# via Kurt Beschorner
n=93827: c93827(1111111111......) = 2544410332113800320497347 * c93802(4366870771......)
# ECM B1=11e3, sigma=4336063350918828
# 201084 of 300000 Φn(10) factorizations were cracked. 300000 個中 201084 個の Φn(10) の素因数が見つかりました。
# 18762 of 25997 Rprime factorizations were cracked. 25997 個中 18762 個の Rprime の素因数が見つかりました。
n=265172: x132578(7467592831......) is (probable) prime
$ ./pfgw64 -tc -q"(10^132586+1)/133911961" PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6] Primality testing (10^132586+1)/133911961 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N-1 test using base 7 Running N+1 test using discriminant 19, base 2+sqrt(19) Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.04% proof) (10^132586+1)/133911961 is Fermat and Lucas PRP! (2073.4394s+0.0441s)
# 1174 of 300000 Φn(10) factorizations were finished. 300000 個中 1174 個の Φn(10) の素因数分解が終わりました。