Previous month前月 | September 2003 2003 年 9 月 | January 1 月 February 2 月 March 3 月 April 2019 2019 年 4 月 May 5 月 June 6 月 July 7 月 | Recent changes 最近の更新 | Next month翌月

April 28, 2019 2019 年 4 月 28 日 (Alfred Reich)

n=8413: c8174(3957321107......) = 243904395884094668914288576880306533 * c8139(1622488636......)

n=8737: c8671(1511692665......) = 7770910590299873304488185798093 * c8640(1945322428......)

n=9377: c9377(1111111111......) = 4321331760187959083703542399831 * c9346(2571223809......)

n=10159: c10119(1112158968......) = 29437946832889335998236951 * c10093(3777977366......)

n=10259: c10237(1473439870......) = 115361122055246822564853304133 * c10208(1277241278......)

n=11783: c11772(2292492104......) = 2080263724013311300835809 * c11748(1102019940......)

n=12559: c11872(3903570988......) = 4778840951127934697851667 * c11847(8168447177......)

n=12581: c12008(3576680046......) = 2445512734451107507 * c11990(1462548117......)

n=12773: c12474(3063526302......) = 60296045245324124413 * c12454(5080808020......)

n=12779: c11773(4289629990......) = 1506749748512063329 * c11755(2846942563......)

n=12833: c12469(4553946223......) = 36807212618820443 * c12453(1237242893......)

n=12937: c12144(5699591251......) = 262058850066411227 * c12127(2174927978......)

n=12989: c12528(5627157709......) = 9210876865683601877 * c12509(6109252996......)

n=12997: c12612(9342472384......) = 121574395299121946569 * c12592(7684572365......)

n=13031: c12784(7621504372......) = 548817716613458573 * c12767(1388713254......)

n=13061: c12672(9000000000......) = 118691142954131999 * x12655(7582705647......)

n=13061: x12655(7582705647......) = 96509307226360422893 * c12635(7856968271......)

n=13069: c11191(1187330511......) = 1349265660312356203397 * c11169(8799827541......)

n=13087: c12496(9000000000......) = 571592971890013 * c12482(1574547001......)

n=13091: c11215(2550191928......) = 4443290713184542649 * c11196(5739421732......)

n=13123: c11909(5184567914......) = 2179097622352481546717 * c11888(2379227007......)

n=13133: c12520(1912909884......) = 47776729087159013 * x12503(4003852755......)

n=13133: x12503(4003852755......) = 13172152262570076133 * c12484(3039634431......)

n=13157: c12866(5525844614......) = 590550898465907 * c12851(9357101358......)

n=13193: c12930(8641433080......) = 23451325309248391 * c12914(3684837836......)

n=13319: c12600(9000000000......) = 422428981799832803 * c12583(2130535637......)

n=13351: c12151(4391003561......) = 28026698468489907161 * x12132(1566721662......)

n=13351: x12132(1566721662......) = 37458859374925798681 * c12112(4182512998......)

n=13529: c13265(5580425373......) = 429432715502639 * c13251(1299487713......)

n=13579: c13147(1326323431......) = 614169584243455267 * c13129(2159539425......)

n=13631: c13264(1859991269......) = 1614347848993133609 * c13246(1152162633......)

n=13813: c13056(3944367338......) = 4652075018214523 * c13040(8478726854......)

n=13861: c13602(1369169102......) = 604265682843150439 * c13584(2265839583......)

n=13961: c13309(4343297148......) = 6319773321791603 * c13293(6872552110......)

n=13987: c13690(1124260846......) = 7027411937378329548173 * c13668(1599822034......)

n=14113: c12811(3459797702......) = 6804531405856774613 * c12792(5084549539......)

n=14141: c13867(1532183799......) = 630709273731769591 * c13849(2429302791......)

n=14309: c13915(2096577686......) = 266233227045535723 * c13897(7874966282......)

n=14809: c14481(7504758810......) = 296283969375966883 * c14464(2532961478......)

n=14989: c13800(1242212902......) = 119396574302447885587 * c13780(1040409165......)

n=15083: c15083(1111111111......) = 321103436853409015750259267 * c15056(3460290310......)

n=15103: c13720(9000000000......) = 348543597237844273079 * c13700(2582173384......)

n=15191: c13791(6405899910......) = 632037145610952071 * c13774(1013532187......)

n=15347: c15061(8868641982......) = 127902710469044323 * c15044(6933896826......)

n=15371: c14523(6967498995......) = 2577406350840940453 * c14505(2703298605......)

n=15487: c14552(1713446637......) = 935239162645494923 * x14534(1832094619......)

n=15487: x14534(1832094619......) = 1743582023637651243986923 * c14510(1050764801......)

n=15577: c15120(9000000000......) = 2095166797252861973 * c15102(4295600718......)

n=15599: c14748(1362234396......) = 46838916594062591 * c14731(2908338824......)

n=15751: c14858(2110203608......) = 10266197079830917 * c14842(2055487140......)

n=15793: c14848(9000000000......) = 59033421771015516270079 * c14826(1524560110......)

n=15829: c14376(1421419208......) = 5583006188505416507 * c14357(2545974623......)

n=15889: c15883(2497479418......) = 28340715892715335093 * c15863(8812337092......)

n=15893: c15164(1214053542......) = 1921837468520299583102077 * c15139(6317149927......)

n=16003: c14738(8770062960......) = 10094343528191431738711 * c14716(8688096393......)

n=16313: c14807(1226259645......) = 153614332714379275399 * c14786(7982716347......)

n=16459: c16181(1412966589......) = 55718955151289934443239 * c16158(2535881345......)

n=16589: c16213(1004633594......) = 72492481855619932507 * c16193(1385845220......)

n=16637: c16350(7088073682......) = 130558135696811058722557 * c16327(5429055527......)

n=16859: c16096(1403289762......) = 52864341802012711 * c16079(2654510989......)

n=16663: c15759(8413065819......) = 654967470549079 * c15745(1284501322......)

n=17173: c15840(9000000000......) = 29518631350664587 * c15824(3048921846......)

n=17219: c16892(2613316298......) = 39930944006701407721 * c16872(6544589323......)

n=17251: c15893(1170859258......) = 95645401884063781012147 * c15870(1224166802......)

n=17309: c16359(1357923835......) = 197047365083113277 * c16341(6891357491......)

n=17399: c17123(1114731859......) = 218558481769387 * c17108(5100382517......)

n=17407: c15897(4648557555......) = 1019667083181292963 * c15879(4558897342......)

n=17447: c17111(3404126643......) = 1014502546032788717 * c17093(3355463874......)

n=17527: c16461(9752783037......) = 16660688003072805521 * c16442(5853769685......)

n=17821: c17489(6120203332......) = 75317223441990240773 * c17469(8125901424......)

n=17999: c17516(2500069446......) = 297922411607347 * c17501(8391679675......)

n=18023: c17688(9000000000......) = 84123467203295920963 * c17669(1069856046......)

n=18037: c16925(3234552364......) = 15855860455739606866919 * c16903(2039972774......)

n=18313: c18283(2414840537......) = 324093184007522256791 * c18262(7451068571......)

n=18451: c18402(4226367724......) = 274059920186681161003 * c18382(1542132728......)

n=18467: c18096(9000000000......) = 3345874935375758991967277 * c18072(2689879380......)

n=18659: c18192(9069457299......) = 43214964502300050068131639 * c18167(2098684426......)

n=18737: c18240(9000000000......) = 39236107553573615831 * c18221(2293805517......)

n=18871: c18577(1860018288......) = 31798634204579653 * c18560(5849365340......)

n=18943: c17905(1684544668......) = 42760228212482479 * c17888(3939512811......)

n=19027: c18609(4084732418......) = 1412889413746642940399 * c18588(2891048923......)

n=19043: c18762(8439538676......) = 69735797571237214643 * c18743(1210216125......)

n=19127: c18449(2188550564......) = 22666057907036191 * c18432(9655629460......)

n=19247: c18216(9000000000......) = 208381320522103013 * c18199(4319005166......)

n=19487: c17958(3391884559......) = 40817005297404744721 * c17938(8309978976......)

n=19639: c19120(9000000000......) = 13474722076382161157 * c19101(6679173009......)

n=19781: c19489(2613679454......) = 30349984016803562399443 * c19466(8611798455......)

# 201054 of 300000 Φn(10) factorization were cracked. 300000 個中 201054 個の Φn(10) の素因数が見つかりました。

# 18757 of 25997 Rprime factorization were cracked. 25997 個中 18757 個の Rprime の素因数が見つかりました。

April 27, 2019 2019 年 4 月 27 日 (Kurt Beschorner)

n=255255: x92160(9009100001......) = 62731945294208191 * x92144(1436126356......)

# 201040 of 300000 Φn(10) factorization were cracked. 300000 個中 201040 個の Φn(10) の素因数が見つかりました。

April 25, 2019 2019 年 4 月 25 日 (Alfred Reich)

n=6499: c6310(1666220225......) = 4165975905806403445675813 * c6285(3999591603......)

n=6859: c6466(2551155230......) = 67060198998473064997241 * c6443(3804276260......)

n=7103: c7103(1111111111......) = 42802214480689253068237806547 * c7074(2595919684......)

n=7295: c5821(1247852037......) = 41232217477282447750778881 * c5795(3026400504......)

n=7979: c7784(2713743858......) = 216251636371721529162346249283 * c7755(1254900958......)

n=6838: c3080(2347961252......) = 11752801686094820502490861046771611 * c3046(1997788540......)

n=7118: c3489(3993799416......) = 93606245741965473665134054924388953019 * c3451(4266595017......)

n=8972: c4468(2513140441......) = 1331980990053596471625571221796349 * c4435(1886769000......)

n=9634: c4790(1210389805......) = 3455074226735489730084375527 * c4762(3503223739......)

n=13708: c6446(1244280911......) = 17303517253012077157833541 * c6420(7190913229......)

n=15614: c7555(7827677243......) = 6725377118748704696140853 * c7531(1163901608......)

n=16868: c8387(5931150012......) = 4483650775938337151558860669 * c8360(1322839424......)

n=18310: c7302(3817568627......) = 32971761628244713811 * c7283(1157829742......)

n=18956: c8094(5791434120......) = 69055974232189896169 * c8074(8386579416......)

n=52522: c26260(9090909090......) = 4366565567916070973 * c26242(2081935779......)

n=73426: c36712(9090909090......) = 713449936634564276647 * c36692(1274218221......)

n=88034: c44016(9090909090......) = 2511441699319222379 * c43998(3619796984......)

# 201039 of 300000 Φn(10) factorization were cracked. 300000 個中 201039 個の Φn(10) の素因数が見つかりました。

# 18755 of 25997 Rprime factorization were cracked. 25997 個中 18755 個の Rprime の素因数が見つかりました。

April 23, 2019 2019 年 4 月 23 日 (Alfred Reich)

n=17878: c7633(5963208059......) = 799561367576758181921 * c7612(7458099279......)

n=18160: c7233(1000000009......) = 81895661771812674241 * c7213(1221065912......)

n=18458: c8343(2967171770......) = 521288766830443861149539 * c8319(5691992536......)

n=19232: c9570(5563162400......) = 285094911781370037857 * c9550(1951336965......)

n=19576: c9739(2434105066......) = 850018252663503356742769 * c9715(2863591526......)

n=19894: c8219(8363798885......) = 3197022798810501273105238852303 * c8189(2616121126......)

# 201035 of 300000 Φn(10) factorization were cracked. 300000 個中 201035 個の Φn(10) の素因数が見つかりました。

April 21, 2019 2019 年 4 月 21 日 (Alfred Reich)

n=15118: c7558(9090909090......) = 1239291237280253299562812409579 * c7528(7335571185......)

n=18554: c9276(9090909090......) = 558660194389136210574365412179 * c9247(1627269882......)

# 201034 of 300000 Φn(10) factorization were cracked. 300000 個中 201034 個の Φn(10) の素因数が見つかりました。

April 21, 2019 2019 年 4 月 21 日 (Makoto Kamada)

n=212014: x91960(9090909091......) is (probable) prime

$ ./pfgw64 -tc -q"(10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1)"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 3
Running N-1 test using base 7
Running N+1 test using discriminant 23, base 1+sqrt(23)
Calling N-1 BLS with factored part 0.08% and helper 0.01% (0.25% proof)
(10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1) is Fermat and Lucas PRP! (1052.5051s+0.1145s)

# 1160 of 300000 Φn(10) factorization were finished. 300000 個中 1160 個の Φn(10) の素因数分解が終わりました。

# 201032 of 300000 Φn(10) factorization were cracked. 300000 個中 201032 個の Φn(10) の素因数が見つかりました。

April 20, 2019 2019 年 4 月 20 日 (Alfred Reich)

n=30152: c15072(9999000099......) = 159141989042800124633 * c15052(6283068447......)

n=81688: c40840(9999000099......) = 377897220200968844448473 * c40817(2645957568......)

n=106138: c53068(9090909090......) = 31936532170031364877 * c53049(2846554861......)

n=142712: c71352(9999000099......) = 42297232876849 * c71339(2363984454......)

n=143368: c71680(9999000099......) = 4913006957313673 * c71665(2035209839......)

n=192034: c96016(9090909090......) = 6111767335518367 * c96001(1487443580......)

n=192674: c96336(9090909090......) = 8901357223738205851 * c96318(1021294715......)

n=203026: x101512(9090909090......) = 107438599467583 * x101498(8461492551......)

n=207362: x103680(9090909090......) = 47546101202099 * x103667(1912019884......)

n=208786: x104392(9090909090......) = 12842462979979 * x104379(7078789407......)

n=210776: x105384(9999000099......) = 10227766287841 * x105371(9776328299......)

n=215854: x107926(9090909090......) = 163968874414649 * x107912(5544289502......)

n=217006: x108502(9090909090......) = 246626030418373 * x108488(3686110941......)

n=219838: x109918(9090909090......) = 50891178411677 * x109905(1786342815......)

n=223208: x111600(9999000099......) = 19676505938633 * x111587(5081694957......)

n=225374: x112686(9090909090......) = 1436712118662251 * x112671(6327578763......)

n=227074: x113536(9090909090......) = 152634344676423721 * x113519(5956004928......)

n=227134: x113566(9090909090......) = 95453305851979 * x113552(9523933204......)

n=227674: x113836(9090909090......) = 139845281222480437 * x113819(6500690628......)

n=230306: x115152(9090909090......) = 92992442176397 * x115138(9775965528......)

n=231542: x115770(9090909090......) = 260326629968201 * x115756(3492116458......)

n=231592: x115792(9999000099......) = 226594620513817 * x115778(4412726161......)

n=232054: x116026(9090909090......) = 1115216117200681 * x116011(8151701675......)

n=234706: x117352(9090909090......) = 26547827314823 * x117339(3424351448......)

n=235442: x117720(9090909090......) = 125174609886691 * x117706(7262582323......)

n=235496: x117744(9999000099......) = 232157338119097 * x117730(4306992913......)

n=235546: x117772(9090909090......) = 1654543974411171409 * x117754(5494510409......)

n=237368: x118680(9999000099......) = 17589222783761 * x118667(5684731055......)

n=238198: x119098(9090909090......) = 523170259365009423019 * x119078(1737657851......)

n=239494: x119746(9090909090......) = 13959279724183 * x119733(6512448543......)

n=240826: x120412(9090909090......) = 220094589037887131 * x120395(4130455514......)

n=241096: x120544(9999000099......) = 20176839878137 * x120531(4955681940......)

n=241354: x120676(9090909090......) = 23885744629171 * x120663(3805997774......)

n=242552: x121272(9999000099......) = 35737195958727257 * x121256(2797925195......)

n=242702: x121350(9090909090......) = 12267356814371 * x121337(7410650255......)

n=243928: x121960(9999000099......) = 1023920605390961 * x121945(9765405684......)

n=246382: x123190(9090909090......) = 1751685275326455481 * x123172(5189807335......)

n=247634: x123816(9090909090......) = 30593485183927859 * x123800(2971517967......)

n=252682: x126340(9090909090......) = 3018208063486919531 * x126322(3012022001......)

n=252698: x126348(9090909090......) = 251947081612409 * x126334(3608261319......)

n=252866: x126432(9090909090......) = 198109827664367 * x126418(4588822875......)

n=254102: x127050(9090909090......) = 61952018191896127 * x127034(1467411289......)

n=254266: x127132(9090909090......) = 1818501312241379 * x127117(4999121545......)

n=254326: x127162(9090909090......) = 17561551096841 * x127149(5176598035......)

n=254906: x127452(9090909090......) = 569152962330727 * x127438(1597269924......)

n=255082: x127540(9090909090......) = 49081328306687 * x127527(1852213337......)

n=255406: x127702(9090909090......) = 303806600885143 * x127688(2992334289......)

n=259528: x129760(9999000099......) = 63071065521601 * x129747(1585354554......)

n=260402: x130200(9090909090......) = 12504814178783 * x130187(7269927374......)

n=262426: x131212(9090909090......) = 47897985909647 * x131199(1897973144......)

n=266078: x133038(9090909090......) = 44577275519329237 * x133022(2039359513......)

n=269278: x134638(9090909090......) = 22874771338453 * x134625(3974207635......)

n=272746: x136372(9090909090......) = 3407047885424093565451 * x136351(2668265723......)

n=274826: x137412(9090909090......) = 211567097399263 * x137398(4296938986......)

n=274952: x137472(9999000099......) = 27905935120537 * x137459(3583108774......)

n=277034: x138516(9090909090......) = 22996841393567 * x138503(3953112053......)

n=277048: x138520(9999000099......) = 2733934418453789249 * x138502(3657366479......)

n=278986: x139492(9090909090......) = 60972419872517 * x139479(1490987090......)

n=280898: x140448(9090909090......) = 27124618179917 * x140435(3351534399......)

n=282232: x141112(9999000099......) = 22102373653889 * x141099(4523948538......)

n=282362: x141180(9090909090......) = 26949279559687 * x141167(3373340304......)

n=282742: x141370(9090909090......) = 117563233064487121 * x141353(7732782481......)

n=283982: x141990(9090909090......) = 15767877624131 * x141977(5765461470......)

n=289078: x144538(9090909090......) = 1193967027101291 * x144523(7614036974......)

n=291064: x145528(9999000099......) = 958624287972289 * x145514(1043057246......)

n=293162: x146580(9090909090......) = 382896133649849 * x146566(2374249383......)

n=294394: x147196(9090909090......) = 239270937048487 * x147182(3799420524......)

n=299518: x149758(9090909090......) = 172045378097051 * x149744(5284018200......)

n=299734: x149866(9090909090......) = 8724395224455023 * x149851(1042010231......)

# 201031 of 300000 Φn(10) factorization were cracked. 300000 個中 201031 個の Φn(10) の素因数が見つかりました。

April 19, 2019 2019 年 4 月 19 日 (Alfred Reich)

n=3101: c2648(3627716111......) = 13000387694887231400343819052965179689 * c2611(2790467635......)

April 17, 2019 2019 年 4 月 17 日 (Makoto Kamada)

n=200548: x99354(3147624525......) is (probable) prime

$ ./pfgw64 -tc -q"101*(10^100274+1)/(10^362+1)/(10^554+1)/3208769"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing 101*(10^100274+1)/(10^362+1)/(10^554+1)/3208769 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 3
Running N+1 test using discriminant 13, base 1+sqrt(13)
Calling N-1 BLS with factored part 0.01% and helper 0.01% (0.03% proof)
101*(10^100274+1)/(10^362+1)/(10^554+1)/3208769 is Fermat and Lucas PRP! (1179.7548s+0.0218s)

# 1159 of 300000 Φn(10) factorization were finished. 300000 個中 1159 個の Φn(10) の素因数分解が終わりました。

April 14, 2019 2019 年 4 月 14 日 (Alfred Reich)

n=7169: c6987(6503342395......) = 3669910862324453368414564643 * c6960(1772070941......)

n=12769: c12634(4426209256......) = 28789021522905157 * c12618(1537464290......)

n=13283: c12888(9000000000......) = 53938763495972736373481 * c12866(1668558827......)

n=13423: c12960(9000000000......) = 100487584714052991079 * c12940(8956330302......)

n=13427: c12936(9000000000......) = 61083782749494579773 * c12917(1473386158......)

n=13493: c13240(2278990380......) = 1946942753800237 * c13225(1170548222......)

n=13579: c13163(9698477036......) = 73123016665456999 * c13147(1326323431......)

n=14477: c13942(2487589720......) = 92308999902397966279 * c13922(2694850689......)

n=14521: c13392(9000000000......) = 804592427444565449 * c13375(1118578760......)

n=14921: c14527(1675487799......) = 267651229618919227 * c14509(6259966756......)

n=14933: c14684(3013359225......) = 447058039745331013 * c14666(6740420612......)

n=14941: c14652(9000000000......) = 181485981270759339413 * c14632(4959060714......)

n=15059: c13316(3320163352......) = 5476512392663693178227 * c13294(6062550605......)

n=15251: c14988(4191261160......) = 519954555768322049 * c14970(8060822074......)

n=15283: c13431(7286856199......) = 22229661812222587 * c13415(3277987879......)

n=15317: c14130(2256080083......) = 273622120128157 * c14115(8245240123......)

n=15403: c15106(1708003640......) = 52124283513337560761 * c15086(3276790634......)

n=15479: c14775(4000997156......) = 205220919473159 * c14761(1949604926......)

n=15857: c15590(3473878437......) = 1446771195750708683 * c15572(2401124965......)

n=15997: c15016(7473842800......) = 111065519053799 * c15002(6729219711......)

n=16123: c15391(1888877959......) = 2463046960082776559 * c15372(7668867015......)

n=16307: c15576(9000000000......) = 29560907549234194163 * c15557(3044561465......)

n=16577: c14955(4308877580......) = 293752462142023853 * c14938(1466839647......)

n=16861: c15509(7382610156......) = 94361195011325024357381041 * c15483(7823777724......)

n=16997: c16231(2941685978......) = 580734102049067 * c16216(5065461056......)

n=17239: c17229(1324897302......) = 3626607244638159307438519 * c17204(3653269331......)

n=17249: c16801(6331332575......) = 398621525859305025109249 * c16778(1588306743......)

n=17251: c15912(9000000000......) = 76866625387704112637 * c15893(1170859258......)

n=17677: c16060(9000000000......) = 164340801234251027 * c16043(5476424559......)

n=18647: c17965(1065355600......) = 124505252621444040531667 * c17941(8556712094......)

n=19451: c18994(2898708691......) = 17497862201376919 * c18978(1656607337......)

n=19897: c19590(1770878588......) = 6202882526354357 * c19574(2854928464......)

n=19903: c18342(3096010550......) = 11733055741556419453 * c18323(2638707783......)

n=19913: c19861(6098778120......) = 3786252430836005369 * c19843(1610769020......)

n=20381: c20032(5351256870......) = 37279335025562042893 * c20013(1435448584......)

n=20779: c18870(7806331184......) = 5524049514848987 * x18855(1413153731......)

n=20779: x18855(1413153731......) = 5670857944018978187027 * c18833(2491957558......)

n=20831: c20226(4800535099......) = 962374046200121 * c20211(4988221698......)

n=20957: c19824(2790301405......) = 3861037938534315551 * c19805(7226816855......)

n=21689: c20197(9217692027......) = 512123364402916678723 * c20177(1799896796......)

n=21761: c21252(9000000000......) = 7499350654120511 * c21237(1200103904......)

n=21829: c21480(1030727120......) = 1321896879390254963 * c21461(7797333792......)

n=22009: c20271(2536819089......) = 95972249141468538437 * c20251(2643283983......)

n=22357: c21989(4792362635......) = 119217517646875853 * c21972(4019847695......)

n=22439: c21218(1278310652......) = 84113402714729 * c21204(1519746689......)

n=22513: c21983(9994114576......) = 13204000158031969631 * c21964(7569005193......)

n=22643: c22635(7503186584......) = 13919924422000514641 * c22616(5390249513......)

n=8420M: c1666(3927859709......) = 961793978153247229732651534445101 * c1633(4083888856......)

# 200962 of 300000 Φn(10) factorization were cracked. 300000 個中 200962 個の Φn(10) の素因数が見つかりました。

April 14, 2019 2019 年 4 月 14 日 (Alfred Reich)

n=8060M: c1400(3566032134......) = 9563613411880480653886428115541468801 * p1363(3728749773......)

# p1363(3728749773......) is a proven prime factor.

# https://stdkmd.net/nrr/cert/Phi/#CERT_PHI_8060M_10

# http://www.factordb.com/index.php?id=1100000001285059312

# p1363(3728749773......) = ((10^403+1)*((10^806+10^403)*(10^403+10^202+3)+10^202+2)-1)*27961/((10^31+1)*((10^62+10^31)*(10^31+10^16+3)+10^16+2)-1)/((10^13+1)*((10^26+10^13)*(10^13+10^7+3)+10^7+2)-1)/749875259395232743004577649430491804098928455536044058799134154391117305839041

April 13, 2019 2019 年 4 月 13 日 (Alfred Reich)

n=10021: c9093(7769151238......) = 7618873771098573906077 * c9072(1019724367......)

n=10033: c9790(5646077799......) = 43217151390913466182759729 * c9765(1306443765......)

n=10061: c10036(6638565207......) = 2442928187293475067280907 * c10012(2717462282......)

n=10253: c10248(5418204082......) = 8376830325643136798289587 * c10223(6468083835......)

n=10279: c9677(1111604573......) = 664293596700753079516987364243 * c9647(1673363372......)

n=10517: c9674(4126864494......) = 324658472413082314399314683 * c9648(1271140242......)

n=10813: c9764(3952975451......) = 1303514370635977470417877 * c9740(3032552260......)

n=7540L: c1337(1639122925......) = 92908918613191880421357495998041 * c1305(1764225598......)

April 12, 2019 2019 年 4 月 12 日 (Alfred Reich)

n=10027: c9658(3645162848......) = 52978217068799138884110677 * c9632(6880493626......)

n=10727: c10050(2053859664......) = 10667229229660367020468111879 * c10022(1925391890......)

n=14059: c13212(1600369863......) = 35001757292147 * c13198(4572255758......)

n=16969: c16650(2866079627......) = 1614120037500053 * c16635(1775629792......)

n=27509: c27498(5124412155......) = 100125855684067436449 * c27478(5117970898......)

n=98939: c98939(1111111111......) = 193341499151437640230573 * c98915(5746883705......)

n=107453: c107443(1581687201......) = 189680717015940364507 * c107422(8338682108......)

n=107563: c107549(4362644386......) = 479463276459327907 * c107531(9099016756......)

n=118033: c118027(2353385827......) = 587301324845432293 * c118009(4007118200......)

n=119839: c119833(2317919861......) = 1307002090865801597 * c119815(1773463009......)

n=125117: c125108(3379214856......) = 42003287484740137081 * c125088(8045119938......)

n=146527: c146516(8543623686......) = 69704151165727465481 * c146497(1225697973......)

n=154699: c154685(8597820724......) = 333676480361794231 * c154668(2576693663......)

n=199429: c199420(3562315896......) = 79892869870017187 * c199403(4458865856......)

n=200789: x200777(3386127696......) = 3491045703161893 * x200761(9699465388......)

n=202219: x202212(5494590328......) = 1448300976335171477 * x202194(3793818010......)

n=203173: x203165(1051690980......) = 23377441745443 * x203151(4498742814......)

n=204733: x204733(1111111111......) = 28427562028704803 * x204716(3908569823......)

n=205627: x205620(9005871558......) = 92758109397761 * x205606(9708985679......)

# 200953 of 300000 Φn(10) factorization were cracked. 300000 個中 200953 個の Φn(10) の素因数が見つかりました。

# 18754 of 25997 Rprime factorization were cracked. 25997 個中 18754 個の Rprime の素因数が見つかりました。

April 11, 2019 2019 年 4 月 11 日 (mengf)

# via yoyo@home

n=563: c545(1171173291......) = 601193188650614249069704703228803510540758119 * c500(1948081438......)

# ECM B1=110000000, sigma=0:16222137679668624593

April 11, 2019 2019 年 4 月 11 日 (Alfred Reich)

n=6016: c2892(1283200771......) = 79405741087335426622525127411969 * c2860(1616005031......)

n=6142: c2911(2224003004......) = 1211889758522439968545637100259 * c2881(1835152900......)

n=200254: x99436(6557487361......) = 97674968469823 * x99422(6713580218......)

n=200608: x100258(1179191859......) = 733932229827521 * x100243(1606676763......)

n=200636: x100316(9900990099......) = 12688642577509 * x100303(7803033333......)

n=201164: x100564(3748709297......) = 22978766981609 * x100551(1631379656......)

n=201242: x100603(9915274016......) = 95162701159481 * x100590(1041928601......)

n=201776: x100880(9999999900......) = 11122353371057 * x100867(8990902883......)

n=202406: x101202(9090909090......) = 153902584327133 * x101188(5906924260......)

n=203108: x101552(9900990099......) = 46117270063069 * x101539(2146915913......)

n=204284: x102140(9900990099......) = 260666342121781 * x102126(3798338526......)

n=204632: x102312(9999000099......) = 156992408434457 * x102298(6369097843......)

n=207224: x103608(9999000099......) = 254500345083913 * x103594(3928874869......)

n=209164: x104572(6743021936......) = 17895329726129 * x104559(3768034476......)

n=210274: x105136(9090909090......) = 11978185234649 * x105123(7589554605......)

n=211304: x103681(1000099999......) = 19470060436553 * x103667(5136604497......)

n=212692: x106344(9900990099......) = 74959095583769 * x106331(1320852395......)

n=214196: x107096(9900990099......) = 22115000808349 * x107083(4477047134......)

n=215378: x106600(9600808736......) = 47528807218721 * x106587(2019997828......)

n=215438: x107701(3040497408......) = 359314789191739 * x107686(8461932267......)

n=215476: x106489(1009999999......) = 98896242929021 * x106475(1021272365......)

n=216922: x108442(4161752614......) = 17164581889957 * x108429(2424616364......)

n=217342: x108001(1099999999......) = 11342273293207 * x107987(9698232193......)

n=217706: x108109(1099999999......) = 1299998572012037 * x108093(8461547756......)

n=220118: x110058(9090909090......) = 48541705342632409 * x110042(1872803814......)

n=220622: x110301(3803028514......) = 46888219601557 * x110287(8110840094......)

n=222634: x111304(1132162160......) = 39393600328921733 * x111287(2873974835......)

n=223654: x111820(5806739290......) = 101307642555529 * x111806(5731787991......)

n=226162: x113069(2732136439......) = 1100708733401521 * x113054(2482161135......)

n=226496: x113216(9999999999......) = 81576843465335873 * x113200(1225838065......)

n=226852: x113414(9747661046......) = 54922634108561 * x113401(1774798533......)

n=228994: x112561(1099999999......) = 68298686533877 * x112547(1610572700......)

n=229162: x113665(1099999999......) = 18495999596521 * x113651(5947231963......)

n=232192: x115968(9999999999......) = 831400729781761 * x115954(1202789418......)

n=233164: x114783(2424073078......) = 257942274159901 * x114768(9397734770......)

n=235432: x117702(9396000640......) = 1342967640726073 * x117687(6996446046......)

n=237596: x118789(2083576720......) = 49654688613209 * x118775(4196132890......)

n=240524: x119175(2264677572......) = 26349393376421 * x119161(8594799661......)

n=242534: x121266(9090909090......) = 1860941667195859447 * x121248(4885112333......)

n=244136: x122056(2562996257......) = 149835122407169 * x122042(1710544374......)

n=244666: x120524(1708936112......) = 1373312289951131 * x120509(1244390022......)

n=244708: x121161(1009999999......) = 28698114793981 * x121147(3519394940......)

n=250906: x125446(6038717721......) = 11307274778586851 * x125430(5340559807......)

n=252958: x124790(5845215377......) = 188258551891169 * x124776(3104887038......)

n=254768: x127376(9999999900......) = 39441198645889 * x127363(2535419876......)

n=255832: x126337(1000099999......) = 175550911189417 * x126322(5696922865......)

n=257308: x128652(9900990099......) = 43574443629589 * x128639(2272201151......)

n=259442: x127873(1099999999......) = 156273302212171 * x127858(7038950252......)

n=261332: x128850(4294237770......) = 2604562963292321 * x128835(1648736402......)

n=261922: x130016(2694832004......) = 430717711476601 * x130001(6256608289......)

n=262436: x131211(1257573595......) = 60654158457161 * x131197(2073350991......)

n=262994: x131496(9090909090......) = 21367715394370783 * x131480(4254506821......)

n=263446: x130708(2585182912......) = 10058426238121 * x130695(2570166397......)

n=267538: x133754(3827894164......) = 50564496596167 * x133740(7570319932......)

n=270122: x133869(1042624311......) = 103667124836167 * x133855(1005742478......)

n=271004: x135469(4111475242......) = 258827415481469 * x135455(1588500675......)

n=271528: x135760(9999000099......) = 1525119561671033 * x135745(6556207363......)

n=273436: x135607(6729730592......) = 2395528327103321 * x135592(2809288672......)

n=273718: x136850(1468288358......) = 27688901481847 * x136836(5302804662......)

n=275188: x135873(1009999999......) = 18802419886489 * x135859(5371649001......)

n=276014: x138000(2352599800......) = 128416610103623 * x137986(1832005842......)

n=277126: x138562(9090909090......) = 11387463724037 * x138549(7983260637......)

n=277456: x138712(8381802349......) = 23018018337409 * x138699(3641409189......)

n=277642: x138820(9090909090......) = 429997111568819 * x138806(2114179106......)

n=280318: x140158(9090909090......) = 17863375275611 * x140145(5089132904......)

n=280348: x138653(6094248322......) = 25787478847969 * x138640(2363258679......)

n=283306: x141652(9090909090......) = 69033125141287 * x141639(1316890850......)

n=283748: x141864(6978720575......) = 36150787672141 * x141851(1930447723......)

n=287678: x142025(1099999999......) = 4984604857643809 * x142009(2206794783......)

n=290138: x145068(9090909090......) = 11353272303442213 * x145052(8007302958......)

n=290606: x145287(9971842822......) = 4172795580841211 * x145272(2389727133......)

n=293464: x146728(9999000099......) = 73382724513361 * x146715(1362582292......)

n=293648: x146805(1716228174......) = 2823941252807809 * x146789(6077421663......)

n=296188: x148062(2868869311......) = 15163694161841 * x148049(1891932982......)

n=298372: x147457(1009999999......) = 79885709018501 * x147443(1264306235......)

n=3283: c2740(1023276942......) = 2324461687392877701088662871133 * c2709(4402210404......)

# 200951 of 300000 Φn(10) factorization were cracked. 300000 個中 200951 個の Φn(10) の素因数が見つかりました。

April 10, 2019 2019 年 4 月 10 日 (Alfred Reich)

n=3187: c3187(1111111111......) = 194596748545683302871494620187683 * c3154(5709813341......)

n=3209: c3175(1880333559......) = 470544186358744132446735732236211253 * c3139(3996082863......)

# 200915 of 300000 Φn(10) factorization were cracked. 300000 個中 200915 個の Φn(10) の素因数が見つかりました。

# 18752 of 25997 Rprime factorization were cracked. 25997 個中 18752 個の Rprime の素因数が見つかりました。

April 8, 2019 2019 年 4 月 8 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=87911: c87911(1111111111......) = 1542310541514371921 * c87892(7204198384......)

# 200914 of 300000 Φn(10) factorization were cracked. 300000 個中 200914 個の Φn(10) の素因数が見つかりました。

# 18751 of 25997 Rprime factorization were cracked. 25997 個中 18751 個の Rprime の素因数が見つかりました。

April 8, 2019 2019 年 4 月 8 日 (Alfred Reich)

n=3453: c2267(4125106030......) = 60061366931002116328324273314045799654573339003 * c2220(6868152094......)

n=3461: c3410(1150435879......) = 363333404197572531406681671438464547641 * c3371(3166336664......)

April 6, 2019 2019 年 4 月 6 日 (Alfred Reich)

n=6138: c1790(1236410860......) = 4649700678223371354013752098032052413 * c1753(2659119255......)

n=6168: c2025(2206861376......) = 789623604692467568415491118469360633 * c1989(2794827008......)

n=6188: c2276(4738992612......) = 5781822105649878089905469839201 * c2245(8196365308......)

n=6226: c2782(5210584625......) = 3197838295350890098487501692066693 * c2749(1629408414......)

n=6248: c2785(3949274946......) = 302265719497171388215121034171443993 * c2750(1306557340......)

April 4, 2019 2019 年 4 月 4 日 (Alfred Reich)

n=2608: c1285(8872881159......) = 2711533575490636312104255710201930401 * c1249(3272274125......)

n=5974: c2789(1505677073......) = 92600133051876992409909760669939 * c2757(1625998823......)

n=6122: c3040(1253573878......) = 374379568108875916757732764761053303 * c3004(3348403558......)

April 2, 2019 2019 年 4 月 2 日 (Alfred Reich)

n=2248: c1114(4047272047......) = 1125096610491026258717069231764777 * c1081(3597266234......)

April 2, 2019 2019 年 4 月 2 日 (Makoto Kamada)

n=220630: x88225(1716793405......) is (probable) prime

$ ./pfgw64 -tc -q"(10^110315+1)/(10^22063+1)/5824812682167648578460281641"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^110315+1)/(10^22063+1)/5824812682167648578460281641 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 13
Running N-1 test using base 17
Running N+1 test using discriminant 31, base 15+sqrt(31)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.03% proof)
(10^110315+1)/(10^22063+1)/5824812682167648578460281641 is Fermat and Lucas PRP! (1066.6632s+0.0930s)

# 1158 of 300000 Φn(10) factorization were finished. 300000 個中 1158 個の Φn(10) の素因数分解が終わりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | January 1 月 February 2 月 March 3 月 April 2019 2019 年 4 月 May 5 月 June 6 月 July 7 月 | Recent changes 最近の更新 | Next month翌月