Previous month前月 | September 2003 2003 年 9 月 | March 2021 2021 年 3 月 April 4 月 May 5 月 June 6 月 July 7 月 August 8 月 September 9 月 | Recent changes 最近の更新 | Next month翌月

June 30, 2021 2021 年 6 月 30 日 (Kurt Beschorner)

n=15001: c12844(2088997427......) = 30355533034317967107263711969 * c12815(6881768228......)

# ECM B1=25e4, sigma=2661518256649941

n=236069: c236069(1111111111......) = 6424278810074045573 * x236050(1729549952......)

n=236111: c236104(3921569088......) = 7531708499269976213 * x236085(5206745706......)

n=236129: c236120(5408650364......) = 787374677201670307 * x236102(6869220615......)

n=236143: c236143(1111111111......) = 4472211474423644443 * x236124(2484478020......)

n=236333: c236326(1119396097......) = 757167448818129053 * x236308(1478399658......)

n=236429: c236404(1172670044......) = 185085704036150041 * x236386(6335821832......)

n=236429: x236386(6335821832......) = 633437347791738253 * x236369(1000228650......)

n=236449: c236433(1099428818......) = 4417636050017680759 * x236414(2488726563......)

n=236471: c236471(1111111111......) = 7606105384782029173 * x236452(1460814773......)

n=236477: c236469(2526129608......) = 1551884702389503763 * x236451(1627781757......)

n=236477: x236451(1627781757......) = 13661912104344954757 * x236432(1191474330......)

n=236653: c236646(7825172500......) = 4412748924476617787 * x236628(1773310159......)

n=236813: c236798(6439088908......) = 267860366681733197 * x236781(2403897593......)

n=236981: c236964(4178933703......) = 5663039717296466653 * x236945(7379312016......)

n=236983: c236976(4688566868......) = 10589313220210655243 * x236957(4427640179......)

n=236993: c236987(2344180560......) = 2414130867930324329 * x236968(9710246412......)

n=237217: c237202(1065015867......) = 474809484002521631 * x237184(2243038320......)

n=237257: c237244(8592464162......) = 139546212248594689 * x237227(6157432741......)

n=237343: c237328(5624451373......) = 127169437648354391 * x237311(4422801168......)

n=237361: c237346(5458843766......) = 590333831014186997 * x237328(9247045449......)

n=237379: c237364(2679135172......) = 274554208356219107 * x237346(9758128233......)

n=237859: c237859(1111111111......) = 242931418649563573 * x237841(4573764551......)

n=237911: c237911(1111111111......) = 4151629306304769563 * x237892(2676325435......)

n=237967: c237945(1045796626......) = 256417148280763241 * x237927(4078497221......)

n=237971: c237971(1111111111......) = 75445571398158991 * x237954(1472732051......)

n=237997: c237987(1139904514......) = 8938606754426253679 * x237968(1275259719......)

# gr-mfaktc

# 206689 of 300000 Φn(10) factorizations were cracked. 300000 個中 206689 個の Φn(10) の素因数が見つかりました。

# 19731 of 25997 Rprime factorizations were cracked. 25997 個中 19731 個の Rprime の素因数が見つかりました。

June 30, 2021 2021 年 6 月 30 日 (Makoto Kamada)

n=66950: c24474(7468179636......) = 88781161446251 * c24460(8411896752......)

June 29, 2021 2021 年 6 月 29 日 (Makoto Kamada)

n=67038: c22339(8196044801......) = 22581360742183 * c22326(3629561962......)

n=33899: c33462(1399158106......) = 35468172438563 * c33448(3944827180......)

June 27, 2021 2021 年 6 月 27 日 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner)

n=1740M: c204(1315303447......) = 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 * p103(3416328483......)

# GNFS

Sat Apr 17 09:21:05 2021  Msieve v. 1.53 (SVN unknown)
Sat Apr 17 09:21:05 2021  random seeds: ca4ab918 5ab96ba7
Sat Apr 17 09:21:05 2021  factoring 131530344752500531973366175234450924350818650273749175535608297557535517691257001851075669039105083565947532142733020300358168725328898559788675357243034349825598797613375635300708831058228182388355784661 (204 digits)
Sat Apr 17 09:21:06 2021  searching for 15-digit factors
Sat Apr 17 09:21:07 2021  commencing number field sieve (204-digit input)
Sat Apr 17 09:21:07 2021  R0: -3373811031078855887988445262998571743799
Sat Apr 17 09:21:07 2021  R1: 11509880545207076757558
Sat Apr 17 09:21:07 2021  A0: -1011605031457446800403474711756529386281885525624
Sat Apr 17 09:21:07 2021  A1: -156658770946669316726156600541248344076761
Sat Apr 17 09:21:07 2021  A2: -813140174642815037619795427014835
Sat Apr 17 09:21:07 2021  A3: 14070112777299305509364632
Sat Apr 17 09:21:07 2021  A4: 9754532376000330
Sat Apr 17 09:21:07 2021  A5: 10832400
Sat Apr 17 09:21:07 2021  skew 165672963.55, size 4.433e-020, alpha -8.434, combined = 2.467e-015 rroots = 3
Sat Apr 17 09:21:07 2021  commencing relation filtering
Sat Apr 17 09:21:07 2021  setting target matrix density to 130.0
Sat Apr 17 09:21:07 2021  estimated available RAM is 130983.0 MB
Sat Apr 17 09:21:07 2021  commencing duplicate removal, pass 1
Sat Apr 17 11:22:02 2021  found 100488337 hash collisions in 731371426 relations
Sat Apr 17 11:22:35 2021  added 20415 free relations
Sat Apr 17 11:22:35 2021  commencing duplicate removal, pass 2
Sat Apr 17 11:32:33 2021  found 107 duplicates and 731391734 unique relations
Sat Apr 17 11:32:33 2021  memory use: 4262.0 MB
Sat Apr 17 11:32:33 2021  reading ideals above 557645824
Sat Apr 17 11:32:33 2021  commencing singleton removal, initial pass
Sat Apr 17 13:21:46 2021  memory use: 11024.0 MB
Sat Apr 17 13:21:47 2021  reading all ideals from disk
Sat Apr 17 13:21:56 2021  memory use: 13589.9 MB
Sat Apr 17 13:23:04 2021  commencing in-memory singleton removal
Sat Apr 17 13:24:15 2021  begin with 731391734 relations and 615009841 unique ideals
...
Sun Apr 18 05:08:01 2021  reduce to 173281768 relations and 170225889 ideals in 6 passes
Sun Apr 18 05:08:01 2021  max relations containing the same ideal: 110
Sun Apr 18 05:12:16 2021  relations with 0 large ideals: 9183
Sun Apr 18 05:12:16 2021  relations with 1 large ideals: 29252
Sun Apr 18 05:12:16 2021  relations with 2 large ideals: 447816
Sun Apr 18 05:12:16 2021  relations with 3 large ideals: 3154807
Sun Apr 18 05:12:16 2021  relations with 4 large ideals: 12252963
Sun Apr 18 05:12:16 2021  relations with 5 large ideals: 28991048
Sun Apr 18 05:12:16 2021  relations with 6 large ideals: 43939783
Sun Apr 18 05:12:16 2021  relations with 7+ large ideals: 84456916
Sun Apr 18 05:12:16 2021  commencing 2-way merge
Sun Apr 18 05:17:20 2021  reduce to 112664275 relation sets and 109608396 unique ideals
Sun Apr 18 05:17:20 2021  commencing full merge
Sun Apr 18 06:46:56 2021  memory use: 13331.7 MB
Sun Apr 18 06:47:48 2021  found 49742886 cycles, need 49516596   <<<=== matrix size ===>>>
Sun Apr 18 06:47:52 2021  weight of 49516596 cycles is about 6437691509 (130.01/cycle)
Sun Apr 18 06:47:52 2021  distribution of cycle lengths:
Sun Apr 18 06:47:52 2021  1 relations: 3155824
Sun Apr 18 06:47:52 2021  2 relations: 3360458
Sun Apr 18 06:47:52 2021  3 relations: 3577094
Sun Apr 18 06:47:52 2021  4 relations: 3559942
Sun Apr 18 06:47:52 2021  5 relations: 3617633
Sun Apr 18 06:47:52 2021  6 relations: 3516452
Sun Apr 18 06:47:52 2021  7 relations: 3438818
Sun Apr 18 06:47:52 2021  8 relations: 3283726
Sun Apr 18 06:47:52 2021  9 relations: 3111659
Sun Apr 18 06:47:52 2021  10+ relations: 18894990
Sun Apr 18 06:47:52 2021  heaviest cycle: 28 relations
Sun Apr 18 06:57:04 2021  commencing cycle optimization
Sun Apr 18 07:00:46 2021  start with 420510148 relations
Sun Apr 18 07:43:37 2021  pruned 18910701 relations
Sun Apr 18 07:43:37 2021  memory use: 11452.8 MB
Sun Apr 18 07:43:38 2021  distribution of cycle lengths:
Sun Apr 18 07:43:38 2021  1 relations: 3155824
Sun Apr 18 07:43:38 2021  2 relations: 3457913
Sun Apr 18 07:43:38 2021  3 relations: 3737619
Sun Apr 18 07:43:38 2021  4 relations: 3713619
Sun Apr 18 07:43:38 2021  5 relations: 3793731
Sun Apr 18 07:43:38 2021  6 relations: 3680313
Sun Apr 18 07:43:38 2021  7 relations: 3608148
Sun Apr 18 07:43:38 2021  8 relations: 3432946
Sun Apr 18 07:43:38 2021  9 relations: 3240856
Sun Apr 18 07:43:38 2021  10+ relations: 17695627
Sun Apr 18 07:43:38 2021  heaviest cycle: 28 relations
Sun Apr 18 07:55:34 2021  RelProcTime: 81267
Sun Apr 18 07:55:34 2021  elapsed time 22:34:29   

Sun Apr 18 13:08:48 2021  commencing linear algebra
Sun Apr 18 13:09:21 2021  matrix starts at (0, 0)
Sun Apr 18 13:09:43 2021  matrix is 49515207 x 49515384 (25087.3 MB) with weight 7663161458 (154.76/col)
Sun Apr 18 13:09:43 2021  sparse part has weight 5982295350 (120.82/col)
Sun Apr 18 13:09:43 2021  saving the first 48 matrix rows for later
Sun Apr 18 13:10:04 2021  matrix includes 64 packed rows
Sun Apr 18 13:10:17 2021  matrix is 49515159 x 49515384 (24662.9 MB) with weight 6640042109 (134.10/col)
Sun Apr 18 13:10:17 2021  sparse part has weight 5970081534 (120.57/col)
Sun Apr 18 13:10:17 2021  using block size 8192 and superblock size 6291456 for processor cache size 65536 kB
Sun Apr 18 13:21:12 2021  commencing Lanczos iteration (24 threads)
Sun Apr 18 13:21:12 2021  memory use: 21476.5 MB
Sun Apr 18 13:21:13 2021  restarting at iteration 475 (dim = 30041)
Sun Apr 18 13:31:04 2021  linear algebra at 0.1%, ETA 5351h30m
Sun Apr 18 13:32:33 2021  checkpointing every 20000 dimensions
 
Sat Jun 26 18:08:38 2021  commencing square root phase
Sat Jun 26 18:08:38 2021  handling dependencies 1 to 64
Sat Jun 26 18:08:38 2021  reading relations for dependency 1
Sat Jun 26 18:08:48 2021  read 24754092 cycles
Sat Jun 26 18:09:54 2021  cycles contain 85888658 unique relations
Sat Jun 26 18:22:11 2021  read 85888658 relations
Sat Jun 26 18:37:31 2021  multiplying 85888658 relations
Sat Jun 26 20:57:52 2021  multiply complete, coefficients have about 5739.19 million bits
Sat Jun 26 20:58:37 2021  initial square root is modulo 2729533
Sat Jun 26 23:36:20 2021  sqrtTime: 19662
Sat Jun 26 23:36:20 2021  p101 factor: 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421
Sat Jun 26 23:36:20 2021  p103 factor: 3416328483006512256320335979072423448945322454006830297255949627404017992115810552611056496561408407441
Sat Jun 26 23:36:20 2021  elapsed time 05:27:44

# 1192 of 300000 Φn(10) factorizations were finished. 300000 個中 1192 個の Φn(10) の素因数分解が終わりました。

# c204 was the smallest composite factor in the list.

Largest known factors that appear after the previous one
  1  n=604: 188981422179250214477885038956646476812007525220846625175628245017547495717341304519447280552146559165713534073382085460954497219653965265520569 (NFS@Home / Mar 16, 2017)
  2  n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009)
  3  n=816: 3178246571075235723080972275640135632212436318968968029466533249264048115754831736073020454216579035062833710671458881 (Yousuke Koide / Apr 5, 2020)
  4  n=1540M: 647799461893729229242068652342456021003805852058736425973158141325454469108253161834095467738437014341 (NFS@Home / Sep 18, 2013)
  5  n=1740M: 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner / Jun 27, 2021)
  6  n=2340L: 54416219768345058780693800256182138078138198676424989328564702046179663087831396313663972761 (Bo Chen, Wenjie Fang, Maksym Voznyy and Kurt Beschorner / Feb 15, 2016)
  7  n=2700M: 71618803865606542412383896587352242997259054038820075447553395780556284501401142201 (Bo Chen, Maksym Voznyy, Wenjie Fang, Alfred Eichhorn and Kurt Beschorner / May 7, 2017)
  8  n=2820M: 832530561417330269513686172453574642103980456844602894975421 (Eric_ch / Aug 23, 2016)
  9  n=5900M: 593243597135622945022444401922545308692618865123732027101 (pi / Sep 17, 2018)
  10  n=13980M: 21166873440679239162423181074773929272724025103001 (Kurt Beschorner / Jul 14, 2011)
  11  n=103748: 1941549624124837091592820526305327246593529 (Makoto Kamada / Jun 18, 2018)
  12  n=112666: 356334694333381082120764457775238849699 (Makoto Kamada / Oct 17, 2018)
  13  n=120833: 79670409416595961896605938971188364397 (Maksym Voznyy / Nov 27, 2015)
  14  n=135070: 9855589830288396166509564150666175361 (Makoto Kamada / Dec 6, 2017)
  15  n=199700M: 16745944922383579468094190800250901 (Serge Batalov / Jul 6, 2015)
  16  n=199900L: 612937240365283738637341628923301 (Serge Batalov / Jul 6, 2015)
  17  n=217319: 327136068049348903751880841 (Alfred Reich / Feb 18, 2019)
  18  n=299011: 221045463366486747587120747 (Alfred Reich / Feb 18, 2019)
  19  n=299807: 1096020580210100960507 (Alfred Reich / Feb 18, 2019)
  20  n=299912: 107911061915460883817 (Kurt Beschorner / Oct 11, 2020)
  21  n=299941: 476143900733778479 (Alfred Reich / Feb 18, 2019)
  22  n=299947: 4179348094038241 (Kurt Beschorner / Jun 16, 2020)
  23  n=299983: 985644503446279 (Danilo Nitsche / Jul 4, 2020)
  24  n=299997: 4358711612449 (Makoto Kamada / Feb 18, 2019)
  25  n=300000: 47847600001 (Makoto Kamada / Feb 15, 2019)

June 26, 2021 2021 年 6 月 26 日 (Makoto Kamada)

n=68242: c33735(1140626497......) = 50761019478623 * c33721(2247051987......)

n=34475: c23507(6551963002......) = 60613390435151 * c23494(1080943163......)

June 24, 2021 2021 年 6 月 24 日 (Kurt Beschorner)

n=234029: c234029(1111111111......) = 8215370869268922169 * x234010(1352478334......)

n=234121: c234105(1242465084......) = 175395088478556043 * x234087(7083807733......)

n=234131: c234116(1555872746......) = 172639745979901667 * x234098(9012251135......)

n=234131: x234098(9012251135......) = 5977212639625303031 * x234080(1507768198......)

n=234203: c234203(1111111111......) = 3242243999061254431 * x234184(3426981780......)

n=234259: c234228(9953463484......) = 72105849739243483 * x234212(1380396114......)

n=234281: c234268(4163526322......) = 79278472847868089 * x234251(5251774123......)

n=234319: c234312(1185468306......) = 5099855027160436321 * x234293(2324513736......)

n=234589: c234579(3109516856......) = 3177000334628616479 * x234560(9787587437......)

n=234727: c234727(1111111111......) = 1084288024769638361 * x234709(1024737971......)

n=234733: c234733(1111111111......) = 3495165735723576199 * x234714(3178994059......)

n=234743: c234712(1723599528......) = 663883390524909991 * x234694(2596238365......)

n=234799: c234785(7579306064......) = 4583823600816158879 * x234767(1653489908......)

n=234893: c234887(2365138054......) = 1778800899523469561 * x234869(1329624948......)

n=234977: c234941(1406580021......) = 167402589309145493 * x234923(8402379121......)

n=234979: c234979(1111111111......) = 165149830933217597 * x234961(6727897357......)

n=235009: c234999(4516575578......) = 912564477544461683 * x234981(4949322145......)

n=235117: c235105(9355311659......) = 7052228219721068191 * x235087(1326575284......)

n=235489: c235451(4291608208......) = 237723582774944249 * x235434(1805293424......)

n=235489: x235434(1805293424......) = 4081219474141274711 * x235415(4423416667......)

n=235519: c235519(1111111111......) = 79773865942460801 * x235502(1392825956......)

n=235553: c235553(1111111111......) = 4951741202918725987 * x235534(2243879608......)

n=235849: c235842(2141414242......) = 98955952217075203 * x235825(2164007515......)

# gr-mfaktc

# 206683 of 300000 Φn(10) factorizations were cracked. 300000 個中 206683 個の Φn(10) の素因数が見つかりました。

# 19725 of 25997 Rprime factorizations were cracked. 25997 個中 19725 個の Rprime の素因数が見つかりました。

June 23, 2021 2021 年 6 月 23 日 (Makoto Kamada)

n=34929: c23274(8412015296......) = 41732710302799 * c23261(2015688709......)

June 19, 2021 2021 年 6 月 19 日 (Makoto Kamada)

n=71546: c35250(1790757076......) = 23160454078367 * c35236(7731960134......)

n=35877: c23871(3810487254......) = 23716251837427 * c23858(1606698765......)

June 17, 2021 2021 年 6 月 17 日 (Kurt Beschorner)

n=30000: c7995(5555524691......) = 39991809070061802000001 * c7973(1389165636......)

# ECM B1=1e6, sigma=3166126587942973

n=232051: c232030(3207846988......) = 15694378910538830933 * x232011(2043946438......)

n=232189: c232182(2658540253......) = 149085212391132373 * x232165(1783235379......)

n=232457: c232443(1719575084......) = 1567248364848128089 * x232425(1097193733......)

n=232633: c232624(1167214149......) = 4904496424011583001 * x232605(2379885820......)

n=232663: c232638(2356372865......) = 4749088138061708627 * x232619(4961737488......)

n=232681: c232681(1111111111......) = 190828233459808667 * x232663(5822571906......)

n=232919: c232908(3702787805......) = 5863051280626541591 * x232889(6315462083......)

n=233113: c233106(3972003255......) = 384812996873138479 * x233089(1032190515......)

n=233141: c233106(3496567576......) = 3630426445017744079 * x233087(9631286103......)

n=233267: c233253(2933873041......) = 229132242762607319 * x233236(1280427846......)

n=233267: x233236(1280427846......) = 1115208077263318853 * x233218(1148151517......)

n=233417: c233410(3400140310......) = 12837922552213112489 * x233391(2648512869......)

n=233423: c233403(4081969604......) = 747305485147290317 * x233385(5462250292......)

n=233437: c233412(3029332732......) = 792032739766505723 * x233394(3824756958......)

n=233713: c233704(3511203127......) = 922721612868790799 * x233686(3805268109......)

n=233777: c233743(2510440635......) = 608804644035314653 * x233725(4123556974......)

n=233921: c233921(1111111111......) = 6103315421725379237 * x233902(1820504159......)

n=233993: c233978(4271381616......) = 2354872647586577507 * x233960(1813848244......)

# gr-mfaktc

# 206676 of 300000 Φn(10) factorizations were cracked. 300000 個中 206676 個の Φn(10) の素因数が見つかりました。

# 19718 of 25997 Rprime factorizations were cracked. 25997 個中 19718 個の Rprime の素因数が見つかりました。

June 12, 2021 2021 年 6 月 12 日 (Kenji Ibusuki)

n=10180M: p1967(5896029167......) is proven prime.

# YAFU-1.34.5 APRCL

# https://stdkmd.net/nrr/cert/Phi/#CERT_PHI_10180M_10

June 12, 2021 2021 年 6 月 12 日 (Makoto Kamada)

n=72948: c24291(8039421684......) = 78316370322469 * c24278(1026531445......)

June 11, 2021 2021 年 6 月 11 日 (Kurt Beschorner)

n=10180M: c2000(3646513320......) = 618469348886528986386736868045981 * p1967(5896029167......)

# ECM B1=11e6, sigma=0:138044562091769

$ ./pfgw64 -tc -q"((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]
Primality testing ((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 11, base 7+sqrt(11)
Calling N-1 BLS with factored part 0.81% and helper 0.11% (2.57% proof)
((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441 is Fermat and Lucas PRP! (0.2791s+0.0007s)

# http://factordb.com/index.php?id=1100000002603771338

n=94020M: c12504(2257694498......) = 2548383691858034221 * x12485(8859319362......)

# ECM B1=25e4, sigma=0:5896773875895457563

n=94020M: x12485(8859319362......) = 851237404580697489961 * c12465(1040757762......)

# ECM B1=25e4, sigma=0:3125704586924728109

June 11, 2021 2021 年 6 月 11 日 (Makoto Kamada)

n=36619: c33268(3006992690......) = 45953046804083 * c33254(6543619845......)

n=36920: c13433(6269185296......) = 52804262982641 * c13420(1187249843......)

June 10, 2021 2021 年 6 月 10 日 (Makoto Kamada)

n=37629: c24185(8210446745......) = 20763460715707 * c24172(3954276629......)

June 9, 2021 2021 年 6 月 9 日 (Kurt Beschorner)

n=5700M: c711(1154056235......) = 214098531848960682375313931062057408227354489641401 * c660(5390304294......)

# ECM B1=43e6, sigma=0:1218120574389352

June 7, 2021 2021 年 6 月 7 日 (Kurt Beschorner)

n=64260M: c6904(1256884018......) = 602071447910713201 * c6886(2087599441......)

# ECM B1=1e6, sigma=0:12677614305988117273

n=230047: c230047(1111111111......) = 78746051978526241 * x230030(1411005483......)

n=230357: c230357(1111111111......) = 76975545777987107 * x230340(1443459867......)

n=230501: c230489(9272031181......) = 108202949009734121 * x230472(8569111347......)

n=230779: c230765(6496447601......) = 1912711472817779831 * x230747(3396459786......)

n=230833: c230817(6118740903......) = 173854061031735089 * x230800(3519469644......)

n=230833: x230800(3519469644......) = 7601940260842208693 * x230781(4629699160......)

n=230861: c230861(1111111111......) = 7570887592320937889 * x230842(1467610101......)

n=230873: c230860(2364008197......) = 990360663046504163 * x230842(2387017463......)

n=230891: c230891(1111111111......) = 17402402026623709729 * x230871(6384814633......)

n=230939: c230931(1768851192......) = 1600193497863035707 * x230913(1105398312......)

n=230959: c230959(1111111111......) = 15894295946527067431 * x230939(6990628052......)

n=230969: c230959(1779744873......) = 122066208528063403 * x230942(1458016018......)

n=231197: c231190(3432789129......) = 13619230688484914711 * x231171(2520545549......)

n=231223: c231223(1111111111......) = 4908568512167867957 * x231204(2263615366......)

n=231289: c231254(2162273794......) = 905543379182487961 * x231236(2387819120......)

n=231299: c231279(2413433796......) = 755953308156952043 * x231261(3192569925......)

n=231409: c231389(2660052419......) = 2094336088340204987 * x231371(1270117262......)

n=231431: c231418(2860129771......) = 1411453396656092837 * x231400(2026372091......)

n=231493: c231468(1290510634......) = 425846617734441289 * x231450(3030458810......)

n=231631: c231619(7435258426......) = 13760790439576993357 * x231600(5403220446......)

n=231779: c231740(7179225851......) = 363515424375507329 * x231723(1974943941......)

n=231799: c231784(1731841839......) = 6436226881590743591 * x231765(2690771893......)

n=231821: c231785(4193327923......) = 125482329778597151 * x231768(3341767666......)

# gr-mfaktc

# 206674 of 300000 Φn(10) factorizations were cracked. 300000 個中 206674 個の Φn(10) の素因数が見つかりました。

# 19716 of 25997 Rprime factorizations were cracked. 25997 個中 19716 個の Rprime の素因数が見つかりました。

June 5, 2021 2021 年 6 月 5 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=41077: c41077(1111111111......) = 1963136230803261055657813 * c41052(5659877769......)

# ECM B1=5e4, sigma=7820758842106039

# 206668 of 300000 Φn(10) factorizations were cracked. 300000 個中 206668 個の Φn(10) の素因数が見つかりました。

# 19710 of 25997 Rprime factorizations were cracked. 25997 個中 19710 個の Rprime の素因数が見つかりました。

June 3, 2021 2021 年 6 月 3 日 (Makoto Kamada)

n=19047: c10863(7305981011......) = 70765347060997 * c10850(1032423539......)

n=38253: c24774(2522803185......) = 75113915261947 * c24760(3358636248......)

June 2, 2021 2021 年 6 月 2 日 (Kurt Beschorner)

n=7500L: c932(1959124011......) = 48207545174782975493383750875127027725001 * c891(4063936474......)

# ECM B1=43e6, sigma=0:7630000256316624

June 2, 2021 2021 年 6 月 2 日 (Makoto Kamada)

n=77006: c38065(2114887310......) = 39267523345607 * c38051(5385843388......)

n=77224: c32929(1000000000......) = 35757247186697 * c32915(2796635867......)

# 206667 of 300000 Φn(10) factorizations were cracked. 300000 個中 206667 個の Φn(10) の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | March 2021 2021 年 3 月 April 4 月 May 5 月 June 6 月 July 7 月 August 8 月 September 9 月 | Recent changes 最近の更新 | Next month翌月