Previous month前月 | September 2003 2003 年 9 月 | April 2023 2023 年 4 月 May 5 月 June 6 月 July 7 月 August 8 月 September 9 月 October 10 月 | Recent changes 最近の更新 | Next month翌月

July 29, 2023 2023 年 7 月 29 日 (Kurt Beschorner)

n=5617: c5399(6579303227......) = 1442352342212282064734080319729 * c5369(4561509025......)

# ECM B1=1e6, sigma=0:5924394643376098

n=10328: c5130(5839005957......) = 4006493522333901984780000976519275214961 * c5091(1457385597......)

# ECM B1=1e6, sigma=0:6830835193712620

n=10573: c10350(2188130385......) = 11356914865736082249559148247057961 * c10316(1926694362......)

# P-1 B1=48e6

n=147341: c147334(2513694671......) = 75597160128710707 * c147317(3325117857......)

# gr-mfaktc

July 27, 2023 2023 年 7 月 27 日 (Alfred Reich)

# via Kurt Beschorner

n=19100L: c3781(9558986706......) = 450118169827182277613811301 * c3755(2123661595......)

# ECM B1=1e6, sigma=4486630379854031

n=19620M: c2560(7494505256......) = 195574683519227330343721 * c2537(3832042635......)

# ECM B1=1e6, sigma=4807667827384846

July 26, 2023 2023 年 7 月 26 日 (Alfred Reich)

# via Kurt Beschorner

n=17820L: c2142(1790288825......) = 4351340512045385646216652182961 * c2111(4114338606......)

# ECM B1=25e4, sigma=4225631610388729

July 27, 2023 2023 年 7 月 27 日 (Alfred Reich)

# via Kurt Beschorner

n=18016: c8972(5673246591......) = 7412449931218783302723329 * c8947(7653672731......)

# ECM B1=1e6, sigma=8471676387782823

n=18026: c8983(1817954015......) = 2508377899900949172233454720603333143 * c8946(7247528435......)

# ECM B1=1e6, sigma=5447651977129394

n=18032: c7386(7494178896......) = 25234644052897066855537 * c7364(2969797743......)

# ECM B1=1e6, sigma=1940449879482000

n=18034: c8821(1099999999......) = 21140627491374819434981635291 * c8792(5203251419......)

# ECM B1=1e6, sigma=5563662563834508

n=18046: c7704(2791948299......) = 92187728546692686483722402117 * x7675(3028546579......)

# ECM B1=1e6, sigma=8287380733900789

n=18046: x7675(3028546579......) = 207579343030540829724293 * c7652(1458982640......)

# ECM B1=1e6, sigma=1850007519628058

n=18072: c5992(2521955177......) = 254801563148492349961316117257 * c5962(9897722549......)

# ECM B1=1e6, sigma=5594550535579751

n=18091: c17772(1126428786......) = 10014112485841485606799 * c17750(1124841355......)

# ECM B1=25e4, sigma=7101080061804043

n=18098: c9040(4530672614......) = 7946775307654415455385185129 * c9012(5701271822......)

# ECM B1=1e6, sigma=4155814183775257

n=18110: c7241(1099989000......) = 361352468754805542510417466431091 * c7208(3044088792......)

# ECM B1=1e6, sigma=5165461276779925

n=18112: c8977(4081258998......) = 281971979851544679662209 * c8954(1447398780......)

# ECM B1=1e6, sigma=6370290404008509

n=18116: c7693(4696642095......) = 1770872694094595036755917689 * c7666(2652162468......)

# ECM B1=1e6, sigma=3159279001401795

n=18138: c6017(3128441505......) = 1047944516547484327207 * c5996(2985312156......)

# ECM B1=1e6, sigma=2230787106195763

n=18148: c8332(1373785756......) = 128558761065510264563039529409 * c8303(1068605317......)

# ECM B1=1e6, sigma=5919027069979969

n=18152: c9052(1049892212......) = 10393938781834956328186049 * c9027(1010100438......)

# ECM B1=1e6, sigma=8378036762417876

n=18162: c6012(6294238545......) = 25444604056341710127861978841 * x5984(2473702688......)

# ECM B1=1e6, sigma=1521691221785057

n=18162: x5984(2473702688......) = 13921414986637337928367303 * x5959(1776904639......)

# ECM B1=1e6, sigma=446070030487092

n=18162: x5959(1776904639......) = 61281540778010918819743 * c5936(2899575658......)

# ECM B1=1e6, sigma=778654903059104

n=18164: c8528(4540728662......) = 627999652404802918527361 * x8504(7230463654......)

# ECM B1=1e6, sigma=3416451743525242

n=18164: x8504(7230463654......) = 67165305671287908385988349581 * c8476(1076517642......)

# ECM B1=1e6, sigma=2144887355737859

n=18166: c8747(1116415214......) = 129755816360511232035383 * c8723(8603970489......)

# ECM B1=1e6, sigma=8268660378821889

n=18182: c9090(9090909090......) = 70126096080080007841401603001 * c9062(1296366060......)

# ECM B1=1e6, sigma=3858571212124943

n=18192: c6042(6871147502......) = 293041344572790863683518193 * c6016(2344770671......)

# ECM B1=1e6, sigma=1956904232500231

n=18197: c17548(9576252451......) = 78252632604140135173187 * c17526(1223761058......)

# ECM B1=5e4, sigma=7047127865718731

n=18198: c6049(1000000000......) = 2962107517213815023644693237 * c6021(3375974690......)

# ECM B1=1e6, sigma=3117514438744850

n=18204: c5722(2131809763......) = 114276661103432255230261 * c5699(1865481317......)

# ECM B1=1e6, sigma=1387408871341573

n=18208: c9066(1272568047......) = 5324069044784843538194561 * c9041(2390217026......)

# ECM B1=1e6, sigma=1067609750907374

n=18210: c4844(4997029817......) = 224200363450522205394190453201 * c4815(2228823245......)

# ECM B1=1e6, sigma=8143065655842138

n=18212: c8715(2706463160......) = 3174289596355314932118475549 * c8687(8526201148......)

# ECM B1=1e6, sigma=5084267060085267

n=18243: c12120(1469459727......) = 4749308774944311169 * c12101(3094049676......)

# ECM B1=5e4, sigma=6952114583174218

n=18250: c7188(8402672621......) = 51273194574194338348868136251 * x7160(1638804192......)

# ECM B1=1e6, sigma=7589510662890343

n=18250: x7160(1638804192......) = 1040697156023448639985879615001 * c7130(1574717661......)

# ECM B1=1e6, sigma=6002612322362930

n=18268: c9123(2966678403......) = 7929490093517918588409629 * c9098(3741323047......)

# ECM B1=1e6, sigma=3912322075316529

n=18351: c12223(5443815362......) = 1302477032548081477 * c12205(4179586454......)

# ECM B1=25e4, sigma=1201017875625757

n=18354: c4739(3977779211......) = 68706037554549651005204491 * c4713(5789562829......)

# ECM B1=1e6, sigma=5512619962167373

n=18361: c15111(1299916058......) = 8183150638792894871 * c15092(1588527593......)

# ECM B1=5e4, sigma=5709546796289443

n=18395: c13522(3341313821......) = 27780272529467918591 * c13503(1202764953......)

# ECM B1=5e4, sigma=5184859805836035

n=18409: c17908(6760903124......) = 29107326393863899207363 * c17886(2322749617......)

# ECM B1=25e4, sigma=4011783050291777

n=18470: c7340(7318713230......) = 115774500717166822273811 * c7317(6321524330......)

# ECM B1=1e6, sigma=7990544147785702

n=18486: c5590(3519349402......) = 32713791772183844401 * c5571(1075799903......)

# ECM B1=1e6, sigma=4823066396987332

n=18495: c9774(7210381407......) = 262328779422479335381201 * c9751(2748604794......)

# ECM B1=5e4, sigma=5596554645892977

n=18516: c6163(2181889842......) = 13961618722234248308993929 * c6138(1562777129......)

# ECM B1=1e6, sigma=2224182734424486

n=18536: c7914(4611490778......) = 12412665770363762923993 * c7892(3715149399......)

# ECM B1=1e6, sigma=6468297675737741

n=18543: c10585(1109999889......) = 5131616659093351425054169 * c10560(2163060810......)

# ECM B1=25e4, sigma=3261080799550095

n=18609: c12389(3058293434......) = 1559728919717370638413 * c12368(1960785233......)

# ECM B1=5e4, sigma=515457719529818

n=18684: c6152(9857564203......) = 54765508095401391109 * c6133(1799958504......)

# ECM B1=1e6, sigma=3490781769872449

n=18685: c14388(2476256897......) = 9508212518282779801 * c14369(2604334823......)

# ECM B1=25e4, sigma=1331690515522991

n=18717: c11713(1109999999......) = 48167025934146358470853 * c11690(2304481081......)

# ECM B1=5e4, sigma=8887196587543861

n=18726: c6236(1956070949......) = 32575081453625199446779 * c6213(6004807547......)

# ECM B1=1e6, sigma=8208856613011690

n=18730: c7479(5465730155......) = 38356644831027034481 * c7460(1424976084......)

# ECM B1=1e6, sigma=3074476060954312

n=18789: c12524(9009009009......) = 74722116512336773225477 * c12502(1205668338......)

# ECM B1=25e4, sigma=8725196442248221

n=18899: c18875(1029173973......) = 257454702564524747724809 * c18851(3997495339......)

# ECM B1=5e4, sigma=1316508110150026

n=18903: c12592(7177582682......) = 22519736540491473319 * c12573(3187240964......)

# ECM B1=25e4, sigma=4298449833299370

n=18920: c6683(1663531081......) = 92284788541237191058721 * c6660(1802605942......)

# ECM B1=1e6, sigma=1227331916318107

n=18932: c9432(4933284683......) = 53815729049139871256234621 * c9406(9166994057......)

# ECM B1=1e6, sigma=1852031111436643

n=18945: c10066(2721553468......) = 167363665765922734831 * c10046(1626131607......)

# ECM B1=25e4, sigma=1414853681442290

n=18975: c8776(5545446021......) = 109542025933285128151 * c8756(5062391328......)

# ECM B1=25e4, sigma=4976219132650485

n=19002: c6313(2458302090......) = 413091458853103867196142889 * c6286(5950987457......)

# ECM B1=1e6, sigma=500967349861990

n=19008: c5718(2140247855......) = 6556047672536869022209 * c5696(3264539799......)

# ECM B1=1e6, sigma=5847766857104753

n=19032: c5760(9999000100......) = 2686191748026387168508940689 * c5733(3722370194......)

# ECM B1=1e6, sigma=5185884525644342

n=19052: c8628(4746585726......) = 2603185741658752423407961 * c8604(1823375739......)

# ECM B1=1e6, sigma=5327957839398926

n=19072: c9434(4688907393......) = 21529374303394703980611841 * x9409(2177911595......)

# ECM B1=5e4, sigma=8195321079451422

n=19072: x9409(2177911595......) = 16035785254500191230138369 * c9384(1358157122......)

# ECM B1=1e6, sigma=242801435815814

n=19074: c5419(2942587220......) = 2680301906345200911049 * c5398(1097856630......)

# ECM B1=1e6, sigma=7566313541377232

n=19077: c12716(9009009009......) = 546276468394663217689 * c12696(1649166590......)

# ECM B1=5e4, sigma=3206658979267934

n=19084: c8775(1247970083......) = 10856468650554348989410415849 * c8747(1149517512......)

# ECM B1=1e6, sigma=6602634816790582

n=19090: c7216(9091000000......) = 23710290626789621352425491 * c7191(3834200155......)

# ECM B1=1e6, sigma=1196352458988238

n=19134: c6366(3269702074......) = 981359056405886097219373 * c6342(3331810160......)

# ECM B1=1e6, sigma=78888093451490

n=19160: c7582(2555379236......) = 614977904287597440252241 * x7558(4155237478......)

# ECM B1=1e6, sigma=2175658132667431

n=19160: x7558(4155237478......) = 62472842524371825488468085841 * c7529(6651270072......)

# ECM B1=1e6, sigma=2049727642790501

n=19166: c7959(1207772335......) = 19871953541058875138246217967 * c7930(6077773546......)

# ECM B1=1e6, sigma=2095680502231266

n=19186: c9347(3893342929......) = 293742934511307283750049408081 * c9318(1325425217......)

# ECM B1=1e6, sigma=1476732123577259

n=19190: c7186(4299750496......) = 8504170357156122930704641 * c7161(5056049345......)

# ECM B1=1e6, sigma=5001162778742992

n=19194: c5454(6122480239......) = 9305864402772823945921 * c5432(6579163390......)

# ECM B1=1e6, sigma=1594284350791035

n=19212: c6380(2255248849......) = 12255946855975087235449 * c6358(1840126165......)

# ECM B1=1e6, sigma=8192871474046754

n=19222: c8218(4076451918......) = 920076378123454109899447 * c8194(4430558175......)

# ECM B1=1e6, sigma=7071984673911274

n=19230: c5094(4365697455......) = 320724668469216315442921 * c5071(1361197900......)

# ECM B1=1e6, sigma=4504913400048484

n=19242: c6409(1000999998......) = 775482109667856247552957 * c6385(1290809918......)

# ECM B1=1e6, sigma=6018600656544143

n=19298: c9648(9090909090......) = 10586547803857242906072973013 * c9620(8587227167......)

# ECM B1=1e6, sigma=2218353121632410

n=19507: c19496(1042834690......) = 6086409664005366371791 * c19474(1713382351......)

# ECM B1=5e4, sigma=4241919192898100

n=19512: c6481(1000000000......) = 1689051660878138485193436313 * c6453(5920482026......)

# ECM B1=1e6, sigma=6488986860888057

n=19515: c10401(1109988900......) = 1011220177259899231 * c10383(1097672816......)

# ECM B1=5e4, sigma=4821770153175003

n=19518: c6505(1098901098......) = 16835016866221869029401 * c6482(6527472515......)

# ECM B1=1e6, sigma=3997210780036951

n=19558: c7538(4204809535......) = 508040060379389487475559881 * c7511(8276531445......)

# ECM B1=1e6, sigma=3130323138256020

n=19584: c6131(8751212598......) = 44042051785062188768884980481 * c6103(1987012921......)

# ECM B1=1e6, sigma=4127667978041251

n=19638: c6519(1791188225......) = 25116300190337295488097529 * c6493(7131576753......)

# ECM B1=1e6, sigma=7177227049317991

n=19641: c13049(1143804869......) = 3744255823870203060609667 * c13024(3054825640......)

# ECM B1=5e4, sigma=5068652418669030

n=19652: c9233(1424111359......) = 198267234363090570795209 * c9209(7182787234......)

# ECM B1=1e6, sigma=7369863772195378

n=19668: c5887(4976633271......) = 2468088060570692255615041 * c5863(2016392101......)

# ECM B1=1e6, sigma=4981670256796887

n=19698: c5531(1777050431......) = 509004838362526625727047507312941154089 * c5492(3491225028......)

# ECM B1=1e6, sigma=5535543303355901

n=19738: c9656(5572724048......) = 443042679621243639131054299 * c9630(1257830070......)

# ECM B1=1e6, sigma=2322889907188029

n=19750: c7762(3699954431......) = 17769582262849196455020251 * c7737(2082184249......)

# ECM B1=1e6, sigma=2329474169221759

n=19752: c6565(6745523073......) = 50007138229084179059089 * c6543(1348912037......)

# ECM B1=1e6, sigma=4356051766615793

n=19760: c6875(3549581945......) = 2149969406654385888001 * c6854(1650991839......)

# ECM B1=1e6, sigma=1706038676665166

n=19771: c18563(6472718121......) = 91067036137233352514239 * c18540(7107641135......)

# ECM B1=5e4, sigma=1363464468111940

n=19776: c6529(1000000000......) = 537177016853502364016327809 * c6502(1861583739......)

# ECM B1=1e6, sigma=5344013773051414

n=19790: c7903(1588523488......) = 2378729369023297284418891 * x7878(6678033696......)

# ECM B1=1e6, sigma=6811457372367392

n=19790: x7878(6678033696......) = 95595866146851354937361 * c7855(6985692964......)

# ECM B1=1e6, sigma=7196115497776035

n=19824: c5541(1220034502......) = 921496565360087159136583009 * c5514(1323970754......)

# ECM B1=1e6, sigma=6663875350866785

n=19828: c9901(2238550625......) = 13653500689040968460675956441 * c9873(1639543349......)

# ECM B1=1e6, sigma=7272199857487295

n=19832: c9483(5416130469......) = 351409415768851718896529281 * c9457(1541259347......)

# ECM B1=1e6, sigma=1694326439510915

n=19834: c9639(1359303832......) = 2431653672326999721746981326373329 * c9605(5590038780......)

# ECM B1=1e6, sigma=7587668820277720

n=19866: c5023(1561503264......) = 916025771285308057886511847 * c4996(1704649927......)

# ECM B1=1e6, sigma=1840130357649240

n=19874: c9349(4645372624......) = 256499227139746235384050567 * c9323(1811066908......)

# ECM B1=1e6, sigma=2536490361447859

n=19902: c6345(6588249052......) = 3934112537993779534009063 * c6321(1674646820......)

# ECM B1=1e6, sigma=5275263968378749

n=19908: c5607(1664629008......) = 32519097961365394058253841 * c5581(5118927378......)

# ECM B1=1e6, sigma=244684832580119

n=19924: c9320(5025180686......) = 162713372573148880863161 * c9297(3088363670......)

# ECM B1=1e6, sigma=3286311126892779

n=19926: c6467(1026044200......) = 399519915160756395149569 * c6443(2568192876......)

# ECM B1=1e6, sigma=5404224400006418

n=19974: c6620(1936665470......) = 1984059739931021561468587117 * c6592(9761124788......)

# ECM B1=1e6, sigma=6491693486209398

# 210443 of 300000 Φn(10) factorizations were cracked. 300000 個中 210443 個の Φn(10) の素因数が見つかりました。

July 27, 2023 2023 年 7 月 27 日 (Alfred Reich)

# via Kurt Beschorner

n=9487: c9212(5135735762......) = 61183229894541021560985808453 * c9183(8394025244......)

# ECM B1=1e6, sigma=7634275285447370

n=9653: c8189(1075772127......) = 3200038208268763802284576732039 * c8158(3361747758......)

# ECM B1=1e6, sigma=5472057760986274

n=9834: c2922(4102531568......) = 126583733079378785362021468328797 * c2890(3240962696......)

# ECM B1=1e6, sigma=3780061253456632

n=9933: c4985(8637794576......) = 7470644066585671803748439293 * c4958(1156231577......)

# ECM B1=1e6, sigma=2074151642045139

n=9971: c9024(6371362379......) = 142019375285243998924357 * c9001(4486262784......)

# ECM B1=25e4, sigma=844769815632454

n=10566: c3462(2587087937......) = 1345137533492048852909763163609 * c3432(1923288788......)

# ECM B1=1e6, sigma=8704488892084815

n=10704: c3553(1000000009......) = 72841238673283847793996117940609 * c3521(1372848716......)

# ECM B1=1e6, sigma=2040506504840919

n=10870: c4295(1022114401......) = 85550856768491103644426046893161 * c4263(1194744787......)

# ECM B1=1e6, sigma=727762954492637

n=11294: c5638(2422525732......) = 414369762491182496621082370567 * c5608(5846289839......)

# ECM B1=5e4, sigma=3970022758127121

n=11612: c5728(1931571523......) = 129251412527778710102756089 * c5702(1494429720......)

# ECM B1=1e6, sigma=1164465327651493

n=11708: c5800(1070843981......) = 1442844122802905471209473569 * c5772(7421757936......)

# ECM B1=1e6, sigma=1689862390890003

# 210443 of 300000 Φn(10) factorizations were cracked. 300000 個中 210443 個の Φn(10) の素因数が見つかりました。

July 27, 2023 2023 年 7 月 27 日 (John)

# via Kurt Beschorner

n=17137: c17128(3740450399......) = 123801622343621065831479863929067 * c17096(3021325834......)

# ECM B1=1e6, sigma=0:1896865138

n=17191: c17191(1111111111......) = 5747055463752121703767481 * c17166(1933357208......)

# ECM B1=1e6, sigma=3312859642

n=17203: c17203(1111111111......) = 19081414547132656686243720649 * c17174(5823001792......)

# ECM B1=1e6, sigma=0:1679835735

# 210426 of 300000 Φn(10) factorizations were cracked. 300000 個中 210426 個の Φn(10) の素因数が見つかりました。

# 19997 of 25997 Rprime factorizations were cracked. 25997 個中 19997 個の Rprime の素因数が見つかりました。

July 27, 2023 2023 年 7 月 27 日 (Alfred Reich)

# via Kurt Beschorner

n=10565: c8389(2697520155......) = 2035365601010370050365241 * c8365(1325324626......)

n=10615: c7630(1531719481......) = 337712417377352603550361 * c7606(4535573472......)

July 26, 2023 2023 年 7 月 26 日 (Alfred Reich)

# via Kurt Beschorner

n=16387: c14000(1565338094......) = 444632746836707249577443 * c13976(3520519138......)

# ECM B1=75e3, sigma=6178758472047261

n=16388: c7666(2481594646......) = 34208242748093017125479095441 * c7637(7254376276......)

# ECM B1=1e6, sigma=4274842413036703

n=16437: c10956(9009009009......) = 11518790169842022517123 * c10934(7821141696......)

# ECM B1=75e3, sigma=1445928104056008

n=16461: c10403(2143082967......) = 25624744126075286351911 * c10380(8363334117......)

# ECM B1=75e3, sigma=8327484888676444

n=16465: c12667(1687060906......) = 29291000654502486481 * c12647(5759656101......)

# ECM B1=75e3, sigma=7153109779297245

n=16469: c16044(9000000000......) = 45385530993599008831 * c16025(1983010841......)

# ECM B1=75e3, sigma=3762744443136656

n=16497: c9919(6740172941......) = 6207750833325827942053 * c9898(1085767312......)

# ECM B1=75e3, sigma=1129215292130134

n=16511: c14041(1111111111......) = 210779883214785477211279 * c14017(5271428630......)

# ECM B1=75e3, sigma=1438023311857960

n=16527: c9425(5625026327......) = 229482819082205227267 * c9405(2451175364......)

# ECM B1=5e4, sigma=8392998152764770

n=16531: c16181(2260218550......) = 1457824500730771387 * x16163(1550405106......)

# ECM B1=75e3, sigma=8178618282176246

n=16531: x16163(1550405106......) = 2108101345041127584419027 * c16138(7354509356......)

# ECM B1=75e3, sigma=3880639194556510

n=16539: c10657(1109999999......) = 582918717569368071033517 * c10633(1904210598......)

# ECM B1=5e4, sigma=5899517116822048

n=16545: c8811(8386072181......) = 1099282802798286991 * c8793(7628675860......)

# ECM B1=75e3, sigma=8635472632351845

n=16549: c14257(1111111111......) = 165495183474530359586761 * c14233(6713857695......)

# ECM B1=75e3, sigma=7606670976315151

n=16555: c10075(3020255947......) = 27719687270371713955801 * c10053(1089570714......)

# ECM B1=75e3, sigma=4667576196902349

n=16613: c16097(7986026139......) = 59413152402418734043 * c16078(1344151221......)

# ECM B1=75e3, sigma=7573155067028074

n=16629: c10541(1896656307......) = 50553225172290858679 * c10521(3751800802......)

# ECM B1=75e3, sigma=3573223959438135

n=16635: c8865(1109988900......) = 413651508231537192121 * c8844(2683391400......)

# ECM B1=75e3, sigma=4220728488665208

n=16637: c16327(5429055527......) = 11842780819896023027 * c16308(4584274259......)

# ECM B1=75e3, sigma=7522673661528617

n=16645: c13295(1069143150......) = 756293015816070430001 * c13274(1413662599......)

# ECM B1=5e4, sigma=7377664554700303

n=16695: c7478(2488953494......) = 5808060705985032949438953151 * c7450(4285343456......)

# ECM B1=75e3, sigma=1824921301501987

n=16707: c11129(4193122591......) = 7763831475690288133 * c11110(5400841845......)

# ECM B1=75e3, sigma=8047315095218157

n=16717: c16416(9000000000......) = 20957939246539038889 * c16397(4294315339......)

# ECM B1=75e3, sigma=4214941005506520

n=16725: c8881(1000010000......) = 445302469081752441001 * c8860(2245687076......)

# ECM B1=75e3, sigma=3732001075109983

n=16731: c9334(1969521432......) = 379517397525802410733 * c9313(5189541890......)

# ECM B1=75e3, sigma=1253857020380531

n=16739: c15825(1739282111......) = 121933604057370308239 * c15805(1426417372......)

# ECM B1=75e3, sigma=7681131192297456

n=16765: c11432(4503619088......) = 65789874874500573161 * c11412(6845459270......)

# ECM B1=75e3, sigma=4140804333039858

n=16795: c13425(1122024966......) = 17655742756797040921 * c13405(6355014241......)

# ECM B1=75e3, sigma=101229814774570

n=16811: c16804(1108964488......) = 20801833349961562779031171907123 * c16772(5331090149......)

# ECM B1=75e3, sigma=8541250071376232

n=16849: c13759(1655682871......) = 4329352892625258601321 * c13737(3824319505......)

# ECM B1=75e3, sigma=4631291155325571

n=16855: c13480(9000090000......) = 98855364742919870517721 * c13457(9104301040......)

# ECM B1=75e3, sigma=2414570560940351

n=16874: c6909(2913939574......) = 8278020209930799615574717 * c6884(3520092365......)

# ECM B1=1e6, sigma=3883343618846007

n=16877: c14438(3745509780......) = 11427856103647537378427 * c14416(3277526201......)

# ECM B1=75e3, sigma=5734635145676390

n=16883: c16844(1954553724......) = 3845748632024369821039 * c16822(5082375139......)

# ECM B1=75e3, sigma=4315490399335271

n=16903: c16882(1448033638......) = 9938944639970178699683 * c16860(1456928970......)

# ECM B1=75e3, sigma=4616400810916438

n=16925: c13509(1083300946......) = 1583949111190748801 * c13490(6839240852......)

# ECM B1=5e4, sigma=4932931550087311

n=16955: c13521(8459443986......) = 19810727067995233782224321 * c13496(4270133023......)

# ECM B1=75e3, sigma=6742655343268252

n=16971: c11304(7939683887......) = 31714686372819323517841 * c11282(2503472301......)

# ECM B1=75e3, sigma=7656198649355645

n=16977: c11306(1378718517......) = 42259609603197086917 * c11286(3262497051......)

# ECM B1=75e3, sigma=7735146726508651

n=16985: c13081(1617040835......) = 82118633557686129511 * c13061(1969152146......)

# ECM B1=75e3, sigma=2381566870706736

n=17001: c11314(3400442832......) = 5472446929255517591380951 * c11289(6213752049......)

# ECM B1=25e4, sigma=1547645826563529

n=17003: c14522(2241059095......) = 4827562668928878703441 * p14500(4642216475......)

makoto@bellatrix /cygdrive/d/factor2/repunit2
$ ./pfgw64 -tc -q"(10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

Primality testing (10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441 [N-1/N+1, Brillhart-Lehmer-Selfridge]

Running N-1 test using base 3
Running N-1 test using base 7
Running N-1 test using base 11
Running N+1 test using discriminant 17, base 1+sqrt(17)

Calling N-1 BLS with factored part 0.07% and helper 0.02% (0.24% proof)
(10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441 is Fermat and Lucas PRP! (11.2002s+0.0009s)

# ECM B1=25e4, sigma=7181990877957650

n=17089: c16305(1092504163......) = 3722056452688649490973867 * c16280(2935216531......)

# ECM B1=25e4, sigma=5928329483807271

n=17095: c12562(5275313822......) = 2764307821798290431 * c12544(1908366999......)

# ECM B1=5e4, sigma=4689321009872043

n=17105: c12391(1648034634......) = 1862812902210338086361 * c12369(8847021794......)

# ECM B1=25e4, sigma=1232182661449527

n=17127: c10301(9781791726......) = 4134800696190454048687237 * c10277(2365722666......)

# ECM B1=25e4, sigma=6041808485930476

n=17147: c15796(2067662913......) = 29526628777501295945848643 * c15770(7002705691......)

# ECM B1=5e4, sigma=4264005752293452

n=17151: c11432(9009009009......) = 4849880088112576849 * c11414(1857573557......)

# ECM B1=5e4, sigma=5214220185203441

n=17161: c17031(1000000000......) = 10190373182390909831069303827 * c17002(9813183306......)

# ECM B1=25e4, sigma=4866100867546997

n=17163: c11422(3389127570......) = 20957072303584774711 * c11403(1617176063......)

# ECM B1=25e4, sigma=3167730088103783

n=17195: c12947(2976363760......) = 2014254232211064220831 * c12926(1477650493......)

# ECM B1=5e4, sigma=3097326488237177

n=17229: c11464(1976599792......) = 386418132783634741147 * c11443(5115183851......)

# ECM B1=25e4, sigma=4569878362751008

n=17245: c13758(5117497657......) = 3784912245851457271 * c13740(1352078284......)

# ECM B1=5e4, sigma=5400251849820712

n=17261: c16775(4007540123......) = 22154753938644400522121 * c16753(1808884962......)

# ECM B1=25e4, sigma=1543770213193522

n=17265: c9188(2806593301......) = 34441852520323430551 * c9168(8148787292......)

# ECM B1=5e4, sigma=6996349374319556

n=17269: c14776(4422238062......) = 5662685401306120307 * c14757(7809436246......)

# ECM B1=25e4, sigma=4509182595281023

n=17271: c10795(2634469672......) = 3352457110743107487613 * c10773(7858324760......)

# ECM B1=5e4, sigma=6531850982417492

n=17307: c11491(8359599528......) = 50730052205390707837 * c11472(1647859437......)

# ECM B1=5e4, sigma=4231479336760216

n=17315: c13844(2598853628......) = 1437367365991611391 * c13826(1808065001......)

# ECM B1=5e4, sigma=1768548922920302

n=17355: c8448(9009099100......) = 2621243055503016361 * c8430(3436956783......)

# ECM B1=5e4, sigma=2542960111650005

n=17403: c11578(2023354329......) = 1672467177709775911 * c11560(1209802115......)

# ECM B1=5e4, sigma=7857227657296848

n=17433: c10644(6224000582......) = 2221058445534876403 * c10626(2802267808......)

# ECM B1=5e4, sigma=5560713387672636

n=17457: c10057(1291412126......) = 108374370377702401729681 * c10034(1191621341......)

# ECM B1=5e4, sigma=6012573865855560

n=17463: c11617(6590549907......) = 3985596895961404945759 * c11596(1653591690......)

# ECM B1=5e4, sigma=8773923639479765

n=17515: c13432(2676217254......) = 423598715105865988915511 * c13408(6317812493......)

# ECM B1=5e4, sigma=3354921034576709

n=17526: c5508(1178516496......) = 109704851018507843934247 * c5485(1074261060......)

# ECM B1=1e6, sigma=8893778573350583

n=17527: c16442(5853769685......) = 324145724813688097277 * c16422(1805906799......)

# ECM B1=5e4, sigma=2415351982266877

n=17575: c12946(2476714359......) = 1546312366277191786001 * c12925(1601690844......)

# ECM B1=5e4, sigma=485526407086334

n=17665: c14102(1194360254......) = 16467028763124664831 * c14082(7253040431......)

# ECM B1=5e4, sigma=8376039208804889

n=17693: c16320(9000000000......) = 175676625520378290747947 * c16297(5123049223......)

# ECM B1=5e4, sigma=4428565221934222

n=17702: c8593(7556016820......) = 1171849360831477133903 * c8572(6447942093......)

# ECM B1=5e4, sigma=2081171170567297

n=17708: c8353(1009999999......) = 25448130418184001529949 * c8330(3968857371......)

# ECM B1=1e6, sigma=1238718422313128

n=17730: c4690(7743509148......) = 29756572971243248146949371 * c4665(2602285268......)

# ECM B1=1e6, sigma=4918702373505139

n=17746: c8370(1962737527......) = 497302490484021274195531 * c8346(3946767943......)

# ECM B1=1e6, sigma=718280204716276

n=17796: c5900(4248402917......) = 1871466426737258910275281 * c5876(2270093044......)

# ECM B1=1e6, sigma=6140134240842226

n=17804: c8880(8699292778......) = 14209965575708811845909689 * c8855(6121966117......)

# ECM B1=1e6, sigma=1848035082948952

n=17810: c6528(9091000000......) = 2771252744525319762371 * c6507(3280465853......)

# ECM B1=1e6, sigma=1547145418513225

n=17823: c10932(2717999681......) = 50863855568794293481 * c10912(5343676076......)

# ECM B1=5e4, sigma=4630085389288454

n=17847: c11866(2060099872......) = 15109098387367039974253 * c11844(1363482995......)

# ECM B1=5e4, sigma=2125608409903811

n=17890: c7126(1594639325......) = 118827404455770533088641 * c7103(1341979430......)

# ECM B1=25e4, sigma=4549142144117655

n=17905: c14320(9000090000......) = 326773417491089607791 * c14300(2754229542......)

# ECM B1=5e4, sigma=6531710934507288

n=17916: c5969(1009998990......) = 84904675134270495232564592689 * c5940(1189568169......)

# ECM B1=1e6, sigma=4954996857320254

n=17965: c14349(1004077695......) = 6605163476275040309471 * c14327(1520140566......)

# ECM B1=5e4, sigma=900519292645139

n=17975: c14343(1910072619......) = 1190847785924916551 * c14325(1603960339......)

# ECM B1=5e4, sigma=5068952761942348

n=17983: c15368(1390182391......) = 3141554003624359471 * c15349(4425142430......)

# ECM B1=5e4, sigma=7950537385288281

# 1226 of 300000 Φn(10) factorizations were finished. 300000 個中 1226 個の Φn(10) の素因数分解が終わりました。

# 210424 of 300000 Φn(10) factorizations were cracked. 300000 個中 210424 個の Φn(10) の素因数が見つかりました。

July 25, 2023 2023 年 7 月 25 日 (Alfred Reich)

# via Kurt Beschorner

n=16005: c7649(4024091584......) = 20154652704741883681 * c7630(1996606760......)

# ECM B1=75e3, sigma=8856720887035761

n=16017: c10081(1109999999......) = 70094322529041945787 * c10061(1583580466......)

# ECM B1=75e3, sigma=141109847233908

n=16023: c9073(1000000100......) = 36990649980484287411283 * c9050(2703386127......)

# ECM B1=75e3, sigma=4659999773939198

n=16027: c13786(6085353506......) = 313422807397241648987 * c13766(1941579669......)

# ECM B1=5e4, sigma=2019387804745992

n=16031: c14081(1111111111......) = 72997671627979044507509653 * c14055(1522118563......)

# ECM B1=5e4, sigma=8258231154230937

n=16047: c10683(1767542860......) = 76035334943104569001 * x10663(2324633490......)

# ECM B1=5e4, sigma=2204725944569055

n=16047: x10663(2324633490......) = 2573231475662068171843 * x10641(9033907411......)

# ECM B1=75e3, sigma=6237432045643806

n=16047: x10641(9033907411......) = 6175917086176805036081293 * c10617(1462763713......)

# ECM B1=75e3, sigma=7251954986593143

n=16053: c10684(1563704609......) = 4299347075516945016307 * c10662(3637074612......)

# ECM B1=5e4, sigma=2905138527116226

n=16065: c6906(3577419467......) = 8499701340695323081 * c6887(4208876670......)

# ECM B1=75e3, sigma=4996020067945009

n=16071: c9682(6463138523......) = 3068441302102926024649111 * c9658(2106326270......)

# ECM B1=75e3, sigma=6380698906044571

n=16079: c13731(2348683680......) = 9669783718288721453325551 * c13706(2428889568......)

# ECM B1=75e3, sigma=214808434829463

n=16113: c10388(3926587722......) = 79642819841537244310056700009 * c10359(4930246982......)

# ECM B1=5e4, sigma=732211870780390

n=16129: c16003(1000000000......) = 88020346496910733572253 * c15980(1136100958......)

# ECM B1=5e4, sigma=3925910320583828

n=16145: c12912(9000090000......) = 20189906610741681271 * c12893(4457717499......)

# ECM B1=75e3, sigma=2837539851415324

n=16157: c15887(1359091312......) = 189445852360029605803 * c15866(7174035724......)

# ECM B1=75e3, sigma=8820718827729161

n=16159: c13441(1111111111......) = 213078723307336887001 * c13420(5214556826......)

# ECM B1=75e3, sigma=3380031682417233

n=16191: c9184(5626322377......) = 89989599847114735648147 * c9161(6252191794......)

# ECM B1=75e3, sigma=2455015208405863

n=16227: c10787(1327107846......) = 63090121796142210037 * c10767(2103511307......)

# ECM B1=75e3, sigma=4304650827920384

n=16235: c12161(1111099999......) = 30973523760183037467915281 * c12135(3587257325......)

# ECM B1=75e3, sigma=4721704087368704

n=16268: c6856(2221947217......) = 375203735417488713709 * c6835(5921975204......)

# ECM B1=25e4, sigma=2944513438701888

n=16279: c15984(9000000000......) = 135640166547857161159681 * c15961(6635202705......)

# ECM B1=75e3, sigma=7089980821004161

n=16281: c10659(3887172408......) = 558404633423780193763 * c10638(6961210877......)

# ECM B1=75e3, sigma=2159881587821849

n=16285: c13015(5485036865......) = 2105350589427154591 * c12997(2605284313......)

# ECM B1=75e3, sigma=7453717810178444

n=16293: c10840(2254344019......) = 1140108738136248481 * x10822(1977306149......)

# ECM B1=75e3, sigma=4341399191764452

n=16293: x10822(1977306149......) = 1581093249608659542991 * c10801(1250594264......)

# ECM B1=75e3, sigma=714050029406353

n=16303: c13029(2178635622......) = 635096265017492056718521 * c13005(3430402196......)

# ECM B1=75e3, sigma=8615023901410628

n=16305: c8668(2469824003......) = 16883214725687714431 * c8649(1462887277......)

# ECM B1=75e3, sigma=7301858993568897

n=16343: c15992(5329370661......) = 193905231567153521719 * x15972(2748440884......)

# ECM B1=75e3, sigma=7317623783347026

n=16343: x15972(2748440884......) = 1454547585209802544625837 * c15948(1889550340......)

# ECM B1=75e3, sigma=8764633129725836

n=16344: c5425(1000000000......) = 458319145949925131674164294073 * c5395(2181885720......)

# ECM B1=25e4, sigma=3117044783023050

n=16347: c10880(1748315212......) = 4108364902099380077696773 * c10855(4255501286......)

# ECM B1=75e3, sigma=1776156934058899

n=16355: c13063(5001544173......) = 147676476067516133351 * c13043(3386825246......)

# ECM B1=75e3, sigma=769255222327761

n=16357: c14819(1138864754......) = 22025672941920769001 * c14799(5170624107......)

# ECM B1=75e3, sigma=1117650285043397

n=16385: c12526(4709561311......) = 87255068507647617911041 * c12503(5397464458......)

# ECM B1=75e3, sigma=4063298042283207

# 210407 of 300000 Φn(10) factorizations were cracked. 300000 個中 210407 個の Φn(10) の素因数が見つかりました。

July 24, 2023 2023 年 7 月 24 日 (Alfred Reich)

# via Kurt Beschorner

n=7752: c2241(2166932176......) = 42353923360157502447534166996835876881 * c2203(5116248991......)

# ECM B1=3e6, sigma=2285511068875915

n=7850: c3095(5692542936......) = 13747714386463996216800537082801 * c3064(4140719523......)

# ECM B1=3e6, sigma=1105999260461860

n=7889: c6468(9999999999......) = 4277814513314993862986621267 * c6441(2337642263......)

# ECM B1=5e4, sigma=7582201310460296

n=8042: c3950(1873522805......) = 3613740590384116835954173411741899601 * c3913(5184441879......)

# ECM B1=3e6, sigma=4844699859669146

n=8140L: c1404(1729676994......) = 80622744652166457696395245164203461 * c1369(2145395820......)

# ECM B1=3e6, sigma=4074574849410810

n=8181: c5396(6111348774......) = 1308422483955383205252193590529 * c5366(4670776335......)

# ECM B1=1e6, sigma=4238026019074197

n=8392: c4182(2730341713......) = 3599156466433812795397984296574698260321 * c4142(7586060063......)

# ECM B1=3e6, sigma=1038259465840955

n=8625: c4401(1000000000......) = 381446118450180784610948538507751 * c4368(2621602243......)

# ECM B1=1e6, sigma=4179695821137327

n=8876: c3738(1629095739......) = 42578121936812302850424703961 * c3709(3826133389......)

# ECM B1=3e6, sigma=1792378130518983

n=8936: c4464(9999000099......) = 140429208050264216888582509081513 * c4432(7120313671......)

# ECM B1=3e6, sigma=377951961168560

n=9239: c9215(6489676051......) = 62669775402678117590827428689 * c9187(1035535233......)

# ECM B1=25e4, sigma=4934646406426321

n=9479: c9474(5860599773......) = 41211875020087006634201463431 * c9446(1422065793......)

# ECM B1=1e6, sigma=7861136345159153

# 210398 of 300000 Φn(10) factorizations were cracked. 300000 個中 210398 個の Φn(10) の素因数が見つかりました。

July 23, 2023 2023 年 7 月 23 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=67369: c67352(1126912812......) = 186892259095033361668439 * c67328(6029745790......)

# ECM B1=5e4, sigma=6660079597888780

n=88007: c88007(1111111111......) = 11789824315950018449719 * c87984(9424322885......)

# ECM B1=5e4, sigma=4732639057627862

n=88469: c88469(1111111111......) = 18480808172113119499887708283 * c88440(6012243083......)

# ECM B1=5e4, sigma=728582668942992

# 210395 of 300000 Φn(10) factorizations were cracked. 300000 個中 210395 個の Φn(10) の素因数が見つかりました。

# 19995 of 25997 Rprime factorizations were cracked. 25997 個中 19995 個の Rprime の素因数が見つかりました。

July 18, 2023 2023 年 7 月 18 日 (Richard G.)

# via factordb.com

n=7710: p1999(6139174789......) is proven prime

July 23, 2023 2023 年 7 月 23 日 (Alfred Reich)

# via Kurt Beschorner

n=2113: c2069(1632658590......) = 354929074755704271165843846001853 * c2036(4599957306......)

# ECM B1=1e6, sigma=7246696440051791

n=6771: c4297(5146427224......) = 75952212778314289168987 * c4274(6775875298......)

# ECM B1=5e4, sigma=230329139279521

n=6836: c3402(1122939872......) = 20415654231968489599172591591429 * c3370(5500386419......)

# ECM B1=3e6, sigma=2219133135640438

n=7204: c3558(5215481928......) = 1792611605403123098539229078379149 * c3525(2909432201......)

# ECM B1=3e6, sigma=6121230499120445

n=7222: c3424(4359879153......) = 3653775233540851672781627075243270200397 * c3385(1193253244......)

# ECM B1=3e6, sigma=7822026574764889

n=7294: c3077(2220359907......) = 272799241926662791209917505350443321 * c3041(8139171840......)

# ECM B1=3e6, sigma=2947171639234522

n=7362: c2436(6147288088......) = 1889142577340213131496648834727637 * c2403(3254009603......)

# ECM B1=3e6, sigma=3002322087673142

n=7369: c7335(1495240218......) = 20270951656522899758172134963 * c7306(7376270459......)

# ECM B1=5e4, sigma=125603663189372

n=7420L: c1207(4397458072......) = 2340937705637882417208224655617801 * c1174(1878502816......)

# ECM B1=3e6, sigma=4814171662249052

n=7554: c2509(2655581220......) = 2389508715065538544734650342449 * c2479(1111350297......)

# ECM B1=3e6, sigma=1618995962471329

n=7594: c3784(4840856886......) = 6831445770573654431691283538611 * c3753(7086138204......)

# ECM B1=3e6, sigma=6025140471483118

n=7612: c3441(1009999999......) = 54681575751290909883901945368061 * c3409(1847057232......)

# ECM B1=3e6, sigma=7933871023863120

n=7645: c5515(2076236426......) = 18898813419143464670208071 * c5490(1098606764......)

# ECM B1=7e5, sigma=352409892073962

n=7683: c4660(2268996429......) = 28725234813559812989329310454871 * c4628(7898965645......)

# ECM B1=7e5, sigma=8241647108127009

n=7704: c2524(6570202963......) = 178041560769736312478867254989953569 * c2489(3690263630......)

# ECM B1=1e6, sigma=2763392246015981

n=7710: c2027(5404229289......) = 8802859463727639797791299361 * p1999(6139174789......)

# ECM B1=3e6, sigma=2197231942016623

n=7727: c7727(1111111111......) = 160313217802190637787806923 * c7700(6930876482......)

# ECM B1=5e4, sigma=890703124145020

# 210393 of 300000 Φn(10) factorizations were cracked. 300000 個中 210393 個の Φn(10) の素因数が見つかりました。

# 19993 of 25997 Rprime factorizations were cracked. 25997 個中 19993 個の Rprime の素因数が見つかりました。

July 13, 2023 2023 年 7 月 13 日 (FredOnCyc)

# via factordb.com

n=15130: p5579(1670623001......) is proven prime

July 22, 2023 2023 年 7 月 22 日 (Alfred Reich)

# via Kurt Beschorner

n=14413: c11743(8536186598......) = 166970966971236943369 * c11723(5112377770......)

n=14445: c7633(1000000001......) = 316250758517746765591 * x7612(3162047755......)

n=14445: x7612(3162047755......) = 879066998314826171311 * c7591(3597049782......)

n=14481: c9643(1437226025......) = 10917091689686126533 * c9624(1316491668......)

n=14517: c9644(2595333927......) = 9182629340686042345379791 * c9619(2826351615......)

n=14569: c13669(1086114683......) = 22443633425054649446083238609 * c13640(4839299694......)

n=14571: c9708(9990000009......) = 3658076287012737001 * c9690(2730943596......)

n=14673: c9488(5662148396......) = 475483711766804372077 * c9468(1190818582......)

n=14708: c7338(3823519866......) = 2192558026825804565807686978628341 * c7305(1743862565......)

n=14952: c4207(6050602707......) = 2789248315137724131979059409729 * c4177(2169259249......)

n=15005: c11967(6521318449......) = 15983293162325565016361 * c11945(4080084362......)

n=15029: c12081(2553216854......) = 13622095717362446987 * c12062(1874320154......)

n=15033: c9983(1788981359......) = 238008263495863697743369843 * c9956(7516467424......)

n=15059: c13294(6062550605......) = 2361270706474226297477 * c13273(2567494946......)

n=15063: c10019(4191415931......) = 2224417714292341123 * c10001(1884275558......)

n=15065: c11417(2720467562......) = 325077304852476722551 * c11396(8368678839......)

n=15066: c4826(2104715189......) = 1529828168913229051927 * c4805(1375785354......)

n=15072: c4982(6877791264......) = 1781588849293327282491649 * c4958(3860481764......)

n=15089: c14820(9000000000......) = 6015399565179816599369 * c14799(1496159964......)

n=15130: c5613(4309533754......) = 25795968034561722707971644771190441 * p5579(1670623001......)

n=15185: c12144(9000090000......) = 2651048245090043431 * c12126(3394917469......)

n=15205: c12139(3667463198......) = 630043524401854709268041 * c12115(5820968007......)

n=15239: c13014(1458246391......) = 2943521601045570917 * c12995(4954087617......)

n=15261: c10133(1369337658......) = 2739044939247316433787307 * c10108(4999325270......)

n=15265: c11756(1213110458......) = 21270400474878965735191 * c11733(5703279822......)

n=15282: c5069(9566733187......) = 10390294669181513520691 * c5047(9207374277......)

n=15311: c14995(9796771419......) = 63490481571677056933 * c14976(1543029943......)

n=15415: c12293(1363110505......) = 113418428023571510431 * c12273(1201842177......)

n=15421: c13212(9000000900......) = 4494340777847147599 * c13194(2002518577......)

n=15431: c14232(9000000000......) = 252816462617370489683 * c14212(3559894757......)

n=15463: c12956(1203045750......) = 27788181685656629119 * c12936(4329343187......)

n=15561: c7770(1146409850......) = 405107217105555321631 * c7749(2829892438......)

n=15700L: c3075(7924133653......) = 4949635952475223234934801 * c3051(1600952823......)

n=15744: c5062(2513072236......) = 3683085861296245547137 * x5040(6823278987......)

n=15744: x5040(6823278987......) = 13680107036093792174679994369 * c5012(4987738012......)

n=15781: c15372(9000000000......) = 4496325838430068729 * c15354(2001634295......)

n=15831: c10522(4950835459......) = 37816790255067463813 * c10503(1309163317......)

n=15876: c4537(1000000000......) = 8735229018367194426214321 * c4512(1144789676......)

n=15892: c7591(5954154334......) = 8842711418956384659004589 * c7566(6733403424......)

n=15933: c10277(7205222100......) = 9139237322515297519 * c10258(7883833022......)

# 1225 of 300000 Φn(10) factorizations were finished. 300000 個中 1225 個の Φn(10) の素因数分解が終わりました。

# 210391 of 300000 Φn(10) factorizations were cracked. 300000 個中 210391 個の Φn(10) の素因数が見つかりました。

July 21, 2023 2023 年 7 月 21 日 (Alfred Reich)

# via Kurt Beschorner

n=12663: c7076(3487285794......) = 34504836467357239453 * c7057(1010665793......)

# ECM B1=5e4, sigma=161413222477211

n=12672: c3835(2391331900......) = 54951214337391728771713 * c3812(4351736224......)

# ECM B1=1e6, sigma=6917630066149202

n=12775: c8641(1000010000......) = 38227959924998960551 * c8621(2615912546......)

# ECM B1=5e4, sigma=6875723530772047

n=12796: c5434(9585054995......) = 17178436756368127757719861 * c5409(5579701536......)

# ECM B1=1e6, sigma=8621255966812854

n=12819: c8527(1227038401......) = 1096566136620207973 * c8509(1118982576......)

# ECM B1=5e4, sigma=5461196199453459

n=12825: c6459(9551464176......) = 7223364122267281951 * c6441(1322301356......)

# ECM B1=5e4, sigma=5955703799695974

n=12835: c9594(6011661899......) = 51723675244997141349671 * c9572(1162265030......)

# ECM B1=5e4, sigma=5554226281362793

n=12987: c7769(2916669501......) = 18953527480527961613917 * c7747(1538853125......)

# ECM B1=5e4, sigma=585973883891887

n=13001: c12983(3492478649......) = 1709500391403474292714747 * c12959(2042982070......)

# ECM B1=5e4, sigma=6478810961582135

n=13023: c8654(9053274301......) = 54319042196889244533361 * c8632(1666685187......)

# ECM B1=5e4, sigma=931428349887032

n=13035: c6240(9009099100......) = 3814273764621319561 * c6222(2361943493......)

# ECM B1=5e4, sigma=1658036610229275

n=13053: c8183(1141002307......) = 28542523643940984757 * c8163(3997552291......)

# ECM B1=35e4, sigma=6654111345236889

n=13065: c6329(3013810318......) = 26512106215359308578711 * c6307(1136767593......)

# ECM B1=5e4, sigma=8476194230827430

n=13073: c12288(9000000000......) = 2142560033991766066213001 * c12264(4200582414......)

# ECM B1=5e4, sigma=6687196918666412

n=13077: c8684(2859990958......) = 1907666648793667406733225616027 * c8654(1499208973......)

# ECM B1=35e4, sigma=604707146548601

n=13091: c11174(9999468279......) = 152175029858243546519 * c11154(6571030929......)

# ECM B1=5e4, sigma=5347898949901686

n=13101: c7906(3341179804......) = 141032423406169408213 * c7886(2369086287......)

# ECM B1=5e4, sigma=7743988391920867

n=13105: c10465(1643165421......) = 61255299046914257971391 * c10442(2682486979......)

# ECM B1=5e4, sigma=1591561571985972

n=13152: c4353(1000000000......) = 53985328287900778995452929 * c4327(1852355133......)

# ECM B1=1e6, sigma=7105924543752128

n=13167: c6480(9990000009......) = 434056672726940570077 * c6460(2301542779......)

# ECM B1=35e4, sigma=7258802464942200

n=13206: c4166(4549010925......) = 103695089259407998367731 * c4143(4386910660......)

# ECM B1=1e6, sigma=7382420473326748

n=13221: c8065(1001000999......) = 9551504838321850249 * c8046(1048003447......)

# ECM B1=35e4, sigma=1787670506839974

n=13281: c8347(1193970770......) = 6997240862558616271489 * c8325(1706345106......)

# ECM B1=35e4, sigma=1099484654860337

n=13323: c8880(9009009009......) = 297455500090709626759 * c8860(3028691352......)

# ECM B1=35e4, sigma=2695810402952813

n=13341: c8892(9009009009......) = 198417090607837129471 * c8872(4540440030......)

# ECM B1=35e4, sigma=2168647370172610

n=13355: c10669(3148613403......) = 6397612208824744361 * c10650(4921544633......)

# ECM B1=5e4, sigma=5790338425355709

n=13363: c10815(1296275878......) = 75615786034739244163213 * c10792(1714292672......)

# ECM B1=35e4, sigma=65307610802837

n=13365: c6481(1000000000......) = 2379379157610091449121 * c6459(4202777000......)

# ECM B1=35e4, sigma=3306860259257732

n=13446: c4411(3575665852......) = 2435848481216268143148727 * c4387(1467934430......)

# ECM B1=1e6, sigma=8325099715098432

n=13461: c7681(1109999889......) = 2475016507151963792027809 * c7656(4484818124......)

# ECM B1=5e4, sigma=967751318308558

n=13497: c8148(4038861444......) = 1572852250292417993517961 * c8124(2567858133......)

# ECM B1=5e4, sigma=4539039781041915

n=13546: c6180(4749426944......) = 5712073589995599555976639806259 * c6149(8314715960......)

# ECM B1=1e6, sigma=7613970391773738

n=13565: c10841(5385379595......) = 49308549273770970881 * c10822(1092179687......)

# ECM B1=5e4, sigma=8707264176665232

n=13584: c4466(2918919404......) = 56919753481426275422076961 * c4440(5128130790......)

# ECM B1=1e6, sigma=737952805876859

n=13851: c8733(4306980609......) = 49317553927744058431 * c8713(8733159426......)

# ECM B1=5e4, sigma=6350562998651370

n=13922: c6946(6460186295......) = 4452553526763061449993386983 * c6919(1450894696......)

# ECM B1=1e6, sigma=279184792993842

n=13935: c7410(4516506251......) = 3715162151014015951 * c7392(1215695592......)

# ECM B1=5e4, sigma=4279971945026849

n=13975: c10075(1084196797......) = 14237128365789433001 * c10055(7615277247......)

# ECM B1=5e4, sigma=2759718042404167

n=14037: c9349(1249132808......) = 2457925607471391741121 * c9327(5082061088......)

# ECM B1=3e5, sigma=4468514200765509

n=14049: c7984(8296540918......) = 1786416260223231631 * c7966(4644237238......)

# ECM B1=5e4, sigma=2712166336223661

n=14073: c9372(1414974252......) = 10419619512713640871 * c9353(1357990328......)

# ECM B1=5e4, sigma=6743398403018248

n=14105: c8623(2499498520......) = 13822060372724965892448191 * c8598(1808340040......)

# ECM B1=3e5, sigma=7916890481552942

n=14139: c9408(2405197824......) = 2319334623279823777867 * c9387(1037020618......)

# ECM B1=5e4, sigma=5119656356238730

n=14155: c10657(1111099999......) = 506655490689825784201 * c10636(2193008899......)

# ECM B1=3e5, sigma=8769803787835243

n=14187: c9456(9009009009......) = 264201894861633802147 * c9436(3409895683......)

# ECM B1=5e4, sigma=3262538436144051

n=14292: c4739(1421885117......) = 137707349954914464928731109 * c4713(1032541195......)

# ECM B1=1e6, sigma=2916503490794551

n=14295: c7587(8841297447......) = 104806199662893600871 * c7567(8435853485......)

# ECM B1=3e5, sigma=8039642350330028

n=14335: c11014(4712481358......) = 2444778957014834641 * c10996(1927569502......)

# ECM B1=5e4, sigma=7041566429140705

n=14351: c14099(7108212123......) = 13231344149009902617943849 * c14074(5372252466......)

# ECM B1=3e5, sigma=2156084421842029

n=14354: c7176(9090909090......) = 1629222825533417460332572685291 * c7146(5579905307......)

# ECM B1=1e6, sigma=4191768970483022

July 20, 2023 2023 年 7 月 20 日 (Kurt Beschorner)

n=6139: c5250(4027572264......) = 30723810793576247330511378952837 * c5219(1310896064......)

# ECM B1=1e6, sigma=0:3953534446061228

n=6445: c5136(6200372653......) = 38319335216923565902890403001 * c5108(1618079389......)

# ECM B1=1e6, sigma=0:2662215690739678

n=10493: c8983(1949347488......) = 81910793997154206182972459293 * c8954(2379842012......)

# P-1 B1=50e6

n=10517: c9648(1271140242......) = 107322946041438755758674136341191 * c9616(1184406773......)

# P-1 B1=52e6

n=10535: c7046(1128311372......) = 440566231899073590474991 * c7022(2561048240......)

# P-1 B1=75e6

n=12629: c12362(5594028408......) = 3356260338673768100663111 * c12338(1666744484......)

# P-1 B1=36e6

n=12634: c6311(1332514813......) = 1907581652611973673675667774969 * c6280(6985361869......)

# P-1 B1=84e6

July 19, 2023 2023 年 7 月 19 日 (Alfred Reich)

# via Kurt Beschorner

n=1597: c1576(4785981003......) = 30817019975627818877405998694224895213 * c1539(1553031736......)

n=1678: c806(1407276000......) = 713179443752745679211641547767533209753303 * c764(1973242516......)

n=2680: c1044(9208190994......) = 27437339325626356979018615179776401 * c1010(3356080152......)

n=3373: c3373(1111111111......) = 2156831392825245138059658052335418233449 * c3333(5151590035......)

n=4164: c1365(6043250529......) = 19781941587245859018154654153249 * c1334(3054932956......)

n=4238: c1945(1099999999......) = 137469787293516012571904952981451 * c1912(8001758216......)

n=4434: c1447(7854546147......) = 7354101158829833032701257969559251929 * c1411(1068049783......)

n=4466: c1617(7462066823......) = 1342582464751020319415597178468299 * c1584(5557995147......)

n=4474: c2200(6303718238......) = 13102171158192561598650176685059 * c2169(4811201259......)

n=4656: c1497(8400710984......) = 310710692253369164398904199706369 * c1465(2703708367......)

n=4664: c2068(6404116852......) = 11591987101883817338084010502411318313 * c2031(5524606606......)

n=4676: c1947(6182061363......) = 379152420982154635496633151811081 * c1915(1630495025......)

n=4748: c2372(9900990099......) = 2855101227050927802870374049881 * c2342(3467824539......)

n=4886: c2033(2116351739......) = 2316964919549130262002685472408059 * c1999(9134155298......)

n=5028: c1606(1179273207......) = 48399906424442267926223136380644501 * c1571(2436519602......)

n=6109: c5888(6777059144......) = 1680542658529125771790596000108547403 * c5852(4032661182......)

n=6123: c3745(1109999999......) = 8853757088653221633381426883 * c3717(1253705052......)

n=6151: c6128(6508926132......) = 23760248854926445958127001987 * c6100(2739418333......)

n=6157: c5956(4950510623......) = 160612345723963225450677483954721 * c5924(3082272786......)

n=6191: c5972(2449317842......) = 2277367487667725440390409707 * c5945(1075504000......)

n=6209: c5304(8943152456......) = 15750639561217150275370913724427 * c5273(5677961470......)

n=6227: c5690(1013230321......) = 10536188173849977095545814987 * c5661(9616668804......)

n=6355: c4787(2725306720......) = 58078445726476732353863405416951 * c4755(4692458082......)

n=6614: c3281(2079646274......) = 1223007532020138921296685801200423 * c3248(1700436195......)

n=6730: c2644(8530510937......) = 206029839554256059093530010488411 * c2612(4140424977......)

# 210370 of 300000 Φn(10) factorizations were cracked. 300000 個中 210370 個の Φn(10) の素因数が見つかりました。

# 19992 of 25997 Rprime factorizations were cracked. 25997 個中 19992 個の Rprime の素因数が見つかりました。

July 18, 2023 2023 年 7 月 18 日 (Anonymous)

# via Kurt Beschorner

n=13025: c10400(9999900000......) = 14806413507021151 * c10384(6753762479......)

n=13143: c8065(1109999999......) = 239711346450044041 * c8047(4630569292......)

n=13145: c9497(1530429588......) = 4520538372689791 * c9481(3385502924......)

n=13263: c8840(9009009009......) = 137353581121237123 * c8823(6558990989......)

n=14015: c11208(9000090000......) = 49107826224044921 * c11192(1832720096......)

n=14025: c6400(9999900000......) = 190135939517554801 * c6383(5259342355......)

n=14061: c9058(4183885468......) = 512583393531638071 * c9040(8162350791......)

n=14133: c8058(6437666786......) = 913337851121318323 * c8040(7048505411......)

n=14277: c9487(2835793755......) = 149412605394631 * c9473(1897961519......)

n=14307: c8996(1293058257......) = 37698044518078123 * c8979(3430040666......)

n=14375: c10935(3069341175......) = 177170117775993751 * c10918(1732425994......)

n=14413: c11761(1111110999......) = 130164797493022013 * c11743(8536186598......)

n=15029: c12097(1111110999......) = 4351808182735133 * c12081(2553216854......)

n=15075: c7912(5369515246......) = 3923122099103551 * c7897(1368684203......)

n=15257: c12930(6278647506......) = 73643798824691987 * c12913(8525697487......)

n=15477: c7920(9009009910......) = 57342676940538529 * c7904(1571082898......)

n=17335: c13856(1353174622......) = 117019571729329351 * c13839(1156366069......)

n=17862: c5425(9100665930......) = 7697526337763095695343 * c5404(1182284480......)

n=17915: c14314(8949107465......) = 9952196261579471 * c14298(8992093031......)

n=17961: c11968(2507866550......) = 4380683201222791 * c11952(5724829747......)

n=18084: c5404(4195975936......) = 3924177436389529136269 * c5383(1069262540......)

n=18104: c8635(6137955160......) = 1077142400469761985761 * c8614(5698369275......)

n=18108: c6018(1775699540......) = 3384696627565321547089081 * c5993(5246259077......)

n=18118: c9053(3135996567......) = 7005925746353232609711623 * c9028(4476205831......)

n=18140L: c3620(5189285385......) = 2987017618247779426801 * c3599(1737279805......)

# 210366 of 300000 Φn(10) factorizations were cracked. 300000 個中 210366 個の Φn(10) の素因数が見つかりました。

July 18, 2023 2023 年 7 月 18 日 (Patrick Bailey)

# via yoyo@home

n=1086: c268(1714157845......) = 25900548863672930451831053961363718303143744545008210388536104834284881 * p197(6618229806......)

GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM]
Resuming ECM residue saved by Henrik@NB069 with GMP-ECM 7.0.5-dev on Wed Jun 14 03:49:50 2023
Input number is 1714157845055548722667362387431204233723867528948448334660044622939595370516010060065061792023343043241097008735851898712182522534278709100007692794111866708666896832737260220927396719321848389965209702417045574159503408539105341187765090959036937688216806488035298611 (268 digits)
[Tue Jul 18 03:04:39 2023]
Using MODMULN [mulredc:0, sqrredc:1]
Using B1=7600000000-7600000000, B2=324909696561468, polynomial Dickson(30), A=101702759460121442588661823688085132805074998172576753279124229647341325094448959550147657876421843907085190684727191111321630239506214152898461481336425929517785356160041821572213930088060534205780946422559145040288984605449040070207064654047306604340305494022213634
dF=1048576, k=25, d=11741730, d2=19, i0=629
Expected number of curves to find a factor of n digits:
35	40	45	50	55	60	65	70	75	80
8	21	60	190	660	2483	9979	42978	194971	938688
Step 1 took 31ms
Using 32 small primes for NTT
Estimated memory usage: 5.88GB
Initializing tables of differences for F took 813ms
Computing roots of F took 294687ms
Building F from its roots took 176344ms
Computing 1/F took 59484ms
Initializing table of differences for G took 2672ms
Computing roots of G took 222390ms
Building G from its roots took 180891ms
Computing roots of G took 222282ms
Building G from its roots took 181656ms
Computing G * H took 32234ms
Reducing  G * H mod F took 33016ms
Computing roots of G took 221500ms
Building G from its roots took 181063ms
Computing G * H took 32266ms
Reducing  G * H mod F took 32625ms
Computing roots of G took 220922ms
Building G from its roots took 180484ms
Computing G * H took 32235ms
Reducing  G * H mod F took 32968ms
Computing roots of G took 220438ms
Building G from its roots took 180625ms
Computing G * H took 32297ms
Reducing  G * H mod F took 33359ms
Computing roots of G took 222984ms
Building G from its roots took 181969ms
Computing G * H took 32016ms
Reducing  G * H mod F took 33187ms
Computing roots of G took 220938ms
Building G from its roots took 183125ms
Computing G * H took 32547ms
Reducing  G * H mod F took 33187ms
Computing roots of G took 222688ms
Building G from its roots took 182437ms
Computing G * H took 32469ms
Reducing  G * H mod F took 33531ms
Computing roots of G took 221828ms
Building G from its roots took 180703ms
Computing G * H took 32234ms
Reducing  G * H mod F took 33016ms
Computing roots of G took 151422ms
Building G from its roots took 121109ms
Computing G * H took 22469ms
Reducing  G * H mod F took 23218ms
Computing roots of G took 160813ms
Building G from its roots took 137062ms
Computing G * H took 25141ms
Reducing  G * H mod F took 25875ms
Computing roots of G took 175281ms
Building G from its roots took 147219ms
Computing G * H took 26516ms
Reducing  G * H mod F took 27203ms
Computing roots of G took 184703ms
Building G from its roots took 154282ms
Computing G * H took 27985ms
Reducing  G * H mod F took 28859ms
Computing roots of G took 193937ms
Building G from its roots took 163063ms
Computing G * H took 29546ms
Reducing  G * H mod F took 29797ms
Computing roots of G took 201453ms
Building G from its roots took 168266ms
Computing G * H took 30016ms
Reducing  G * H mod F took 30953ms
Computing roots of G took 205703ms
Building G from its roots took 169422ms
Computing G * H took 30250ms
Reducing  G * H mod F took 31375ms
Computing roots of G took 206922ms
Building G from its roots took 170172ms
Computing G * H took 30562ms
Reducing  G * H mod F took 31329ms
Computing roots of G took 208484ms
Building G from its roots took 171797ms
Computing G * H took 30735ms
Reducing  G * H mod F took 31797ms
Computing roots of G took 210765ms
Building G from its roots took 172469ms
Computing G * H took 30750ms
Reducing  G * H mod F took 31547ms
Computing roots of G took 210360ms
Building G from its roots took 174234ms
Computing G * H took 31141ms
Reducing  G * H mod F took 31812ms
Computing roots of G took 211516ms
Building G from its roots took 173281ms
Computing G * H took 31000ms
Reducing  G * H mod F took 31906ms
Computing roots of G took 212359ms
Building G from its roots took 174907ms
Computing G * H took 30984ms
Reducing  G * H mod F took 31797ms
Computing roots of G took 212500ms
Building G from its roots took 174531ms
Computing G * H took 31000ms
Reducing  G * H mod F took 32015ms
Computing roots of G took 213422ms
Building G from its roots took 174328ms
Computing G * H took 30750ms
Reducing  G * H mod F took 31672ms
Computing roots of G took 212469ms
Building G from its roots took 174281ms
Computing G * H took 31234ms
Reducing  G * H mod F took 32156ms
Computing polyeval(F,G) took 302454ms
Computing product of all F(g_i) took 1312ms
Step 2 took 11754641ms
********** Factor found in step 2: 25900548863672930451831053961363718303143744545008210388536104834284881
Found prime factor of 71 digits: 25900548863672930451831053961363718303143744545008210388536104834284881
Prime cofactor 66182298069357042371041913724627286229243632428483707077116950007693132994895137102285753741715535137859859396449494118180542197662470918942734935105825763243741598154908973645214837925427979563331 has 197 digits
Peak memory usage: 7010MB

# 1224 of 300000 Φn(10) factorizations were finished. 300000 個中 1224 個の Φn(10) の素因数分解が終わりました。

July 17, 2023 2023 年 7 月 17 日 (Alfred Reich)

# via Kurt Beschorner

n=2082: c693(1098901098......) = 213176320566932405923739316144183121 * c657(5154892888......)

# ECM B1=3e6, sigma=5695710112208681

n=4014: c1299(1422028914......) = 30342571174416055157303235536809 * c1267(4686580139......)

# ECM B1=3e6, sigma=755026313877746

n=4318: c1977(1044036708......) = 13959935021173769063086932360533 * c1945(7478807797......)

# ECM B1=3e6, sigma=3276054257297596

n=4332: c1360(3629849165......) = 720355304496996023353602286321 * c1330(5038970551......)

# ECM B1=3e6, sigma=6870543786584090

n=4406: c2160(2546612531......) = 76179004467076342877840445457742271571 * c2122(3342932280......)

# ECM B1=3e6, sigma=2677560652825117

n=4650: c1188(2485724924......) = 1354974502640573690042297155943251 * c1155(1834517859......)

# ECM B1=3e6, sigma=3945691783995694

n=4774: c1785(1886964878......) = 939350803688461624834572718367 * c1755(2008796789......)

# ECM B1=3e6, sigma=3421884586449092

n=4864: c2242(9293649386......) = 5066551097314364199107963501050299985409 * c2203(1834314745......)

# ECM B1=3e6, sigma=6848827941466736

n=4930: c1789(1843642263......) = 58155772131245841491220991681 * c1760(3170179322......)

# ECM B1=3e6, sigma=5435909717695542

n=4958: c2377(1099999999......) = 82918361747212785422942914649 * c2348(1326606045......)

# ECM B1=3e6, sigma=7030350164580897

n=5004: c1616(5061339096......) = 112055960419281090008995224529 * c1587(4516795963......)

# ECM B1=3e6, sigma=1342153033446640

n=5410: c2144(7875994592......) = 22350974299077144034230465505681 * c2113(3523781329......)

# ECM B1=3e6, sigma=4521162788968805

n=5412: c1574(1039247833......) = 16759443696240714850396104854453041 * c1539(6200968553......)

# ECM B1=3e6, sigma=8272516377415601

n=5484: c1795(3225697443......) = 15181762479886594968001208675581 * c1764(2124718686......)

# ECM B1=3e6, sigma=8323701288710052

n=5678: c2642(2208852425......) = 44499821403524522683537635484635769 * c2607(4963733236......)

# ECM B1=3e6, sigma=4300653116006689

n=5962: c2672(3765008958......) = 286374137647729962372388663992088717 * c2637(1314716820......)

# ECM B1=3e6, sigma=7438210020320803

n=6168: c1989(2794827008......) = 182682275721802091324695982091305017 * c1954(1529884055......)

# ECM B1=3e6, sigma=4681191672930597

n=6566: c2757(3397867426......) = 1416860728957590641118587381186342303 * c2721(2398166140......)

# ECM B1=3e6, sigma=8651886072323632

n=6958: c2911(4224356041......) = 79477820796939573294671427379 * c2882(5315138234......)

# ECM B1=3e6, sigma=1512050914835991

n=7156: c3524(1325198380......) = 22550781594138986116811519523237889 * c3489(5876507539......)

# ECM B1=3e6, sigma=1276578817310111

# 210358 of 300000 Φn(10) factorizations were cracked. 300000 個中 210358 個の Φn(10) の素因数が見つかりました。

July 16, 2023 2023 年 7 月 16 日 (Anonymous)

# via Kurt Beschorner

n=13851: c8748(9999999999......) = 2321812171103563 * c8733(4306980609......)

n=13947: c9296(9009009009......) = 301924291285951 * c9282(2983863593......)

n=15297: c10184(9538889385......) = 34599638117793043 * x10168(2756933281......)

n=15297: x10168(2756933281......) = 861613207260227479 * c10150(3199734240......)

n=16005: c7665(2532202311......) = 6292606064434801 * c7649(4024091584......)

n=16037: c13071(1008193377......) = 3148075450221997 * c13055(3202570565......)

n=16155: c8579(5910191154......) = 13419200062200511 * c8563(4404279783......)

n=16191: c9201(6050411696......) = 107537593654141561 * c9184(5626322377......)

n=16221: c10791(1423378131......) = 5525140273069999 * c10775(2576184604......)

n=16257: c10816(1286837210......) = 217342610183311 * c10801(5920777383......)

n=16269: c8931(8193121876......) = 36110109526309369 * c8915(2268927451......)

n=16281: c10676(9700458007......) = 249550495543585387 * c10659(3887172408......)

n=16303: c13046(8074977058......) = 370643763269463209 * c13029(2178635622......)

n=16325: c13040(9999900000......) = 862139327773775551 * c13023(1159893729......)

n=16365: c8713(9316895200......) = 1701708160324201 * c8698(5475025281......)

n=16405: c12280(2762208427......) = 7556781154992151 * c12264(3655271167......)

n=16445: c10543(6513660793......) = 806092527315103601 * c10525(8080537373......)

n=16461: c10418(4692762937......) = 2189725273119529 * c10403(2143082967......)

n=16491: c10473(1109999999......) = 34943406961040041 * c10456(3176564898......)

n=16503: c10952(3088845761......) = 2195794230401749329799 * c10931(1406710027......)

n=16623: c11069(1029066006......) = 652166757550108963 * c11051(1577918522......)

n=16665: c8000(9009099100......) = 82752843727349401 * c7984(1088675469......)

n=16785: c8923(1569382798......) = 501716014065991 * c8908(3128030110......)

n=16899: c10921(1109999999......) = 12858598194503119 * c10904(8632356211......)

n=16911: c11252(1039464180......) = 4577342306202199 * c11236(2270890203......)

# 210356 of 300000 Φn(10) factorizations were cracked. 300000 個中 210356 個の Φn(10) の素因数が見つかりました。

July 15, 2023 2023 年 7 月 15 日 (Alfred Reich)

# via Kurt Beschorner

n=3976: c1681(1000099999......) = 1090194247524180260505613303963657 * c1647(9173594543......)

# ECM B1=1e6, sigma=4850672359003993

n=5177: c4969(4890691128......) = 1534414677006692631397469591 * c4942(3187333386......)

# ECM B1=5e4, sigma=3339304031370310

n=6481: c6453(1061734734......) = 49492725503917695856664707 * c6427(2145233917......)

# ECM B1=1e6, sigma=5259870337537476

n=6664: c2681(1050105125......) = 4493504142083404792399353863558449 * c2647(2336940375......)

# ECM B1=1e6, sigma=3849871932388779

n=7201: c6750(1286315736......) = 150481753359426727555305323 * c6723(8547984771......)

# ECM B1=1e6, sigma=5222478301004397

# 210350 of 300000 Φn(10) factorizations were cracked. 300000 個中 210350 個の Φn(10) の素因数が見つかりました。

July 15, 2023 2023 年 7 月 15 日 (respawner)

# via yoyo@home

n=3180L: c369(4180694905......) = 937285303675877037813564646699502563443425647141 * p321(4460429379......)

# ECM B1=850000000, sigma=0:16442747677842539654

July 14, 2023 2023 年 7 月 14 日 (Anonymous)

# via Kurt Beschorner

n=12591: c8382(6611861248......) = 92497644801482959 * c8365(7148140110......)

n=13186: c6196(2740594410......) = 1775474855602191472703647 * c6172(1543583904......)

n=13563: c8152(5039866436......) = 1315134206596387 * c8137(3832206942......)

n=13625: c10790(6682104220......) = 113024651519823751 * c10773(5912076817......)

n=13959: c8260(2456751947......) = 370894267547893 * c8245(6623860657......)

n=13989: c9313(1868363132......) = 168198487957124671 * c9296(1110808518......)

n=14043: c8986(3065311174......) = 190677236880689563 * c8969(1607591564......)

n=14079: c8209(1000000000......) = 134774166463093 * c8194(7419819585......)

n=14375: c10953(2704484334......) = 881128613470903751 * c10935(3069341175......)

n=14673: c9505(1109999999......) = 19603866276338209 * c9488(5662148396......)

n=15085: c10309(3507666681......) = 3936826103593321 * c10293(8909884737......)

n=15123: c9931(7155241214......) = 1905440977548907 * c9916(3755162872......)

n=15145: c11130(1132162640......) = 81210892871499431 * c11113(1394101949......)

n=15181: c13235(4632393514......) = 764361720744719 * c13220(6060472926......)

n=15257: c12948(1958299205......) = 311898255655199357 * c12930(6278647506......)

n=15362: c7623(1827817173......) = 34082865939675433243130893 * x7597(5362862316......)

n=15362: x7597(5362862316......) = 849009497575297461463162579 * c7570(6316610511......)

n=15455: c11182(1178667912......) = 15226164899108351 * c11165(7741068877......)

n=15587: c12948(2078007884......) = 58665106536033427 * c12931(3542153090......)

n=15597: c10381(8497757847......) = 287973217735586893 * c10364(2950884778......)

n=15933: c10293(9109279273......) = 12642607190944441 * c10277(7205222100......)

n=16479: c10964(3980813063......) = 31517304027766849 * c10948(1263056338......)

n=16585: c12706(5431108812......) = 704457169156116841 * c12688(7709636654......)

n=16595: c13268(2711605555......) = 82373035498812481 * c13251(3291860667......)

n=16685: c12851(1527019099......) = 245371985926781081 * c12833(6223282147......)

n=16705: c12289(1111099999......) = 15168447144377671 * c12272(7325074145......)

n=16917: c11260(1331984419......) = 3359775672660853 * c11244(3964504029......)

n=16985: c13097(1410447244......) = 8722397191025561 * c13081(1617040835......)

n=16997: c16216(5065461056......) = 718971928682781523 * c16198(7045422574......)

n=17037: c11333(7583433496......) = 6990070649844169 * x11318(1084886530......)

n=17037: x11318(1084886530......) = 533608882689138391 * c11300(2033111827......)

n=17051: c15776(9999999999......) = 108248275446473957 * c15759(9238022461......)

n=17079: c11380(2637374925......) = 48766713295533031 * c11363(5408145736......)

n=17119: c14977(1111111111......) = 981134666325645079 * c14959(1132475641......)

n=17145: c9067(9720912608......) = 6659303223161431 * c9052(1459749208......)

n=17165: c13709(7802242109......) = 61409692365242671 * c13693(1270522910......)

n=17171: c13313(1540680417......) = 1620123174337361 * c13297(9509649892......)

n=17175: c9107(2344714600......) = 2105873592717151 * c9092(1113416592......)

n=17367: c9889(5236331998......) = 1316277408860317 * c9874(3978137103......)

n=17461: c16516(9055417980......) = 260351531554065521 * c16499(3478150455......)

n=17465: c11932(7642586358......) = 1944264475890031 * c11917(3930836803......)

n=17517: c11653(5601855406......) = 15336354239039107 * c11637(3652664328......)

n=17541: c11678(2319081561......) = 171798125142388357 * c11661(1349887584......)

n=17553: c11686(6291304089......) = 632628694948192843 * c11668(9944702382......)

n=17557: c17280(9000000000......) = 863674994480229037 * c17263(1042058651......)

n=17649: c11217(7206447803......) = 3900046961768653 * c11202(1847784879......)

n=17665: c14117(4174757910......) = 3495392530547881 * c14102(1194360254......)

n=17695: c14147(3178884646......) = 4623700243553761 * c14131(6875196226......)

n=17715: c9425(1051031726......) = 22214243716759111 * c9408(4731341476......)

n=17769: c11818(2660171430......) = 6536710245750481 * c11802(4069587499......)

# 210349 of 300000 Φn(10) factorizations were cracked. 300000 個中 210349 個の Φn(10) の素因数が見つかりました。

July 12, 2023 2023 年 7 月 12 日 (Kurt Beschorner)

n=1353: c748(1197096844......) = 9972788546844412525261934519206576097569 * c708(1200363206......)

# ECM B1=43e6, sigma=0:7318698532283768

n=10622: c5100(8702050336......) = 6220726035905158842806955235801 * c5070(1398880176......)

# ECM B1=1e6, sigma=0:5459112115636149

n=12626: c6118(5061493796......) = 2883344365311005978009527 * c6094(1755424658......)

# P-1 B1=90e6

July 11, 2023 2023 年 7 月 11 日 (Kurt Beschorner)

n=10379: c10172(4335468953......) = 5975858448227768969974081990147 * c10141(7254972638......)

# P-1 B1=50e6

n=10393: c9820(5118011070......) = 446035875998442363651339058601 * c9791(1147443814......)

# P-1 B1=60e6

n=12603: c8395(7148248453......) = 454574367397930652506704498079 * c8366(1572514634......)

# P-1 B1=60e6

n=12612: c4149(5919066382......) = 16678705490728737576711541 * c4124(3548876371......)

# P-1 B1=17e7

n=12615: c6485(2825733323......) = 43198313196601634065812241 * c6459(6541304773......)

# P-1 B1=80e6

July 8, 2023 2023 年 7 月 8 日 (Anonymous)

# via Kurt Beschorner

n=280834: c140408(4664425450......) = 121775973357563089 * c140391(3830333129......)

n=281066: c140524(4461295528......) = 96313127455012877 * c140507(4632074200......)

n=281098: c140548(9090909090......) = 2019410124774611 * c140533(4501764638......)

n=281114: c140537(2693306168......) = 183897605646952339 * x140520(1464568371......)

n=281114: x140520(1464568371......) = 759039748919260997 * c140502(1929501549......)

n=281326: c140657(3231438536......) = 2184773939074666561 * c140639(1479072263......)

n=281354: c140659(6620949182......) = 3397993321151773 * c140644(1948487991......)

n=281726: c140823(3197017875......) = 351948482876351983 * c140805(9083766604......)

n=282622: c141310(9090909090......) = 11839701309121613 * c141294(7678326381......)

n=283022: c141486(2999105253......) = 1775954344526303 * c141471(1688728802......)

n=283078: c141523(1448217004......) = 33344130885518489 * c141506(4343244121......)

n=283274: c141636(9090909090......) = 2046075951578457499 * c141618(4443094638......)

n=283462: c141698(1324498947......) = 1789732173180569 * c141682(7400542760......)

n=283622: c141802(8479604482......) = 1320104906864329 * c141787(6423432288......)

n=283658: c141828(9090909090......) = 2211675133602105049 * c141810(4110417914......)

n=283702: c141839(1331245589......) = 20112024603570121 * x141822(6619152549......)

n=283702: x141822(6619152549......) = 151872290262528013 * c141805(4358367506......)

n=283862: c141899(6639426588......) = 9559278785133247 * c141883(6945530868......)

n=283982: c141977(5765461470......) = 1251986805411087677 * c141959(4605049706......)

n=284806: c142375(5912059718......) = 1828220711362361 * c142360(3233777892......)

n=284854: c142418(4014374284......) = 33713693946855569 * c142402(1190725137......)

n=284866: c142432(9090909090......) = 30220545292251887 * x142416(3008188304......)

n=284866: x142416(3008188304......) = 195562250410641343 * c142399(1538225449......)

n=285074: c142530(2277831323......) = 4045965459829306201 * c142511(5629883264......)

n=285314: c142650(1770156412......) = 5796113214265856087 * c142631(3054040435......)

n=285542: c142770(9090909090......) = 38093702881877411 * c142754(2386459809......)

n=285682: c142835(1060724684......) = 121783766485725887 * c142817(8709902112......)

n=285814: c142886(1089635935......) = 8101263539032231889 * c142867(1345019736......)

n=286282: c143123(2942989494......) = 209541976602687013 * c143106(1404486844......)

n=286838: c143418(9090909090......) = 1812097375237343 * c143403(5016788399......)

n=287146: c143551(5453626017......) = 64409389859784128251 * c143531(8467128829......)

n=287234: c143600(2930034086......) = 22839283714323805037 * c143581(1282892284......)

n=287654: c143826(9090909090......) = 7663288551758252849 * c143808(1186293459......)

n=287662: c143813(4961674135......) = 295666404632947613 * x143796(1678132536......)

n=287662: x143796(1678132536......) = 1986931906880529437 * c143777(8445848248......)

n=287954: c143963(1080811766......) = 17234561148985889 * c143946(6271188207......)

n=287998: c143987(1730195431......) = 4051782371259023 * c143971(4270208202......)

n=288142: c144070(9090909090......) = 52977125372077493 * c144054(1716006489......)

n=288322: c144135(1111558919......) = 9396484683185807 * c144119(1182951877......)

n=288338: c144158(4874560016......) = 35494263735090019 * c144142(1373337408......)

n=288446: c144214(5678711536......) = 4494544315837369 * c144199(1263467692......)

n=288482: c144240(9090909090......) = 19071926087413081 * c144224(4766644464......)

n=288598: c144276(4957074886......) = 4831107467368957 * x144261(1026074232......)

n=288598: x144261(1026074232......) = 274995039461654287 * c144243(3731246332......)

n=289222: c144601(5850044221......) = 10945712480247863 * c144585(5344598839......)

n=289862: c144923(3015662091......) = 22001496074203493 * c144907(1370662286......)

n=290182: c145085(3132819321......) = 7644589905158117 * c145069(4098086830......)

n=290242: c145120(9090909090......) = 650564545707805721 * c145103(1397387722......)

n=290266: c145132(9090909090......) = 2788391487368869253 * c145114(3260269991......)

n=290426: c145204(5743482688......) = 611869976111228899 * c145186(9386769923......)

n=290438: c145208(2567397843......) = 3675338242511207 * x145192(6985473646......)

n=290438: x145192(6985473646......) = 5109632928269945693 * c145174(1367118488......)

n=290518: c145258(9090909090......) = 161473233966951293 * c145241(5629978955......)

n=290578: c145277(1184417514......) = 36224499280682809 * c145260(3269658761......)

n=290606: c145272(2389727133......) = 35722001307669133 * c145255(6689790734......)

n=290798: c145351(1684872178......) = 394497075311483449 * c145333(4270937057......)

n=290918: c145458(9090909090......) = 15831120659622797 * c145442(5742429286......)

n=291086: c145537(1561547699......) = 28184098527775321 * c145520(5540527394......)

n=291098: c145535(2167321599......) = 14332506088309921 * c145519(1512172111......)

n=291286: c145637(3120945696......) = 1824216406301138237 * c145619(1710841808......)

n=291758: c145869(6396853604......) = 3381633731717606929 * c145851(1891645905......)

n=291926: c145951(3067781520......) = 4929000439750921 * c145935(6223942476......)

n=292346: c146151(6813551605......) = 7343235011639768333 * c146132(9278678395......)

n=292394: c146196(9090909090......) = 227609332720037449 * c146179(3994084505......)

n=292442: c146220(9090909090......) = 460527200147784037 * c146203(1974022183......)

n=292478: c146238(9090909090......) = 3566815544128145299 * c146220(2548746628......)

n=292546: c146255(1213980169......) = 2523827495724761771 * c146236(4810075854......)

n=292598: c146280(7452975979......) = 9113641061339837783 * c146261(8177824789......)

n=292618: c146297(2149851073......) = 144558250554514967 * c146280(1487186698......)

n=292694: c146338(6826248515......) = 2931503468195315813 * c146320(2328582786......)

n=292718: c146351(7394495686......) = 1831381332770761 * c146336(4037660291......)

n=292738: c146368(9090909090......) = 7942296547577767 * c146353(1144619699......)

n=292814: c146406(9090909090......) = 30734073751445059 * c146390(2957925188......)

n=292954: c146458(3178868831......) = 1114541373137983361 * c146440(2852176606......)

n=293054: c146526(9090909090......) = 12452928561053051 * c146510(7300217813......)

n=293234: c146616(9090909090......) = 5855186524664674973 * c146598(1552625019......)

n=293294: c146638(2348173615......) = 127223950074635641 * c146621(1845700918......)

n=293486: c146725(1011220720......) = 1655250169572047 * x146709(6109171529......)

n=293486: x146709(6109171529......) = 1704393263013797 * c146694(3584367329......)

n=293498: c146721(2440200028......) = 6652405046537023 * c146705(3668147101......)

n=293638: c146818(9090909090......) = 247216890401890699 * c146801(3677300962......)

n=294022: c146991(1446830040......) = 1424736171839579 * c146976(1015507340......)

n=294394: c147182(3799420524......) = 4700326216910903 * c147166(8083312410......)

n=294694: c147337(8272630701......) = 3245454955080564011 * c147319(2548989530......)

n=294782: c147390(9090909090......) = 29969917942251121 * c147374(3033344671......)

n=294802: c147387(5793441838......) = 6346142334693672089 * c147368(9129076425......)

n=294838: c147418(9090909090......) = 288616144512950659 * c147401(3149826946......)

n=294914: c147456(9090909090......) = 1939235083697543 * c147441(4687883984......)

n=295082: c147503(4723945149......) = 2819980342830786521 * c147485(1675169531......)

n=295102: c147538(4701638954......) = 144219745178754127 * c147521(3260052185......)

n=295226: c147612(9090909090......) = 2189704611899863 * c147597(4151660019......)

n=295418: c147695(7026481984......) = 479800712208690413 * c147678(1464458431......)

n=295574: c147766(1410415557......) = 14123327362206397 * c147749(9986425447......)

n=295954: c147963(5810342982......) = 1287913578995619731 * c147945(4511438560......)

n=296722: c148344(1429054921......) = 3084526872178571 * c148328(4632979320......)

n=297062: c148496(6979608998......) = 15874504042650961 * c148480(4396741454......)

n=297382: c148683(5094966844......) = 7771968415258067899 * c148664(6555568129......)

n=297494: c148746(9090909090......) = 3281228269670915917 * c148728(2770581118......)

n=297526: c148754(3372517345......) = 739897758212930413 * c148736(4558085638......)

n=297658: c148823(3054135467......) = 12049792037662997 * c148807(2534595997......)

n=297718: c148849(1282510906......) = 151581818206411331 * c148831(8460849205......)

n=297854: c148905(1717748862......) = 54077893758994489 * c148888(3176434478......)

n=298042: c149020(9090909090......) = 209732439309742487 * c149003(4334526943......)

n=298154: c149062(5249523860......) = 2739478437130529 * c149047(1916249381......)

n=298286: c149137(1523855268......) = 5114845586762589739 * c149118(2979279125......)

n=299458: c149718(1552364087......) = 1022114443739647 * c149703(1518777175......)

July 7, 2023 2023 年 7 月 7 日 (Anonymous)

# via Kurt Beschorner

n=246434: c123210(1844491272......) = 7069973465164497143 * c123191(2608908338......)

n=246802: c123388(7840967673......) = 20855100390423877 * c123372(3759736240......)

n=247106: c123547(1839471865......) = 623340194102822117 * c123529(2950991902......)

n=248266: c124126(5231085011......) = 1160146065155093 * c124111(4508988280......)

n=248278: c124131(1649362416......) = 5100097210863517 * c124115(3233982311......)

n=248686: c124326(1309257398......) = 2705176515665887 * c124310(4839822433......)

n=249086: c124523(1201293578......) = 1672754163889651 * c124507(7181530943......)

n=249358: c124669(4689639643......) = 2176988983135796077 * c124651(2154186208......)

n=250942: c125461(8016625911......) = 18296499838640607711041 * c125439(4381507929......)

n=251278: c125630(2060289909......) = 1316967416341692961 * c125612(1564419805......)

n=252454: c126199(1541780132......) = 623074567506114767 * c126181(2474471295......)

n=252458: c126222(7201912309......) = 10534437887800201 * c126206(6836541622......)

n=252914: c126436(7953798512......) = 1431571640026573687 * c126418(5555990555......)

n=253654: c126815(2200823951......) = 2486159665361219 * c126799(8852303342......)

n=254246: c127101(1207657013......) = 3375002841582435200161 * c127079(3578239990......)

n=254378: c127155(9614667305......) = 250147571909660533 * c127138(3843598093......)

n=256198: c128080(5777390280......) = 150066016858056407081801 * c128057(3849899132......)

n=257042: c128507(4537581277......) = 215505979413690607 * c128490(2105547739......)

n=257962: c128955(2457973777......) = 13375692786158317 * c128939(1837642218......)

n=258562: c129263(2183786462......) = 230232789777045973 * c129245(9485123577......)

n=258938: c129446(3553541738......) = 307722261240008093 * c129429(1154788647......)

n=259018: c129503(3509746038......) = 242785459520855107567 * c129483(1445616242......)

n=259066: c129521(7382516239......) = 1769429719072331 * c129506(4172257400......)

n=260506: c130246(4985300094......) = 5702287572663293 * c130230(8742631849......)

n=260518: c130246(1070243874......) = 1214046666095731967 * c130227(8815508533......)

n=261458: c130720(6673714959......) = 4903774662725051 * c130705(1360934263......)

n=262882: c131425(4311648690......) = 4137546161667632881 * c131407(1042078691......)

n=262894: c131440(2881676711......) = 39801701586261505409 * c131420(7240084209......)

n=263122: c131555(1151670780......) = 67872171203969117 * c131538(1696823249......)

n=263162: c131571(3330914630......) = 221069816043489463 * c131554(1506725201......)

n=265058: c132521(8365318896......) = 2187830224444379 * c132506(3823568576......)

n=265666: c132825(2327844639......) = 38177553704111533 * c132808(6097416973......)

n=265774: c132880(2280360208......) = 7524679276392139 * c132864(3030508178......)

n=265858: c132912(5008851887......) = 13763775045127663 * c132896(3639155588......)

n=266206: c133102(9090909090......) = 3928490826153579251 * c133084(2314097065......)

n=266234: c133105(7179326243......) = 57278919377147641 * c133089(1253397641......)

n=266642: c133320(9090909090......) = 5456108443014209 * x133305(1666189223......)

n=266642: x133305(1666189223......) = 236251336005806971 * c133287(7052612915......)

n=266774: c133373(2882267570......) = 9887129125674161 * c133357(2915171364......)

n=267422: c133698(1082798781......) = 68915769899527806881 * c133678(1571191590......)

n=267838: c133900(5419459922......) = 2839214590110012689 * c133882(1908788416......)

n=267986: c133980(1917954530......) = 53493754947754486037 * c133960(3585380261......)

n=268154: c134064(3874263664......) = 5998416892225783 * c134048(6458810272......)

n=268322: c134145(1667018641......) = 48345531888449339 * c134128(3448133832......)

n=268438: c134207(3021563396......) = 13055595338089303 * c134191(2314381932......)

n=268654: c134319(1634721032......) = 12779259629761561 * c134303(1279198545......)

n=269026: c134503(5937785085......) = 26240141377604197 * c134487(2262863221......)

n=269354: c134661(1550737649......) = 2577646911346477 * c134645(6016098024......)

n=269462: c134720(3392213390......) = 1134522548263613 * c134705(2989992042......)

n=269506: c134752(9090909090......) = 160483910837588339 * c134735(5664685664......)

n=269674: c134836(9090909090......) = 2632521177457093859 * c134818(3453309006......)

n=269678: c134831(4377952548......) = 3037414321576441 * c134816(1441341906......)

n=270394: c135188(1661936326......) = 6396568874921783 * c135172(2598168423......)

n=270566: c135277(1679976843......) = 3641224085001990636463 * c135255(4613769446......)

n=270602: c135287(5095541062......) = 7769592492064009 * c135271(6558311864......)

n=270866: c135432(9090909090......) = 21206484807949379 * c135416(4286853372......)

n=270994: c135496(9090909090......) = 1340296150695005561 * c135478(6782761471......)

n=271202: c135591(2654902899......) = 57346260474351659 * c135574(4629600740......)

n=271234: c135605(1587729809......) = 2179479742967561 * c135589(7284902804......)

n=271298: c135626(5658670789......) = 5614599811690567 * c135611(1007849353......)

n=271438: c135705(2299433560......) = 6646645764710002361 * c135686(3459539807......)

n=271454: c135717(5681032313......) = 127590732563411717 * c135700(4452543064......)

n=271702: c135845(3345899416......) = 211840034419281893 * c135828(1579446220......)

n=272186: c136074(6196236044......) = 938957904770407451 * c136056(6599056265......)

n=272354: c136176(9090909090......) = 462039142453972001 * c136159(1967562540......)

n=272386: c136168(1620726993......) = 1607948256849650579 * c136150(1007947231......)

n=272414: c136206(9090909090......) = 253331218226414201 * c136189(3588546707......)

n=273146: c136557(5539541889......) = 11287073401470877 * c136541(4907863794......)

n=273214: c136600(4753419003......) = 6315393666283063 * c136584(7526718451......)

n=273302: c136641(5225139269......) = 1533593905639330397 * c136623(3407120522......)

n=273386: c136678(1872268409......) = 128540152006430053 * c136661(1456563089......)

n=273998: c136985(2380918594......) = 546801026429916487 * c136967(4354268700......)

n=274178: c137059(7320224938......) = 3310355639362489 * x137044(2211310727......)

n=274178: x137044(2211310727......) = 7598902902618289 * x137028(2910039457......)

n=274178: x137028(2910039457......) = 27810986865614567 * c137012(1046363248......)

n=274366: c137163(3886505736......) = 2800636660955171047 * c137145(1387722224......)

n=274502: c137230(1341553468......) = 157603796701321823 * c137212(8512190037......)

n=275318: c137649(2066958903......) = 9333028475651329 * c137633(2214671164......)

n=275398: c137685(1876455302......) = 3540502608552649 * c137669(5299968705......)

n=275662: c137813(2315916893......) = 723864531422717299 * c137795(3199378879......)

n=275698: c137816(3566692277......) = 1036355873503957 * c137801(3441570958......)

n=275894: c137946(9090909090......) = 183214370668833499 * c137929(4961897397......)

n=275914: c137948(3840133192......) = 2015921251127939 * x137933(1904902381......)

n=275914: x137933(1904902381......) = 811089766368961819 * c137915(2348571589......)

n=276142: c138041(1284496800......) = 4670462065012421459 * c138022(2750256362......)

n=276202: c138089(7241403045......) = 1761420789240487 * x138074(4111114782......)

n=276202: x138074(4111114782......) = 6878740590060733 * c138058(5976551563......)

n=276286: c138142(9090909090......) = 21989369105651251 * c138126(4134229157......)

n=276478: c138238(9090909090......) = 50603391042085477 * c138222(1796501954......)

n=277834: c138916(9090909090......) = 483326031291255157 * c138899(1880906159......)

n=278042: c138992(4072332823......) = 40133110049314889 * c138976(1014706515......)

n=278158: c139065(9700155745......) = 2396588664754813 * c139050(4047484613......)

n=278402: c139200(9090909090......) = 5966338297330549049 * c139182(1523699904......)

n=278594: c139290(2719281574......) = 3828384020994641 * c139274(7102948814......)

n=278722: c139360(9090909090......) = 1361337362427703 * c139345(6677925209......)

n=278734: c139353(2532561182......) = 38913867076021211 * x139336(6508120043......)

n=278734: x139336(6508120043......) = 63960100701928087 * x139320(1017528110......)

n=278734: x139320(1017528110......) = 9023861000002042477 * c139301(1127597278......)

n=279254: c139616(5059173905......) = 157582968739249247 * c139599(3210482672......)

n=279722: c139853(4710115716......) = 31347978182726327 * c139837(1502526156......)

n=279782: c139861(5789697158......) = 2388646345260379 * c139846(2423840251......)

n=279962: c139963(7395642007......) = 6513510672687049 * c139948(1135431010......)

n=279974: c139976(1064566233......) = 10689244108348415063 * c139956(9959228382......)

n=280142: c140070(9090909090......) = 117542266155265561 * c140053(7734161836......)

n=280286: c140142(9090909090......) = 28275072880795739 * c140126(3215167341......)

n=280318: c140145(5089132904......) = 3858424043135477 * x140130(1318966720......)

n=280318: x140130(1318966720......) = 9132298437065704531 * c140111(1444287798......)

n=280334: c140159(3486972928......) = 776103140104824997 * c140141(4492924649......)

n=280538: c140257(3900466181......) = 24523281893037503 * c140241(1590515575......)

# 210315 of 300000 Φn(10) factorizations were cracked. 300000 個中 210315 個の Φn(10) の素因数が見つかりました。

July 6, 2023 2023 年 7 月 6 日 (Alfred Reich)

# via Kurt Beschorner

n=12113: c12108(1528792513......) = 4988500967361880744345664999 * c12080(3064633090......)

# ECM B1=25e4, sigma=8288982310016670

n=14639: c14596(6830758940......) = 191564662356151978656885721 * c14570(3565771920......)

# ECM B1=25e4, sigma=8036599937304013

July 6, 2023 2023 年 7 月 6 日 (Kurt Beschorner)

n=5587: c5364(4010044018......) = 9718704688999287497137081197161 * p5333(4126109545......)

# ECM B1=1e6, sigma=0:8018054150929280

makoto@bellatrix /cygdrive/d/factor2/repunit2
$ ./pfgw64 -tc -q"9*(10^5587-1)/(10^37-1)/(10^151-1)/23621837/85749277/1108024170392000038637/9718704688999287497137081197161"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

Primality testing 9*(10^5587-1)/(10^37-1)/(10^151-1)/23621837/85749277/1108024170392000038637/9718704688999287497137081197161 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 5, base 1+sqrt(5)

Calling N+1 BLS with factored part 0.27% and helper 0.10% (0.90% proof)
9*(10^5587-1)/(10^37-1)/(10^151-1)/23621837/85749277/1108024170392000038637/9718704688999287497137081197161 is Fermat and Lucas PRP! (1.0635s+0.0029s)

n=10329: c6241(1109999999......) = 3874406007675800663510599 * c6216(2864955293......)

# P-1 B1=82e6

n=10341: c6854(7368124448......) = 605172292509901618238883373 * c6828(1217525081......)

# P-1 B1=76e6

# 1223 of 300000 Φn(10) factorizations were finished. 300000 個中 1223 個の Φn(10) の素因数分解が終わりました。

# 210299 of 300000 Φn(10) factorizations were cracked. 300000 個中 210299 個の Φn(10) の素因数が見つかりました。

July 6, 2023 2023 年 7 月 6 日 (Anonymous)

# via Kurt Beschorner

n=160222: c80088(1100549904......) = 325690273118051 * c80073(3379130403......)

n=161054: c80479(4880003180......) = 230474882689837 * c80465(2117368766......)

n=161374: c80671(1352099513......) = 5130425456990807 * c80655(2635452995......)

n=163034: c81494(1929627458......) = 195244803945823 * c81479(9883118112......)

n=163678: c81822(6982768484......) = 793603800296140333 * c81804(8798809281......)

n=164482: c82201(2493681652......) = 53529956775282121 * c82184(4658478733......)

n=165302: c82623(1995836045......) = 2175429157946689 * c82607(9174447432......)

n=166486: c83231(5466351859......) = 853508795156160087887653 * c83207(6404564182......)

n=168118: c84026(5024794995......) = 8044291610761487 * c84010(6246410795......)

n=168286: c84134(1014852346......) = 180955407302851 * c84119(5608300752......)

n=171062: c85478(6596576887......) = 145527667525049443247 * c85458(4532867873......)

n=178306: c89117(1182629086......) = 4799713813487324717 * c89098(2463957503......)

n=185618: c92785(5767611692......) = 14058920652066727 * c92769(4102456963......)

n=185714: c92829(8024997959......) = 472282664581597 * c92815(1699193843......)

n=185842: c92885(2463129541......) = 12133912514819900459 * c92866(2029954920......)

n=189814: c94893(5379942432......) = 3240786575558117 * c94878(1660073043......)

n=190126: c95057(1593836570......) = 9746041812362171 * c95041(1635368081......)

n=190178: c95077(2380724102......) = 26597356692301721 * c95060(8950980093......)

n=190426: c95202(1209681847......) = 1447422477367213 * c95186(8357489720......)

n=191098: c95536(1555868046......) = 1549916961978823 * c95521(1003839615......)

n=192158: c96067(7871426009......) = 20043702020125687487 * c96048(3927131824......)

n=192754: c96363(3378232252......) = 16861439431687117 * c96347(2003525420......)

n=197818: c98892(1676059899......) = 8099077374606401 * c98876(2069445470......)

n=199286: c99618(6586233478......) = 51147350215759943 * c99602(1287697886......)

n=199814: c99892(2104736365......) = 633681872316878418179 * c99871(3321440074......)

n=201914: c100948(1009952195......) = 1210411517433967 * x100932(8343874635......)

n=201914: x100932(8343874635......) = 24098096352937213 * c100916(3462462143......)

n=202226: c101103(5521273043......) = 445625675093078917 * c101086(1238993476......)

n=203026: c101498(8461492551......) = 29149861990310314763369 * c101476(2902755613......)

n=204278: c102130(1509075416......) = 15541888564573961 * c102113(9709730000......)

n=204394: c102187(2015104089......) = 54026379116887717 * c102170(3729852198......)

n=205762: c102870(1392140642......) = 1448680294168658143 * c102851(9609716153......)

n=206182: c103085(4409145802......) = 8842360121224459 * c103069(4986390219......)

n=206434: c103204(1247521418......) = 1872580849106411 * c103188(6662043024......)

n=206714: c103332(4490381151......) = 1756767936975979 * c103317(2556046850......)

n=206786: c103376(3963783606......) = 5675853403078303 * c103360(6983590528......)

n=207134: c103553(2225541636......) = 1816369222536373 * x103538(1225269405......)

n=207134: x103538(1225269405......) = 260912819537933383 * c103520(4696087403......)

n=207286: c103620(3397841293......) = 340626321496384841 * c103602(9975275189......)

n=207982: c103973(1714631921......) = 7180930127140423 * c103957(2387757422......)

n=208066: c104024(1287722655......) = 14970389968226573 * c104007(8601797670......)

n=209278: c104631(4258763727......) = 18849155331180581219 * c104612(2259392345......)

n=209362: c104656(4268936142......) = 14870304155502451 * c104640(2870779304......)

n=209414: c104694(9362813529......) = 1539378944863499 * c104679(6082201890......)

n=209458: c104691(2999227776......) = 51878948028690623 * c104674(5781203919......)

n=210274: c105123(7589554605......) = 1428949566198769 * c105108(5311282346......)

n=215762: c107873(5934361229......) = 242458362995805613 * c107856(2447579516......)

n=215846: c107910(1219546295......) = 6279540368239301477 * c107891(1942094841......)

n=216254: c108096(3170119927......) = 52720476590475493 * c108079(6013071451......)

n=216446: c108200(8181210581......) = 400975654612649561 * c108183(2040326011......)

n=216826: c108403(1637653672......) = 8957856133590173 * c108387(1828175902......)

n=217058: c108511(1384988539......) = 259535931456366731 * c108493(5336403834......)

n=217298: c108640(6547126382......) = 340734110140011767 * c108623(1921476655......)

n=217886: c108933(6029369421......) = 13668478788836779 * c108917(4411148829......)

n=218342: c109143(3519502494......) = 8205886272947569 * c109127(4288997406......)

n=218794: c109385(2239027658......) = 286757899703370413 * c109367(7808076640......)

n=219074: c109525(1164493076......) = 29542762782513263 * c109508(3941720294......)

n=219662: c109816(2669014622......) = 20449948852632743 * c109800(1305144889......)

n=219682: c109818(5359131770......) = 117793772099311939 * c109801(4549588382......)

n=220366: c110177(1375120684......) = 21039143433846841 * c110160(6536010785......)

n=220474: c110213(3208521644......) = 288229199958353807 * c110196(1113184106......)

n=220954: c110462(1729641300......) = 176718779283663853 * c110444(9787535359......)

n=221114: c110550(8222817974......) = 3604639848203921 * c110535(2281176017......)

n=221498: c110742(1954420987......) = 1030322858438171491 * c110724(1896901511......)

n=221642: c110814(4557351511......) = 1916637504096192463 * c110796(2377784793......)

n=222542: c111258(6288296331......) = 777950037585384877 * c111240(8083162193......)

n=222862: c111425(4079146870......) = 1983698208403007 * c111410(2056334402......)

n=223042: c111496(3680804354......) = 134957493183348677 * c111479(2727380501......)

n=223738: c111843(6031373365......) = 10595615335283383 * c111827(5692329491......)

n=224174: c112080(4505877173......) = 17108532906057413 * c112064(2633701672......)

n=225086: c112530(1745243570......) = 661482816485170807 * c112512(2638380812......)

n=226126: c113037(2093213653......) = 53973869835398053 * c113020(3878198208......)

n=226234: c113080(2139646961......) = 2348879012657701373 * c113061(9109225930......)

n=227294: c113636(1923155826......) = 1785661161332969 * c113621(1076999303......)

n=227438: c113693(4257408756......) = 2159820839861765925259 * c113672(1971186071......)

n=227462: c113719(5707899988......) = 1724372684891117 * c113704(3310131294......)

n=228658: c114317(3766521566......) = 895434948239507303 * c114299(4206359796......)

n=228686: c114328(7152715441......) = 15787119924739531 * c114312(4530728515......)

n=228838: c114407(8661838526......) = 1713553536770423 * c114392(5054898105......)

n=229286: c114630(8875209864......) = 10007064021271171 * c114614(8868944822......)

n=229318: c114644(1143107150......) = 263188863073893209 * c114626(4343296052......)

n=229382: c114651(9426221999......) = 31846625160755905583 * c114632(2959880977......)

n=229486: c114729(4989039309......) = 4643970449551493 * c114714(1074304706......)

n=230158: c115071(4072016096......) = 13753703531224379 * c115055(2960668802......)

n=231122: c115516(5199361348......) = 1202234951175642463 * c115498(4324746459......)

n=231586: c115771(2090641596......) = 2680933724573647 * c115755(7798184554......)

n=232478: c116223(6932358085......) = 343442505095176373 * c116206(2018491591......)

n=233314: c116643(7731634557......) = 7394027052377767 * c116628(1045659490......)

n=234082: c117016(3905427626......) = 13273168027994689 * c117000(2942347763......)

n=234266: c117120(2907381533......) = 1047705322108343 * c117105(2774999297......)

n=234862: c117425(3870728505......) = 8491244935171543 * c117409(4558493525......)

n=235342: c117651(1052788940......) = 17954276922566251 * c117634(5863722306......)

n=235526: c117748(1108504388......) = 5477593655301557 * c117732(2023706864......)

n=235574: c117777(7033070941......) = 3639730299653543 * c117762(1932305517......)

n=236546: c118260(1399845117......) = 3832199868440653 * c118244(3652849968......)

n=237362: c118670(1058926030......) = 5360148171542321 * c118654(1975553654......)

n=238642: c119303(1285737784......) = 4985434889124761 * c119287(2578988217......)

n=239398: c119683(1376398448......) = 1045337622197618447983 * c119662(1316702297......)

n=239542: c119765(3795105300......) = 83080585043357611 * c119748(4567980953......)

n=239846: c119870(1561408536......) = 96821189838996809 * c119853(1612672328......)

n=240398: c120192(1304002441......) = 5901926848346183 * c120176(2209452056......)

n=240782: c120371(1657525881......) = 8908008357904889 * c120355(1860714331......)

n=241354: c120663(3805997774......) = 14073410529731383 * c120647(2704389079......)

n=241426: c120702(1848255024......) = 1564467743513903 * c120687(1181395418......)

n=241534: c120746(4949694369......) = 1682977685035277 * c120731(2941033867......)

n=241634: c120795(8600012525......) = 94327837303500371 * c120778(9117152233......)

n=241886: c120937(1879168347......) = 5149246953189761 * c120921(3649404203......)

n=242806: c121377(5958476442......) = 1268173804050211 * c121362(4698469896......)

n=243766: c121864(2360542643......) = 8241202876371167 * c121848(2864318084......)

n=244406: c122196(2187995505......) = 51579090231081223 * c122179(4242020353......)

n=244546: c122257(1168572340......) = 1679083616748980339 * c122238(6959583960......)

n=245018: c122482(8502314027......) = 7540751888869379 * c122467(1127515419......)

n=245306: c122644(2703097357......) = 3125445497975453 * c122628(8648678592......)

n=245666: c122816(1979276896......) = 7126927078735859 * c122800(2777181350......)

n=245926: c122948(4240987805......) = 134220328722446569 * c122931(3159720920......)

July 5, 2023 2023 年 7 月 5 日 (Alfred Reich)

# via Kurt Beschorner

n=70249: c70206(1065019315......) = 11217074228799052273095643 * c70180(9494626617......)

# ECM B1=5e4, sigma=4833945831133468

n=70381: c70381(1111111111......) = 635489704122123401053 * c70360(1748432907......)

# ECM B1=5e4, sigma=8785510268587711

n=87739: c87739(1111111111......) = 95087680036489503878483 * c87716(1168512167......)

# ECM B1=5e4, sigma=3945944437581485

n=87797: c87797(1111111111......) = 1365677245359103590971373203 * c87769(8135971474......)

# ECM B1=5e4, sigma=8958269920266692

# 210298 of 300000 Φn(10) factorizations were cracked. 300000 個中 210298 個の Φn(10) の素因数が見つかりました。

# 19991 of 25997 Rprime factorizations were cracked. 25997 個中 19991 個の Rprime の素因数が見つかりました。

July 5, 2023 2023 年 7 月 5 日 (Anonymous)

# via Kurt Beschorner

n=78082: c39014(1089510163......) = 2149299352528087 * x38998(5069141077......)

n=78082: x38998(5069141077......) = 53118423790056259223 * c38978(9543093931......)

n=78226: c39104(4233639167......) = 231217122350040263 * c39087(1831023206......)

n=78238: c39112(1019259281......) = 1497623807534325939089 * c39090(6805843203......)

n=78466: c39217(9158286544......) = 2513126954667177867979 * c39196(3644179824......)

n=78646: c39322(9090909090......) = 15611933253744672712841 * c39300(5823051471......)

n=78686: c39330(1101231505......) = 19134109106000266529 * c39310(5755332008......)

n=79538: c39731(4551456167......) = 1128165930788255477 * c39713(4034385407......)

n=79582: c39790(9090909090......) = 100854571982326476324371 * c39767(9013879006......)

n=79598: c39776(1168092328......) = 541442597880611248561 * c39755(2157370575......)

n=80062: c40019(2944240993......) = 262513334071765888499 * c39999(1121558645......)

n=80078: c40031(4113248948......) = 52503727508152999843585063 * c40005(7834203671......)

n=80338: c40147(7740217020......) = 13961362974181403413 * c40128(5544026779......)

n=81118: c40541(2078816477......) = 667034466929975901019 * c40520(3116505338......)

n=81682: c40828(2876556553......) = 769295493882381884357 * c40807(3739208894......)

n=81854: c40909(1079575750......) = 3806605447789378293136013 * c40884(2836058963......)

n=82226: c41105(8637501584......) = 72545062035205372303 * c41086(1190639492......)

n=82262: c41072(2980660844......) = 3860262539831514747241 * c41050(7721394111......)

n=82378: c41148(4991163902......) = 497103844022266695123314609 * c41122(1004048542......)

n=82406: c41195(1102083240......) = 34835580601043312738489 * x41172(3163671228......)

n=82406: x41172(3163671228......) = 73254063432482910416893 * c41149(4318765513......)

n=82774: c41363(1084899187......) = 2491007085409884300877 * c41341(4355263354......)

n=82826: c41372(8064267342......) = 35407615232316032024453 * c41350(2277551676......)

n=82906: c41407(2776903983......) = 13897118054897877857383 * c41385(1998186942......)

n=83098: c41535(2396278964......) = 212271480747206030630413 * c41512(1128874663......)

n=83242: c41604(1020126265......) = 37329100235835626298853 * c41581(2732790930......)

n=84026: c42003(8772530628......) = 208411337780330171 * c41986(4209238672......)

n=84086: c42034(1425747322......) = 9087556503838093 * c42018(1568900641......)

n=84122: c42036(1011705440......) = 23559477335552699 * c42019(4294260971......)

n=84362: c42180(9090909090......) = 31752066727257189160321493 * c42155(2863092084......)

n=84386: c42180(7126556733......) = 85618356339668332745689 * c42157(8323631798......)

n=84562: c42274(1853548638......) = 2633993882251124693 * c42255(7037027119......)

n=85534: c42760(5904671557......) = 34500583276957118357 * c42741(1711470067......)

n=85886: c42928(7414248468......) = 2207383205347810769131 * c42907(3358840662......)

n=86134: c43055(8730318883......) = 382694434905854455807 * c43035(2281276675......)

n=86566: c43256(1330722027......) = 42849309299714634632689 * c43233(3105585711......)

n=87082: c43517(2687862480......) = 4164756179793215237321 * c43495(6453829143......)

n=87322: c43611(2449646321......) = 10572371229396634963397 * c43589(2317026397......)

n=87442: c43685(2942847445......) = 148229705091541192752736013 * c43659(1985329083......)

n=87554: c43756(8635370041......) = 473640578753680116169487 * c43733(1823190501......)

n=87778: c43878(5074702038......) = 8468838756360709889 * c43859(5992205288......)

n=87922: c43960(9090909090......) = 48616927376685000661049 * c43938(1869906137......)

n=87994: c43977(3320452730......) = 426536308566334782887 * c43956(7784689518......)

n=88042: c44012(2671578352......) = 25335568897707632687 * c43993(1054477348......)

n=88058: c44010(4767575985......) = 1393531422381213103 * x43992(3421218860......)

n=88058: x43992(3421218860......) = 808128996031405473041 * x43971(4233505885......)

n=88058: x43971(4233505885......) = 998822934239118721789339 * c43947(4238494872......)

n=88118: c44037(2405210792......) = 126770265935391361 * c44020(1897298845......)

n=88586: c44287(5131091696......) = 391251902137044525971 * c44267(1311454760......)

n=89066: c44532(9090909090......) = 27258619778107100242241 * c44510(3335058475......)

n=89266: c44632(9090909090......) = 3305447007190509522678611 * c44608(2750281299......)

n=89398: c44673(1029235095......) = 192394696776525052552597 * c44649(5349602211......)

n=89546: c44772(9090909090......) = 10016722920870744177840157 * c44747(9075731816......)

n=90122: c45051(9585078055......) = 141260308020596407 * c45034(6785400789......)

n=90518: c45225(2218729358......) = 15837934994796637241 * c45206(1400895608......)

n=90686: c45307(1138374325......) = 117600098537583904690786423 * c45280(9680045676......)

n=91262: c45623(2079609580......) = 113517568806577367837 * c45603(1831971563......)

n=91282: c45619(3394452364......) = 228099617706498858167 * c45599(1488144697......)

n=91534: c45748(1544400563......) = 13710733154135300875597 * c45726(1126417198......)

n=91886: c45879(1749392601......) = 16907354714836129127 * c45860(1034693262......)

n=92342: c46170(9090909090......) = 48367948958138758951237 * c46148(1879531649......)

n=94114: c47056(9090909090......) = 8270033040904741651 * c47038(1099259101......)

n=94118: c47058(9090909090......) = 202299608839826392357 * c47038(4493784809......)

n=94414: c47156(2709673290......) = 187948421523328408847 * c47136(1441711118......)

n=95014: c47506(9090909090......) = 108461747798202186877 * c47486(8381673055......)

n=95086: c47537(9560622473......) = 739662251762166469967 * c47517(1292565958......)

n=95162: c47540(1337135593......) = 6330853231554532436047 * c47518(2112093812......)

n=95182: c47560(4659480551......) = 2125249342197672456173 * c47539(2192439474......)

n=95618: c47795(2361802809......) = 4991339185251851 * c47779(4731801870......)

n=96242: c48085(1037717161......) = 29933237097241135037 * c48065(3466772263......)

n=96442: c48214(2192161501......) = 294395122042664894453 * c48193(7446324130......)

n=96562: c48280(9090909090......) = 21885235934470133707478413 * c48255(4153900427......)

n=96826: c48404(3538979705......) = 6162286149435580524013 * c48382(5742965548......)

n=97694: c48828(4031084214......) = 2102329230895292344331423 * c48804(1917437171......)

n=97946: c48967(4640752395......) = 11080236148969579607 * c48948(4188315423......)

n=98398: c49190(4205241916......) = 445127993445623722961 * c49169(9447264559......)

n=98554: c49269(7686909648......) = 324995874354570327481 * c49249(2365232993......)

n=98782: c49341(3205628205......) = 3150046069869313491179 * c49320(1017644864......)

n=99094: c49515(7047335169......) = 74854950386174269094051 * c49492(9414654786......)

n=99098: c49489(1515804192......) = 8769621374811552133 * c49470(1728471649......)

n=99334: c49660(7039887226......) = 379562189446521037570693 * c49637(1854738807......)

n=99454: c49721(1015645304......) = 149471879302524059 * c49703(6794892187......)

n=99566: c49776(6087019667......) = 31277981751235268637197 * c49754(1946103721......)

n=99742: c49859(3274829755......) = 4539444702677578429721 * c49837(7214163780......)

n=99754: c49865(3357255776......) = 31962899864918904731 * c49846(1050360195......)

n=99842: c49898(3447827592......) = 850485187046990160019 * c49877(4053953724......)

n=114662: c57316(3377431955......) = 1714340630223748290287 * c57295(1970105529......)

n=116726: c58296(8454671878......) = 2388386533956884102041 * c58275(3539909373......)

n=127898: c63929(1241972009......) = 9530784069435720197 * c63910(1303116302......)

n=128866: c64424(1479560468......) = 3165228878454838493 * c64405(4674418582......)

n=128906: c64446(1679131898......) = 320716636686487 * c64431(5235562194......)

n=129758: c64859(6214234695......) = 2172518288474011 * x64844(2860383145......)

n=129758: x64844(2860383145......) = 365402360803611979 * c64826(7828036849......)

n=129838: c64902(9708331441......) = 10985523874423171 * c64886(8837385957......)

n=136414: c68199(5166050368......) = 923612632877021169893 * c68178(5593308476......)

n=138994: c69474(5150834719......) = 1187136132016691 * c69459(4338874523......)

n=144758: c72369(1722361280......) = 1512271055786827547786699 * c72345(1138923656......)

n=145874: c72928(1016312521......) = 23220125206898089 * c72911(4376860642......)

n=145946: c72961(2921089173......) = 1023408776013121 * c72946(2854274110......)

n=145954: c72962(1818828384......) = 133451495560727 * x72948(1362913451......)

n=145954: x72948(1362913451......) = 4949135425802611 * c72932(2753841498......)

n=146662: c73320(5503750828......) = 2774074093716796207 * c73302(1983995611......)

n=146726: c73357(3097909747......) = 2336235424159291041493 * c73336(1326026356......)

n=147754: c73863(9050026730......) = 681823894305847 * c73849(1327326133......)

n=147946: c73949(1535457877......) = 378970352446529099 * c73931(4051656989......)

n=149462: c74702(1335225148......) = 61861323756135889 * c74685(2158416709......)

n=149518: c74722(6918205586......) = 33661186818767995767649 * c74700(2055247078......)

n=150386: c75192(9090909090......) = 12103777959554773 * c75176(7510802925......)

n=150478: c75232(1948823542......) = 378301603741041529 * c75214(5151507484......)

n=150538: c75261(2331639466......) = 6361164483214477 * c75245(3665428668......)

n=150554: c75271(1207659313......) = 811713029188241 * x75256(1487790968......)

n=150554: x75256(1487790968......) = 926513967968047 * c75241(1605794428......)

n=150578: c75274(1288796111......) = 1088792714026397 * c75259(1183692813......)

n=150674: c75302(2811355403......) = 297948037666036489 * c75284(9435723844......)

n=151282: c75626(3113747661......) = 3725494181309933 * c75610(8357945308......)

n=153434: c76689(4483550192......) = 1092080098151573 * x76674(4105514054......)

n=153434: x76674(4105514054......) = 3331822219875811 * c76659(1232212820......)

n=155998: c77983(7117723889......) = 812878928705663 * c77968(8756191898......)

n=156566: c78259(6554029871......) = 739069702964189659 * c78241(8867945533......)

n=157078: c78521(2638290883......) = 164195767932943 * c78507(1606795909......)

n=157562: c78756(7206214640......) = 431654661936961 * c78742(1669439780......)

n=159098: c79534(1419234336......) = 13156342210829316517 * c79515(1078745378......)

n=159634: c79791(4138426956......) = 3951148416071084321 * c79773(1047398508......)

n=159806: c79883(2805431877......) = 2309840518272761779 * c79865(1214556526......)

# 210295 of 300000 Φn(10) factorizations were cracked. 300000 個中 210295 個の Φn(10) の素因数が見つかりました。

July 4, 2023 2023 年 7 月 4 日 (Anonymous)

# via Kurt Beschorner

n=54086: c27029(1559610392......) = 9903844250689744787489 * c27007(1574752543......)

n=54146: c27029(8082758951......) = 571547839174955372251 * c27009(1414187649......)

n=54794: c27385(1484260089......) = 2727984949492958315729 * c27363(5440866124......)

n=54854: c27412(5156128566......) = 6252646942258816969 * c27393(8246313304......)

n=55306: c27636(1025258633......) = 12347877624303952917133 * c27613(8303116249......)

n=55498: c27748(9090909090......) = 65870932144421703305053 * c27726(1380109373......)

n=55654: c27815(1218171001......) = 163281393891450806459 * c27794(7460562241......)

n=55702: c27842(3226055576......) = 1838157506554231023533 * c27821(1755048501......)

n=56038: c27993(1459543811......) = 2148500975206793477 * c27974(6793312305......)

n=56566: c28282(9090909090......) = 129926016930206012218141961 * c28256(6996988983......)

n=57326: c28644(2569875786......) = 38042956751273262595649 * c28621(6755194670......)

n=57586: c28787(2255232308......) = 3735497678123099348081 * c28765(6037300789......)

n=58034: c28986(2150825230......) = 81167306258056886939 * c28966(2649866466......)

n=58382: c29185(1038093785......) = 185911006392986036851489 * c29161(5583821022......)

n=58402: c29200(9090909090......) = 566608951595684126285411 * c29177(1604441487......)

n=59606: c29748(1145881440......) = 776686102963182743 * c29730(1475346907......)

n=59746: c29861(2323541751......) = 29770598333987497626611 * c29838(7804820467......)

n=59894: c29934(9050691596......) = 25973767626738924558919127 * c29909(3484550923......)

n=59966: c29960(7867044963......) = 9347581803009490836487 * c29938(8416128502......)

n=60026: c30006(1442376184......) = 542974236357106472801933 * c29982(2656435771......)

n=60118: c30041(9682125516......) = 755455551765044846731 * c30021(1281627422......)

n=60266: c30098(6107173198......) = 74802196892432443169 * c30078(8164430260......)

n=60394: c30151(6099453998......) = 877138259554433771249 * c30130(6953811366......)

n=60422: c30201(3536917597......) = 3045396024026652641 * c30183(1161398244......)

n=60538: c30264(1501661588......) = 8452909489851486841319300263 * c30236(1776502623......)

n=60898: c30432(1641943460......) = 2030242086052516859 * c30413(8087426973......)

n=61262: c30619(1961705162......) = 46612771627903783361 * c30599(4208514306......)

n=61738: c30844(2309993758......) = 1210366840930230022757 * c30823(1908507140......)

n=61874: c30936(9090909090......) = 94726100120586600047 * x30916(9597047782......)

n=61874: x30916(9597047782......) = 484599245415922913017411 * c30893(1980409146......)

n=62066: c31004(7252231802......) = 2895229196648952833767 * c30983(2504890393......)

n=62278: c31123(1398513197......) = 8367543325710752980691 * c31101(1671354593......)

n=62446: c31199(7907771874......) = 94754589200921909054740201 * c31173(8345529161......)

n=62494: c31239(8607603352......) = 111677697775416332569 * c31219(7707540112......)

n=63062: c31493(5617189883......) = 275978912888856773738183 * c31470(2035369233......)

n=63694: c31811(7575747379......) = 20780010792139194889 * c31792(3645689819......)

n=63718: c31847(5461341741......) = 849129240406764170233729 * c31823(6431696709......)

n=63782: c31890(9090909090......) = 99048034373697893797 * c31870(9178283191......)

n=64166: c32060(6099195527......) = 6784555541814183523813 * c32038(8989823268......)

n=64406: c32196(1485789588......) = 24230310550174296251 * x32176(6131946125......)

n=64406: x32176(6131946125......) = 38399427037132499701339 * c32154(1596884797......)

n=64762: c32375(2339562731......) = 104766745350807505891 * c32355(2233115788......)

n=64822: c32397(1291122540......) = 114280295865669902291 * c32377(1129785787......)

n=65146: c32548(2210165041......) = 885749066529537176849 * c32527(2495249642......)

n=65158: c32578(9090909090......) = 5089987816060429649819 * c32557(1786037495......)

n=65174: c32586(9090909090......) = 36040779202452059109047 * c32564(2522395267......)

n=65206: c32583(9236827273......) = 679368718809429997087 * c32563(1359619160......)

n=65578: c32748(2519708006......) = 126227594768721379321 * c32728(1996162575......)

n=65938: c32961(9508313598......) = 75224036102455366019 * x32942(1263999393......)

n=65938: x32942(1263999393......) = 1684720623294017406247 * c32920(7502724046......)

n=66074: c33028(2941774265......) = 25961892794463351560773 * c33006(1133112400......)

n=66298: c33135(2532585247......) = 335608549598457684161 * c33114(7546247706......)

n=66382: c33143(1117088448......) = 12035858144508197693 * c33123(9281336115......)

n=66658: c33319(4450798442......) = 57207048921981573986383 * c33296(7780157386......)

n=66782: c33379(5618712127......) = 260862336494344450303 * c33359(2153899333......)

n=67162: c33547(1750565566......) = 3873135039682503445701371 * c33522(4519763830......)

n=67174: c33581(1933335124......) = 179280694638440847300049 * c33558(1078384445......)

n=67618: c33794(2534738306......) = 103278335075311221556579 * c33771(2454278823......)

n=67934: c33934(1573752672......) = 122225541066950339765797 * c33911(1287580859......)

n=68114: c34030(5565462028......) = 12317414691855569 * x34014(4518368641......)

n=68114: x34014(4518368641......) = 81570312519177943 * x33997(5539231739......)

n=68114: x33997(5539231739......) = 8653492355310448489 * c33978(6401151710......)

n=68366: c34158(6246980419......) = 17932434262034097891413 * c34136(3483620978......)

n=68734: c34344(6317201422......) = 76661849205111303943 * c34324(8240345736......)

n=69022: c34490(1603585448......) = 4865874314497250354051 * c34468(3295575152......)

n=69074: c34517(3207943207......) = 312494019421810992419 * c34497(1026561472......)

n=69442: c34687(2037338101......) = 824544836447937104771 * c34666(2470863938......)

n=69494: c34734(5102036477......) = 45119414363731536253459 * c34712(1130785172......)

n=69698: c34826(2075899711......) = 88837320955537788651499 * c34803(2336742811......)

n=70222: c35081(1349006180......) = 494772112993884392607877 * c35057(2726520240......)

n=70558: c35247(2307517746......) = 1899258432493503508293929 * c35223(1214957220......)

n=70622: c35304(5363592864......) = 11542779804423772367 * c35285(4646708120......)

n=70654: c35326(9090909090......) = 1570350091979376008369 * c35305(5789097053......)

n=70898: c35420(6339598526......) = 512824280127119190087971 * c35397(1236212631......)

n=71042: c35520(9090909090......) = 96300243180550066601659 * c35497(9440172517......)

n=71066: c35493(8090234120......) = 2460894444493121327 * c35475(3287517731......)

n=71182: c35572(5918811799......) = 18344012359091237406703 * c35550(3226563351......)

n=71758: c35869(5903468783......) = 448548086107534823797 * c35849(1316128407......)

n=72014: c35998(4952455052......) = 13131600241719240089 * x35979(3771402541......)

n=72014: x35979(3771402541......) = 3730124357318327454251 * c35958(1011066168......)

n=72682: c36322(4331894267......) = 32314496462416444313491 * c36300(1340542091......)

n=73046: c36498(6273663740......) = 478294765294859735161 * c36478(1311673092......)

n=73058: c36489(5413086525......) = 1771149388091327726081 * c36468(3056256327......)

n=73214: c36587(8488324003......) = 7864906058295039214369 * c36566(1079265783......)

n=73498: c36721(1399396835......) = 50687556316638205303597 * c36698(2760829160......)

n=73562: c36780(9090909090......) = 193846487008028878518343 * c36757(4689746629......)

n=73586: c36782(1534093123......) = 1112333599532179716929 * c36761(1379166397......)

n=73666: c36832(9090909090......) = 327588041062578525796409 * c36809(2775104079......)

n=73774: c36870(8301062561......) = 153019541911242983473543 * c36847(5424838199......)

n=73858: c36910(9133970561......) = 369212278155307022241343 * c36887(2473907586......)

n=74042: c36975(2031031269......) = 818577049127452336801 * c36954(2481172996......)

n=74234: c37093(1272279524......) = 1740394284556020161329 * c37071(7310294774......)

n=74986: c37475(5989799125......) = 288803763596574152543 * c37455(2074003140......)

n=75598: c37774(1221208952......) = 38604287249579412853 * c37754(3163402408......)

n=76666: c38325(2617618163......) = 6609647468125966339 * c38306(3960299208......)

n=76922: c38449(2560664998......) = 206511947839483760774093 * c38426(1239959733......)

n=77446: c38701(5153091782......) = 9497778860381966400881 * c38679(5425575661......)

n=77458: c38706(4898728014......) = 2891098268375621832041 * c38685(1694417677......)

n=77534: c38751(9190097672......) = 100443785951934336167 * c38731(9149493505......)

n=77846: c38904(3108777263......) = 1194581149460449976539 * c38883(2602399397......)

# 210282 of 300000 Φn(10) factorizations were cracked. 300000 個中 210282 個の Φn(10) の素因数が見つかりました。

July 3, 2023 2023 年 7 月 3 日 (Alfred Reich)

# via Kurt Beschorner

n=40966: c20424(9792219251......) = 42506246412137719376197 * p20402(2303713001......)

makoto@bellatrix /cygdrive/d/factor2/repunit2
$ ./pfgw64 -tc -q"(10^20483+1)/11/901253/5776207/55836659/155998529/582949252451/351209323784578967/42506246412137719376197"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

Primality testing (10^20483+1)/11/901253/5776207/55836659/155998529/582949252451/351209323784578967/42506246412137719376197 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 7, base 2+sqrt(7)

Calling N+1 BLS with factored part 0.08% and helper 0.05% (0.29% proof)
(10^20483+1)/11/901253/5776207/55836659/155998529/582949252451/351209323784578967/42506246412137719376197 is Fermat and Lucas PRP! (18.6346s+0.0009s)

# 1222 of 300000 Φn(10) factorizations were finished. 300000 個中 1222 個の Φn(10) の素因数分解が終わりました。

# 210271 of 300000 Φn(10) factorizations were cracked. 300000 個中 210271 個の Φn(10) の素因数が見つかりました。

July 3, 2023 2023 年 7 月 3 日 (Anonymous)

# via Kurt Beschorner

n=20362: c10180(9090909090......) = 16087109036160086317644912769 * c10152(5651052075......)

n=20926: c10383(7789022926......) = 294634223681792472817607 * c10360(2643624637......)

n=21326: c10657(5328504997......) = 3326064726005378724109943 * c10633(1602044889......)

n=21422: c10685(9501745067......) = 724541436027901176869500411 * c10659(1311414999......)

n=21874: c10917(9973411362......) = 169929323244301358744546401 * x10891(5869152640......)

n=21874: x10891(5869152640......) = 126084038503553190297182039447 * c10862(4654952926......)

n=22874: c11389(1621565299......) = 257318067442575335664859 * c11365(6301793400......)

n=24014: c11989(1130175548......) = 1923985152626493696869360383 * c11961(5874138616......)

n=28022: c13983(7243767493......) = 41187574966409233223 * c13964(1758726387......)

n=28166: c14078(1075859961......) = 1003038414351015560750047 * c14054(1072600955......)

n=28682: c14319(2274121140......) = 273476491403374638739 * c14298(8315600105......)

n=28738: c14368(9090909090......) = 153235299177506322485899 * x14345(5932646811......)

n=28738: x14345(5932646811......) = 181334902597445154480007 * c14322(3271651914......)

n=28846: c14408(8946269029......) = 2294002681284225680579 * x14387(3899851165......)

n=28846: x14387(3899851165......) = 1309478235153649252491757 * c14363(2978171809......)

n=28862: c14392(3953459333......) = 121001513307452263691 * x14372(3267280900......)

n=28862: x14372(3267280900......) = 4592538182719910045143903 * c14347(7114324955......)

n=28874: c14393(3273937857......) = 4936490094778092990169 * c14371(6632116737......)

n=29306: c14629(3636090262......) = 7833812933905871670851 * c14607(4641533176......)

n=29594: c14782(1297494221......) = 72689757030550331117 * c14762(1784975317......)

n=29758: c14878(9090909090......) = 6770878492004498701343099 * c14854(1342648387......)

n=31282: c15599(2405648773......) = 97189577298361892117 * c15579(2475212713......)

n=34766: c17347(9951427279......) = 6029721295089958937689 * c17326(1650395896......)

n=34786: c17365(5303655042......) = 11288285031213900610133 * c17343(4698370946......)

n=35578: c17768(6795771601......) = 120892865979526627504249 * c17745(5621317309......)

n=36086: c18037(3149032034......) = 10173567793127954372797 * c18015(3095307466......)

n=36914: c18456(9090909090......) = 475987407017637213699887 * c18433(1909905379......)

n=36962: c18468(4433546351......) = 27539034570586405940732327 * c18443(1609913499......)

n=37034: c18473(5997596355......) = 278157728536356852952721 * c18450(2156185408......)

n=37234: c18609(4834774459......) = 916869408032679571823 * c18588(5273133138......)

n=37358: c18674(1216712273......) = 954765523618486551437 * c18653(1274357151......)

n=37382: c18672(6870632929......) = 21926875968617673019501373 * c18647(3133429923......)

n=37498: c18740(4734176355......) = 67924604531933587900793531 * c18714(6969751811......)

n=37738: c18849(5995688232......) = 3748120564853585213957 * c18828(1599651913......)

n=37838: c18854(4254176121......) = 241371448753608206807 * c18834(1762501796......)

n=38138: c19047(6367753447......) = 24961219589493745597957 * c19025(2551058622......)

n=38174: c19086(9090909090......) = 484002248109391921801 * c19066(1878278277......)

n=38242: c19046(2504347824......) = 1332026583437788016609 * c19025(1880103487......)

n=38618: c19299(4330978485......) = 1338728330058210202009 * c19278(3235143672......)

n=38978: c19477(3431708306......) = 651516731586656808571 * c19456(5267260440......)

n=39394: c19690(1326257713......) = 4724606058508917873569 * c19668(2807128671......)

n=39418: c19689(5751568075......) = 2371252038016324677407 * c19668(2425540593......)

n=39854: c19926(9090909090......) = 172466393939117564096891 * c19903(5271119134......)

n=41282: c20612(5378678118......) = 78777466302830341204493 * c20589(6827686102......)

n=41498: c20744(1095329842......) = 26665495050359280499201 * c20721(4107667380......)

n=42326: c21132(5592750724......) = 1008615880852278428502499 * c21108(5544975872......)

n=42682: c21328(1358975788......) = 103349567234704813765135447 * c21302(1314931281......)

n=42782: c21359(2134111652......) = 313473078732170339933 * c21338(6807958314......)

n=42866: c21418(6739948887......) = 268407231351600588933013 * c21395(2511090648......)

n=42998: c21488(5556597815......) = 1746459674977451281494929 * c21464(3181635336......)

n=43034: c21507(4031939839......) = 5007734401354412676841 * c21485(8051425087......)

n=43346: c21626(3211584609......) = 1205767120227341072848973 * c21602(2663519808......)

n=43994: c21976(2843423143......) = 69569087528828468841973 * c21953(4087193385......)

n=44146: c22064(9276047780......) = 89164199562845353703881 * c22042(1040333208......)

n=44182: c22064(1681072008......) = 153411531897757253610207733 * c22038(1095792466......)

n=44794: c22389(4201847810......) = 240812651320085105424811 * c22366(1744861736......)

n=44866: c22418(1062425256......) = 8270818645997501574517 * c22396(1284546671......)

n=45566: c22731(1379142789......) = 105616172258106175837 * c22711(1305806449......)

n=46346: c23149(4846112348......) = 668814410017865731369 * c23128(7245825263......)

n=46394: c23171(4396045528......) = 23633703123475324247 * c23152(1860074786......)

n=47126: c23534(5041669367......) = 93051299655675160609 * c23514(5418161150......)

n=47254: c23614(1429830886......) = 893591368362965153533 * c23593(1600094782......)

n=47326: c23629(3836635995......) = 1233821359386257097983 * c23608(3109555501......)

n=47338: c23637(5320102473......) = 2371317196194205756369 * c23616(2243522073......)

n=47342: c23597(1656207848......) = 2215929533149000755557 * c23575(7474099803......)

n=47494: c23724(8263491873......) = 213459339183580750956733 * c23701(3871225267......)

n=47986: c23978(7480124892......) = 8901990206527773147681887 * c23953(8402755697......)

n=48166: c24053(1443512307......) = 653724052256927895795407 * c24029(2208137061......)

n=48746: c24372(9090909090......) = 5044046527349438732447 * c24351(1802304764......)

n=48814: c24397(1575438131......) = 10254277328303838108197 * c24375(1536371682......)

n=49246: c24561(1494277800......) = 195791385980697249619 * x24540(7631989491......)

n=49246: x24540(7631989491......) = 236348083596315395996209 * c24517(3229131108......)

n=49694: c24846(9090909090......) = 49365908253185363891 * c24827(1841535872......)

n=49814: c24883(1500624052......) = 34799693508663817333 * c24863(4312176059......)

n=49934: c24958(3187298641......) = 74833317124052767601 * c24938(4259197325......)

n=50074: c25031(6051609334......) = 77629544990717849 * c25014(7795497623......)

n=50114: c25024(1839160616......) = 158984195611552007 * x25007(1156819776......)

n=50114: x25007(1156819776......) = 2637485251934958060641 * c24985(4386071073......)

n=50222: c25080(1248902448......) = 299282340025489697901133 * c25056(4172990791......)

n=50306: c25152(9090909090......) = 1248007978278998468624699 * c25128(7284335716......)

n=50614: c25255(2797039086......) = 1219105377329825644651 * c25234(2294337420......)

n=50782: c25390(9090909090......) = 103844552346778632798611 * c25367(8754343762......)

n=51166: c25577(5922454928......) = 303812049384577963063 * c25557(1949381185......)

n=51178: c25588(9090909090......) = 10797502131744984209 * c25569(8419455703......)

n=51358: c25652(9133975221......) = 9937503811529973637369 * c25630(9191418081......)

n=51526: c25757(5881076401......) = 1592188953444170677333 * c25736(3693705064......)

n=51902: c25950(9090909090......) = 78259854588135598333 * x25931(1161631226......)

n=51902: x25931(1161631226......) = 3220776910113933937343 * c25909(3606680187......)

n=52034: c26008(1013404527......) = 7679907692635105693 * x25989(1319553005......)

n=52034: x25989(1319553005......) = 170433078395824498201 * x25968(7742352703......)

n=52034: x25968(7742352703......) = 156640152067345692605659 * c25945(4942763781......)

n=52042: c26009(1192006183......) = 137632236231168756242677 * c25985(8660806625......)

n=52058: c26028(9090909090......) = 13921969285079629145761 * c26006(6529901700......)

n=52366: c26182(9090909090......) = 5974920119790180108773 * c26161(1521511402......)

n=52378: c26184(1735601880......) = 31322292589510642582721 * c26161(5541107426......)

n=53266: c26627(1312844383......) = 263933216724778348414729 * c26603(4974153689......)

n=53422: c26695(5509585706......) = 7325636048944765189133 * c26673(7520965646......)

n=54022: c26992(1638225884......) = 89525957043566651 * x26975(1829889273......)

n=54022: x26975(1829889273......) = 34351220223125185246369 * c26952(5326999335......)

n=54034: c27002(6640371785......) = 15336052242357095569 * c26983(4329909471......)

# 210270 of 300000 Φn(10) factorizations were cracked. 300000 個中 210270 個の Φn(10) の素因数が見つかりました。

July 1, 2023 2023 年 7 月 1 日 (Kurt Beschorner)

n=1497: c977(9552099008......) = 145959112670927070432695065574026804399969117 * c933(6544366318......)

# ECM B1=43e6, sigma=6525702983640161

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | April 2023 2023 年 4 月 May 5 月 June 6 月 July 7 月 August 8 月 September 9 月 October 10 月 | Recent changes 最近の更新 | Next month翌月