Condition of sequence (7·10n-43)/9 = { 3, 73, 773, 7773, 77773, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
106,
114,
117,
119,
120,
122,
130,
131,
133,
137,
139,
141,
143,
145,
146,
148,
(17/150)
By Makoto Kamada
(7·104494-43)/9 = 77...773<4494> is probably prime.
(7·10383-43)/9 = 77...773<383> is definitely prime.
By Robert Backstrom
(52·10119-7)/9 / 89 / 6547 / p11 / p13 = c92 = 8479592619703354082297012972049944781917<40> · p52
By Robert Backstrom
(2·10118-17)/3 / p30 = c89 = 128862634771682035176637827911843449<36> · p54
(2·10119-17)/3 / 7 / 23 / 113 / 179 = c113 = 157024241265230756802160557744587682501673<42> · p72
By Robert Backstrom
(2·10114-17)/3 / 937 / 1442143 / 4604309 = c99 = 34095162056777834071230050180190307803510297577<47> · p52
(2·10116-17)/3 / 359 / 17957 / 51095069 = c102 = 109605072684735772888299028780527623414486567<45> · p58
(2·10117-17)/3 / 19 / 254824649 / p14 = c94 = 41228988172363672704926930235352621<35> · p59
Condition of sequence (2·10n+61)/9 = { 9, 29, 229, 2229, 22229, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
106,
109,
118,
120,
121,
123,
124,
125,
127,
130,
133,
136,
140,
142,
143,
145,
147,
(17/150)
Condition of sequence (52·10n-7)/9 = { 57, 577, 5777, 57777, 577777, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
119,
120,
122,
131,
133,
134,
137,
138,
139,
140,
144,
146,
149,
150,
(14/150)
Condition of sequence (2·10n-17)/3 = { 1, 61, 661, 6661, 66661, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
114,
116,
117,
118,
119,
127,
129,
132,
136,
137,
138,
144,
145,
147,
148,
150,
(16/150)
By Robert Backstrom
(19·10133-1)/9 / 32 / 72 / 193 / 257 / p26 = c101 = 31730260191554454705277152906949623766469777177<47> · p55
By Robert Backstrom
(19·10123-1)/9 / 1721 / 495797 = c115 = 4410902396712067680758090011068891021640711626659006237<55> · p60
By Robert Backstrom
(19·10136-1)/9 / 3 / 2539 / 3851 / p26 = c104 = 513601376061672883842767390669497<33> · 41912584787806197984964451447711989<35> · p37
By Robert Backstrom
(19·10131-1)/9 / 113 / 2531 / p11 / p11 = c106 = 500543932286794368034008215537074340475299<42> · p64
(19·10135-1)/9 / 691 / p14 / p22 = c98 = 539174554013026944765855678379<30> · p68
By Robert Backstrom
(19·10129-1)/9 / 1733 / p22 = c105 = 11730675224777369340662624085358439<35> · p71
(19·10132-1)/9 / 22859 / p28 = c101 = 17615934918098592313822835788081<32> · p70
By Robert Backstrom
(19·10113-1)/9 = c114 = 1136618745395201361989589826146142199191<40> · p75
(10118+71)/9 / 32 / 1151 / 6073 = c110 = 452998278768228589918517038670507<33> · p77
(19·10126-1)/9 = c127 = 1085586821944623873258448972960300144037<40> · p88
(19·10117-1)/9 / 227 / p13 = c102 = 3228603551096156029806074486994564644929<40> · p63
By Robert Backstrom
(19·10112-1)/9 : c108 = 109174735427764361215292162709625511<36> · 138661547990392980374543093364946273<36> · p38
By Robert Backstrom
(10138+71)/9 : c109 = 408287153725627590310462551061<30> · 773434418357099924006939896057111<33> · p47
(10131+71)/9 : c107 = 8597277713777376058924466679339241186763<40> · p67
(10127+71)/9 : c120 = 717787056455060146823203463159005488018911211175169242819<57> · p63
(10141+71)/9 : c106 = 933229737170954225910080587831<30> · p76
(10145+71)/9 : c131 = 40479256610920802498530867222267697<35> · p96
Condition of sequence (19·10n-1)/9 = { 21, 211, 2111, 21111, 211111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
112,
113,
117,
123,
126,
129,
131,
132,
133,
135,
136,
137,
138,
140,
141,
146,
(16/150)
By Robert Backstrom
(10116+71)/9 : c112 = 838513452265118808271358599905282737069130720672715931<54> · p58
(10136+71)/9 : c94 = 1008522659585686791509357769319047928771648621<46> · p49
By Robert Backstrom
(10101+71)/9 : c101 = 989695116849902014398434139994927<33> · p68
(10107+71)/9 : c92 = 3561680165295406930096617902894103654165726629<46> · p47
(10103+71)/9 : c100 = 170871005289556522957138395311995912579<39> · p62
Condition of sequence 9, 19, 119, 1119, 11119, ... (10n+71)/9 was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
101,
103,
107,
116,
118,
127,
131,
133,
134,
136,
138,
140,
141,
144,
145,
146,
148,
(17/150)
By Robert Backstrom
(5·10138-41)/9 : C138 = 70203345773723679414392944782899031985178687<44> · P94
By Robert Backstrom
(8·10138-17)/9 : C136 = 5357895340167768341368325953524194627712611<43> · P93
Robert Backstrom found a 64-digit factor from (4·10137+23)/9 by NFSX v1.8.
(4·10137+23)/9 = 13 · 17 · 71 · 48353 · C128
C128 = P64 · P65
P64 = 3873427810897206492826803544173207904097049309161228410649094089<64>
P65 = 15123348794966710220577957154576315517166316170179252829192622901<65>
By Robert Backstrom
(4·10137+23)/9 : C128 = 3873427810897206492826803544173207904097049309161228410649094089<64> · P65
By Robert Backstrom
(64·10214+53)/9 : C168 = 7311969362974857810620083837519730350559033<43> · P125
By Robert Backstrom
(5·10138+13)/9 : C137 =7647544151363873634070411291659818767261<40> · P97
By Robert Backstrom
(10138+11)/3 : C127 = 5300870924121769684515930051058370530883329<43> · P84
By Robert Backstrom
(5·10137+13)/9 : C132 = 7095315152292414030130087418393276413489710291869<49> · P83
By Robert Backstrom
(64·10194+53)/9 : C165 = 126060699027366262149334756818570062113<39> · P127
By Robert Backstrom
(10136+11)/3 : C133 = 1040616808341821000485160672452764460456393379251<49> · P85
Sequence 533...33 ((16·10n-1)/3, n≤150) is completed.
By Robert Backstrom
(16·10135-1)/3 : C136 = 79431269265529626757374388885181713949272333<44> · 2142756986346820652432437301693228248213010293<46> · P47
(25·10135-1)/3 : C127 = 72913600388893044344495502023289197969598960346408033006289<59> · P68
By Robert Backstrom
(10134+11)/3 : C112 = 6588981070346533729358741268938426706209671<43> · P69
(10135-7)/3 : C125 = 141364859961875308600170986493309798460087<42> · P84
By Robert Backstrom
(8·10134-17)/9 : C128 = 72534183378848867710699827397259500930478306505663631<53> · P75
(5·10133-41)/9 : C133 = 755384514012002121120867489031925730659<39> · P94
A 58-digit factor from (8·10141-17)/9 was found by Robert Backstrom using GMP-ECM 5.0c. This is a new record of largest known factor found by the elliptic curve method. Congratulations!!
GMP-ECM 5.0 [powered by GMP 4.1.2] [ECM] Input number is 17837657355451922652810408444172047764808329085628834562349057700991 285509358864423437663868837774542492041869 (110 digits) Using B1=3897500, B2=5831973006, polynomial Dickson(12), sigma=2735675386 Step 1 took 61120ms Step 2 took 51050ms ********** Factor found in step 2: 3213162276640339413566047915418064969550383692549981333701 Found probable prime factor of 58 digits: 3213162276640339413566047915418064969550383692549981333701 Probable prime cofactor 5551433702907422298841863964693267244613910158966569 has 52 digits
See also
ECMNET (Paul Zimmermann)
By Robert Backstrom
(2·10147-11)/9 : C145 = 218458756433618805480126903986087<33> · P112
(4·10149+23)/9 : C145 = 119221957896880184054806821523081<33> · P113
(8·10141-17)/9 : C141 = 49832154030989267740867384231123<32> · 5551433702907422298841863964693267244613910158966569<52> · 3213162276640339413566047915418064969550383692549981333701<58>
Tetsuya Kobayashi reported. GMP-ECM B1=11000000 5500times for (16·10206-61)/9 finished. However, the prime factor was not found. Log file is available at http://members.at.infoseek.co.jp/~satoshi_hmny/171.206.zip.
By Robert Backstrom
(4·10137-1)/3 : C102 = 21810955337479286395064319825795834179522402279<47> · P55
9·10141-1 : C142 = 3088098192434236868514129081431<31> · P112
By Robert Backstrom
(4·10133+23)/9 : C131 = 6764350390863059925436511862677086220783892751<46> · P86
By Robert Backstrom
(10133+11)/3 : C131 = 2886709058094502986252293643786525612424666837924303<52> · P79
(5·10141-41)/9 : C140 = 597904737277458425760135737388503<33> · 800072387234248260558900034990633<33> · P74
By Robert Backstrom
(10140-7)/3 : C138 = 102812003407969205835154954321343069716429<42> · P97
By Robert Backstrom
(4·10131-1)/3 : C118 = 36221582685652932788594570800544098201743843677<47> · P72
10137-9 : C137 = 5165311746933052842465538744631<31> · P107
By Robert Backstrom
(5·10132+13)/9 : C102 = 4074220013086644289540449801737500982772443<43> · P59
By Robert Backstrom
(8·10143-17)/9 : C130 = 191487754485401761868598938072597<33> · 94867828833140499200211307524647727692672202209<47> · P51
8·10131-1 : C113 = 55184314154163867404343729437330341621784519<44> · P69
By Robert Backstrom
(71·10137-17)/9 : C105 = 479118047340424200448510695121253185739186089<45> · P60
8·10130-1 : C101 = 2283800845342290599281799116344340478326176593<46> · P56
Robert Backstrom found 59-digits factor of (5·10130+13)/9 by NFSX v1.8.
(5·10130+13)/9 = C130 = P59 · P72
P59 = 44808955029945007565499273431574530907671133211043949553229<59>
P72 = 123983153631743455790444991479946015511764203465409640937103549203831033<72>
See also 55...557.
By Robert Backstrom
(5·10130+13)/9 : C130 = 44808955029945007565499273431574530907671133211043949553229<59> · P72
By Robert Backstrom
9·10139-1 : C129 = 1576375569625015882582733569<28> · P102
By Robert Backstrom
(16·10215-61)/9 : C126 = 2642243356116844953643918897797407<34> · 4330859096168901897940963503386710819148959<43> · P50
(4·10141-1)/3 : C127 = 323021939072650534602020754397<30> · 302430522769765368386663720809027<33> · P65
By Robert Backstrom
(5·10150-41)/9 C125 = 490441118971293564217225327589<30> · P95
(5·10150+13)/9 C121 = 877147777675210067870037603912262351<36> · P85
By Robert Backstrom
(8·10123-17)/9 : C120 = 33234363699498984164234544173233706039<38> · P82
By Robert Backstrom
(8·10133-17)/9 : C121 = 13476291399345038508660026880850215830179<41> · P81
(8·10120-17)/9 : C107 = 1553782571566811545980850336630792267720690901<46> · P62
(8·10122-17)/9 : C102 = 4651129696094685712162426266825197639720411<43> · P59
(16·10139-1)/3 : C123 = 2713984231399921612698367200678239<34> · P90
(10138-7)/3 : C123 = 9966499855598431385427869723465563<34> · P89
(5·10147-41)/9 : C123 = 14089208459643190583637217041341<32> · P91
By Robert Backstrom
(8·10103-17)/9 : C98 = 22597320485551835403553961780765417537<38> · P60
(4·10131+23)/9 : C126 = 20426924713689289932026769612825914663<38> · P88
(8·10106-17)/9 : C106 = 1261660972086485864661721724784731807<37> · P70
(8·10128-17)/9 : C113 = 10927808425024913074695044852579<32> · P82
(8·10119-17)/9 : C113 = 299999069421527844113664020937884337059777<42> · P71
(10139+17)/9 : C121 = 700622813289580301050586529689<30> · P91
By Robert Backstrom
(8·10136-17)/9 : C89 = 271667204945646081053311900993567523872793<42> · P47
(4·10130+23)/9 : C130 = 8883006716943893644475417909344907<34> · P96
(5·10129-41)/9 : C124 = 1203572887256093821567298121809<31> · P94
By Robert Backstrom
(25·10127-1)/3 : C109 = 1235940471684380184027674194121487343602244799<46> · P64
(10134+17)/9 : C126 = 39222209065718302209209849<26> · 18325537995917379232027777402253<32> · P69
(10132+17)/9 : C130 = 863066058253783849268374572901662957863<39> · P91
8·10134-1 : C135 = 22687636885581412690987724364313<32> · 45383414450456616414537904444367<32> · P72
By Robert Backstrom
(10128+11)/3 : C118 = 475154870115229177076020587081234400726663632120047<51> · P67
(2·10128-11)/9 : C108 = 2000281379456033788037758300154874752260789206492659<52> · P57
10149-9 : C120 = 9406652544628197783013757175083<31> · 17015077596097981289004980562402392680515791<44> · P46
(10131-7)/3 : C121 = 4080171962202943804051748180804443<34> · 2025791268522142950892771678633795935911<40> · P48
Condition of sequence 88...887 was extended to n≤150.
By Robert Backstrom
(4·10145+23)/9 : C116 = 212094783166834350629892681988789255277<39> · P77
(10127+11)/3 : C105 = 91899360402884286142571830565519052633291571739<47> · P58
10147-9 : C119 = 1989051072783415478046060199<28> · P91
By Robert Backstrom
(5·10133+13)/9 : C115 = 64688581837212633639151014380577852253<38> · P77
(5·10127+13)/9 : C110 = 80334165764761388909669144443097479783<38> · P72
(2·10127-11)/9 : C122 = 36134697911413711828412466517304805121853464321<47> · P76
By Robert Backstrom
(64·10127-1)/9 : C112 = 436936959074491582487456428199<30> · 96143216326452043974615531085458506053<38> · P45
(4·10126+23)/9 : C120 = 150120037922403471536713775953886401041222117107<48> · P72
(16·10125-1)/3 : C116 = 222180014867413479466529<24> · 47788838989857151781847282291827916769<38> · P55
(2·10142-11)/9 : C113 = 164316964756186302158333349418739689<36> · P78
(2·10137-11)/9 : C112 = 46420799539183752235420713661145631161807899<44> · P68
(10146+11)/3 : C115 = 123699608781625830643193667765233<33> · P83
(4·10140+23)/9 : C115 = 952940642357627103757683958791274463<36> · P79
By Robert Backstrom
10145-9 : C108 = 362929801125787433471130910799<30> · 162964976215164129227941885578492094157<39> · P40
(2·10148-11)/9 : C108 = 2182492353788207197335578479737599<34> · 7485554533105775050813272783812837<34> · P41
(5·10129+13)/9 : C107 = 14162525773428600972717169870939897<35> · P73
10125-9 : C115 = 239025992477781293791695002659636001203014815071<48> · P67
(10140+11)/3 : C109 = 73054262997832424364871827629<29> · P80
8·10140-1 : C110 = 3443842139270242346445128879641<31> · 1284088379384936105787261115435555419481<40> · P40
(5·10142-41)/9 : C96 = 2788441012637861496953961166768132782840324817<46> · P51
(10128-7)/3 : C111 = 67475659878131825628043479039601<32> · P79
By Robert Backstrom
(10144+11)/3 : C106 = 103473305782388149019921363043601487<36> · P71
(10130+11)/3 : C107 = 83778394948959259217609627119<29> · P78
(5·10123-41)/9 : C99 = 519372493798066849955094878935951137403427449<45> · P54
(4·10124+23)/9 : C111 = 22388822797986383630299651141233757<35> · 77469452047874751157203011774981771<35> · P42
(4·10127-1)/3 : C108 = 2247838055920049612696156407806157<34> · 1076997096198551882473001011983734401<37> · P38
(25·10149-1)/3 : C105 = 2994541463358736681453602854782190039<37> · P68
By Robert Backstrom
(4·10129-1)/3 : C100 = 87543999811629418720135732349233999<35> · P65
8·10124-1 : C107 = 103664942350385134585704120704881<33> · 15433616177086530544791352956393457<35> · P41
(2·10135-11)/9 : C101 = 475900693439438622159972488667266705611<39> · P62
(4·10120+23)/9 : C117 = 165872452147028862235165595802809771100097<42> · P76
By Robert Backstrom
(16·10123-1)/3 : C122 = 7882317739705350072729039107931745687698173<43> · P79
8·10112-1 : C111 = 10422340853038410236015043584682186702615256189871<50> · P62
By Robert Backstrom
(23·10138+1)/3 : C131 = 6792867609382640846012633657297930367246491<43> · P88
(10136+17)/9 : C89 = 9351141344184190892402836872032757137633719<43> · P46
(4·10118+23)/9 : C91 = 260320995139728525049660224279457187<36> · P56
(4·10114+23)/9 : C102 = 425390831411115278470313909736884176526672760838939<51> · P52
(5·10128+13)/9 : C96 = 168436772342433789693726559258523243<36> · P61
(5·10131-41)/9 : C96 = 5879352501828639437450714642003<31> · P65
Condition of sequence 44...447 was extended to n≤150.
Sequence 66...667 ((2·10n+1)/3, n≤150) is completed. Many large prime factors in the sequence were found by Tetsuya Kobayashi.
Condition of sequence 55...557 was extended to n≤150.
Condition of sequence 22...221 was extended to n≤150.
Condition of sequence 799...99 was extended to n≤150.
Condition of sequence 33...337 was extended to n≤150.
Condition of sequence 55...551 was extended to n≤150.
Condition of sequence 133...33 was extended to n≤150.
Condition of sequence 33...331 was extended to n≤150.
Condition of sequence 11...113 was extended to n≤150.
Condition of sequence 833...33 was extended to n≤150.
Condition of sequence 899...99 was extended to n≤150.
Condition of sequence 99...991 was extended to n≤150.
Condition of sequence 711...11 was extended to n≤150.
Condition of sequence 533...33 was extended to n≤150.
Front page was updated.
(2·102566-11)/9 is prime (2566 digits)
Plateau and depression numbers (n≤130) is completed.
(7·102065-61)/9 is prime (2065 digits)
101657-9 is prime (1657 digits)
Primality proving program based on Pocklington's theorem version 0.2.1 is available.
(2·101364+1)/3 is prime (1364 digits)
(2·10875+1)/3 is prime (875 digits)
(2·101204+1)/3 is prime (1204 digits)
(4·102080-31)/9 is prime (2080 digits)
Sequence 533...33 ((16·10k-1)/3, n≤110) is completed.
Sequence 77...779 ((7·10n+11)/9, n≤110) is completed.
Sequence 11...117 ((10n+53)/9, n≤110) is completed.
Robert Backstrom found 58-digits factor of 8·10136-3 by NFSX v1.8.
8·10136-3 = C137 = P58 · P80
P58 = 1217797251394238108616742402333715863565219418129129381047<58>
P80 = 65692380162961593262803328038291158319994419810107776881488006468756954660207851<80>
See also 799...997.
Sequence 33...337 ((10n+11)/3, n≤110) is completed.
Sequence 33...331 ((10n-7)/3, n≤110) is completed.
Sequence 299...99 (3·10n-1, n≤110) is completed.
Robert Backstrom found 44-digits factor of (4·10136-7)/3 by NFSX v1.8.
(4·10136-7)/3 = C137 = P44 · P93
P44 = 33900308806686259998523282961567274561330131<44>
P93 = 393310084853963331624828154111527695354295203527368422183511981871474871658216313458331267201<93>
See also 133...331.
Sequence 899...99 (9·10n-1, n≤110) is completed.
Sequence 44...449 ((4·10n+41)/9, n≤110) is completed.
Sequence 711...11 ((64·10n-1)/9, n≤110) is completed.
Sequence 811...11 ((73·10n-1)/9, n≤110) is completed.
Sequence 299...99 (3·10n-1, n≤100) is completed.
Sequence 88...887 ((8·10n-17)/9, n≤100) is completed.
Sequence 233...33 ((7·10n-1)/3, n≤100) is completed.
Sequence 733...33 ((22·10n-1)/3, n≤100) is completed.
Sequence 577...77 ((52·10n-7)/9, n≤100) is completed.
Sequence 899...99 (9·10n-1, n≤100) is completed.
Sequence 211...11 ((19·10n-1)/9, n≤100) is completed.
Sequence 811...11 ((73·10n-1)/9, n≤100) is completed.
Sequence 66...661 ((2·10n-17)/3, n≤100) is completed.
Sequence 77...779 ((7·10n+11)/9, n≤100) is completed.
Sequence 911...11 ((82·10n-1)/9, n≤100) is completed.
Sequence 44...441 ((4·10n-31)/9, n≤100) is completed.
Sequence 22...223 ((2·10n+7)/9, n≤100) is completed.
Sequence 33...337 ((10n+11)/3, n≤100) is completed.
Sequence 611...11 ((55·10n-1)/9, n≤100) is completed.
Sequence 55...553 ((5·10n-23)/9, n≤100) is completed.
Sequence 977...77 ((88·10n-7)/9, n≤100) is completed.
Sequence 877...77 ((79·10n-7)/9, n≤100) is completed.
Sequence 411...11 ((37·10n-1)/9, n≤100) is completed.
Sequence 44...449 ((4·10n+41)/9, n≤100) is completed.
Sequence 533...33 ((16·10k-1)/3, n≤100) is completed.
Robert Backstrom found 58-digits factor of 2·10116-9 by NFSX v1.8.
2·10116-9 = C117 = P58 · P60
P58 = 1300077873236814617625875427828886902290588172083356016807<58>
P60 = 153836938630497839571709555448490510158389234978218219454513<60>
See also 199...991.
Sequence 88...881 ((8·10n-71)/9, n≤100) is completed.
Sequence 833...33 ((25·10n-1)/3, n≤100) is completed.
Sequence 11...119 ((10n+71)/9, n≤100) is completed.
Sequence 77...773 ((7·10n-43)/9, n≤100) is completed.
Sequence 177...77 ((16·10n-7)/9, n≤100) is completed.
Sequence 99...991 (10n-9, n≤100) is completed.
Sequence 88...889 ((8·10n+1)/9, n≤150) is completed. Many large prime factors in the sequence were found by Tetsuya Kobayashi.
Sequence 599...99 (6·10n-1, n≤100) is completed.
Sequence 477...77 ((43·10n-7)/9, n≤100) is completed.
Sequence 511...11 ((46·10n-1)/9, n≤100) is completed.
Sequence 55...559 ((5·10n+31)/9, n≤100) is completed.
Tetsuya Kobayashi found 67-digits factor of (8·10137+1)/9 by NFSX 1.8. The factorization required about 72~73 hours by Athlon 950MHz for square root phase and Pentium4 2.26GHz for other stages.
(8·10137+1)/9 = C137 = P67 · P71
P67 = 4437288481554696424422856887148473496376331762236461989508296410243<67>
P71 = 20032253764520808344662115277305517886662723403005271772453535967903123<71>
See also 88...889.
Sequence 44...447 ((4·10n+23)/9, n≤100) is completed.
Sequence 99...997 (10n-3, n≤100) is completed.
Sequence 311...11 ((28·10n-1)/9, n≤100) is completed.
Sequence 677...77 ((61·10n-7)/9, n≤100) is completed.
Sequence 77...771 ((7·10n-61)/9, n≤100) is completed.
Sequence 11...117 ((10n+53)/9, n≤100) is completed.
Sequence 22...229 ((2·10n+61)/9, n≤100) is completed.
Sequence 55...551 ((5·10n-41)/9, n≤100) is completed.
Sequence 377...77 ((34·10n-7)/9, n≤100) is completed.
Sequence 433...33 ((13·10n-1)/3, n≤100) is completed.
Sequence 44...443 ((4·10n-13)/9, n≤100) is completed.
Sequence 499...99 (5·10n-1, n≤100) is completed.
Sequence 55...557 ((5·10n+13)/9, n≤100) is completed.
Sequence 133...33 ((4·10n-1)/3, n≤100) is completed.
Sequence 22...227 ((2·10n+43)/9, n≤100) is completed.
Sequence 33...331 ((10n-7)/3, n≤100) is completed.
Sequence 11...113 ((10n+17)/9, n≤100) and 22...221 ((2·10n-11)/9, n≤100) are completed.
Robert Backstrom found 55-digits factor of (28·10121+17)/9 by NFSX v1.8.
(28·10121+17)/9 = 32 · 11 · 2884725140574578047751739139603605911742922913348638439<55> · 108937119577495706512863268091410957711158118577124848292522656933<66>
See also 311...113.
Sequence 799...99 (8·10n-1, n≤100) is completed.
Factorization pages were renewed.
Factorizations of near-repdigit numbers composed of all the same digit except either first digit or last digit (xyy...yy and xx...xxy) are available.