Previous month前月 | September 2003 2003 年 9 月 | June 2017 2017 年 6 月 July 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 | Recent changes 最近の更新 | Next month翌月

September 30, 2017 2017 年 9 月 30 日 (Alfred Reich)

n=16474: c8231(4598591267......) = 398303358408040377583 * c8211(1154544939......)

# ECM B1=10000, sigma=0:4226629541153840180

n=16616: c7894(1346189016......) = 448339289098197863657 * c7873(3002612194......)

# ECM B1=10000, sigma=1:821580730

n=16792: c8371(3004666557......) = 122317839667405273 * c8354(2456441812......)

# ECM

n=16928: c8078(1196823490......) = 65387407633579649 * c8061(1830357760......)

# ECM B1=11000, sigma=1:3375914189

n=17244: c5737(1000000999......) = 197175771191125406161 * c5716(5071622106......)

# ECM B1=30000, sigma=0:16096796386458833301

n=17386: c8635(1363550015......) = 4324186152954838995401 * c8613(3153310165......)

# ECM B1=10000, sigma=0:18048980011098820936

n=17622: c5275(9448336848......) = 166342905154645415263 * c5255(5680035971......)

# ECM B1=60000, sigma=0:5528311706614754390

n=17726: c8857(3419036030......) = 34650788127060895138093 * c8834(9867123418......)

# ECM B1=30000, sigma=0:7030291176564496284

n=17744: c8855(2292251976......) = 10336198790121432826513 * c8833(2217693393......)

# ECM B1=60000, sigma=0:8801124575696349561

n=17854: c8737(1099999999......) = 8740796602628190653773946291 * c8709(1258466533......)

# ECM B1=60000, sigma=0:11113700528354665582

n=17866: c8917(2709383244......) = 1007726155735952246317 * c8896(2688610619......)

# ECM B1=100000, sigma=0:12268975058962855809

n=17870: c7145(1099989000......) = 36379200300245506841 * c7125(3023675592......)

# ECM B1=60000, sigma=0:7401447649693649539

n=17950: c7148(2469797069......) = 148896602221372651 * c7131(1658732994......)

# ECM B1=97000, sigma=0:13308782593032885598

n=17954: c8721(2024027878......) = 3856003317338639937139 * c8699(5249030437......)

# ECM B1=100000, sigma=0:11254083430290662035

n=17964: c5959(2858771428......) = 113143450559070365461 * c5939(2526678667......)

# ECM B1=70000, sigma=0:11183063363061830542

# 139500 of 200000 Φn(10) factorizations were cracked. 200000 個中 139500 個の Φn(10) の素因数が見つかりました。

September 30, 2017 2017 年 9 月 30 日 (Makoto Kamada)

n=120428: c42241(1009999999......) = 4188544927343550134422601 * c42216(2411338585......)

n=120470: c41280(9091000909......) = 147378128072050121 * c41263(6168487161......)

# P-1 B1=1e6

# 139497 of 200000 Φn(10) factorizations were cracked. 200000 個中 139497 個の Φn(10) の素因数が見つかりました。

September 29, 2017 2017 年 9 月 29 日 (Alfred Reich)

n=7352: c3629(7531140304......) = 2623552005321388434037145143121 * c3599(2870589296......)

# ECM B1=43000, sigma=1:2655621899

n=12566: c6097(1182084074......) = 900029553397513663699957 * c6073(1313383621......)

# ECM B1=39000, sigma=1:2981626825

n=12674: c6302(7122888944......) = 3921287348941866361612681 * c6278(1816466968......)

# ECM B1=51000, sigma=1:2767673659

n=12716: c5411(1786775209......) = 8288802889698536041 * c5392(2155649294......)

# ECM B1=47000, sigma=1:1694927628

n=12878: c6257(1099999999......) = 2649332030601650197361 * c6235(4151989963......)

# ECM B1=44000, sigma=1:1370923192

n=12884: c6402(1476803325......) = 59744703402567129901 * c6382(2471856484......)

# ECM B1=33000, sigma=1:226646607

n=12958: c5380(3207170083......) = 1330832951601086266213 * c5359(2409896809......)

# ECM B1=40000, sigma=1:3348445270

n=13214: c6570(2281693440......) = 185747386065365610371 * c6550(1228385222......)

# ECM B1=43000, sigma=1:1755899551

n=13226: c6197(4175467166......) = 46318131551930958534757 * c6174(9014757346......)

# ECM B1=42000, sigma=1:1744612125

n=13290: c3507(5907487924......) = 119319936040211118754771 * c3484(4950964709......)

# ECM B1=44000, sigma=1:876027236

n=13384: c5713(1000099999......) = 576010318801696546769 * c5692(1736253617......)

# ECM B1=44000, sigma=1:32536197

n=13658: c6806(2311207941......) = 59693295415512449994642571 * c6780(3871804907......)

# ECM B1=50000, sigma=1:498393546

n=13702: c5748(1433693809......) = 241608022841545076962493 * c5724(5933966066......)

# ECM B1=47000, sigma=1:3575229040

n=13726: c6836(6463526404......) = 45065162809982105760749743 * c6811(1434262299......)

# ECM B1=48000, sigma=1:2869075522

n=13762: c5871(1539198759......) = 1560691770056722282816411 * c5846(9862285357......)

# ECM B1=41000, sigma=1:2542158845

n=13772: c6229(2017545055......) = 123100372911781374121 * c6209(1638943089......)

# ECM B1=46000, sigma=1:1205071300

n=14114: c7050(7760304073......) = 16358209681846628315767 * c7028(4743981294......)

# ECM B1=43000, sigma=1:1881791300

n=15626: c7175(7511386714......) = 927673456227660013 * c7157(8097015888......)

# ECM B1=35000, sigma=1:1780619791

n=15918: c4508(3328586517......) = 1000829625965714707547449 * c4484(3325827325......)

# ECM B1=33000, sigma=1:395080983

n=18694: c8600(9667067396......) = 400416451151167049 * c8583(2414253302......)

# ECM B1=10000, sigma=1:80942632

n=18954: c5794(2056989737......) = 288908115573426092407 * c5773(7119875236......)

# ECM B1=10000, sigma=1:717422028

n=19212: c6401(1009998990......) = 447843700295238825289 * c6380(2255248849......)

# ECM B1=10000, sigma=1:735420929

n=19374: c6457(1098901098......) = 2355933593533240099 * c6438(4664397595......)

# ECM B1=10000, sigma=1:3411497812

n=19376: c8242(1054580875......) = 25355734351917583489 * c8222(4159141519......)

# ECM B1=10000, sigma=1:877295311

n=19482: c6071(1581961403......) = 18037240106423557 * x6054(8770529161......)

# ECM B1=10000, sigma=1:1276294799

n=19482: x6054(8770529161......) = 2483378254350230835571 * c6033(3531692824......)

# ECM B1=10000, sigma=1:1239561012

n=19486: c9727(4135748455......) = 18711261490180077305561 * c9705(2210299106......)

# ECM B1=10000, sigma=1:766002753

n=19508: c9752(9900990099......) = 6190957902160075021 * c9734(1599266261......)

# ECM B1=10000, sigma=1:3884296204

n=19544: c8301(2425959848......) = 138369013398977089 * c8284(1753253700......)

# ECM B1=10000, sigma=1:3022492662

n=19546: c9400(1629909034......) = 873525446676655613 * c9382(1865897600......)

# ECM B1=10000, sigma=1:2439642683

n=19750: c7782(5151743219......) = 139238018059919322251 * c7762(3699954431......)

# ECM B1=10000, sigma=1:3832376869

n=19796: c8374(3423048110......) = 7496860433003872421 * c8355(4565975506......)

# ECM B1=10000, sigma=1:74834977

n=19852: c8479(3222529023......) = 3916334660402921 * c8463(8228431179......)

# ECM B1=10000, sigma=1:695649409

n=20044: c10014(3406638736......) = 401537593689890989 * c9996(8483984539......)

# ECM B1=10000, sigma=1:1900434808

n=20098: c9252(8796527412......) = 1401400917269970084521 * c9231(6276952800......)

# ECM B1=10000, sigma=1:2711593027

n=20230: c6496(8447530965......) = 414274740272340666685694771 * c6470(2039113212......)

# ECM B1=10000, sigma=1:1617103410

n=20274: c6446(4307154293......) = 605875291364496459769 * c6425(7108978290......)

# ECM B1=10000, sigma=1:3712835502

n=20276: c9787(6226534902......) = 9046819942360641786061 * c9765(6882567512......)

# ECM

n=20372: c9241(1009999999......) = 191269338412103659709 * c9220(5280511808......)

# ECM B1=10000, sigma=1:2511168904

n=20558: c9712(4981116203......) = 13106746052273571493 * c9693(3800421694......)

# ECM B1=10000, sigma=1:2451005142

n=20618: c9330(8400598971......) = 6841903189120412991371 * c9309(1227816111......)

# ECM B1=10000, sigma=1:3677694435

n=20790: c4299(1954596848......) = 39897046084503768931 * c4279(4899101664......)

# ECM B1=10000, sigma=1:797764875

n=20986: c8981(3670580484......) = 254197105676470699891 * c8961(1443989881......)

# ECM B1=10000, sigma=1:219448878

n=21276: c7040(9590643040......) = 637149148118611695829 * c7020(1505243013......)

# ECM B1=10000, sigma=1:3190421182

n=21378: c6074(3672948075......) = 63934297671023203327 * x6054(5744879055......)

# ECM B1=10000, sigma=1:1460059033

n=21378: x6054(5744879055......) = 42481721128477850899 * c6035(1352317868......)

# ECM B1=10000, sigma=1:3374539905

n=21450: c4780(2624324207......) = 363361766376942161401 * c4759(7222345469......)

# ECM B1=10000, sigma=1:207841980

n=21634: c10398(2005797638......) = 822587722864434034489 * c10377(2438399677......)

# ECM B1=10000, sigma=1:148988209

n=21744: c7162(1984741759......) = 110517133632172129 * c7145(1795867929......)

# ECM B1=10000, sigma=1:2289157818

n=21862: c10251(4997262842......) = 1329754646830487117 * c10233(3758033750......)

# ECM B1=10000, sigma=1:1794929899

n=21876: c7271(2441451730......) = 5373768402042080293489 * c7249(4543276799......)

# ECM B1=10000, sigma=1:2543150363

n=21878: c10929(2056862829......) = 7886322829901844943 * c10910(2608139273......)

# ECM B1=10000, sigma=1:3872674493

n=22012: c10981(7836510539......) = 26714288163779567341 * c10962(2933452874......)

# ECM B1=10000, sigma=1:3167107615

n=22196: c10681(1009999999......) = 23506752288228975421289 * c10658(4296637781......)

# ECM B1=10000, sigma=1:2839416156

n=22228: c11093(6643111148......) = 51422976087181949 * c11077(1291856608......)

# ECM B1=10000, sigma=1:912072770

n=22550: c7991(6801971703......) = 10529721711268651 * c7975(6459782974......)

# ECM B1=10000, sigma=1:2545737380

n=22578: c7252(4694256957......) = 5005427842174869943 * c7233(9378333091......)

# ECM B1=10000, sigma=1:356188129

n=22616: c10219(7732807474......) = 1305161332847396234057 * c10198(5924790506......)

# ECM B1=10000, sigma=1:1739519786

n=22684: c10998(1311120548......) = 420350558551616321 * c10980(3119112183......)

# ECM B1=10000, sigma=1:1526438269

n=22772: c11352(2168327272......) = 359099861273065180981 * c11331(6038229211......)

# ECM B1=10000, sigma=1:1122664148

n=22892: c11137(1009999999......) = 10721060899202021997289 * c11114(9420709475......)

# ECM

n=22916: c10742(1687066024......) = 586309678408863701 * c10724(2877431649......)

# ECM B1=10000, sigma=1:352420867

n=22990: c7920(9999999999......) = 7723424900874724801 * c7902(1294762379......)

# ECM B1=10000, sigma=1:2230616912

n=22996: c11477(8123993551......) = 72631011542671977121 * c11458(1118529589......)

# ECM B1=10000, sigma=1:2992549626

n=23030: c7723(5427672993......) = 65428043397789939091 * c7703(8295637026......)

# ECM B1=10000, sigma=1:52153869

n=23116: c11542(1537399688......) = 277940963568115023529 * c11521(5531389360......)

# ECM B1=10000, sigma=1:672685850

n=23164: c11574(1969723424......) = 38652553694268461449 * c11554(5095972287......)

# ECM B1=10000, sigma=1:3698668216

n=23166: c6473(2142268432......) = 3177008381575646047 * c6454(6743036765......)

# ECM B1=10000, sigma=1:2237088092

n=23290: c8678(1764870723......) = 334038352578057601 * c8660(5283437394......)

# ECM B1=10000, sigma=1:3302654402

n=23346: c7770(1319283642......) = 5258627673065935183 * c7751(2508798348......)

# ECM B1=10000, sigma=1:485159548

n=23416: c11686(7240555563......) = 116740530754903417 * c11669(6202263701......)

# ECM B1=10000, sigma=1:3372519498

n=23432: c11201(1000099999......) = 336312445062261712481 * c11180(2973722842......)

# ECM B1=10000, sigma=1:780619221

n=23650: c8377(4619555590......) = 494410467650716251131201 * c8353(9343563480......)

# ECM B1=10000, sigma=1:1642234951

n=23914: c10861(1099999999......) = 2424913246229175709129 * c10839(4536244757......)

# ECM B1=10000, sigma=1:601182265

# 139495 of 200000 Φn(10) factorizations were cracked. 200000 個中 139495 個の Φn(10) の素因数が見つかりました。

September 26, 2017 2017 年 9 月 26 日 (Deltik)

# via Kurt Beschorner

n=2180L: c408(1976873177......) = 7152063279176360267550161080960805856216521 * p365(2764059964......)

# ECM B1=26e7, sigma=0:9003880645049902030

September 29, 2017 2017 年 9 月 29 日 (Makoto Kamada)

n=120170: c47040(9091000000......) = 142898524422863079691 * c47020(6361857154......)

n=120174: c40045(3147551195......) = 27036069511238647 * 15984725249475176731 * c40009(7283230796......)

n=120176: c48372(1762159677......) = 80289174598081 * c48358(2194766213......)

n=120200: c47994(2310962675......) = 6477034858029601 * c47978(3567933052......)

n=120218: c49671(2530881441......) = 118002847713657643927 * c49651(2144763021......)

n=120222: c40063(8326193814......) = 137574827578492733971 * c40043(6052120116......)

n=120230: c43667(4743814454......) = 382282707133489715851 * c43647(1240917877......)

n=120348: c40096(1557204805......) = 1093823131436662969 * c40078(1423634919......)

n=120366: c40060(1224284400......) = 3531860988532659166609 * c40038(3466400304......)

# P-1 B1=1e6

# 139484 of 200000 Φn(10) factorizations were cracked. 200000 個中 139484 個の Φn(10) の素因数が見つかりました。

September 28, 2017 2017 年 9 月 28 日 (Makoto Kamada)

n=119930: c46968(7671686329......) = 6700402493487353942891 * c46947(1144959028......)

n=119938: c47369(1899667754......) = 12820516664184748049905668841 * c47341(1481740404......)

n=119966: c43171(1420471498......) = 24103687411961081 * c43154(5893170925......)

n=119990: c43672(3538865310......) = 170734419606904921 * c43655(2072731039......)

n=120070: c48025(1099989000......) = 12037151911893534379201 * c48002(9138282944......)

n=120108: c40024(6569601573......) = 10340167443355478114989 * c40002(6353476971......)

n=120138: c40035(1756773026......) = 482803239656273109859 * c40014(3638693534......)

# P-1 B1=1e6

# 139483 of 200000 Φn(10) factorizations were cracked. 200000 個中 139483 個の Φn(10) の素因数が見つかりました。

September 27, 2017 2017 年 9 月 27 日 (Makoto Kamada)

n=119450: c47741(7198806091......) = 1445896485393846001 * c47723(4978783864......)

n=119590: c47822(8433968315......) = 28767308052806251 * c47806(2931789203......)

n=119630: c40992(9091000909......) = 286264534100880068441 * c40972(3175734268......)

n=119680: c40931(1274312343......) = 57438049683210241 * c40914(2218585677......)

n=119830: c45740(6116022061......) = 14411996600826398131 * c45721(4243702125......)

# P-1 B1=1e6

# 139482 of 200000 Φn(10) factorizations were cracked. 200000 個中 139482 個の Φn(10) の素因数が見つかりました。

September 26, 2017 2017 年 9 月 26 日 (Makoto Kamada)

n=119090: c47623(2482361622......) = 18688198499186416891 * c47604(1328304396......)

n=119170: c44794(6357160389......) = 119986797524264244662208881 * c44768(5298216570......)

n=119200: c47352(7612760146......) = 657757019656331201 * c47335(1157381817......)

n=119290: c46757(9665979413......) = 61124885348280401 * c46741(1581349291......)

n=119330: c47719(4370190300......) = 40235381991600401 * c47703(1086156035......)

n=119440: c47745(1000000009......) = 5530012400156641 * c47729(1808314227......)

# P-1 B1=1e6

# 139481 of 200000 Φn(10) factorizations were cracked. 200000 個中 139481 個の Φn(10) の素因数が見つかりました。

September 25, 2017 2017 年 9 月 25 日 (Makoto Kamada)

n=118958: c49056(9090910000......) = 2743513841141590996425912713867090161 * c49020(3313600924......)

n=118970: c47577(4599967942......) = 363161567959461451 * c47560(1266645027......)

n=118976: c49921(1000000000......) = 241325969615528513 * c49903(4143772846......)

n=119030: c47593(4246188782......) = 55123596144072430738833851 * c47567(7703032965......)

# P-1 B1=1e6

# 139480 of 200000 Φn(10) factorizations were cracked. 200000 個中 139480 個の Φn(10) の素因数が見つかりました。

September 24, 2017 2017 年 9 月 24 日 (Makoto Kamada)

n=118762: c47808(9090910000......) = 1134573826502400019 * c47790(8012620939......)

# P-1 B1=1e6

# 139478 of 200000 Φn(10) factorizations were cracked. 200000 個中 139478 個の Φn(10) の素因数が見つかりました。

September 23, 2017 2017 年 9 月 23 日 (Makoto Kamada)

n=118130: c47249(1099989000......) = 5177619171511623931 * c47230(2124507353......)

n=118210: c47258(8891086039......) = 4828282724305235851 * c47240(1841459282......)

n=118244: c48954(2791117606......) = 5175923094069615161 * c48935(5392502082......)

n=118330: c47308(4413587946......) = 638802945421013041 * c47290(6909154032......)

n=118480: c47341(1126179940......) = 178922744032961 * 64986742591890241 * c47309(9685397928......)

# P-1 B1=1e6

# 139477 of 200000 Φn(10) factorizations were cracked. 200000 個中 139477 個の Φn(10) の素因数が見つかりました。

September 22, 2017 2017 年 9 月 22 日 (Alfred Reich)

n=12698: c5422(7482081566......) = 41323393257079936619 * c5403(1810616451......)

# ECM B1=17000, sigma=1:2599466545

n=12710: c4791(8885703280......) = 16177706855807148013759321 * c4766(5492560447......)

# ECM B1=16000, sigma=1:176824073

n=13126: c6551(3112717502......) = 116956524993138943823 * c6531(2661431247......)

# ECM B1=3000, sigma=1:612481735

n=13328: c5368(5831650207......) = 900243410208970091489 * c5347(6477859366......)

# ECM B1=14000, sigma=1:760401087

n=18712: c9348(5343344252......) = 794288732466118297 * c9330(6727206410......)

# ECM B1=6000, sigma=1:4221685656

n=19958: c9360(2887647806......) = 42861281544112103 * c9343(6737194275......)

# ECM B1=4000, sigma=1:454426969

n=22078: c8844(1055311769......) = 3513787028861043344411 * c8822(3003345850......)

# ECM B1=2000, sigma=1:444695348

September 22, 2017 2017 年 9 月 22 日 (Makoto Kamada)

n=117760: c45057(1000000000......) = 165887336107310387201 * c45036(6028187705......)

n=117782: c49118(2345853333......) = 248804143280743 * c49103(9428513940......)

n=117800: c43188(7104924963......) = 27393492124159201 * c43172(2593654336......)

n=117830: c47129(1099989000......) = 6671941285531801 * c47113(1648679077......)

n=118000: c46390(1386175219......) = 39886262532001 * c46376(3475319901......)

n=118010: c47193(1300021009......) = 15459806704091 * c47179(8409037931......)

n=118048: c46080(9999999999......) = 43768057701242112449 * 27927895579110069523009 * c46038(8180964604......)

# P-1 B1=1e6

# 139476 of 200000 Φn(10) factorizations were cracked. 200000 個中 139476 個の Φn(10) の素因数が見つかりました。

September 21, 2017 2017 年 9 月 21 日 (Makoto Kamada)

n=117470: c44160(9091000000......) = 19631772031536972451 * c44141(4630758744......)

n=117610: c44496(9091000000......) = 809391660075519991506974081 * c44470(1123189235......)

n=117650: c43190(8204029291......) = 151688042225679075064001 * c43167(5408487822......)

# P-1 B1=1e6

# 139473 of 200000 Φn(10) factorizations were cracked. 200000 個中 139473 個の Φn(10) の素因数が見つかりました。

September 21, 2017 2017 年 9 月 21 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=70537: c70537(1111111111......) = 4256914902230650485467 * c70515(2610132306......)

# ECM B1=11e3, sigma=809093756098030474

# 139471 of 200000 Φn(10) factorizations were cracked. 200000 個中 139471 個の Φn(10) の素因数が見つかりました。

# 13837 of 17984 Rprime factorizations were cracked. 17984 個中 13837 個の Rprime の素因数が見つかりました。

September 20, 2017 2017 年 9 月 20 日 (Makoto Kamada)

n=117080: c46800(4702367070......) = 333990265941281 * c46786(1407935365......)

n=117200: c46721(1000000000......) = 45800863734376576801 * c46701(2183364937......)

n=117208: c44352(9999999999......) = 153030774687997960965121 * c44329(6534633324......)

n=117280: c46835(1046891903......) = 166511779179338481716801 * c46811(6287194265......)

n=117290: c45498(1006606888......) = 225741129722811601361 * c45477(4459120453......)

n=117320: c40106(6253548158......) = 241358928132001 * c40092(2590974449......)

n=117370: c42217(1597515804......) = 76199520996611 * c42203(2096490612......)

n=117376: c49901(5055645478......) = 247219494204929 * c49887(2045002759......)

# P-1 B1=1e6

# 139470 of 200000 Φn(10) factorizations were cracked. 200000 個中 139470 個の Φn(10) の素因数が見つかりました。

September 19, 2017 2017 年 9 月 19 日 (Makoto Kamada)

n=116732: c45349(4759194771......) = 18912160465661 * c45336(2516473345......)

n=116774: c47289(3027998680......) = 1155513949038401 * c47274(2620477825......)

n=116810: c46721(1099989000......) = 1713891552269905992961 * c46699(6418078195......)

n=116930: c42480(9091000000......) = 408087855750946361 * c42463(2227706576......)

n=116960: c43000(1134244042......) = 8658338239719041 * c42984(1310002001......)

# P-1 B1=1e6

# 139468 of 200000 Φn(10) factorizations were cracked. 200000 個中 139468 個の Φn(10) の素因数が見つかりました。

September 18, 2017 2017 年 9 月 18 日 (Makoto Kamada)

n=116536: c49899(2885139845......) = 4427587540034701169 * c49880(6516279619......)

n=116630: c45777(1127212806......) = 61620624228727411 * c45760(1829278460......)

n=116648: c49969(1000099999......) = 224230075330073 * c49954(4460151023......)

n=116720: c46631(1698781884......) = 384269255077441 * c46616(4420811350......)

# P-1 B1=1e6

# 139466 of 200000 Φn(10) factorizations were cracked. 200000 個中 139466 個の Φn(10) の素因数が見つかりました。

September 17, 2017 2017 年 9 月 17 日 (Makoto Kamada)

n=116186: c48366(6684508460......) = 8719756891580407 * 43330488918236861689573 * c48328(1769177921......)

n=116210: c46473(7337618056......) = 1918770877396164361 * c46455(3824124153......)

n=116284: c49791(7001712705......) = 18675262423135921 * c49775(3749191067......)

n=116290: c44784(1029315511......) = 1503779682120251 * c44768(6844855826......)

n=116330: c46516(7111566140......) = 11607172529731 * c46503(6126872088......)

n=116368: c49811(2930433666......) = 65814792490338068129 * c49791(4452545629......)

# P-1 B1=1e6

September 16, 2017 2017 年 9 月 16 日 (Makoto Kamada)

n=115892: c49639(2319343167......) = 78201944482481 * c49625(2965838232......)

n=115948: c48000(9900990099......) = 42794193297720649 * c47984(2313629335......)

n=115970: c46385(1099989000......) = 393226575900121 * c46370(2797341450......)

n=116018: c49700(2941399659......) = 34100106014625559126219 * c49677(8625778635......)

n=116032: c48379(2154573405......) = 472120999395200848001 * c48358(4563604262......)

n=116074: c49729(2262588086......) = 1352591568388117 * c49714(1672779972......)

n=116080: c46395(1435789361......) = 787580209206881 * c46380(1823038903......)

n=116102: c49745(1315892583......) = 26794450878931 * 451859019894157 * c49717(1086857538......)

# P-1 B1=1e6

# 139465 of 200000 Φn(10) factorizations were cracked. 200000 個中 139465 個の Φn(10) の素因数が見つかりました。

September 15, 2017 2017 年 9 月 15 日 (Makoto Kamada)

n=115544: c47986(9148151222......) = 120585166117417 * c47972(7586464834......)

n=115550: c46195(2884774600......) = 51387558483298540778801 * c46172(5613760773......)

n=115600: c43512(4215652531......) = 3901685862373601 * c43497(1080469489......)

n=115610: c41972(6796208443......) = 67455901291241 * 44270347337162651 * c41942(2275798525......)

n=115612: c49537(1009999999......) = 478384179476981 * c49522(2111273832......)

n=115630: c44628(2780044778......) = 31885072866841 * 12031720765149950881 * c44595(7246639103......)

n=115654: c44977(1744944926......) = 4305893283747421945811 * c44955(4052457437......)

n=115690: c44176(9091000000......) = 656320947720365131 * c44159(1385145488......)

n=115724: c49578(5133916431......) = 33160565967373706989 * c49559(1548199278......)

n=115730: c45360(9091000000......) = 51169340512091 * c45347(1776649827......)

n=115738: c49549(3157584368......) = 25532990686453517 * c49533(1236668436......)

n=115766: c49599(1342724662......) = 438199932851937943 * c49581(3064182721......)

n=115840: c46071(4688061627......) = 284791385532181676801 * c46051(1646138846......)

# P-1 B1=1e6

# 139463 of 200000 Φn(10) factorizations were cracked. 200000 個中 139463 個の Φn(10) の素因数が見つかりました。

September 14, 2017 2017 年 9 月 14 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=70249: c70232(1121962079......) = 105346641434581408021761763 * c70206(1065019315......)

# ECM B1=11e3, sigma=0:5984394627659000491

September 14, 2017 2017 年 9 月 14 日 (Makoto Kamada)

n=115258: c46800(9999999999......) = 646289724921155459 * c46783(1547293669......)

n=115262: c49393(1099999890......) = 54018553998822024769361 * c49370(2036337163......)

n=115388: c45479(1935173007......) = 83722386861569 * c45465(2311416432......)

n=115450: c46155(2165456549......) = 19565974760251 * c46142(1106746060......)

n=115472: c49427(1077084771......) = 49486908932757731681 * c49407(2176504441......)

n=115490: c46193(1099989000......) = 4918375086960070167161 * c46171(2236488638......)

# P-1 B1=1e6

# 139460 of 200000 Φn(10) factorizations were cracked. 200000 個中 139460 個の Φn(10) の素因数が見つかりました。

September 13, 2017 2017 年 9 月 13 日 (Makoto Kamada)

n=114926: c49249(1099999890......) = 1043635480524046852304899 * c49225(1054007755......)

n=114982: c47867(9497473925......) = 758330119079803644333121 * c47844(1252419452......)

n=115030: c45987(8655480402......) = 30028746477028141361 * c45968(2882398174......)

n=115066: c49293(2965854391......) = 31482298840849056481 * c49273(9420704651......)

n=115108: c49301(1431106285......) = 1311814430306129 * c49286(1090936532......)

n=115192: c42240(9999999999......) = 111010079851027897 * c42223(9008190979......)

# P-1 B1=1e6

# 139457 of 200000 Φn(10) factorizations were cracked. 200000 個中 139457 個の Φn(10) の素因数が見つかりました。

September 12, 2017 2017 年 9 月 12 日 (Makoto Kamada)

n=114710: c45869(1174907046......) = 214965122987371 * c45854(5465570555......)

n=114760: c43200(9999000099......) = 56879888362787357281 * c43181(1757914860......)

n=114772: c49167(1265193841......) = 21613399999404966761 * c49147(5853747402......)

n=114830: c45897(1805459568......) = 93859152762371 * c45883(1923583918......)

n=114862: c49720(9090909091......) = 65036125469899 * c49707(1397824520......)

n=114880: c45816(8534054217......) = 1434240299167490561 * c45798(5950226208......)

# P-1 B1=1e6

# 139455 of 200000 Φn(10) factorizations were cracked. 200000 個中 139455 個の Φn(10) の素因数が見つかりました。

September 11, 2017 2017 年 9 月 11 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=70099: c70099(1111111111......) = 2364446426172744837272201 * c70074(4699244181......)

# ECM B1=11e3, sigma=15853464816084341637

# 139453 of 200000 Φn(10) factorizations were cracked. 200000 個中 139453 個の Φn(10) の素因数が見つかりました。

# 13836 of 17984 Rprime factorizations were cracked. 17984 個中 13836 個の Rprime の素因数が見つかりました。

September 11, 2017 2017 年 9 月 11 日 (Makoto Kamada)

n=114430: c45758(4443135290......) = 2258012344234121 * c45743(1967719663......)

n=114464: c48385(1000000000......) = 1595253760273460897 * c48366(6268595159......)

n=114562: c48778(9377521744......) = 87576349663050823 * c48762(1070782440......)

n=114610: c44911(7050688831......) = 153154933442971 * c44897(4603631546......)

n=114680: c44160(9999000099......) = 15995692727818241 * c44144(6251057875......)

n=114686: c48000(9090909091......) = 4610846600180776099 * c47982(1971635554......)

n=114688: c49140(1528858804......) = 102624003686401 * 277621616312321 * c49111(5366178891......)

# P-1 B1=1e6

# 139452 of 200000 Φn(10) factorizations were cracked. 200000 個中 139452 個の Φn(10) の素因数が見つかりました。

September 10, 2017 2017 年 9 月 10 日 (Makoto Kamada)

n=114128: c48850(3062232576......) = 11485404576100150288771361 * c48825(2666194783......)

n=114338: c48982(1255241769......) = 277486923137804717 * c48964(4523606934......)

n=114345: c47520(9999999999......) = 1672453710164161 * c47505(5979238731......)

n=114370: c45735(1580732794......) = 176395083616771 * c45720(8961320020......)

n=114394: c49021(1099999890......) = 7976525002717579746103 * c48999(1379046501......)

# P-1 B1=1e6

# 139449 of 200000 Φn(10) factorizations were cracked. 200000 個中 139449 個の Φn(10) の素因数が見つかりました。

September 9, 2017 2017 年 9 月 9 日 (Makoto Kamada)

n=113848: c45775(4631717811......) = 195467431678471557809 * c45755(2369559865......)

n=113920: c45057(1000000000......) = 569685310586881 * c45042(1755355073......)

n=113950: c43668(1633080264......) = 317480708949451 * c43653(5143872426......)

n=113974: c48773(3843388590......) = 177238831832690321 * c48756(2168479982......)

n=114044: c48846(2185581345......) = 10549693812126701 * c48830(2071701211......)

n=114050: c45593(5314043265......) = 146894095196667463091201 * c45570(3617601686......)

# P-1 B1=1e6

# 139447 of 200000 Φn(10) factorizations were cracked. 200000 個中 139447 個の Φn(10) の素因数が見つかりました。

September 8, 2017 2017 年 9 月 8 日 (Makoto Kamada)

n=113582: c45350(8029815634......) = 1535414177281394032099 * c45329(5229739149......)

n=113590: c44058(1569283133......) = 171844518660062458698401 * c44034(9131994120......)

n=113600: c44787(1203721349......) = 66578399910401 * c44773(1807975786......)

n=113624: c48673(1000099999......) = 472393653960068233 * c48655(2117090252......)

n=113696: c46066(7837767497......) = 2144809404208769 * c46051(3654295566......)

n=113708: c46781(2197508446......) = 10726694020710584981 * c46762(2048635341......)

n=113720: c45473(1000099999......) = 2123599951561485836837201 * c45448(4709455748......)

n=113828: c47495(1752205400......) = 1981305430004095508089921 * c47470(8843691505......)

# P-1 B1=1e6

# 139446 of 200000 Φn(10) factorizations were cracked. 200000 個中 139446 個の Φn(10) の素因数が見つかりました。

September 7, 2017 2017 年 9 月 7 日 (Makoto Kamada)

n=113290: c45297(1071079745......) = 21372760409771 * c45283(5011424473......)

n=113320: c45285(8976395397......) = 82386968187411756215681 * c45263(1089540687......)

n=113344: c42232(4363352621......) = 18224099141249 * c42219(2394276165......)

n=113360: c41472(9999999900......) = 461840777172253441 * c41455(2165248370......)

n=113440: c45306(2098864493......) = 10607964027665281 * c45290(1978574293......)

n=113450: c45361(1000009999......) = 304429120756189201 * c45343(3284869717......)

n=113498: c43560(9999999999......) = 7058029696511646623 * c43542(1416826002......)

n=113505: c48577(1109988789......) = 542044038454896479881 * c48556(2047783409......)

n=113560: c42496(9999000099......) = 3188579354989438321 * c42478(3135879332......)

# P-1 B1=1e6

# 139444 of 200000 Φn(10) factorizations were cracked. 200000 個中 139444 個の Φn(10) の素因数が見つかりました。

September 6, 2017 2017 年 9 月 6 日 (Makoto Kamada)

n=113036: c43905(1002852251......) = 45449914582643341 * 23624892105594456333914805241 * c43859(9339724131......)

n=113078: c47040(9090910000......) = 26835751717706807 * c47024(3387611457......)

n=113080: c40960(9999000099......) = 32750167664048561 * c40944(3053114171......)

n=113110: c45232(1741885930......) = 604290854082013411 * c45214(2882529031......)

n=113200: c45121(1000000000......) = 31814538059201 * c45107(3143217098......)

n=113212: c49190(2933029236......) = 33021582479620666361 * c49170(8882158323......)

n=113270: c44144(2092900223......) = 4392700590173651840011 * c44122(4764495510......)

# P-1 B1=1e6

# 139439 of 200000 Φn(10) factorizations were cracked. 200000 個中 139439 個の Φn(10) の素因数が見つかりました。

September 5, 2017 2017 年 9 月 5 日 (Makoto Kamada)

n=112784: c44922(3057414857......) = 9251339392548961 * c44906(3304834822......)

n=112952: c48377(4838362364......) = 81067199024216777 * c48360(5968335433......)

n=112996: c49920(9900990099......) = 492136251525049 * c49906(2011839214......)

# P-1 B1=1e6

# 139436 of 200000 Φn(10) factorizations were cracked. 200000 個中 139436 個の Φn(10) の素因数が見つかりました。

September 4, 2017 2017 年 9 月 4 日 (Makoto Kamada)

n=112480: c41465(8890468626......) = 28552204624961 * c41452(3113759075......)

n=112546: c48229(1099999890......) = 241245155028389000651 * c48208(4559676607......)

n=112672: c48193(1000000000......) = 938217505783253633281 * c48172(1065850928......)

n=112730: c45082(4878863267......) = 29770622387739011 * c45066(1638818027......)

# P-1 B1=1e6

# 139435 of 200000 Φn(10) factorizations were cracked. 200000 個中 139435 個の Φn(10) の素因数が見つかりました。

September 3, 2017 2017 年 9 月 3 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=69473: c69473(1111111111......) = 74630488606594604603 * c69453(1488816610......)

# ECM B1=11e3, sigma=15187732668636801744

# 139433 of 200000 Φn(10) factorizations were cracked. 200000 個中 139433 個の Φn(10) の素因数が見つかりました。

# 13835 of 17984 Rprime factorizations were cracked. 17984 個中 13835 個の Rprime の素因数が見つかりました。

September 3, 2017 2017 年 9 月 3 日 (Makoto Kamada)

n=112250: c44801(1000000000......) = 94357534966560251 * 1635012948625579199899929251 * c44756(6481898361......)

n=112294: c44352(9090910000......) = 41298615385051207 * c44336(2201262661......)

n=112364: c48139(4494302025......) = 76005323519952320761 * c48119(5913141103......)

n=112370: c42240(9091000000......) = 10853956720267955251 * c42221(8375747420......)

n=112378: c45936(9090910000......) = 687437792124847 * c45922(1322433841......)

n=112390: c44946(2039009987......) = 135928828476292801 * c44929(1500057059......)

n=112430: c44929(1831648662......) = 28178361662084731 * c44912(6500195733......)

n=112442: c48221(6001616415......) = 1506624375019721 * c48206(3983485542......)

n=112450: c41270(3364592414......) = 1412880445936051 * c41255(2381370924......)

n=112455: c48374(2478371320......) = 4555888427683109791 * c48355(5439929796......)

# P-1 B1=1e6

# 139432 of 200000 Φn(10) factorizations were cracked. 200000 個中 139432 個の Φn(10) の素因数が見つかりました。

September 2, 2017 2017 年 9 月 2 日 (Makoto Kamada)

n=111944: c47940(4231821902......) = 1637490756897729219977 * c47919(2584333306......)

n=111950: c44749(4069447331......) = 378259690939225801 * c44732(1075834255......)

n=112035: c46066(2863358150......) = 17265248008471 * c46053(1658451792......)

n=112042: c46795(2028455783......) = 13269006556522535407 * c46776(1528717146......)

n=112084: c48025(1009999999......) = 1049283118680384355321 * c48003(9625619454......)

n=112112: c40301(2179441921......) = 201356936901121 * c40287(1082377371......)

n=112168: c48041(6414452934......) = 630125112154217 * c48027(1017964974......)

# P-1 B1=1e6

# 139428 of 200000 Φn(10) factorizations were cracked. 200000 個中 139428 個の Φn(10) の素因数が見つかりました。

September 1, 2017 2017 年 9 月 1 日 (Makoto Kamada)

n=111758: c49523(2689331364......) = 1137083077309534373 * c49505(2365114228......)

n=111760: c40320(9999999900......) = 3093212230083361 * c40305(3232885155......)

n=111770: c44705(1099989000......) = 531965804974921 * c44690(2067781405......)

n=111800: c40306(9132971105......) = 23803159947767201 * c40290(3836873392......)

n=111830: c43680(9091000000......) = 22217565370946921 * c43664(4091807472......)

n=111848: c48000(9999000099......) = 66584644033249 * c47987(1501697612......)

n=111874: c46791(2551182250......) = 241863615156308930278369 * c46768(1054802000......)

# P-1 B1=1e6

# 139427 of 200000 Φn(10) factorizations were cracked. 200000 個中 139427 個の Φn(10) の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | June 2017 2017 年 6 月 July 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 | Recent changes 最近の更新 | Next month翌月