# via Kurt Beschorner
n=19995: c10063(1037300548......) = 122112218330145257521 * c10042(8494649941......)
# ECM B1=11e3, sigma=2621105183411813602
n=59985: c30235(2775686214......) = 164367081293851995391899545041 * c30206(1688711749......)
# ECM B1=5e4, sigma=925905032381107
n=77447: c77433(8801833452......) = 40467675788457513203 * c77414(2175028162......)
# ECM B1=5e4, sigma=8520414610939235
n=77659: c77645(1111460612......) = 63788181515479304007877 * c77622(1742424044......)
# ECM B1=5e4, sigma=323341850386110
n=177553: c177520(9295226464......) = 1814476591438396550513003 * c177496(5122814208......)
# ECM B1=5e4, sigma=2739219733989802
n=177739: c177712(5988429356......) = 472321669583088733 * c177695(1267870974......)
# ECM B1=5e4, sigma=2846360700966833
n=984: c297(5731359310......) = 1523756597661425772732982608015377525913129160101547143097 * p240(3761335188......)
# ECM B1=300000000, sigma=2:10916314553970469308
# 1221 of 300000 Φn(10) factorizations were finished. 300000 個中 1221 個の Φn(10) の素因数分解が終わりました。
# via Kurt Beschorner
n=17522: c8754(7861027720......) = 3896994521002921879584299 * c8730(2017202661......)
# ECM B1=5e4, sigma=7902254008589384
n=18322: c9160(9090909090......) = 1597426775592369236666424881 * c9133(5690970772......)
# ECM B1=5e4, sigma=5262940469890238
n=18398: c9172(1483257142......) = 28964400491231895039103811 * c9146(5120966143......)
# ECM B1=5e4, sigma=7173116179423414
n=19994: c9199(1214731406......) = 3710226735093772049244179677 * x9171(3274008552......)
# ECM B1=1e6, sigma=1097058797243930
n=19994: x9171(3274008552......) = 1901974340378852742832973057851 * c9141(1721373670......)
# ECM B1=1e6, sigma=6916891097433686
n=20000: c7985(4219750778......) = 9853782125992887540586955160001 * c7954(4282366633......)
# ECM B1=1e6, sigma=1388824485123759
n=1487: c1440(8342779011......) = 4908654090740768986447295954685997262803 * c1401(1699606217......)
# ECM B1=11e6, sigma=0:4318336944085155
n=1491: c800(1458015476......) = 214101907862327114953228337868605022370441 * c758(6809913519......)
# ECM B1=43e6, sigma=0:2309984185641804
n=10157: c8675(3176443438......) = 212336922191059943576645921 * c8649(1495944937......)
# P-1 B1=52e6
n=10306: c5113(5114371422......) = 457669259359397415301876696767637 * c5081(1117481962......)
# ECM B1=1e6, sigma=0:979514939948641
# via Kurt Beschorner
n=11566: c5763(4098260524......) = 1291578491301365747288002169 * c5736(3173063465......)
n=17638: c8785(8147387655......) = 714338458908319705727 * c8765(1140550050......)
n=18682: c9317(5395505605......) = 18735961029971089767571 * c9295(2879759195......)
n=18922: c9440(1077142746......) = 318036510170930367052213 * c9416(3386852490......)
n=19358: c9665(9281318004......) = 3804708864999352393546681 * c9641(2439429226......)
# via Kurt Beschorner
n=24086: c12005(1553866356......) = 25393519200158662343303 * c11982(6119145378......)
n=24422: c12170(7269999822......) = 28260344517194939563769 * c12148(2572509269......)
n=24506: c12210(3611183740......) = 48880075887187546459 * c12190(7387843972......)
n=24562: c12257(8625181404......) = 137044137015114964619 * c12237(6293725213......)
n=24578: c12272(7003430441......) = 145804534011404003679004823 * c12246(4803300863......)
n=24842: c12413(8317025655......) = 174277531494011729453 * c12393(4772287962......)
n=25006: c12466(8138516132......) = 7178938222658320201441 * c12445(1133665714......)
n=25022: c12510(9090909090......) = 6405221331457604684675011 * c12486(1419296636......)
n=25138: c12548(7233567550......) = 4198063686892613427613 * c12527(1723072370......)
n=25178: c12561(3413577055......) = 1295629049963586376568077 * c12537(2634687031......)
n=25202: c12580(1162483821......) = 3222836566516161757412779 * c12555(3607020701......)
n=25274: c12593(7595967856......) = 51137364650542368972674011 * c12568(1485404636......)
n=25486: c12733(1723348287......) = 11105349535106727648259 * c12711(1551818141......)
n=25882: c12902(8081181029......) = 766607135576912624541167 * c12879(1054148944......)
n=26066: c13032(9090909090......) = 34830829959060999754005809 * c13007(2610017935......)
n=26198: c13090(4163759905......) = 389096461261020872756129 * c13067(1070109939......)
n=26318: c13158(9090909090......) = 137285389080205718800489 * c13135(6621905762......)
n=26594: c13236(3323939821......) = 1640471711018348345453 * c13215(2026209777......)
n=26678: c13320(5718382921......) = 110557229876770427842769 * c13297(5172328329......)
n=27134: c13536(1744285462......) = 270082527259411517128693 * c13512(6458342491......)
n=27682: c13829(2135445275......) = 60614600156270677063 * c13809(3522988306......)
n=35614: c17806(9090909090......) = 1824368268987399443417677 * c17782(4983044950......)
n=35782: c17885(1954332334......) = 106617035514761522939 * c17865(1833039462......)
n=38102: c19050(9090909090......) = 6837866423772419523896053 * c19026(1329494980......)
n=39002: c19500(9090909090......) = 51101191952939890970125937611 * c19472(1779001378......)
n=64466: c32232(9090909090......) = 96335972874111037311967 * x32209(9436671286......)
n=64466: x32209(9436671286......) = 22867164506939141679123809 * c32184(4126734332......)
n=298822: c149410(9090909090......) = 641163668722734499 * c149393(1417876516......)
n=7668: c2503(3805370426......) = 969097263812783137216833495330823456969 * x2464(3926716716......)
# ECM B1=3e6, sigma=0:946894979815188
n=7668: x2464(3926716716......) = 1036756316443411214963176965712456280509 * c2425(3787502091......)
# ECM B1=3e6, sigma=0:2036974429029459
n=10083: c6703(9022257364......) = 22601839436781922899755157763 * c6675(3991824377......)
# P-1 B1=65e6
n=10226: c5092(4120444975......) = 1104898138739365314601435832497630037 * c5056(3729253250......)
# ECM B1=1e6, sigma=0:7981886027556381
n=10228: c5107(1138855127......) = 27317419887378555780389500103092181 * c5072(4168970322......)
# ECM B1=1e6, sigma=0:6532763461746839
n=12570: c3344(9100090999......) = 87579249101009934566491 * c3322(1039069310......)
# P-1 B1=23e7
# via Kurt Beschorner
n=8016: c2640(6403781860......) = 5380921084071102626043163955108593 * c2607(1190090276......)
# ECM B1=3e6, sigma=2087833403062932
n=10002: c3304(8577979865......) = 84408902476969038623581315231411 * c3273(1016241132......)
# ECM B1=1e6, sigma=751225251541041
n=15800: c6194(3083209093......) = 3692078044379937729120135844801 * c6163(8350877356......)
# ECM B1=1e6, sigma=6889228909896256
n=251437: x251437(1111111111......) = 1198356720092044335637 * x251415(9271956275......)
# ECM B1=5e4, sigma=2358148404841789
n=1443: c843(1021784023......) = 7533812617313010099208798424128778933289822001 * p797(1356264185......)
# ECM B1=43e6, sigma=0:6798962802557797
# 1220 of 300000 Φn(10) factorizations were finished. 300000 個中 1220 個の Φn(10) の素因数分解が終わりました。
n=11939: c11934(4653088953......) = 128524516252864765146497260459309028980963 * c11893(3620390170......)
# P-1 B1=32e6
n=12565: c8577(1705212752......) = 346672192995901400470703456445361 * c8544(4918804526......)
# P-1 B1=52e6
n=795: c381(2414362919......) = 92410669577098151573793519787387105841413085671 * p334(2612645196......)
# ECM B1=43000000, sigma=0:8866379579614158901
# 1219 of 300000 Φn(10) factorizations were finished. 300000 個中 1219 個の Φn(10) の素因数分解が終わりました。
n=1923: c1259(1780471991......) = 113862250265093690519161821760813 * c1227(1563707012......)
# ECM B1=11e6, sigma=5681287323064579
n=11833: c11795(1600965966......) = 611076528324026019751051991 * x11768(2619910751......)
# P-1 B1=30e6
n=11833: x11768(2619910751......) = 1242198381159275659626880853 * c11741(2109092067......)
# P-1 B1=30e6
n=11849: c10838(1296039931......) = 18920329092875680233868873039335881 * c10803(6849986200......)
# P-1 B1=36e6
n=11871: c7884(3467624688......) = 2122016383855010638163809 * c7860(1634117773......)
# P-1 B1=58e6
n=11897: c11865(7530536774......) = 420008175264309498952123 * c11842(1792950046......)
# P-1 B1=32e6
n=12550: c4983(4985010898......) = 923510860425457029205801 * c4959(5397890931......)
# P-1 B1=92e6
n=12551: c9705(1622118586......) = 246109311646585157 * c9687(6591049219......)
# P-1 B1=43e6
n=12555: c6433(1680765998......) = 42903019125976981681 * c6413(3917593757......)
# P-1 B1=70e6
n=12559: c11847(8168447177......) = 77761065070526097751 * c11828(1050454642......)
# P-1 B1=32e6
# via Kurt Beschorner
n=70177: c70177(1111111111......) = 458705361100519708606031 * c70153(2422276269......)
# ECM B1=5e4, sigma=0:6462197110791833
n=87557: c87557(1111111111......) = 327273168751779494158067 * c87533(3395057148......)
# ECM B1=5e4, sigma=1844051342044800
# 210246 of 300000 Φn(10) factorizations were cracked. 300000 個中 210246 個の Φn(10) の素因数が見つかりました。
# 19987 of 25997 Rprime factorizations were cracked. 25997 個中 19987 個の Rprime の素因数が見つかりました。
n=2572: c1253(1667543756......) = 1750440144426714472609223459681889645749 * c1213(9526425463......)
# ECM B1=11e6, sigma=0:4549815296930687
n=5519: c5499(3591727096......) = 46065452215902108665365991540159 * c5467(7797008221......)
# ECM B1=1e6, sigma=0:2023853228464960
n=6350: c2503(3501564567......) = 2649986345740176396129549711003058681201 * c2464(1321351928......)
# ECM B1=3e6, sigma=7907305880637785
n=10162: c5069(3055501527......) = 501856823055495163449229353041 * x5039(6088392917......)
# ECM B1=1e6, sigma=0:4240492914944899
n=10162: x5039(6088392917......) = 14558332240781328815731391829583 * c5008(4182067572......)
# ECM B1=1e6, sigma=0:1828229939913933
n=10196: c5090(6346833278......) = 44536837941667091075967439049 * c5062(1425074965......)
# ECM B1=1e6, sigma=0:17218298650752
n=11767: c9828(1534010528......) = 254757480928721973981265243 * c9801(6021454297......)
# P-1 B1=42e6
n=12548: c6233(4169936998......) = 1619634999140300324368141137542929 * c6200(2574615268......)
# P-1 B1=68e6
n=5925: c3044(1576089494......) = 624771979297505053233313700289751 * x3011(2522663542......)
# ECM B1=3e6, sigma=0:6042297747174145
n=5925: x3011(2522663542......) = 59894602917430659659099006478907951 * x2976(4211837828......)
# ECM B1=3e6, sigma=0:8220585569924634
n=5925: x2976(4211837828......) = 157152154346322368112028723413869667151 * c2938(2680101870......)
# ECM B1=3e6, sigma=0:7144559007223129
n=8481: c5091(3709559663......) = 901874070359503482480701488093 * c5061(4113168107......)
# ECM B1=1e6, sigma=0:4033998912168224
n=10156: c5049(1154157966......) = 3410183669227230957611037962302949 * c5015(3384445175......)
# ECM B1=1e6, sigma=0:2637891659164927
n=11747: c11008(2510556419......) = 1865004386160582771119037881 * c10981(1346139686......)
# P-1 B1=35e6