n=9613: c9572(2855902199......) = 820043877389549781203 * c9551(3482621209......)
n=9683: c9234(1343155882......) = 2203003187745059548951 * c9212(6096931177......)
n=9739: c9733(2852213417......) = 25440449496654537391 * c9714(1121133263......)
n=9577: c9350(1147393443......) = 505496648499260607253 * c9329(2269833928......)
n=9593: c9322(1245973609......) = 22713451630264155143257931921 * c9293(5485619842......)
n=12015: c6317(4494892439......) = 635363470031026318623991 * c6293(7074521358......)
n=12197: c12183(2028610674......) = 18012686626631060641 * c12164(1126212161......)
n=50033: c50033(1111111111......) = 1476208478983841 * c50017(7526789927......)
# ECM B1=11000, sigma=4276030239
# 1476208478983841 is the first known prime factor of R_50033.
# 2530 of 9592 R_prime factorizations are still blank.
n=674: c141(8067805973......) = 102628202728030891704336946143527067063502899291229635778464234241801 * p73(7861197759......)
# gnfs
# Phi_674(10) is the 1016th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
# c141 was the smallest not factored part of repunits.
n=9517: c9145(4288314769......) = 1673848897725798779759 * c9124(2561948557......)
n=361: c198(1910521089......) = 338672903965083087378920536692185596496049493492739500693 * p141(5641198535......)
# ECM B1=400e6, sigma=1455921490
# Phi_361(10) is the 1015th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
n=674: c198(5011959546......) = 621229558894454367540891695929541003114293128504188334503 * c141(8067805973......)
# ECM B1=400e6, sigma=568714955
# c141 is the smallest not factored part of repunits.
n=668: c223(1833581757......) = 473422134866090530705347772603209509527842120964263087241 * c166(3873037659......)
# ECM B1=16000000, sigma=1517105395
# Ratio of factored part of (1744*10^12024-1747)/3+1 was raised from 20.51% to 20.98%.
# c166 is the sixth smallest not factored part of repunits.
n=9497: c9472(7742176962......) = 32047809596903451534390679 * c9447(2415820943......)
n=9559: c8562(1518270935......) = 6089651532270563857864609489 * c8534(2493198383......)
n=9793: c8377(1275064012......) = 64699847209502717611519 * c8354(1970737284......)
n=9829: c9797(5561834267......) = 12726944420202146999 * c9778(4370125368......)
n=12195: c6481(1001000999......) = 31045833621186239290321 * c6458(3224268390......)
n=71780L: c13825(2796099999......) = 88966528159961 * c13811(3142867388......)
n=71820L: c7768(3675136057......) = 7085157436268701021 * c7749(5187091593......)
n=71900M: c14355(2753955624......) = 3216000554486201 * c14339(8563293374......)
n=71940L: c8618(1240268516......) = 2353400171098021 * c8602(5270113138......)
n=71980L: c13892(2570355888......) = 36957555591881 * c13878(6954886077......)
n=50023: c50017(2221196029......) = 8316013499550413 * c50001(2670986560......)
# ECM B1=11000, sigma=1164871075
n=9451: c8712(9000000000......) = 50000043657153705649769 * c8690(1799998428......)
n=9487: c9239(1507068445......) = 293447426960860940542911289 * c9212(5135735762......)
n=9809: c9216(9000000000......) = 66967042541228646080449 * c9194(1343944671......)
n=11135: c8274(2117141744......) = 5688331061518572188377286551 * c8246(3721903175......)
n=13580M: c2280(3250956497......) = 40128498666161709164974167710681 * c2248(8101365876......)
n=9407: c8970(1993196114......) = 16172025514361813591766209 * c8945(1232496271......)
n=9409: c9303(1390201988......) = 264011432695725515540191 * c9279(5265688590......)
n=9433: c9428(1963128520......) = 121741808848297034412557 * c9405(1612534378......)
n=9653: c8207(4997952016......) = 4645920719640976637 * c8189(1075772127......)
n=9917: c9633(4686566255......) = 6483274451029062951911 * c9611(7228702549......)
n=9947: c8223(1105730808......) = 17087680111283462288490569 * c8197(6470924088......)
n=11005: c8401(1111099999......) = 168562918822784648748862351 * c8374(6591603940......)