### April 30, 20232023 年 4 月 30 日 (Kurt Beschorner)

n=5759: c5282(3046793325......) = 147876912822130407898624760255369587274609 * c5241(2060357676......)

# ECM B1=1e6, sigma=0:6544452679604896

n=11295: c5990(1888386442......) = 604100121206666364956401591238472961 * c5954(3125949452......)

# P-1 B1=70e6

### April 30, 20232023 年 4 月 30 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=86561: c86561(1111111111......) = 574110157886554629901013 * c86537(1935362222......)

# ECM B1=5e4, sigma=3413144784808669

n=86767: c86767(1111111111......) = 46549778844938396044065311 * c86741(2386931020......)

# ECM B1=5e4, sigma=8149454847368865

# 210242 of 300000 Φn(10) factorizations were cracked. 300000 個中 210242 個の Φn(10) の素因数が見つかりました。

# 19985 of 25997 Rprime factorizations were cracked. 25997 個中 19985 個の Rprime の素因数が見つかりました。

### April 28, 20232023 年 4 月 28 日 (Kurt Beschorner)

n=11259: c7438(1277597386......) = 31027084884604239383041102327843 * c7406(4117684245......)

# P-1 B1=6e6

n=146581: c146551(5403219107......) = 196498205558343511 * c146534(2749754936......)

n=146609: c146599(7378054315......) = 75180824745686213 * c146582(9813744847......)

n=146701: c146685(8363122008......) = 1573991583080255237 * c146667(5313320667......)

# gr-mfaktc

### April 28, 20232023 年 4 月 28 日 (Makoto Kamada)

n=186012: c61993(1000000999......) = 425191348650241 * c61978(2351884635......)

n=186017: c167041(1111111111......) = 976322299979573 * c167026(1138057699......)

n=186025: c127441(1000010000......) = 351333156220201 * c127426(2846329708......)

n=186022: c92382(2837160967......) = 665903708277277 * c92367(4260617461......)

n=186048: c55284(8841145953......) = 873926422053121 * c55270(1011657930......)

n=186085: c148850(5640420656......) = 161863304033521 * c148836(3484681528......)

n=186088: c79719(2003332098......) = 125916647849833 * c79705(1590998595......)

n=93043: c85562(3229286316......) = 836470903460237 * c85547(3860608065......)

n=62035: c46945(1111099999......) = 139606020710071 * c46930(7958825803......)

n=186132: c62041(1009998990......) = 221754186737449 * c62026(4554588144......)

n=186139: c178024(9000000000......) = 248874447211721 * c178010(3616281261......)

n=186144: c52987(2686085272......) = 332234848070497 * c52972(8084899245......)

n=186188: c91861(5642504231......) = 412529878469981 * c91847(1367780741......)

n=186197: c169260(9000000000......) = 157623720421751 * c169246(5709800514......)

n=186203: x183729(6025319338......) = 352180578747973 * x183715(1710860763......)

n=186221: c155072(1189258414......) = 644542560171637 * c155057(1845120071......)

n=186258: c60297(2090336423......) = 166803491034727 * c60283(1253173066......)

n=186279: c120111(2234104577......) = 659823696977719 * c120096(3385911399......)

n=186295: c134763(1523554409......) = 378836171787641 * c134748(4021670904......)

n=186288: c62063(3463914782......) = 997329915824449 * c62048(3473188487......)

n=186309: c122448(3008756659......) = 119102157602677 * c122434(2526198281......)

n=186322: c91511(3913933561......) = 181971613270891 * c91497(2150848415......)

n=186365: c149088(9000090000......) = 435794009113321 * c149074(2065216550......)

n=186367: c185314(8048628021......) = 674899304998649 * x185300(1192567241......)

n=93207: c62112(2282173137......) = 115971176390533 * c62098(1967879613......)

n=186415: c142554(5960354070......) = 281893570456711 * c142540(2114398728......)

n=186445: c127681(1000000100......) = 544002796478191 * c127666(1838226028......)

n=186447: c117714(1488358422......) = 253150959251551 * c117699(5879331553......)

n=93231: c62073(6679137651......) = 635372658235477 * c62059(1051215781......)

n=186471: c124284(9145482555......) = 168518619714079 * c124270(5426986389......)

n=186468: c60459(6159590518......) = 479213276423989 * c60445(1285354730......)

n=93235: c71898(2054689012......) = 625391121551711 * c71883(3285446405......)

n=186507: c109815(7651953317......) = 123392995763671 * c109801(6201286605......)

n=93277: c90714(2412169556......) = 127042799779733 * c90700(1898706231......)

n=31093: c27824(2333221372......) = 286041617788831 * c27809(8156929716......)

n=186565: c149248(9000090000......) = 308581355862511 * c149234(2916602001......)

n=186586: c90039(1644693764......) = 975893077039757 * c90024(1685321684......)

n=186588: c60463(7359572179......) = 695986833122389 * c60449(1057429800......)

n=186598: c92041(1099999999......) = 317980004886053 * c92026(3459337012......)

n=186609: c117046(1730183237......) = 510566478685201 * c117031(3388752121......)

n=186613: c156625(1111110999......) = 166606098971551 * c156610(6669089588......)

n=186618: c58896(9100000000......) = 198790882381369 * c58882(4577674735......)

n=186655: c127969(1111099888......) = 741556826708111 * c127954(1498334111......)

n=186662: c78394(9418743740......) = 189888556267411 * c78380(4960142899......)

n=186661: c184017(1441442461......) = 472486923678191 * x184002(3050756305......)

n=93330: c23028(2244507950......) = 466781352268681 * c23013(4808478187......)

n=186666: c60944(9100000000......) = 390570917392219 * c60930(2329922581......)

n=186694: c83223(1272022259......) = 720697513816933 * c83208(1764987716......)

n=186746: c80029(1099999890......) = 148676888007383 * c80014(7398593720......)

n=186751: c176898(8032078335......) = 764416941125489 * c176884(1050745725......)

n=93379: c78223(2465504918......) = 329801098503449 * c78208(7475732886......)

n=186804: c62233(7367455985......) = 255917457549469 * c62219(2878840722......)

n=186811: c184624(9000000000......) = 272800545668449 * x184610(3299113635......)

n=186839: c185843(9500823707......) = 132133138684801 * x185829(7190341349......)

n=186874: c92797(1099999999......) = 323426337556241 * c92782(3401083561......)

n=186884: c88489(1009999999......) = 157217479728941 * c88474(6424222050......)

n=186894: c62281(1000000000......) = 349893652000699 * c62266(2858011270......)

n=186914: c73008(9999999999......) = 125698437722677 * c72994(7955548359......)

n=186923: c169920(9000000000......) = 774962108616191 * c169906(1161347103......)

n=186948: c62209(1000000000......) = 123427215358849 * c62194(8101940865......)

n=186956: c72720(9900990099......) = 409942536101561 * c72706(2415214140......)

n=18699: c11876(1484016738......) = 199366129302511 * c11861(7443675331......)

n=187025: c149600(9999900000......) = 323547969910201 * c149586(3090700894......)

n=93525: c47014(1050274717......) = 510686374383751 * c46999(2056594360......)

n=187062: c62344(3326460216......) = 628259218779847 * c62329(5294725675......)

n=187085: c134382(7320970479......) = 106074575435831 * c134368(6901720275......)

n=187082: c75747(8134219283......) = 279327668365579 * c75733(2912070734......)

n=187121: c170100(9000000000......) = 126185691543209 * c170086(7132345902......)

n=62380L: c12427(9708036430......) = 318096104781061 * c12413(3051919305......)

n=187157: c186054(2003664925......) = 258110754677351 * x186039(7762810690......)

n=93579: c62379(2406785961......) = 771236283695209 * c62364(3120685596......)

n=187166: c77280(9090910000......) = 608258104775161 * c77266(1494580989......)

n=187194: c53449(9265614904......) = 241995158437117 * c53435(3828843090......)

n=187195: c144481(1111099999......) = 334597385658911 * c144466(3320707356......)

n=62398: c26712(2776825076......) = 567562394167357 * c26697(4892545921......)

n=187205: c149750(1740223835......) = 265992828645961 * c149735(6542371252......)

n=187295: c146465(1111099999......) = 102731941680871 * c146451(1081552613......)

n=187297: c170260(9000000000......) = 541539507638603 * c170246(1661928607......)

n=187310: c74921(1099989000......) = 222723897016241 * c74906(4938800976......)

n=187343: c172896(1983700158......) = 511644061594277 * c172881(3877109709......)

n=187344: c62401(1000000000......) = 293714673343633 * c62386(3404664767......)

n=187372: c92737(1009999999......) = 746086248223961 * c92722(1353730888......)

n=62466: c20022(7999165379......) = 123903674151247 * c20008(6455954945......)

n=187399: c184519(2908199631......) = 434085858269671 * x184504(6699595428......)

n=46859: c45779(1954265620......) = 370562086869329 * c45764(5273787280......)

n=187488: c51806(2589908085......) = 810324339110497 * c51791(3196137596......)

n=187511: c173881(1111111111......) = 465470167856231 * c173866(2387072658......)

n=187524: c62497(1000000999......) = 923317733919241 * c62482(1083051871......)

n=187535: c150014(9417488536......) = 126925424199031 * c150000(7419702235......)

n=187548: c62505(5917892672......) = 687686389096429 * c62490(8605510835......)

n=187558: c80366(2193050075......) = 179101397837503 * c80352(1224474014......)

n=187563: c123617(6295756608......) = 135236076684283 * c123603(4655382471......)

n=187554: c62493(5512951183......) = 932610250670041 * c62478(5911313090......)

n=187569: c125016(4692137141......) = 110905946499511 * c125002(4230735401......)

n=187657: c174228(4169064614......) = 419517776579053 * c174213(9937754363......)

n=187671: c111310(3460452367......) = 363189688690489 * c111295(9527947724......)

n=187720: c65664(9999999999......) = 351610684662641 * c65650(2844054642......)

n=187747: c160912(5484766097......) = 706972173893203 * c160897(7758107461......)

n=187748: c80000(9900990099......) = 897404695514009 * c79986(1103291541......)

n=187758: c58304(9311608700......) = 183771480086209 * c58290(5066949831......)

n=187764: c62577(3127376371......) = 489577526013949 * c62562(6387908359......)

n=187814: c85361(1099999999......) = 103027689954157 * c85347(1067674137......)

n=37566: c12503(5989813904......) = 878394685511521 * c12488(6819046156......)

n=187929: c101070(6868865988......) = 274725059924827 * c101056(2500269174......)

n=93985: c75176(3502593962......) = 135084542755601 * c75162(2592890267......)

n=187975: c146881(1000010000......) = 738666179538601 * c146866(1353805044......)

n=187992: c53558(1412136051......) = 145589491322857 * c53543(9699436674......)

# 210240 of 300000 Φn(10) factorizations were cracked. 300000 個中 210240 個の Φn(10) の素因数が見つかりました。

### April 24, 20232023 年 4 月 24 日 (Kurt Beschorner)

n=1461: c890(1271066964......) = 917744708434486635227273676744796912321 * c851(1384989695......)

# ECM B1=43e6, sigma=872312666755562

n=11225: c8960(9999900000......) = 112963042579976573200394401 * c8934(8852364252......)

# P-1 B1=50e6

n=11227: c11004(5312688264......) = 223323479301368691853325640271 * c10975(2378920604......)

# P-1 B1=35e6

### April 18, 20232023 年 4 月 18 日 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner)

n=1340L: c265(2824060999......) = 2724793634966652364625335678635927602947729873812054161996498021 * c202(1036431149......)

n=1340L: c202(1036431149......) = 599544315766066452392678279212562145297975293811672567632442645781 * p136(1728698150......)

# SNFS

```Sat Dec  3 19:04:36 2022  Msieve v. 1.54 (SVN r1044)
Sat Dec  3 19:04:36 2022  random seeds: 59fd110e 0892ecd5
Sat Dec  3 19:04:36 2022  factoring 2824060999717593900028240609997173114939282688506071731149392826886472747811352725218864727478113526687376447331262355266873764473312821236938717876306128212369387178706580062129341993787065800621293434058175656594182434340581756565939000282406099971759390002824061 (265 digits)
Sat Dec  3 19:04:37 2022  no P-1/P+1/ECM available, skipping
Sat Dec  3 19:04:37 2022  commencing number field sieve (265-digit input)
Sat Dec  3 19:04:37 2022  R0: -1000000000000000000000000000000000
Sat Dec  3 19:04:37 2022  R1: 1
Sat Dec  3 19:04:37 2022  A0: 1
Sat Dec  3 19:04:37 2022  A1: -10
Sat Dec  3 19:04:37 2022  A2: 50
Sat Dec  3 19:04:37 2022  A3: -200
Sat Dec  3 19:04:37 2022  A4: 700
Sat Dec  3 19:04:37 2022  A5: -2000
Sat Dec  3 19:04:37 2022  A6: 5000
Sat Dec  3 19:04:37 2022  A7: -10000
Sat Dec  3 19:04:37 2022  A8: 10000
Sat Dec  3 19:04:37 2022  skew 0.34, size 5.188e-08, alpha 1.092, combined = 3.006e-15 rroots = 0
Sat Dec  3 19:04:37 2022  commencing relation filtering
Sat Dec  3 19:04:37 2022  setting target matrix density to 124.0
Sat Dec  3 19:04:37 2022  estimated available RAM is 130983.0 MB
Sat Dec  3 19:04:37 2022  commencing duplicate removal, pass 1
Sat Dec  3 20:08:50 2022  error -1 reading relation 450182162
...
Sat Dec  3 20:43:37 2022  skipped 773801 relations with b > 2^32
Sat Dec  3 20:43:37 2022  skipped 380 relations with composite factors
Sat Dec  3 20:43:37 2022  found 90833359 hash collisions in 691395806 relations
Sat Dec  3 20:43:37 2022  added 28263 free relations
Sat Dec  3 20:43:37 2022  commencing duplicate removal, pass 2
Sat Dec  3 20:51:15 2022  found 7 duplicates and 691424062 unique relations
Sat Dec  3 20:51:15 2022  memory use: 4262.0 MB
Sat Dec  3 20:51:16 2022  reading ideals above 523042816
Sat Dec  3 20:51:16 2022  commencing singleton removal, initial pass
Sat Dec  3 22:21:02 2022  memory use: 11024.0 MB
Sat Dec  3 22:21:05 2022  reading all ideals from disk
Sat Dec  3 22:21:17 2022  memory use: 14213.3 MB
Sat Dec  3 22:22:31 2022  commencing in-memory singleton removal
Sat Dec  3 22:23:40 2022  begin with 691424062 relations and 610368432 unique ideals
Sat Dec  3 22:54:40 2022  reduce to 453608649 relations and 349375787 ideals in 15 passes
Sat Dec  3 22:54:40 2022  max relations containing the same ideal: 43
Sat Dec  3 22:56:20 2022  reading ideals above 720000
Sat Dec  3 22:56:22 2022  commencing singleton removal, initial pass
Sun Dec  4 00:26:08 2022  memory use: 11024.0 MB
Sun Dec  4 00:26:10 2022  reading all ideals from disk
Sun Dec  4 00:26:26 2022  memory use: 20762.8 MB
Sun Dec  4 00:28:18 2022  keeping 401976395 ideals with weight <= 200, target excess is 2401950
Sun Dec  4 00:30:49 2022  commencing in-memory singleton removal
Sun Dec  4 00:32:02 2022  begin with 453608649 relations and 401976395 unique ideals
Sun Dec  4 01:00:40 2022  reduce to 453583935 relations and 401951681 ideals in 11 passes
Sun Dec  4 01:00:40 2022  max relations containing the same ideal: 200
Sun Dec  4 01:08:40 2022  removing 16222977 relations and 14222977 ideals in 2000000 cliques
Sun Dec  4 01:09:12 2022  commencing in-memory singleton removal
Sun Dec  4 01:10:19 2022  begin with 437360958 relations and 401951681 unique ideals
Sun Dec  4 01:30:26 2022  reduce to 436904780 relations and 387269595 ideals in 8 passes
Sun Dec  4 01:30:26 2022  max relations containing the same ideal: 200
Sun Dec  4 01:38:10 2022  removing 12221780 relations and 10221780 ideals in 2000000 cliques
Sun Dec  4 01:38:39 2022  commencing in-memory singleton removal
Sun Dec  4 01:39:45 2022  begin with 424683000 relations and 387269595 unique ideals
Sun Dec  4 01:59:08 2022  reduce to 424401945 relations and 376765284 ideals in 8 passes
Sun Dec  4 01:59:08 2022  max relations containing the same ideal: 198
Sun Dec  4 02:06:39 2022  removing 10953784 relations and 8953784 ideals in 2000000 cliques
Sun Dec  4 02:07:07 2022  commencing in-memory singleton removal
Sun Dec  4 02:08:12 2022  begin with 413448161 relations and 376765284 unique ideals
Sun Dec  4 02:27:13 2022  reduce to 413210441 relations and 367572557 ideals in 8 passes
Sun Dec  4 02:27:13 2022  max relations containing the same ideal: 197
Sun Dec  4 02:34:45 2022  removing 10242355 relations and 8242355 ideals in 2000000 cliques
Sun Dec  4 02:35:13 2022  commencing in-memory singleton removal
Sun Dec  4 02:36:17 2022  begin with 402968086 relations and 367572557 unique ideals
Sun Dec  4 02:53:19 2022  reduce to 402753884 relations and 359114987 ideals in 7 passes
Sun Dec  4 02:53:19 2022  max relations containing the same ideal: 194
Sun Dec  4 03:00:46 2022  removing 9764427 relations and 7764427 ideals in 2000000 cliques
Sun Dec  4 03:01:14 2022  commencing in-memory singleton removal
Sun Dec  4 03:02:15 2022  begin with 392989457 relations and 359114987 unique ideals
Sun Dec  4 03:21:08 2022  reduce to 392788701 relations and 351148821 ideals in 8 passes
Sun Dec  4 03:21:08 2022  max relations containing the same ideal: 192
Sun Dec  4 03:28:20 2022  removing 9421551 relations and 7421551 ideals in 2000000 cliques
Sun Dec  4 03:28:45 2022  commencing in-memory singleton removal
Sun Dec  4 03:29:46 2022  begin with 383367150 relations and 351148821 unique ideals
Sun Dec  4 03:44:48 2022  reduce to 383175148 relations and 343534368 ideals in 7 passes
Sun Dec  4 03:44:48 2022  max relations containing the same ideal: 190
Sun Dec  4 03:51:29 2022  removing 9158675 relations and 7158675 ideals in 2000000 cliques
Sun Dec  4 03:51:54 2022  commencing in-memory singleton removal
Sun Dec  4 03:52:51 2022  begin with 374016473 relations and 343534368 unique ideals
Sun Dec  4 04:07:58 2022  reduce to 373829249 relations and 336187516 ideals in 7 passes
Sun Dec  4 04:07:58 2022  max relations containing the same ideal: 187
Sun Dec  4 04:14:47 2022  removing 8951493 relations and 6951493 ideals in 2000000 cliques
Sun Dec  4 04:15:11 2022  commencing in-memory singleton removal
Sun Dec  4 04:16:07 2022  begin with 364877756 relations and 336187516 unique ideals
Sun Dec  4 04:30:56 2022  reduce to 364694667 relations and 329052054 ideals in 7 passes
Sun Dec  4 04:30:56 2022  max relations containing the same ideal: 186
Sun Dec  4 04:37:35 2022  removing 8791311 relations and 6791311 ideals in 2000000 cliques
Sun Dec  4 04:38:00 2022  commencing in-memory singleton removal
Sun Dec  4 04:38:54 2022  begin with 355903356 relations and 329052054 unique ideals
Sun Dec  4 04:53:20 2022  reduce to 355722105 relations and 322078534 ideals in 7 passes
Sun Dec  4 04:53:20 2022  max relations containing the same ideal: 184
Sun Dec  4 04:59:34 2022  removing 8658898 relations and 6658898 ideals in 2000000 cliques
Sun Dec  4 04:59:57 2022  commencing in-memory singleton removal
Sun Dec  4 05:00:49 2022  begin with 347063207 relations and 322078534 unique ideals
Sun Dec  4 05:12:51 2022  reduce to 346882766 relations and 315238277 ideals in 6 passes
Sun Dec  4 05:12:51 2022  max relations containing the same ideal: 182
Sun Dec  4 05:19:07 2022  removing 8556397 relations and 6556397 ideals in 2000000 cliques
Sun Dec  4 05:19:31 2022  commencing in-memory singleton removal
Sun Dec  4 05:20:20 2022  begin with 338326369 relations and 315238277 unique ideals
Sun Dec  4 05:35:40 2022  reduce to 338145695 relations and 308500243 ideals in 8 passes
Sun Dec  4 05:35:40 2022  max relations containing the same ideal: 178
Sun Dec  4 05:41:31 2022  removing 8473066 relations and 6473066 ideals in 2000000 cliques
Sun Dec  4 05:41:52 2022  commencing in-memory singleton removal
Sun Dec  4 05:42:40 2022  begin with 329672629 relations and 308500243 unique ideals
Sun Dec  4 05:53:31 2022  reduce to 329491812 relations and 301845385 ideals in 6 passes
Sun Dec  4 05:53:31 2022  max relations containing the same ideal: 176
Sun Dec  4 05:59:11 2022  removing 8406694 relations and 6406694 ideals in 2000000 cliques
Sun Dec  4 05:59:31 2022  commencing in-memory singleton removal
Sun Dec  4 06:00:18 2022  begin with 321085118 relations and 301845385 unique ideals
Sun Dec  4 06:10:36 2022  reduce to 320901777 relations and 295254344 ideals in 6 passes
Sun Dec  4 06:10:36 2022  max relations containing the same ideal: 172
Sun Dec  4 06:16:09 2022  removing 8351915 relations and 6351915 ideals in 2000000 cliques
Sun Dec  4 06:16:30 2022  commencing in-memory singleton removal
Sun Dec  4 06:17:15 2022  begin with 312549862 relations and 295254344 unique ideals
Sun Dec  4 06:30:38 2022  reduce to 312363743 relations and 288715289 ideals in 8 passes
Sun Dec  4 06:30:38 2022  max relations containing the same ideal: 169
Sun Dec  4 06:36:01 2022  removing 8312441 relations and 6312441 ideals in 2000000 cliques
Sun Dec  4 06:36:22 2022  commencing in-memory singleton removal
Sun Dec  4 06:37:06 2022  begin with 304051302 relations and 288715289 unique ideals
Sun Dec  4 06:48:44 2022  reduce to 303860554 relations and 282210980 ideals in 7 passes
Sun Dec  4 06:48:44 2022  max relations containing the same ideal: 165
Sun Dec  4 06:54:05 2022  removing 8284959 relations and 6284959 ideals in 2000000 cliques
Sun Dec  4 06:54:24 2022  commencing in-memory singleton removal
Sun Dec  4 06:55:09 2022  begin with 295575595 relations and 282210980 unique ideals
Sun Dec  4 07:06:42 2022  reduce to 295381193 relations and 275730482 ideals in 7 passes
Sun Dec  4 07:06:42 2022  max relations containing the same ideal: 161
Sun Dec  4 07:12:00 2022  removing 8267593 relations and 6267593 ideals in 2000000 cliques
Sun Dec  4 07:12:20 2022  commencing in-memory singleton removal
Sun Dec  4 07:13:01 2022  begin with 287113600 relations and 275730482 unique ideals
Sun Dec  4 07:24:11 2022  reduce to 286915227 relations and 269263276 ideals in 7 passes
Sun Dec  4 07:24:11 2022  max relations containing the same ideal: 160
Sun Dec  4 07:29:20 2022  removing 8261889 relations and 6261889 ideals in 2000000 cliques
Sun Dec  4 07:29:39 2022  commencing in-memory singleton removal
Sun Dec  4 07:30:19 2022  begin with 278653338 relations and 269263276 unique ideals
Sun Dec  4 07:39:34 2022  reduce to 278449728 relations and 262796476 ideals in 6 passes
Sun Dec  4 07:39:34 2022  max relations containing the same ideal: 156
Sun Dec  4 07:44:30 2022  removing 8262784 relations and 6262784 ideals in 2000000 cliques
Sun Dec  4 07:44:48 2022  commencing in-memory singleton removal
Sun Dec  4 07:45:26 2022  begin with 270186944 relations and 262796476 unique ideals
Sun Dec  4 07:55:47 2022  reduce to 269975342 relations and 256320747 ideals in 7 passes
Sun Dec  4 07:55:47 2022  max relations containing the same ideal: 151
Sun Dec  4 08:00:38 2022  removing 8276204 relations and 6276204 ideals in 2000000 cliques
Sun Dec  4 08:00:55 2022  commencing in-memory singleton removal
Sun Dec  4 08:01:33 2022  begin with 261699138 relations and 256320747 unique ideals
Sun Dec  4 08:11:35 2022  reduce to 261480320 relations and 249824277 ideals in 7 passes
Sun Dec  4 08:11:35 2022  max relations containing the same ideal: 150
Sun Dec  4 08:16:14 2022  removing 8294455 relations and 6294455 ideals in 2000000 cliques
Sun Dec  4 08:16:31 2022  commencing in-memory singleton removal
Sun Dec  4 08:17:06 2022  begin with 253185865 relations and 249824277 unique ideals
Sun Dec  4 08:26:51 2022  reduce to 252958087 relations and 243300377 ideals in 7 passes
Sun Dec  4 08:26:51 2022  max relations containing the same ideal: 148
Sun Dec  4 08:31:06 2022  removing 8323100 relations and 6323100 ideals in 2000000 cliques
Sun Dec  4 08:31:23 2022  commencing in-memory singleton removal
Sun Dec  4 08:31:58 2022  begin with 244634987 relations and 243300377 unique ideals
Sun Dec  4 08:40:56 2022  reduce to 244395707 relations and 236736340 ideals in 7 passes
Sun Dec  4 08:40:56 2022  max relations containing the same ideal: 142
Sun Dec  4 08:45:08 2022  removing 8365688 relations and 6365688 ideals in 2000000 cliques
Sun Dec  4 08:45:24 2022  commencing in-memory singleton removal
Sun Dec  4 08:46:00 2022  begin with 236030019 relations and 236736340 unique ideals
Sun Dec  4 08:54:46 2022  reduce to 235780907 relations and 230119682 ideals in 7 passes
Sun Dec  4 08:54:46 2022  max relations containing the same ideal: 139
Sun Dec  4 08:58:56 2022  removing 8418328 relations and 6418328 ideals in 2000000 cliques
Sun Dec  4 08:59:11 2022  commencing in-memory singleton removal
Sun Dec  4 08:59:44 2022  begin with 227362579 relations and 230119682 unique ideals
Sun Dec  4 09:08:14 2022  reduce to 227098454 relations and 223435208 ideals in 7 passes
Sun Dec  4 09:08:14 2022  max relations containing the same ideal: 137
Sun Dec  4 09:12:13 2022  removing 4308275 relations and 3431292 ideals in 876983 cliques
Sun Dec  4 09:12:28 2022  commencing in-memory singleton removal
Sun Dec  4 09:12:58 2022  begin with 222790179 relations and 223435208 unique ideals
Sun Dec  4 09:20:04 2022  reduce to 222724758 relations and 219938274 ideals in 6 passes
Sun Dec  4 09:20:04 2022  max relations containing the same ideal: 137
Sun Dec  4 09:24:33 2022  relations with 0 large ideals: 116032
Sun Dec  4 09:24:33 2022  relations with 1 large ideals: 75213
Sun Dec  4 09:24:33 2022  relations with 2 large ideals: 429846
Sun Dec  4 09:24:33 2022  relations with 3 large ideals: 2969063
Sun Dec  4 09:24:33 2022  relations with 4 large ideals: 11847544
Sun Dec  4 09:24:33 2022  relations with 5 large ideals: 29838394
Sun Dec  4 09:24:33 2022  relations with 6 large ideals: 49754804
Sun Dec  4 09:24:33 2022  relations with 7+ large ideals: 127693862
Sun Dec  4 09:24:33 2022  commencing 2-way merge
Sun Dec  4 09:29:51 2022  reduce to 148546820 relation sets and 145760336 unique ideals
Sun Dec  4 09:29:52 2022  commencing full merge
Sun Dec  4 11:18:10 2022  memory use: 18214.5 MB
Sun Dec  4 11:18:39 2022  found 65812666 cycles, need 65714536
Sun Dec  4 11:18:44 2022  weight of 65714536 cycles is about 8148699392 (124.00/cycle)
Sun Dec  4 11:18:44 2022  distribution of cycle lengths:
Sun Dec  4 11:18:44 2022  1 relations: 4498289
Sun Dec  4 11:18:44 2022  2 relations: 4635359
Sun Dec  4 11:18:44 2022  3 relations: 5000319
Sun Dec  4 11:18:44 2022  4 relations: 4925280
Sun Dec  4 11:18:44 2022  5 relations: 4853403
Sun Dec  4 11:18:44 2022  6 relations: 4690886
Sun Dec  4 11:18:44 2022  7 relations: 4435118
Sun Dec  4 11:18:44 2022  8 relations: 4212995
Sun Dec  4 11:18:44 2022  9 relations: 3929581
Sun Dec  4 11:18:44 2022  10+ relations: 24533306
Sun Dec  4 11:18:44 2022  heaviest cycle: 28 relations
Sun Dec  4 11:19:22 2022  commencing cycle optimization
Sun Dec  4 11:23:23 2022  start with 554424154 relations
Sun Dec  4 12:03:20 2022  pruned 22965724 relations
Sun Dec  4 12:03:21 2022  memory use: 14924.6 MB
Sun Dec  4 12:03:22 2022  distribution of cycle lengths:
Sun Dec  4 12:03:22 2022  1 relations: 4498289
Sun Dec  4 12:03:22 2022  2 relations: 4755269
Sun Dec  4 12:03:22 2022  3 relations: 5219542
Sun Dec  4 12:03:22 2022  4 relations: 5124024
Sun Dec  4 12:03:22 2022  5 relations: 5077456
Sun Dec  4 12:03:22 2022  6 relations: 4878253
Sun Dec  4 12:03:22 2022  7 relations: 4624032
Sun Dec  4 12:03:22 2022  8 relations: 4363010
Sun Dec  4 12:03:22 2022  9 relations: 4058560
Sun Dec  4 12:03:22 2022  10+ relations: 23116101
Sun Dec  4 12:03:22 2022  heaviest cycle: 28 relations
Sun Dec  4 12:07:00 2022  RelProcTime: 61343
Sun Dec  4 12:07:00 2022  elapsed time 17:02:24

Sun Dec  4 13:24:59 2022  commencing linear algebra
Sun Dec  4 13:25:11 2022  read 65714536 cycles
Sun Dec  4 13:27:00 2022  cycles contain 221299907 unique relations
Sun Dec  4 13:41:01 2022  read 221299907 relations
Sun Dec  4 13:53:38 2022  using 20 quadratic characters above 4294917295
Sun Dec  4 14:03:46 2022  building initial matrix
Sun Dec  4 14:44:26 2022  memory use: 28701.6 MB
Sun Dec  4 14:45:06 2022  read 65714536 cycles
Sun Dec  4 14:45:12 2022  matrix is 65714359 x 65714536 (31915.3 MB) with weight 8957842656 (136.31/col)
Sun Dec  4 14:45:12 2022  sparse part has weight 7643554968 (116.31/col)
Sun Dec  4 15:00:04 2022  filtering completed in 2 passes
Sun Dec  4 15:00:16 2022  matrix is 65713334 x 65713511 (31915.3 MB) with weight 8957814090 (136.32/col)
Sun Dec  4 15:00:16 2022  sparse part has weight 7643547141 (116.32/col)
Sun Dec  4 15:02:50 2022  matrix starts at (0, 0)
Sun Dec  4 15:02:56 2022  matrix is 65713334 x 65713511 (31915.3 MB) with weight 8957814090 (136.32/col)
Sun Dec  4 15:02:56 2022  sparse part has weight 7643547141 (116.32/col)
Sun Dec  4 15:02:56 2022  saving the first 48 matrix rows for later
Sun Dec  4 15:03:06 2022  matrix includes 64 packed rows
Sun Dec  4 15:03:11 2022  matrix is 65713286 x 65713511 (30681.0 MB) with weight 7818384770 (118.98/col)
Sun Dec  4 15:03:11 2022  sparse part has weight 7385702074 (112.39/col)
Sun Dec  4 15:03:12 2022  using block size 8192 and superblock size 6291456 for processor cache size 65536 kB
Sun Dec  4 15:06:50 2022  commencing Lanczos iteration (24 threads)
Sun Dec  4 15:06:50 2022  memory use: 30612.5 MB
Sun Dec  4 15:11:35 2022  linear algebra at 0.0%, ETA 3280h33m
Sun Dec  4 15:13:07 2022  checkpointing every 20000 dimensions
Sun Apr 16 02:01:51 2023  lanczos halted after 1039177 iterations (dim = 65713285)
Sun Apr 16 02:02:52 2023  recovered 41 nontrivial dependencies
Sun Apr 16 02:03:25 2023  BLanczosTime: 310518
Sun Apr 16 02:03:25 2023  elapsed time 86:15:19

Sun Apr 16 02:10:41 2023  commencing square root phase
Sun Apr 16 02:10:42 2023  handling dependencies 1 to 64
Sun Apr 16 02:10:42 2023  reading relations for dependency 1
Sun Apr 16 02:10:57 2023  read 32853998 cycles
Sun Apr 16 02:11:52 2023  cycles contain 110657400 unique relations
Sun Apr 16 02:19:23 2023  read 110657400 relations
Sun Apr 16 02:26:26 2023  multiplying 110657400 relations
Sun Apr 16 07:01:31 2023  multiply complete, coefficients have about 4446.26 million bits
Sun Apr 16 07:02:43 2023  warning: no irreducible prime found, switching to small primes
Sun Apr 16 07:04:30 2023  initial square root is modulo 13
Sun Apr 16 14:43:15 2023  Newton iteration failed to converge
Sun Apr 16 14:43:15 2023  algebraic square root failed
Sun Apr 16 14:43:15 2023  reading relations for dependency 2
Sun Apr 16 14:43:37 2023  read 32856735 cycles
Sun Apr 16 14:45:26 2023  cycles contain 110660926 unique relations
Sun Apr 16 14:56:27 2023  read 110660926 relations
Sun Apr 16 15:12:41 2023  multiplying 110660926 relations
Sun Apr 16 19:45:33 2023  multiply complete, coefficients have about 4446.40 million bits
Sun Apr 16 19:46:28 2023  warning: no irreducible prime found, switching to small primes
Sun Apr 16 19:47:23 2023  initial square root is modulo 13
Mon Apr 17 03:16:32 2023  Newton iteration failed to converge
Mon Apr 17 03:16:32 2023  algebraic square root failed
Mon Apr 17 03:16:32 2023  reading relations for dependency 3
Mon Apr 17 03:16:53 2023  read 32853641 cycles
Mon Apr 17 03:18:40 2023  cycles contain 110646878 unique relations
Mon Apr 17 03:29:44 2023  read 110646878 relations
Mon Apr 17 03:46:17 2023  multiplying 110646878 relations
Mon Apr 17 08:22:31 2023  multiply complete, coefficients have about 4445.88 million bits
Mon Apr 17 08:23:29 2023  warning: no irreducible prime found, switching to small primes
Mon Apr 17 08:25:56 2023  initial square root is modulo 13
Mon Apr 17 15:54:03 2023  found factor: 599544315766066452392678279212562145297975293811672567632442645781
Mon Apr 17 15:54:03 2023  reading relations for dependency 4
Mon Apr 17 15:54:24 2023  read 32854254 cycles
Mon Apr 17 15:56:12 2023  cycles contain 110623390 unique relations
Mon Apr 17 16:07:15 2023  read 110623390 relations
Mon Apr 17 16:23:54 2023  multiplying 110623390 relations
Mon Apr 17 21:01:14 2023  multiply complete, coefficients have about 4444.91 million bits
Mon Apr 17 21:02:13 2023  warning: no irreducible prime found, switching to small primes
Mon Apr 17 21:05:23 2023  initial square root is modulo 13
Tue Apr 18 04:38:23 2023  sqrtTime: 181662
Tue Apr 18 04:38:23 2023  p64 factor: 2724793634966652364625335678635927602947729873812054161996498021
Tue Apr 18 04:38:23 2023  p66 factor: 599544315766066452392678279212562145297975293811672567632442645781
Tue Apr 18 04:38:23 2023  p136 factor: 1728698150280068137198270521277194937031098932707466058506795177976772363213163863959865690898047286154112976061009434446365564534720661
Tue Apr 18 04:38:23 2023  elapsed time 50:27:42
```

# 1217 of 300000 Φn(10) factorizations were finished. 300000 個中 1217 個の Φn(10) の素因数分解が終わりました。

### April 22, 20232023 年 4 月 22 日 (Kurt Beschorner)

n=11203: c10508(1324815138......) = 130498324924129479266749243 * c10482(1015197045......)

# P-1 B1=40e6

n=11215: c8942(1888643978......) = 9427406075097023668093001 * c8917(2003354860......)

# P-1 B1=50e6

### April 22, 20232023 年 4 月 22 日 (F!refly)

# via yoyo@home

n=505: c371(1520723967......) = 3045224293530819245851950041691189890170351 * c328(4993799540......)

# ECM B1=850000000, sigma=0:8671687100396688982

### April 18, 20232023 年 4 月 18 日 (abc)

# via yoyo@home

n=503: c325(2021579474......) = 30837329959354395729863043937455394320617332690757897759 * c269(6555624229......)

# ECM B1=850000000, sigma=0:13802949331132258992

### April 14, 20232023 年 4 月 14 日 (vanos0512)

# via yoyo@home

n=503: c379(1574854118......) = 779021620901226065983070829336777930546503650107187843 * c325(2021579474......)

# ECM B1=850000000, sigma=0:977799155199813862

### April 14, 20232023 年 4 月 14 日 (Kurt Beschorner)

n=11057: c11026(5023964615......) = 1986254099801763774631766559897990182201 * c10987(2529366517......)

# P-1 B1=35e6

n=11091: c7342(8027756141......) = 962500955804123759014304641 * c7315(8340517578......)

# P-1 B1=70e6

n=146221: c146204(7261340223......) = 5998182708723144787 * c146186(1210590036......)

# gr-mfaktc

### April 10, 20232023 年 4 月 10 日 (Kurt Beschorner)

n=12453: c7088(5020512634......) = 341796184231310250867486559 * c7062(1468861522......)

# P-1 B1=50e6

n=146093: c146075(2745895298......) = 151661915761207597 * c146058(1810537131......)

n=146141: c146135(3801490716......) = 14371417644320176961 * c146116(2645174478......)

# gr-mfaktc

### April 10, 20232023 年 4 月 10 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=66491: c66474(1047689279......) = 613389642977626279627 * c66453(1708032229......)

# ECM B1=5e4, sigma=4195255829314717

n=86287: c86270(5991878004......) = 4911898103137914869707 * c86249(1219870176......)

# ECM B1=5e4, sigma=4209134514182576

n=86501: c86501(1111111111......) = 15410977065428877220938889 * c86475(7209868046......)

# ECM B1=5e4, sigma=8852113913822102

# 210200 of 300000 Φn(10) factorizations were cracked. 300000 個中 210200 個の Φn(10) の素因数が見つかりました。

# 19983 of 25997 Rprime factorizations were cracked. 25997 個中 19983 個の Rprime の素因数が見つかりました。

### April 10, 20232023 年 4 月 10 日 (Kenji Ibusuki)

n=5387: p5266(2796548747......) is proven prime.

# YAFU-1.34.5 APRCL

### April 6, 20232023 年 4 月 6 日 (Makoto Kamada)

n=188043: c118719(2043659183......) = 144138030242191 * x118705(1417848696......)

n=188043: x118705(1417848696......) = 173010280331431 * c118690(8195170218......)

n=188059: c186824(9831871950......) = 112096433819159 * x186810(8770905207......)

n=188076: c53686(2202464350......) = 540484483239709 * c53671(4074981648......)

n=188103: c125395(1197348930......) = 126816657453961 * c125380(9441574589......)

n=188109: c125388(9999999990......) = 134227492571791 * c125374(7450038586......)

n=188134: c93070(7099149948......) = 206919448743487 * c93056(3430876116......)

n=188162: c86833(1099999999......) = 126574029686521 * c86818(8690566324......)

n=188169: c125435(7874543104......) = 370369164913249 * c125421(2126133558......)

n=188175: c92152(2604975024......) = 231732044887201 * c92138(1124132411......)

n=188187: c124293(6467167701......) = 211446295570267 * x124279(3058539135......)

n=188187: x124279(3058539135......) = 356101682263039 * c124264(8588948853......)

n=188196: c62729(1009998990......) = 427895980416901 * c62714(2360384383......)

n=62739: c41802(1311627448......) = 109379092168603 * c41788(1199157373......)

n=94120: c34560(9999000099......) = 117014285848721 * c34546(8545110562......)

n=188247: c124281(1109999999......) = 168503549221681 * c124266(6587398337......)

n=188283: c125514(2174919194......) = 175554715981093 * c125500(1238883946......)

n=188286: c53784(9100000909......) = 156297233064127 * c53770(5822240567......)

n=188287: c171132(3730759171......) = 188194344720449 * c171118(1982397067......)

n=188342: c73320(9090910000......) = 692217156731717 * c73306(1313303189......)

n=188375: c135990(1466193836......) = 241674083587751 * c135975(6066822784......)

n=188381: c187386(1592517010......) = 131416681903769 * x187372(1211807349......)

n=188396: c86929(1009999999......) = 105701706181969 * c86914(9555191079......)

n=188398: c80729(1320973420......) = 372054941157047 * c80714(3550479442......)

n=188415: c97344(9990000009......) = 522465369728041 * c97330(1912088453......)

n=188416: c90096(7176661701......) = 870034254888961 * c90081(8248711658......)

n=188423: c173857(9454300562......) = 659561006741519 * c173843(1433423211......)

n=188424: c62779(1769056721......) = 157208587677649 * c62765(1125292674......)

n=188461: c139960(1193284437......) = 999458677934081 * c139945(1193930738......)

n=188471: c177402(9825650706......) = 797712750117841 * c177388(1231727925......)

n=188481: c125647(2389892113......) = 122548716970237 * c125633(1950156780......)

n=188495: c150783(6691017658......) = 462457564251721 * c150769(1446839272......)

n=188520: c50232(3815788894......) = 447917097500641 * c50217(8518962361......)

n=188551: c168001(1111111111......) = 185749834681027 * c167986(5981760969......)

n=188553: c125700(9009009009......) = 200879992901719 * c125686(4484771668......)

n=188555: c147143(6819977144......) = 485711623990511 * c147129(1404120636......)

n=188560: c75393(1000000009......) = 131897189769281 * c75378(7581662746......)

n=188568: c62209(1000000000......) = 122075780902849 * x62194(8191633038......)

n=188568: x62194(8191633038......) = 522593896297177 * c62180(1567494970......)

n=188581: c177472(9000000000......) = 139742833093147 * c177458(6440401844......)

n=188604: c56149(1488214667......) = 103154590253989 * c56135(1442703290......)

n=188617: c158161(1111111111......) = 285342366186307 * c158146(3893957725......)

n=188641: c178068(4606737073......) = 154169080572827 * c178054(2988106990......)

n=188661: c114303(6541853263......) = 118230258858493 * c114289(5533146358......)

n=188658: c61256(4277524095......) = 621449639909317 * c61241(6883138746......)

n=188690: c75443(1304933048......) = 698509047652051 * c75428(1868169142......)

n=94383: c62916(9990000009......) = 122128914915991 * c62902(8179881084......)

n=188765: c142993(1111099999......) = 234670864170751 * c142978(4734716446......)

n=188802: c59103(2917306011......) = 174843900047539 * c59089(1668520326......)

n=188808: c62922(3310571019......) = 277792592809033 * c62908(1191742006......)

n=188814: c62937(1098901098......) = 156313134448087 * c62922(7030126436......)

n=188818: c80907(3929126043......) = 111159263053609 * c80893(3534681622......)

n=188836: c88811(2715810901......) = 277672272776909 * c88796(9780634107......)

n=188847: c125884(9480280679......) = 168067316289277 * c125870(5640764003......)

n=94431: c62917(4642482681......) = 476675496769039 * c62902(9739293738......)

n=188877: c111552(9009009009......) = 348474224375083 * c111538(2585272705......)

n=188893: c184828(9000000000......) = 917856126656081 * x184813(9805458326......)

n=188897: c187044(3547197472......) = 537052189129243 * x187029(6604939973......)

n=188886: c62941(2496565616......) = 885827706917407 * c62926(2818342209......)

n=188943: c125949(3757446503......) = 325561163632843 * c125935(1154144573......)

n=188981: c174427(2381185459......) = 276778632433603 * c174412(8603212751......)

n=62993: c53988(9000000900......) = 460040970066511 * c53974(1956347691......)

n=189029: c188151(2172068526......) = 616282695893867 * x188136(3524467814......)

n=189038: c91441(1099999999......) = 156786809435117 * c91426(7015896324......)

n=189044: c93625(1009999999......) = 183481079720041 * c93610(5504654766......)

n=189097: c188116(9000000000......) = 190185249074867 * x188102(4732228205......)

n=94553: c90420(9000000000......) = 664673309053427 * c90406(1354048654......)

n=189114: c61488(9100000000......) = 132533400660169 * c61474(6866193695......)

n=94557: c61462(1608806689......) = 144404301084559 * c61448(1114098872......)

n=189132: c63041(1009998990......) = 207878901717229 * c63026(4858593063......)

n=189154: c79336(1658415876......) = 313835889043531 * c79321(5284341065......)

n=189186: c63047(2472059314......) = 584664940864237 * c63032(4228164102......)

n=189198: c60181(8141942233......) = 137180762920099 * c60167(5935192413......)

n=189238: c81032(1996731535......) = 151169437573967 * c81018(1320856627......)

n=189259: c153577(1111110999......) = 149407411431293 * c153562(7436786363......)

n=189286: c88200(9090909090......) = 124504751977847 * x88186(7301656319......)

n=189286: x88186(7301656319......) = 439812425491811 * c88172(1660175087......)

n=189292: c92017(1009999999......) = 526506500301721 * c92002(1918304901......)

n=189291: c126179(1688455927......) = 797400875378677 * c126164(2117449303......)

n=189297: c116628(2143677148......) = 349122559432483 * c116613(6140185132......)

n=189302: c94631(4413786977......) = 173574831675743 * c94617(2542872681......)

n=94657: c93608(2635647025......) = 883364895125507 * c93593(2983644742......)

n=189323: c186951(1470665937......) = 981107714204357 * x186936(1498985193......)

n=189334: c93828(7407546469......) = 157964108737693 * c93814(4689385790......)

n=63112: c25873(1000000000......) = 412143660057193 * c25858(2426338427......)

n=189345: c93109(3400193662......) = 227718341992831 * c93095(1493157570......)

n=189351: c126210(1148086248......) = 241345879880923 * c126195(4757016149......)

n=189357: c105832(2721787847......) = 156276557434831 * c105818(1741648198......)

n=189370: c73012(2857567830......) = 509263904995801 * c72997(5611172914......)

n=189402: c63121(2459329113......) = 550158580987567 * c63106(4470218584......)

n=189416: c94704(9999000099......) = 193255339389017 * c94690(5173983876......)

n=189454: c94715(1035784382......) = 300641947986409 * c94700(3445242385......)

n=189459: c126242(5698016708......) = 122500764739117 * c126228(4651413172......)

n=189471: c125121(1109999999......) = 496935635936653 * c125106(2233689676......)

n=189497: c139907(2273319773......) = 126896671355917 * c139893(1791473132......)

n=189503: c183345(9506024665......) = 150519923616443 * x183331(6315459400......)

n=189504: c52981(1753977233......) = 193905414029377 * c52966(9045529968......)

n=189507: c125272(3638076649......) = 127101859383067 * c125258(2862331571......)

n=189535: c151624(9000090000......) = 207773732052191 * c151610(4331678461......)

n=189539: c162456(9000000900......) = 151352037104773 * c162442(5946402223......)

n=189544: c84665(5275292054......) = 351812368770553 * c84651(1499461793......)

n=189582: c59827(4800008439......) = 690111921316891 * c59812(6955405770......)

n=189587: c185136(9000000000......) = 225392802365267 * x185122(3993029016......)

n=189589: c181324(9000000000......) = 535209045141523 * x181310(1681585930......)

n=189607: c172254(5274064104......) = 468393473486357 * c172240(1125990092......)

n=189650: c75803(1235746485......) = 110679334149001 * c75789(1116510588......)

n=189651: c98360(4514968261......) = 158082575658547 * c98346(2856082172......)

n=189662: c83507(2106033308......) = 953662364247143 * x83492(2208363659......)

n=189665: c130026(9763696627......) = 197505823552031 * c130012(4943498096......)

n=189662: x83492(2208363659......) = 986414767291207 * c83477(2238777979......)

n=189670: c69957(2273357735......) = 425806083415441 * c69942(5338950813......)

n=94835: c69979(5858038392......) = 831551243778191 * c69964(7044711238......)

n=189695: c137915(2928640900......) = 163076701675801 * c137901(1795867141......)

n=189822: c59513(2327167354......) = 360790959824173 * c59498(6450181998......)

n=189829: c176236(3271805112......) = 718697353772347 * c176221(4552410128......)

n=189834: c61034(9587313560......) = 811476461746969 * c61020(1181465392......)

n=189871: c167994(9753202049......) = 410917895047199 * c167980(2373516015......)

n=94939: c85520(1379567829......) = 216013426162769 * c85505(6386491127......)

n=189879: c125480(1083100080......) = 337853155755319 * c125465(3205830881......)

n=189893: c169188(1222750577......) = 608412288711613 * c169173(2009740106......)

n=189954: c61920(9990010000......) = 252654160685041 * c61906(3954025523......)

n=189957: c121089(1109999999......) = 101324528368471 * c121075(1095489925......)

n=189965: c151968(9000090000......) = 135476112256031 * c151954(6643304012......)

n=189973: c162792(9999999000......) = 225111303892399 * c162778(4442246491......)

# 210199 of 300000 Φn(10) factorizations were cracked. 300000 個中 210199 個の Φn(10) の素因数が見つかりました。

### April 4, 20232023 年 4 月 4 日 (Kurt Beschorner)

n=1499: c1464(1647283119......) = 444025804128316092985120887216489504283 * c1425(3709881508......)

# ECM B1=11e6, sigma=8568897179058893

n=12446: c5264(2195418631......) = 501279565140480220168322480009 * c5234(4379629221......)

# P-1 B1=72e6

n=12470: c4704(9091000000......) = 54121400967366927427316132251 * c4676(1679742179......)

# P-1 B1=85e6

n=145931: c145924(9517427408......) = 140529180232862467 * x145907(6772563102......)

n=145931: x145907(6772563102......) = 17203170484198361951 * c145888(3936811013......)

n=146011: c145986(9104824621......) = 9597686137133649559 * c145967(9486478815......)

# gr-mfaktc

plain text versionプレーンテキスト版