# via Kurt Beschorner
n=5837: c5347(3163541039......) = 4353843308549595908715554641 * c5319(7266088408......)
# ECM B1=3e6, sigma=8758863469303394
n=6063: c3865(1109999999......) = 430274832344207496545220961 * c3838(2579746516......)
# ECM B1=25e4, sigma=8219783245428276
n=6227: c5661(9616668804......) = 79329365811507822446359335439 * c5633(1212245768......)
# ECM B1=25e4, sigma=8850660592913988
n=6335: c4277(4159741476......) = 137680332616971581268990156329840111 * c4242(3021304057......)
# ECM B1=3e6, sigma=6722473997209790
n=6373: c6309(3036917169......) = 2987015025074078176365899849 * c6282(1016706358......)
# ECM B1=25e4, sigma=5397707835117467
n=6433: c5494(2084456248......) = 80641512618487125116307679 * c5468(2584842695......)
# ECM B1=5e5, sigma=6012459907997929
n=6533: c6287(6285174366......) = 744285757169199924847575368181763 * c6254(8444571599......)
# ECM B1=3e6, sigma=2549517497392098
n=6571: c6557(1228255902......) = 327888727083917006550074729 * c6530(3745953432......)
# ECM B1=25e4, sigma=677123249681263
n=6635: c5257(1422157465......) = 104157786563405257240288766681 * c5228(1365387565......)
# ECM B1=25e4, sigma=6143170280832033
n=6759: c4489(4762072793......) = 551968902221696851159755919 * c4462(8627429506......)
# ECM B1=25e4, sigma=6534772702100733
# via factordb.com
n=5009: p4933(6266360376......) is proven prime
# via Kurt Beschorner
n=1609: c1603(9591028935......) = 3988374591609069058861951683108276907 * c1567(2404746273......)
# ECM B1=3e6, sigma=8249802312071881
n=1725: c864(7304508586......) = 19853619020021936551970643063517525036801 * c824(3679182409......)
# ECM B1=3e6, sigma=3779380196910715
n=2075: c1629(1596346768......) = 44116135258201262756851010544188401 * c1594(3618510006......)
# ECM B1=11e6, sigma=4408864212547375
n=2161: c2142(8912926884......) = 6221137589716668935375823870769721 * c2109(1432684417......)
# ECM B1=3e6, sigma=6094737347714525
n=2345: c1536(2037266045......) = 570777583350017110986446490013709793871 * c1497(3569281808......)
# ECM B1=3e6, sigma=4758785880834541
n=3147: c2064(1688970792......) = 4558159981083740597862506354906893 * c2030(3705378484......)
# ECM B1=11e6, sigma=3637883746385938
n=3425: c2693(1134360087......) = 17045545872540887804680148973243601 * c2658(6654876857......)
# ECM B1=3e6, sigma=4578322985393950
n=4391: c4371(7926868140......) = 5033391329704931814574325407693267 * c4338(1574856318......)
# ECM B1=3e6, sigma=7201141721436529
n=5009: c4966(6553558971......) = 1045831803040640897850510068638813 * p4933(6266360376......)
# ECM B1=11e6, sigma=8468291985023645
n=5039: c5026(2152439879......) = 37028776999778840804863751286769 * c4994(5812884068......)
# ECM B1=11e6, sigma=2355029166608306
# 1229 of 300000 Φn(10) factorizations were finished. 300000 個中 1229 個の Φn(10) の素因数分解が終わりました。
# 127 of 25997 Rprime factorizations were finished. 25997 個中 127 個の Rprime の素因数分解が終わりました。
# via Kurt Beschorner
n=12666: c4198(2563906034......) = 1630868332325116865720121013 * c4171(1572110993......)
n=769: c748(4519698509......) = 7315229730563819147169891302520141715784930317 * p702(6178477882......)
# ECM B1=43e6, sigma=0:4866262363522164
n=5653: c5622(9312696573......) = 131429749207554317387747253656773 * c5590(7085683895......)
# ECM B1=1e6, sigma=0:401625285338058
n=5827: c5817(2589552036......) = 1008218509284905931516633156479 * c5787(2568443261......)
# ECM B1=1e6, sigma=5942053452678234
n=10705: c8526(1577002491......) = 293392549453748243572610071 * c8499(5375059776......)
# P-1 B1=56e6
n=10729: c10688(1849798835......) = 942688392688856144806313827 * c10661(1962259056......)
# P-1 B1=45e6
# 1228 of 300000 Φn(10) factorizations were finished. 300000 個中 1228 個の Φn(10) の素因数分解が終わりました。
# 126 of 25997 Rprime factorizations were finished. 25997 個中 126 個の Rprime の素因数分解が終わりました。
# via Kurt Beschorner
n=67447: c67447(1111111111......) = 24502659057526982909109529 * c67421(4534655232......)
# ECM B1=5e4, sigma=5211384666972652
n=88471: c88471(1111111111......) = 550391854989650270083757 * c88447(2018763724......)
# ECM B1=5e4, sigma=2523433962642759
# 210449 of 300000 Φn(10) factorizations were cracked. 300000 個中 210449 個の Φn(10) の素因数が見つかりました。
# 20001 of 25997 Rprime factorizations were cracked. 25997 個中 20001 個の Rprime の素因数が見つかりました。
n=1437: c924(3795547044......) = 6113742087024026109272080792999993294483 * c884(6208222378......)
# ECM B1=43e6, sigma=0:4040555549286134
n=5641: c5590(5041249550......) = 64273018221861944374567184677 * c5561(7843492789......)
# ECM B1=1e6, sigma=0:4590892872674826
n=5743: c5716(7922710125......) = 36035631062116641922315397 * c5691(2198576767......)
# ECM B1=1e6, sigma=2042307130216783
n=10663: c10603(6913606988......) = 195767227045687775510379648079 * c10574(3531544627......)
# P-1 B1=46e6
n=10667: c10652(1519609055......) = 47419103138539476910320023111 * c10623(3204634745......)
# P-1 B1=46e6
n=10695: c5262(3403393825......) = 81664690458826337439403921 * c5236(4167521858......)
# P-1 B1=12e7
n=11198: c5081(1099999999......) = 297965317224358829992811936237 * c5051(3691704827......)
# ECM B1=1e6, sigma=0:5194620401845499
# 210447 of 300000 Φn(10) factorizations were cracked. 300000 個中 210447 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=12661: c11460(2260735106......) = 1338451132502419893860849 * c11436(1689068096......)
n=1435: c912(6455996275......) = 300978743058300440004015409566201936016570961 * c868(2145000743......)
# ECM B1=43e6, sigma=0:591520289497255
# via Kurt Beschorner
n=12648: c3840(9999000100......) = 49374529463081843135977 * c3818(2025133243......)
# 210446 of 300000 Φn(10) factorizations were cracked. 300000 個中 210446 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=17491: c17491(1111111111......) = 286540204491090507546774841 * c17464(3877679619......)
# ECM B1=1e6, sigma=0:3531486759
n=27799: c27799(1111111111......) = 3277681184332669708154885893 * c27771(3389930406......)
# ECM B1=3e5, sigma=0:4199823354
# 210445 of 300000 Φn(10) factorizations were cracked. 300000 個中 210445 個の Φn(10) の素因数が見つかりました。
# 19999 of 25997 Rprime factorizations were cracked. 25997 個中 19999 個の Rprime の素因数が見つかりました。
n=5623: c5609(2011322488......) = 33894966284770923403532792994108555761 * c5571(5933985807......)
# ECM B1=1e6, sigma=0:2847585960157092
n=11152: c5083(2400046101......) = 98634198640248440649183027809 * x5054(2433279871......)
# ECM B1=1e6, sigma=0:1487957157690338
n=11152: x5054(2433279871......) = 1089253429152156256471746514241 * c5024(2233896911......)
# ECM B1=1e6, sigma=0:123364306912441
n=12652: c6308(4701394375......) = 83290703775651183571067141 * c6282(5644560751......)
# P-1 B1=86e6