = 245876032391282720514670601435797 * c4720(4067090192......)
# ECM B1=1e6, sigma=7176496071620092
n=13651: c11492(7599746606......) = 63685984885065209582819476115071 * c11461(1193315392......)
# P-1 1e6=165e6
n=152249: c152239(4002405541......) = 667640256156011561 * c152221(5994853522......)
n=152407: c152385(7472013540......) = 3863061623316166853 * c152367(1934220644......)
n=152417: c152398(3315908629......) = 4384597323140904347 * c152379(7562629782......)
# gr-mfaktc
# via Kurt Beschorner
n=12611: c12611(1111111111......) = 151596145122775505868566782271 * p12581(7329415337......)
# ECM B1=1e6, sigma=1891578441988465
$ ./pfgw64 -tc -q"(10^12611-1)/1364365306104979552817101040439" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^12611-1)/1364365306104979552817101040439 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 11 Running N-1 test using base 13 Running N+1 test using discriminant 29, base 4+sqrt(29) Calling N-1 BLS with factored part 0.08% and helper 0.01% (0.24% proof) (10^12611-1)/1364365306104979552817101040439 is Fermat and Lucas PRP! (6.3451s+0.0003s)
n=50603: c43332(2204037321......) = 55504737611770427 * c43315(3970899452......)
n=50611: c44509(9484164944......) = 28305275118167762575279 * c44487(3350670468......)
n=50619: c32922(1251854571......) = 5910294661379359 * c32906(2118091640......)
n=50691: c33108(9399147533......) = 1577844301234408612117 * c33087(5956955021......)
n=50771: c43502(1178186005......) = 17640371941030904199653 * c43479(6678918164......)
n=50803: c50177(2388977943......) = 2691332105284164557923 * c50155(8876563167......)
n=50811: c33864(2003891319......) = 901368681172611121 * c33846(2223165017......)
n=51314: c25636(1851241775......) = 187069352990365461070444933 * c25609(9896018488......)
# 1268 of 300000 Φn(10) factorizations were finished. 300000 個中 1268 個の Φn(10) の素因数分解が終わりました。
# 213244 of 300000 Φn(10) factorizations were cracked. 300000 個中 213244 個の Φn(10) の素因数が見つかりました。
# 130 of 25997 Rprime factorizations were finished. 25997 個中 130 個の Rprime の素因数分解が終わりました。
# 20052 of 25997 Rprime factorizations were cracked. 25997 個中 20052 個の Rprime の素因数が見つかりました。
# via Kurt Beschorner
n=73847: c73830(4106700058......) = 7891144115301619472022803497889 * c73799(5204188388......)
# ECM B1=5e4, sigma=430692243951430
n=74507: c74507(1111111111......) = 1096611993139741046923 * x74486(1013221739......)
# ECM B1=5e4, sigma=6502661398168781
n=74507: x74486(1013221739......) = 144576321485621311976359 * c74462(7008213578......)
# ECM B1=5e4, sigma=5710557500718102
n=74527: c74527(1111111111......) = 18472086123310264797552077 * c74501(6015081911......)
# ECM B1=5e4, sigma=5012480456469592
n=74587: c74587(1111111111......) = 12585888766454654778477001 * c74561(8828229231......)
# ECM B1=5e4, sigma=5787057121355163
n=74707: c74707(1111111111......) = 2246495418530976647385485111 * c74679(4945975415......)
# ECM B1=5e4, sigma=4865186604072078
n=74929: c74929(1111111111......) = 23613576233446350795077641 * c74903(4705391085......)
# ECM B1=5e4, sigma=3815193115992148
# via Kurt Beschorner
n=1870: c640(9091000000......) = 30981838801127734361302339269066902886001 * c600(2934299690......)
# ECM B1=11e6, sigma=1:3306279234
# via factordb.com
n=36422: c18210(9090909090......) = 1403440774996823438571215677 * c18183(6477586552......)
# via Kurt Beschorner
n=3540M: c422(2501157221......) = 154364888033739260172380158583232052475743273261 * p375(1620288948......)
# ECM B1=11e6, sigma=1:1431821900
# 1267 of 300000 Φn(10) factorizations were finished. 300000 個中 1267 個の Φn(10) の素因数分解が終わりました。
# via Kurt Beschorner
n=891: c464(3380230331......) = 5768352029220733367366868921292458501408214165423363 * c412(5859958467......)
# ECM B1=11e7, sigma=1:333812611
# via factordb.com
n=16922: c8450(1538890226......) = 134703079155906141405477866655277 * c8418(1142431365......)
n=1672: c712(1103971171......) = 545358172357012292201336067885308067971306777 * c667(2024304810......)
n=7821: c4671(2045459102......) = 10391751287135966688011512453 * c4643(1968348785......)
# ECM B1=1e6, sigma=409243078866167
n=13548: c4457(6409219397......) = 12997605280355035463166531521403529 * c4423(4931077116......)
# P-1 B1=500e6
n=13562: c6744(2433161770......) = 15353741655549410028804307084051 * c6713(1584735385......)
# P-1 B1=325e6
n=13563: c8137(3832206942......) = 77411955285810787348651626991 * c8108(4950407114......)
# P-1 B1=165e6
n=13593: c8616(3986899593......) = 177925771645928134641547027 * c8590(2240765661......)
# P-1 B1=150e6
n=13612: c6533(2146277626......) = 17167210449977525602398480599175117101 * c6496(1250219208......)
# P-1 B1=375e6
n=20032: c9978(2080004892......) = 2505607329459631611641153 * c9953(8301400094......)
# P-1 B1=55e6
n=33385: c24227(1359650609......) = 747826005686416007231 * c24206(1818137640......)
# P-1 B1=55e6
n=33387: c21463(2267400360......) = 106504353311117769139519 * c21440(2128927400......)
# P-1 B1=20e6
n=150883: c150875(7834103335......) = 97118496609892523 * c150858(8066540987......)
n=150901: c150889(1178267038......) = 563456271424457431 * c150871(2091141935......)
n=150919: c150889(8046163683......) = 2079148442457322799 * c150871(3869932285......)
n=151171: c151140(7162486525......) = 608634030260192639 * c151123(1176813350......)
n=151247: c151210(9252375943......) = 113196576201967147 * c151193(8173724200......)
n=151429: c151355(7810860957......) = 147222954843343733 * c151338(5305464059......)
n=151499: c151493(3667045472......) = 146383186511736689 * c151476(2505100182......)
# gr-mfaktc
n=1392: c438(3229798381......) = 10825430995573655349911905703088339464977 * c398(2983528676......)
n=1792: c741(2202585914......) = 4560897401317754430626820629544566062629889 * c698(4829281873......)
n=1496: c628(1919344353......) = 28330881496644957570065523400505204114494529 * c584(6774742797......)
n=1430: c454(8754493505......) = 82419252546478457878215964924871918728196281 * c411(1062190354......)
n=938: c370(7077126319......) = 11562710405302740261753778982810543629872202227744910916651 * p312(6120646518......)
# ECM B1=300000000, sigma=2:4970505043646219549
# 1266 of 300000 Φn(10) factorizations were finished. 300000 個中 1266 個の Φn(10) の素因数分解が終わりました。
n=13475: c8361(1824199063......) = 14034822309195006833617951 * c8336(1299766412......)
# P-1 B1=150e6
n=13501: c12840(1819776261......) = 204470063667253089494397679362163 * c12807(8899964274......)
# P-1 B1=150e6
n=13505: c10332(2930065462......) = 447230547521550428905961 * c10308(6551577209......)
# P-1 B1=160e6
n=33384: c10152(1042298545......) = 7821295128811946507432484961 * c10124(1332641881......)
# P-1 B1=55e6
n=100145: c80091(3044622918......) = 668544845427588593671 * c80070(4554104245......)
# P-1 B1=20e6
n=100152: c30505(2489021643......) = 2015344433453833 * c30490(1235035362......)
# P-1 B1=55e6
n=149341: c149318(2764916628......) = 337426151183136437 * c149300(8194138537......)
n=149729: c149719(2895136682......) = 522185468610743293 * c149701(5544268954......)
n=149893: c149879(1274795908......) = 234739865552796839 * c149861(5430674953......)
n=149911: c149882(1063818912......) = 641276195249134517 * c149864(1658909095......)
n=149953: c149931(1580378590......) = 3666251351417794037 * c149912(4310611681......)
n=150211: c150196(6869241438......) = 4128566210846845711 * c150178(1663832209......)
n=150517: c150509(9713109989......) = 1452830539950831049 * c150491(6685645519......)
# gr-mfaktc