n=91237: c91225(1871212892......) = 279884752522012129 * c91207(6685654991......)
# mfaktc
n=91381: c91373(3268576331......) = 26450211066445043 * c91357(1235746786......)
# mfaktc
n=99713: c99713(1111111111......) = 5259453395049906307 * c99694(2112598073......)
# mfaktc
# 7304 of 9592 Rprime factorizations were cracked. 9592 個中 7304 個の Rprime の素因数が見つかりました。
n=2851: c2830(1922760755......) = 13068713157393546735566025662597 * c2799(1471270149......)
# ECM B1=1e6, sigma=461096233
n=90989: c90963(3539598178......) = 778758378715397 * c90948(4545181503......)
# mfaktc
n=90997: c90984(1759394979......) = 1493358750655763 * c90969(1178146228......)
# mfaktc
n=91033: c91027(1017131236......) = 15722193595059151 * c91010(6469397734......)
# mfaktc
n=91121: c91098(3362381013......) = 173300844089453 * c91084(1940198866......)
# mfaktc
n=12423: c7995(6382134622......) = 146981537923739191 * c7978(4342133517......)
n=12427: c11424(9999999999......) = 10050155714311443883 * c11405(9950094589......)
# ECM B1=5e4, sigma=3195744798
n=90523: c90463(1458633855......) = 917163060863053 * c90448(1590375711......)
# mfaktc
n=90793: c90767(3369417568......) = 252551341545817267 * c90750(1334151522......)
# mfaktc
n=90841: c90834(3397605496......) = 155831089390759 * x90820(2180312997......)
n=90841: x90820(2180312997......) = 35109147805989997 * c90803(6210099458......)
# mfaktc
n=33749: c33749(1111111111......) = 4152390654050000287943981867 * c33721(2675834726......)
# 7303 of 9592 Rprime factorizations were cracked. 9592 個中 7303 個の Rprime の素因数が見つかりました。
n=42323: c42323(1111111111......) = 1204863150335955666643 * c42301(9221886409......)
n=42391: c42391(1111111111......) = 222341415358626547 * c42373(4997319592......)
# 7302 of 9592 Rprime factorizations were cracked. 9592 個中 7302 個の Rprime の素因数が見つかりました。
n=31847: c31847(1111111111......) = 496132551190925854473159108431 * c31817(2239544872......)
# 7300 of 9592 Rprime factorizations were cracked. 9592 個中 7300 個の Rprime の素因数が見つかりました。
n=90001: c89976(2385065517......) = 143442175006235801 * c89959(1662736581......)
# mfaktc
n=31649: x31628(2757686781......) = 9311061476437871 * c31612(2961731901......)
n=40361: c40354(9176434292......) = 394163529018443 * c40340(2328077972......)
n=41539: c41533(6687115866......) = 150585771803249 * c41519(4440735526......)
n=42379: c42373(2621837441......) = 5699994684040963 * c42357(4599719099......)
n=46477: c46470(3145615874......) = 1925296412964707 * c46455(1633834589......)
n=48473: c48466(7640750844......) = 279248136819667 * c48452(2736186866......)
n=51421: c51415(1800673704......) = 12983074574656853 * c51399(1386939352......)
n=51607: c51600(6332420008......) = 10245638946935831 * c51584(6180600391......)
n=54679: c54673(5080131453......) = 1606149578611163 * c54658(3162925496......)
n=56701: c56694(3768454545......) = 123523798252213 * c56680(3050792316......)
n=12393: c7755(8385599812......) = 30442527709777223317 * x7736(2754567522......)
# ECM B1=5e4, sigma=3881148321
n=12393: x7736(2754567522......) = 201782796442763955792157 * c7713(1365115148......)
# ECM B1=5e4, sigma=2540706724
n=12397: c9229(1298896900......) = 232671875061160921 * c9211(5582526465......)
n=12399: c8253(2634822563......) = 23456874972646243 * c8237(1123262398......)
n=50777: c50765(4800756208......) = 3654687548421947 * c50750(1313588684......)
n=54403: c54392(2238646609......) = 2459874791692883 * c54376(9100652671......)
n=55967: c55954(2856431155......) = 3973485178735519 * c55938(7188729861......)
n=59207: c59194(2345437585......) = 3708120811928311 * c59178(6325137999......)
n=27943: c27937(9940782757......) = 2372671527034231 * c27922(4189700362......)
n=28697: c28691(1613277662......) = 443514048056809 * c28676(3637489431......)
n=29017: c29009(4871721080......) = 5269275000361987 * c28993(9245524440......)
n=31517: c31510(5184459706......) = 98845490598467 * c31496(5245013884......)
n=31649: c31643(1170242283......) = 424356490194361 * x31628(2757686781......)
n=33071: c33065(5599596381......) = 26614107106009 * c33052(2103995583......)
n=35107: c35100(4057597927......) = 255517350234203 * c35086(1587993114......)
n=42667: c42660(1415296733......) = 2834879676668449 * c42644(4992440227......)
n=47947: c47940(1609286976......) = 58866597744443 * c47926(2733786286......)
n=30559: c30552(1122207838......) = 1058226538929163 * c30537(1060460872......)
n=30937: c30929(7482350127......) = 2039196898194187 * c30914(3669263195......)
n=32303: c32294(9423706790......) = 88738250882573 * c32281(1061966705......)
n=32587: c32580(1272267010......) = 1154224983691123 * c32565(1102269512......)
n=43117: c43109(3312297560......) = 413487222626969 * c43094(8010640667......)
n=50159: c50151(7799921833......) = 82408656219133 * c50137(9464930253......)
n=50329: c50320(1154652501......) = 1758857531765689 * c50304(6564786975......)
n=52697: c52689(2423551967......) = 3863859163236323 * c52673(6272361038......)
n=58603: c58595(2125557113......) = 368548784923763 * c58580(5767369749......)
n=32941: c32929(2563982574......) = 1354498710419213 * c32914(1892938364......)
n=26038: c12690(3610763620......) = 2535213916014887 * c12675(1424244162......)
n=26080: c10317(4021365990......) = 21168778836799361 * c10301(1899668384......)
n=29054: c14250(3863318597......) = 139790734085823665840087 * c14227(2763644259......)
n=30012: c9585(8508875958......) = 88304990192929 * c9571(9635781556......)
n=32008: c15987(1575167446......) = 105671396174233 * c15973(1490628025......)
n=32062: c14076(2835327040......) = 23085954317567 * c14063(1228161072......)
n=2803: c2765(1423833409......) = 59812024901752521377508149638050813707 * c2727(2380513636......)
# ECM B1=1e6, sigma=1671594600
n=12365: c9878(4736461719......) = 441154992091452500640551 * c9855(1073650259......)
# ECM B1=5e4, sigma=2305289954
# Prime95 P-1
n=32939: c32917(1380571969......) = 294396993262667831 * c32899(4689490724......)
n=34367: c34359(4754522821......) = 103390396021031627 * c34342(4598611674......)
n=34381: c34372(1535861200......) = 1344731981391572478393064081 * c34345(1142131831......)
n=34603: c34554(1365944172......) = 3565091061644705693 * c34535(3831442587......)
n=36433: c36407(9733857105......) = 26903021703449673803293 * c36385(3618127812......)
n=36979: c36966(2937654360......) = 371830519345264615591 * c36945(7900519747......)
n=39983: c39963(2681453557......) = 3436478575707467 * c39947(7802910736......)
n=40213: c40196(5507534331......) = 33119104472075734137161 * c40174(1662947842......)
n=41669: c41659(3665215170......) = 65074785233837995969 * c41639(5632312357......)
n=42451: c42444(1896664016......) = 62429303611087703695584031 * c42418(3038098948......)
n=43651: c43619(2680395289......) = 6650061954722191 * c43603(4030632057......)
n=43961: c43954(6651292868......) = 658665139740941209 * c43937(1009814011......)
n=44621: c44615(3112626337......) = 7714397614746521 * c44599(4034827465......)
n=45631: c45606(1294995097......) = 150531219433508311987 * c45585(8602834030......)
n=45863: c45842(1268406491......) = 173732083799641 * c45827(7300934077......)
n=47837: c47827(1878388345......) = 88214510900541411784187 * c47804(2129341676......)
n=48487: c48481(3819261835......) = 259507807445570707 * c48464(1471732921......)
n=48973: c48965(1370062703......) = 151009893571522289 * c48947(9072668490......)
n=49031: c49007(6175423940......) = 1291285474430209 * c48992(4782384733......)
n=49171: c49149(4490095239......) = 24341508932815961923 * c49130(1844624855......)
n=50131: c50104(1368180017......) = 30621915318063801947 * c50084(4467976621......)
n=50383: c50373(2254661389......) = 93885836898019711 * c50356(2401492561......)
n=51109: c51093(1373456491......) = 23744688987038737357 * x51073(5784268186......)
n=51109: x51073(5784268186......) = 1390734299463256853107 * c51052(4159146854......)
n=51581: c51557(3403184128......) = 10940130584693 * c51544(3110734467......)
n=51929: c51916(5068991956......) = 3477370315921333740810176227 * c51889(1457708410......)
n=52057: c52045(2673121276......) = 205026802904053484806181369 * c52019(1303791133......)
n=52813: c52760(1867446246......) = 607992362788212923 * c52742(3071496223......)
n=53077: c53069(4203603679......) = 499164113534519150827 * c53048(8421285837......)
n=54323: c54323(1111111111......) = 329603434007739684660321953333 * c54293(3371054414......)
n=54917: c54909(7965571461......) = 966081794269192135151 * c54888(8245235040......)
n=55001: c55001(1111111111......) = 965723310525644999831 * c54980(1150548090......)
n=55171: c55171(1111111111......) = 255961092863819226311 * c55150(4340937517......)
n=55373: c55357(6332636227......) = 13163553716489507231 * c55338(4810734520......)
n=55987: c55965(1210941005......) = 649258972639659911119 * c55944(1865112468......)
n=56999: c56984(1808160551......) = 1135542327744904783716533 * c56960(1592332145......)
n=57131: c57111(7742092476......) = 31729843012858554209 * c57092(2440003397......)
n=57503: c57478(1270881159......) = 58839588806431 * c57464(2159908294......)
n=58151: c58145(2388412758......) = 478875877193257501493 * c58124(4987540347......)
n=58451: c58440(8687650645......) = 18426334676964117401 * c58421(4714801287......)
n=58549: c58525(1003628780......) = 2557099399200939939559 * c58503(3924871990......)
n=58831: c58796(4633280219......) = 1363698293895389808543769 * c58772(3397584524......)
n=59069: c59061(1822712481......) = 155306053713576956917 * c59041(1173626164......)
n=59473: c59473(1111111111......) = 14914418410881911547809 * c59450(7449912430......)
n=59651: c59618(3563658346......) = 556232704288767403 * c59600(6406776011......)
# 7299 of 9592 Rprime factorizations were cracked. 9592 個中 7299 個の Rprime の素因数が見つかりました。
n=25339: c25331(1273963977......) = 23862377832803 * c25317(5338797274......)
n=26489: c26479(3425740155......) = 262294739006507 * c26465(1306065142......)
n=28019: c28014(1982746143......) = 14588382570803 * c28001(1359126780......)
n=30047: c30036(2277285168......) = 88820898215587 * c30022(2563906933......)
n=32611: c32601(7892440657......) = 377464364198347 * c32587(2090910137......)
n=36319: c36310(1187712887......) = 35858096054917 * c36296(3312258648......)
n=36433: c36422(5501327971......) = 565174515338441 * c36407(9733857105......)
n=38377: c38367(1315437965......) = 98766968373643 * c38353(1331860223......)
n=38693: c38682(1630361314......) = 58904130295631 * c38668(2767821723......)
n=39371: c39362(3357311652......) = 221923920772249 * c39348(1512820988......)
n=41387: c41376(3018421019......) = 462749371797871 * c41361(6522798740......)
n=55079: c55069(5522322574......) = 1194360132224209 * c55054(4623666200......)
n=51593: c51580(1614812433......) = 810406262628917 * c51565(1992596192......)
n=39877: c39863(5584086692......) = 553265321450747 * c39849(1009296349......)
n=34693: c34679(1695037713......) = 98871746879471 * c34665(1714380262......)
n=36721: c36703(3030832990......) = 1278834172257787 * c36688(2369996874......)
n=30180M: c3983(1241522138......) = 59807869922730361 * c3966(2075850786......)
# P-1
n=30540L: c4059(2124100140......) = 30066227382998056898913721 * c4033(7064737830......)
# P-1
n=37380M: c4200(8639438332......) = 745802094292921 * c4186(1158408966......)
# P-1
n=42980L: c7345(2798897498......) = 6250648126494445311251741 * c7320(4477771651......)
# P-1
n=46060L: c7680(1220330571......) = 172612572274868920518241 * c7656(7069766443......)
# P-1
n=55740M: c7373(1337702706......) = 292024757594402881 * c7355(4580785264......)
# P-1
n=65820M: c8761(8874365046......) = 6246109098341819587962001 * c8737(1420782907......)
# P-1
n=39293: c39293(1111111111......) = 687211983990671 * c39278(1616838962......)
n=42281: c42281(1111111111......) = 1372399660400597 * c42265(8096119105......)
n=42643: c42643(1111111111......) = 276953018421557 * c42628(4011911902......)
n=52807: c52807(1111111111......) = 1690936014558631 * c52791(6570982589......)
n=55603: c55603(1111111111......) = 400931997769477 * c55588(2771320616......)
n=56131: c56131(1111111111......) = 347338543242191 * c56116(3198928344......)
n=59663: c59663(1111111111......) = 424568085029717 * c59648(2617038704......)
n=60631: c60631(1111111111......) = 1235583468732043 * c60615(8992602598......)
n=63389: c63389(1111111111......) = 947420536301641 * c63374(1172774991......)
n=69019: c69019(1111111111......) = 2637592455791957 * c69003(4212595879......)
n=69457: c69457(1111111111......) = 538326872182277 * c69442(2064008260......)
n=69763: c69763(1111111111......) = 727521189085529 * c69748(1527256013......)
n=73973: c73973(1111111111......) = 1822863647257883 * c73957(6095415379......)
n=74891: c74891(1111111111......) = 1582829428048213 * c74875(7019777945......)
n=79817: c79817(1111111111......) = 998450202556409 * c79802(1112835781......)
n=80783: c80783(1111111111......) = 491743935267161 * c80768(2259531905......)
n=84377: c84377(1111111111......) = 418800066683639 * c84362(2653082459......)
n=85049: c85049(1111111111......) = 2029504000602227 * c85033(5474791430......)
n=86813: c86813(1111111111......) = 1308042830807243 * c86797(8494455112......)
n=86861: c86861(1111111111......) = 1685933701866893 * c86845(6590479269......)
n=90121: c90121(1111111111......) = 3071401860868711 * c90105(3617602519......)
n=91151: c91151(1111111111......) = 2233987442605267 * c91135(4973667666......)
n=94709: c94709(1111111111......) = 660264534882053 * c94694(1682827188......)
n=94903: c94903(1111111111......) = 1886558588699311 * c94887(5889618895......)
n=96331: c96331(1111111111......) = 1362958384635517 * c96315(8152201297......)
n=97883: c97883(1111111111......) = 2181310984605677 * c97867(5093776719......)
# 7295 of 9592 Rprime factorizations were cracked. 9592 個中 7295 個の Rprime の素因数が見つかりました。
n=2797: c2745(2272747893......) = 405233765899788148732462759037 * c2715(5608485977......)
# ECM B1=1e6, sigma=303071663
n=12403: c12168(9000000000......) = 2247142635389268711173 * c12147(4005086218......)
# ECM B1=5e4, sigma=3841682273
n=12489: c7895(1241817091......) = 25147748250021157 * x7878(4938084632......)
n=12489: x7878(4938084632......) = 42050582410875877 * c7862(1174320152......)
n=876: c166(2220655273......) = 3355330990026625816780426205253910468424129764063859532844880973167015231161 * p90(6618289761......)
# gnfs
# c166 was the 4th smallest composite cofactor which includes unknown prime factors.
# Phi_876(10)/c166 was the 2nd biggest factored part.
# 1046 of 100000 Φn(10) factorizations were finished. 100000 個中 1046 個の Φn(10) の素因数分解が終わりました。
# ggnfs.log of this gnfs factorization by Yousuke Koide: http://stdkmd.com/nrr/repunit/phi876_10.zip
# He reported that this gnfs factorization had taken long time due to slow relation collection and large matrix.
# n=876: 0.3s/rel
# n=1980L, n=870(in progress): 0.2s/rel
# The last 172 lines of ggnfs.log:
Sat Feb 25 07:11:34 2012 commencing relation filtering Sat Feb 25 07:11:34 2012 estimated available RAM is 7677.6 MB Sat Feb 25 07:11:34 2012 commencing duplicate removal, pass 1 Sat Feb 25 07:11:54 2012 error -15 reading relation 2791081 Sat Feb 25 07:12:05 2012 error -15 reading relation 4256258 Sat Feb 25 07:12:07 2012 error -15 reading relation 4547654 Sat Feb 25 07:12:20 2012 error -9 reading relation 6317581 Sat Feb 25 07:12:36 2012 error -15 reading relation 8631657 Sat Feb 25 07:12:38 2012 error -5 reading relation 8918613 Sat Feb 25 07:12:38 2012 error -11 reading relation 8928584 Sat Feb 25 07:12:38 2012 error -15 reading relation 8938788 Sat Feb 25 07:12:38 2012 error -9 reading relation 8949014 Sat Feb 25 07:12:38 2012 error -15 reading relation 8950455 Sat Feb 25 07:12:38 2012 error -1 reading relation 8960359 Sat Feb 25 07:13:09 2012 error -15 reading relation 13400309 Sat Feb 25 07:13:14 2012 error -15 reading relation 14101270 Sat Feb 25 07:13:22 2012 error -15 reading relation 15108357 Sat Feb 25 07:14:30 2012 error -5 reading relation 24338239 Sat Feb 25 07:14:31 2012 error -9 reading relation 24528454 Sat Feb 25 07:14:31 2012 error -11 reading relation 24528601 Sat Feb 25 07:14:31 2012 error -15 reading relation 24528717 Sat Feb 25 07:14:31 2012 error -11 reading relation 24528864 Sat Feb 25 07:14:31 2012 error -11 reading relation 24528981 Sat Feb 25 07:19:11 2012 error -15 reading relation 61447442 Sat Feb 25 07:19:11 2012 error -9 reading relation 61482435 Sat Feb 25 07:19:11 2012 error -15 reading relation 61517675 Sat Feb 25 07:19:11 2012 error -15 reading relation 61552787 Sat Feb 25 07:19:12 2012 error -15 reading relation 61587746 Sat Feb 25 07:19:12 2012 error -9 reading relation 61622582 Sat Feb 25 07:22:20 2012 error -15 reading relation 88431720 Sat Feb 25 07:22:20 2012 error -15 reading relation 88435492 Sat Feb 25 07:22:20 2012 error -15 reading relation 88439290 Sat Feb 25 07:22:20 2012 error -1 reading relation 88443064 Sat Feb 25 07:22:20 2012 error -9 reading relation 88446920 Sat Feb 25 07:22:20 2012 error -15 reading relation 88450633 Sat Feb 25 07:22:29 2012 error -11 reading relation 89721067 Sat Feb 25 07:22:53 2012 found 15577280 hash collisions in 92845704 relations Sat Feb 25 07:24:22 2012 commencing duplicate removal, pass 2 Sat Feb 25 07:27:09 2012 found 14746075 duplicates and 78099629 unique relations Sat Feb 25 07:27:09 2012 memory use: 426.4 MB Sat Feb 25 07:27:09 2012 reading ideals above 65732608 Sat Feb 25 07:27:09 2012 commencing singleton removal, initial pass Sat Feb 25 07:38:32 2012 memory use: 1506.0 MB Sat Feb 25 07:38:32 2012 reading all ideals from disk Sat Feb 25 07:38:57 2012 memory use: 1347.7 MB Sat Feb 25 07:39:04 2012 commencing in-memory singleton removal Sat Feb 25 07:39:12 2012 begin with 78099629 relations and 76271828 unique ideals Sat Feb 25 07:40:37 2012 reduce to 34727645 relations and 26466489 ideals in 21 passes Sat Feb 25 07:40:37 2012 max relations containing the same ideal: 31 Sat Feb 25 07:40:44 2012 reading ideals above 720000 Sat Feb 25 07:40:44 2012 commencing singleton removal, initial pass Sat Feb 25 07:48:54 2012 memory use: 753.0 MB Sat Feb 25 07:48:54 2012 reading all ideals from disk Sat Feb 25 07:49:17 2012 memory use: 1327.7 MB Sat Feb 25 07:49:26 2012 keeping 34023379 ideals with weight <= 200, target excess is 192621 Sat Feb 25 07:49:35 2012 commencing in-memory singleton removal Sat Feb 25 07:49:43 2012 begin with 34727645 relations and 34023379 unique ideals Sat Feb 25 07:51:39 2012 reduce to 34589326 relations and 33884992 ideals in 14 passes Sat Feb 25 07:51:39 2012 max relations containing the same ideal: 200 Sat Feb 25 07:52:17 2012 removing 2852860 relations and 2612413 ideals in 240447 cliques Sat Feb 25 07:52:18 2012 commencing in-memory singleton removal Sat Feb 25 07:52:26 2012 begin with 31736466 relations and 33884992 unique ideals Sat Feb 25 07:53:51 2012 reduce to 31555549 relations and 31089859 ideals in 12 passes Sat Feb 25 07:53:51 2012 max relations containing the same ideal: 194 Sat Feb 25 07:54:23 2012 removing 2079238 relations and 1838791 ideals in 240447 cliques Sat Feb 25 07:54:25 2012 commencing in-memory singleton removal Sat Feb 25 07:54:31 2012 begin with 29476311 relations and 31089859 unique ideals Sat Feb 25 07:55:28 2012 reduce to 29367857 relations and 29141744 ideals in 9 passes Sat Feb 25 07:55:28 2012 max relations containing the same ideal: 188 Sat Feb 25 07:56:04 2012 relations with 0 large ideals: 656 Sat Feb 25 07:56:04 2012 relations with 1 large ideals: 463 Sat Feb 25 07:56:04 2012 relations with 2 large ideals: 6035 Sat Feb 25 07:56:04 2012 relations with 3 large ideals: 72665 Sat Feb 25 07:56:04 2012 relations with 4 large ideals: 490463 Sat Feb 25 07:56:04 2012 relations with 5 large ideals: 1970207 Sat Feb 25 07:56:04 2012 relations with 6 large ideals: 4976130 Sat Feb 25 07:56:04 2012 relations with 7+ large ideals: 21851238 Sat Feb 25 07:56:04 2012 commencing 2-way merge Sat Feb 25 07:56:45 2012 reduce to 17260638 relation sets and 17034528 unique ideals Sat Feb 25 07:56:45 2012 ignored 3 oversize relation sets Sat Feb 25 07:56:45 2012 commencing full merge Sat Feb 25 08:03:19 2012 memory use: 2011.7 MB Sat Feb 25 08:03:22 2012 found 9267063 cycles, need 9238728 Sat Feb 25 08:03:23 2012 weight of 9238728 cycles is about 646885547 (70.02/cycle) Sat Feb 25 08:03:23 2012 distribution of cycle lengths: Sat Feb 25 08:03:23 2012 1 relations: 1446849 Sat Feb 25 08:03:23 2012 2 relations: 1330029 Sat Feb 25 08:03:23 2012 3 relations: 1239376 Sat Feb 25 08:03:23 2012 4 relations: 1038249 Sat Feb 25 08:03:23 2012 5 relations: 887881 Sat Feb 25 08:03:23 2012 6 relations: 715786 Sat Feb 25 08:03:23 2012 7 relations: 570557 Sat Feb 25 08:03:23 2012 8 relations: 452680 Sat Feb 25 08:03:23 2012 9 relations: 361792 Sat Feb 25 08:03:23 2012 10+ relations: 1195529 Sat Feb 25 08:03:23 2012 heaviest cycle: 24 relations Sat Feb 25 08:03:25 2012 commencing cycle optimization Sat Feb 25 08:03:41 2012 start with 46769312 relations Sat Feb 25 08:05:07 2012 pruned 791383 relations Sat Feb 25 08:05:07 2012 memory use: 1670.8 MB Sat Feb 25 08:05:07 2012 distribution of cycle lengths: Sat Feb 25 08:05:07 2012 1 relations: 1446849 Sat Feb 25 08:05:07 2012 2 relations: 1356316 Sat Feb 25 08:05:07 2012 3 relations: 1275373 Sat Feb 25 08:05:07 2012 4 relations: 1051942 Sat Feb 25 08:05:07 2012 5 relations: 895059 Sat Feb 25 08:05:07 2012 6 relations: 712640 Sat Feb 25 08:05:07 2012 7 relations: 565270 Sat Feb 25 08:05:07 2012 8 relations: 445088 Sat Feb 25 08:05:07 2012 9 relations: 353654 Sat Feb 25 08:05:07 2012 10+ relations: 1136537 Sat Feb 25 08:05:07 2012 heaviest cycle: 24 relations Sat Feb 25 08:05:21 2012 RelProcTime: 3227 Sat Feb 25 08:05:21 2012 elapsed time 00:53:48 Sat Feb 25 08:22:34 2012 Sat Feb 25 08:22:34 2012 Sat Feb 25 08:22:34 2012 Msieve v. 1.48 Sat Feb 25 08:22:34 2012 random seeds: 3034dc18 c8c3b138 Sat Feb 25 08:22:34 2012 factoring 2220655273860263875958690894794449090883268047061695915540141816381358671873878165279520415818803103563436492621006194574886403770842685674547678499424610420050000189 (166 digits) Sat Feb 25 08:22:36 2012 searching for 15-digit factors Sat Feb 25 08:22:36 2012 commencing number field sieve (166-digit input) Sat Feb 25 08:22:36 2012 R0: -209825271976215025819080104644746 Sat Feb 25 08:22:36 2012 R1: 475510253662042649 Sat Feb 25 08:22:36 2012 A0: -4703234000417150222549437260000135176022175 Sat Feb 25 08:22:36 2012 A1: -118930082822003335711976651174760838 Sat Feb 25 08:22:36 2012 A2: 6158564820434266304249363376 Sat Feb 25 08:22:36 2012 A3: 42607274905344457550 Sat Feb 25 08:22:36 2012 A4: -2611575393853 Sat Feb 25 08:22:36 2012 A5: 5460 Sat Feb 25 08:22:36 2012 skew 61240790.62, size 3.360e-016, alpha -7.060, combined = 5.737e-013 rroots = 3 Sat Feb 25 08:22:36 2012 Sat Feb 25 08:22:36 2012 commencing linear algebra Sat Feb 25 08:23:17 2012 read 9238728 cycles Sat Feb 25 08:23:35 2012 cycles contain 29052297 unique relations Sat Feb 25 08:28:09 2012 read 29052297 relations Sat Feb 25 08:28:59 2012 using 20 quadratic characters above 1073741388 Sat Feb 25 08:31:42 2012 building initial matrix Sat Feb 25 08:37:53 2012 memory use: 3928.3 MB Sat Feb 25 08:38:27 2012 read 9238728 cycles Sat Feb 25 08:38:30 2012 matrix is 9238547 x 9238728 (2826.9 MB) with weight 880027538 (95.25/col) Sat Feb 25 08:38:30 2012 sparse part has weight 630177200 (68.21/col) Sat Feb 25 08:41:21 2012 filtering completed in 2 passes Sat Feb 25 08:41:25 2012 matrix is 9229526 x 9229707 (2826.2 MB) with weight 879718071 (95.31/col) Sat Feb 25 08:41:25 2012 sparse part has weight 630115746 (68.27/col) Sat Feb 25 08:43:12 2012 matrix starts at (0, 0) Sat Feb 25 08:43:15 2012 matrix is 9229526 x 9229707 (2826.2 MB) with weight 879718071 (95.31/col) Sat Feb 25 08:43:16 2012 sparse part has weight 630115746 (68.27/col) Sat Feb 25 08:43:16 2012 saving the first 48 matrix rows for later Sat Feb 25 08:43:19 2012 matrix includes 64 packed rows Sat Feb 25 08:43:21 2012 matrix is 9229478 x 9229707 (2735.4 MB) with weight 703606784 (76.23/col) Sat Feb 25 08:43:21 2012 sparse part has weight 624781072 (67.69/col) Sat Feb 25 08:43:21 2012 using block size 65536 for processor cache size 6144 kB Sat Feb 25 08:44:00 2012 commencing Lanczos iteration (6 threads) Sat Feb 25 08:44:00 2012 memory use: 2556.3 MB Sat Feb 25 08:45:16 2012 linear algebra at 0.0%, ETA 123h30m Sat Feb 25 08:45:40 2012 checkpointing every 80000 dimensions Thu Mar 01 10:59:23 2012 lanczos halted after 145955 iterations (dim = 9229478) Thu Mar 01 10:59:57 2012 recovered 31 nontrivial dependencies Thu Mar 01 10:59:59 2012 BLanczosTime: 441443 Thu Mar 01 10:59:59 2012 Thu Mar 01 10:59:59 2012 commencing square root phase Thu Mar 01 10:59:59 2012 reading relations for dependency 1 Thu Mar 01 11:00:07 2012 read 4612862 cycles Thu Mar 01 11:00:16 2012 cycles contain 14514726 unique relations Thu Mar 01 11:03:19 2012 read 14514726 relations Thu Mar 01 11:04:50 2012 multiplying 14514726 relations Thu Mar 01 11:24:29 2012 multiply complete, coefficients have about 766.90 million bits Thu Mar 01 11:24:43 2012 initial square root is modulo 7589507 Thu Mar 01 11:50:52 2012 sqrtTime: 3053 Thu Mar 01 11:50:53 2012 prp76 factor: 3355330990026625816780426205253910468424129764063859532844880973167015231161 Thu Mar 01 11:50:53 2012 prp90 factor: 661828976175802596124520315896987844285331034125777808629277002254425371670207934687325349 Thu Mar 01 11:50:53 2012 elapsed time 123:28:19
n=2789: c2772(3018878636......) = 854866816227583287729640606601 * c2742(3531402294......)
# ECM B1=1e6, sigma=2457831698
n=12353: c11191(6029685177......) = 4132069129938504404959 * c11170(1459241118......)
# ECM B1=5e4, sigma=3437392829
n=12376: c4588(4139065970......) = 266262095546497795042481 * c4565(1554508147......)
# ECM B1=25e4, sigma=3219071845