n=239414: x102303(1578975987......) is (probable) prime
$ ./pfgw64 -tc -q"(10^49+1)*(10^119707+1)/(10^343+1)/(10^17101+1)/6333218543" PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6] Primality testing (10^49+1)*(10^119707+1)/(10^343+1)/(10^17101+1)/6333218543 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N-1 test using base 7 Running N+1 test using discriminant 13, base 1+sqrt(13) Calling N+1 BLS with factored part 0.01% and helper 0.01% (0.02% proof) (10^49+1)*(10^119707+1)/(10^343+1)/(10^17101+1)/6333218543 is Fermat and Lucas PRP! (1159.8053s+0.0437s)
# 1171 of 300000 Φn(10) factorizations were finished. 300000 個中 1171 個の Φn(10) の素因数分解が終わりました。
# via Kurt Beschorner
n=51673: c51673(1111111111......) = 8143414287233592839653231187 * c51645(1364429061......)
# ECM B1=5e4, sigma=7054969580827199057
# 18759 of 25997 Rprime factorizations were cracked. 25997 個中 18759 個の Rprime の素因数が見つかりました。
n=236354: x116109(4432414959......) is (probable) prime
$ ./pfgw64 -tc -q"11*(10^118177+1)/(10^59+1)/(10^2003+1)/24817171" PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6] Primality testing 11*(10^118177+1)/(10^59+1)/(10^2003+1)/24817171 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 13 Running N-1 test using base 17 Running N+1 test using discriminant 23, base 6+sqrt(23) Calling N-1 BLS with factored part 0.02% and helper 0.00% (0.05% proof) 11*(10^118177+1)/(10^59+1)/(10^2003+1)/24817171 is Fermat and Lucas PRP! (1554.5013s+0.0569s)
# 1170 of 300000 Φn(10) factorizations were finished. 300000 個中 1170 個の Φn(10) の素因数分解が終わりました。
# via yoyo@home
n=2380M: c347(6862935089......) = 55722909386297024938297392343519300689842174503366122181 * p292(1231618227......)
# ECM B1=260000000, sigma=0:2377822517027304999