Primality of 101657-9 was proved by Primality proving program based on Pocklington's theorem on August 18, 2003.
input
99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 999999999999999999999999999999999999999999999999999999991 2 3 5 7 11 13 19 37 47 73 101 137 139 277 829 1289 1657 2393 2531 3169 4969 9901 31051 52579 98641 111781 333667 1569889 99990001 1469409649 1984699441 86239064881 37916801893 999999000001 18371524594609 22361420916001 57623262784777 109908191603107 143574021480139 203864078068831 549797184491917 3199044596370769 41168686909062457 143409436964525899 536430531035337769 757108543129939106221 11111111111111111111111 831759677425747570837717 24649445347649059192745899 1595352086329224644348978893 4181003300071669867932658901 38115215074391056784287931569 117680633072620952134930832292859 19108466176791400681292709171992566565029 823799348530495507269035013254489287846904557 1880709802856952955373413305337158032187793270681 11033517351146841676953477818524172302174982813132058195800613488154982399 41784371500167158378186418717091934768077726285039694944003301299623485206849143\ 75257 10776547730206021548358735954380169948015708115427100064296791127608890484017725\ 60028378495799359646781326368530020399986158679489264953 18003769621913060301122917933414381320096623470379432954163083912593089383447122\ 83476688413836335732872748878636782356980191059016837916879951860992805108531754\ 82536415661788140280313983951913282899507942705199140855931731062932727709213500\ 1873261549867109 0 0
output
Primality proving program based on Pocklington's theorem powered by GMP 4.1.2 version 0.2.1 by M.Kamada n=999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999991 f[0]=2 f[1]=3 f[2]=5 f[3]=7 f[4]=11 f[5]=13 f[6]=19 f[7]=37 f[8]=47 f[9]=73 f[10]=101 f[11]=137 f[12]=139 f[13]=277 f[14]=829 f[15]=1289 f[16]=1657 f[17]=2393 f[18]=2531 f[19]=3169 f[20]=4969 f[21]=9901 f[22]=31051 f[23]=52579 f[24]=98641 f[25]=111781 f[26]=333667 f[27]=1569889 f[28]=99990001 f[29]=1469409649 f[30]=1984699441 f[31]=86239064881 f[32]=37916801893 f[33]=999999000001 f[34]=18371524594609 f[35]=22361420916001 f[36]=57623262784777 f[37]=109908191603107 f[38]=143574021480139 f[39]=203864078068831 f[40]=549797184491917 f[41]=3199044596370769 f[42]=41168686909062457 f[43]=143409436964525899 f[44]=536430531035337769 f[45]=757108543129939106221 f[46]=11111111111111111111111 f[47]=831759677425747570837717 f[48]=24649445347649059192745899 f[49]=1595352086329224644348978893 f[50]=4181003300071669867932658901 f[51]=38115215074391056784287931569 f[52]=117680633072620952134930832292859 f[53]=19108466176791400681292709171992566565029 f[54]=823799348530495507269035013254489287846904557 f[55]=1880709802856952955373413305337158032187793270681 f[56]=11033517351146841676953477818524172302174982813132058195800613488154982399 f[57]=41784371500167158378186418717091934768077726285039694944003301299623485206\ 84914375257 f[58]=10776547730206021548358735954380169948015708115427100064296791127608890484\ 01772560028378495799359646781326368530020399986158679489264953 f[59]=18003769621913060301122917933414381320096623470379432954163083912593089383\ 44712283476688413836335732872748878636782356980191059016837916879951860992805108\ 53175482536415661788140280313983951913282899507942705199140855931731062932727709\ 2135001873261549867109 prime factor check f[0] is a definitely prime factor of n-1 f[1] is a definitely prime factor of n-1 f[2] is a definitely prime factor of n-1 f[3] is a definitely prime factor of n-1 f[4] is a definitely prime factor of n-1 f[5] is a definitely prime factor of n-1 f[6] is a definitely prime factor of n-1 f[7] is a definitely prime factor of n-1 f[8] is a definitely prime factor of n-1 f[9] is a definitely prime factor of n-1 f[10] is a definitely prime factor of n-1 f[11] is a definitely prime factor of n-1 f[12] is a definitely prime factor of n-1 f[13] is a definitely prime factor of n-1 f[14] is a definitely prime factor of n-1 f[15] is a definitely prime factor of n-1 f[16] is a definitely prime factor of n-1 f[17] is a definitely prime factor of n-1 f[18] is a definitely prime factor of n-1 f[19] is a definitely prime factor of n-1 f[20] is a definitely prime factor of n-1 f[21] is a definitely prime factor of n-1 f[22] is a definitely prime factor of n-1 f[23] is a definitely prime factor of n-1 f[24] is a definitely prime factor of n-1 f[25] is a definitely prime factor of n-1 f[26] is a definitely prime factor of n-1 f[27] is a probably prime factor of n-1 f[28] is a probably prime factor of n-1 f[29] is a probably prime factor of n-1 f[30] is a probably prime factor of n-1 f[31] is a probably prime factor of n-1 f[32] is a probably prime factor of n-1 f[33] is a probably prime factor of n-1 f[34] is a probably prime factor of n-1 f[35] is a probably prime factor of n-1 f[36] is a probably prime factor of n-1 f[37] is a probably prime factor of n-1 f[38] is a probably prime factor of n-1 f[39] is a probably prime factor of n-1 f[40] is a probably prime factor of n-1 f[41] is a probably prime factor of n-1 f[42] is a probably prime factor of n-1 f[43] is a probably prime factor of n-1 f[44] is a probably prime factor of n-1 f[45] is a probably prime factor of n-1 f[46] is a probably prime factor of n-1 f[47] is a probably prime factor of n-1 f[48] is a probably prime factor of n-1 f[49] is a probably prime factor of n-1 f[50] is a probably prime factor of n-1 f[51] is a probably prime factor of n-1 f[52] is a probably prime factor of n-1 f[53] is a probably prime factor of n-1 f[54] is a probably prime factor of n-1 f[55] is a probably prime factor of n-1 f[56] is a probably prime factor of n-1 f[57] is a probably prime factor of n-1 f[58] is a probably prime factor of n-1 f[59] is a probably prime factor of n-1 F=f[0]*f[1]^4*f[2]*f[3]*f[4]*f[5]*f[6]*f[7]*f[8]*f[9]*f[10]*f[11]*f[12]*f[13]*f[\ 14]*f[15]*f[16]*f[17]*f[18]*f[19]*f[20]*f[21]*f[22]*f[23]*f[24]*f[25]*f[26]*f[27\ ]*f[28]*f[29]*f[30]*f[31]*f[32]*f[33]*f[34]*f[35]*f[36]*f[37]*f[38]*f[39]*f[40]*\ f[41]*f[42]*f[43]*f[44]*f[45]*f[46]*f[47]*f[48]*f[49]*f[50]*f[51]*f[52]*f[53]*f[\ 54]*f[55]*f[56]*f[57]*f[58]*f[59] n-1=F*R F=907952321475960193115902083337974460412022161500387803160784292627929577294779\ 88490663690000000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000000000907952321475960193115902083337974460412022\ 16150038780316078429262792957729477988490663689999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999909204767852403980688409791666202553958797783849961\ 21968392157073720704227052201150933630999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999999999999999999\ 99999999999999999999999999999999999999999999999999999999999999999909204767852403\ 980688409791666202553958797783849961219683921570737207042270522011509336310 R=110137941866199297837331906669612231445432737795528588553922221468847211784663\ 81200191072696692978887220955221692216820977923038357025844328216460640558855652\ 20205532496707482105457207145705796293649348347209294953684772100900264713843097\ 41551991747506907006910477906884591378639177250943842966289485743838979116176354\ 83700947248280129142426028571275477586296980308427285303856938156453303639544669\ 8896682015801034680134141555417025586876461842721509797332600793729 F is greater than R main proof 2^(n-1)=1 (mod n) gcd(2^((n-1)/f[0])-1,n)=n 3^(n-1)=1 (mod n) gcd(3^((n-1)/f[0])-1,n)=1 gcd(2^((n-1)/f[1])-1,n)=1 gcd(2^((n-1)/f[2])-1,n)=1 gcd(2^((n-1)/f[3])-1,n)=n gcd(3^((n-1)/f[3])-1,n)=1 gcd(2^((n-1)/f[4])-1,n)=1 gcd(2^((n-1)/f[5])-1,n)=1 gcd(2^((n-1)/f[6])-1,n)=1 gcd(2^((n-1)/f[7])-1,n)=1 gcd(2^((n-1)/f[8])-1,n)=1 gcd(2^((n-1)/f[9])-1,n)=1 gcd(2^((n-1)/f[10])-1,n)=1 gcd(2^((n-1)/f[11])-1,n)=1 gcd(2^((n-1)/f[12])-1,n)=1 gcd(2^((n-1)/f[13])-1,n)=1 gcd(2^((n-1)/f[14])-1,n)=1 gcd(2^((n-1)/f[15])-1,n)=1 gcd(2^((n-1)/f[16])-1,n)=1 gcd(2^((n-1)/f[17])-1,n)=1 gcd(2^((n-1)/f[18])-1,n)=1 gcd(2^((n-1)/f[19])-1,n)=1 gcd(2^((n-1)/f[20])-1,n)=1 gcd(2^((n-1)/f[21])-1,n)=1 gcd(2^((n-1)/f[22])-1,n)=1 gcd(2^((n-1)/f[23])-1,n)=1 gcd(2^((n-1)/f[24])-1,n)=1 gcd(2^((n-1)/f[25])-1,n)=1 gcd(2^((n-1)/f[26])-1,n)=1 gcd(2^((n-1)/f[27])-1,n)=1 gcd(2^((n-1)/f[28])-1,n)=1 gcd(2^((n-1)/f[29])-1,n)=1 gcd(2^((n-1)/f[30])-1,n)=1 gcd(2^((n-1)/f[31])-1,n)=1 gcd(2^((n-1)/f[32])-1,n)=1 gcd(2^((n-1)/f[33])-1,n)=1 gcd(2^((n-1)/f[34])-1,n)=1 gcd(2^((n-1)/f[35])-1,n)=1 gcd(2^((n-1)/f[36])-1,n)=1 gcd(2^((n-1)/f[37])-1,n)=1 gcd(2^((n-1)/f[38])-1,n)=1 gcd(2^((n-1)/f[39])-1,n)=1 gcd(2^((n-1)/f[40])-1,n)=1 gcd(2^((n-1)/f[41])-1,n)=1 gcd(2^((n-1)/f[42])-1,n)=1 gcd(2^((n-1)/f[43])-1,n)=1 gcd(2^((n-1)/f[44])-1,n)=1 gcd(2^((n-1)/f[45])-1,n)=1 gcd(2^((n-1)/f[46])-1,n)=1 gcd(2^((n-1)/f[47])-1,n)=1 gcd(2^((n-1)/f[48])-1,n)=1 gcd(2^((n-1)/f[49])-1,n)=1 gcd(2^((n-1)/f[50])-1,n)=1 gcd(2^((n-1)/f[51])-1,n)=1 gcd(2^((n-1)/f[52])-1,n)=1 gcd(2^((n-1)/f[53])-1,n)=1 gcd(2^((n-1)/f[54])-1,n)=1 gcd(2^((n-1)/f[55])-1,n)=1 gcd(2^((n-1)/f[56])-1,n)=1 gcd(2^((n-1)/f[57])-1,n)=1 gcd(2^((n-1)/f[58])-1,n)=1 gcd(2^((n-1)/f[59])-1,n)=1 n is definitely prime 39.359 sec.