n=8182: c4090(9090909090......) = 28850879428309054815593321203131133 * c4056(3150998954......)
# P-1 B1=1e9
n=8642: c4080(1580752923......) = 101599598603089933081005893438131 * c4048(1555865323......)
# P-1 B1=1e9
n=9562: c4073(5143228907......) = 1098665161915444484072499291463 * c4043(4681343402......)
# P-1 B1=1e9
n=10240: c4083(1362698914......) = 6622682172419180380334835196998082561 * c4046(2057623903......)
# P-1 B1=1e9
n=14072: c6996(3190106558......) = 5493962077492722494356347121 * c6968(5806568216......)
# P-1 B1=450e6
n=14079: c8194(7419819585......) = 1078931823934740350351479 * c8170(6877005035......)
# P-1 B1=180e6
n=14085: c7462(9797254431......) = 17156314595069688962452470031 * c7434(5710582174......)
# P-1 B1=200e6
n=33499: c33100(7844667626......) = 3461905701337494163 * c33082(2265996911......)
# P-1 B1=26e6
n=100495: c79194(1256394341......) = 4035721212339505681 * c79175(3113184175......)
# P-1 B1=26e6
n=100499: c85842(2618511883......) = 8007927154880146690267 * c85820(3269899729......)
# P-1 B1=26e6
n=100502: c48591(4545288959......) = 14078436953716007303 * c48572(3228546588......)
# P-1 B1=55e6
n=100503: c61767(8915065910......) = 48692729975753706180464881 * c61742(1830882334......)
# P-1 B1=26e6
n=100507: c91352(1909296408......) = 611882048848418851999 * c91331(3120366764......)
# P-1 B1=26e6
n=170047: c170025(8211107914......) = 17944419711952309813 * c170006(4575855918......)
n=170249: c170239(5671175242......) = 6568827945769181747 * c170220(8633465954......)
# gr-mfaktc
n=754: c292(2269497958......) = 2680052779284995695116101096172766967989394552173439874009704597 * c228(8468109194......)
# ECM
n=14069: c12758(5127264376......) = 218313329070736647028271 * c12735(2348580546......)
# P-1 B1=170e6
n=100462: c50218(8877094332......) = 905737785027762878665260841 * c50191(9800953961......)
# P-1 B1=55e6
n=100474: c45598(3700675624......) = 1344819502034029549529 * c45577(2751800980......)
# P-1 B1=55e6
n=100476: c33471(4408112078......) = 254266871786431065402411601 * c33445(1733655685......)
# P-1 B1=55e6
n=100479: c66953(1699577397......) = 11113295140657992140962406293 * c66925(1529319051......)
# P-1 B1=26e6
n=100490: c37056(9091000000......) = 1353656760084265312573053521 * c37029(6715882687......)
# P-1 B1=55e6
n=168253: c168235(4242052021......) = 6044993586619713653 * c168216(7017463228......)
n=169003: c168991(1288458278......) = 886246965096311911 * c168973(1453836604......)
n=169177: c169154(9626718260......) = 5971514691674150557 * c169136(1612106602......)
n=169409: c169390(5005636084......) = 13223132479093429723 * c169371(3785514584......)
n=169427: c169417(1935784935......) = 489596966937968569 * c169399(3953833594......)
# gr-mfaktc
n=10130: c4034(3767958884......) = 13779679021081936117833719070121 * c4003(2734431534......)
# P-1 B1=1e9
n=20083: c16192(5279193421......) = 7964175918938426339582711 * c16167(6628675050......)
# P-1 B1=26e6
n=20085: c9773(9561762191......) = 331754498008563028690591 * c9750(2882180120......)
# P-1 B1=26e6
n=33470: c13319(7057618626......) = 21370399393068893531561 * c13297(3302520695......)
# P-1 B1=55e6
n=33477: c22304(1128659671......) = 49215716691087050653 * c22284(2293291142......)
# P-1 B1=26e6
n=33483: c22295(3983050989......) = 7331103849266653 * c22279(5433084937......)
# P-1 B1=26e6
n=100411: c100411(1111111111......) = 11683770632611111278486216370199677 * c100376(9509867542......)
# P-1 B1=26e6
n=100412: c46300(1157616885......) = 117313300863751981 * c46282(9867737733......)
# P-1 B1=55e6
n=100415: c64800(9000090900......) = 65142321421197960311 * c64781(1381604263......)
# P-1 B1=26e6
n=100431: c66943(1243389438......) = 2266421789914507 * x66927(5486134328......)
# P-1 B1=26e6
n=100431: x66927(5486134328......) = 672397804192537144081 * c66906(8159060447......)
# P-1 B1=26e6
n=100439: c98250(1066745431......) = 34729687515101536129 * c98230(3071566456......)
# P-1 B1=26e6
n=100449: c66960(9990000009......) = 5751211841956610375298481 * c66936(1737025219......)
# P-1 B1=26e6
n=100450: c33600(9999999999......) = 33658970705358559179851 * c33578(2970976173......)
# P-1 B1=55e6
n=100453: c89281(1111111111......) = 316058052873374708603453 * c89257(3515528558......)
# P-1 B1=26e6
n=100456: c48347(3661067508......) = 4747581057401243508961 * c48325(7711437601......)
# P-1 B1=55e6
n=100460M: c20072(1305609361......) = 582783765779239861163261621 * c20045(2240298097......)
# P-1 B1=55e6
n=166723: c166704(9493232025......) = 76540815903400963 * c166688(1240283620......)
n=166919: c166864(7357102918......) = 4533297595133922523 * c166846(1622903143......)
n=166931: c166895(7947388948......) = 1341116224550551591 * c166877(5925950937......)
n=167009: c166987(2305704366......) = 552740683106964239 * c166969(4171403403......)
n=167087: c167054(3631353257......) = 86730304922383919 * c167037(4186948564......)
n=167107: c167090(5587145287......) = 1955456428669352237 * c167072(2857207762......)
n=167269: c167262(3019390130......) = 159936419872683613 * c167245(1887869025......)
n=167471: c167453(2010176179......) = 128408862765878951 * c167436(1565449717......)
n=167521: c167512(1741771954......) = 2873503994689640573 * c167493(6061491327......)
n=167711: c167694(1095224542......) = 77860867681727947 * c167677(1406643125......)
n=167729: c167719(2311550865......) = 4963028858800005547 * c167700(4657540648......)
n=167917: c167901(3365316541......) = 133386001935366599 * c167884(2522990788......)
n=167971: c167962(1051318891......) = 540377255800774277 * c167944(1945527647......)
# gr-mfaktc
# via yoyo@home
n=639: c312(8245366417......) = 929627442074193448101717553045350224940201718470443276606531700472416289 * p240(8869538531......)
# ECM B1=2900000000
# 1277 of 300000 Φn(10) factorizations were finished. 300000 個中 1277 個の Φn(10) の素因数分解が終わりました。
# via Kurt Beschorner
n=15667: c15667(1111111111......) = 11426092181973011277118595481581089 * c15632(9724331761......)
# ECM B1=1e6, sigma=4278876499549301
n=24019: c24019(1111111111......) = 3856673819590507066880930323 * c23991(2881008773......)
# ECM B1=1e6, sigma=4547196708979326
n=24179: c24179(1111111111......) = 67361590008950077783742827 * c24153(1649472809......)
# ECM B1=1e6, sigma=2575665522867841
n=24197: c24197(1111111111......) = 37885141066413960891472381643 * c24168(2932841424......)
# ECM B1=1e6, sigma=3930153077720417
n=8152: c4016(3401274597......) = 935691385845929911240971439606855630225681 * c3974(3635038912......)
# P-1 B1=1e9
n=9332: c4648(4859792817......) = 16747120850646488349464235094757201141 * c4611(2901867646......)
# ECM B1=1e6, sigma=0:1748271489658466
n=9638: c4658(2916243940......) = 904580087855766619816908424382329 * c4625(3223864840......)
# ECM B1=1e6, sigma=0:7953838129020119
n=9778: c4888(9090909090......) = 10762415990988011981326048333823 * c4857(8446903649......)
# ECM B1=1e6, sigma=4883708394567929
n=33459: c21086(4144390040......) = 6886400356423961565667 * c21064(6018224073......)
# P-1 B1=26e6
n=33460L: c5686(1944022441......) = 19577012143151821 * c5669(9930128391......)
# P-1 B1=55e6
n=100373: c79320(1833078322......) = 58853502149943742151 * x79300(3114646121......)
# P-1 B1=26e6
n=100373: x79300(3114646121......) = 28534847658501812904277 * c79278(1091523655......)
# P-1 B1=26e6
n=100375: c71976(3282927766......) = 15593123793263712247751 * c71954(2105368885......)
# P-1 B1=26e6
n=100381: c97609(1278780560......) = 9207186664030681 * c97593(1388893922......)
# P-1 B1=26e6
n=100384: c50114(3943477036......) = 7027069454256328270529 * c50092(5611837284......)
# P-1 B1=55e6
n=100385: c75521(1111099999......) = 49001033306526376591 * x75501(2267503203......)
# P-1 B1=26e6
n=100385: x75501(2267503203......) = 214084067863086357490871 * c75478(1059164853......)
# P-1 B1=26e6
n=100387: c86020(9227085327......) = 47147676278372987773 * c86001(1957060465......)
# P-1 B1=26e6
n=100388: c50177(1127079084......) = 321732821187430257125479349 * c50150(3503152337......)
# P-1 B1=55e6
n=100394: c41989(1670307379......) = 163453595655334375106811929 * c41963(1021884757......)
# P-1 B1=55e6
n=100397: c91253(2263740167......) = 9045742621485993523 * c91234(2502547620......)
# P-1 B1=26e6
n=100398: c32225(8622546438......) = 10174546359106095367 * x32206(8474624945......)
# P-1 B1=55e6
n=100398: x32206(8474624945......) = 34868951341687528358193007 * p32181(2430421512......)
# P-1 B1=55e6
$ ./pfgw64 -tc -q"91*(10^29+1)*(10^577+1)*(10^33466-10^16733+1)/3744206490104324980630963651851463826651069298293610427818664592018170486477/(10^87+1)/(10^1731+1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing 91*(10^29+1)*(10^577+1)*(10^33466-10^16733+1)/3744206490104324980630963651851463826651069298293610427818664592018170486477/(10^87+1)/(10^1731+1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N+1 test using discriminant 11, base 2+sqrt(11) Calling N-1 BLS with factored part 0.06% and helper 0.00% (0.17% proof) 91*(10^29+1)*(10^577+1)*(10^33466-10^16733+1)/3744206490104324980630963651851463826651069298293610427818664592018170486477/(10^87+1)/(10^1731+1) is Fermat and Lucas PRP! (47.6400s+0.0008s)
n=166013: c166004(5024711902......) = 10958014037763604489 * c165985(4585422034......)
n=166151: c166140(1118885917......) = 7272024960114191083 * c166121(1538616717......)
n=166273: c166225(5981018857......) = 5530882519588581227 * c166207(1081385987......)
# gr-mfaktc
# 1276 of 300000 Φn(10) factorizations were finished. 300000 個中 1276 個の Φn(10) の素因数分解が終わりました。