Previous month前月 | September 2003 2003 年 9 月 | October 2012 2012 年 10 月 November 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 | Recent changes 最近の更新 | Next month翌月

January 30, 2013 2013 年 1 月 30 日 (Alfred Reich)

n=13804: c5354(2589900225......) = 9371819032924920541132661 * c5329(2763497903......)

# P-1

January 29, 2013 2013 年 1 月 29 日 (Kurt Beschorner)

n=3521: c2986(1232826401......) = 1277633971008950277135972640986062747 * c2949(9649292596......)

# ECM B1=1e6, sigma=630708346

January 27, 2013 2013 年 1 月 27 日 (Alfred Reich)

n=16700M: c3265(6180307241......) = 1604024700347443063996027791301 * c3235(3853000044......)

# P-1

n=20420M: c4072(4165249389......) = 82004035977363048702801018341 * c4043(5079322426......)

# P-1

January 26, 2013 2013 年 1 月 26 日 (Alfred Reich)

n=10620L: c1303(2044386661......) = 19016664931956791438394336192421 * c1272(1075050051......)

# ECM B1=1e6, sigma=2992045825; Dec 28, 2012

n=10860M: c1404(5579449036......) = 245430702416807255148257170545061 * c1372(2273329694......)

# P-1

January 22, 2013 2013 年 1 月 22 日 (Kurt Beschorner)

n=3515: c2554(1891251769......) = 581438573006379663607427653404191 * c2521(3252711219......)

# ECM B1=1e6, sigma=3530665118

n=3523: c3228(4965516262......) = 665007652838375487862282248071 * c3198(7466855819......)

# ECM B1=1e6, sigma=3077762430

January 18, 2013 2013 年 1 月 18 日 (Ray Chandler)

n=18910: p7200(9091000000......) is definitely prime.

# Certification is available at: http://stdkmd.com/nrr/cert/Phi/index.htm#CERT_PHI_18910_10

January 17, 2013 2013 年 1 月 17 日 (Kenji Ibusuki)

n=405: c193(3517412599......) = 250093532125526915278352940802333503335240107302499957158939577140544111 * p122(1406438851......)

# SNFS

SNFS difficulty: 216 digits.
deg: 4
skew: 1.000
c4: 1
c3: -1
c2: -4
c1: 4
c0: 1
Y0: -1000000000000000000000000000000000000000000000000000001
Y1: 1000000000000000000000000000
rlim: 75000000
alim: 75000000
lpbr: 31
lpba: 31
mfbr: 62
mfba: 62
rlambda: 2.6
alambda: 2.6
lss: 1
qintsize: 25000
#relslim: 130000000
relslim: 200000000
Total time: 13724.11 hours.
Scaled time: 61964.35 units (timescale=4.515).
Polynomial score was as follows:
skew 1.00, size 6.692e-022, alpha 2.444, combined = 4.307e-013 rroots = 4 
Factor base limits: 75000000/75000000
Large primes per side: 3
Large prime bits: 31/31
Sieved special-q in [37500000, 169425001)
Relations: raw-rels:191768853 rels:162243918, finalFF:9866090
Pruned matrix : 8890413 x 8890638
Total sieving time: 13431.39 hours.
Total relation processing time: 46.81 hours.
Total matrix build processing time: 153.41 hours.
Matrix pruned processing time: 0.00 hours.
Matrix solve time: 92.26 hours.
Total time of square root: 0.24 hours.
Prototype def-par.txt line would be:
snfs,216,4,0,0,0,0,0,0,0,0,75000000,75000000,31,31,62,62,2.6,2.6,100000
total time: 13724.11 hours 

# c193 was the ninth smallest composite cofactor in the table.

# 1058 of 100000 Φn(10) factorizations were finished. 100000 個中 1058 個の Φn(10) の素因数分解が終わりました。

January 17, 2013 2013 年 1 月 17 日 (Ray Chandler)

n=6022: p3010(9090909090......) is definitely prime.

# Certification is available at: http://stdkmd.com/nrr/cert/Phi/index.htm#CERT_PHI_6022_10

January 16, 2013 2013 年 1 月 16 日 (Maksym Voznyy)

n=23827: c23814(8138069173......) = 38105240217664801 * c23798(2135682422......)

n=23869: c23869(1111111111......) = 2140600349595504157 * c23850(5190651824......)

n=17971: c17946(1246518751......) = 157493304995876480078831 * c17922(7914741211......)

n=17989: c17982(6055500722......) = 12117331417558867 * c17966(4997388050......)

n=18127: c18108(1811754184......) = 542745603387886747 * c18090(3338127795......)

n=12539: c12521(8542333367......) = 108063097721497846121 * c12501(7904949560......)

n=18149: c18149(1111111111......) = 274630613523156292573 * c18128(4045838505......)

n=18211: c18196(2624414615......) = 1838184281137085276441 * c18175(1427721171......)

n=24091: c24082(6466828236......) = 120905523839375032679 * c24062(5348662352......)

n=12763: c12744(2822277397......) = 361220636228440841 * c12726(7813167671......)

n=24107: c24082(1150810132......) = 13441854745109449133 * c24062(8561393905......)

n=12809: c12774(2339119786......) = 903444367846852997323 * x12753(2589113252......)

n=12809: x12753(2589113252......) = 1484234127725113027 * c12735(1744410268......)

n=12889: c12883(1486311001......) = 23261276308275361 * c12866(6389636500......)

n=12917: c12903(1752583752......) = 127180314190513643 * c12886(1378030682......)

n=18443: c18411(3851807640......) = 47178679711453971422039 * c18388(8164297229......)

n=18461: c18432(1069833919......) = 188096072109691133 * c18414(5687699413......)

n=18493: c18486(2567640179......) = 264887096125173950929 * c18465(9693338094......)

n=13147: c13133(1625884747......) = 12037757989459740926159 * c13111(1350654124......)

n=13187: c13167(6194282979......) = 25278572851444397 * c13151(2450408500......)

n=18701: c18680(2594670919......) = 481922651842202051843 * c18659(5383998675......)

n=13291: c13281(4220283882......) = 1144657219776426569 * c13263(3686941216......)

n=13327: c13321(8337230988......) = 6090443285825585399 * c13303(1368903805......)

n=18743: c18703(1366343453......) = 52922701011725050409 * c18683(2581771956......)

n=24419: c24398(6281457379......) = 9467540475776806009 * c24379(6634729891......)

n=18803: c18778(1584914941......) = 220753220726099635931519 * c18754(7179577885......)

n=13499: c13483(7518837848......) = 20369226749314350631 * c13464(3691273085......)

n=13567: c13554(3309507001......) = 54717640966883390413 * c13534(6048336410......)

n=13591: c13591(1111111111......) = 12273945842572046269547 * c13568(9052599101......)

n=18959: c18926(2558969138......) = 15080250454571339467 * c18907(1696900954......)

n=13669: c13663(3694848383......) = 197142768476519 * c13649(1874199298......)

n=13691: c13691(1111111111......) = 2310868403003235029639 * c13669(4808197254......)

n=19037: c19029(1424252600......) = 5921728811932917359 * c19010(2405129727......)

n=13709: c13695(8786659922......) = 533457473743946249 * c13678(1647115347......)

n=13759: c13751(6240743300......) = 37565475647140922227 * c13732(1661297559......)

n=19139: c19101(1017917596......) = 8478929939216281271 * c19082(1200526014......)

n=13807: c13801(8047389467......) = 158835023681734241 * c13784(5066508179......)

n=24677: c24639(2805340136......) = 537961417848354855403 * c24618(5214760841......)

n=19163: c19142(1153526468......) = 1087361791811153359 * c19124(1060848815......)

n=19207: c19201(2410381416......) = 20588994216422557 * c19185(1170713533......)

n=13879: c13872(2223805126......) = 2128258407221581867 * c13854(1044894322......)

n=19213: c19201(2294201722......) = 51544559897042878409 * c19181(4450909519......)

n=24709: c24709(1111111111......) = 681612364397105363 * c24691(1630121707......)

n=13903: c13870(3913265691......) = 23621905099393231 * c13854(1656625778......)

n=13931: c13907(3258861168......) = 3104504464259805757 * c13889(1049720239......)

n=24781: c24768(6999341215......) = 435960104960936754391 * c24748(1605500396......)

n=14011: c13979(1557151918......) = 4862817589228164466751 * p13957(3202159838......)

Primality testing 3202159838...... [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 5
Running N-1 test using base 7
Running N+1 test using discriminant 13, base 8+sqrt(13)
Calling N+1 BLS with factored part 0.05% and helper 0.04% (0.17% proof)
3202159838...... is Fermat and Lucas PRP! (22.3734s+0.0052s)

n=14057: c14043(1157578113......) = 4426199197679359 * c14027(2615286981......)

n=24847: c24820(4202222451......) = 1415769060213192649 * c24802(2968155308......)

n=14251: c14238(2270300365......) = 11425258326391339770317 * c14216(1987088869......)

n=19427: c19394(2195706539......) = 9010386018421684573 * c19375(2436861789......)

n=14341: c14341(1111111111......) = 138347900312365233199 * c14320(8031282792......)

n=19469: c19455(1274050295......) = 396557036875705799 * c19437(3212779440......)

n=19501: c19480(5710945518......) = 12853651563153158717 * c19461(4443053003......)

n=14437: c14424(3606087237......) = 14742205074766444441 * x14405(2446097594......)

n=14437: x14405(2446097594......) = 5644933631277882696071 * x14383(4333261920......)

n=14437: x14383(4333261920......) = 174606435094196824597 * c14363(2481730938......)

n=14449: c14427(5545694852......) = 3595240175661632683 * c14409(1542510258......)

n=14503: c14492(5531524662......) = 177380345212332891151 * c14472(3118454108......)

n=14543: c14528(2340536226......) = 54390136637598570157 * c14508(4303236525......)

n=19661: c19628(1144902652......) = 959952718480090481 * c19610(1192665670......)

n=19687: c19670(1591227441......) = 9909627609257061107 * c19651(1605738887......)

n=19717: c19699(2852053381......) = 216894123512065243 * c19682(1314951892......)

n=25171: c25134(1213260390......) = 7187121743911897163 * c25115(1688103295......)

n=25183: c25166(1535589297......) = 15110713165483301521 * c25147(1016225561......)

n=19919: c19887(1602801467......) = 153486575375262947 * c19870(1044261664......)

n=14969: c14957(1875114152......) = 251836936651548594631 * c14936(7445747145......)

n=19991: c19985(4631694593......) = 50639666122009009187 * c19965(9146376641......)

n=15137: c15102(2761667580......) = 3987139911987830850281 * c15080(6926437601......)

n=25343: c25309(6483504070......) = 297238032901189573 * c25292(2181249824......)

n=15161: c15146(1223166229......) = 33921109279523159 * c15129(3605914593......)

n=25349: c25340(3745730815......) = 12152377425743573 * c25324(3082302898......)

n=20123: c20099(8279894564......) = 67286969413214813 * c20083(1230534624......)

n=15307: c15300(1008172559......) = 3773475990592057957 * c15281(2671734395......)

n=25439: c25424(3927386720......) = 27854309247088257317 * c25405(1409974552......)

n=15359: c15330(8274133075......) = 3446189947008021429277 * c15309(2400950964......)

n=25469: c25436(6866225789......) = 1080232974840740736773 * c25415(6356245318......)

n=20261: c20250(1327046264......) = 41612317056220721 * c20233(3189070828......)

n=20353: c20340(2173418928......) = 6310881372476526959 * c20321(3443922965......)

n=25589: c25567(9272142150......) = 13628294653167035489 * c25548(6803596771......)

n=20407: c20379(3866991330......) = 910427977626857338997 * c20358(4247443428......)

n=15643: c15632(4453073634......) = 4043764558464069841 * c15614(1101219808......)

n=25639: c25580(5212494987......) = 1657004185058813228213 * c25559(3145734352......)

n=25673: c25642(2043362569......) = 6443108323928293 * c25626(3171392543......)

n=20543: c20526(2936226530......) = 1542782140420538405917 * c20505(1903202308......)

n=20593: c20563(1784360851......) = 60151792355655907 * x20546(2966430061......)

n=20593: x20546(2966430061......) = 123427624275150133129 * c20526(2403376131......)

n=20599: c20576(9830876141......) = 57262679197484070433153733 * c20551(1716803383......)

n=25717: c25708(7784741563......) = 8237392147824280785809 * c25686(9450492855......)

n=25759: c25731(2924555957......) = 21302255082217785707 * x25712(1372885615......)

n=25759: x25712(1372885615......) = 62175694854955763 * c25695(2208074423......)

n=25793: c25759(6585503047......) = 1404531141679596643 * c25741(4688755451......)

n=16067: c16037(2122180839......) = 248595364558937530254413 * c16013(8536687091......)

n=16111: c16098(1070810824......) = 92091836365280329 * c16081(1162764113......)

n=25919: c25886(8525003884......) = 2130778724362569493 * c25868(4000886524......)

n=20939: c20934(2653146233......) = 1489240246230605959 * c20916(1781543468......)

n=16253: c16248(3418067219......) = 1729569070984463161 * c16230(1976253667......)

n=16301: c16284(3959070446......) = 6362632788681426871 * c16265(6222377713......)

n=16349: c16349(1111111111......) = 1051468534180408428079 * c16328(1056723121......)

n=16363: c16349(4982285155......) = 276740762127172093 * c16332(1800343800......)

n=16427: c16427(1111111111......) = 726923074601129723 * c16409(1528512644......)

n=21059: c21024(4735837635......) = 462378902294284171877 * c21004(1024233072......)

n=21067: c21008(1100194488......) = 2943050039578768213 * c20989(3738279927......)

n=16453: c16431(1215900796......) = 51308099084149249 * c16414(2369802854......)

n=16529: c16521(7046322375......) = 5116364035139445808799 * c16500(1377212865......)

n=16573: c16534(3702073160......) = 282174778618659643 * c16517(1311978759......)

n=26317: c26285(2564791724......) = 155470913988292667 * c26268(1649692317......)

n=26357: c26331(5993253093......) = 788991878639701799 * c26313(7596089713......)

n=17327: c17299(1342503683......) = 20481519493156649 * c17282(6554707447......)

n=26497: c26469(2905377340......) = 837243706583224067 * c26451(3470169220......)

n=26501: c26496(2096317399......) = 165447327497864117 * c26479(1267060297......)

n=21787: c21778(1259852066......) = 786874193669989493 * c21760(1601084489......)

n=26641: c26613(3423218655......) = 164235730733523719 * c26596(2084332465......)

n=17551: c17537(6408105548......) = 891146548387995917 * c17519(7190854927......)

n=17581: c17581(1111111111......) = 299302596321357341641 * c17560(3712333687......)

n=26681: c26671(6925477755......) = 10410165426478252879 * c26652(6652610666......)

n=17599: c17579(3290319468......) = 357012920423777957 * c17561(9216247594......)

n=17623: c17616(3940556081......) = 25304868410805107 * c17600(1557232393......)

n=17627: c17608(5132072687......) = 34538265503539769123 * c17589(1485909211......)

n=17707: c17707(1111111111......) = 213219616310744117 * c17689(5211111108......)

n=22111: c22105(4187609950......) = 208867661387187323 * c22088(2004910632......)

n=22133: c22128(2510021259......) = 80496428773015550329 * c22108(3118177164......)

n=26849: c26835(6652977846......) = 60146878495346827 * c26819(1106121882......)

n=26879: c26836(7775700593......) = 1744531512962034531711819827 * c26809(4457185516......)

n=26953: c26946(2576500884......) = 1648342355378226169119853 * c26922(1563086015......)

n=22397: c22391(1653658164......) = 18109224266351759 * c22374(9131579245......)

n=22453: c22453(1111111111......) = 920546497146462409 * c22435(1207012480......)

n=22483: c22477(1235500017......) = 9776332007507218919 * c22458(1263766427......)

n=27283: c27240(4955270386......) = 944203517074901879 * c27222(5248095667......)

n=27397: c27362(9263313305......) = 448940612628539467 * c27345(2063371645......)

n=22901: c22881(2897593335......) = 91285660684558267 * c22864(3174204265......)

n=23029: c23029(1111111111......) = 1538044167144180835871 * c23007(7224182080......)

n=27611: c27584(1288583473......) = 12312766487437661723 * c27565(1046542606......)

n=23417: c23366(7358235117......) = 216661084381951481 * c23349(3396196016......)

n=23459: c23444(7277130577......) = 22187509842308047973 * c23425(3279832044......)

n=23557: c23557(1111111111......) = 317145267888206962279 * c23536(3503476872......)

n=23563: c23558(1178860207......) = 910641731435920307 * c23540(1294537869......)

n=27901: c27871(4984847870......) = 433984218956837231 * c27854(1148624224......)

n=23719: c23719(1111111111......) = 2257221891703376831 * c23700(4922471801......)

n=23741: c23722(2802815328......) = 25026105379140917 * c23706(1119956655......)

n=29333: c29324(3596583574......) = 33018044224218923 * c29308(1089278198......)

n=29339: c29334(1893541319......) = 640022771659880433495271 * c29310(2958553044......)

n=28759: c28728(3178848365......) = 1365527429671799998033361 * c28704(2327927141......)

n=28211: c28201(5344207438......) = 38777445757281577369242270431 * c28173(1378174176......)

n=29437: c29424(4783563185......) = 819599996219513237 * c29406(5836460721......)

n=28387: c28369(2047005311......) = 4797698353907652763 * c28350(4266640294......)

n=29027: c29027(1111111111......) = 794036824151898947 * c29009(1399319373......)

n=29131: c29106(6713230624......) = 19888539270030161 * c29090(3375426688......)

n=28559: c28554(1945256589......) = 990365296171708277 * c28536(1964180890......)

n=28573: c28533(1464154575......) = 51083086562500243 * c28516(2866221824......)

n=29179: c29156(2145132171......) = 73497350169920711 * c29139(2918652395......)

n=29221: c29201(1118968114......) = 31073505029774243 * c29184(3601036037......)

# Prime95, 80 ECM curves with B1=11000

# 1057 of 100000 Φn(10) factorizations were finished. 100000 個中 1057 個の Φn(10) の素因数分解が終わりました。

# 74868 of 100000 Φn(10) factorizations were cracked. 100000 個中 74868 個の Φn(10) の素因数が見つかりました。

# 110 of 9592 Rprime factorizations were finished. 9592 個中 110 個の Rprime の素因数分解が終わりました。

# 7412 of 9592 Rprime factorizations were cracked. 9592 個中 7412 個の Rprime の素因数が見つかりました。

January 15, 2013 2013 年 1 月 15 日 (Ray Chandler)

n=14714: p6301(1099999890......) is definitely prime.

# Certification is available at: http://stdkmd.com/nrr/cert/Phi/index.htm#CERT_PHI_14714_10

January 13, 2013 2013 年 1 月 13 日 (Kurt Beschorner)

n=3493: c2973(2366017834......) = 794812609539470611395719218679329 * c2940(2976824733......)

# ECM B1=1e6, sigma=1129288608

n=3509: c3063(4831924539......) = 2665053299682908076975112711357 * c3033(1813068631......)

# ECM B1=1e6, sigma=833685199

January 4, 2013 2013 年 1 月 4 日 (Maksym Voznyy)

n=44021: c43990(1267473560......) = 3974790970167917 * c43974(3188780415......)

n=44111: c44078(7578471016......) = 523062230875799 * c44064(1448866037......)

n=40559: c40554(1369729793......) = 75770546095947517 * c40537(1807733827......)

n=42461: c42461(1111111111......) = 10149889823812303373 * c42442(1094702632......)

n=44843: c44834(4415146994......) = 179600821515953903111 * c44814(2458311135......)

n=41011: c40953(2434780842......) = 2827475780325173 * c40937(8611146591......)

n=41411: c41389(1173535032......) = 140523051832058587 * c41371(8351192331......)

n=41453: c41428(5583734456......) = 364606021664519 * c41414(1531443290......)

n=43579: c43572(1722734882......) = 18480230679518329 * c43555(9322042090......)

n=41879: c41855(9220320746......) = 13987946372312837 * c41839(6591618598......)

n=45943: c45936(2281561530......) = 230463095886706027 * c45918(9899899686......)

n=33937: c33918(9058777080......) = 3208360924816355052439 * c33897(2823490652......)

n=31543: c31515(1532475498......) = 2826219495022403609 * c31496(5422351310......)

n=34057: c34049(1794556826......) = 33404484948384697613 * c34029(5372203251......)

n=37097: c37085(2242660281......) = 1485836824203376507 * c37067(1509358393......)

n=31607: c31556(6942261897......) = 3819676982874685496933 * c31535(1817499733......)

n=37117: c37108(2215793447......) = 18032906171155953397 * c37089(1228750056......)

n=50131: c50084(4467976621......) = 18020045580157867 * p50068(2479448013......)

Primality testing 2479448013...... [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 3
Running N+1 test using discriminant 11, base 1+sqrt(11)
Calling N-1 BLS with factored part 0.02% and helper 0.00% (0.06% proof)
2479448013...... is Fermat and Lucas PRP! (308.8297s+0.0302s)

n=50341: c50329(5751926050......) = 60176826363110874359 * c50309(9558373875......)

n=60527: c60511(8132427423......) = 13286987743905373843 * c60492(6120595262......)

n=60659: c60622(9110033740......) = 1837717899442008277 * c60604(4957253636......)

n=60703: c60691(6281936740......) = 4880905902591569 * c60676(1287043197......)

n=60761: c60755(9143216601......) = 216122355530947 * c60741(4230574194......)

n=60779: c60767(3007784204......) = 97159759447856683 * c60750(3095709809......)

n=60937: c60928(1574047636......) = 366432696178516841 * c60910(4295598216......)

n=61121: c61083(2493988698......) = 772080128011013 * c61068(3230220035......)

n=51487: c51459(6633577043......) = 11677054966719119 * c51443(5680864792......)

n=51599: c51572(2005493993......) = 5118704559727919 * c51556(3917971764......)

n=57041: c57024(9274770824......) = 1937389813470347 * c57009(4787250743......)

n=61627: c61619(4440791804......) = 40777999580723 * c61606(1089016589......)

n=52051: c52009(7557880888......) = 253931246766317 * c51995(2976349301......)

n=61843: c61817(2596089545......) = 282298886756882803 * c61799(9196244362......)

n=52177: c52161(4526806492......) = 6218642053753237 * c52145(7279413179......)

n=57719: c57679(4167702802......) = 49228715991347 * c57665(8465999404......)

n=62297: c62282(2702178426......) = 4476120425509511 * c62266(6036876066......)

n=57973: c57953(2094009064......) = 50152614595757 * c57939(4175273973......)

n=62303: c62296(2876449338......) = 2512301497655123 * c62281(1144945915......)

n=52757: c52736(4923690651......) = 8587766773532293 * c52720(5733377234......)

n=52817: c52811(1502640665......) = 7258899095968840889 * c52792(2070066887......)

n=52883: c52856(3196566379......) = 269116018525867 * c52842(1187802345......)

n=62927: c62911(8387332248......) = 168518234029507 * c62897(4977106659......)

n=53269: c53261(4400525963......) = 211761843030010759 * c53244(2078054242......)

n=58937: c58920(1623324981......) = 1747110378259555787 * c58901(9291484968......)

n=63473: c63459(8947391117......) = 94526763252259883 * c63442(9465458046......)

n=54083: c54069(8509637611......) = 162839869552974079 * c54052(5225770344......)

n=59453: c59431(2178903756......) = 50649868130627 * c59417(4301894233......)

n=63803: c63788(1191354813......) = 1358744659861399 * c63772(8768055168......)

n=54713: c54695(1061765703......) = 8921310230005853 * c54679(1190145479......)

n=54877: c54858(1836069210......) = 1971066984669201281 * c54839(9315103063......)

n=37337: c37307(5934423045......) = 123097633582535411875391 * c37284(4820907496......)

n=34369: c34342(1990189761......) = 1765472712678893 * c34327(1127284351......)

n=37511: c37482(2718492498......) = 25165012640662700161 * c37463(1080266692......)

n=37579: c37554(9415589527......) = 3166348435986716634427 * c37533(2973642894......)

n=37643: c37623(4672432428......) = 6135058909328237302184471 * c37598(7615953648......)

n=37691: c37670(4986040493......) = 2111917905043783679 * c37652(2360906397......)

n=34841: c34809(2305630161......) = 1981206641148556906579427 * c34785(1163750470......)

n=34913: c34900(6076949935......) = 3770645910807126704957901720013 * c34870(1611646937......)

n=37889: c37880(3593802341......) = 8699338157937836028751 * c37858(4131121558......)

n=37957: c37950(4435284694......) = 21890591106297440159 * c37931(2026114632......)

n=37963: c37935(8261854440......) = 879843579474342529 * c37917(9390140057......)

n=37997: c37986(1444462512......) = 1148288684152477493 * c37968(1257926279......)

n=35201: c35187(8608870469......) = 28624559517013 * c35174(3007511946......)

n=38069: c38037(1602066978......) = 150550200538574446258719459423431 * c38005(1064141377......)

n=35509: c35487(9645752860......) = 3043262410728970335342373795403 * c35457(3169543587......)

n=39119: c39107(1797715944......) = 218853866606477548711 * c39086(8214229761......)

n=39929: c39900(5749788860......) = 171672731631000300517 * c39880(3349273239......)

n=39983: c39947(7802910736......) = 35137147802839 * c39934(2220701230......)

# Prime95

# 1056 of 100000 Φn(10) factorizations were finished. 100000 個中 1056 個の Φn(10) の素因数分解が終わりました。

# 74853 of 100000 Φn(10) factorizations were cracked. 100000 個中 74853 個の Φn(10) の素因数が見つかりました。

# 109 of 9592 Rprime factorizations were finished. 9592 個中 109 個の Rprime の素因数分解が終わりました。

# 7397 of 9592 Rprime factorizations were cracked. 9592 個中 7397 個の Rprime の素因数が見つかりました。

January 3, 2013 2013 年 1 月 3 日 (Kurt Beschorner)

n=3485: c2514(3920616275......) = 14108972804816153038730629034861351 * c2480(2778810569......)

# ECM B1=1e6, sigma=1869475267

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | October 2012 2012 年 10 月 November 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 | Recent changes 最近の更新 | Next month翌月