n=86380L: c14784(3537460769......) = 78763617228406181 * c14767(4491237063......)
n=73820M: c14761(2824060999......) = 19505400356021 * c14748(1447835444......)
n=83780M: c16215(4372818603......) = 156580977178961 * c16201(2792688283......)
n=12221: c10980(1807924962......) = 2237208882788214919 * c10961(8081162989......)
n=14020L: c2800(3576409999......) = 69793802383751048657458916041 * c2771(5124251548......)
n=15820M: c2677(4773824656......) = 13565052618906622683991961 * c2652(3519208359......)
n=24780L: c2773(3989730683......) = 11974088300884973733121 * c2751(3331970320......)
n=29460L: c3873(2031929421......) = 39802953149870190361 * c3853(5104971518......)
n=47780M: c9528(1655006060......) = 31505396031616061 * c9511(5253087624......)
n=48980L: c9330(3007526771......) = 35724710474639761 * c9313(8418617622......)
n=61780M: c12336(6578877445......) = 50855505677381 * c12323(1293641142......)
n=63020M: c11962(3466285074......) = 3598398781703261 * c11946(9632854181......)
n=75980L: c14527(3384665847......) = 178693741753055341 * c14510(1894115492......)
n=89220L: c11859(3770975989......) = 52451554410443761 * c11842(7189445636......)
n=10873: c10621(1485834349......) = 8554088320060524015547 * c10599(1736987384......)
n=12227: c12218(1245116292......) = 442952564029693 * c12203(2810947252......)
n=73540M: c14698(2315816260......) = 89426992072840901 * c14681(2589616632......)
n=76540L: c14771(4163989586......) = 3774187130629180621 * c14753(1103281168......)
n=78340L: c15642(6735630748......) = 168786658238898640824092821 * c15616(3990617989......)
n=79300M: c14390(5247858412......) = 12668231542519543901 * c14371(4142534334......)
n=79700L: c15911(1015037710......) = 3098811824746901 * c15895(3275570662......)
n=81140M: c16225(2824060999......) = 1294286054047781 * c16210(2181945011......)
n=81260L: c15228(1146972088......) = 170212628002317945481 * c15207(6738466483......)
n=81700L: c15095(3355938197......) = 3276078938108847301 * c15077(1024376475......)
n=83780M: c16232(3924369236......) = 89744615377172521 * c16215(4372818603......)
n=84380M: c16859(3879567255......) = 652479594731941 * c16844(5945882884......)
n=84860L: c16969(2824060999......) = 283270364382229841 * c16951(9969489769......)
n=85180M: c17027(2550308351......) = 716453539738296781 * c17009(3559628377......)
n=85780M: c17152(3576409999......) = 150041075117074541 * c17135(2383620616......)
n=86980M: c17387(2497531264......) = 4654608992645219281 * c17368(5365716580......)
n=88300M: c17623(5816797664......) = 12518093378154101 * c17607(4646712153......)
n=90140L: c18012(9098570585......) = 1336932181726209721 * c17994(6805558808......)
n=90460M: c18074(8647386672......) = 526344673024361 * c18060(1642913306......)
n=90580L: c15498(5579054333......) = 28400857048484341 * c15482(1964396470......)
n=91580M: c17280(3540999996......) = 21157349266181 * c17267(1673650111......)
n=95140M: c18481(2796099999......) = 2187553883644495741 * c18463(1278185657......)
n=96020L: c19182(1238236235......) = 22945562813508421 * c19165(5396408207......)
n=96620M: c19302(1290185476......) = 122450859746329441 * c19285(1053635293......)
n=99740M: c19924(3757938374......) = 29255282942098720541 * c19905(1284533252......)
n=33580L: c6298(9194007407......) = 4636968003171530561 * c6280(1982762745......)
n=76620L: c10208(3913542626......) = 17739503026025320005421 * c10186(2206117398......)
n=77460M: c10278(8295901808......) = 11909933538488710801 * c10259(6965531572......)
n=77580L: c10305(3674094833......) = 1382825916419814901 * c10287(2656946756......)
n=78220M: c15640(3576409999......) = 151872950321861 * x15626(2354869640......)
n=78220M: x15626(2354869640......) = 229187815702421 * c15612(1027484656......)
n=78300L: c10070(8155266553......) = 121883657703921901 * c10053(6691025447......)
n=79180L: c15258(3726736837......) = 83433269158929941 * c15241(4466727571......)
n=85700M: c17113(2786260756......) = 14687730882355120501 * c17094(1896998779......)
n=87260M: c17433(9404092348......) = 176052564769434581 * c17416(5341638936......)
n=88580M: c17136(3541000000......) = 13831059947973661 * c17120(2560179778......)
n=70940L: c14176(9351456058......) = 532459059009639761 * c14159(1756277013......)
n=84740M: c15961(3436735257......) = 3326852718038133181 * c15943(1033028976......)
n=91060M: c17460(1040208923......) = 26138088410921 * c17446(3979667171......)
n=60700L: c12083(2084421225......) = 2564166307599323364601 * c12061(8129040691......)
n=72260L: c14437(1564308612......) = 202111516908463661 * c14419(7739829164......)
n=98700L: c11034(1650570210......) = 4202497626608265601 * c11015(3927593439......)
n=26700M: c3490(2270395865......) = 5303969792707801 * c3474(4280559569......)
n=44420L: c8868(4508798293......) = 10586919884067152261 * c8849(4258838588......)
n=64060M: c12782(1160439781......) = 1999541481953710241 * c12763(5803529417......)
n=65020L: c12989(9584114706......) = 410729051205102041 * c12972(2333439691......)
n=72100M: c12224(2625903835......) = 6807276702900101 * c12208(3857495369......)
n=74700M: c9806(1164259806......) = 2038140366422357689201 * c9784(5712363219......)
n=688: c262(4397219662......) = 12964211609561579909063446696451764692875452342031494097 * p207(3391814169......)
# Phi_688(10) is the 1036th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
n=32540M: c6490(1507169610......) = 234957909189288821 * c6472(6414636628......)
n=45580L: c8719(1265962655......) = 28598247891916445853941 * c8696(4426714044......)
n=46140L: c6126(1000522088......) = 279179461843141 * c6111(3583795462......)
n=66460L: c13253(3059367903......) = 333465317216441 * c13238(9174471064......)
n=34740L: c4596(1796218586......) = 2105314855530301 * c4580(8531828776......)
n=47020M: c9364(7314695994......) = 446746452318831461861 * c9344(1637326039......)
n=70220M: c14008(6589680340......) = 195158960760768761 * c13991(3376570727......)
n=96620L: c19321(2824060999......) = 4313337908879561 * c19305(6547275125......)
n=680: c244(9335511757......) = 3706128023114119218916379460291345996769984434163189932241 * p187(2518939361......)
# Phi_680(10) is the 1035th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
n=12289: c12289(1111111111......) = 4495122884000467878157 * c12267(2471814764......)
# R_12289 is the 7256th cracked repunit of prime number length less than 100000.
n=12301: c12301(1111111111......) = 74525769271434437623384231 * c12275(1490908610......)
# R_12301 is the 7257th cracked repunit of prime number length less than 100000.
n=13980M: c1806(1931791971......) = 21166873440679239162423181074773929272724025103001 * c1756(9126487089......)
# 21166873440679239162423181074773929272724025103001 is the largest known factor that appears after n=5100L.
Largest known factors that appear after the previous one 1 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 2 n=1060M: 22534789481525070481066146802824209631029690388674663333618185041786620876200193924826168812981 (Raman / Sep 22, 2010) 3 n=1220M: 27186363592392725942593454290345801336551729326489701011779461 (Shaopu Lin / Sep 7, 2007) 4 n=1500L: 36605832263463437733314604426708004731796978480010361966001 (Polybius / Nov 3, 2010) 5 n=1860L: 1891014345342089253412148254805092014919223493735583702021 (Yousuke Koide / Aug 14, 2010) 6 n=5100L: 185898550709887865845976723509058449254706894935901 (Frank Boerner / Jun 28, 2010) 7 n=13980M: 21166873440679239162423181074773929272724025103001 (Kurt Beschorner / Jul 14, 2011) 8 n=82700L: 7732652742988151960568776872507813340801 (Alfred Reich / Dec 12, 2010) 9 n=96769: 232405044211150158012128920618163 (Serge Batalov / Jun 2, 2011) 10 n=98345: 31476775338259256593745673622081 (Serge Batalov / Jun 2, 2011) 11 n=99220L: 30847430620382008736997413844941 (Alfred Reich / Dec 19, 2010) 12 n=99380M: 6592290434322258947071767721 (Alfred Reich / Apr 26, 2010) 13 n=99874: 20466106492496275108462693 (Alfred Reich / Mar 29, 2010) 14 n=100000: 10667937242260969298800001 (Serge Batalov / May 15, 2011)
n=83500L: c16581(1201620698......) = 36703845957153406501 * c16561(3273827762......)
n=11609: c9937(1111111111......) = 632476112581549778959 * c9916(1756763755......)
n=12269: c12269(1111111111......) = 1254524101378908188237 * c12247(8856833518......)
# 2337 of 9592 R_prime factorizations are still blank.
n=13980L: c1818(3051014108......) = 30425975154161597574776941 * c1793(1002766252......)
n=598: c192(4472393023......) = 1281657376897297354090423403366881099978010686253604381263 * p135(3489538705......)
# Phi_598(10) is the 1034th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
n=5325: c2784(6551147233......) = 1881829796107057951909351 * c2760(3481264483......)
n=10859: c10844(3571103412......) = 424035269368353718039 * c10823(8421713168......)
n=11113: c11113(1111111111......) = 1431484465523262922201 * c11091(7761950184......)
# 2338 of 9592 R_prime factorizations are still blank.
n=40380M: c5357(2925126287......) = 883889743913313171540601 * c5333(3309379147......)
n=598: c254(3385206625......) = 75691170432105638169937308505913924514228814615635050477687293 * c192(4472393023......)
n=10813: c9791(1239749317......) = 313624340155303427013272323 * c9764(3952975451......)
n=10843: c9270(2919292796......) = 63802808773094913204610481 * c9244(4575492604......)
n=13940M: c2536(6955658522......) = 10505679958301633722820919787717001 * c2502(6620855147......)
n=65792: c32766(3891050583......) = 815894265584129 * x32751(4769062301......)
n=65792: x32751(4769062301......) = 310662839389893377 * c32734(1535124802......)
n=18446: c8773(4923628635......) = 1258644545122399207 * c8755(3911849977......)
n=34114: c16534(3215532130......) = 592130723053893295575847 * c16510(5430442984......)
n=81120: c19962(6848559850......) = 13767053015041 * c19949(4974601204......)
n=18402: c6106(8008687159......) = 4912677270247255698964807 * c6082(1630208279......)
n=18914: c8059(1652212725......) = 84720952286064133103 * c8039(1950181957......)
n=56738: c25762(2037437739......) = 3476163526128807361 * c25743(5861167705......)
n=56818: c28397(1224664729......) = 118076691029515961 * c28380(1037177379......)
n=56938: c24099(1029638938......) = 178890119803917677 * x24081(5755706011......)
n=56938: x24081(5755706011......) = 84678718761059088247 * c24061(6797110414......)
n=56978: c27533(2925105518......) = 129717493439689 * c27519(2254981530......)
n=57098: c28536(9958722561......) = 3990468613294477 * c28521(2495627337......)
n=57218: c23708(6772222940......) = 2188916019551171 * c23693(3093870609......)
n=91522: c45003(1515422591......) = 5210030908207268917 * c44984(2908663342......)
n=33852: c8602(5233013809......) = 13849559842120395121 * c8583(3778469402......)
# ECM B1=250000, sigma=1359304330
n=33870: c9017(6064943835......) = 17808928734887076931 * c8998(3405563538......)
# ECM B1=250000, sigma=416375491
n=20910: c5080(6965583818......) = 44732551046170914961 * c5061(1557162213......)
# ECM B1=250000, sigma=499540829
n=33858: c9713(1052195117......) = 51239451389540437 * c9696(2053486305......)
# ECM B1=250000, sigma=4258145806
n=20958: c5954(5430876878......) = 70985386453642323045977413 * c5928(7650697065......)
# ECM B1=250000, sigma=2456758928
n=10763: c10477(1975187707......) = 181801387586205221568467 * c10454(1086453592......)
n=10775: c8577(1538250426......) = 103482067809514301028551 * c8554(1486489841......)
n=10793: c10452(1738589790......) = 57562150753477280927158855081 * c10423(3020369753......)