Previous month前月 | September 2003 2003 年 9 月 | July 2025 2025 年 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新 | Recent changes最近の更新

December 31, 2025 2025 年 12 月 31 日 (Kurt Beschorner)

n=10019: c9705(3819048788......) = 92737573618781078807405607396441881 * c9670(4118124552......)

# ecm: B1 = 1e6; sigma: 285315050378714

n=10026: c3322(1602941205......) = 9180588964796985741580659514205863 * c3288(1746011297......)

# ecm: B1 = 2e6; sigma: 3725749690948259

n=10052: c4297(1009999999......) = 2542173255124202292496079056095920629 * c4260(3972978623......)

# ecm: B1 = 2e6; sigma: 1191876174981516

n=10077: c6703(3086485639......) = 79959108219645603435640821367094959 * c6668(3860080119......)

# ecm: B1 = 1e6; sigma: 3980675226921496

December 20, 2025 2025 年 12 月 20 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=31139: c31139(1111111111......) = 2387837373197611980511935067 * c31111(4653210991......)

# ECM B1=1e6, sigma=2087173534598650

n=53327: c53327(1111111111......) = 43305952419150858153516746452321 * c53295(2565723760......)

# ECM B1=1e6, sigma=8330653939167202

n=53549: c53549(1111111111......) = 1323393649967475118367966597 * c53521(8395922945......)

# ECM B1=1e6, sigma=5141962449211020

# 20124 of 25997 Rprime factorizations were cracked. 25997 個中 20124 個の Rprime の素因数が見つかりました。

December 18, 2025 2025 年 12 月 18 日 (Kurt Beschorner)

n=10085: c7972(6798322655......) = 672122917247953182262566754321 * c7943(1011470146......)

# ECM B1=1e6, sigma=5195366855128972

n=10087: c7801(1111110999......) = 1806529119146425581950105026208477 * c7767(6150529145......)

# ECM B1=1e6, sigma=6198181643662328

December 2, 2025 2025 年 12 月 2 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=53089: c53089(1111111111......) = 4298434139924946907019249107 * x53061(2584920636......)

# ECM B1=1e6, sigma=0:1610881837867369

n=53089: x53061(2584920636......) = 9701962958397346539284956002032129 * c53027(2664327463......)

# ECM B1=1e6, sigma=0:6788613116981913

n=53239: c53239(1111111111......) = 2585542412232443163815461235867 * c53208(4297400444......)

# ECM B1=1e6, sigma=0:8715022549635066

# 217107 of 300000 Φn(10) factorizations were cracked. 300000 個中 217107 個の Φn(10) の素因数が見つかりました。

# 20121 of 25997 Rprime factorizations were cracked. 25997 個中 20121 個の Rprime の素因数が見つかりました。

December 1, 2025 2025 年 12 月 1 日 (John)

# via Kurt Beschorner

n=8447: c8447(1111111111......) = 23532249505104970201509426459824320081 * c8409(4721652772......)

# ECM B1=1e6, sigma=1489816204225402

December 1, 2025 2025 年 12 月 1 日 (Torbjörn Granlund)

# via Kurt Beschorner

n=1436: c708(1845696680......) = 363556621589222682036523174798067806520954921 * c663(5076779160......)

# ECM B2=2e7/1e11, sigma=3:3120587397

n=1505: c899(1001954515......) = 59696333710576856484355571580317055432224667184271 * c849(1678418845......)

# ECM B2=2e7/1e11, sigma=1:2591311327

n=1546: c729(1312537148......) = 52864362334641411935291082383909636401075020059 * c682(2482839271......)

# ECM B2=2e7/1e11, sigma=3:970378309

n=1606: c662(8238621283......) = 2648351821119735202248358515291199401754096412030093 * c611(3110848497......)

# ECM B2=2e7/1e11, sigma=3:3318120607

n=1814: c890(5507332888......) = 177132509217952548218526203573532338447081013931 * c843(3109159867......)

# ECM B2=2e7/1e11, sigma=3:1359964141

n=1824: c515(8316396865......) = 3801638373231591125328890242459992513986796834906913 * c464(2187582312......)

# ECM B2=5e7/2.5e11, sigma=0:14490582329689032653

n=1950: c443(2851916488......) = 455488632818255423618294643103015306628392801 * c398(6261224283......)

# ECM B2=5e7/2.5e11, sigma=0:13897628741783896021

n=1970: c778(8710914331......) = 340717156290927238874897950415936194037905310281 * c731(2556640947......)

# ECM B2=2e7/1e11, sigma=3:1390619855

n=2068: c848(5242090933......) = 61030896616899812428014738369527937252015709 * c804(8589241227......)

# ECM B2=1e7, sigma=3:1826721549

n=2286: c743(4500412551......) = 1275706345585682495860974677957417301632975317 * c698(3527780956......)

# ECM B2=2e7/1e11, sigma=3:1902478723

n=2286: c698(3527780956......) = 6050065574059952053911010514968516325407 * c658(5830979702......)

# ECM B2=2e7/1e11, sigma=3:442672681

n=2366: c897(1017643138......) = 10171409110647536944971724879275746626826059 * c854(1000493764......)

# ECM B2=2e7/1e11, sigma=0:12293658917608847221

n=2366: c854(1000493764......) = 24939208741955313474062821532308504575765583 * c810(4011730181......)

# ECM B2=1e7/3e10, sigma=3:1266377239

n=2442: c622(5178665103......) = 11779596332113635849006583417391309791185331 * c579(4396300991......)

# ECM B2=5e7/5e11, sigma=0:4277189439997616089

n=2496: c682(6847693620......) = 3962708062216757662620112645732950183198721 * c640(1728033837......)

# ECM B2=2e7/1e11, sigma=3:814233927

n=2530: c880(9091000000......) = 152169687122709938350970523324087192873643465841 * c833(5974251621......)

# ECM B2=2e7/1e11, sigma=3:3504149707

n=2532: c831(6022637797......) = 4926504849783160385828965384509070184629 * c792(1222497080......)

# ECM B2=1e7/3e10, sigma=3:3161808291

n=2646: c757(1000000000......) = 509706939243334747841186018230927334458185769 * c712(1961911684......)

# ECM B2=2e7/1e11, sigma=3:3413868619

n=2688: c704(1736715616......) = 177410341942266500588111099489432686104193 * p662(9789258040......)

# ECM B2=2e7/1e11, sigma=3:1587707951

n=2730: c523(2004998801......) = 9571725059902453163980650062479195454881 * c483(2094709980......)

# ECM B2=1e7/3e10, sigma=0:511405893875714357

n=2742: c870(4197496653......) = 239946213332311901179438201698533439702859 * c829(1749348987......)

# ECM B2=1e7/3e10, sigma=0:14446795740463494977

n=2750: c977(4408199414......) = 430551800230554472228099004441347667226251 * c936(1023848794......)

# ECM B2=1e7/3e10, sigma=3:1771725703

n=2772: c694(8017023010......) = 22041663556012348835168023976781975424621 * c654(3637213221......)

# ECM B2=2e7/1e11, sigma=1:990486571

n=2870: c945(2612675210......) = 7274574283084886228970156029364248959697728001 * p899(3591516298......)

# ECM B2=2e7/1e11, sigma=3:2361849973

n=2910: c674(1084192588......) = 5991986515543545660832210531460466678073771 * c631(1809404252......)

# ECM B2=2e7/1e11, sigma=3:1850144767

n=2916: c858(5985576715......) = 2125120582151307346907178739237408472215880789341249 * p807(2816582158......)

# ECM B2=2e7/1e11, sigma=3:1165134241

n=2946: c948(3587628975......) = 1126482418160283957238126570523399364971804618077407619 * c894(3184806898......)

# ECM B2=2e7/1e11, sigma=1:2049438175

n=3012: c956(3873811379......) = 24043742454497214533516005794826435441 * c919(1611151586......)

# ECM B2=2e7/1e11, sigma=1:1301402097

n=3102: c901(3525352389......) = 813235885792304330699359436617353496882672673621374561 * c847(4334969042......)

# ECM B2=2e7/1e11, sigma=3:4171208691

n=3132: c966(7341722373......) = 979961180443807529194148590533339013549 * c927(7491850207......)

# ECM B2=2e7/1e11, sigma=1:2757503059

n=3144: c990(7220331833......) = 91750697330083507769222424655909530623580073 * c946(7869511669......)

# ECM B2=2e7/1e11, sigma=3:848590919

n=3168: c961(1000000000......) = 11303188942308810864548766140232157066273 * c920(8847060817......)

# ECM B2=1e7/3e10, sigma=1:4010984965

n=3306: c955(7718148479......) = 190491794167941136891187306229602429287 * c917(4051696039......)

# ECM B2=1e7/3e10, sigma=3:2182769289

n=3306: c917(4051696039......) = 4890876696646128566832634957634871346933 * c877(8284191752......)

# ECM B2=2e7/1e11, sigma=3:1385652261

n=3402: c973(1000000000......) = 477846799397991300635384190554261048533903 * p931(2092720933......)

# ECM B2=2e7/1e11, sigma=3:1693046801

n=3432: c947(1335104687......) = 97075064833339427043657948148952503201 * c909(1375332264......)

# ECM B2=2e7/1e11, sigma=0:5659068501763579903

n=3460L: c681(1122977625......) = 2540757358839600104113202111310925061720141 * p638(4419853874......)

# ECM B2=5e7/2.5e11, sigma=0:13109663403317889847

n=3630: c880(9999999999......) = 5233687953269526441837874364121264865646881 * c838(1910698553......)

# ECM B2=1e7/3e10, sigma=3:618789077

n=3690: c901(1298623118......) = 2938305108314208459772797341126813803026671822011 * c852(4419633326......)

# ECM B2=2e7/1e11, sigma=1:4101871257

n=3690: c852(4419633326......) = 3423978637273985273437160964946244292811 * c813(1290788814......)

# ECM B2=2e7/1e11, sigma=3:598883997

n=4060L: c616(4127092593......) = 116920298925375519989324489550221526469106921 * c572(3529834110......)

# ECM B2=2e7/1e11, sigma=3:1514819749

n=4100M: c784(1231291627......) = 495010369463614668852274515172200877683101 * c742(2487405727......)

# ECM B2=2e7/1e11, sigma=3:3850600825

n=4300L: c833(2007996160......) = 57937373461141945151624870795609144152805060101 * c786(3465804610......)

# ECM B2=2e7/1e11, sigma=3:263378935

n=4300M: c812(1759151173......) = 1656701265340108969295929008270535125301 * c773(1061839699......)

# ECM B2=1e7/3e10, sigma=0:13317594721130732133

n=4410: c967(1475495720......) = 1561992592027134620872575842443878119761 * c927(9446240193......)

# ECM B2=2e7/1e11, sigma=3:3730999709

n=4460M: c870(1004635645......) = 405953169536941192709764791177483633881 * c831(2474757485......)

# ECM B2=1e8/1e12, sigma=1:421540381

n=4500M: c545(3164805596......) = 3873372485949783947505228373607023795501 * c505(8170671960......)

# ECM B2=2e7/1e11, sigma=3:2573048001

n=4940L: c823(8680054308......) = 323513498930082919004816752992178351721238593161 * c776(2683057843......)

# ECM B2=2e7, sigma=3:1500245557

n=6300M: c680(8593491371......) = 6237413839189938711110598321568943584501 * c641(1377733078......)

# ECM B2=2e7/1e11, sigma=3:1912897375

December 1, 2025 2025 年 12 月 1 日 (crashtech)

# via yoyo@home

n=1278: c351(3094656162......) = 125151895006429085711708327282074420309527054471957157 * p298(2472720179......)

# ECM B1=850000000, sigma=0:3546992259728554838

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | July 2025 2025 年 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新 | Recent changes最近の更新