Previous month前月 | September 2003 2003 年 9 月 | November 11 月 December 12 月 January 1 月 February 2018 2018 年 2 月 March 3 月 April 4 月 May 5 月 | Recent changes 最近の更新 | Next month翌月

February 28, 2018 2018 年 2 月 28 日 (Makoto Kamada)

n=151182: c48816(9990010000......) = 1046369712237917383 * c48798(9547304249......)

n=151248: c47854(1495405697......) = 28218292019377 * 438808726504308102673 * c47820(1207683274......)

n=151434: c49115(4260662869......) = 200478677008834459 * c49098(2125244905......)

n=151476: c46560(9901000000......) = 44524305766820442889 * c46541(2223729225......)

# P-1 B1=1e6

# 139924 of 200000 Φn(10) factorizations were cracked. 200000 個中 139924 個の Φn(10) の素因数が見つかりました。

February 27, 2018 2018 年 2 月 27 日 (Makoto Kamada)

n=150852: c46359(1031346600......) = 131776178389129 * c46344(7826502581......)

n=150972: c48034(2655883951......) = 1593211250205912795500089 * c48010(1667000500......)

n=151032: c40312(3699315918......) = 185336834351598611479729 * 42245786129980461231915097 * 314088171173502705377844769 * c40237(1504266221......)

n=151130: c48373(5466218490......) = 146003619276956418251 * c48353(3743892457......)

n=151158: c41735(1232121957......) = 11000460265957 * c41722(1120064004......)

n=151170: c40289(2670038339......) = 489831387825642184317908641 * c40262(5450933536......)

# P-1 B1=1e6

# Thank you for Bo Chen's pointing out:

# 2459216237392558676827696949422891229539920231893900728089005651371848112297<76> = 185336834351598611479729<24> * 42245786129980461231915097<26> * 314088171173502705377844769<27>

# 151032 = 2^3 * 3 * 7 * 29 * 31

# 185336834351598611479729<24> - 1 = 2^4 * 3^2 * 7 * 29 * 31 * 311 * 9029 * 30011 * 2426951

# 42245786129980461231915097<26> - 1 = 2^3 * 3 * 7^2 * 11 * 29 * 31 * 37 * 53 * 479 * 499 * 821 * 9439889

# 314088171173502705377844769<27> - 1 = 2^5 * 3^3 * 7 * 29 * 31 * 179 * 32933 * 439697 * 22286521

February 26, 2018 2018 年 2 月 26 日 (Makoto Kamada)

n=150486: c42984(9100000909......) = 30790612551007 * c42971(2955446532......)

n=150516: c48371(9848475649......) = 2380058839507370509 * c48353(4137912679......)

n=150528: c43009(1000000000......) = 1005234802983937 * c42993(9947924574......)

n=150588: c48562(5406780434......) = 67687975555021 * c48548(7987800477......)

n=150630: c40147(5655107540......) = 12037123293646735771 * c40128(4698055675......)

n=150678: c45591(8012131583......) = 9081427621647863197 * c45572(8822546319......)

n=150798: c48922(3959755602......) = 2180222345991973 * c48907(1816216410......)

n=150822: c40824(9999999999......) = 60454021223355481 * c40808(1654149682......)

n=150834: c48048(9100000000......) = 4574571154808648491 * c48030(1989257504......)

n=150840: c40101(2248185183......) = 16447019061300481 * c40085(1366925626......)

# P-1 B1=1e6

# 139922 of 200000 Φn(10) factorizations were cracked. 200000 個中 139922 個の Φn(10) の素因数が見つかりました。

February 25, 2018 2018 年 2 月 25 日 (Makoto Kamada)

n=150378: c49268(1669755338......) = 1027180292778727 * c49253(1625571820......)

# P-1 B1=1e6

February 24, 2017 2017 年 2 月 24 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=22441: c22441(1111111111......) = 7298364414889854463192187 * c22416(1522411115......)

# ECM B1=5e4, sigma=4083876554834783578

n=22501: c22482(5582219896......) = 224637008050525613746832050125853 * c22450(2484995657......)

# ECM B1=5e4, sigma=16084220879206326459

# 139918 of 200000 Φn(10) factorizations were cracked. 200000 個中 139918 個の Φn(10) の素因数が見つかりました。

# 13847 of 17984 Rprime factorizations were cracked. 17984 個中 13847 個の Rprime の素因数が見つかりました。

February 24, 2018 2018 年 2 月 24 日 (Alfred Reich)

n=16468: c7824(3536970363......) = 341541481880705969 * c7807(1035590272......)

# ECM B1=250000, sigma=0:5769472931306150446

n=16480: c6498(6686870748......) = 2905028403163188339841 * c6477(2301826288......)

# ECM B1=250000, sigma=0:6181737421738872847

n=16530: c4022(3830123280......) = 3530816312280259198921 * c4001(1084769906......)

# ECM B1=250000, sigma=0:3471473392854811824

n=16558: c7750(8396667346......) = 85229865075272144409552011 * c7724(9851790025......)

# ECM B1=250000, sigma=0:3362846901405162784

n=16576: c6913(1000000000......) = 736806111316855372801 * c6892(1357209155......)

# ECM B1=250000, sigma=0:6286726152992542352

# 139917 of 200000 Φn(10) factorizations were cracked. 200000 個中 139917 個の Φn(10) の素因数が見つかりました。

February 24, 2018 2018 年 2 月 24 日 (Makoto Kamada)

n=150006: c47779(1011069544......) = 2715066004006428409 * c47760(3723922525......)

n=150042: c47040(9100000000......) = 9656562365789769076453 * c47018(9423643378......)

n=150048: c49900(2034284183......) = 12189778472669295457 * c49881(1668844260......)

n=150090: c40011(6063049083......) = 24254997819478411 * c39995(2499711246......)

n=150096: c48242(1329478957......) = 214008251829457 * c48227(6212278946......)

n=150192: c42601(1179587002......) = 3064571933148433 * c42585(3849108548......)

# P-1 B1=1e6

# 139916 of 200000 Φn(10) factorizations were cracked. 200000 個中 139916 個の Φn(10) の素因数が見つかりました。

February 23, 2018 2018 年 2 月 23 日 (Makoto Kamada)

n=149892: c49961(1009998990......) = 62293943469353929 * c49944(1621343799......)

n=149928: c49954(1530776374......) = 1621103407000947409 * c49935(9442805241......)

n=149958: c49960(4078613966......) = 32448344432543578729 * c49941(1256955952......)

n=149976: c49969(1000000000......) = 6825698017275455301817 * c49947(1465051629......)

# P-1 B1=1e6

# 139915 of 200000 Φn(10) factorizations were cracked. 200000 個中 139915 個の Φn(10) の素因数が見つかりました。

February 22, 2018 2018 年 2 月 22 日 (Alfred Reich)

n=16798: c8130(6821244331......) = 3424308486638684041081 * c8109(1992006373......)

# ECM B1=250000-250000, sigma=1:214728094

February 22, 2018 2018 年 2 月 22 日 (Makoto Kamada)

n=149712: c49873(1306485568......) = 1902632879222834294569364279857 * c49842(6866724436......)

n=149724: c49897(1000000999......) = 20142761467243327921 * c49877(4964567552......)

n=149748: c49886(2318989480......) = 194560178249809 * c49872(1191913731......)

n=149754: c45355(2025539605......) = 33843797505889048129 * c45335(5984965504......)

n=149772: c42731(1521044509......) = 12724059087769 * c42718(1195408241......)

n=149796: c46650(3708746224......) = 173999917543609 * c46636(2131464357......)

n=149808: c49921(1000000009......) = 1704060347806480129 * c49902(5868336830......)

# P-1 B1=1e6

# 139913 of 200000 Φn(10) factorizations were cracked. 200000 個中 139913 個の Φn(10) の素因数が見つかりました。

February 21, 2018 2018 年 2 月 21 日 (Alfred Reich)

n=16814: c7182(2123861737......) = 4144829391487141243979 * c7160(5124123423......)

# ECM B1=250000, sigma=1:228327788

n=17938: c8939(1056503144......) = 26378355965409836380690891 * c8913(4005189504......)

# ECM B1=250000, sigma=1:2591481274

n=17942: c8952(1567641454......) = 8570155066314874227016583 * c8927(1829186803......)

# ECM B1=250000, sigma=1:869546840

n=17972: c8979(3935069929......) = 102075511425770267941 * c8959(3855057765......)

# ECM B1=250000, sigma=1:345406143

December 26, 2017 2017 年 12 月 26 日 (Alfred Reich)

n=18872: c8065(1000099999......) = 24614388746608680653249729 * c8039(4063070630......)

# ECM B1=100000, sigma=1:4160214580

# 139911 of 200000 Φn(10) factorizations were cracked. 200000 個中 139911 個の Φn(10) の素因数が見つかりました。

February 21, 2018 2018 年 2 月 21 日 (Makoto Kamada)

n=149562: c42684(1691682738......) = 105076787512683090889 * c42664(1609949046......)

n=149652: c49859(3464613950......) = 464568476925529 * c49844(7457703487......)

n=149658: c49879(3671362130......) = 12247951733197249 * 64598591350159459 * c49846(4640242847......)

# P-1 B1=1e6

February 20, 2018 2018 年 2 月 20 日 (Makoto Kamada)

n=149358: c43178(3853707460......) = 393903499623877 * c43163(9783379594......)

n=149388: c48710(1239437798......) = 157888617129135889 * c48692(7850076981......)

n=149406: c48366(2198169860......) = 8342302688713428961 * c48347(2634967757......)

n=149454: c45126(1700465788......) = 2422393327539811 * c45110(7019775726......)

n=149472: c49515(7561696367......) = 10994253858518698515104641 * c49490(6877862258......)

n=149484: c49818(2252189230......) = 266031655426249 * c49803(8465869322......)

n=149496: c49793(1927472557......) = 204067180718953 * 17697123285249361 * c49762(5337186300......)

# P-1 B1=1e6

February 19, 2018 2018 年 2 月 19 日 (Alfred Reich)

n=16664: c8297(2679730860......) = 39175818992754006882411977 * c8271(6840267617......)

# ECM B1=250000-250000, sigma=1:3537737244

n=16670: c6654(1230166947......) = 81937835759235223147755491 * c6628(1501341762......)

# ECM B1=250000-250000, sigma=1:3756635342

February 19, 2018 2018 年 2 月 19 日 (Makoto Kamada)

n=149208: c49704(9766482595......) = 153760772811817 * c49690(6351738754......)

n=149240: c46063(2642130065......) = 2820443473534961 * c46047(9367782373......)

n=149262: c49753(1098901098......) = 2048050771100407 * c49737(5365595005......)

n=149334: c49757(2448565956......) = 12266587838876383 * c49741(1996126379......)

# P-1 B1=1e6

# 139910 of 200000 Φn(10) factorizations were cracked. 200000 個中 139910 個の Φn(10) の素因数が見つかりました。

February 18, 2017 2017 年 2 月 18 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=22367: c22367(1111111111......) = 491910083939628543752308667 * c22340(2258768720......)

# ECM B1=5e4, sigma=4226822665876942407

n=75329: c75329(1111111111......) = 132185469097395644849 * c75308(8405697832......)

# ECM B1=11e3, sigma=12551643461909185634

# 139909 of 200000 Φn(10) factorizations were cracked. 200000 個中 139909 個の Φn(10) の素因数が見つかりました。

# 13846 of 17984 Rprime factorizations were cracked. 17984 個中 13846 個の Rprime の素因数が見つかりました。

February 19, 2018 2018 年 2 月 19 日 (Alfred Reich)

n=17952: c5100(2710351875......) = 1554151046446401115085473 * x5076(1743943667......)

# ECM B1=250000, sigma=1:256603943

n=17952: x5076(1743943667......) = 117741698735703682246337281 * c5050(1481160613......)

# ECM B1=250000, sigma=1:3686877236

February 18, 2018 2018 年 2 月 18 日 (Alfred Reich)

n=16662: c5553(1098901098......) = 4787605867264922851819 * c5531(2295304019......)

# ECM B1=250000, sigma=1:1793083020

n=16860M: c2207(1372364677......) = 30273019605795476057394847541970661 * c2172(4533292997......)

# ECM B1=250000, sigma=1:1550351224

n=17460L: c2222(2223434364......) = 389355965356382103083611912561 * c2192(5710543980......)

# ECM B1=250000-250000, sigma=1:3111575859

n=17984: c8926(2365011743......) = 178460830119035348918172353 * c8900(1325227357......)

# ECM B1=250000, sigma=1:1039252962

# 139908 of 200000 Φn(10) factorizations were cracked. 200000 個中 139908 個の Φn(10) の素因数が見つかりました。

February 18, 2018 2018 年 2 月 18 日 (Makoto Kamada)

n=148992: c49113(8694679105......) = 1049780860405192161793 * c49092(8282375335......)

n=149016: c42528(9999000100......) = 79463288674964209 * 330851421665941513 * c42494(3803268905......)

n=149088: c49644(4414057425......) = 96275452060775041 * c49627(4584821292......)

n=149106: c49701(1098901098......) = 5596167462888007 * c49685(1963667288......)

n=149124: c45680(2118153370......) = 7511886838234269474410752669 * c45652(2819735461......)

n=149166: c49706(3207458421......) = 28331741894952277 * c49690(1132107737......)

n=149172: c48000(9901000000......) = 3077263004543736769 * c47982(3217469545......)

# P-1 B1=1e6

# 139906 of 200000 Φn(10) factorizations were cracked. 200000 個中 139906 個の Φn(10) の素因数が見つかりました。

February 18, 2018 2018 年 2 月 18 日 (Alfred Reich)

n=17946: c5977(1000999998......) = 31093148189939106833677 * c5954(3219358788......)

# ECM B1=250000, sigma=1:4258355150

# 139903 of 200000 Φn(10) factorizations were cracked. 200000 個中 139903 個の Φn(10) の素因数が見つかりました。

February 17, 2018 2018 年 2 月 17 日 (Makoto Kamada)

n=148896: c44149(3330543279......) = 16397918405944149889 * c44130(2031076870......)

n=148938: c48960(9100000000......) = 721246806891047196013 * c48940(1261704026......)

n=148944: c47488(9999999900......) = 88728550298881 * c47475(1127032941......)

# P-1 B1=1e6

# 139902 of 200000 Φn(10) factorizations were cracked. 200000 個中 139902 個の Φn(10) の素因数が見つかりました。

February 15, 2018 2018 年 2 月 15 日 (Yousuke Koide)

n=982: c445(7274038532......) = 44467075182005846868530065551693426652606026434296940573 * c390(1635825721......)

# ECM B1=120000000, sigma=2:5690539589092232789

February 16, 2018 2018 年 2 月 16 日 (Alfred Reich)

n=16614: c5028(1042972018......) = 7996975836721958732220254863 * c5000(1304208040......)

# ECM B1=250000, sigma=1:4003769124

n=16844: c8407(5075859505......) = 149063403728415614849 * c8387(3405168122......)

# ECM B1=250000, sigma=1:1855709705

n=17228: c8353(1009999999......) = 216806157240853035280069 * c8329(4658539281......)

# ECM B1=250000, sigma=1:2443960540

# 139900 of 200000 Φn(10) factorizations were cracked. 200000 個中 139900 個の Φn(10) の素因数が見つかりました。

February 16, 2018 2018 年 2 月 16 日 (Makoto Kamada)

n=148734: c49573(1000999998......) = 493564442024235379411 * c49552(2028103959......)

n=148746: c45744(9100000000......) = 325779629687539 * c45730(2793299264......)

n=148750: c48000(9999999999......) = 77192367823191251 * c47984(1295464860......)

n=148752: c49518(9594947112......) = 1152606907373617 * c49503(8324561523......)

# P-1 B1=1e6

# 139899 of 200000 Φn(10) factorizations were cracked. 200000 個中 139899 個の Φn(10) の素因数が見つかりました。

February 16, 2018 2018 年 2 月 16 日 (Bo Chen, Wenjie Fang, Alfred Eichhorn and Kurt Beschorner)

n=1030: c199(1552763077......) = 2102173879615901190724805905901825960646731569309620829374935176385195435873285181866611 * p111(7386463569......)

# GNFS

# c199 was the third smallest composite factor.

# Phi_1030(10) had the biggest ratio of factored parts (51.43%).

# 1138 of 200000 Φn(10) factorizations were finished. 200000 個中 1138 個の Φn(10) の素因数分解が終わりました。

# https://mersenneforum.org/showpost.php?p=480189&postcount=155

# R1030.log


Mon Dec 18 19:26:49 2017  
Mon Dec 18 19:26:49 2017  Msieve v. 1.53 (SVN unknown)
Mon Dec 18 19:26:49 2017  random seeds: 8fd6e0d8 ceb8f5bb
Mon Dec 18 19:26:49 2017  factoring 1552763077808108686959865607960420017609486444677474079573318397532331366773641133556205133826829279435347604731178897784112330091512036060951765570415593479848057498566056614137801535257211165871091 (199 digits)
Mon Dec 18 19:26:51 2017  searching for 15-digit factors
Mon Dec 18 19:26:52 2017  commencing number field sieve (199-digit input)
Mon Dec 18 19:26:52 2017  R0: -262207264182244965566501989754094701687
Mon Dec 18 19:26:52 2017  R1: 35260964440695209765221
Mon Dec 18 19:26:52 2017  A0: 61273646333056248631393145049744489856776032064
Mon Dec 18 19:26:52 2017  A1: 10420727777495411411387820457257803823560
Mon Dec 18 19:26:52 2017  A2: 145201440064897386425846123841612
Mon Dec 18 19:26:52 2017  A3: 259088764547269247676230
Mon Dec 18 19:26:52 2017  A4: -3111278570304511
Mon Dec 18 19:26:52 2017  A5: 1252800
Mon Dec 18 19:26:52 2017  skew 244424374.97, size 1.313e-019, alpha -6.405, combined = 4.818e-015 rroots = 3
Mon Dec 18 19:26:52 2017  
Mon Dec 18 19:26:52 2017  commencing relation filtering
Mon Dec 18 19:26:52 2017  setting target matrix density to 130.0
Mon Dec 18 19:26:52 2017  estimated available RAM is 49069.6 MB
Mon Dec 18 19:26:52 2017  commencing duplicate removal, pass 1
Mon Dec 18 19:28:12 2017  error -9 reading relation 3744616
...
Mon Dec 18 23:46:54 2017  skipped 100 relations with composite factors
Mon Dec 18 23:46:54 2017  found 100364806 hash collisions in 722814449 relations
Mon Dec 18 23:48:01 2017  commencing duplicate removal, pass 2
Tue Dec 19 00:00:06 2017  found 3857480 duplicates and 718956969 unique relations
Tue Dec 19 00:00:06 2017  memory use: 4262.0 MB
Tue Dec 19 00:00:07 2017  reading ideals above 376373248
Tue Dec 19 00:00:07 2017  commencing singleton removal, initial pass
Tue Dec 19 03:26:32 2017  memory use: 11024.0 MB
Tue Dec 19 03:26:34 2017  reading all ideals from disk
Tue Dec 19 03:26:47 2017  memory use: 14047.3 MB
Tue Dec 19 03:28:41 2017  commencing in-memory singleton removal
Tue Dec 19 03:30:34 2017  begin with 718956969 relations and 622835940 unique ideals
Tue Dec 19 03:52:55 2017  reduce to 477243804 relations and 357663131 ideals in 15 passes
Tue Dec 19 03:52:55 2017  max relations containing the same ideal: 38
Tue Dec 19 03:54:41 2017  reading ideals above 720000
Tue Dec 19 03:54:43 2017  commencing singleton removal, initial pass
Tue Dec 19 06:48:06 2017  memory use: 11024.0 MB
Tue Dec 19 06:48:07 2017  reading all ideals from disk
Tue Dec 19 06:48:27 2017  memory use: 21261.4 MB
Tue Dec 19 06:51:17 2017  keeping 395432575 ideals with weight <= 200, target excess is 2507108
Tue Dec 19 06:54:16 2017  commencing in-memory singleton removal
Tue Dec 19 06:56:24 2017  begin with 477243804 relations and 395432575 unique ideals
Tue Dec 19 07:12:45 2017  reduce to 477243421 relations and 395432192 ideals in 6 passes
Tue Dec 19 07:12:45 2017  max relations containing the same ideal: 200
Tue Dec 19 07:22:14 2017  removing 15354367 relations and 13354367 ideals in 2000000 cliques
Tue Dec 19 07:22:26 2017  commencing in-memory singleton removal
Tue Dec 19 07:24:29 2017  begin with 461889054 relations and 395432192 unique ideals
Tue Dec 19 07:45:45 2017  reduce to 461520141 relations and 381706493 ideals in 8 passes
Tue Dec 19 07:45:45 2017  max relations containing the same ideal: 200
Tue Dec 19 07:54:48 2017  removing 11558429 relations and 9558429 ideals in 2000000 cliques
Tue Dec 19 07:54:59 2017  commencing in-memory singleton removal
Tue Dec 19 07:57:00 2017  begin with 449961712 relations and 381706493 unique ideals
Tue Dec 19 08:17:36 2017  reduce to 449730763 relations and 371915918 ideals in 8 passes
Tue Dec 19 08:17:36 2017  max relations containing the same ideal: 199
Tue Dec 19 08:26:25 2017  removing 10347055 relations and 8347055 ideals in 2000000 cliques
Tue Dec 19 08:26:35 2017  commencing in-memory singleton removal
Tue Dec 19 08:28:35 2017  begin with 439383708 relations and 371915918 unique ideals
Tue Dec 19 08:48:35 2017  reduce to 439190486 relations and 363374659 ideals in 8 passes
Tue Dec 19 08:48:35 2017  max relations containing the same ideal: 198
Tue Dec 19 08:57:09 2017  removing 9653888 relations and 7653888 ideals in 2000000 cliques
Tue Dec 19 08:57:19 2017  commencing in-memory singleton removal
Tue Dec 19 08:59:15 2017  begin with 429536598 relations and 363374659 unique ideals
Tue Dec 19 09:16:15 2017  reduce to 429361790 relations and 355545106 ideals in 7 passes
Tue Dec 19 09:16:15 2017  max relations containing the same ideal: 195
Tue Dec 19 09:24:39 2017  removing 9188218 relations and 7188218 ideals in 2000000 cliques
Tue Dec 19 09:24:49 2017  commencing in-memory singleton removal
Tue Dec 19 09:26:40 2017  begin with 420173572 relations and 355545106 unique ideals
Tue Dec 19 09:40:49 2017  reduce to 420011672 relations and 348194286 ideals in 6 passes
Tue Dec 19 09:40:49 2017  max relations containing the same ideal: 193
Tue Dec 19 09:48:57 2017  removing 8836559 relations and 6836559 ideals in 2000000 cliques
Tue Dec 19 09:49:06 2017  commencing in-memory singleton removal
Tue Dec 19 09:50:56 2017  begin with 411175113 relations and 348194286 unique ideals
Tue Dec 19 10:07:09 2017  reduce to 411021504 relations and 341203420 ideals in 7 passes
Tue Dec 19 10:07:09 2017  max relations containing the same ideal: 192
Tue Dec 19 10:15:07 2017  removing 8572095 relations and 6572095 ideals in 2000000 cliques
Tue Dec 19 10:15:16 2017  commencing in-memory singleton removal
Tue Dec 19 10:17:02 2017  begin with 402449409 relations and 341203420 unique ideals
Tue Dec 19 10:30:31 2017  reduce to 402301583 relations and 334482769 ideals in 6 passes
Tue Dec 19 10:30:31 2017  max relations containing the same ideal: 190
Tue Dec 19 10:38:20 2017  removing 8360758 relations and 6360758 ideals in 2000000 cliques
Tue Dec 19 10:38:29 2017  commencing in-memory singleton removal
Tue Dec 19 10:40:11 2017  begin with 393940825 relations and 334482769 unique ideals
Tue Dec 19 10:53:18 2017  reduce to 393796704 relations and 327977158 ideals in 6 passes
Tue Dec 19 10:53:18 2017  max relations containing the same ideal: 186
Tue Dec 19 11:00:55 2017  removing 8186686 relations and 6186686 ideals in 2000000 cliques
Tue Dec 19 11:01:04 2017  commencing in-memory singleton removal
Tue Dec 19 11:02:44 2017  begin with 385610018 relations and 327977158 unique ideals
Tue Dec 19 11:15:32 2017  reduce to 385468803 relations and 321648551 ideals in 6 passes
Tue Dec 19 11:15:32 2017  max relations containing the same ideal: 184
Tue Dec 19 11:22:54 2017  removing 8042178 relations and 6042178 ideals in 2000000 cliques
Tue Dec 19 11:23:03 2017  commencing in-memory singleton removal
Tue Dec 19 11:24:40 2017  begin with 377426625 relations and 321648551 unique ideals
Tue Dec 19 11:39:15 2017  reduce to 377286671 relations and 315465721 ideals in 7 passes
Tue Dec 19 11:39:15 2017  max relations containing the same ideal: 182
Tue Dec 19 11:46:32 2017  removing 7924725 relations and 5924725 ideals in 2000000 cliques
Tue Dec 19 11:46:40 2017  commencing in-memory singleton removal
Tue Dec 19 11:48:16 2017  begin with 369361946 relations and 315465721 unique ideals
Tue Dec 19 12:00:25 2017  reduce to 369223940 relations and 309402242 ideals in 6 passes
Tue Dec 19 12:00:25 2017  max relations containing the same ideal: 180
Tue Dec 19 12:07:29 2017  removing 7827393 relations and 5827393 ideals in 2000000 cliques
Tue Dec 19 12:07:37 2017  commencing in-memory singleton removal
Tue Dec 19 12:09:08 2017  begin with 361396547 relations and 309402242 unique ideals
Tue Dec 19 12:23:01 2017  reduce to 361257014 relations and 303434616 ideals in 7 passes
Tue Dec 19 12:23:01 2017  max relations containing the same ideal: 179
Tue Dec 19 12:29:58 2017  removing 7738847 relations and 5738847 ideals in 2000000 cliques
Tue Dec 19 12:30:06 2017  commencing in-memory singleton removal
Tue Dec 19 12:31:36 2017  begin with 353518167 relations and 303434616 unique ideals
Tue Dec 19 12:45:07 2017  reduce to 353378726 relations and 297555585 ideals in 7 passes
Tue Dec 19 12:45:07 2017  max relations containing the same ideal: 178
Tue Dec 19 12:51:55 2017  removing 7668311 relations and 5668311 ideals in 2000000 cliques
Tue Dec 19 12:52:03 2017  commencing in-memory singleton removal
Tue Dec 19 12:53:31 2017  begin with 345710415 relations and 297555585 unique ideals
Tue Dec 19 13:04:48 2017  reduce to 345571272 relations and 291747324 ideals in 6 passes
Tue Dec 19 13:04:48 2017  max relations containing the same ideal: 177
Tue Dec 19 13:11:27 2017  removing 7609887 relations and 5609887 ideals in 2000000 cliques
Tue Dec 19 13:11:35 2017  commencing in-memory singleton removal
Tue Dec 19 13:13:00 2017  begin with 337961385 relations and 291747324 unique ideals
Tue Dec 19 13:25:46 2017  reduce to 337820970 relations and 285996250 ideals in 7 passes
Tue Dec 19 13:25:46 2017  max relations containing the same ideal: 176
Tue Dec 19 13:32:13 2017  removing 7556310 relations and 5556310 ideals in 2000000 cliques
Tue Dec 19 13:32:21 2017  commencing in-memory singleton removal
Tue Dec 19 13:33:42 2017  begin with 330264660 relations and 285996250 unique ideals
Tue Dec 19 13:44:24 2017  reduce to 330123724 relations and 280298175 ideals in 6 passes
Tue Dec 19 13:44:24 2017  max relations containing the same ideal: 173
Tue Dec 19 13:50:43 2017  removing 7513618 relations and 5513618 ideals in 2000000 cliques
Tue Dec 19 13:50:50 2017  commencing in-memory singleton removal
Tue Dec 19 13:52:11 2017  begin with 322610106 relations and 280298175 unique ideals
Tue Dec 19 14:02:32 2017  reduce to 322466538 relations and 274640122 ideals in 6 passes
Tue Dec 19 14:02:32 2017  max relations containing the same ideal: 169
Tue Dec 19 14:08:41 2017  removing 7481211 relations and 5481211 ideals in 2000000 cliques
Tue Dec 19 14:08:48 2017  commencing in-memory singleton removal
Tue Dec 19 14:10:06 2017  begin with 314985327 relations and 274640122 unique ideals
Tue Dec 19 14:20:11 2017  reduce to 314838944 relations and 269011642 ideals in 6 passes
Tue Dec 19 14:20:11 2017  max relations containing the same ideal: 165
Tue Dec 19 14:26:12 2017  removing 7453740 relations and 5453740 ideals in 2000000 cliques
Tue Dec 19 14:26:19 2017  commencing in-memory singleton removal
Tue Dec 19 14:27:36 2017  begin with 307385204 relations and 269011642 unique ideals
Tue Dec 19 14:37:24 2017  reduce to 307238076 relations and 263409836 ideals in 6 passes
Tue Dec 19 14:37:24 2017  max relations containing the same ideal: 163
Tue Dec 19 14:43:14 2017  removing 7432066 relations and 5432066 ideals in 2000000 cliques
Tue Dec 19 14:43:21 2017  commencing in-memory singleton removal
Tue Dec 19 14:44:33 2017  begin with 299806010 relations and 263409836 unique ideals
Tue Dec 19 14:55:40 2017  reduce to 299654675 relations and 257825410 ideals in 7 passes
Tue Dec 19 14:55:40 2017  max relations containing the same ideal: 161
Tue Dec 19 15:01:22 2017  removing 7418820 relations and 5418820 ideals in 2000000 cliques
Tue Dec 19 15:01:29 2017  commencing in-memory singleton removal
Tue Dec 19 15:02:39 2017  begin with 292235855 relations and 257825410 unique ideals
Tue Dec 19 15:11:54 2017  reduce to 292080324 relations and 252250047 ideals in 6 passes
Tue Dec 19 15:11:54 2017  max relations containing the same ideal: 156
Tue Dec 19 15:17:28 2017  removing 7407955 relations and 5407955 ideals in 2000000 cliques
Tue Dec 19 15:17:34 2017  commencing in-memory singleton removal
Tue Dec 19 15:18:44 2017  begin with 284672369 relations and 252250047 unique ideals
Tue Dec 19 15:29:09 2017  reduce to 284514586 relations and 246683213 ideals in 7 passes
Tue Dec 19 15:29:09 2017  max relations containing the same ideal: 154
Tue Dec 19 15:34:31 2017  removing 7403243 relations and 5403243 ideals in 2000000 cliques
Tue Dec 19 15:34:38 2017  commencing in-memory singleton removal
Tue Dec 19 15:35:45 2017  begin with 277111343 relations and 246683213 unique ideals
Tue Dec 19 15:44:22 2017  reduce to 276949858 relations and 241117349 ideals in 6 passes
Tue Dec 19 15:44:22 2017  max relations containing the same ideal: 150
Tue Dec 19 15:49:36 2017  removing 7404896 relations and 5404896 ideals in 2000000 cliques
Tue Dec 19 15:49:42 2017  commencing in-memory singleton removal
Tue Dec 19 15:50:47 2017  begin with 269544962 relations and 241117349 unique ideals
Tue Dec 19 15:59:09 2017  reduce to 269379158 relations and 235545483 ideals in 6 passes
Tue Dec 19 15:59:09 2017  max relations containing the same ideal: 148
Tue Dec 19 16:04:16 2017  removing 7412734 relations and 5412734 ideals in 2000000 cliques
Tue Dec 19 16:04:23 2017  commencing in-memory singleton removal
Tue Dec 19 16:05:26 2017  begin with 261966424 relations and 235545483 unique ideals
Tue Dec 19 16:13:32 2017  reduce to 261796068 relations and 229961144 ideals in 6 passes
Tue Dec 19 16:13:32 2017  max relations containing the same ideal: 145
Tue Dec 19 16:18:28 2017  removing 7427612 relations and 5427612 ideals in 2000000 cliques
Tue Dec 19 16:18:34 2017  commencing in-memory singleton removal
Tue Dec 19 16:19:34 2017  begin with 254368456 relations and 229961144 unique ideals
Tue Dec 19 16:28:42 2017  reduce to 254192021 relations and 224355669 ideals in 7 passes
Tue Dec 19 16:28:42 2017  max relations containing the same ideal: 141
Tue Dec 19 16:33:30 2017  removing 7438124 relations and 5438124 ideals in 2000000 cliques
Tue Dec 19 16:33:36 2017  commencing in-memory singleton removal
Tue Dec 19 16:34:33 2017  begin with 246753897 relations and 224355669 unique ideals
Tue Dec 19 16:42:05 2017  reduce to 246571620 relations and 218733842 ideals in 6 passes
Tue Dec 19 16:42:05 2017  max relations containing the same ideal: 138
Tue Dec 19 16:46:40 2017  removing 7460416 relations and 5460416 ideals in 2000000 cliques
Tue Dec 19 16:46:45 2017  commencing in-memory singleton removal
Tue Dec 19 16:47:41 2017  begin with 239111204 relations and 218733842 unique ideals
Tue Dec 19 16:54:55 2017  reduce to 238921465 relations and 213082191 ideals in 6 passes
Tue Dec 19 16:54:55 2017  max relations containing the same ideal: 136
Tue Dec 19 16:59:23 2017  removing 7493127 relations and 5493127 ideals in 2000000 cliques
Tue Dec 19 16:59:29 2017  commencing in-memory singleton removal
Tue Dec 19 17:00:21 2017  begin with 231428338 relations and 213082191 unique ideals
Tue Dec 19 17:07:16 2017  reduce to 231232400 relations and 207391533 ideals in 6 passes
Tue Dec 19 17:07:16 2017  max relations containing the same ideal: 133
Tue Dec 19 17:11:34 2017  removing 7526288 relations and 5526288 ideals in 2000000 cliques
Tue Dec 19 17:11:40 2017  commencing in-memory singleton removal
Tue Dec 19 17:12:31 2017  begin with 223706112 relations and 207391533 unique ideals
Tue Dec 19 17:20:19 2017  reduce to 223501249 relations and 201658709 ideals in 7 passes
Tue Dec 19 17:20:19 2017  max relations containing the same ideal: 131
Tue Dec 19 17:24:28 2017  removing 7568326 relations and 5568326 ideals in 2000000 cliques
Tue Dec 19 17:24:34 2017  commencing in-memory singleton removal
Tue Dec 19 17:25:23 2017  begin with 215932923 relations and 201658709 unique ideals
Tue Dec 19 17:32:52 2017  reduce to 215718660 relations and 195874289 ideals in 7 passes
Tue Dec 19 17:32:52 2017  max relations containing the same ideal: 128
Tue Dec 19 17:36:52 2017  removing 7613522 relations and 5613522 ideals in 2000000 cliques
Tue Dec 19 17:36:57 2017  commencing in-memory singleton removal
Tue Dec 19 17:37:44 2017  begin with 208105138 relations and 195874289 unique ideals
Tue Dec 19 17:44:54 2017  reduce to 207880473 relations and 190034007 ideals in 7 passes
Tue Dec 19 17:44:54 2017  max relations containing the same ideal: 125
Tue Dec 19 17:48:44 2017  removing 7675888 relations and 5675888 ideals in 2000000 cliques
Tue Dec 19 17:48:50 2017  commencing in-memory singleton removal
Tue Dec 19 17:49:34 2017  begin with 200204585 relations and 190034007 unique ideals
Tue Dec 19 17:56:23 2017  reduce to 199967099 relations and 184118525 ideals in 7 passes
Tue Dec 19 17:56:23 2017  max relations containing the same ideal: 122
Tue Dec 19 18:00:04 2017  removing 7738184 relations and 5738184 ideals in 2000000 cliques
Tue Dec 19 18:00:09 2017  commencing in-memory singleton removal
Tue Dec 19 18:00:52 2017  begin with 192228915 relations and 184118525 unique ideals
Tue Dec 19 18:07:20 2017  reduce to 191977190 relations and 178126259 ideals in 7 passes
Tue Dec 19 18:07:20 2017  max relations containing the same ideal: 118
Tue Dec 19 18:10:51 2017  removing 7814025 relations and 5814025 ideals in 2000000 cliques
Tue Dec 19 18:10:56 2017  commencing in-memory singleton removal
Tue Dec 19 18:11:36 2017  begin with 184163165 relations and 178126259 unique ideals
Tue Dec 19 18:17:43 2017  reduce to 183896851 relations and 172043377 ideals in 7 passes
Tue Dec 19 18:17:43 2017  max relations containing the same ideal: 114
Tue Dec 19 18:21:04 2017  removing 7904604 relations and 5904604 ideals in 2000000 cliques
Tue Dec 19 18:21:09 2017  commencing in-memory singleton removal
Tue Dec 19 18:21:45 2017  begin with 175992247 relations and 172043377 unique ideals
Tue Dec 19 18:27:33 2017  reduce to 175707703 relations and 165851442 ideals in 7 passes
Tue Dec 19 18:27:33 2017  max relations containing the same ideal: 110
Tue Dec 19 18:30:44 2017  removing 8010853 relations and 6010853 ideals in 2000000 cliques
Tue Dec 19 18:30:49 2017  commencing in-memory singleton removal
Tue Dec 19 18:31:22 2017  begin with 167696850 relations and 165851442 unique ideals
Tue Dec 19 18:36:50 2017  reduce to 167388904 relations and 159529533 ideals in 7 passes
Tue Dec 19 18:36:50 2017  max relations containing the same ideal: 108
Tue Dec 19 18:39:55 2017  removing 8128404 relations and 6128404 ideals in 2000000 cliques
Tue Dec 19 18:40:00 2017  commencing in-memory singleton removal
Tue Dec 19 18:40:32 2017  begin with 159260500 relations and 159529533 unique ideals
Tue Dec 19 18:45:40 2017  reduce to 158925980 relations and 153063112 ideals in 7 passes
Tue Dec 19 18:45:40 2017  max relations containing the same ideal: 103
Tue Dec 19 18:48:34 2017  removing 8261022 relations and 6261022 ideals in 2000000 cliques
Tue Dec 19 18:48:38 2017  commencing in-memory singleton removal
Tue Dec 19 18:49:09 2017  begin with 150664958 relations and 153063112 unique ideals
Tue Dec 19 18:53:54 2017  reduce to 150298141 relations and 146431260 ideals in 7 passes
Tue Dec 19 18:53:54 2017  max relations containing the same ideal: 100
Tue Dec 19 18:56:37 2017  removing 4637771 relations and 3679136 ideals in 958635 cliques
Tue Dec 19 18:56:41 2017  commencing in-memory singleton removal
Tue Dec 19 18:57:12 2017  begin with 145660370 relations and 146431260 unique ideals
Tue Dec 19 19:01:05 2017  reduce to 145549676 relations and 142640790 ideals in 6 passes
Tue Dec 19 19:01:05 2017  max relations containing the same ideal: 99
Tue Dec 19 19:04:08 2017  relations with 0 large ideals: 8608
Tue Dec 19 19:04:08 2017  relations with 1 large ideals: 32141
Tue Dec 19 19:04:08 2017  relations with 2 large ideals: 483831
Tue Dec 19 19:04:08 2017  relations with 3 large ideals: 3290692
Tue Dec 19 19:04:08 2017  relations with 4 large ideals: 12201363
Tue Dec 19 19:04:08 2017  relations with 5 large ideals: 27283605
Tue Dec 19 19:04:08 2017  relations with 6 large ideals: 38538418
Tue Dec 19 19:04:08 2017  relations with 7+ large ideals: 63711018
Tue Dec 19 19:04:08 2017  commencing 2-way merge
Tue Dec 19 19:07:52 2017  reduce to 92351677 relation sets and 89442791 unique ideals
Tue Dec 19 19:07:52 2017  commencing full merge
Tue Dec 19 20:11:45 2017  memory use: 10667.8 MB
Tue Dec 19 20:12:20 2017  found 40448970 cycles, need 40222991
Tue Dec 19 20:12:24 2017  weight of 40222991 cycles is about 5229498284 (130.01/cycle)
Tue Dec 19 20:12:24 2017  distribution of cycle lengths:
Tue Dec 19 20:12:24 2017  1 relations: 2839370
Tue Dec 19 20:12:24 2017  2 relations: 2638524
Tue Dec 19 20:12:24 2017  3 relations: 2782441
Tue Dec 19 20:12:24 2017  4 relations: 2806335
Tue Dec 19 20:12:24 2017  5 relations: 2876110
Tue Dec 19 20:12:24 2017  6 relations: 2829788
Tue Dec 19 20:12:24 2017  7 relations: 2773698
Tue Dec 19 20:12:24 2017  8 relations: 2667964
Tue Dec 19 20:12:24 2017  9 relations: 2532163
Tue Dec 19 20:12:24 2017  10+ relations: 15476598
Tue Dec 19 20:12:24 2017  heaviest cycle: 28 relations
Tue Dec 19 20:16:47 2017  commencing cycle optimization
Tue Dec 19 20:20:00 2017  start with 342169522 relations
Tue Dec 19 20:50:01 2017  pruned 14583710 relations
Tue Dec 19 20:50:02 2017  memory use: 9468.9 MB
Tue Dec 19 20:50:02 2017  distribution of cycle lengths:
Tue Dec 19 20:50:02 2017  1 relations: 2839370
Tue Dec 19 20:50:02 2017  2 relations: 2712498
Tue Dec 19 20:50:02 2017  3 relations: 2900844
Tue Dec 19 20:50:02 2017  4 relations: 2920192
Tue Dec 19 20:50:02 2017  5 relations: 3009995
Tue Dec 19 20:50:02 2017  6 relations: 2956051
Tue Dec 19 20:50:02 2017  7 relations: 2906501
Tue Dec 19 20:50:02 2017  8 relations: 2783475
Tue Dec 19 20:50:02 2017  9 relations: 2636477
Tue Dec 19 20:50:02 2017  10+ relations: 14557588
Tue Dec 19 20:50:02 2017  heaviest cycle: 28 relations
Tue Dec 19 20:56:32 2017  RelProcTime: 91780
Tue Dec 19 20:56:32 2017  
Tue Dec 19 20:56:32 2017  commencing linear algebra
Tue Dec 19 20:57:06 2017  read 40222991 cycles
Tue Dec 19 21:00:00 2017  cycles contain 143999269 unique relations
Tue Dec 19 21:40:45 2017  read 143999269 relations
Tue Dec 19 21:49:49 2017  using 20 quadratic characters above 4294917295
Tue Dec 19 22:03:40 2017  building initial matrix
Tue Dec 19 23:17:03 2017  memory use: 20131.3 MB
Tue Dec 19 23:21:47 2017  read 40222991 cycles
Tue Dec 19 23:22:08 2017  matrix is 40222814 x 40222991 (20412.9 MB) with weight 6124559285 (152.27/col)
Tue Dec 19 23:22:08 2017  sparse part has weight 4868444598 (121.04/col)
Tue Dec 19 23:42:50 2017  filtering completed in 2 passes
Tue Dec 19 23:43:11 2017  matrix is 40221281 x 40221458 (20412.8 MB) with weight 6124493389 (152.27/col)
Tue Dec 19 23:43:11 2017  sparse part has weight 4868427644 (121.04/col)
Tue Dec 19 23:54:42 2017  matrix starts at (0, 0)
Tue Dec 19 23:55:03 2017  matrix is 40221281 x 40221458 (20412.8 MB) with weight 6124493389 (152.27/col)
Tue Dec 19 23:55:03 2017  sparse part has weight 4868427644 (121.04/col)
Tue Dec 19 23:55:03 2017  saving the first 48 matrix rows for later
Tue Dec 19 23:55:27 2017  matrix includes 64 packed rows
Tue Dec 19 23:55:38 2017  matrix is 40221233 x 40221458 (19852.4 MB) with weight 5280135315 (131.28/col)
Tue Dec 19 23:55:38 2017  sparse part has weight 4801981234 (119.39/col)
Tue Dec 19 23:55:38 2017  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Wed Dec 20 00:06:59 2017  commencing Lanczos iteration (12 threads)
Wed Dec 20 00:06:59 2017  memory use: 17197.3 MB
Wed Dec 20 00:11:26 2017  linear algebra at 0.0%, ETA 1875h31m
Wed Dec 20 00:12:50 2017  checkpointing every 30000 dimensions
Thu Feb 15 20:25:19 2018  lanczos halted after 636065 iterations (dim = 40221231)
Thu Feb 15 20:26:11 2018  recovered 31 nontrivial dependencies
Thu Feb 15 20:28:19 2018  BLanczosTime: 5009507
Thu Feb 15 20:28:19 2018  
Thu Feb 15 20:28:19 2018  commencing square root phase
Thu Feb 15 20:28:19 2018  handling dependencies 1 to 64
Thu Feb 15 20:28:19 2018  reading relations for dependency 1
Thu Feb 15 20:28:31 2018  read 20108165 cycles
Thu Feb 15 20:29:12 2018  cycles contain 71992354 unique relations
Thu Feb 15 20:45:07 2018  read 71992354 relations
Thu Feb 15 20:52:54 2018  multiplying 71992354 relations
Thu Feb 15 22:59:01 2018  multiply complete, coefficients have about 4621.15 million bits
Thu Feb 15 22:59:39 2018  initial square root is modulo 152189
Fri Feb 16 01:19:03 2018  sqrtTime: 17444
Fri Feb 16 01:19:03 2018  p88 factor: 2102173879615901190724805905901825960646731569309620829374935176385195435873285181866611
Fri Feb 16 01:19:03 2018  p111 factor: 738646356928296470476307267086332729186390523609043172055510815591989993873426438257667855075703812004308119681
Fri Feb 16 01:19:03 2018  elapsed time 1421:52:14

February 16, 2018 2018 年 2 月 16 日 (Alfred Reich)

n=16592: c7673(1611497574......) = 15342981436280399162218241 * c7648(1050315794......)

# ECM B1=250000, sigma=1:195921627

n=16700L: c3297(3244610110......) = 48738021254244743670562601 * c3271(6657246287......)

# ECM B1=250000, sigma=1:820398583

n=16700M: c3235(3853000044......) = 208028179913154058067402701 * c3209(1852152937......)

# ECM B1=250000, sigma=1:40251310

n=16712: c8352(9999000099......) = 374457044618694563332491262537 * c8323(2670266254......)

# ECM B1=250000, sigma=1:3408206633

# 139896 of 200000 Φn(10) factorizations were cracked. 200000 個中 139896 個の Φn(10) の素因数が見つかりました。

February 16, 2018 2018 年 2 月 16 日 (Makoto Kamada)

n=148674: c48720(9100000000......) = 1958069072110572633317822641 * c48693(4647435644......)

# P-1 B1=1e6

# 139895 of 200000 Φn(10) factorizations were cracked. 200000 個中 139895 個の Φn(10) の素因数が見つかりました。

February 15, 2018 2018 年 2 月 15 日 (Alfred Reich)

n=16634: c8301(4144357555......) = 1038714641275349814463 * c8280(3989890381......)

n=16654: c7543(5340274476......) = 28724722020458741343325579 * c7518(1859121377......)

February 15, 2018 2018 年 2 月 15 日 (Makoto Kamada)

n=148602: c49533(1098901098......) = 67360445412522253 * c49516(1631374454......)

n=148608: c48354(1530908852......) = 65949009694547664572929 * c48331(2321352298......)

n=148638: c42442(9538913450......) = 5076451782277951447 * c42424(1879051325......)

n=148662: c49513(3759272182......) = 14092652297863 * c49500(2667540575......)

# P-1 B1=1e6

# 139894 of 200000 Φn(10) factorizations were cracked. 200000 個中 139894 個の Φn(10) の素因数が見つかりました。

February 15, 2018 2018 年 2 月 15 日 (Maksym Voznyy)

n=42821: c42801(3558765799......) = 94960710073479465821403877 * c42775(3747619196......)

# ECM B1=250000, sigma=8466897684262694

n=44179: c44171(1778656946......) = 949920220538144249 * c44153(1872427713......)

# ECM B1=250000, sigma=83147346363274

n=41399: c41372(2983984715......) = 124476036960214001 * c41355(2397236278......)

# ECM B1=250000, sigma=7383166726083286

n=42923: c42916(4622524424......) = 6917976527962908085597 * c42894(6681902440......)

# ECM B1=250000, sigma=5974306517682943

February 15, 2018 2018 年 2 月 15 日 (Makoto Kamada)

n=148548: c49507(6799096527......) = 2374378354373881 * c49492(2863527000......)

# P-1 B1=1e6

February 14, 2018 2018 年 2 月 14 日 (Alfred Reich)

n=17918: c8125(8029487157......) = 151061552341355493209 * c8105(5315374450......)

# ECM B1=250000, sigma=1:273131217

February 14, 2018 2018 年 2 月 14 日 (Makoto Kamada)

n=148368: c44800(9999999900......) = 86982895622948727118257553 * c44775(1149651299......)

n=148446: c49448(8304024110......) = 4676222471175127 * c49433(1775797486......)

n=148452: c48576(9901000000......) = 1282045375865869 * c48561(7722815577......)

# P-1 B1=1e6

# 139893 of 200000 Φn(10) factorizations were cracked. 200000 個中 139893 個の Φn(10) の素因数が見つかりました。

February 14, 2018 2018 年 2 月 14 日 (Maksym Voznyy)

n=18169: c18158(7647413543......) = 151409538621924601268879 * c18135(5050813583......)

# ECM B1=250000, sigma=7134350885554380

n=18257: c18246(5419470127......) = 319642434089255049133 * c18226(1695478932......)

# ECM B1=250000, sigma=2354387513011170

February 13, 2018 2018 年 2 月 13 日 (Makoto Kamada)

n=148158: c49381(1000999998......) = 396726912269949619 * c49363(2523146194......)

n=148182: c49383(4950856454......) = 15048887574033293503 * c49364(3289848788......)

# P-1 B1=1e6

# 139891 of 200000 Φn(10) factorizations were cracked. 200000 個中 139891 個の Φn(10) の素因数が見つかりました。

February 12, 2018 2018 年 2 月 12 日 (NeuralMiner)

# via yoyo@home

n=1373: c1373(1111111111......) = 229016141864852008546928682385264917916393201 * c1328(4851671598......)

# ECM B1=11000000, sigma=0:3460683030665955377

# 139890 of 200000 Φn(10) factorizations were cracked. 200000 個中 139890 個の Φn(10) の素因数が見つかりました。

# 13844 of 17984 Rprime factorizations were cracked. 17984 個中 13844 個の Rprime の素因数が見つかりました。

February 12, 2018 2018 年 2 月 12 日 (Makoto Kamada)

n=147936: c46450(2371566042......) = 135656908348861798081 * c46430(1748208824......)

n=147972: c41715(1334184790......) = 515996060225104009 * c41697(2585649181......)

n=147978: c49304(7903989194......) = 170435606670811 * c49290(4637522257......)

n=147984: c49293(2789157997......) = 2163582016190990401 * c49275(1289139018......)

n=147996: c49292(5431781112......) = 29392744782996401221 * c49273(1848000638......)

n=148038: c44823(1445314318......) = 29779527377129621755318183 * c44797(4853382325......)

n=148074: c44332(6183636679......) = 14308066418344183 * c44316(4321783599......)

n=148116: c49353(5626804741......) = 273606910413769 * c49339(2056528737......)

n=148122: c45360(9999999990......) = 95902369773262651 * c45344(1042727099......)

n=148146: c49370(1635989293......) = 3818849518471651 * c49354(4283984705......)

# P-1 B1=1e6

# 139889 of 200000 Φn(10) factorizations were cracked. 200000 個中 139889 個の Φn(10) の素因数が見つかりました。

February 11, 2018 2018 年 2 月 11 日 (Makoto Kamada)

n=147834: c47873(7188920984......) = 58363416939979 * c47860(1231751216......)

n=147894: c48975(2082157887......) = 112456078817287 * c48961(1851529867......)

# P-1 B1=1e6

February 10, 2018 2018 年 2 月 10 日 (Alfred Reich)

n=8300L: c1598(4627667072......) = 267352619706048404954978381518286405201 * c1560(1730922658......)

# ECM B1=1000000, sigma=1:525732917

n=140012: c62702(4863234213......) = 413450505590394982741 * c62682(1176255476......)

# ECM B1=10000, sigma=0:13143186367451413363

n=140018: c70002(1047204995......) = 359714891080161637 * c69984(2911208353......)

# ECM B1=10000, sigma=0:238080525941444399

n=140074: c63640(2025521980......) = 98973501816169531 * c63623(2046529569......)

# ECM B1=10000, sigma=0:5223439119762484737

n=140080: c52217(5249101025......) = 15657768495382241 * c52201(3352394070......)

# ECM B1=10000, sigma=0:12807202361124691259

n=140082: c45310(1632713313......) = 231249494728731121 * c45292(7060397322......)

# ECM B1=10000, sigma=0:13393483429152922374

n=140096: c63353(1753799119......) = 38940078498694345464449 * c63330(4503840738......)

# ECM B1=10000, sigma=0:5700157363519639785

n=140108: c70052(9900990099......) = 35697807010675597180609 * c70030(2773556957......)

# ECM B1=10000, sigma=0:4679194483847723554

n=140140M: c20134(7181564553......) = 32805246125584632701 * c20115(2189151249......)

# ECM B1=10000, sigma=0:14177752629969265257

n=140164: c68892(6527541621......) = 8166007902654592072109 * c68870(7993552908......)

# ECM B1=10000, sigma=0:3805813652974424434

n=140192: c64513(1000000000......) = 798375771691615624417 * c64492(1252543019......)

# ECM B1=10000, sigma=0:15072758608796129245

n=140212: c70088(2019953636......) = 15153599236552141 * c70072(1332986048......)

# ECM B1=10000, sigma=0:5073708888147527178

n=140214: c46712(7397284387......) = 9205404411950767 * c46696(8035805985......)

# ECM B1=10000, sigma=0:11103384049187650394

n=140220L: c17217(1167241541......) = 3737155449125774701 * c17198(3123342224......)

# ECM B1=10000, sigma=0:46359828001921704

n=140228: c63701(1004813816......) = 1064917287939781 * c63685(9435604324......)

# ECM B1=10000, sigma=0:4436664511340163419

n=140246: c70122(9090909090......) = 13404911453460721 * x70106(6781774816......)

# ECM B1=10000, sigma=0:2980889505584145242

n=140246: x70106(6781774816......) = 8300863170079700491331 * c70084(8169963384......)

# ECM B1=10000, sigma=0:7756188997315743438

n=140254: c67046(2762999972......) = 777408952034992561 * c67028(3554113912......)

# ECM B1=10000, sigma=0:15277203827349569746

n=140282: c70140(9090909090......) = 6521907384452292611 * c70122(1393903432......)

# ECM B1=10000, sigma=0:9182961491243925871

n=140288: c69632(9999999999......) = 130585575068101633 * c69615(7657813655......)

# ECM B1=10000, sigma=0:3855513127880769519

n=140290: c56113(1099989000......) = 57732235074881 * c56099(1905328970......)

# ECM B1=10000, sigma=0:10959998280485339051

n=140322: c36840(8336523498......) = 264621023640213241 * c36823(3150363256......)

# ECM B1=10000, sigma=0:16923450026140239181

n=140338: c63769(2538728176......) = 40829151792676853 * c63752(6217930240......)

# ECM B1=10000, sigma=0:12491405518686091995

n=140344: c68641(1000099999......) = 205977120942289 * x68626(4855393625......)

# ECM B1=10000, sigma=0:9521329068933002171

n=140344: x68626(4855393625......) = 118038802758818713 * c68609(4113387726......)

# ECM B1=10000, sigma=0:6175314047273993

n=140354: c70168(1117131528......) = 192645064735496579 * c70150(5798910707......)

# ECM B1=10000, sigma=0:12905363470273535151

n=140380M: c28039(4134000045......) = 480541920197768761 * c28021(8602787543......)

# ECM B1=10000, sigma=0:3291437587390161454

n=140418: c45019(7114428959......) = 22287898145363623921 * c45000(3192059167......)

# ECM B1=10000, sigma=0:6955708396804907737

n=140430: c35986(1192190671......) = 460660764058846051 * c35968(2588001333......)

# ECM B1=10000, sigma=0:4617770221608152236

n=140436: c45264(9999990000......) = 2549004621051752569 * c45246(3923096065......)

# ECM B1=10000, sigma=0:12953346316328120401

n=140440: c56144(1875633669......) = 120779783053121 * c56130(1552936776......)

# ECM B1=5000, sigma=0:9570252836704831408

n=140506: c69644(6049674203......) = 33137068693100863 * c69628(1825651586......)

# ECM B1=10000, sigma=0:17603158958633073240

n=140508: c46780(3359048387......) = 74101156509363229 * c46763(4533057978......)

# ECM B1=10000, sigma=0:530581954239163492

n=140510: c56194(1397954467......) = 20079731524753601 * c56177(6962017722......)

# ECM B1=10000, sigma=0:286518618203823357

n=140528: c70256(9999999900......) = 512193337488961 * c70242(1952387734......)

# ECM B1=10000, sigma=0:1558697253636709757

n=140534: c67792(2821738476......) = 92266866563359039117 * c67772(3058235942......)

# ECM B1=10000, sigma=0:7547293856783885984

n=140542: c70265(1078076104......) = 2396656079289009613 * c70246(4498251182......)

# ECM B1=10000, sigma=0:14126810058923857834

n=140588: c60234(6531007087......) = 17695054719263741 * c60218(3690865720......)

# ECM B1=10000, sigma=0:14733122644916014229

n=140618: c70308(9090909090......) = 1070759471866543 * c70293(8490150523......)

# ECM B1=10000, sigma=0:4258426680865591002

n=140636: c70301(5405398038......) = 401084790852209 * c70287(1347694592......)

# ECM

n=140648: c70320(9999000099......) = 75115751192586008617 * c70301(1331145590......)

# ECM B1=10000, sigma=0:4735948792768780949

n=140678: c68035(3909623716......) = 11949867711097367 * c68019(3271687863......)

# ECM B1=10000, sigma=0:14495900141864477422

n=140720: c56228(5942848517......) = 1505029407116814721 * c56210(3948659401......)

# ECM B1=10000, sigma=0:4920836818277759393

n=140732: c69577(2023005683......) = 6509615344738621 * c69561(3107719237......)

# ECM B1=10000, sigma=0:7184528628231432187

n=140740L: c27105(1237485551......) = 926893007835606043781 * c27084(1335089963......)

# ECM B1=10000, sigma=0:16503176170017263894

n=140740M: c27111(1433570074......) = 883690014781798681 * c27093(1622254467......)

# ECM B1=10000, sigma=0:10134617997134328222

n=140746: c70372(9090909090......) = 99658521906640714877 * c70352(9122058923......)

# ECM B1=10000, sigma=0:5115292725322768329

n=140792: c70387(2367316425......) = 104719097433044137 * c70370(2260634864......)

# ECM B1=10000, sigma=0:769742583942611082

n=140864: c67201(1000000000......) = 11898832954679173249 * c67181(8404185551......)

# ECM B1=10000, sigma=0:13737994204473022575

n=140876: c68619(1224761492......) = 17003137897469281 * c68602(7203149791......)

# ECM B1=10000, sigma=0:10633426023565165995

n=140882: c58108(1318907716......) = 720427058149247 * c58093(1830730400......)

# ECM B1=10000, sigma=0:2117597504686033157

n=140890: c55285(3816512895......) = 175539457972623352691 * c55265(2174162401......)

# ECM B1=10000, sigma=0:15503484453069554808

n=140902: c70450(9090909090......) = 687189198803099 * c70436(1322912104......)

# ECM B1=10000, sigma=0:487032676790665642

n=140932: c64020(9216444677......) = 11093213746354870681 * c64001(8308182721......)

# ECM B1=10000, sigma=0:1715794912112464600

n=140942: c66736(8129821663......) = 2348260480319329 * c66721(3462061271......)

# ECM B1=10000, sigma=0:11010698214656295591

n=140968: c69169(1000099999......) = 10706701015948241 * c69152(9340879123......)

# ECM B1=10000, sigma=0:947607178935605309

n=141032: c65281(1000000000......) = 47943278839759409 * c65264(2085798101......)

# ECM B1=10000, sigma=0:11299269276012583701

n=141040: c53760(9999999900......) = 47473415505696161 * c53744(2106442056......)

# ECM B1=10000, sigma=0:15177774114111026013

n=141082: c67453(1099999999......) = 42821221578489139 * c67436(2568819756......)

# ECM B1=10000, sigma=0:624298271015648751

n=141092: c60451(1431687931......) = 170010052467594090702581 * x60427(8421195752......)

# ECM B1=10000, sigma=0:5862196116203088102

n=141092: x60427(8421195752......) = 3130012764040681 * c60412(2690466904......)

# ECM B1=10000, sigma=0:18033942473926296000

n=141112: c68161(1000099999......) = 640544935834328651281 * c68140(1561326839......)

# ECM B1=10000, sigma=0:11533190155340854887

n=141118: c68606(1419331030......) = 557003211593117 * c68591(2548155918......)

# ECM B1=10000, sigma=0:17017842683502760784

n=141160: c56449(1000099999......) = 19428544212645361 * c56432(5147580740......)

# ECM B1=10000, sigma=0:16075373062385143886

n=141170: c53424(9091000000......) = 26088045646914091 * c53408(3484737846......)

# ECM B1=10000, sigma=0:11909741694170096273

n=141178: c70577(1341501556......) = 33253512735755933 * c70560(4034164952......)

# ECM B1=10000, sigma=0:11550836604229008467

n=141196: c64154(2167628972......) = 871959433265449 * c64139(2485928690......)

# ECM B1=10000, sigma=0:14481508753312953295

n=141200: c56312(1132781984......) = 81907583486306401 * c56295(1383000127......)

# ECM B1=10000, sigma=0:14957157294293732839

n=141202: c66424(3093827603......) = 178286096957351161 * c66407(1735316245......)

# ECM B1=10000, sigma=0:2796907570667532107

n=141206: c65150(1053305558......) = 5219228280990881 * c65134(2018125098......)

# ECM B1=10000, sigma=0:6300469559805070449

n=141212: c68881(1009999999......) = 57724716767209 * c68867(1749683769......)

# ECM B1=10000, sigma=0:6569601748308642969

n=141236: c63350(1008185334......) = 462340337846377541 * c63332(2180612964......)

# ECM B1=10000, sigma=0:4352425805714633201

n=141250: c55992(7044423848......) = 113756091655517076251 * c55972(6192568455......)

# ECM B1=10000, sigma=0:16475012623245954419

n=141274: c60480(3908203430......) = 3759931377610641024863 * c60459(1039434776......)

# ECM B1=10000, sigma=0:74463139616098878

n=141316: c59977(1000000000......) = 10741179025004042861 * c59957(9309964927......)

# ECM B1=10000, sigma=0:12787137950737698143

n=141350: c51179(6743921871......) = 14698849464991451 * c51163(4588061050......)

# ECM B1=10000, sigma=0:9467399996404746427

n=141352: c70656(4577170900......) = 8907170357984321 * c70640(5138748577......)

# ECM B1=10000, sigma=0:4500827682605807117

n=141370: c55432(3207303227......) = 185180651733054569289121 * c55409(1731986142......)

# ECM B1=10000, sigma=0:4277428826623034765

n=141398: c65862(7273991322......) = 4747671947885580499 * c65844(1532117509......)

# ECM B1=10000, sigma=0:8795601545263597324

n=141416: c64232(2438635431......) = 1489710799991977817 * c64214(1636985803......)

# ECM B1=10000, sigma=0:7082173158990072259

n=141438: c42819(1087063299......) = 2910145975892893 * c42803(3735425330......)

# ECM B1=10000, sigma=0:11001609472328260556

n=141452: c70705(6303148017......) = 112502062769658437809 * x70685(5602695507......)

# ECM B1=10000, sigma=0:17309131993372120982

n=141452: x70685(5602695507......) = 154820539679873867369 * c70665(3618832177......)

# ECM B1=10000, sigma=0:11443306091540352174

n=141500M: c28168(2945788785......) = 5672941094114240501 * c28149(5192701169......)

# ECM B1=10000, sigma=0:3299204951216938623

n=141514: c70161(2733094093......) = 1750866946190644571 * c70143(1560994740......)

# ECM B1=10000, sigma=0:3262468973896482254

n=141532: c68961(1009999999......) = 12337831168549 * c68947(8186203767......)

# ECM B1=10000, sigma=0:15572725481664455365

n=141540M: c16096(2851932061......) = 621461173105986361 * c16078(4589075206......)

# ECM B1=10000, sigma=0:4573579231000136181

n=141554: c60661(1099999890......) = 711970359471072963367 * c60640(1545007984......)

# ECM B1=10000, sigma=0:5505584554872111329

n=141584: c70784(9999999900......) = 5104568856856318417 * c70766(1959029289......)

# ECM B1=10000, sigma=0:5627458961154438493

n=141594: c47170(2145111334......) = 42502420220077 * c47156(5047033376......)

# ECM B1=10000, sigma=0:1234920716269879119

n=141650: c56630(7158439554......) = 6877672022991898786859801 * c56606(1040823047......)

# ECM B1=10000, sigma=0:581064482010096720

n=141674: c65377(1099999999......) = 1171504298446466401 * c65358(9389636909......)

# ECM B1=10000, sigma=0:9543622827579785692

n=141728: c68514(1816073609......) = 27020335080164161409 * c68494(6721136522......)

# ECM B1=10000, sigma=0:10013596754370669093

n=141738: c47237(2619271912......) = 151134630051795769 * c47220(1733071971......)

# ECM B1=10000, sigma=0:3843241483916368672

n=141752: c61824(9999000099......) = 209501824670938697 * c61807(4772750841......)

# ECM B1=10000, sigma=0:16933257166674351210

n=141796: c70896(9900990099......) = 2000017926529111681 * c70878(4950450677......)

# ECM B1=10000, sigma=0:342961486970492420

n=141800: c56634(2938410043......) = 5227768259761538401 * c56615(5620773335......)

# ECM B1=10000, sigma=0:2095010974537005116

n=141878: c64481(1099999999......) = 56570516450937611 * c64464(1944475795......)

# ECM B1=10000, sigma=0:10382759715650821789

n=141904: c60475(2349000382......) = 58525397013775217 * c60458(4013642799......)

# ECM B1=10000, sigma=0:9296463552160307325

n=141924: c47283(1232554325......) = 22109259232441309 * c47266(5574833206......)

# ECM B1=10000, sigma=0:5850100393157179354

n=141974: c60841(1099999890......) = 37812203454968295277 * c60821(2909113432......)

# ECM B1=10000, sigma=0:10173113830855663694

# 139888 of 200000 Φn(10) factorizations were cracked. 200000 個中 139888 個の Φn(10) の素因数が見つかりました。

February 10, 2018 2018 年 2 月 10 日 (Makoto Kamada)

n=147612: c49193(4751565960......) = 28118715215901058201 * c49174(1689823280......)

n=147636: c49160(6309013293......) = 12815336040667013725309 * c49138(4923018228......)

n=147648: c49150(1300390117......) = 26106072337209491329 * c49130(4981178709......)

n=147708: c44634(2256701903......) = 1656925558022769409 * c44616(1361981467......)

# P-1 B1=1e6

February 9, 2018 2018 年 2 月 9 日 (Makoto Kamada)

n=147426: c49141(1098901098......) = 119904121134859 * c49126(9164831771......)

n=147456: c49139(6405421437......) = 64646315484807169 * c49122(9908409148......)

n=147504: c42048(9999999900......) = 485287173493249 * c42034(2060635525......)

n=147522: c46973(3352283367......) = 772884973909070170801 * 278208588986962025677378339 * c46926(1559033059......)

n=147576: c40311(9087900198......) = 13762657439535577 * c40295(6603303350......)

# P-1 B1=1e6

# 139857 of 200000 Φn(10) factorizations were cracked. 200000 個中 139857 個の Φn(10) の素因数が見つかりました。

February 8, 2018 2018 年 2 月 8 日 (Makoto Kamada)

n=147216: c49057(1000000009......) = 2634095972319860724817 * c49035(3796368926......)

n=147222: c49069(1000999998......) = 14706102269646594811 * c49049(6806698203......)

n=147234: c48028(2166214718......) = 46143094227247 * c48014(4694558859......)

n=147288: c43761(1927099240......) = 749865427278529 * c43746(2569926776......)

n=147290: c48961(1099989000......) = 527465991896190491 * c48943(2085421651......)

n=147294: c41815(1340605884......) = 37749133803928933 * c41798(3551355354......)

n=147318: c47880(9100000000......) = 6810595653195400454197 * c47859(1336153320......)

n=147348: c49105(1000000999......) = 18844963155596718301969 * c49082(5306463014......)

n=147372: c49099(7798297828......) = 10287905800969 * c49086(7580063406......)

# P-1 B1=1e6

# 139855 of 200000 Φn(10) factorizations were cracked. 200000 個中 139855 個の Φn(10) の素因数が見つかりました。

February 7, 2018 2018 年 2 月 7 日 (Makoto Kamada)

n=147102: c49024(1003537637......) = 574652953880281 * c49009(1746336864......)

n=147108: c42234(2746278150......) = 1978707839739229 * 3020808718117602829 * c42200(4594514443......)

n=147162: c49053(1098901098......) = 9043622092607929 * c49037(1215111697......)

n=147186: c41473(1000999998......) = 5333885391520531 * c41457(1876680741......)

# P-1 B1=1e6

# 139850 of 200000 Φn(10) factorizations were cracked. 200000 個中 139850 個の Φn(10) の素因数が見つかりました。

February 6, 2018 2018 年 2 月 6 日 (Makoto Kamada)

n=146904: c48932(7179250244......) = 189486746489497 * c48918(3788787541......)

n=146928: c48954(1031220307......) = 304987334336161 * c48939(3381190599......)

n=147018: c48324(3336415803......) = 10028221575771811 * c48308(3327026411......)

# P-1 B1=1e6

February 6, 2018 2018 年 2 月 6 日 (Alfred Reich)

n=9716: c4126(4222467971......) = 13762552890503863967484529230589 * c4095(3068084827......)

# ECM B1=900000, sigma=1:4087205298

February 5, 2018 2018 年 2 月 5 日 (Makoto Kamada)

n=146748: c41899(6746894357......) = 43563461710583476789 * c41880(1548750740......)

n=146754: c47131(1125354307......) = 38624340378979 * c47117(2913588417......)

n=146838: c48925(6851326776......) = 14095475459034289 * c48909(4860656738......)

n=146844: c48918(4973912157......) = 42982789032109 * 205177287531781189 * c48887(5639936766......)

# P-1 B1=1e6

February 4, 2017 2017 年 2 月 4 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=74861: c74861(1111111111......) = 10118695845434464399231 * c74839(1098077388......)

# ECM B1=11e3, sigma=14956490505633226152

# 139848 of 200000 Φn(10) factorizations were cracked. 200000 個中 139848 個の Φn(10) の素因数が見つかりました。

# 13843 of 17984 Rprime factorizations were cracked. 17984 個中 13843 個の Rprime の素因数が見つかりました。

February 4, 2018 2018 年 2 月 4 日 (Alfred Reich)

n=140060L: c27219(1556651486......) = 2513226684815321 * c27203(6193836376......)

# ECM B1=5000, sigma=0:10970192486558283637

n=140068: c65659(7139338468......) = 1056847138619336381 * c65641(6755317971......)

# ECM B1=5000, sigma=0:4391860647256114339

n=140074: c63653(8095867434......) = 39969289463401 * c63640(2025521980......)

# ECM B1=5000, sigma=0:6868275995920235232

n=140106: c44190(6499847650......) = 463826763284489887 * c44173(1401352436......)

# ECM B1=5000, sigma=0:11307179656070964920

n=140138: c68315(3924688790......) = 29716403038001 * c68302(1320714618......)

# ECM B1=5000, sigma=0:16326635782770792089

n=140140M: c20152(5776814607......) = 804394998340773841 * c20134(7181564553......)

# ECM B1=5000, sigma=0:17215976568108558914

n=140212: c70104(9900990099......) = 49015927504973609 * c70088(2019953636......)

# ECM B1=5000, sigma=0:17690220311163030361

n=140224: c59854(4772354356......) = 34339120505089 * c59841(1389771865......)

# ECM B1=5000, sigma=0:13396620246795190215

n=140228: c63721(1009999999......) = 100516133753867218729 * c63701(1004813816......)

# ECM B1=5000, sigma=0:11628063107217439077

n=140234: c70109(2493334997......) = 1590643828139235979 * c70091(1567500501......)

# ECM B1=5000, sigma=0:16483634416088676638

n=140248: c68438(3562459460......) = 10506447904476137 * c68422(3390736330......)

# ECM B1=5000, sigma=0:2945503867307955717

n=140284: c65985(1009999999......) = 23331945799661 * c65971(4328828845......)

# ECM B1=5000, sigma=0:5128569043185838004

n=140302: c64939(3837091134......) = 664174144706117 * c64924(5777236535......)

# ECM B1=5000, sigma=0:2944386779275490451

n=140324: c70160(9900990099......) = 260857349933641 * c70146(3795557265......)

# ECM B1=5000, sigma=0:13201577977153502697

n=140460M: c18688(6512036152......) = 197984108358879781 * c18671(3289171139......)

# ECM B1=5000, sigma=0:16424588589476231114

n=140476: c57763(7457662386......) = 163561560340361 * c57749(4559544657......)

# ECM B1=5000, sigma=0:9515746673232787658

n=140572: c69433(1439865739......) = 15737288991889 * c69419(9149388692......)

# ECM B1=5000, sigma=0:8760296138620377052

n=140650: c53760(9999900000......) = 15331986617545051 * c53744(6522246758......)

# ECM B1=5000, sigma=0:16455171938432927552

n=140692: c66168(1853072253......) = 12418925838992501 * c66152(1492135694......)

# ECM B1=5000, sigma=0:10119466051584000616

n=140720: c56246(3919295856......) = 659497856026168321 * c56228(5942848517......)

# ECM B1=5000, sigma=0:14368325119208814868

n=140728: c60132(6408560807......) = 7058051835909761 * c60116(9079787109......)

# ECM B1=5000, sigma=0:6729336409304329386

n=140800: c51181(2468810057......) = 17869477866758425601 * c51162(1381579291......)

# ECM B1=5000, sigma=0:9985948437712270972

n=140824: c67863(5011836571......) = 51063689165737 * c67849(9814873647......)

# ECM B1=5000, sigma=0:18136047126606985472

n=140838: c46929(2196251044......) = 319950444425305117 * c46911(6864347534......)

# ECM B1=5000, sigma=0:15435602319820075560

n=140848: c70408(1188060951......) = 80740800359633 * c70394(1471450550......)

# ECM B1=5000, sigma=0:3104707200972498404

n=140852: c67314(1039224125......) = 167092401527621 * c67299(6219457713......)

# ECM B1=5000, sigma=0:7752123556909322353

n=140882: c58121(9777050708......) = 74129907541397 * c58108(1318907716......)

# ECM B1=5000, sigma=0:2121725077205427302

n=140888: c64001(1000099999......) = 251284141307761 * c63986(3979956692......)

# ECM B1=5000, sigma=0:7124283915725125307

n=140906: c68909(1099999999......) = 989221511757859 * c68894(1111985522......)

# ECM B1=5000, sigma=0:16814621510329413354

n=140908: c70432(4321003962......) = 63037272193001 * c70418(6854681067......)

# ECM B1=5000, sigma=0:17869858561974391276

n=140990: c53848(1278599053......) = 10858335457669171 * c53832(1177527677......)

# ECM B1=5000, sigma=0:12599809992976064988

n=141004: c70493(1950494293......) = 503333927753609 * c70478(3875149648......)

# ECM B1=5000, sigma=0:9695880710545054027

n=141008: c60385(1000000009......) = 31436063924273 * c60371(3181059856......)

# ECM B1=5000, sigma=0:689218039234962836

n=141052: c69755(1242382982......) = 110302449600961 * c69741(1126342149......)

# ECM B1=5000, sigma=0:7097961916142185941

n=141098: c70548(9090909090......) = 364630852690343 * c70534(2493181535......)

# ECM B1=5000, sigma=0:5630572704472816258

n=141104: c70511(9213587975......) = 141360825224753 * c70497(6517780269......)

# ECM B1=5000, sigma=0:7158877005442075632

n=141148: c59641(1000000000......) = 46807013340137989 * x59624(2136431975......)

# ECM B1=2000, sigma=0:12405355480871274182

n=141148: x59624(2136431975......) = 30058818938989 * c59610(7107504723......)

# ECM B1=5000, sigma=0:7727428116443662410

n=141182: c69553(1099999999......) = 2558725338323299 * c69537(4299015543......)

# ECM B1=5000, sigma=0:4128287855305968533

n=141188: c68994(4769052719......) = 13094755105909 * c68981(3641956402......)

# ECM B1=5000, sigma=0:4195308470348621418

n=141274: c60497(5402164041......) = 138226275521746441 * c60480(3908203430......)

# ECM B1=5000, sigma=0:8469215218036032363

n=141284: c56160(9999999999......) = 2363205293231641 * c56145(4231540962......)

# ECM B1=5000, sigma=0:17288906127833719391

n=141296: c70632(2610601658......) = 50647494681601 * c70618(5154453689......)

# ECM B1=5000, sigma=0:15033741645670616561

n=141298: c65500(1008970031......) = 3921632268025687 * c65484(2572831826......)

# ECM B1=5000, sigma=0:12120282909081916712

n=141304: c66424(2711742594......) = 30015452169977 * c66410(9034488566......)

# ECM B1=5000, sigma=0:1292082151707831661

n=141320: c56505(9072879782......) = 356899693147601 * c56491(2542137176......)

# ECM B1=5000, sigma=0:519223398286167196

n=141358: c57807(9055372038......) = 3089909665520287 * c57792(2930626788......)

# ECM B1=5000, sigma=0:10126624655324640918

n=141368: c68783(1078755683......) = 155418403204937969 * c68765(6940977781......)

# ECM B1=5000, sigma=0:8737075202356328313

n=141464: c70728(9999000099......) = 557373112653508289 * c70711(1793950923......)

# ECM B1=5000, sigma=0:10258685608020454676

n=141490: c56586(8638130188......) = 16936529721011 * c56573(5100295237......)

# ECM B1=5000, sigma=0:588009660818375054

n=141514: c70177(1099999999......) = 4024742516495401 * c70161(2733094093......)

# ECM B1=5000, sigma=0:14611736435236537925

n=141546: c45583(4857283731......) = 206436292644411397 * c45566(2352921412......)

# ECM B1=5000, sigma=0:5998135786724315006

n=141598: c69865(1099999999......) = 2396460434295112499 * c69846(4590102904......)

# ECM B1=5000, sigma=0:4284885306172372402

n=141632: c70784(9999999999......) = 18591633379393 * c70771(5378763552......)

# ECM B1=5000, sigma=0:7139069448374730335

n=141724: c64390(6135888429......) = 10516707852896081 * c64374(5834419397......)

# ECM B1=5000, sigma=0:7332356032047354957

n=141730: c56672(5022980608......) = 796884109151971 * c56657(6303276161......)

# ECM B1=5000, sigma=0:2870953125885329579

n=141734: c70856(6052259650......) = 668853449043011 * c70841(9048708142......)

# ECM B1=5000, sigma=0:1877120087767650381

n=141838: c70909(1266171620......) = 1646086681088383 * c70893(7692010602......)

# ECM B1=5000, sigma=0:10737648344381846872

n=141876: c40464(9999990000......) = 109556016804213589 * c40447(9127741489......)

# ECM B1=5000, sigma=0:10262790211094213622

n=141916: c66753(1009999999......) = 3151573558216361 * c66737(3204748299......)

# ECM B1=5000, sigma=0:9413320086624680330

n=141920: c56697(2201944709......) = 14681780159117441 * c56681(1499780466......)

# ECM B1=5000, sigma=0:17842322991689017836

n=141922: c64493(6301411281......) = 8276657660340917 * c64477(7613473384......)

# ECM B1=5000, sigma=0:1944342529605806285

n=141932: c58735(3187896134......) = 232387496173186229 * c58718(1371801920......)

# ECM B1=5000, sigma=0:11272352292728513208

n=141938: c70968(9090909090......) = 84952941686303 * c70955(1070111159......)

# ECM B1=5000, sigma=0:13570238460152591068

n=142000: c56001(1000000000......) = 7981106577232001 * c55985(1252959085......)

# ECM B1=5000, sigma=0:17672998551129314953

# 139847 of 200000 Φn(10) factorizations were cracked. 200000 個中 139847 個の Φn(10) の素因数が見つかりました。

February 4, 2018 2018 年 2 月 4 日 (Makoto Kamada)

n=146544: c47040(9999999900......) = 481985593236769 * c47026(2074750789......)

n=146556: c45921(6336138757......) = 88408789510501 * c45907(7166865187......)

n=146574: c45880(1969848759......) = 13134300265938050152143487327 * c45852(1499774422......)

n=146586: c44400(9100000000......) = 56838670399793659807 * c44381(1601022672......)

n=146634: c48860(2072104792......) = 4328596408482121 * c48844(4787013148......)

n=146688: c48641(1000000000......) = 122492758118632753868504833 * c48614(8163747925......)

# P-1 B1=1e6

# 139827 of 200000 Φn(10) factorizations were cracked. 200000 個中 139827 個の Φn(10) の素因数が見つかりました。

February 3, 2018 2018 年 2 月 3 日 (Alfred Reich)

n=9586: c4785(1617797158......) = 343575467224788555287460428801 * c4755(4708709768......)

# ECM B1=800000, sigma=1:4256511204

February 3, 2018 2018 年 2 月 3 日 (Makoto Kamada)

n=146304: c48385(1000000000......) = 204999886758920833 * c48367(4878051475......)

n=146346: c48773(1137715856......) = 710839072163458969 * c48755(1600525212......)

n=146376: c45792(9999999999......) = 1968898365100439520049 * c45771(5078982326......)

n=146394: c48758(8026948942......) = 39350214145009 * c48745(2039874271......)

n=146418: c46635(3107530810......) = 12817047982088228740590877 * c46610(2424529279......)

n=146466: c47724(8315773758......) = 431424647421967 * c47710(1927514760......)

# P-1 B1=1e6

# 139824 of 200000 Φn(10) factorizations were cracked. 200000 個中 139824 個の Φn(10) の素因数が見つかりました。

February 3, 2018 2018 年 2 月 3 日 (Alfred Reich)

n=9824: c4848(1078915888......) = 18198559922005306277650072144139297 * c4813(5928578379......)

# ECM B1=600000, sigma=1:3894282002

February 2, 2018 2018 年 2 月 2 日 (Makoto Kamada)

n=146118: c41160(9999999999......) = 86576555516669226154637863 * c41135(1155047107......)

n=146184: c48713(6707232873......) = 29319341772313 * c48700(2287647835......)

# P-1 B1=1e6

# 139822 of 200000 Φn(10) factorizations were cracked. 200000 個中 139822 個の Φn(10) の素因数が見つかりました。

February 1, 2018 2018 年 2 月 1 日 (Alfred Reich)

n=9908: c4946(3620623679......) = 3859183268538790375453543769 * c4918(9381839180......)

# ECM B1=3000000, sigma=1:410615560

February 1, 2018 2018 年 2 月 1 日 (Makoto Kamada)

n=145914: c47888(9100000000......) = 96145334349739 * c47874(9464837853......)

n=145968: c48632(1926551370......) = 14777092916183536273 * c48613(1303741799......)

n=145974: c48650(6273380142......) = 9293096353216051 * c48634(6750581188......)

n=146016: c44920(2828816407......) = 12911547049065776966401 * c44898(2190919799......)

n=146022: c48673(1098901098......) = 105463724543994247 * c48656(1041970690......)

n=146052: c48673(1000000999......) = 658177814587791709 * c48655(1519347777......)

n=146058: c44240(9100000000......) = 66975422000917 * c44227(1358707377......)

n=146094: c44928(9100000000......) = 383710407062801677 * c44911(2371580189......)

n=146106: c48697(1000999998......) = 19045845637983465463 * c48677(5255739325......)

# P-1 B1=1e6

# 139821 of 200000 Φn(10) factorizations were cracked. 200000 個中 139821 個の Φn(10) の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | November 11 月 December 12 月 January 1 月 February 2018 2018 年 2 月 March 3 月 April 4 月 May 5 月 | Recent changes 最近の更新 | Next month翌月