n=1395: c695(1486438992......) = 364702613372162886272425915577640274015934692681 * p647(4075756350......)
# ECM B1=11e7, sigma=0:903607021974295
n=5254: c2516(1163122667......) = 139437923042444429039292216424521209211929 * c2474(8341508836......)
# ECM B1=3e6, sigma=0:5947083806060094
n=6045: c2814(3449668161......) = 24620356061734183080153725617419601 * c2780(1401144708......)
# ECM B1=3e6, sigma=0:5143347040126942
n=10059: c5727(7255979099......) = 149205782455183182197604600358573 * c5695(4863068293......)
# ECM B1=1e6, sigma=0:8243830966200220
# 1218 of 300000 Φn(10) factorizations were finished. 300000 個中 1218 個の Φn(10) の素因数分解が終わりました。
n=11563: c11160(9000000000......) = 288876102146873945958113077 * c11134(3115522514......)
# P-1 B1=35e6
n=11599: c9898(3148609225......) = 14933221091440841710872172904603837 * c9864(2108459525......)
# P-1 B1=42e6
n=86453: p86453(1111111111......) is proven prime.
# ECPP
# https://www.multiprecision.org/cm/ecpp.html
# https://www.mersenneforum.org/showthread.php?p=630711#post630711
n=1479: c877(5272349407......) = 33549295409851770975125709849074683471 * c840(1571523140......)
# ECM B1=43e6, sigma=956110076594678
n=6167: c5232(8989300612......) = 3675840732080772150325112719 * c5205(2445508733......)
# ECM B1=1e6, sigma=5354000922392018
n=11531: c10588(2437319237......) = 2650979795946123118860305521 * c10560(9194031735......)
# P-1 B1=37e6
n=12530: c4247(3550504072......) = 7688255015384454267929550281 * c4219(4618088324......)
# P-1 B1=130e6
# via yoyo@home
n=1190: c344(5449702007......) = 15670675217372765545752167365705617247353811 * c301(3477643389......)
# ECM B1=850000000, sigma=0:10816724694808590541
# via yoyo@home
n=1182: c324(2846684919......) = 4551047530439682198526844933441545392551140771 * c278(6255010304......)
# ECM B1=850000000, sigma=0:14335916300017858476
# via Kurt Beschorner
n=86837: c86819(1627359772......) = 606921353312041199209590707159 * c86789(2681335504......)
# ECM B1=5e4, sigma=3105880448041814
n=6137: c5461(5243884149......) = 43573850930276682505962068323 * c5433(1203447489......)
# ECM B1=1e6, sigma=0:7345291352286289
n=147163: c147142(1819053135......) = 213471125449180111 * c147124(8521307656......)
# gr-mfaktc
# via yoyo@home
n=1086: c327(8299364538......) = 484165712170909795871964783465540188248186710475652666425207 * c268(1714157845......)
# ECM B1=850000000, sigma=0:10111744675193824145
n=147047: c147028(3503496988......) = 5140510902285228893 * c147009(6815464561......)
# gr-mfaktc
# via yoyo@home
n=1254: c311(1216607043......) = 6379603923183116557572498736754081808902892003349145377489 * c253(1907025981......)
# ECM B1=850000000, sigma=0:3927414157329920254
n=11327: c11040(9000000000......) = 40001730885786863979423041 * c11015(2249902641......)
# P-1 B1=35e6
n=11349: c6896(2150396163......) = 687835220902497655621008880119733 * c6863(3126324587......)
# P-1 B1=65e6
n=11363: c10294(5929511397......) = 872344334337956979629350525009 * c10264(6797214316......)
# P-1 B1=40e6
n=11367: c7554(1582265210......) = 237468520263209197782403 * c7530(6663052469......)
# P-1 B1=60e6
n=11371: c11107(2254358901......) = 4097375604489481212785218131199802399 * c11070(5501958128......)
# P-1 B1=35e6
n=146893: c146862(6281615289......) = 7885083320671676963 * c146843(7966453915......)
# gr-mfaktc