# via factordb.com
n=19898: c9911(4751070325......) = 138494688142352654122330113420048091 * c9876(3430507256......)
n=80306: c40112(8342560980......) = 469273157599967235117450481 * c40086(1777762236......)
# via factordb.com
n=24802: c12371(1007673475......) = 6116302105695861102180259 * c12346(1647520770......)
n=75158: c37554(1987364110......) = 11014750883138276559644455367 * c37526(1804275131......)
n=75382: c37674(7399052897......) = 28694038927332628406896837 * c37649(2578602794......)
n=75814: c37879(1622557975......) = 10356261858434855446473373 * c37854(1566740970......)
n=25274: c12568(1485404636......) = 28879568340950034109444957 * c12542(5143444733......)
n=76438: c38218(9090909090......) = 25986141121809810881631089 * c38193(3498368244......)
n=25786: c12832(1405249490......) = 188474721567622569198434797 * c12805(7455904317......)
n=77906: c38922(2303141452......) = 141855922376301887246797 * c38899(1623577933......)
# via factordb.com
n=70166: c35030(2648322886......) = 559247983030332490997997397837 * c35000(4735507264......)
n=17638: c8765(1140550050......) = 770074122382454059562803449196891 * c8732(1481091258......)
n=70762: c35361(8457445108......) = 1216807422927506978225347241 * c35334(6950520640......)
n=70802: c35378(1492914680......) = 1266065320702611509619078739 * c35351(1179176663......)
n=71354: c35661(1338155349......) = 7267465940673198405754117 * c35636(1841295660......)
n=72034: c35995(1141962242......) = 53739287427250270726811129 * c35969(2125004437......)
n=24146: c12052(4413855835......) = 17100668313551587379249207899 * c12024(2581101366......)
n=36742: c18362(5280101063......) = 118130622671912345019658072624249 * c18330(4469714071......)
n=24502: c12219(1206314894......) = 107408808762527105553292543 * c12193(1123106110......)
n=73694: c36798(6985104930......) = 18937974860021844780561971 * c36773(3688411766......)
n=73994: c36931(1083289861......) = 1434757801663998319581053 * c36906(7550332607......)
n=74122: c37025(8387278989......) = 268496062894611225815720523757 * c36996(3123799618......)
n=24782: c12370(6736800696......) = 8850317843971735301668145807 * c12342(7611930797......)
# via yoyo@home
n=661: c606(1478282469......) = 1279134492859919516771544803594724453871958174681 * c558(1155689630......)
# ECM B1=110000000, sigma=0:14544198751070165730
# via factordb.com
n=669: c408(1797755552......) = 129586083596916137343478708208414460889707253 * c364(1387306030......)
n=65882: c32908(2356719134......) = 2673371278918090509869531 * c32883(8815532482......)
n=66854: c33388(9089019532......) = 156479198205117399228057361 * c33362(5808452265......)
n=67126: c33540(2502672810......) = 617223734855045023767023 * c33516(4054725488......)
n=17042: c8514(6668013160......) = 4253222080165791308567022453886600601 * c8478(1567755700......)
n=69166: c34558(7234001190......) = 215591486933331859331274841 * c34532(3355420612......)
n=34598: c17298(9090909090......) = 11251930568948170817804397007 * c17270(8079421602......)
n=69346: c34672(9090909090......) = 2703433315617045978243841 * c34648(3362727328......)
n=34702: c17346(2619632046......) = 1284384910316776642093567 * c17322(2039600454......)
n=69526: c34738(3876997824......) = 37052123850491081909031700979 * c34710(1046363182......)
n=17438: c8678(5390981676......) = 10548944244011725373753593064909173 * c8644(5110446649......)
# via factordb.com
n=2865: p1467(4196673292......) is proven
# via Kurt Beschorner
n=2865: c1505(1805870692......) = 43031004959353390409241502069450925041 * p1467(4196673292......)
# ECM B1/B2=25e4/2e9, sigma=0:1754669464478642941
$ ./pfgw64 -tc -q"111*(10^191-1)*(10^2865-1)/2644952138485408008398000820830855788841554885646898889517576631/(10^573-1)/(10^955-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing 111*(10^191-1)*(10^2865-1)/2644952138485408008398000820830855788841554885646898889517576631/(10^573-1)/(10^955-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 11 Running N+1 test using discriminant 17, base 8+sqrt(17) Calling N+1 BLS with factored part 0.35% and helper 0.29% (1.35% proof) 111*(10^191-1)*(10^2865-1)/2644952138485408008398000820830855788841554885646898889517576631/(10^573-1)/(10^955-1) is Fermat and Lucas PRP! (0.0974s+0.0005s)
n=3217: c3217(1111111111......) = 42361487277665100854177109366065987 * c3182(2622927528......)
# ECM B1/B2=25e4/2e9, sigma=0:3487366800006743837
n=3349: c3107(2520052010......) = 464840218862217756455112142530213053 * c3071(5421329540......)
# ECM B1/B2=25e4/2e9, sigma=0:16578601071269722339
n=3624: c1156(1797520399......) = 51093696778772363543615101022377 * c1124(3518086404......)
# ECM B1/B2=25e4/2e9, sigma=0:13481829157963106610
n=3924: c1297(1000000999......) = 286179262381523205775291255482421 * c1264(3494316784......)
# ECM B1/B2=25e4/2e9, sigma=0:15529827793034532213
n=4449: c2951(7062735280......) = 3048715215421055551860113565807999065083 * c2912(2316626769......)
# ECM B1/B2=25e4/2e9, sigma=0:6782392448203901271
n=5344: c2629(1312743584......) = 11367911433049277171613191334945953 * c2595(1154779919......)
# ECM B1/B2=25e4/2e9, sigma=0:11504565743103416983
n=5354: c2639(8119642957......) = 32527895571834255300177721872403035886859 * c2599(2496209119......)
# ECM B1/B2=25e4/2e9, sigma=0:3970819190825483245
n=5504: c2683(3028091605......) = 215613196179124191312878640086933377 * c2648(1404409219......)
# ECM B1/B2=25e4/2e9, sigma=0:17039020110944469220
n=5613: c3709(1910093896......) = 102661978015590687205187784609577231 * c3674(1860566037......)
# ECM B1/B2=25e4/2e9, sigma=0:8890166689378186329
n=5954: c2730(4900521638......) = 1230380962423832445170436750963995863 * c2694(3982930318......)
# ECM B1/B2=25e4/2e9, sigma=0:12665081745194216951
n=6656: c3061(1433538697......) = 11665418915400639716070940138438652417 * c3024(1228878883......)
# ECM B1/B2=25e4/2e9, sigma=0:6146371097613376714
n=7197: c4739(3111204882......) = 670641524907956666903188163545519 * c4706(4639147393......)
# ECM B1/B2=25e4/2e9, sigma=0:12798858682965930818
n=7366: c3515(6996718215......) = 100360331896389173093123634299034287 * c3480(6971597327......)
# ECM B1/B2=25e4/2e9, sigma=0:1019582184626750257
n=7518: c2124(2160875522......) = 5619564637257700755068707150981837 * c2090(3845272119......)
# ECM B1/B2=25e4/2e9, sigma=0:1796804243990992187
n=7816: c3856(2824087731......) = 2940254940445331285001407961535813897 * c3819(9604907698......)
# ECM B1/B2=25e4/2e9, sigma=0:17779130640738838672
n=7852: c3601(1009999999......) = 13167201992481041120301579831035489 * c3566(7670574208......)
# ECM B1/B2=25e4/2e9, sigma=0:6150559964776791948
n=7992: c2587(3791656081......) = 9931971049801925883574560686101407097 * c2550(3817626997......)
# ECM B1/B2=25e4/2e9, sigma=0:10803861040576213273
n=9224: c4599(1350770022......) = 11995980365408070846165886714624769 * c4565(1126018867......)
# ECM B1/B2=25e4/2e9, sigma=0:6143814273231556833
n=9345: c4193(1209213564......) = 149892440485334855263043415183361 * c4160(8067208461......)
# ECM B1/B2=25e4/2e9, sigma=0:17072726799648191482
n=10608: c3048(1014080924......) = 51785669416861271841334195899540817 * c3013(1958226930......)
# ECM B1/B2=25e4/2e9, sigma=0:940587781369625184
n=11130: c2473(4144804089......) = 15409354967227063374435373373124438211 * c2436(2689797268......)
# ECM B1/B2=25e4/2e9, sigma=0:2843741000202837519
n=11990: c4308(5650210555......) = 115637823283623983593507476750091 * c4276(4886126697......)
# ECM B1/B2=25e4/2e9, sigma=0:5628002443867581787
n=13098: c4172(6947095198......) = 22137363772090362970592256303410053 * c4138(3138176374......)
# ECM B1/B2=25e4/2e9, sigma=0:2852384008003469496
n=13332: c3987(4841741572......) = 7141084437884136829069003911035832949 * c3950(6780120882......)
# ECM B1/B2=25e4/2e9, sigma=0:12690814881215980261
n=14370: c3718(6916858152......) = 198610723031217716630541662988241 * c3686(3482620699......)
# ECM B1/B2=25e4/2e9, sigma=0:9361494558692896915
n=17850: c3821(1210160567......) = 221452076948045497383652291003151401 * c3785(5464661176......)
# ECM B1/B2=25e4/2e9, sigma=0:8344208549571354078
n=20380M: c4073(2824060999......) = 24874277544835379141224266861695741 * c4039(1135333878......)
# ECM B1/B2=25e4/2e9, sigma=0:6397032876533295195
n=21180L: c2763(3711258691......) = 6906456017128153115032012451761 * c2732(5373607943......)
# ECM B1/B2=25e4/2e9, sigma=0:7149096378363399898
n=22580L: c4507(3789968609......) = 166581624199034878630737360281 * c4478(2275142067......)
# ECM B1/B2=25e4/2e9, sigma=0:1886864447573086556
n=22580M: c4485(1959859228......) = 46321075511558698330809131122501 * c4453(4231031353......)
# ECM B1/B2=25e4/2e9, sigma=0:9097926298479334605
n=23420L: c4629(2912336593......) = 30490705916044363657444531061 * c4600(9551555156......)
# ECM B1/B2=25e4/2e9, sigma=0:11673412725056082813
n=24220M: c4091(1606597237......) = 5237739392112658294481242241 * c4063(3067348558......)
# ECM B1/B2=25e4/2e9, sigma=0:11249630413001059560
n=24700L: c4300(8368570557......) = 1023126194275539753887170610201 * c4270(8179411888......)
# ECM B1/B2=25e4/2e9, sigma=0:4988722521634340048
n=25740L: c2867(2639487936......) = 763970876498236584826804394596501 * c2834(3454958843......)
# ECM B1/B2=25e4/2e9, sigma=0:13119540855454698662
n=26620L: c4828(5990516886......) = 2902658902350957872428329523501 * c4798(2063803253......)
# ECM B1/B2=25e4/2e9, sigma=0:17155761304458476729
n=26700M: c3444(2174958574......) = 6723869922797879437332945097201 * c3413(3234682704......)
# ECM B1/B2=25e4/2e9, sigma=0:646302738175419078
n=30900L: c4074(4190729734......) = 1279034675136423486657225344101 * c4044(3276478594......)
# ECM B1/B2=25e4/2e9, sigma=0:9276963014425373438
n=30940L: c4569(3716191639......) = 339674372597127515445266861 * c4543(1094045338......)
# ECM B1/B2=25e4/2e9, sigma=0:8173711582519217841
n=32700L: c4321(1010050099......) = 2763911777041948489409527201 * c4293(3654422359......)
# ECM B1/B2=25e4/2e9, sigma=0:5541198419828152713
n=33780L: c4496(3913542626......) = 5907448681856795599443393482797201 * c4462(6624759414......)
# ECM B1/B2=25e4/2e9, sigma=0:7685480197456079500
n=37260M: c4738(9199454046......) = 16134578439013395845536536485641 * c4707(5701700903......)
# ECM B1/B2=25e4/2e9, sigma=0:14036738598545041472
# via Kurt Beschorner
n=5230: c2089(1099989000......) = 84525041760479871241388334251891 * c2057(1301376464......)
# ECM B1/B2=25e4/2e9, sigma=0:11831437899345562712
n=7497: c3988(7931480405......) = 9794305415700997915036510641067726159 * c3951(8098052969......)
# ECM B1/B2=25e4/2e9, sigma=0:15624183499184979963
n=7502: c3280(1019691900......) = 101719655065615684506104498642533 * c3248(1002453164......)
# ECM B1/B2=25e4/2e9, sigma=0:13664416709701919448
n=9404: c4652(7226498959......) = 3993746236956226226148669059015889221 * c4616(1809453713......)
# ECM B1/B2=1e5/5e8, sigma=0:10996025979124471092
n=10389: c6924(9009009009......) = 153660417846907784664534493 * c6898(5862934082......)
# ECM B1/B2=5e4/2e8, sigma=0:14705544702473506752
n=10797: c6961(1109999999......) = 13329556671975757680446071 * c6935(8327358721......)
# ECM B1/B2=5e4/2e8, sigma=0:2742231613362515854
n=11439: c7189(2728092027......) = 361678737111749544839835997 * c7162(7542859858......)
# ECM B1/B2=1e4/1e7, sigma=0:11800870500574383826
n=11547: c7670(1020924283......) = 4779869318341196771273710952917 * c7639(2135883254......)
# ECM B1/B2=25e3/1e8, sigma=0:16662835265829313794
n=11823: c6720(1265744590......) = 839982901637269317213448933 * c6693(1506869470......)
# ECM B1/B2=5e4/2e8, sigma=0:16604441507666049887
n=12285: c5179(1017499981......) = 659669892570553245552991 * c5155(1542438108......)
# ECM B1/B2=5e4/2e8, sigma=0:5399973494520955502
n=12295: c9832(9000090000......) = 373149365579674196476869522191 * c9803(2411926920......)
# ECM B1/B2=25e3/1e8, sigma=0:929355263806200790
n=12570: c3322(1039069310......) = 4885319174644779696114241985664721 * c3288(2126922056......)
# ECM B1/B2=25e4/2e9, sigma=0:6863217202581279373
n=12579: c7177(1109999889......) = 37393498008632108270468628447319 * c7145(2968430203......)
# ECM B1/B2=1e5/5e8, sigma=0:5432779294655673356
n=12843: c8523(1753967859......) = 8890990611218998991742079 * c8498(1972747397......)
# ECM B1/B2=5e4/2e8, sigma=0:15274874167036871357
n=13110: c3136(1192637489......) = 121546599059120698482013993260721 * c3103(9812183134......)
# ECM B1/B2=25e4/2e9, sigma=0:641442824272622960
n=13299: c7188(5331525298......) = 943408077266758439515609 * c7164(5651345824......)
# ECM B1/B2=1e4/1e7, sigma=0:8889408567421654792
n=13821: c8641(1109999999......) = 36237352550604731752388237791 * c8612(3063137679......)
# ECM B1/B2=5e4/2e8, sigma=0:1634793923469713224
n=14655: c7799(3230044356......) = 947328205219747271749471 * c7775(3409636004......)
# ECM B1/B2=1e4/1e7, sigma=0:11286384902921984777
n=15081: c9103(9716721946......) = 66146173585004905280547517 * c9078(1468977178......)
# ECM B1/B2=25e3/1e8, sigma=0:9187963870325217215
n=15272: c7217(1000099999......) = 194954114612499835393959491681 * c7187(5129925069......)
# ECM B1/B2=25e3/1e8, sigma=0:1590720070419555440
n=15543: c9309(4451898169......) = 1915115720947879945750201 * c9285(2324610529......)
# ECM B1/B2=5e4/2e8, sigma=0:9233722764229207219
n=15735: c8362(1475999649......) = 5441192503185295676981641 * c8337(2712640011......)
# ECM B1/B2=5e4/2e8, sigma=0:2335298804262742762
n=16252: c7575(8775693219......) = 68001940780124749102129170380641 * c7544(1290506288......)
# ECM B1/B2=1e4/1e7, sigma=0:14396041591998904525
n=16576: c6859(2806161966......) = 39973098984333435954625513153 * c6830(7020126129......)
# ECM B1/B2=1e5/5e8, sigma=0:7649457987840919661
n=16720: c5732(1279087485......) = 693022512504244381056986617436838401 * c5696(1845665130......)
# ECM B1/B2=1e5/5e8, sigma=0:10882913442282653127
n=16779: c8807(2958553864......) = 3155912765567266881340332169 * c8779(9374637654......)
# ECM B1/B2=5e4/2e8, sigma=0:5631759388372416975
n=16875: c8987(1622972414......) = 722438601473742817263751 * c8963(2246519512......)
# ECM B1/B2=25e3/1e8, sigma=0:2098021858786171609
n=17235: c9169(1001000999......) = 33941084722940610478854361 * c9143(2949231022......)
# ECM B1/B2=1e4/1e7, sigma=0:8113329709417535638
n=18435: c9808(2265584218......) = 365947020546782857120581871 * c9781(6191016980......)
# ECM B1/B2=1e4/1e7, sigma=0:14530271462872262769
n=20128: c9201(2717509391......) = 32963739795194199813389761 * c9175(8243935331......)
# ECM B1/B2=5e4/2e8, sigma=0:14191910418234743892
n=20376: c6742(1096524117......) = 203065664012503862226691499281 * c6712(5399849958......)
# ECM B1/B2=5e4/2e8, sigma=0:7237968034776815976
n=20420M: c4043(5079322426......) = 10869891185659322612364564661 * c4015(4672836498......)
# ECM B1/B2=1e5/5e8, sigma=0:5356571183755727560
n=21264: c7058(2146533595......) = 1760359550364589982265937 * c7034(1219372255......)
# ECM B1/B2=1e5/5e8, sigma=0:4873772159892865260
n=21612: c7201(1009998990......) = 12934880754199626056732211612241 * c7169(7808336305......)
# ECM B1/B2=5e4/2e8, sigma=0:6034054401579802965
n=21626: c9794(6330322723......) = 39189214337074005120373183 * c9769(1615322692......)
# ECM B1/B2=25e3/1e8, sigma=0:2893853687141127542
n=21735: c9493(1615418189......) = 702444041837521469123401 * c9469(2299710857......)
# ECM B1/B2=1e4/1e7, sigma=0:2512734778204207861
n=22340L: c4426(8360925555......) = 14011104066884688350610619408961 * c4395(5967356687......)
# ECM B1/B2=25e4/2e9, sigma=0:17891852567681002603
n=22414: c9551(8770027773......) = 1688601099223889460221380819 * c9524(5193664612......)
# ECM B1/B2=1e5/5e8, sigma=0:17927609260963772364
n=22428: c6303(6504099422......) = 69333077765185456305622696921 * c6274(9380947207......)
# ECM B1/B2=1e5/5e8, sigma=0:8180772280069811764
n=22442: c9571(2475511254......) = 1917942194180374452560527 * c9547(1290712130......)
# ECM B1/B2=1e4/1e7, sigma=0:18054836350659117213
n=22620L: c2688(3952678052......) = 6994242825148431613167257761 * c2660(5651330889......)
# ECM B1/B2=25e4/2e9, sigma=0:15599150597843631256
n=22750: c7192(1649011250......) = 177941255025471293053971001 * c7165(9267166570......)
# ECM B1/B2=25e3/1e8, sigma=0:5942202260171493447
n=22920: c6067(1176427332......) = 1156565282753944046115361 * c6043(1017173305......)
# ECM B1/B2=5e4/2e8, sigma=0:706352712487078252
n=23244: c7104(9901000000......) = 1046065116539676402948883654681 * c7074(9464993950......)
# ECM B1/B2=1e5/5e8, sigma=0:15119321977835946232
n=24078: c8002(3615241155......) = 2114156403131857181994837583 * c7975(1710015943......)
# ECM B1/B2=1e5/5e8, sigma=0:15148357425623745749
n=24138: c7938(9644103927......) = 3818349654004718504731 * c7917(2525725719......)
# ECM B1/B2=5e4/2e8, sigma=0:5731065399652850353
n=24492: c7434(1544265927......) = 166798943716614441784501 * c7410(9258247640......)
# ECM B1/B2=1e4/1e7, sigma=0:12592213704177920221
n=24594: c8162(1535097001......) = 939881861796703357319388841 * c8135(1633287186......)
# ECM B1/B2=5e4/2e8, sigma=0:5610791219485028957
n=24612: c7001(1012033798......) = 868603063897416203376056821 * c6974(1165128054......)
# ECM B1/B2=5e4/2e8, sigma=0:8468220128328597439
n=24636: c8209(1009998990......) = 647703786089095417299800207761 * c8179(1559353228......)
# ECM B1/B2=5e4/2e8, sigma=0:12497501234517572344
n=24650: c8955(2028373167......) = 412111569784411021692027821251 * c8925(4921902990......)
# ECM B1/B2=1e5/5e8, sigma=0:16129249337065274069
n=24822: c7036(6366536465......) = 601696190494336490489917 * c7013(1058098184......)
# ECM B1/B2=1e4/1e7, sigma=0:7073253506937904748
n=24852: c7750(3698922768......) = 1139532049582024955439282421 * c7723(3246001522......)
# ECM B1/B2=5e4/2e8, sigma=0:104016415519970675
n=25056: c8046(2717562061......) = 43672845080892393403941889 * c8020(6222544137......)
# ECM B1/B2=5e4/2e8, sigma=0:8321461689458538161
n=25068: c8332(1032505773......) = 526367381510237205701427121 * c8305(1961568687......)
# ECM B1/B2=25e3/1e8, sigma=0:1314328972525583151
n=25188: c8393(1009998990......) = 12157727527578727738982089 * c8367(8307465253......)
# ECM B1/B2=5e4/2e8, sigma=0:7705532866692032005
n=25298: c9912(6464638346......) = 278915701666596098965771 * c9889(2317774979......)
# ECM B1/B2=25e3/1e8, sigma=0:2564068534929946800
n=25674: c7721(1181102176......) = 103438263706574815531511931769 * c7692(1141842615......)
# ECM B1/B2=25e3/1e8, sigma=0:3763921371481469051
n=25794: c8593(1000999998......) = 12802261682148554974715800103651383 * c8558(7818930934......)
# ECM B1/B2=5e4/2e8, sigma=0:8101404783426429428
n=25812: c8555(4319026291......) = 1870333135304653621542349 * x8531(2309228345......)
# ECM B1/B2=5e4/2e8, sigma=0:6667721822647307433
n=25812: x8531(2309228345......) = 767261692556357715885061 * c8507(3009701080......)
# ECM B1/B2=25e3/1e8, sigma=0:16103624498128033669
n=25870: c9504(9091000000......) = 401459566475976575822675291 * c9478(2264487076......)
# ECM B1/B2=1e5/5e8, sigma=0:10289734413093529949
n=25962: c8653(1098901098......) = 418733238192533924262893281 * c8626(2624346478......)
# ECM B1/B2=5e4/2e8, sigma=0:11084146124805442376
n=26060M: c5178(6956861067......) = 6160105496751641366273206481 * c5151(1129341221......)
# ECM B1/B2=1e5/5e8, sigma=0:14160394638824455523
n=26598: c7196(2065720057......) = 15141018825866425658579557 * c7171(1364320380......)
# ECM B1/B2=25e3/1e8, sigma=0:9639873953274022684
n=26742: c8871(1555642405......) = 119372659320387352685211997 * c8845(1303181494......)
# ECM B1/B2=5e4/2e8, sigma=0:6079046466984817056
n=26790: c6586(7159510590......) = 513954919483512788042215561 * c6560(1393023068......)
# ECM B1/B2=5e4/2e8, sigma=0:4302402334212485551
n=26892: c8824(4646740066......) = 152198938526135200809661 * c8801(3053069956......)
# ECM B1/B2=25e3/1e8, sigma=0:16622454596140606531
n=27186: c8624(9100000000......) = 183521423637891721122782539 * c8598(4958549154......)
# ECM B1/B2=5e4/2e8, sigma=0:12737102291629597969
n=27210: c7244(3344269229......) = 34038698706368375010243841 * c7218(9824903290......)
# ECM B1/B2=1e5/5e8, sigma=0:6898396091235174512
n=27462: c8707(8284099081......) = 6645913454790190586048371 * c8683(1246495179......)
# ECM B1/B2=1e4/1e7, sigma=0:1465623651005805723
n=27624: c9192(4860253095......) = 367446327483767893767839962129 * c9163(1322711027......)
# ECM B1/B2=5e4/2e8, sigma=0:8052686136708717917
n=27996: c9304(1828553638......) = 470917816317455832246409 * c9280(3882957014......)
# ECM B1/B2=5e4/2e8, sigma=0:18341036461949935165
n=28008: c9297(3740202974......) = 82332506131460266294010161 * c9271(4542802291......)
# ECM B1/B2=5e4/2e8, sigma=0:5264403046287100519
n=28026: c9250(6289107955......) = 72901464216302140610293 * c9227(8626860960......)
# ECM B1/B2=25e3/1e8, sigma=0:18258287432584286663
n=28080: c6853(8180290830......) = 144241770430872086271436801 * c6827(5671235735......)
# ECM B1/B2=5e4/2e8, sigma=0:17728172525060801277
n=28280: c9553(9299301755......) = 61058443556257788234717576881 * c9525(1523016509......)
# ECM B1/B2=1e4/1e7, sigma=0:2782503985494561164
n=28314: c7834(1925047792......) = 1596502917732905703045462367 * c7807(1205790338......)
# ECM B1/B2=5e4/2e8, sigma=0:17220097283961881907
n=28458: c8606(5646652385......) = 175254484638333725049939967 * c8580(3221973119......)
# ECM B1/B2=5e4/2e8, sigma=0:7393481524548689014
n=28530: c7543(2520794428......) = 89060165247256667158374721 * c7517(2830439873......)
# ECM B1/B2=1e4/1e7, sigma=0:18247627924110111876
n=28608: c9443(3030931990......) = 195159064807875099889622593 * c9417(1553057242......)
# ECM B1/B2=25e3/1e8, sigma=0:7889374016069164363
n=28668: c9528(1855147449......) = 744963553689696220915448629 * c9501(2490252631......)
# ECM B1/B2=5e4/2e8, sigma=0:4894281062112584722
n=28722: c9535(2650413131......) = 42060649767312913840268449 * c9509(6301407958......)
# ECM B1/B2=25e3/1e8, sigma=0:12272153456122317513
n=28728: c7766(2156506231......) = 1402586870684603011766819497 * c7739(1537520617......)
# ECM B1/B2=1e5/5e8, sigma=0:16232836954586668474
n=28746: c9577(1000999998......) = 26864400893030221914667801 * c9551(3726120686......)
# ECM B1/B2=5e4/2e8, sigma=0:6533767095532624871
n=28842: c7913(3810072327......) = 7418518833670996853537011 * c7888(5135893583......)
# ECM B1/B2=1e5/5e8, sigma=0:6552700299320105832
n=29040: c6981(3074949954......) = 8921420699840353998405451681 * c6953(3446704351......)
# ECM B1/B2=5e4/2e8, sigma=0:490713266613079948
n=29214: c9713(1242474164......) = 45126027531171623440009 * c9690(2753342654......)
# ECM B1/B2=1e4/1e7, sigma=0:12617776445248994704
n=29340M: c3844(2700770239......) = 2531553268399232592788144644158181 * c3811(1066843140......)
# ECM B1/B2=25e4/2e9, sigma=0:5394790162750702300
n=29544: c9809(1682121735......) = 267726890500654378041156529417 * c9779(6282976402......)
# ECM B1/B2=5e4/2e8, sigma=0:13316932774543642605
n=29778: c8480(4830080252......) = 12690213069063774804299503 * c8455(3806145906......)
# ECM B1/B2=25e3/1e8, sigma=0:12909575364660216153
n=29832: c8921(5895768093......) = 285429806803876919747113 * c8898(2065575476......)
# ECM B1/B2=25e3/1e8, sigma=0:6550684948409469864
n=30660M: c3449(1348593855......) = 1317570926602837432290241 * c3425(1023545547......)
# ECM B1/B2=25e4/2e9, sigma=0:9446107744129408966
n=30690: c7164(1274273770......) = 24041416390957705835072308321 * c7135(5300327358......)
# ECM B1/B2=5e4/2e8, sigma=0:16794309584758711048
n=30858: c9927(1911256388......) = 1309258793690296431920548838023 * c9897(1459800306......)
# ECM B1/B2=25e3/1e8, sigma=0:2540242844175946075
n=30870: c7039(1659335719......) = 320948747151322184396785081 * c7012(5170095645......)
# ECM B1/B2=5e4/2e8, sigma=0:8780221946596429785
n=30972: c9856(9901000000......) = 310056801585593920134906481 * c9830(3193285859......)
# ECM B1/B2=5e4/2e8, sigma=0:2557292488635825252
n=31164: c8680(6681064155......) = 1079944917913983465613080841 * c8653(6186486037......)
# ECM B1/B2=1e4/1e7, sigma=0:16135997881295724712
n=31188: c9802(2711939747......) = 235030180478220941930499781 * c9776(1153868725......)
# ECM B1/B2=25e3/1e8, sigma=0:10477149046506895552
n=31464: c9480(1382292290......) = 154343708855531017756358617 * c9453(8955935430......)
# ECM B1/B2=25e3/1e8, sigma=0:17183898762842277495
n=31950: c8400(9999999999......) = 13316747212993487623468284601 * c8372(7509341312......)
# ECM B1/B2=5e4/2e8, sigma=0:577003989749888316
n=32010: c7664(7499677208......) = 1211938742943671138618641 * c7640(6188165245......)
# ECM B1/B2=1e5/5e8, sigma=0:3274783546860446756
n=32070: c8534(7414784382......) = 108067510886646320528285281 * c8508(6861252120......)
# ECM B1/B2=25e3/1e8, sigma=0:9020343220905853958
n=32260M: c6405(1552684586......) = 3625576938999881704188197921 * c6377(4282586226......)
# ECM B1/B2=25e3/1e8, sigma=0:17848745516183383386
n=32460M: c4284(2106366701......) = 9887658181114372660382640203401 * c4253(2130298866......)
# ECM B1/B2=1e5/5e8, sigma=0:15494446044675800784
n=32526: c9896(3380701221......) = 110533671417937299602484727 * c9870(3058526128......)
# ECM B1/B2=5e4/2e8, sigma=0:16631859105016825445
n=32980M: c6082(5868350330......) = 217061557403142625056985741 * c6056(2703541981......)
# ECM B1/B2=5e4/2e8, sigma=0:4554744139745623584
n=33348: c9477(7876936733......) = 48258343894010687220381532201 * c9449(1632243483......)
# ECM B1/B2=1e4/1e7, sigma=0:8673734767584497510
n=33420M: c4437(1777971294......) = 8454696301184610345467118181 * c4409(2102939279......)
# ECM B1/B2=25e3/1e8, sigma=0:16417878428353771569
n=33852: c8583(3778469402......) = 1070111985273620541660013789 * c8556(3530910272......)
# ECM B1/B2=25e3/1e8, sigma=0:4672066584074272054
n=34020L: c3842(5496924540......) = 252211677276278758988736361 * c3816(2179488515......)
# ECM B1/B2=5e4/2e8, sigma=0:9324371615492770864
n=34060M: c6196(1802767484......) = 2775708626414895183447836483941 * c6165(6494800886......)
# ECM B1/B2=25e3/1e8, sigma=0:7462780446180950856
n=35574: c9214(9491937960......) = 300940866947780306643426493 * c9188(3154087398......)
# ECM B1/B2=5e4/2e8, sigma=0:2991026859803837479
n=36780L: c4840(8909241074......) = 21585100165796200792807981 * c4815(4127495821......)
# ECM B1/B2=25e4/2e9, sigma=0:14678447500740193894
n=37128: c9200(5850092584......) = 14294174916975466375697017 * c9175(4092640966......)
# ECM B1/B2=5e4/2e8, sigma=0:2338060430161772741
n=37500L: c4949(3338445657......) = 20174002315233428396850001 * c4924(1654825653......)
# ECM B1/B2=25e4/2e9, sigma=0:16977265575973779299
n=37620L: c4321(1105097795......) = 45064001649261670338028499080381 * c4289(2452285093......)
# ECM B1/B2=25e4/2e9, sigma=0:2706409470910276027
n=37700M: c6709(7379727054......) = 89172609445049950120399801 * c6683(8275777842......)
# ECM B1/B2=25e3/1e8, sigma=0:2187574967086786958
n=37820L: c7201(2796099999......) = 1963217276635997081555445901 * c7174(1424243782......)
# ECM B1/B2=1e5/5e8, sigma=0:16924079218340764153
n=38430: c8634(1122730857......) = 1173227859134037558896776201 * c8606(9569589133......)
# ECM B1/B2=5e4/2e8, sigma=0:4758888839775553689
n=39380M: c7090(5954444852......) = 327971743184884652571446741 * c7064(1815535934......)
# ECM B1/B2=1e5/5e8, sigma=0:4649333425693999331
n=41160: c9395(1037759953......) = 230045620300986627600687841 * c9368(4511105021......)
# ECM B1/B2=1e4/1e7, sigma=0:7427407031504314548
n=42420M: c4748(6219460402......) = 64323930228058622030940241 * c4722(9668968267......)
# ECM B1/B2=25e4/2e9, sigma=0:16972724199939074966
n=44460M: c5151(2568052553......) = 106462681924363367547547720261 * x5122(2412162183......)
# ECM B1/B2=1e5/5e8, sigma=0:1021483161978945722
n=44460M: x5122(2412162183......) = 509507945482085555845321 * c5098(4734297482......)
# ECM B1/B2=5e4/2e8, sigma=0:15282270401027413087
n=44700M: c5876(6616558644......) = 1729892327293128595183161760819201 * c5843(3824838424......)
# ECM B1/B2=5e4/2e8, sigma=0:10870242909758799562
n=45180M: c5980(2687901785......) = 20601637746903228187495441 * c5955(1304702965......)
# ECM B1/B2=1e4/1e7, sigma=0:16758826901364595975
n=45460M: c9040(5569302920......) = 46555523986364293708497941 * c9015(1196271128......)
# ECM B1/B2=25e3/1e8, sigma=0:5336075902767938252
n=46580L: c8683(2632022407......) = 97560761955057286308624701 * c8657(2697828875......)
# ECM B1/B2=5e4/2e8, sigma=0:5511814840248826035
n=47780M: c9511(5253087624......) = 376854707217632971446315841 * c9485(1393929152......)
# ECM B1/B2=5e4/2e8, sigma=0:41833398012805744
n=48460M: c9689(2824060999......) = 17727839732105399172774541 * c9664(1593009098......)
# ECM B1/B2=25e3/1e8, sigma=0:227394132702478258
n=49500L: c5958(7134213670......) = 255598295354792341658937004501 * c5929(2791182022......)
# ECM B1/B2=5e4/2e8, sigma=0:1877940608025921443
n=54420L: c7204(3598753159......) = 7873969784224715376450063384781 * c7173(4570443191......)
# ECM B1/B2=5e4/2e8, sigma=0:10604007401685231045
n=61260M: c8135(1881162844......) = 1441087954171787006450855221 * c8108(1305376843......)
# ECM B1/B2=5e4/2e8, sigma=0:4712989982125618913
n=63300L: c8373(1145638572......) = 312308144293732428857401 * c8349(3668295539......)
# ECM B1/B2=1e4/1e7, sigma=0:9756929098370636924
n=64620L: c8592(9048972901......) = 1253776596380913765867814441 * c8565(7217372638......)
# ECM B1/B2=25e3/1e8, sigma=0:18339504482749783123
n=66300L: c7635(1311350947......) = 13950309497546917327688701 * c7609(9400156658......)
# ECM B1/B2=1e4/1e7, sigma=0:2969799470914425186
n=72660L: c8244(1092587327......) = 3385238741531730447484392721 * c8216(3227504501......)
# ECM B1/B2=5e4/2e8, sigma=0:5756235236527272059
n=697: c590(3457202711......) = 11080294474316380273824713302966505750169041672169893 * c538(3120136129......)
# ECM B1=11e7, sigma=0:8852637357355284
n=1606: c717(6845052893......) = 8308493202733096211316133157741770826541720663786513797 * c662(8238621283......)
# ECM B1=20e6, sigma=3:2887958829
n=8946: c2489(4496278904......) = 104829617210353392825137977478051710888423 * c2448(4289130327......)
# ECM B1=3e6, sigma=0:2637408856623772
n=14813: c14794(7293869001......) = 25327017742497995459453519 * c14769(2879876768......)
# P-1 B1=140e6
n=173923: c173886(2125020284......) = 1564275159975062039 * c173868(1358469621......)
# gr-mfaktc
# via factordb.com
n=60058: c29988(1206452169......) = 331590869837884514970468877 * x29961(3638375719......)
n=60058: x29961(3638375719......) = 45944193722103277230846369287 * c29932(7919119752......)
n=60194: c30096(9090909090......) = 1360915025774289870768548023 * c30069(6679997588......)
n=60986: c30492(9090909090......) = 15277747744227757103687190116929 * c30461(5950424920......)
n=61114: c30548(6356978528......) = 1739232993493227404884583 * c30524(3655047111......)
n=61394: c30682(2256613790......) = 1966681790476334044541819 * c30658(1147421917......)
n=61862: c30917(1043179334......) = 401106517668696195953479568532157 * c30884(2600753887......)
n=20642: c10295(9813944433......) = 74374334152445565187593835613 * c10267(1319533753......)
n=2302: c1137(1189118516......) = 62455319460206304545562985879838483437 * c1099(1903950738......)
n=31294: c15628(2687152239......) = 173824028732832601100830248533 * c15599(1545903785......)
n=62614: c31270(1597363989......) = 1230646820500513152069437567 * c31243(1297987337......)
n=63134: c31542(6809593224......) = 850086220743860044376819207 * c31515(8010473595......)
n=64426: c32199(9208760784......) = 76209824853930615778111289 * c32174(1208342992......)