Previous month前月 | September 2003 2003 年 9 月 | February 2019 2019 年 2 月 March 3 月 April 4 月 May 5 月 June 6 月 July 7 月 August 8 月 | Recent changes 最近の更新 | Next month翌月

May 26, 2019 2019 年 5 月 26 日 (Bo Chen)

n=50001: c28540(3766712582......) = 16394029310816957664439 * c28518(2297612448......)

# ECM B1=50000, sigma=0:18156120826299042012

May 26, 2019 2019 年 5 月 26 日 (Makoto Kamada)

n=207248: x103605(1508007522......) is (probable) prime

$ ./pfgw64 -tc -q"(10^103624+1)/66312666552826658897"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^103624+1)/66312666552826658897 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 5
Running N-1 test using base 7
Running N+1 test using discriminant 17, base 6+sqrt(17)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.05% proof)
(10^103624+1)/66312666552826658897 is Fermat and Lucas PRP! (1190.5565s+0.0398s)

# 1164 of 300000 Φn(10) factorizations were finished. 300000 個中 1164 個の Φn(10) の素因数分解が終わりました。

May 19, 2019 2019 年 5 月 19 日 (Kurt Beschorner)

n=6140L: c1196(5745251207......) = 13250162724903585950689727396593851617218121 * c1153(4335985396......)

# ECM B1=11e6, sigma=1403731729

May 17, 2019 2019 年 5 月 17 日 (Makoto Kamada)

n=202173: x134758(8951445383......) is (probable) prime

$ ./pfgw64 -tc -q"(10^202173-1)/(10^67391-1)/1117138023153389393496399"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^202173-1)/(10^67391-1)/1117138023153389393496399 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N-1 test using base 7
Running N+1 test using discriminant 17, base 1+sqrt(17)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.04% proof)
(10^202173-1)/(10^67391-1)/1117138023153389393496399 is Fermat and Lucas PRP! (2201.5909s+0.0707s)

# 1163 of 300000 Φn(10) factorizations were finished. 300000 個中 1163 個の Φn(10) の素因数分解が終わりました。

May 14, 2019 2019 年 5 月 14 日 (Kurt Beschorner)

n=8220L: c1074(1494365910......) = 6097790664173896352923803646734195061 * c1037(2450667779......)

# ECM B1=11e6, sigma=2907575830

May 3, 2019 2019 年 5 月 3 日 (Makoto Kamada)

n=277314: x92430(3302215685......) is (probable) prime

$ ./pfgw64 -tc -q"11*(10^138657+1)/1001/(10^46219+1)/3327769"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing 11*(10^138657+1)/1001/(10^46219+1)/3327769 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 11, base 2+sqrt(11)
Calling N+1 BLS with factored part 0.01% and helper 0.01% (0.04% proof)
11*(10^138657+1)/1001/(10^46219+1)/3327769 is Fermat and Lucas PRP! (740.6582s+0.0852s)

# 1162 of 300000 Φn(10) factorizations were finished. 300000 個中 1162 個の Φn(10) の素因数分解が終わりました。

May 1, 2019 2019 年 5 月 1 日 ([HWU] regazz)

# via yoyo@home

n=973: c824(3083142372......) = 3715631189441610182664346038535448639 * p787(8297762117......)

# ECM B1=43000000, sigma=0:1221013246906637789

# 1161 of 300000 Φn(10) factorizations were finished. 300000 個中 1161 個の Φn(10) の素因数分解が終わりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | February 2019 2019 年 2 月 March 3 月 April 4 月 May 5 月 June 6 月 July 7 月 August 8 月 | Recent changes 最近の更新 | Next month翌月