Previous month前月 | September 2003 2003 年 9 月 | November 2010 2010 年 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 May 5 月 | Recent changes 最近の更新 | Next month翌月

February 23, 2011 2011 年 2 月 23 日 (Kurt Beschorner)

n=9379: c9156(1215775183......) = 3564124966893897364201 * c9134(3411146339......)

n=9823: c8249(1071898758......) = 1697147725358848727460277 * c8224(6315883655......)

n=9941: c9918(3375610756......) = 1213040686905335129 * c9900(2782767958......)

n=10019: c9725(2606120681......) = 68240046826499101187 * c9705(3819048788......)

n=10027: c9678(9444792043......) = 259104803702423370707 * c9658(3645162848......)

February 23, 2011 2011 年 2 月 23 日 (Serge Batalov)

n=60740M: c12144(3576409999......) = 38122590231361 * c12130(9381340506......)

# P-1 B1=70000, x0=3524054826

n=59906: c23268(4723174321......) = 58911539492807 * c23254(8017400940......)

n=59911: c59400(9000000000......) = 177815126671561 * c59386(5061436655......)

n=59915: c45749(8597565488......) = 378474504708297551 * c45732(2271636631......)

n=59923: c57960(9000000000......) = 18787296854311 * c57947(4790470960......)

n=59925: c29440(9999900000......) = 105707700359551 * c29426(9459954162......)

n=59933: c59040(9000000000......) = 184963025897963 * c59026(4865837351......)

n=60107: c60099(9336136900......) = 44641743129532093 * c60083(2091346852......)

n=60207: c33120(9009009909......) = 142377429508281031 * c33103(6327554824......)

n=60486: c18932(2431384333......) = 9160437509135251 * c18916(2654222934......)

n=60544: c26861(1272439431......) = 25189042697668609 * c26844(5051559310......)

n=60560: c24170(2506726114......) = 28657434725333441 * c24153(8747210414......)

n=60652: c29682(1072106143......) = 346691357304855701 * c29664(3092393626......)

n=60654: c18354(4688476497......) = 70284427145074384771 * c18334(6670718803......)

n=60661: c60647(2778191235......) = 1380475252418573 * c60632(2012488981......)

n=60665: c44071(5883878926......) = 71914557808391 * c44057(8181763339......)

n=60672: c19951(1016088317......) = 25144778695681 * c19937(4040951521......)

n=60673: c55088(4384416501......) = 119619143033209 * c55074(3665313419......)

n=60675: c32315(8240640786......) = 844037116335668401 * c32297(9763363040......)

n=60861: c40572(9009009009......) = 686941592874637 * c40558(1311466520......)

n=60862: c30405(1168399065......) = 13047768076564687 * c30388(8954781070......)

n=60866: c28067(3189627616......) = 30379639995121 * c28054(1049922782......)

n=60870: c16208(2216033432......) = 783936695887056845401 * c16187(2826801506......)

n=60873: c39985(1109999999......) = 2316958657150747 * c39969(4790763083......)

n=60890: c24345(3136316424......) = 14680217313401 * c24332(2136423703......)

n=60966: c20295(9748356738......) = 3538698086567053 * c20280(2754786223......)

n=61055: c48835(1842615587......) = 124431729204641 * c48821(1480824544......)

n=61062: c20353(1098901098......) = 310867717485007 * c20338(3534947622......)

n=61064: c28667(1364823020......) = 234451955763433 * c28652(5821333484......)

n=61068: c17424(9901000000......) = 34219974133909831681 * c17405(2893339416......)

n=61082: c26137(1439128820......) = 55368046988899 * c26123(2599204594......)

n=61158: c20385(1098901098......) = 273166143801619 * c20370(4022830514......)

n=61168: c30576(9999999900......) = 56324902419347056129 * c30557(1775413621......)

n=61188: c20381(4551120993......) = 17399314390443061 * c20365(2615689843......)

n=61247: c60327(3353093574......) = 265096487646241 * c60313(1264857789......)

n=61266: c20408(1191923467......) = 1820834758705720921 * c20389(6546027649......)

n=61269: c37681(1109999999......) = 966780786459853 * c37666(1148140318......)

n=61271: c52498(1171383902......) = 3399957224969628163 * c52479(3445290118......)

n=61277: c59136(9000000000......) = 440540475386369 * c59122(2042945087......)

n=61296: c20417(1000000009......) = 1982344684384177 * c20401(5044531447......)

n=61353: c38401(1001000999......) = 47218105214328906180721 * c38378(2119951648......)

n=61363: c61351(3248663044......) = 154595865921533 * c61337(2101390632......)

n=61365: c32713(4055673851......) = 13401447257989465013641 * c32691(3026295424......)

n=61375: c49000(9999999999......) = 5203626160051751 * c48985(1921736822......)

n=61383: c33666(2778125696......) = 845220935711449837 * c33648(3286863326......)

n=61384: c30682(7404204157......) = 109486397597235623316617 * c30659(6762670358......)

n=61393: c58445(8240989849......) = 1384356344745289 * c58430(5952939704......)

n=61394: c30696(9090909090......) = 402856223226637 * c30682(2256613790......)

n=61397: c52316(5852675610......) = 2191837691644763 * c52301(2670213963......)

n=61453: c52668(9000000900......) = 113954089729367161 * c52651(7897918294......)

n=61454: c30703(9022790085......) = 607811585836059859 * c30686(1484471552......)

n=61455: c30702(1618118361......) = 181673827822254107881 * c30681(8906722453......)

n=61458: c20463(3609700505......) = 74761921945148429491 * c20443(4828260713......)

n=61459: c59920(9000000000......) = 53642232639117041 * c59904(1677782515......)

n=61466: c30241(1099999999......) = 298595228457047 * c30226(3683916871......)

n=61467: c35100(1543130233......) = 128407930653997 * c35086(1201740597......)

n=61489: c57856(9000000000......) = 1708326353846821081 * c57838(5268314206......)

n=61497: c40992(9990000009......) = 129136517225123767832362951 * c40966(7735999254......)

n=61498: c30330(2104324367......) = 22705933272653 * c30316(9267729021......)

n=61548: c19529(3527769955......) = 1788152420671501 * c19514(1972857523......)

n=61555: c45409(1111099999......) = 1969324445314591 * c45393(5642036296......)

n=61556: c27943(6073721491......) = 21620810496412305178001 * c27921(2809201575......)

n=61560: c15552(9999999999......) = 34230444637645441 * c15536(2921376016......)

n=61575: c32786(1882593959......) = 83419526306401 * c32772(2256778529......)

n=61576: c29894(3111672625......) = 17641838099177 * c29881(1763802959......)

n=61600: c19172(1018678199......) = 1768413616446401 * c19156(5760406895......)

n=61658: c30828(9090909090......) = 123536849399011 * c30814(7358864286......)

n=61659: c34549(3720697254......) = 702608354886439 * c34534(5295549403......)

n=61661: c61129(2716444980......) = 13122312293890759 * c61113(2070096275......)

n=61671: c40292(2040917562......) = 12218408750557 * c40279(1670362814......)

n=61675: c49314(6755771682......) = 64426953035070601 * c49298(1048594006......)

n=61682: c30835(2947660456......) = 78775442226419 * c30821(3741851995......)

n=61756: c30858(2751653417......) = 4420571082639535801 * c30839(6224655968......)

n=61762: c30880(9090909090......) = 3958639087258607 * c30865(2296473330......)

n=61768: c26433(5935900061......) = 134065665699274440881 * c26413(4427606449......)

n=61781: c61767(5817911789......) = 1321752697809601 * c61752(4401664395......)

n=61790: c23904(9091000000......) = 228250970319121 * c23890(3982896540......)

n=61792: c30874(7706339157......) = 61573565048280001 * c30858(1251566179......)

n=61794: c20593(1000999998......) = 4675474957509361 * c20577(2140958957......)

n=61849: c61236(9000000000......) = 105018913868027 * c61222(8569884860......)

n=61859: c53011(7274550311......) = 1030862819999037761 * c52993(7056758833......)

n=61872: c20595(3506817526......) = 257246404879153 * c20581(1363213424......)

n=61950: c13915(2306024890......) = 93720171536633251 * c13898(2460542755......)

n=61957: c51769(7423510385......) = 81132110050902961 * c51752(9149904249......)

n=61958: c28585(1099999999......) = 349278961189530529 * c28567(3149345143......)

n=62047: c62034(4139143606......) = 4506024481921843 * c62018(9185799196......)

n=62050: c23024(1073436284......) = 251785480563464251 * c23006(4263297002......)

n=62051: c56388(1058613062......) = 1011054164322467 * c56373(1047038922......)

n=62059: c61560(9000000000......) = 205165269578724067 * c61543(4386707369......)

n=62070: c16544(9100090999......) = 1273522357094731 * c16529(7145607573......)

n=62071: c62056(6785000463......) = 89786572202814631 * c62039(7556809773......)

n=62146: c25319(1681096197......) = 416886173076437 * c25304(4032506488......)

n=62152: c29179(4022782763......) = 404142672002390873 * c29161(9953867883......)

n=62155: c48001(1111099999......) = 747932898089921 * c47986(1485561074......)

n=62156: c30241(1009999999......) = 6602057064437041 * c30225(1529826219......)

n=62160: c13793(4639087114......) = 11377704115681 * c13780(4077349056......)

n=62170: c24846(8675646223......) = 19265457409921691 * c24830(4503213206......)

n=62172: c18702(2759576844......) = 406184775340609 * c18687(6793895320......)

n=62192: c27440(2617163232......) = 1655963312198417 * c27425(1580447593......)

n=62194: c28151(3716506348......) = 17397495465703 * c28138(2136230675......)

February 21, 2011 2011 年 2 月 21 日 (Serge Batalov)

n=59981: c59963(2979757647......) = 4505306511559439 * c59947(6613884403......)

n=59982: c18421(4864002580......) = 29744011998637 * c18408(1635287996......)

n=59986: c29551(6648193940......) = 52123916014411 * c29538(1275459414......)

n=59989: c59489(2232950899......) = 61834418852212477 * c59472(3611177950......)

n=59994: c17974(1389359580......) = 6957434610477649 * c17958(1996942347......)

n=59995: c43681(1000000000......) = 2373299655226111 * c43665(4213542937......)

n=59998: c29628(1320906748......) = 55209558647918103811 * c29608(2392532706......)

n=60085: c47021(9392761311......) = 49306383094201 * c47008(1904978771......)

n=60182: c30072(5415772801......) = 24041978751613 * c30059(2252631889......)

n=60191: c57545(4200112591......) = 52966845482591 * c57531(7929701217......)

n=60197: c56640(9000000000......) = 107814142284344203 * x56623(8347698928......)

n=60197: x56623(8347698928......) = 520965775961329 * c56609(1602350732......)

n=60278: c30128(3691620807......) = 528200086079801 * c30113(6989057565......)

n=60292: c30132(4412259768......) = 4532752263363361 * c30116(9734173658......)

n=60375: c26388(6882782797......) = 1501650970380751 * c26373(4583477075......)

n=60402: c20114(2199983324......) = 20732337782521 * c20101(1061136157......)

n=60414: c20128(7556921714......) = 346979238367891 * c20114(2177917546......)

n=60416: c29696(9999999999......) = 26425576631297 * c29683(3784212598......)

n=60513: c38545(1109999999......) = 215434127325841 * c38530(5152387013......)

n=60515: c36280(7758134635......) = 19132427574274561 * c36264(4054966159......)

n=60608: c30263(1954311706......) = 432049835819009 * c30248(4523347874......)

n=60609: c39777(1109999999......) = 2131769432954803 * c39761(5206942096......)

n=60610: c20148(3853643901......) = 207747925550573761 * c20131(1854961435......)

n=60612: c20201(1009998990......) = 8288935590331141 * c20185(1218490575......)

n=60701: c59989(1565750469......) = 1107000822846803 * c59974(1414407683......)

n=60707: c57113(4632908651......) = 110505978898199 * c57099(4192450669......)

n=60709: c55155(9327801291......) = 1413632393282350357601 * c55134(6598463175......)

n=60710: c22353(1173547085......) = 419025805948361 * c22338(2800655875......)

n=60713: c60048(9000000000......) = 34890745371511 * c60035(2579480576......)

n=60716: c29563(2079348772......) = 60586591357358509 * c29546(3432027988......)

n=60801: c37393(1109999999......) = 505171998958907924646133 * c37369(2197271428......)

n=60809: c48385(1000000100......) = 5561994363191551853 * c48366(1797916421......)

n=60814: c28049(1513635148......) = 10125787209383 * c28036(1494832073......)

n=60815: c48622(6204004913......) = 339165803650063561 * c48605(1829195292......)

n=60902: c29576(5661256077......) = 43097372956087 * c29563(1313596558......)

n=60906: c20301(1098901098......) = 34625599835383 * c20287(3173666605......)

n=60907: c47041(1000000100......) = 45868184639201 * c47027(2180160623......)

n=60908: c30452(9900990099......) = 48787534542803376101 * c30433(2029409805......)

n=61702: c30837(4976700991......) = 234237924239023 * c30823(2124635029......)

n=62101: c53761(1111111111......) = 1858522113001997 * c53745(5978465918......)

n=59945: c45342(6000057505......) = 12160734152591 * c45329(4933959932......)

n=59949: c39940(3219505978......) = 3695683308049425601 * c39921(8711531021......)

n=59976: c16118(7504156840......) = 1822087816442713 * c16103(4118438624......)

n=59977: c58314(3751436487......) = 851327942915999 * c58299(4406570368......)

n=59982: c18408(1635287996......) = 364225786953757 * c18393(4489764468......)

n=60008: c27649(1000099999......) = 19769473578401 * c27635(5058809462......)

n=60010: c22511(5031091670......) = 243045121970201 * c22497(2070023718......)

n=60016: c26387(4095973182......) = 11734784921729 * c26374(3490454414......)

n=60023: c59514(3407783301......) = 66211650767089 * c59500(5146803110......)

n=60027: c33915(2501369937......) = 122350916951791837 * c33898(2044422714......)

n=60040: c22453(1457969151......) = 303510196847681 * c22438(4803690835......)

n=60062: c29465(1099999999......) = 17033987597447 * c29451(6457677591......)

n=60064: c30001(8213398625......) = 38807096269217 * c29988(2116468227......)

n=60071: c52908(1989098661......) = 1991890380900883 * c52892(9985984572......)

n=60113: c58775(1577133347......) = 11056350182502311 * c58759(1426450249......)

n=60122: c28724(7028863266......) = 18642237764561 * c28711(3770396749......)

n=60228: c17136(9999990000......) = 82482833283229 * c17123(1212372272......)

n=60233: c55441(1111111111......) = 43436463883707254627 * c55421(2558014653......)

n=60241: c59562(2443147088......) = 15259890750868717 * c59546(1601025281......)

n=60254: c29434(1177809512......) = 10623611947119811 * c29418(1108671436......)

n=60335: c43832(1991296858......) = 162430766594471 * c43818(1225935763......)

n=60368: c23513(4489178005......) = 23227967408801 * c23500(1932660713......)

n=60375: c26373(4583477075......) = 284608699578001 * c26359(1610448690......)

n=60622: c28480(5968159307......) = 4336866000102641 * c28465(1376145656......)

n=60626: c30307(2499170900......) = 241218940566619 * c30293(1036059147......)

n=60638: c30313(1070862964......) = 6454530659385299 * c30297(1659087269......)

n=60640: c24193(1000000000......) = 4718127297479681 * c24177(2119484992......)

n=60643: c53281(1111111111......) = 213410995133359 * c53266(5206437983......)

n=60819: c34536(6127399440......) = 148915558085911 * c34522(4114680507......)

n=60824: c30396(1579633156......) = 16005824734205334137 * c30376(9869114417......)

n=60828: c19575(1286865223......) = 220635234980929 * c19560(5832546299......)

n=60830: c18721(1099988890......) = 187293199004210531 * c18703(5873085066......)

n=60831: c40500(9999999999......) = 1185449412428735599 * c40482(8435619348......)

n=60834: c20277(1098901098......) = 53597686198801 * c20263(2050277123......)

n=60835: c46552(9999999999......) = 219379895470185871 * c46535(4558302837......)

n=60844: c24960(9900990099......) = 99564482859689 * c24946(9944299226......)

n=60850: c24305(6553073767......) = 23441116802251 * c24292(2795546740......)

n=60918: c16792(9620811269......) = 52043903273077 * c16779(1848595256......)

n=60919: c60912(4342654363......) = 23643848774551 * c60899(1836695203......)

n=60920: c24353(1000099999......) = 14633459785201 * c24339(6834337297......)

n=60931: c54395(2349980611......) = 58291306150507 * c54381(4031442708......)

n=60933: c38433(3705605392......) = 501836471747107681 * c38415(7384089442......)

n=60934: c30446(3097173511......) = 60416168836647334967071997281 * c30417(5126398397......)

n=60935: c41761(1111099888......) = 47856610280711 * c41747(2321727097......)

n=60936: c20279(1874059316......) = 14411820410641 * c20266(1300362662......)

n=60942: c17392(1464949682......) = 7781323639400011 * c17376(1882648441......)

n=60945: c30459(1847789117......) = 126955573120294624982401 * c30436(1455461207......)

n=60946: c29454(6684723522......) = 1923566171358197 * c29439(3475172116......)

n=60950: c22869(4011573737......) = 7024358863013651 * c22853(5710946458......)

n=60955: c47809(1111099999......) = 15573394047191 * c47795(7134604034......)

n=61013: c55281(3792654392......) = 3752806128523009 * c55266(1010618258......)

n=61019: c49884(1295213121......) = 324654318071678104483 * c49863(3989514537......)

n=61041: c40692(9009009009......) = 9111253267736761 * c40676(9887782442......)

n=61042: c29164(3489616451......) = 174938242792693 * c29150(1994770494......)

n=61044: c20336(1340579003......) = 479787264616021 * c20321(2794111270......)

n=61045: c47034(7583881027......) = 18261939805831 * c47021(4152834314......)

n=61105: c43983(1239013185......) = 45226952158448879831 * c43963(2739546059......)

n=61106: c30552(9090909090......) = 25254850832773 * c30539(3599668495......)

n=61108: c30547(1080161822......) = 34297657631869 * c30533(3149374905......)

n=61115: c45945(3725507953......) = 103179394516061881 * c45928(3610709261......)

n=61120: c24290(2134655437......) = 1755876636820093441 * c24272(1215720622......)

n=61127: c55560(9000000000......) = 24617592843757 * c55547(3655922029......)

n=61131: c33600(9009009909......) = 91203449875693 * c33586(9877926681......)

n=61137: c40733(4945912871......) = 72649090671889527361 * c40713(6807948765......)

n=61138: c23753(2645816999......) = 98643596296352647 * c23736(2682198438......)

n=61205: c48955(2450797999......) = 10363394989775041 * c48939(2364860165......)

n=61303: c55720(9000000000......) = 56273879781307 * c55707(1599321041......)

n=61309: c59604(1402446471......) = 4453920592856321 * c59588(3148790917......)

n=61336: c25585(3578515279......) = 34631526186401 * c25572(1033311457......)

n=61342: c30666(1481979865......) = 4352944124978443013 * c30647(3404546034......)

n=61407: c40927(2711409908......) = 191202689310829093 * c40910(1418081470......)

n=61408: c28788(9067379584......) = 264386229905256097 * c28771(3429596007......)

n=61411: c50748(2145676729......) = 21182316909881 * c50735(1012956579......)

n=61432: c26305(1000099999......) = 238278927935329 * c26290(4197181885......)

n=61433: c58725(8930560638......) = 1108419693231947 * c58710(8057020903......)

n=61445: c49145(2160382245......) = 1303087138072831 * c49130(1657895456......)

n=61506: c19008(9999999990......) = 91266555852127 * c18995(1095691614......)

n=61517: c61012(4330995316......) = 893208397203401 * c60997(4848807209......)

n=61522: c29119(5959895322......) = 4274131189830241 * c29104(1394410947......)

n=61527: c41016(9009009009......) = 24279663817910551 * c41000(3710516371......)

n=61529: c56760(5641755568......) = 702329267347111 * c56745(8032921068......)

n=61530: c14017(1098890000......) = 1041288696311977681 * c13999(1055317323......)

n=61607: c48673(1111110999......) = 4987989241304547660001 * c48651(2227572968......)

n=61614: c17496(9999999990......) = 857880787150495748574397 * c17473(1165663124......)

n=61616: c30800(9999999900......) = 177843066552433 * c30786(5622934924......)

n=61621: c52812(9000000900......) = 4411677393217067 * c52797(2040040578......)

n=61623: c39832(1768337806......) = 656769571265917 * c39817(2692478281......)

n=61625: c44801(1000000000......) = 24298178336935001 * c44784(4115534860......)

n=61630: c24628(5566936094......) = 163125176172641 * x24614(3412677445......)

n=61630: x24614(3412677445......) = 2708112221889284051 * c24596(1260168399......)

n=61631: c61620(3149524522......) = 752763658775911147 * c61602(4183948687......)

n=61636: c29161(1009999999......) = 92620968111626211469 * c29141(1090465820......)

n=61639: c60424(9000000000......) = 28301877481597 * c60411(3180001046......)

n=61641: c41040(9999999999......) = 346183574471509321 * c41023(2888640807......)

n=61705: c40303(9857400889......) = 31710155442631 * c40290(3108594313......)

n=61713: c41102(4117128871......) = 279243912774997 * c41088(1474384465......)

n=61723: c61705(3183587446......) = 46355546689609 * c61691(6867759466......)

n=61728: c20528(1980123205......) = 240615650790721 * c20513(8229403194......)

n=61733: c52908(9000000900......) = 436048202443479361 * c52891(2063992203......)

n=61735: c49384(9000090000......) = 239893320160001 * c49370(3751705130......)

n=61747: c52902(5556741387......) = 15484048414162693 * c52886(3588687686......)

n=61748: c30073(1009999999......) = 14033843079101 * c30059(7196888224......)

n=61802: c28513(1099999999......) = 27908669898773 * c28499(3941427534......)

n=61804: c30890(1649050630......) = 183610914321421 * c30875(8981223345......)

n=61806: c20601(1098901098......) = 10582553174407 * c20588(1038408294......)

n=61810: c21162(1470797514......) = 93486741117001 * c21148(1573268569......)

n=61826: c29259(8172278483......) = 1238825488201397 * c29244(6596795562......)

n=61834: c30157(1099999999......) = 198214706754247 * c30142(5549537761......)

n=61840: c24695(6870066875......) = 118119758064961 * c24681(5816187729......)

n=61841: c55422(1221033323......) = 11836361441001241 * c55406(1031595164......)

n=61906: c28549(5580103862......) = 41738729534087 * c28536(1336912724......)

n=61907: c59870(2798835629......) = 2995672147506827 * c59854(9342930374......)

n=61936: c26209(1000000000......) = 60076334209856161 * c26192(1664548966......)

n=61937: c61412(8682179344......) = 135741170326169 * c61398(6396128252......)

n=62010: c14962(2314572436......) = 570054960527131 * c14947(4060261899......)

n=62012: c30086(3462857688......) = 43145586880789 * c30072(8025983510......)

n=62013: c35425(1109999889......) = 47905436902681 * c35411(2317064535......)

n=62030: c24801(3384194074......) = 1009212396861846161 * c24783(3353302124......)

n=62031: c36960(9009009009......) = 122744742312307 * c36946(7339629249......)

n=62033: c56309(2578043689......) = 154774535434934302609 * c56289(1665676903......)

n=62038: c31012(2664321992......) = 160946186864651 * c30998(1655411690......)

n=62039: c62021(2574157129......) = 91806307181483 * c62007(2803900089......)

n=62146: c25333(3288456511......) = 195613821228197 * c25319(1681096197......)

February 17, 2011 2011 年 2 月 17 日 (Kurt Beschorner)

n=9229: c8364(1974532524......) = 2215175776901281543889 * c8342(8913660690......)

n=9259: c8972(3403270453......) = 39541179039643467472453 * x8949(8606901808......)

n=9259: x8949(8606901808......) = 258061378626248057904209 * c8926(3335214999......)

n=13540L: c2694(1802989923......) = 9899734712989800120136150121 * c2666(1821250746......)

February 11, 2011 2011 年 2 月 11 日 (Kurt Beschorner)

n=9097: c8260(9000000000......) = 3027878437539829875067441 * c8236(2972378246......)

n=9503: c8065(1111111111......) = 557762666216718147277 * x8044(1992085842......)

n=9503: x8044(1992085842......) = 264176729369370523025867 * c8020(7540731720......)

February 5, 2011 2011 年 2 月 5 日 (Kurt Beschorner)

n=8881: c8654(5045280485......) = 1745248295204425293592591 * c8630(2890866875......)

n=8887: c8869(1496503781......) = 366800394756452858923 * c8848(4079885961......)

n=8927: c8729(2591715707......) = 23209495420374570066371387 * c8704(1116661806......)

n=9961: c8527(7529302284......) = 742981799783852720966533 * c8504(1013389868......)

February 4, 2011 2011 年 2 月 4 日 (Wenjie Fang, Chao Yu, Bo Chen and Chen Wang)

n=924: c159(5124349856......) = 3925277248426748966984537733816767395325307476622633188305245093834818012069881 * p81(1305474628......)

# gnfs, msieve/ggnfs

# Phi_924(10) is the 1014th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).

# c159 was the smallest unsplit composite factor of repunit.

# The new smallest unsplit composite factor of repunit is c162 of n=1980L.

# https://mersenneforum.org/showthread.php?p=251333

#

# Software: Jeff Gilchrist's compiled binaries of msieve and ggnfs

# Machines: Core 2 Duo T7200@2GHz with 2GB memory, Core i5 with 3GB memory, etc. for sieving, Core 2 Duo P7450@2.13GHz with 4GB memory for post processing

# Approximate time: nearly 4 months for sieving, ~180 hours for linear algebra.

Thu Jan 27 18:48:59 2011  
Thu Jan 27 18:48:59 2011  
Thu Jan 27 18:48:59 2011  Msieve v. 1.48
Thu Jan 27 18:48:59 2011  random seeds: 6b754a64 bc1349ab
Thu Jan 27 18:48:59 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Thu Jan 27 18:49:01 2011  searching for 15-digit factors
Thu Jan 27 18:49:01 2011  commencing number field sieve (159-digit input)
Thu Jan 27 18:49:01 2011  R0: -10435876722562513414750458854765
Thu Jan 27 18:49:01 2011  R1:  313917035995323451
Thu Jan 27 18:49:01 2011  A0: -53855456973260737243473172880692802196336
Thu Jan 27 18:49:01 2011  A1:  2026911160637879778823593151211436
Thu Jan 27 18:49:01 2011  A2:  906377879913878912542266468
Thu Jan 27 18:49:01 2011  A3: -17776724896228762271
Thu Jan 27 18:49:01 2011  A4: -1986769951852
Thu Jan 27 18:49:01 2011  A5:  4140
Thu Jan 27 18:49:01 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Thu Jan 27 18:49:01 2011  
Thu Jan 27 18:49:01 2011  commencing relation filtering
Thu Jan 27 18:49:01 2011  estimated available RAM is 4060.9 MB
Thu Jan 27 18:49:01 2011  commencing duplicate removal, pass 1
Thu Jan 27 18:57:53 2011  skipped 2 relations with b > 2^32
Thu Jan 27 18:57:53 2011  found 15953369 hash collisions in 61806869 relations
Thu Jan 27 18:59:08 2011  added 122115 free relations
Thu Jan 27 18:59:08 2011  commencing duplicate removal, pass 2
Thu Jan 27 19:01:40 2011  found 18325029 duplicates and 43603954 unique relations
Thu Jan 27 19:01:40 2011  memory use: 426.4 MB
Thu Jan 27 19:01:40 2011  reading ideals above 44892160
Thu Jan 27 19:01:40 2011  commencing singleton removal, initial pass
Thu Jan 27 19:09:18 2011  memory use: 753.0 MB
Thu Jan 27 19:09:18 2011  reading all ideals from disk
Thu Jan 27 19:09:19 2011  memory use: 809.5 MB
Thu Jan 27 19:09:23 2011  commencing in-memory singleton removal
Thu Jan 27 19:09:28 2011  begin with 43603954 relations and 40644665 unique ideals
Thu Jan 27 19:10:17 2011  reduce to 23323005 relations and 17834282 ideals in 16 passes
Thu Jan 27 19:10:17 2011  max relations containing the same ideal: 27
Thu Jan 27 19:10:22 2011  reading ideals above 720000
Thu Jan 27 19:10:22 2011  commencing singleton removal, initial pass
Thu Jan 27 19:15:50 2011  memory use: 689.0 MB
Thu Jan 27 19:15:50 2011  reading all ideals from disk
Thu Jan 27 19:15:51 2011  memory use: 851.9 MB
Thu Jan 27 19:15:58 2011  keeping 23115718 ideals with weight <= 200, target excess is 135799
Thu Jan 27 19:16:04 2011  commencing in-memory singleton removal
Thu Jan 27 19:16:11 2011  begin with 23323016 relations and 23115718 unique ideals
Thu Jan 27 19:17:30 2011  reduce to 23259235 relations and 23051879 ideals in 13 passes
Thu Jan 27 19:17:30 2011  max relations containing the same ideal: 200
Thu Jan 27 19:17:56 2011  removing 399518 relations and 374603 ideals in 24915 cliques
Thu Jan 27 19:17:57 2011  commencing in-memory singleton removal
Thu Jan 27 19:18:03 2011  begin with 22859717 relations and 23051879 unique ideals
Thu Jan 27 19:18:51 2011  reduce to 22854817 relations and 22672364 ideals in 8 passes
Thu Jan 27 19:18:51 2011  max relations containing the same ideal: 200
Thu Jan 27 19:19:17 2011  removing 295815 relations and 270900 ideals in 24915 cliques
Thu Jan 27 19:19:18 2011  commencing in-memory singleton removal
Thu Jan 27 19:19:24 2011  begin with 22559002 relations and 22672364 unique ideals
Thu Jan 27 19:19:59 2011  reduce to 22555997 relations and 22398455 ideals in 6 passes
Thu Jan 27 19:19:59 2011  max relations containing the same ideal: 199
Thu Jan 27 19:20:12 2011  relations with 0 large ideals: 471
Thu Jan 27 19:20:12 2011  relations with 1 large ideals: 312
Thu Jan 27 19:20:12 2011  relations with 2 large ideals: 5697
Thu Jan 27 19:20:12 2011  relations with 3 large ideals: 63973
Thu Jan 27 19:20:12 2011  relations with 4 large ideals: 407603
Thu Jan 27 19:20:12 2011  relations with 5 large ideals: 1579571
Thu Jan 27 19:20:12 2011  relations with 6 large ideals: 3908551
Thu Jan 27 19:20:12 2011  relations with 7+ large ideals: 16589819
Thu Jan 27 19:20:12 2011  commencing 2-way merge
Thu Jan 27 19:20:53 2011  reduce to 14121259 relation sets and 13963717 unique ideals
Thu Jan 27 19:20:53 2011  commencing full merge
Thu Jan 27 19:28:17 2011  memory use: 1594.2 MB
Thu Jan 27 19:28:20 2011  found 7459083 cycles, need 7447917
Thu Jan 27 19:28:21 2011  weight of 7447917 cycles is about 521610576 (70.03/cycle)
Thu Jan 27 19:28:21 2011  distribution of cycle lengths:
Thu Jan 27 19:28:21 2011  1 relations: 1124588
Thu Jan 27 19:28:21 2011  2 relations: 1079898
Thu Jan 27 19:28:21 2011  3 relations: 1019947
Thu Jan 27 19:28:21 2011  4 relations: 861716
Thu Jan 27 19:28:21 2011  5 relations: 697032
Thu Jan 27 19:28:21 2011  6 relations: 566244
Thu Jan 27 19:28:21 2011  7 relations: 449579
Thu Jan 27 19:28:21 2011  8 relations: 350038
Thu Jan 27 19:28:21 2011  9 relations: 273452
Thu Jan 27 19:28:21 2011  10+ relations: 1025423
Thu Jan 27 19:28:21 2011  heaviest cycle: 28 relations
Thu Jan 27 19:28:23 2011  commencing cycle optimization
Thu Jan 27 19:28:40 2011  start with 39030262 relations
Thu Jan 27 19:30:58 2011  pruned 881349 relations
Thu Jan 27 19:30:58 2011  memory use: 1320.4 MB
Thu Jan 27 19:30:58 2011  distribution of cycle lengths:
Thu Jan 27 19:30:58 2011  1 relations: 1124588
Thu Jan 27 19:30:58 2011  2 relations: 1106242
Thu Jan 27 19:30:58 2011  3 relations: 1057906
Thu Jan 27 19:30:58 2011  4 relations: 876375
Thu Jan 27 19:30:58 2011  5 relations: 705560
Thu Jan 27 19:30:58 2011  6 relations: 564345
Thu Jan 27 19:30:58 2011  7 relations: 443336
Thu Jan 27 19:30:58 2011  8 relations: 341495
Thu Jan 27 19:30:58 2011  9 relations: 265208
Thu Jan 27 19:30:58 2011  10+ relations: 962862
Thu Jan 27 19:30:58 2011  heaviest cycle: 28 relations
Thu Jan 27 19:31:20 2011  RelProcTime: 2539
Thu Jan 27 19:31:20 2011  
Thu Jan 27 19:31:20 2011  commencing linear algebra
Thu Jan 27 19:31:23 2011  read 7447917 cycles
Thu Jan 27 19:31:46 2011  cycles contain 22354442 unique relations
Thu Jan 27 19:42:30 2011  read 22354442 relations
Thu Jan 27 19:43:23 2011  using 20 quadratic characters above 536870880
Thu Jan 27 19:45:58 2011  building initial matrix
Thu Jan 27 19:53:03 2011  memory use: 3005.2 MB
Thu Jan 27 19:56:23 2011  read 7447917 cycles
Thu Jan 27 19:56:27 2011  matrix is 7447740 x 7447917 (2239.0 MB) with weight 695617601 (93.40/col)
Thu Jan 27 19:56:27 2011  sparse part has weight 505014017 (67.81/col)
Thu Jan 27 19:58:33 2011  filtering completed in 2 passes
Thu Jan 27 19:58:37 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Thu Jan 27 19:58:37 2011  sparse part has weight 504992499 (67.83/col)
Thu Jan 27 20:00:22 2011  matrix starts at (0, 0)
Thu Jan 27 20:00:26 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Thu Jan 27 20:00:26 2011  sparse part has weight 504992499 (67.83/col)
Thu Jan 27 20:00:26 2011  saving the first 48 matrix rows for later
Thu Jan 27 20:00:30 2011  matrix includes 64 packed rows
Thu Jan 27 20:00:32 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Thu Jan 27 20:00:32 2011  sparse part has weight 495578205 (66.56/col)
Thu Jan 27 20:00:32 2011  using block size 65536 for processor cache size 3072 kB
Thu Jan 27 20:01:19 2011  commencing Lanczos iteration
Thu Jan 27 20:01:19 2011  memory use: 1752.9 MB
Thu Jan 27 20:04:15 2011  linear algebra at 0.0%, ETA 230h20m
Thu Jan 27 20:05:11 2011  checkpointing every 40000 dimensions
Thu Jan 27 23:49:34 2011  lanczos halted after 1956 iterations (dim = 123742)
Thu Jan 27 23:49:36 2011  BLanczosTime: 15496
Thu Jan 27 23:49:36 2011  
Thu Jan 27 23:49:36 2011  commencing square root phase
Thu Jan 27 23:49:36 2011  reading relations for dependency 1
Thu Jan 27 23:49:36 2011  error: read_cycles can't open dependency file
Thu Jan 27 23:50:36 2011  
Thu Jan 27 23:50:36 2011  
Thu Jan 27 23:50:36 2011  Msieve v. 1.48
Thu Jan 27 23:50:36 2011  random seeds: e2308300 2ddff6e4
Thu Jan 27 23:50:36 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Thu Jan 27 23:50:37 2011  searching for 15-digit factors
Thu Jan 27 23:50:38 2011  commencing number field sieve (159-digit input)
Thu Jan 27 23:50:38 2011  R0: -10435876722562513414750458854765
Thu Jan 27 23:50:38 2011  R1:  313917035995323451
Thu Jan 27 23:50:38 2011  A0: -53855456973260737243473172880692802196336
Thu Jan 27 23:50:38 2011  A1:  2026911160637879778823593151211436
Thu Jan 27 23:50:38 2011  A2:  906377879913878912542266468
Thu Jan 27 23:50:38 2011  A3: -17776724896228762271
Thu Jan 27 23:50:38 2011  A4: -1986769951852
Thu Jan 27 23:50:38 2011  A5:  4140
Thu Jan 27 23:50:38 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Thu Jan 27 23:50:38 2011  
Thu Jan 27 23:50:38 2011  commencing linear algebra
Thu Jan 27 23:51:13 2011  matrix starts at (0, 0)
Thu Jan 27 23:51:17 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Thu Jan 27 23:51:17 2011  sparse part has weight 504992499 (67.83/col)
Thu Jan 27 23:51:17 2011  saving the first 48 matrix rows for later
Thu Jan 27 23:51:21 2011  matrix includes 64 packed rows
Thu Jan 27 23:51:23 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Thu Jan 27 23:51:23 2011  sparse part has weight 495578205 (66.56/col)
Thu Jan 27 23:51:23 2011  using block size 65536 for processor cache size 3072 kB
Thu Jan 27 23:52:09 2011  commencing Lanczos iteration (2 threads)
Thu Jan 27 23:52:09 2011  memory use: 1809.7 MB
Thu Jan 27 23:52:14 2011  restarting at iteration 1956 (dim = 123742)
Thu Jan 27 23:52:45 2011  checkpointing every 40000 dimensions
Thu Jan 27 23:54:37 2011  linear algebra at 1.7%, ETA 191h 2m
Fri Jan 28 14:21:07 2011  lanczos halted after 10782 iterations (dim = 681874)
Fri Jan 28 14:21:07 2011  BLanczosTime: 52229
Fri Jan 28 14:21:07 2011  elapsed time 14:30:31
Fri Jan 28 14:21:13 2011  
Fri Jan 28 14:21:13 2011  
Fri Jan 28 14:21:13 2011  Msieve v. 1.48
Fri Jan 28 14:21:13 2011  random seeds: eb093c10 f9b0899c
Fri Jan 28 14:21:13 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Fri Jan 28 14:21:15 2011  searching for 15-digit factors
Fri Jan 28 14:21:15 2011  commencing number field sieve (159-digit input)
Fri Jan 28 14:21:15 2011  R0: -10435876722562513414750458854765
Fri Jan 28 14:21:15 2011  R1:  313917035995323451
Fri Jan 28 14:21:15 2011  A0: -53855456973260737243473172880692802196336
Fri Jan 28 14:21:15 2011  A1:  2026911160637879778823593151211436
Fri Jan 28 14:21:15 2011  A2:  906377879913878912542266468
Fri Jan 28 14:21:15 2011  A3: -17776724896228762271
Fri Jan 28 14:21:15 2011  A4: -1986769951852
Fri Jan 28 14:21:15 2011  A5:  4140
Fri Jan 28 14:21:15 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Fri Jan 28 14:21:15 2011  
Fri Jan 28 14:21:15 2011  commencing linear algebra
Fri Jan 28 14:21:57 2011  matrix starts at (0, 0)
Fri Jan 28 14:22:01 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Fri Jan 28 14:22:01 2011  sparse part has weight 504992499 (67.83/col)
Fri Jan 28 14:22:01 2011  saving the first 48 matrix rows for later
Fri Jan 28 14:22:05 2011  matrix includes 64 packed rows
Fri Jan 28 14:22:07 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Fri Jan 28 14:22:07 2011  sparse part has weight 495578205 (66.56/col)
Fri Jan 28 14:22:07 2011  using block size 65536 for processor cache size 3072 kB
Fri Jan 28 14:22:54 2011  commencing Lanczos iteration (4 threads)
Fri Jan 28 14:22:54 2011  memory use: 1923.3 MB
Fri Jan 28 14:22:59 2011  restarting at iteration 10782 (dim = 681874)
Fri Jan 28 14:23:11 2011  error: corrupt state, please restart from checkpoint
Fri Jan 28 14:38:08 2011  
Fri Jan 28 14:38:08 2011  
Fri Jan 28 14:38:08 2011  Msieve v. 1.48
Fri Jan 28 14:38:08 2011  random seeds: 0736934c 5220b1eb
Fri Jan 28 14:38:08 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Fri Jan 28 14:38:10 2011  searching for 15-digit factors
Fri Jan 28 14:38:10 2011  commencing number field sieve (159-digit input)
Fri Jan 28 14:38:10 2011  R0: -10435876722562513414750458854765
Fri Jan 28 14:38:10 2011  R1:  313917035995323451
Fri Jan 28 14:38:10 2011  A0: -53855456973260737243473172880692802196336
Fri Jan 28 14:38:10 2011  A1:  2026911160637879778823593151211436
Fri Jan 28 14:38:10 2011  A2:  906377879913878912542266468
Fri Jan 28 14:38:10 2011  A3: -17776724896228762271
Fri Jan 28 14:38:10 2011  A4: -1986769951852
Fri Jan 28 14:38:10 2011  A5:  4140
Fri Jan 28 14:38:10 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Fri Jan 28 14:38:10 2011  
Fri Jan 28 14:38:10 2011  commencing linear algebra
Fri Jan 28 14:38:47 2011  matrix starts at (0, 0)
Fri Jan 28 14:38:50 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Fri Jan 28 14:38:50 2011  sparse part has weight 504992499 (67.83/col)
Fri Jan 28 14:38:50 2011  saving the first 48 matrix rows for later
Fri Jan 28 14:38:54 2011  matrix includes 64 packed rows
Fri Jan 28 14:38:56 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Fri Jan 28 14:38:56 2011  sparse part has weight 495578205 (66.56/col)
Fri Jan 28 14:38:56 2011  using block size 65536 for processor cache size 3072 kB
Fri Jan 28 14:39:43 2011  commencing Lanczos iteration (2 threads)
Fri Jan 28 14:39:43 2011  memory use: 1809.7 MB
Fri Jan 28 14:39:48 2011  restarting at iteration 10753 (dim = 680040)
Fri Jan 28 14:42:10 2011  linear algebra at 9.2%, ETA 175h44m
Fri Jan 28 14:42:52 2011  checkpointing every 40000 dimensions
Fri Jan 28 16:11:34 2011  lanczos halted after 11682 iterations (dim = 738766)
Fri Jan 28 16:11:35 2011  BLanczosTime: 5605
Fri Jan 28 16:11:35 2011  elapsed time 01:33:27
Fri Jan 28 18:03:33 2011  
Fri Jan 28 18:03:33 2011  
Fri Jan 28 18:03:33 2011  Msieve v. 1.48
Fri Jan 28 18:03:33 2011  random seeds: 9ff454e4 fafe0960
Fri Jan 28 18:03:33 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Fri Jan 28 18:03:34 2011  searching for 15-digit factors
Fri Jan 28 18:03:35 2011  commencing number field sieve (159-digit input)
Fri Jan 28 18:03:35 2011  R0: -10435876722562513414750458854765
Fri Jan 28 18:03:35 2011  R1:  313917035995323451
Fri Jan 28 18:03:35 2011  A0: -53855456973260737243473172880692802196336
Fri Jan 28 18:03:35 2011  A1:  2026911160637879778823593151211436
Fri Jan 28 18:03:35 2011  A2:  906377879913878912542266468
Fri Jan 28 18:03:35 2011  A3: -17776724896228762271
Fri Jan 28 18:03:35 2011  A4: -1986769951852
Fri Jan 28 18:03:35 2011  A5:  4140
Fri Jan 28 18:03:35 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Fri Jan 28 18:03:35 2011  
Fri Jan 28 18:03:35 2011  commencing linear algebra
Fri Jan 28 18:04:08 2011  matrix starts at (0, 0)
Fri Jan 28 18:04:12 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Fri Jan 28 18:04:12 2011  sparse part has weight 504992499 (67.83/col)
Fri Jan 28 18:04:12 2011  saving the first 48 matrix rows for later
Fri Jan 28 18:04:16 2011  matrix includes 64 packed rows
Fri Jan 28 18:04:18 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Fri Jan 28 18:04:18 2011  sparse part has weight 495578205 (66.56/col)
Fri Jan 28 18:04:18 2011  using block size 65536 for processor cache size 3072 kB
Fri Jan 28 18:05:03 2011  commencing Lanczos iteration
Fri Jan 28 18:05:03 2011  memory use: 1752.9 MB
Fri Jan 28 18:05:08 2011  restarting at iteration 11682 (dim = 738766)
Fri Jan 28 18:06:00 2011  lanczos halted after 11689 iterations (dim = 739206)
Fri Jan 28 18:06:01 2011  BLanczosTime: 146
Fri Jan 28 18:06:01 2011  elapsed time 00:02:28
Fri Jan 28 18:06:06 2011  
Fri Jan 28 18:06:06 2011  
Fri Jan 28 18:06:06 2011  Msieve v. 1.48
Fri Jan 28 18:06:06 2011  random seeds: 019504e0 7edc8318
Fri Jan 28 18:06:06 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Fri Jan 28 18:06:07 2011  searching for 15-digit factors
Fri Jan 28 18:06:08 2011  commencing number field sieve (159-digit input)
Fri Jan 28 18:06:08 2011  R0: -10435876722562513414750458854765
Fri Jan 28 18:06:08 2011  R1:  313917035995323451
Fri Jan 28 18:06:08 2011  A0: -53855456973260737243473172880692802196336
Fri Jan 28 18:06:08 2011  A1:  2026911160637879778823593151211436
Fri Jan 28 18:06:08 2011  A2:  906377879913878912542266468
Fri Jan 28 18:06:08 2011  A3: -17776724896228762271
Fri Jan 28 18:06:08 2011  A4: -1986769951852
Fri Jan 28 18:06:08 2011  A5:  4140
Fri Jan 28 18:06:08 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Fri Jan 28 18:06:08 2011  
Fri Jan 28 18:06:08 2011  commencing linear algebra
Fri Jan 28 18:06:43 2011  matrix starts at (0, 0)
Fri Jan 28 18:06:47 2011  matrix is 7445002 x 7445179 (2238.8 MB) with weight 695518316 (93.42/col)
Fri Jan 28 18:06:47 2011  sparse part has weight 504992499 (67.83/col)
Fri Jan 28 18:06:47 2011  saving the first 48 matrix rows for later
Fri Jan 28 18:06:50 2011  matrix includes 64 packed rows
Fri Jan 28 18:06:52 2011  matrix is 7444954 x 7445179 (2174.5 MB) with weight 556050385 (74.69/col)
Fri Jan 28 18:06:52 2011  sparse part has weight 495578205 (66.56/col)
Fri Jan 28 18:06:52 2011  using block size 65536 for processor cache size 3072 kB
Fri Jan 28 18:07:38 2011  commencing Lanczos iteration (2 threads)
Fri Jan 28 18:07:38 2011  memory use: 1809.7 MB
Fri Jan 28 18:07:42 2011  restarting at iteration 11689 (dim = 739206)
Fri Jan 28 18:08:57 2011  checkpointing every 40000 dimensions
Fri Jan 28 18:09:59 2011  linear algebra at 9.9%, ETA 167h51m
Fri Feb 04 18:09:05 2011  lanczos halted after 117725 iterations (dim = 7444954)
Fri Feb 04 18:09:23 2011  recovered 30 nontrivial dependencies
Fri Feb 04 18:09:24 2011  BLanczosTime: 604996
Fri Feb 04 18:09:24 2011  elapsed time 168:03:18
Fri Feb 04 18:09:40 2011  
Fri Feb 04 18:09:40 2011  
Fri Feb 04 18:09:40 2011  Msieve v. 1.48
Fri Feb 04 18:09:40 2011  random seeds: 1775e240 f0be9b22
Fri Feb 04 18:09:40 2011  factoring 512434985639876524000715594705529883100352028753193996615963694053812200251574867826192656169940888503707660331015218051596042340115501376173461440063883161629 (159 digits)
Fri Feb 04 18:09:42 2011  searching for 15-digit factors
Fri Feb 04 18:09:42 2011  commencing number field sieve (159-digit input)
Fri Feb 04 18:09:42 2011  R0: -10435876722562513414750458854765
Fri Feb 04 18:09:42 2011  R1:  313917035995323451
Fri Feb 04 18:09:42 2011  A0: -53855456973260737243473172880692802196336
Fri Feb 04 18:09:42 2011  A1:  2026911160637879778823593151211436
Fri Feb 04 18:09:42 2011  A2:  906377879913878912542266468
Fri Feb 04 18:09:42 2011  A3: -17776724896228762271
Fri Feb 04 18:09:42 2011  A4: -1986769951852
Fri Feb 04 18:09:42 2011  A5:  4140
Fri Feb 04 18:09:42 2011  skew 24084432.79, size 1.296e-015, alpha -6.582, combined = 1.261e-012 rroots = 5
Fri Feb 04 18:09:42 2011  
Fri Feb 04 18:09:42 2011  commencing square root phase
Fri Feb 04 18:09:42 2011  reading relations for dependency 1
Fri Feb 04 18:09:45 2011  read 3721161 cycles
Fri Feb 04 18:09:55 2011  cycles contain 11171958 unique relations
Fri Feb 04 18:12:15 2011  read 11171958 relations
Fri Feb 04 18:13:49 2011  multiplying 11171958 relations
Fri Feb 04 18:40:59 2011  multiply complete, coefficients have about 579.36 million bits
Fri Feb 04 18:41:10 2011  initial square root is modulo 157747
Fri Feb 04 19:16:08 2011  reading relations for dependency 2
Fri Feb 04 19:16:11 2011  read 3721980 cycles
Fri Feb 04 19:16:23 2011  cycles contain 11174118 unique relations
Fri Feb 04 19:18:42 2011  read 11174118 relations
Fri Feb 04 19:20:16 2011  multiplying 11174118 relations
Fri Feb 04 19:47:25 2011  multiply complete, coefficients have about 579.47 million bits
Fri Feb 04 19:47:37 2011  initial square root is modulo 158071
Fri Feb 04 20:22:34 2011  reading relations for dependency 3
Fri Feb 04 20:22:37 2011  read 3718674 cycles
Fri Feb 04 20:22:46 2011  cycles contain 11170138 unique relations
Fri Feb 04 20:25:05 2011  read 11170138 relations
Fri Feb 04 20:26:40 2011  multiplying 11170138 relations
Fri Feb 04 20:53:46 2011  multiply complete, coefficients have about 579.26 million bits
Fri Feb 04 20:53:58 2011  initial square root is modulo 157393
Fri Feb 04 21:28:54 2011  reading relations for dependency 4
Fri Feb 04 21:28:57 2011  read 3720439 cycles
Fri Feb 04 21:29:07 2011  cycles contain 11176052 unique relations
Fri Feb 04 21:31:26 2011  read 11176052 relations
Fri Feb 04 21:33:00 2011  multiplying 11176052 relations
Fri Feb 04 22:00:10 2011  multiply complete, coefficients have about 579.57 million bits
Fri Feb 04 22:00:22 2011  initial square root is modulo 158363
Fri Feb 04 22:35:16 2011  sqrtTime: 15934
Fri Feb 04 22:35:16 2011  prp79 factor: 3925277248426748966984537733816767395325307476622633188305245093834818012069881
Fri Feb 04 22:35:16 2011  prp81 factor: 130547462818138630777456508666491939964821812774903307594092374520935816757936709
Fri Feb 04 22:35:16 2011  elapsed time 04:25:36

February 2, 2011 2011 年 2 月 2 日 (Kurt Beschorner)

n=8849: c8824(5400658713......) = 6576678768316177157932089959 * c8796(8211832908......)

n=11889: c7920(9990000009......) = 223029093313265099452723 * x7897(4479236256......)

n=11889: x7897(4479236256......) = 254132248327298266952427031 * c7871(1762561141......)

n=12187: c10422(5841998055......) = 9877320962316002063471 * c10400(5914557275......)

n=12189: c7605(4856563056......) = 2024335377549304923775801 * c7581(2399090146......)

January 29, 2011 2011 年 1 月 29 日 (Torbjörn Granlund)

n=401: c354(9562949955......) = 14135641046765185164159467932114646984359158253 * c308(6765133553......)

n=459: c275(3094716543......) = 1101414190502577778082877861332115000714073775209495681 * c221(2809766362......)

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | November 2010 2010 年 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 May 5 月 | Recent changes 最近の更新 | Next month翌月