n=15001: c12844(2088997427......) = 30355533034317967107263711969 * c12815(6881768228......)
# ECM B1=25e4, sigma=2661518256649941
n=236069: c236069(1111111111......) = 6424278810074045573 * x236050(1729549952......)
n=236111: c236104(3921569088......) = 7531708499269976213 * x236085(5206745706......)
n=236129: c236120(5408650364......) = 787374677201670307 * x236102(6869220615......)
n=236143: c236143(1111111111......) = 4472211474423644443 * x236124(2484478020......)
n=236333: c236326(1119396097......) = 757167448818129053 * x236308(1478399658......)
n=236429: c236404(1172670044......) = 185085704036150041 * x236386(6335821832......)
n=236429: x236386(6335821832......) = 633437347791738253 * x236369(1000228650......)
n=236449: c236433(1099428818......) = 4417636050017680759 * x236414(2488726563......)
n=236471: c236471(1111111111......) = 7606105384782029173 * x236452(1460814773......)
n=236477: c236469(2526129608......) = 1551884702389503763 * x236451(1627781757......)
n=236477: x236451(1627781757......) = 13661912104344954757 * x236432(1191474330......)
n=236653: c236646(7825172500......) = 4412748924476617787 * x236628(1773310159......)
n=236813: c236798(6439088908......) = 267860366681733197 * x236781(2403897593......)
n=236981: c236964(4178933703......) = 5663039717296466653 * x236945(7379312016......)
n=236983: c236976(4688566868......) = 10589313220210655243 * x236957(4427640179......)
n=236993: c236987(2344180560......) = 2414130867930324329 * x236968(9710246412......)
n=237217: c237202(1065015867......) = 474809484002521631 * x237184(2243038320......)
n=237257: c237244(8592464162......) = 139546212248594689 * x237227(6157432741......)
n=237343: c237328(5624451373......) = 127169437648354391 * x237311(4422801168......)
n=237361: c237346(5458843766......) = 590333831014186997 * x237328(9247045449......)
n=237379: c237364(2679135172......) = 274554208356219107 * x237346(9758128233......)
n=237859: c237859(1111111111......) = 242931418649563573 * x237841(4573764551......)
n=237911: c237911(1111111111......) = 4151629306304769563 * x237892(2676325435......)
n=237967: c237945(1045796626......) = 256417148280763241 * x237927(4078497221......)
n=237971: c237971(1111111111......) = 75445571398158991 * x237954(1472732051......)
n=237997: c237987(1139904514......) = 8938606754426253679 * x237968(1275259719......)
# gr-mfaktc
# 206689 of 300000 Φn(10) factorizations were cracked. 300000 個中 206689 個の Φn(10) の素因数が見つかりました。
# 19731 of 25997 Rprime factorizations were cracked. 25997 個中 19731 個の Rprime の素因数が見つかりました。
n=66950: c24474(7468179636......) = 88781161446251 * c24460(8411896752......)
n=67038: c22339(8196044801......) = 22581360742183 * c22326(3629561962......)
n=33899: c33462(1399158106......) = 35468172438563 * c33448(3944827180......)
n=1740M: c204(1315303447......) = 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 * p103(3416328483......)
# GNFS
Sat Apr 17 09:21:05 2021 Msieve v. 1.53 (SVN unknown) Sat Apr 17 09:21:05 2021 random seeds: ca4ab918 5ab96ba7 Sat Apr 17 09:21:05 2021 factoring 131530344752500531973366175234450924350818650273749175535608297557535517691257001851075669039105083565947532142733020300358168725328898559788675357243034349825598797613375635300708831058228182388355784661 (204 digits) Sat Apr 17 09:21:06 2021 searching for 15-digit factors Sat Apr 17 09:21:07 2021 commencing number field sieve (204-digit input) Sat Apr 17 09:21:07 2021 R0: -3373811031078855887988445262998571743799 Sat Apr 17 09:21:07 2021 R1: 11509880545207076757558 Sat Apr 17 09:21:07 2021 A0: -1011605031457446800403474711756529386281885525624 Sat Apr 17 09:21:07 2021 A1: -156658770946669316726156600541248344076761 Sat Apr 17 09:21:07 2021 A2: -813140174642815037619795427014835 Sat Apr 17 09:21:07 2021 A3: 14070112777299305509364632 Sat Apr 17 09:21:07 2021 A4: 9754532376000330 Sat Apr 17 09:21:07 2021 A5: 10832400 Sat Apr 17 09:21:07 2021 skew 165672963.55, size 4.433e-020, alpha -8.434, combined = 2.467e-015 rroots = 3 Sat Apr 17 09:21:07 2021 commencing relation filtering Sat Apr 17 09:21:07 2021 setting target matrix density to 130.0 Sat Apr 17 09:21:07 2021 estimated available RAM is 130983.0 MB Sat Apr 17 09:21:07 2021 commencing duplicate removal, pass 1 Sat Apr 17 11:22:02 2021 found 100488337 hash collisions in 731371426 relations Sat Apr 17 11:22:35 2021 added 20415 free relations Sat Apr 17 11:22:35 2021 commencing duplicate removal, pass 2 Sat Apr 17 11:32:33 2021 found 107 duplicates and 731391734 unique relations Sat Apr 17 11:32:33 2021 memory use: 4262.0 MB Sat Apr 17 11:32:33 2021 reading ideals above 557645824 Sat Apr 17 11:32:33 2021 commencing singleton removal, initial pass Sat Apr 17 13:21:46 2021 memory use: 11024.0 MB Sat Apr 17 13:21:47 2021 reading all ideals from disk Sat Apr 17 13:21:56 2021 memory use: 13589.9 MB Sat Apr 17 13:23:04 2021 commencing in-memory singleton removal Sat Apr 17 13:24:15 2021 begin with 731391734 relations and 615009841 unique ideals ... Sun Apr 18 05:08:01 2021 reduce to 173281768 relations and 170225889 ideals in 6 passes Sun Apr 18 05:08:01 2021 max relations containing the same ideal: 110 Sun Apr 18 05:12:16 2021 relations with 0 large ideals: 9183 Sun Apr 18 05:12:16 2021 relations with 1 large ideals: 29252 Sun Apr 18 05:12:16 2021 relations with 2 large ideals: 447816 Sun Apr 18 05:12:16 2021 relations with 3 large ideals: 3154807 Sun Apr 18 05:12:16 2021 relations with 4 large ideals: 12252963 Sun Apr 18 05:12:16 2021 relations with 5 large ideals: 28991048 Sun Apr 18 05:12:16 2021 relations with 6 large ideals: 43939783 Sun Apr 18 05:12:16 2021 relations with 7+ large ideals: 84456916 Sun Apr 18 05:12:16 2021 commencing 2-way merge Sun Apr 18 05:17:20 2021 reduce to 112664275 relation sets and 109608396 unique ideals Sun Apr 18 05:17:20 2021 commencing full merge Sun Apr 18 06:46:56 2021 memory use: 13331.7 MB Sun Apr 18 06:47:48 2021 found 49742886 cycles, need 49516596 <<<=== matrix size ===>>> Sun Apr 18 06:47:52 2021 weight of 49516596 cycles is about 6437691509 (130.01/cycle) Sun Apr 18 06:47:52 2021 distribution of cycle lengths: Sun Apr 18 06:47:52 2021 1 relations: 3155824 Sun Apr 18 06:47:52 2021 2 relations: 3360458 Sun Apr 18 06:47:52 2021 3 relations: 3577094 Sun Apr 18 06:47:52 2021 4 relations: 3559942 Sun Apr 18 06:47:52 2021 5 relations: 3617633 Sun Apr 18 06:47:52 2021 6 relations: 3516452 Sun Apr 18 06:47:52 2021 7 relations: 3438818 Sun Apr 18 06:47:52 2021 8 relations: 3283726 Sun Apr 18 06:47:52 2021 9 relations: 3111659 Sun Apr 18 06:47:52 2021 10+ relations: 18894990 Sun Apr 18 06:47:52 2021 heaviest cycle: 28 relations Sun Apr 18 06:57:04 2021 commencing cycle optimization Sun Apr 18 07:00:46 2021 start with 420510148 relations Sun Apr 18 07:43:37 2021 pruned 18910701 relations Sun Apr 18 07:43:37 2021 memory use: 11452.8 MB Sun Apr 18 07:43:38 2021 distribution of cycle lengths: Sun Apr 18 07:43:38 2021 1 relations: 3155824 Sun Apr 18 07:43:38 2021 2 relations: 3457913 Sun Apr 18 07:43:38 2021 3 relations: 3737619 Sun Apr 18 07:43:38 2021 4 relations: 3713619 Sun Apr 18 07:43:38 2021 5 relations: 3793731 Sun Apr 18 07:43:38 2021 6 relations: 3680313 Sun Apr 18 07:43:38 2021 7 relations: 3608148 Sun Apr 18 07:43:38 2021 8 relations: 3432946 Sun Apr 18 07:43:38 2021 9 relations: 3240856 Sun Apr 18 07:43:38 2021 10+ relations: 17695627 Sun Apr 18 07:43:38 2021 heaviest cycle: 28 relations Sun Apr 18 07:55:34 2021 RelProcTime: 81267 Sun Apr 18 07:55:34 2021 elapsed time 22:34:29 Sun Apr 18 13:08:48 2021 commencing linear algebra Sun Apr 18 13:09:21 2021 matrix starts at (0, 0) Sun Apr 18 13:09:43 2021 matrix is 49515207 x 49515384 (25087.3 MB) with weight 7663161458 (154.76/col) Sun Apr 18 13:09:43 2021 sparse part has weight 5982295350 (120.82/col) Sun Apr 18 13:09:43 2021 saving the first 48 matrix rows for later Sun Apr 18 13:10:04 2021 matrix includes 64 packed rows Sun Apr 18 13:10:17 2021 matrix is 49515159 x 49515384 (24662.9 MB) with weight 6640042109 (134.10/col) Sun Apr 18 13:10:17 2021 sparse part has weight 5970081534 (120.57/col) Sun Apr 18 13:10:17 2021 using block size 8192 and superblock size 6291456 for processor cache size 65536 kB Sun Apr 18 13:21:12 2021 commencing Lanczos iteration (24 threads) Sun Apr 18 13:21:12 2021 memory use: 21476.5 MB Sun Apr 18 13:21:13 2021 restarting at iteration 475 (dim = 30041) Sun Apr 18 13:31:04 2021 linear algebra at 0.1%, ETA 5351h30m Sun Apr 18 13:32:33 2021 checkpointing every 20000 dimensions Sat Jun 26 18:08:38 2021 commencing square root phase Sat Jun 26 18:08:38 2021 handling dependencies 1 to 64 Sat Jun 26 18:08:38 2021 reading relations for dependency 1 Sat Jun 26 18:08:48 2021 read 24754092 cycles Sat Jun 26 18:09:54 2021 cycles contain 85888658 unique relations Sat Jun 26 18:22:11 2021 read 85888658 relations Sat Jun 26 18:37:31 2021 multiplying 85888658 relations Sat Jun 26 20:57:52 2021 multiply complete, coefficients have about 5739.19 million bits Sat Jun 26 20:58:37 2021 initial square root is modulo 2729533 Sat Jun 26 23:36:20 2021 sqrtTime: 19662 Sat Jun 26 23:36:20 2021 p101 factor: 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 Sat Jun 26 23:36:20 2021 p103 factor: 3416328483006512256320335979072423448945322454006830297255949627404017992115810552611056496561408407441 Sat Jun 26 23:36:20 2021 elapsed time 05:27:44
# 1192 of 300000 Φn(10) factorizations were finished. 300000 個中 1192 個の Φn(10) の素因数分解が終わりました。
# c204 was the smallest composite factor in the list.
Largest known factors that appear after the previous one 1 n=604: 188981422179250214477885038956646476812007525220846625175628245017547495717341304519447280552146559165713534073382085460954497219653965265520569 (NFS@Home / Mar 16, 2017) 2 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 3 n=816: 3178246571075235723080972275640135632212436318968968029466533249264048115754831736073020454216579035062833710671458881 (Yousuke Koide / Apr 5, 2020) 4 n=1540M: 647799461893729229242068652342456021003805852058736425973158141325454469108253161834095467738437014341 (NFS@Home / Sep 18, 2013) 5 n=1740M: 38500497070688096027556817882565728990416892548263819672284096593431517949011701136219584563960572421 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner / Jun 27, 2021) 6 n=2340L: 54416219768345058780693800256182138078138198676424989328564702046179663087831396313663972761 (Bo Chen, Wenjie Fang, Maksym Voznyy and Kurt Beschorner / Feb 15, 2016) 7 n=2700M: 71618803865606542412383896587352242997259054038820075447553395780556284501401142201 (Bo Chen, Maksym Voznyy, Wenjie Fang, Alfred Eichhorn and Kurt Beschorner / May 7, 2017) 8 n=2820M: 832530561417330269513686172453574642103980456844602894975421 (Eric_ch / Aug 23, 2016) 9 n=5900M: 593243597135622945022444401922545308692618865123732027101 (pi / Sep 17, 2018) 10 n=13980M: 21166873440679239162423181074773929272724025103001 (Kurt Beschorner / Jul 14, 2011) 11 n=103748: 1941549624124837091592820526305327246593529 (Makoto Kamada / Jun 18, 2018) 12 n=112666: 356334694333381082120764457775238849699 (Makoto Kamada / Oct 17, 2018) 13 n=120833: 79670409416595961896605938971188364397 (Maksym Voznyy / Nov 27, 2015) 14 n=135070: 9855589830288396166509564150666175361 (Makoto Kamada / Dec 6, 2017) 15 n=199700M: 16745944922383579468094190800250901 (Serge Batalov / Jul 6, 2015) 16 n=199900L: 612937240365283738637341628923301 (Serge Batalov / Jul 6, 2015) 17 n=217319: 327136068049348903751880841 (Alfred Reich / Feb 18, 2019) 18 n=299011: 221045463366486747587120747 (Alfred Reich / Feb 18, 2019) 19 n=299807: 1096020580210100960507 (Alfred Reich / Feb 18, 2019) 20 n=299912: 107911061915460883817 (Kurt Beschorner / Oct 11, 2020) 21 n=299941: 476143900733778479 (Alfred Reich / Feb 18, 2019) 22 n=299947: 4179348094038241 (Kurt Beschorner / Jun 16, 2020) 23 n=299983: 985644503446279 (Danilo Nitsche / Jul 4, 2020) 24 n=299997: 4358711612449 (Makoto Kamada / Feb 18, 2019) 25 n=300000: 47847600001 (Makoto Kamada / Feb 15, 2019)
n=68242: c33735(1140626497......) = 50761019478623 * c33721(2247051987......)
n=34475: c23507(6551963002......) = 60613390435151 * c23494(1080943163......)
n=234029: c234029(1111111111......) = 8215370869268922169 * x234010(1352478334......)
n=234121: c234105(1242465084......) = 175395088478556043 * x234087(7083807733......)
n=234131: c234116(1555872746......) = 172639745979901667 * x234098(9012251135......)
n=234131: x234098(9012251135......) = 5977212639625303031 * x234080(1507768198......)
n=234203: c234203(1111111111......) = 3242243999061254431 * x234184(3426981780......)
n=234259: c234228(9953463484......) = 72105849739243483 * x234212(1380396114......)
n=234281: c234268(4163526322......) = 79278472847868089 * x234251(5251774123......)
n=234319: c234312(1185468306......) = 5099855027160436321 * x234293(2324513736......)
n=234589: c234579(3109516856......) = 3177000334628616479 * x234560(9787587437......)
n=234727: c234727(1111111111......) = 1084288024769638361 * x234709(1024737971......)
n=234733: c234733(1111111111......) = 3495165735723576199 * x234714(3178994059......)
n=234743: c234712(1723599528......) = 663883390524909991 * x234694(2596238365......)
n=234799: c234785(7579306064......) = 4583823600816158879 * x234767(1653489908......)
n=234893: c234887(2365138054......) = 1778800899523469561 * x234869(1329624948......)
n=234977: c234941(1406580021......) = 167402589309145493 * x234923(8402379121......)
n=234979: c234979(1111111111......) = 165149830933217597 * x234961(6727897357......)
n=235009: c234999(4516575578......) = 912564477544461683 * x234981(4949322145......)
n=235117: c235105(9355311659......) = 7052228219721068191 * x235087(1326575284......)
n=235489: c235451(4291608208......) = 237723582774944249 * x235434(1805293424......)
n=235489: x235434(1805293424......) = 4081219474141274711 * x235415(4423416667......)
n=235519: c235519(1111111111......) = 79773865942460801 * x235502(1392825956......)
n=235553: c235553(1111111111......) = 4951741202918725987 * x235534(2243879608......)
n=235849: c235842(2141414242......) = 98955952217075203 * x235825(2164007515......)
# gr-mfaktc
# 206683 of 300000 Φn(10) factorizations were cracked. 300000 個中 206683 個の Φn(10) の素因数が見つかりました。
# 19725 of 25997 Rprime factorizations were cracked. 25997 個中 19725 個の Rprime の素因数が見つかりました。
n=34929: c23274(8412015296......) = 41732710302799 * c23261(2015688709......)
n=71546: c35250(1790757076......) = 23160454078367 * c35236(7731960134......)
n=35877: c23871(3810487254......) = 23716251837427 * c23858(1606698765......)
n=30000: c7995(5555524691......) = 39991809070061802000001 * c7973(1389165636......)
# ECM B1=1e6, sigma=3166126587942973
n=232051: c232030(3207846988......) = 15694378910538830933 * x232011(2043946438......)
n=232189: c232182(2658540253......) = 149085212391132373 * x232165(1783235379......)
n=232457: c232443(1719575084......) = 1567248364848128089 * x232425(1097193733......)
n=232633: c232624(1167214149......) = 4904496424011583001 * x232605(2379885820......)
n=232663: c232638(2356372865......) = 4749088138061708627 * x232619(4961737488......)
n=232681: c232681(1111111111......) = 190828233459808667 * x232663(5822571906......)
n=232919: c232908(3702787805......) = 5863051280626541591 * x232889(6315462083......)
n=233113: c233106(3972003255......) = 384812996873138479 * x233089(1032190515......)
n=233141: c233106(3496567576......) = 3630426445017744079 * x233087(9631286103......)
n=233267: c233253(2933873041......) = 229132242762607319 * x233236(1280427846......)
n=233267: x233236(1280427846......) = 1115208077263318853 * x233218(1148151517......)
n=233417: c233410(3400140310......) = 12837922552213112489 * x233391(2648512869......)
n=233423: c233403(4081969604......) = 747305485147290317 * x233385(5462250292......)
n=233437: c233412(3029332732......) = 792032739766505723 * x233394(3824756958......)
n=233713: c233704(3511203127......) = 922721612868790799 * x233686(3805268109......)
n=233777: c233743(2510440635......) = 608804644035314653 * x233725(4123556974......)
n=233921: c233921(1111111111......) = 6103315421725379237 * x233902(1820504159......)
n=233993: c233978(4271381616......) = 2354872647586577507 * x233960(1813848244......)
# gr-mfaktc
# 206676 of 300000 Φn(10) factorizations were cracked. 300000 個中 206676 個の Φn(10) の素因数が見つかりました。
# 19718 of 25997 Rprime factorizations were cracked. 25997 個中 19718 個の Rprime の素因数が見つかりました。
n=10180M: p1967(5896029167......) is proven prime.
# YAFU-1.34.5 APRCL
# https://stdkmd.net/nrr/cert/Phi/#CERT_PHI_10180M_10
n=72948: c24291(8039421684......) = 78316370322469 * c24278(1026531445......)
n=10180M: c2000(3646513320......) = 618469348886528986386736868045981 * p1967(5896029167......)
# ECM B1=11e6, sigma=0:138044562091769
$ ./pfgw64 -tc -q"((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441" PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6] Primality testing ((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N+1 test using discriminant 11, base 7+sqrt(11) Calling N-1 BLS with factored part 0.81% and helper 0.11% (2.57% proof) ((10^509+1)*((10^1018+10^509)*(10^509+10^255+3)+10^255+2)-1)/1696056738373808897643396237130336206663855238720873657918162533005441 is Fermat and Lucas PRP! (0.2791s+0.0007s)
# http://factordb.com/index.php?id=1100000002603771338
n=94020M: c12504(2257694498......) = 2548383691858034221 * x12485(8859319362......)
# ECM B1=25e4, sigma=0:5896773875895457563
n=94020M: x12485(8859319362......) = 851237404580697489961 * c12465(1040757762......)
# ECM B1=25e4, sigma=0:3125704586924728109
n=36619: c33268(3006992690......) = 45953046804083 * c33254(6543619845......)
n=36920: c13433(6269185296......) = 52804262982641 * c13420(1187249843......)
n=37629: c24185(8210446745......) = 20763460715707 * c24172(3954276629......)
n=5700M: c711(1154056235......) = 214098531848960682375313931062057408227354489641401 * c660(5390304294......)
# ECM B1=43e6, sigma=0:1218120574389352
n=64260M: c6904(1256884018......) = 602071447910713201 * c6886(2087599441......)
# ECM B1=1e6, sigma=0:12677614305988117273
n=230047: c230047(1111111111......) = 78746051978526241 * x230030(1411005483......)
n=230357: c230357(1111111111......) = 76975545777987107 * x230340(1443459867......)
n=230501: c230489(9272031181......) = 108202949009734121 * x230472(8569111347......)
n=230779: c230765(6496447601......) = 1912711472817779831 * x230747(3396459786......)
n=230833: c230817(6118740903......) = 173854061031735089 * x230800(3519469644......)
n=230833: x230800(3519469644......) = 7601940260842208693 * x230781(4629699160......)
n=230861: c230861(1111111111......) = 7570887592320937889 * x230842(1467610101......)
n=230873: c230860(2364008197......) = 990360663046504163 * x230842(2387017463......)
n=230891: c230891(1111111111......) = 17402402026623709729 * x230871(6384814633......)
n=230939: c230931(1768851192......) = 1600193497863035707 * x230913(1105398312......)
n=230959: c230959(1111111111......) = 15894295946527067431 * x230939(6990628052......)
n=230969: c230959(1779744873......) = 122066208528063403 * x230942(1458016018......)
n=231197: c231190(3432789129......) = 13619230688484914711 * x231171(2520545549......)
n=231223: c231223(1111111111......) = 4908568512167867957 * x231204(2263615366......)
n=231289: c231254(2162273794......) = 905543379182487961 * x231236(2387819120......)
n=231299: c231279(2413433796......) = 755953308156952043 * x231261(3192569925......)
n=231409: c231389(2660052419......) = 2094336088340204987 * x231371(1270117262......)
n=231431: c231418(2860129771......) = 1411453396656092837 * x231400(2026372091......)
n=231493: c231468(1290510634......) = 425846617734441289 * x231450(3030458810......)
n=231631: c231619(7435258426......) = 13760790439576993357 * x231600(5403220446......)
n=231779: c231740(7179225851......) = 363515424375507329 * x231723(1974943941......)
n=231799: c231784(1731841839......) = 6436226881590743591 * x231765(2690771893......)
n=231821: c231785(4193327923......) = 125482329778597151 * x231768(3341767666......)
# gr-mfaktc
# 206674 of 300000 Φn(10) factorizations were cracked. 300000 個中 206674 個の Φn(10) の素因数が見つかりました。
# 19716 of 25997 Rprime factorizations were cracked. 25997 個中 19716 個の Rprime の素因数が見つかりました。
# via Kurt Beschorner
n=41077: c41077(1111111111......) = 1963136230803261055657813 * c41052(5659877769......)
# ECM B1=5e4, sigma=7820758842106039
# 206668 of 300000 Φn(10) factorizations were cracked. 300000 個中 206668 個の Φn(10) の素因数が見つかりました。
# 19710 of 25997 Rprime factorizations were cracked. 25997 個中 19710 個の Rprime の素因数が見つかりました。
n=19047: c10863(7305981011......) = 70765347060997 * c10850(1032423539......)
n=38253: c24774(2522803185......) = 75113915261947 * c24760(3358636248......)
n=7500L: c932(1959124011......) = 48207545174782975493383750875127027725001 * c891(4063936474......)
# ECM B1=43e6, sigma=0:7630000256316624
n=77006: c38065(2114887310......) = 39267523345607 * c38051(5385843388......)
n=77224: c32929(1000000000......) = 35757247186697 * c32915(2796635867......)
# 206667 of 300000 Φn(10) factorizations were cracked. 300000 個中 206667 個の Φn(10) の素因数が見つかりました。