Table of contents 目次

85×10155+419

c146

name 名前Robert Backstrom
date 日付April 6, 2007 05:09:35 UTC 2007 年 4 月 6 日 (金) 14 時 9 分 35 秒 (日本時間)
composite number 合成数
12284722009921359929131917984001874509741121627632771385728056425443589682952011109511750289812874167807618558883312054960486639823425788913136271<146>
prime factors 素因数
211700555063119929890875235473012007515787<42>
168922285910824157078507837032846030320795260327<48>
343523448472478512600512197801355359657515353958015774379<57>
factorization results 素因数分解の結果
Number: n
N=12284722009921359929131917984001874509741121627632771385728056425443589682952011109511750289812874167807618558883312054960486639823425788913136271
  ( 146 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=211700555063119929890875235473012007515787 (pp42)
 r2=168922285910824157078507837032846030320795260327 (pp48)
 r3=343523448472478512600512197801355359657515353958015774379 (pp57)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 32.63 hours.
Scaled time: 39.03 units (timescale=1.196).
Factorization parameters were as follows:
name: KA_9_4_154_9
n: 12284722009921359929131917984001874509741121627632771385728056425443589682952011109511750289812874167807618558883312054960486639823425788913136271
type: snfs
skew: 1
deg: 5
c5: 85
c0: 41
m: 10000000000000000000000000000000
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1300001)
Primes: RFBsize:216816, AFBsize:216987, largePrimes:6273146 encountered
Relations: rels:5738314, finalFF:489456
Max relations in full relation-set: 28
Initial matrix: 433869 x 489456 with sparse part having weight 25703479.
Pruned matrix : 380465 x 382698 with weight 16215397.
Total sieving time: 29.29 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 2.69 hours.
Total square root time: 0.41 hours, sqrts: 5.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000
total time: 32.63 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

85×10156+419

c129

name 名前Robert Backstrom
date 日付May 14, 2007 17:18:24 UTC 2007 年 5 月 15 日 (火) 2 時 18 分 24 秒 (日本時間)
composite number 合成数
285908230863093280149522567479878460620220761033945807669254236564669687489493297610088438129173451686543805526322851093152262847<129>
prime factors 素因数
623026004262418045585258199687571169731749999<45>
458902564109778259210141897723342450686101445324350532928974904781714443488055487153<84>
factorization results 素因数分解の結果
Number: n
N=285908230863093280149522567479878460620220761033945807669254236564669687489493297610088438129173451686543805526322851093152262847
  ( 129 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=623026004262418045585258199687571169731749999 (pp45)
 r2=458902564109778259210141897723342450686101445324350532928974904781714443488055487153 (pp84)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 33.23 hours.
Scaled time: 47.88 units (timescale=1.441).
Factorization parameters were as follows:
name: KA_9_4_155_9
n: 285908230863093280149522567479878460620220761033945807669254236564669687489493297610088438129173451686543805526322851093152262847
skew: 0.55
deg: 5
c5: 850
c0: 41
m: 10000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1500001)
Primes: RFBsize:216816, AFBsize:216852, largePrimes:7158635 encountered
Relations: rels:6684140, finalFF:532075
Max relations in full relation-set: 28
Initial matrix: 433735 x 532075 with sparse part having weight 38484696.
Pruned matrix : 354237 x 356469 with weight 22829842.
Total sieving time: 29.61 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 3.29 hours.
Total square root time: 0.13 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 33.23 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

85×10167+419

c158

name 名前Robert Backstrom
date 日付April 25, 2008 23:42:46 UTC 2008 年 4 月 26 日 (土) 8 時 42 分 46 秒 (日本時間)
composite number 合成数
84425352123049197208177915165707899447036189177692463379021379908918745208076669939396868139201725618297748923996932993146192178295917212487074132321862533813<158>
prime factors 素因数
478777639625485469663091713680607336457292333499171590319017223759486984099<75>
176335202682166386931839569414134269241546576483219882902726853160083292707756562887<84>
factorization results 素因数分解の結果
Number: n
N=84425352123049197208177915165707899447036189177692463379021379908918745208076669939396868139201725618297748923996932993146192178295917212487074132321862533813
  ( 158 digits)
SNFS difficulty: 168 digits.
Divisors found:

Sat Apr 26 04:46:51 2008  prp75 factor: 478777639625485469663091713680607336457292333499171590319017223759486984099
Sat Apr 26 04:46:51 2008  prp84 factor: 176335202682166386931839569414134269241546576483219882902726853160083292707756562887
Sat Apr 26 04:46:51 2008  elapsed time 01:20:35 (Msieve 1.34)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 70.44 hours.
Scaled time: 128.83 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_9_4_166_9
n: 84425352123049197208177915165707899447036189177692463379021379908918745208076669939396868139201725618297748923996932993146192178295917212487074132321862533813
skew: 0.34
deg: 5
c5: 8500
c0: 41
m: 1000000000000000000000000000000000
type: snfs
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 5000001)
Primes: RFBsize:230209, AFBsize:229823, largePrimes:7938150 encountered
Relations: rels:7368085, finalFF:505504
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 70.15 hours.
Total relation processing time: 0.28 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000
total time: 70.44 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

85×10168+419

c134

name 名前Robert Backstrom
date 日付June 26, 2009 02:51:42 UTC 2009 年 6 月 26 日 (金) 11 時 51 分 42 秒 (日本時間)
composite number 合成数
44779490028988984693345170298727232692672656093119287564674642677206820719270872412399590798774417897156369411429035099199813230155339<134>
prime factors 素因数
646081469853325946280782791194467559557<39>
69309355117636896116388768379746577518566014665395648129726751071650431763506721291831801078927<95>
factorization results 素因数分解の結果
Number: n
N=44779490028988984693345170298727232692672656093119287564674642677206820719270872412399590798774417897156369411429035099199813230155339
  ( 134 digits)
SNFS difficulty: 170 digits.
Divisors found:

Fri Jun 26 12:38:16 2009  prp39 factor: 646081469853325946280782791194467559557
Fri Jun 26 12:38:16 2009  prp95 factor: 69309355117636896116388768379746577518566014665395648129726751071650431763506721291831801078927
Fri Jun 26 12:38:16 2009  elapsed time 01:40:25 (Msieve 1.39 - dependency 3)

Version: GGNFS-0.77.1-20060513-pentium-m
Total time: 45.19 hours.
Scaled time: 120.22 units (timescale=2.660).
Factorization parameters were as follows:
name: KA_9_4_167_9
n: 44779490028988984693345170298727232692672656093119287564674642677206820719270872412399590798774417897156369411429035099199813230155339
m: 5000000000000000000000000000000000
deg: 5
c5: 136
c0: 205
skew: 1.09
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.4
alambda: 2.4
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [2500000, 4983701)
Primes: RFBsize:348513, AFBsize:348092, largePrimes:16608879 encountered
Relations: rels:15751124, finalFF:670651
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1838346 hash collisions in 18598297 relations
Msieve: matrix is 800495 x 800743 (213.7 MB)

Total sieving time: 44.69 hours.
Total relation processing time: 0.50 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.4,2.4,100000
total time: 45.19 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Ignacio SantosJanuary 18, 2009 19:17:30 UTC 2009 年 1 月 19 日 (月) 4 時 17 分 30 秒 (日本時間)
255e4204Ignacio SantosJanuary 18, 2009 19:21:40 UTC 2009 年 1 月 19 日 (月) 4 時 21 分 40 秒 (日本時間)
3025e4403Ignacio SantosJanuary 18, 2009 19:53:09 UTC 2009 年 1 月 19 日 (月) 4 時 53 分 9 秒 (日本時間)

85×10169+419

c169

name 名前Robert Backstrom
date 日付June 1, 2007 01:26:22 UTC 2007 年 6 月 1 日 (金) 10 時 26 分 22 秒 (日本時間)
composite number 合成数
2861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861953<169>
prime factors 素因数
337429506941298590268921093583466887034433804138214090669941277<63>
8481631875930594596160003598731475226771065372836124267124902782195037863783694946883546357302023696007989<106>
factorization results 素因数分解の結果
Number: n
N=2861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861953
  ( 169 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=337429506941298590268921093583466887034433804138214090669941277 (pp63)
 r2=8481631875930594596160003598731475226771065372836124267124902782195037863783694946883546357302023696007989 (pp106)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 133.60 hours.
Scaled time: 159.65 units (timescale=1.195).
Factorization parameters were as follows:
name: KA_9_4_168_9
n: 2861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861953
type: snfs
skew: 1.37
deg: 5
c5: 17
c0: 82
m: 10000000000000000000000000000000000
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 4600000)
Primes: RFBsize:348513, AFBsize:348332, largePrimes:8361615 encountered
Relations: rels:7975410, finalFF:799001
Max relations in full relation-set: 28
Initial matrix: 696910 x 799001 with sparse part having weight 48586055.
Pruned matrix : 614721 x 618269 with weight 34462549.
Total sieving time: 122.13 hours.
Total relation processing time: 0.43 hours.
Matrix solve time: 10.66 hours.
Total square root time: 0.37 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000
total time: 133.60 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

85×10172+419

c124

name 名前ruffenach timothee
date 日付March 9, 2010 18:28:46 UTC 2010 年 3 月 10 日 (水) 3 時 28 分 46 秒 (日本時間)
composite number 合成数
3588995859181704274457310498716187401708860956264618498960821114328692059087913648267779379739008571057169508257591078351489<124>
prime factors 素因数
246479985442205775377891577422789372135015830259796457<54>
14561003209825514066695723647745030602117787569762467325513376136309977<71>
factorization results 素因数分解の結果
Number: 94449_172/94449_172
N=3588995859181704274457310498716187401708860956264618498960821114328692059087913648267779379739008571057169508257591078351489
  ( 124 digits)
SNFS difficulty: 173 digits.
Divisors found:
 r1=246479985442205775377891577422789372135015830259796457 (pp54)
 r2=14561003209825514066695723647745030602117787569762467325513376136309977 (pp71)
Version: Msieve v. 1.44
Total time: 93.85 hours.
Scaled time: 195.11 units (timescale=2.079).
Factorization parameters were as follows:
n: 3588995859181704274457310498716187401708860956264618498960821114328692059087913648267779379739008571057169508257591078351489
m: 10000000000000000000000000000000000
deg: 5
c5: 8500
c0: 41
skew: 0.34
type: snfs
lss: 1
rlim: 5500000
alim: 5500000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4

Factor base limits: 5500000/5500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2750000, 6550001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1064810 x 1065042
Total sieving time: 91.63 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.50 hours.
Time per square root: 0.64 hours.
Prototype def-par.txt line would be:
snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000
total time: 93.85 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:13:25 UTC 2009 年 3 月 6 日 (金) 14 時 13 分 25 秒 (日本時間)
255e4250Lionel DebrouxOctober 2, 2009 15:27:11 UTC 2009 年 10 月 3 日 (土) 0 時 27 分 11 秒 (日本時間)
3025e4450Lionel DebrouxOctober 2, 2009 16:05:48 UTC 2009 年 10 月 3 日 (土) 1 時 5 分 48 秒 (日本時間)
351e61000Lionel DebrouxOctober 3, 2009 10:58:23 UTC 2009 年 10 月 3 日 (土) 19 時 58 分 23 秒 (日本時間)

85×10173+419

c160

name 名前Ignacio Santos
date 日付March 21, 2010 22:28:00 UTC 2010 年 3 月 22 日 (月) 7 時 28 分 0 秒 (日本時間)
composite number 合成数
8952021981493677903008092276524446349108271058757478007296890044029769830174052665025673145742453206990406894508132381771835854302624327167961782694552611107851<160>
prime factors 素因数
1558724753362698569163267864950071986797641725467902171<55>
5743170474569757595567557606181106458378789017702283486543635974497686874228634655062086259369155860392081<106>
factorization results 素因数分解の結果
Number: 5
N=8952021981493677903008092276524446349108271058757478007296890044029769830174052665025673145742453206990406894508132381771835854302624327167961782694552611107851
  ( 160 digits)
SNFS difficulty: 174 digits.
Divisors found:
 r1=1558724753362698569163267864950071986797641725467902171 (pp55)
 r2=5743170474569757595567557606181106458378789017702283486543635974497686874228634655062086259369155860392081 (pp106)
Version: Msieve-1.40
Total time: 76.95 hours.
Scaled time: 133.82 units (timescale=1.739).
Factorization parameters were as follows:
n: 8952021981493677903008092276524446349108271058757478007296890044029769830174052665025673145742453206990406894508132381771835854302624327167961782694552611107851
m: 10000000000000000000000000000000000
deg: 5
c5: 85000
c0: 41
skew: 0.22
type: snfs
lss: 1
rlim: 5800000
alim: 5800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5800000/5800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2900000, 6800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1105773 x 1105998
Total sieving time: 73.91 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.63 hours.
Time per square root: 1.29 hours.
Prototype def-par.txt line would be:
snfs,174.000,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.4,2.4,100000
total time: 76.95 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:14:07 UTC 2009 年 3 月 6 日 (金) 14 時 14 分 7 秒 (日本時間)
255e4204Ignacio SantosMarch 10, 2010 12:57:06 UTC 2010 年 3 月 10 日 (水) 21 時 57 分 6 秒 (日本時間)
3025e4185Ignacio SantosMarch 10, 2010 13:05:47 UTC 2010 年 3 月 10 日 (水) 22 時 5 分 47 秒 (日本時間)
351e686860Ignacio SantosMarch 10, 2010 13:05:34 UTC 2010 年 3 月 10 日 (水) 22 時 5 分 34 秒 (日本時間)
808Ignacio SantosMarch 12, 2010 12:53:26 UTC 2010 年 3 月 12 日 (金) 21 時 53 分 26 秒 (日本時間)
403e62328Wataru SakaiMarch 13, 2010 05:17:28 UTC 2010 年 3 月 13 日 (土) 14 時 17 分 28 秒 (日本時間)

85×10175+419

c166

name 名前matsui
date 日付September 2, 2010 04:59:59 UTC 2010 年 9 月 2 日 (木) 13 時 59 分 59 秒 (日本時間)
composite number 合成数
2689726153946333473248657080600628555429964719687721327531145271688335046309499612174349143580661039841238012040535515509513854714816501921495561452495163685921805309<166>
prime factors 素因数
1911643361806623452143964703069254620367342281<46>
1407022987490916059961050393367208107061304214939052080302473693679579743939808325785443526955169260661050092149016618389<121>
factorization results 素因数分解の結果
N=2689726153946333473248657080600628555429964719687721327531145271688335046309499612174349143580661039841238012040535515509513854714816501921495561452495163685921805309
  ( 166 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=1911643361806623452143964703069254620367342281 (pp46)
 r2=1407022987490916059961050393367208107061304214939052080302473693679579743939808325785443526955169260661050092149016618389 (pp121)
Version: Msieve v. 1.47
Total time:
Scaled time: 36.17 units (timescale=1.159).
Factorization parameters were as follows:
n: 2689726153946333473248657080600628555429964719687721327531145271688335046309499612174349143580661039841238012040535515509513854714816501921495561452495163685921805309
m: 100000000000000000000000000000000000
deg: 5
c5: 85
c0: 41
skew: 0.86
type: snfs
lss: 1
rlim: 6200000
alim: 6200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 160000
Factor base limits: 6200000/6200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3100000, 6460001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1194761 x 1194996
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,176.000,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:14:43 UTC 2009 年 3 月 6 日 (金) 14 時 14 分 43 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 11, 2010 10:42:42 UTC 2010 年 8 月 11 日 (水) 19 時 42 分 42 秒 (日本時間)
351e660Rich DickersonAugust 11, 2010 10:42:42 UTC 2010 年 8 月 11 日 (水) 19 時 42 分 42 秒 (日本時間)
403e6440Rich DickersonAugust 11, 2010 14:19:20 UTC 2010 年 8 月 11 日 (水) 23 時 19 分 20 秒 (日本時間)
4511e6850 / 4380175Rich DickersonAugust 11, 2010 23:56:27 UTC 2010 年 8 月 12 日 (木) 8 時 56 分 27 秒 (日本時間)
675Rich DickersonAugust 12, 2010 15:05:59 UTC 2010 年 8 月 13 日 (金) 0 時 5 分 59 秒 (日本時間)

85×10176+419

c162

name 名前Rich Dickerson
date 日付August 6, 2010 18:05:43 UTC 2010 年 8 月 7 日 (土) 3 時 5 分 43 秒 (日本時間)
composite number 合成数
192437235101651202808854375844833845664955334454142650821414418462688146847701594900503833720516741017615009910350494526132528524355184448109663649290709758922249<162>
prime factors 素因数
161551729805457236823785492116659959<36>
1191180282212927749839511726977324448305033491985225991235177021141952376371717986210846465911454651164878372521129551049325311<127>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2890142863
Step 1 took 34806ms
Step 2 took 19712ms
********** Factor found in step 2: 161551729805457236823785492116659959
Found probable prime factor of 36 digits: 161551729805457236823785492116659959
Probable prime cofactor 1191180282212927749839511726977324448305033491985225991235177021141952376371717986210846465911454651164878372521129551049325311 has 127 digits
software ソフトウェア
GMP-ECM 6.3 [GMP 5.0.1] [ECM]
execution environment 実行環境
PowerPC-G5 @ 2.5 GHz Mac OS X

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:15:18 UTC 2009 年 3 月 6 日 (金) 14 時 15 分 18 秒 (日本時間)
255e40--
3025e430 / 211Rich DickersonAugust 6, 2010 15:30:43 UTC 2010 年 8 月 7 日 (土) 0 時 30 分 43 秒 (日本時間)
351e660 / 899Rich DickersonAugust 6, 2010 15:30:43 UTC 2010 年 8 月 7 日 (土) 0 時 30 分 43 秒 (日本時間)

85×10178+419

c159

name 名前Wataru Sakai
date 日付August 20, 2012 14:06:45 UTC 2012 年 8 月 20 日 (月) 23 時 6 分 45 秒 (日本時間)
composite number 合成数
641681709970466704832995640306793227821412798324158521611105173988602290108728741733859212500174578959020149261783021757442735917575530938768680164829346666021<159>
prime factors 素因数
1060073554684773820507615914540804907799306509906660432841<58>
605318099989088791928353538593007587181864552517137145629902876256292961319134017985251075860331289981<102>
factorization results 素因数分解の結果
Number: 94449_178
N=641681709970466704832995640306793227821412798324158521611105173988602290108728741733859212500174578959020149261783021757442735917575530938768680164829346666021
  ( 159 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=1060073554684773820507615914540804907799306509906660432841
 r2=605318099989088791928353538593007587181864552517137145629902876256292961319134017985251075860331289981
Version: 
Total time: 488.11 hours.
Scaled time: 835.65 units (timescale=1.712).
Factorization parameters were as follows:
n: 641681709970466704832995640306793227821412798324158521611105173988602290108728741733859212500174578959020149261783021757442735917575530938768680164829346666021
m: 500000000000000000000000000000000000
deg: 5
c5: 136
c0: 205
skew: 1.09
# Murphy_E = 1.07e-10
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3600000, 4900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 983191 x 983439
Total sieving time: 488.11 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,53,53,2.5,2.5,100000
total time: 488.11 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:15:50 UTC 2009 年 3 月 6 日 (金) 14 時 15 分 50 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 6, 2010 18:35:38 UTC 2010 年 8 月 7 日 (土) 3 時 35 分 38 秒 (日本時間)
351e660Rich DickersonAugust 6, 2010 18:35:38 UTC 2010 年 8 月 7 日 (土) 3 時 35 分 38 秒 (日本時間)
403e61298250Rich DickersonAugust 6, 2010 22:09:07 UTC 2010 年 8 月 7 日 (土) 7 時 9 分 7 秒 (日本時間)
1048Wataru SakaiApril 11, 2012 11:21:57 UTC 2012 年 4 月 11 日 (水) 20 時 21 分 57 秒 (日本時間)
4511e6300 / 4191Rich DickersonAugust 7, 2010 14:07:16 UTC 2010 年 8 月 7 日 (土) 23 時 7 分 16 秒 (日本時間)

85×10180+419

c175

name 名前Ignacio Santos
date 日付April 26, 2009 08:12:12 UTC 2009 年 4 月 26 日 (日) 17 時 12 分 12 秒 (日本時間)
composite number 合成数
5282780726501678588038255536307588602642968982432640972091318023337585039562744860771070945818495711407531045193194709438048239991880676775174361285396262314550313234714382731<175>
prime factors 素因数
414375958481886884185001240050648075749952502026192245534940573345783519916635579<81>
12748762611266692012282983698888185917241129880100555296765430261008552339575567088257949707889<95>
factorization results 素因数分解の結果
Number: 94449_180
N=5282780726501678588038255536307588602642968982432640972091318023337585039562744860771070945818495711407531045193194709438048239991880676775174361285396262314550313234714382731
  ( 175 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=414375958481886884185001240050648075749952502026192245534940573345783519916635579 (pp81)
 r2=12748762611266692012282983698888185917241129880100555296765430261008552339575567088257949707889 (pp95)
Version: Msieve-1.39
Total time: 128.77 hours.
Scaled time: 223.92 units (timescale=1.739).
Factorization parameters were as follows:
n: 5282780726501678588038255536307588602642968982432640972091318023337585039562744860771070945818495711407531045193194709438048239991880676775174361285396262314550313234714382731
m: 1000000000000000000000000000000000000
deg: 5
c5: 85
c0: 41
skew: 0.86
type: snfs
lss: 1
rlim: 7500000
alim: 7500000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7500000/7500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3750000, 5850001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1247569 x 1247817
Total sieving time: 128.77 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,181,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000
total time: 128.77 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
255e4214Dennis LangdeauDecember 8, 2008 05:06:23 UTC 2008 年 12 月 8 日 (月) 14 時 6 分 23 秒 (日本時間)
3025e40--
351e60--
403e6500 / 2350Erik BrangerFebruary 21, 2009 12:29:48 UTC 2009 年 2 月 21 日 (土) 21 時 29 分 48 秒 (日本時間)

85×10181+419

c159

name 名前Dmitry Domanov
date 日付December 30, 2013 06:47:24 UTC 2013 年 12 月 30 日 (月) 15 時 47 分 24 秒 (日本時間)
composite number 合成数
367566595107456853770825371775827510189006054877099327732668363627957509981751136762605728086917443609163667701428450385596944040697768762033298310421143153009<159>
prime factors 素因数
1569247130865840710088077301940350753096914692904241411579274991<64>
234231172310412298930134220981497890094116799774069043271721455968713098223850765715845997507999<96>
factorization results 素因数分解の結果
N=367566595107456853770825371775827510189006054877099327732668363627957509981751136762605728086917443609163667701428450385596944040697768762033298310421143153009
  ( 159 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=1569247130865840710088077301940350753096914692904241411579274991 (pp64)
 r2=234231172310412298930134220981497890094116799774069043271721455968713098223850765715845997507999 (pp96)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 133.68 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 367566595107456853770825371775827510189006054877099327732668363627957509981751136762605728086917443609163667701428450385596944040697768762033298310421143153009
m: 1000000000000000000000000000000000000
deg: 5
c5: 850
c0: 41
skew: 0.55
# Murphy_E = 7.677e-11
type: snfs
lss: 1
rlim: 7800000
alim: 7800000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 240000
Factor base limits: 7800000/7800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3900000, 10380001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1488927 x 1489157
Total sieving time: 130.64 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 2.10 hours.
Time per square root: 0.72 hours.
Prototype def-par.txt line would be:
snfs,182.000,5,0,0,0,0,0,0,0,0,7800000,7800000,28,28,53,53,2.5,2.5,100000
total time: 133.68 hours.
 --------- CPU info (if available) ----------
[    0.074309] CPU0: Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
[    0.000000] Memory: 49296732k/51380224k available (5105k kernel code, 1057796k absent, 1025696k reserved, 7223k data, 1316k init)
[    0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.00 BogoMIPS (lpj=2400000)
[    0.707507] Total of 16 processors activated (76799.07 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:16:24 UTC 2009 年 3 月 6 日 (金) 14 時 16 分 24 秒 (日本時間)
255e40--
3025e430Rich DickersonJuly 29, 2010 20:30:56 UTC 2010 年 7 月 30 日 (金) 5 時 30 分 56 秒 (日本時間)
351e66Rich DickersonJuly 29, 2010 20:30:56 UTC 2010 年 7 月 30 日 (金) 5 時 30 分 56 秒 (日本時間)
403e61160160Rich DickersonJuly 29, 2010 20:30:56 UTC 2010 年 7 月 30 日 (金) 5 時 30 分 56 秒 (日本時間)
1000Warut RoonguthaiMarch 31, 2013 10:29:45 UTC 2013 年 3 月 31 日 (日) 19 時 29 分 45 秒 (日本時間)
4511e6300Rich DickersonJuly 30, 2010 13:59:33 UTC 2010 年 7 月 30 日 (金) 22 時 59 分 33 秒 (日本時間)
5043e61520 / 744220Rich DickersonJuly 30, 2010 16:19:12 UTC 2010 年 7 月 31 日 (土) 1 時 19 分 12 秒 (日本時間)
1500Rich DickersonJune 11, 2013 04:51:19 UTC 2013 年 6 月 11 日 (火) 13 時 51 分 19 秒 (日本時間)

85×10182+419

c180

name 名前Robert Backstrom
date 日付July 26, 2008 19:38:25 UTC 2008 年 7 月 27 日 (日) 4 時 38 分 25 秒 (日本時間)
composite number 合成数
705335656791967471579122064558957762841257986889054850219898763588083976433490996597792714297568666500705335656791967471579122064558957762841257986889054850219898763588083976433491<180>
prime factors 素因数
104574808336266590413440953679885241<36>
composite cofactor 合成数の残り
6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251<145>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 705335656791967471579122064558957762841257986889054850219898763588083976433490996597792714297568666500705335656791967471579122064558957762841257986889054850219898763588083976433491 (180 digits)
Using B1=1414000, B2=2139965110, polynomial Dickson(6), sigma=1381324371
Step 1 took 36158ms
Step 2 took 13915ms
********** Factor found in step 2: 104574808336266590413440953679885241
Found probable prime factor of 36 digits: 104574808336266590413440953679885241
Composite cofactor 6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251 has 145 digits

c145

name 名前Dmitry Domanov
date 日付January 17, 2014 05:57:10 UTC 2014 年 1 月 17 日 (金) 14 時 57 分 10 秒 (日本時間)
composite number 合成数
6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251<145>
prime factors 素因数
34418558120361018202059321502766851230312334454069450618280196790293<68>
195963906883744607264914488526742068411094128401902881377140890723583031233407<78>
factorization results 素因数分解の結果
N=6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251
  ( 145 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=34418558120361018202059321502766851230312334454069450618280196790293 (pp68)
 r2=195963906883744607264914488526742068411094128401902881377140890723583031233407 (pp78)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 160.83 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251
m: 1000000000000000000000000000000000000
deg: 5
c5: 8500
c0: 41
skew: 0.34
# Murphy_E = 6.622e-11
type: snfs
lss: 1
rlim: 8100000
alim: 8100000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 600000
Factor base limits: 8100000/8100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4050000, 11850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1474977 x 1475202
Total sieving time: 158.35 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 2.06 hours.
Time per square root: 0.19 hours.
Prototype def-par.txt line would be:
snfs,183.000,5,0,0,0,0,0,0,0,0,8100000,8100000,28,28,53,53,2.5,2.5,100000
total time: 160.83 hours.
 --------- CPU info (if available) ----------
[    0.074309] CPU0: Intel(R) Xeon(R) CPU           E5620  @ 2.40GHz stepping 02
[    0.000000] Memory: 49296732k/51380224k available (5105k kernel code, 1057796k absent, 1025696k reserved, 7223k data, 1316k init)
[    0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.00 BogoMIPS (lpj=2400000)
[    0.707507] Total of 16 processors activated (76799.07 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:16:54 UTC 2009 年 3 月 6 日 (金) 14 時 16 分 54 秒 (日本時間)
255e40--
3025e40--
351e660Rich DickersonJuly 30, 2010 12:59:33 UTC 2010 年 7 月 30 日 (金) 21 時 59 分 33 秒 (日本時間)
403e61320120Rich DickersonJuly 30, 2010 14:24:26 UTC 2010 年 7 月 30 日 (金) 23 時 24 分 26 秒 (日本時間)
1200Warut RoonguthaiMarch 31, 2013 09:53:32 UTC 2013 年 3 月 31 日 (日) 18 時 53 分 32 秒 (日本時間)
4511e6400 / 4186160Rich DickersonJuly 30, 2010 16:36:55 UTC 2010 年 7 月 31 日 (土) 1 時 36 分 55 秒 (日本時間)
240Rich DickersonJuly 31, 2010 03:25:18 UTC 2010 年 7 月 31 日 (土) 12 時 25 分 18 秒 (日本時間)

85×10185+419

c122

name 名前Serge Batalov
date 日付August 11, 2008 19:33:58 UTC 2008 年 8 月 12 日 (火) 4 時 33 分 58 秒 (日本時間)
composite number 合成数
22376553463957581646819827364810402074663641841688814278996265692919457557189900085368580368180018925514654615380876014267<122>
prime factors 素因数
5945312755539665917551963829023944543338834374958932437<55>
3763730250037354798169122734936464412007531853274549949355322112591<67>
factorization results 素因数分解の結果
Number: 94449_185
N=22376553463957581646819827364810402074663641841688814278996265692919457557189900085368580368180018925514654615380876014267
  ( 122 digits)
Divisors found:
 r1=5945312755539665917551963829023944543338834374958932437
 r2=3763730250037354798169122734936464412007531853274549949355322112591
Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.719).
Factorization parameters were as follows:
name: 94449_185
n: 22376553463957581646819827364810402074663641841688814278996265692919457557189900085368580368180018925514654615380876014267
skew: 395089.16
# norm 8.53e+16
c5: 1920
c4: -2122639568
c3: -1001519971436916
c2: 252010646313405784356
c1: 17053914602620055702421409
c0: -5102205586876697697049786391166
# alpha -6.67
Y1: 14417436812383
Y0: -410489229162219968921845
# Murphy_E 2.43e-10
# M 13327227797342778556781154439976826870101708204128832160162315240816752369766045276700781494476592724195508665899854601153
type: gnfs
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [2500000, 5800001)
Primes: rational ideals filtering, algebraic ideals filtering, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 693877 x 694113
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 1.80 hours.
Time per square root: 1.80 hours / 6deps.
Prototype def-par.txt line would be:
gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000
total time: 41.00 hours.
software ソフトウェア
Msieve 1.36
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Serge BatalovAugust 6, 2008 03:23:16 UTC 2008 年 8 月 6 日 (水) 12 時 23 分 16 秒 (日本時間)

85×10186+419

c130

name 名前Erik Branger
date 日付February 15, 2009 10:38:10 UTC 2009 年 2 月 15 日 (日) 19 時 38 分 10 秒 (日本時間)
composite number 合成数
1222093145661488304689087334206869992908799364801631751346153045069664958899170583005647688332917002870930209205870065660169052657<130>
prime factors 素因数
292843897769971100638716964000406879520058047538234610226607<60>
4173189726567027680792291651364686867194792560382788150602958007405151<70>
factorization results 素因数分解の結果
Number: 94449_186
N=1222093145661488304689087334206869992908799364801631751346153045069664958899170583005647688332917002870930209205870065660169052657
  ( 130 digits)
Divisors found:
 r1=292843897769971100638716964000406879520058047538234610226607
 r2=4173189726567027680792291651364686867194792560382788150602958007405151
Version: 
Total time: 270.00 hours.
Factorization parameters were as follows:
name: 94449_186
n: 1222093145661488304689087334206869992908799364801631751346153045069664958899170583005647688332917002870930209205870065660169052657
skew: 510698.00
Y0: -7656719028100712519179654
Y1:  142321670357531
c0:  1167978539070622701566323783130925
c1:  5304559839315764477186444265
c2: -3710644512753648335949
c3: -35176895023575725
c4: -8370219004
c5:  46440
type: gnfs
Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved algebraic special-q in [5500000, 13300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1252951 x 1253199
Total sieving time: 99.99 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
gnfs,129,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,11000000,11000000,27,27,51,51,2.6,2.6,100000
total time: 270.00 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904Erik BrangerJanuary 28, 2009 14:39:31 UTC 2009 年 1 月 28 日 (水) 23 時 39 分 31 秒 (日本時間)
403e62104Erik BrangerFebruary 8, 2009 20:38:08 UTC 2009 年 2 月 9 日 (月) 5 時 38 分 8 秒 (日本時間)
4511e6500 / 3974Erik BrangerFebruary 8, 2009 20:38:08 UTC 2009 年 2 月 9 日 (月) 5 時 38 分 8 秒 (日本時間)

85×10187+419

c166

name 名前Dylan Delgado
date 日付March 25, 2018 19:46:01 UTC 2018 年 3 月 26 日 (月) 4 時 46 分 1 秒 (日本時間)
composite number 合成数
2413228229474054457670366975148481549781090023096248412424515174233029629198847352604555706793160500553543275201981064525899660819244732724172655002251600664831519291<166>
prime factors 素因数
4517057876101450963394264508060944830558065145447052221250324404149515251<73>
534247799268147899140034779973494281694961838957599887782623213117216429063460449468817894041<93>
factorization results 素因数分解の結果
Number: 94449_187
N = 2413228229474054457670366975148481549781090023096248412424515174233029629198847352604555706793160500553543275201981064525899660819244732724172655002251600664831519291 (166 digits)
SNFS difficulty: 189 digits.
Divisors found:
Version: Msieve v. 1.53 (SVN 1005)
Total time: 29.35 hours.
Factorization parameters were as follows:
n: 2413228229474054457670366975148481549781090023096248412424515174233029629198847352604555706793160500553543275201981064525899660819244732724172655002251600664831519291
m: 10000000000000000000000000000000000000
deg: 5
c5: 8500
c0: 41
skew: 0.34
# Murphy_E = 4.146e-11
type: snfs
lss: 1
rlim: 9900000
alim: 9900000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.6
alambda: 2.6
Factor base limits: 9900000/9900000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 22159667
Relations: 3518896 relations
Pruned matrix : 2124912 x 2125137
Polynomial selection time: 0.00 hours.
Total sieving time: 27.71 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.45 hours.
time per square root: 0.07 hours.
Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,9900000,9900000,28,28,54,54,2.6,2.6,100000
total time: 29.35 hours.
Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
Windows-10-10.0.16299
processors: 4, speed: 2.71GHz

__square root phase + factors__
Sun Mar 25 15:31:39 2018  Msieve v. 1.53 (SVN 1005)
Sun Mar 25 15:31:39 2018  random seeds: 23daf9b0 355d5b52
Sun Mar 25 15:31:39 2018  factoring 2413228229474054457670366975148481549781090023096248412424515174233029629198847352604555706793160500553543275201981064525899660819244732724172655002251600664831519291 (166 digits)
Sun Mar 25 15:31:39 2018  searching for 15-digit factors
Sun Mar 25 15:31:40 2018  commencing number field sieve (166-digit input)
Sun Mar 25 15:31:40 2018  R0: -10000000000000000000000000000000000000
Sun Mar 25 15:31:40 2018  R1: 1
Sun Mar 25 15:31:40 2018  A0: 41
Sun Mar 25 15:31:40 2018  A1: 0
Sun Mar 25 15:31:40 2018  A2: 0
Sun Mar 25 15:31:40 2018  A3: 0
Sun Mar 25 15:31:40 2018  A4: 0
Sun Mar 25 15:31:40 2018  A5: 8500
Sun Mar 25 15:31:40 2018  skew 0.34, size 2.581e-013, alpha -0.786, combined = 3.689e-011 rroots = 1
Sun Mar 25 15:31:40 2018  
Sun Mar 25 15:31:40 2018  commencing square root phase
Sun Mar 25 15:31:40 2018  reading relations for dependency 1
Sun Mar 25 15:31:40 2018  read 1063361 cycles
Sun Mar 25 15:31:41 2018  cycles contain 3518896 unique relations
Sun Mar 25 15:32:01 2018  read 3518896 relations
Sun Mar 25 15:32:13 2018  multiplying 3518896 relations
Sun Mar 25 15:33:56 2018  multiply complete, coefficients have about 122.71 million bits
Sun Mar 25 15:33:56 2018  initial square root is modulo 642576331
Sun Mar 25 15:36:00 2018  sqrtTime: 260
Sun Mar 25 15:36:00 2018  p73 factor: 4517057876101450963394264508060944830558065145447052221250324404149515251
Sun Mar 25 15:36:00 2018  p93 factor: 534247799268147899140034779973494281694961838957599887782623213117216429063460449468817894041
Sun Mar 25 15:36:00 2018  elapsed time 00:04:21
Sun Mar 25 15:36:00 2018 -> Computing 1.52201e+09 scale for this machine...
Sun Mar 25 15:36:00 2018 -> procrels -speedtest> PIPE
Sun Mar 25 15:36:02 2018 -> Factorization summary written to s189-94449_187.txt
software ソフトウェア
msieve v1.53, GGNFS, factmsieve.py v0.76
execution environment 実行環境
Intel Core i5-6400, Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:17:29 UTC 2009 年 3 月 6 日 (金) 14 時 17 分 29 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 6, 2010 18:58:06 UTC 2010 年 8 月 7 日 (土) 3 時 58 分 6 秒 (日本時間)
351e660Rich DickersonAugust 6, 2010 18:58:06 UTC 2010 年 8 月 7 日 (土) 3 時 58 分 6 秒 (日本時間)
403e61500200Rich DickersonAugust 6, 2010 22:13:28 UTC 2010 年 8 月 7 日 (土) 7 時 13 分 28 秒 (日本時間)
1300Warut RoonguthaiMarch 31, 2013 09:51:08 UTC 2013 年 3 月 31 日 (日) 18 時 51 分 8 秒 (日本時間)
4511e64146300Rich DickersonAugust 7, 2010 14:16:06 UTC 2010 年 8 月 7 日 (土) 23 時 16 分 6 秒 (日本時間)
1239KTakahashiJuly 28, 2014 10:00:23 UTC 2014 年 7 月 28 日 (月) 19 時 0 分 23 秒 (日本時間)
2607KTakahashiSeptember 29, 2014 09:27:15 UTC 2014 年 9 月 29 日 (月) 18 時 27 分 15 秒 (日本時間)
5043e6136 / 6566Pierre JammesNovember 19, 2014 07:57:18 UTC 2014 年 11 月 19 日 (水) 16 時 57 分 18 秒 (日本時間)

85×10188+419

c169

name 名前Eric Jeancolas
date 日付July 15, 2020 03:52:36 UTC 2020 年 7 月 15 日 (水) 12 時 52 分 36 秒 (日本時間)
composite number 合成数
1990889348961717694312450563125506431386525799670758559658884517527813002191981441411822411163527698803788490165887033044550651385391696634786342334078238733485425916327<169>
prime factors 素因数
9112902737770406305126742175643885464854725565369969<52>
218469285391365368126874700168332275274571854885628864049190773104032207641205220924048456937753705041722653606348183<117>
factorization results 素因数分解の結果
1990889348961717694312450563125506431386525799670758559658884517527813002191981441411822411163527698803788490165887033044550651385391696634786342334078238733485425916327=9112902737770406305126742175643885464854725565369969*218469285391365368126874700168332275274571854885628864049190773104032207641205220924048456937753705041722653606348183

n: 1990889348961717694312450563125506431386525799670758559658884517527813002191981441411822411163527698803788490165887033044550651385391696634786342334078238733485425916327
skew: 1.09
type: snfs
c0: 205
c5: 136
Y0: 50000000000000000000000000000000000000
Y1: -1
# f(x) = 136*x^5+205
# g(x) = -x+50000000000000000000000000000000000000


Info:Square Root: Factors: 9112902737770406305126742175643885464854725565369969 218469285391365368126874700168332275274571854885628864049190773104032207641205220924048456937753705041722653606348183
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 4.68/2.07722
Info:Generate Free Relations: Total cpu/real time for freerel: 98.86/25.5402
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 24832119
Info:Lattice Sieving: Average J: 1894.07 for 1910775 special-q, max bucket fill -bkmult 1.0,1s:1.115500
Info:Lattice Sieving: Total time: 419059s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 49.36/105.908
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 105.10000000000001s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 384.83/354.095
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 307.59999999999997s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 292.94/304.033
Info:Filtering - Merging: Total cpu/real time for merge: 298.92/85.5505
Info:Filtering - Merging: Total cpu/real time for replay: 78.33/68.3113
Info:Linear Algebra: Total cpu/real time for bwc: 66512.5/17098.2
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 10893.44, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (62464 iterations)
Info:Linear Algebra: Lingen CPU time 411.11, WCT time 118.88
Info:Linear Algebra: Mksol: WCT time 5974.51, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31232 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 72.55/30.5922
Info:Square Root: Total cpu/real time for sqrt: 549.54/172.574
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 855810/137919
Info:root: Cleaning up computation data in /tmp/cado.0jvlyc8z
9112902737770406305126742175643885464854725565369969 218469285391365368126874700168332275274571854885628864049190773104032207641205220924048456937753705041722653606348183
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 18.04.4 LTS [5.3.0-51-generic|libc 2.27 (Ubuntu GLIBC 2.27-3ubuntu1.2)]
GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:18:05 UTC 2009 年 3 月 6 日 (金) 14 時 18 分 5 秒 (日本時間)
255e40--
3025e46030Rich DickersonAugust 7, 2010 14:41:26 UTC 2010 年 8 月 7 日 (土) 23 時 41 分 26 秒 (日本時間)
30Rich DickersonAugust 7, 2010 14:41:45 UTC 2010 年 8 月 7 日 (土) 23 時 41 分 45 秒 (日本時間)
351e612060Rich DickersonAugust 7, 2010 14:41:26 UTC 2010 年 8 月 7 日 (土) 23 時 41 分 26 秒 (日本時間)
60Rich DickersonAugust 7, 2010 14:41:45 UTC 2010 年 8 月 7 日 (土) 23 時 41 分 45 秒 (日本時間)
403e61300300Rich DickersonAugust 7, 2010 19:36:37 UTC 2010 年 8 月 8 日 (日) 4 時 36 分 37 秒 (日本時間)
1000Warut RoonguthaiMarch 31, 2013 07:51:01 UTC 2013 年 3 月 31 日 (日) 16 時 51 分 1 秒 (日本時間)
4511e65580375Rich DickersonAugust 8, 2010 15:52:44 UTC 2010 年 8 月 9 日 (月) 0 時 52 分 44 秒 (日本時間)
1205KTakahashiJuly 29, 2014 11:36:02 UTC 2014 年 7 月 29 日 (火) 20 時 36 分 2 秒 (日本時間)
4000Robert BalfourMarch 27, 2020 01:22:01 UTC 2020 年 3 月 27 日 (金) 10 時 22 分 1 秒 (日本時間)

85×10190+419

c169

name 名前Eric Jeancolas
date 日付December 31, 2020 08:27:01 UTC 2020 年 12 月 31 日 (木) 17 時 27 分 1 秒 (日本時間)
composite number 合成数
6063837376618348445061466969943614542783007184385262002918832273331518572741006780895824555828305644114732815907004463608734315838351887850470431121496972041629000719891<169>
prime factors 素因数
252933151889784833672688516611672169539328103624163<51>
4396566715091212139131906251161631127954891020726347<52>
5452907391561433534960077085766913178906174128830699730046155440531<67>
factorization results 素因数分解の結果
6063837376618348445061466969943614542783007184385262002918832273331518572741006780895824555828305644114732815907004463608734315838351887850470431121496972041629000719891=252933151889784833672688516611672169539328103624163*4396566715091212139131906251161631127954891020726347*5452907391561433534960077085766913178906174128830699730046155440531

cado polynomial
n: 6063837376618348445061466969943614542783007184385262002918832273331518572741006780895824555828305644114732815907004463608734315838351887850470431121496972041629000719891
skew: 0.86
type: snfs
c0: 41
c5: 85
Y0: 100000000000000000000000000000000000000
Y1: -1
# f(x) = 85*x^5+41
# g(x) = -x+100000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 11100000
tasks.lim1 = 11100000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 54
tasks.sieve.mfb1 = 54
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 252933151889784833672688516611672169539328103624163 4396566715091212139131906251161631127954891020726347 5452907391561433534960077085766913178906174128830699730046155440531
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 4.89/2.08145
Info:Generate Free Relations: Total cpu/real time for freerel: 98.98/25.405
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 24891050
Info:Lattice Sieving: Average J: 1894.81 for 1936106 special-q, max bucket fill -bkmult 1.0,1s:1.127100
Info:Lattice Sieving: Total time: 500327s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 45.95/121.65
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 120.89999999999998s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 374.43/370.065
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 325.09999999999997s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 280.97/329.954
Info:Filtering - Merging: Merged matrix has 2024114 rows and total weight 344894872 (170.4 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 302.19/86.2872
Info:Filtering - Merging: Total cpu/real time for replay: 77.59/66.7843
Info:Linear Algebra: Total cpu/real time for bwc: 69795.7/17920.6
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 11339.27, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (63488 iterations)
Info:Linear Algebra: Lingen CPU time 425.6, WCT time 122.65
Info:Linear Algebra: Mksol: WCT time 6337.01, iteration CPU time 0.19, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31744 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 71.72/29.6307
Info:Square Root: Total cpu/real time for sqrt: 1949.94/588.618
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.00287e+06/38930.2
Info:root: Cleaning up computation data in /tmp/cado.yvoxdnqu
252933151889784833672688516611672169539328103624163 4396566715091212139131906251161631127954891020726347 5452907391561433534960077085766913178906174128830699730046155440531
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:18:39 UTC 2009 年 3 月 6 日 (金) 14 時 18 分 39 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 7, 2010 15:25:30 UTC 2010 年 8 月 8 日 (日) 0 時 25 分 30 秒 (日本時間)
351e660Rich DickersonAugust 7, 2010 15:25:30 UTC 2010 年 8 月 8 日 (日) 0 時 25 分 30 秒 (日本時間)
403e61450350Rich DickersonAugust 7, 2010 21:02:06 UTC 2010 年 8 月 8 日 (日) 6 時 2 分 6 秒 (日本時間)
1100Warut RoonguthaiMarch 31, 2013 07:03:39 UTC 2013 年 3 月 31 日 (日) 16 時 3 分 39 秒 (日本時間)
4511e65550350Rich DickersonAugust 8, 2010 15:55:56 UTC 2010 年 8 月 9 日 (月) 0 時 55 分 56 秒 (日本時間)
1200KTakahashiJuly 29, 2014 11:36:22 UTC 2014 年 7 月 29 日 (火) 20 時 36 分 22 秒 (日本時間)
4000Robert BalfourApril 17, 2020 21:48:08 UTC 2020 年 4 月 18 日 (土) 6 時 48 分 8 秒 (日本時間)

85×10191+419

c140

name 名前Warut Roonguthai
date 日付March 31, 2013 06:57:13 UTC 2013 年 3 月 31 日 (日) 15 時 57 分 13 秒 (日本時間)
composite number 合成数
15041548193948732237377921782760162860444904346066707049385208315027780859557363470765425247552446374119213069706352597065891744437122468593<140>
prime factors 素因数
4876005112719078517187920708196909156383<40>
1272697329887646712802845559787712536043956228721<49>
2423836126788944084881742950143957196863137590797151<52>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2428973172
Step 1 took 16474ms
Step 2 took 9656ms
********** Factor found in step 2: 4876005112719078517187920708196909156383
Found probable prime factor of 40 digits: 4876005112719078517187920708196909156383
Composite cofactor 3084809766649504653876330940455473319697011667569718882019190309665134389187513175459708474071173871 has 100 digits

N = 3084809766649504653876330940455473319697011667569718882019190309665134389187513175459708474071173871 (100 digits)
Divisors found:
r1=1272697329887646712802845559787712536043956228721 (pp49)
r2=2423836126788944084881742950143957196863137590797151 (pp52)
Version: Msieve v. 1.48
Total time: 1.53 hours.
Factorization parameters were as follows:
n: 3084809766649504653876330940455473319697011667569718882019190309665134389187513175459708474071173871
Y0: -1045771624099568339530523
Y1: 85853228907527
c0: -901211865162959819371986750
c1: 4265262766074672400333
c2: -9741961665084877
c3: -10036702511
c4: 2580
skew: 1419872.53
type: gnfs
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Sieved algebraic special-q in [0, 0)
Total raw relations: 4477186
Relations: 322952 relations
Pruned matrix : 194219 x 194446
Polynomial selection time: 0.00 hours.
Total sieving time: 1.43 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.07 hours.
time per square root: 0.01 hours.
Prototype def-par.txt line would be: gnfs,99,4,58,1500,0.003,0.4,220,15,10000,2000,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 1.53 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:19:16 UTC 2009 年 3 月 6 日 (金) 14 時 19 分 16 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 8, 2010 19:43:50 UTC 2010 年 8 月 9 日 (月) 4 時 43 分 50 秒 (日本時間)
351e660Rich DickersonAugust 8, 2010 19:43:50 UTC 2010 年 8 月 9 日 (月) 4 時 43 分 50 秒 (日本時間)
403e6250 / 801Rich DickersonAugust 8, 2010 19:43:50 UTC 2010 年 8 月 9 日 (月) 4 時 43 分 50 秒 (日本時間)
4511e6444 / 4422Rich DickersonAugust 9, 2010 16:30:27 UTC 2010 年 8 月 10 日 (火) 1 時 30 分 27 秒 (日本時間)

85×10193+419

c138

name 名前Eric Jeancolas
date 日付March 22, 2019 06:09:21 UTC 2019 年 3 月 22 日 (金) 15 時 9 分 21 秒 (日本時間)
composite number 合成数
104803274088518383957678555184193280504716452230701844621245337397668434766114636665473628132707281008432674753499849826801609729014315047<138>
prime factors 素因数
3021763348075547035706547018038538455650055957580059600770724074963<67>
34682819935341342859394422046502567181262534792452537778649893230050269<71>
factorization results 素因数分解の結果
3*11^2*31*106392317849*163678080641911167847*4598672193125872561813*3021763348075547035706547018038538455650055957580059600770724074963*34682819935341342859394422046502567181262534792452537778649893230050269

[32;1mInfo[0m:root: Using default parameter file ./parameters/factor/params.c140
[32;1mInfo[0m:root: No database exists yet
[32;1mInfo[0m:root: Created temporary directory /tmp/cado.n7y6evpb
[32;1mInfo[0m:Database: Opened connection to database /tmp/cado.n7y6evpb/c140.db
[32;1mInfo[0m:root: Set tasks.threads=12 based on detected logical cpus
[32;1mInfo[0m:root: tasks.polyselect.threads = 2
[32;1mInfo[0m:root: tasks.sieve.las.threads = 2
[32;1mInfo[0m:root: slaves.scriptpath is /home/ng/cado-nfs-2.3.0
[32;1mInfo[0m:root: Command line parameters: ./cado-nfs.py 104803274088518383957678555184193280504716452230701844621245337397668434766114636665473628132707281008432674753499849826801609729014315047
[32;1mInfo[0m:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /tmp/cado.n7y6evpb/c140.parameters_snapshot.0
[32;1mInfo[0m:Server Launcher: Adding ng-All-Series to whitelist to allow clients on localhost to connect
[32;1mInfo[0m:HTTP server: Using non-threaded HTTPS server
[32;1mInfo[0m:HTTP server: Using whitelist: localhost,ng-All-Series
[32;1mInfo[0m:Complete Factorization: Factoring 104803274088518383957678555184193280504716452230701844621245337397668434766114636665473628132707281008432674753499849826801609729014315047
[32;1mInfo[0m:HTTP server: serving at https://ng-All-Series:40793 (0.0.0.0)
[32;1mInfo[0m:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added
[32;1mInfo[0m:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://ng-All-Series:40793 --certsha1=319e121d7526cbdb45f68c1ae6656e9ac3b76e5a
[32;1mInfo[0m:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist
[32;1mInfo[0m:Client Launcher: Starting client id localhost on host localhost
[32;1mInfo[0m:Client Launcher: Starting client id localhost+2 on host localhost
[32;1mInfo[0m:Client Launcher: Starting client id localhost+3 on host localhost
[32;1mInfo[0m:Client Launcher: Starting client id localhost+4 on host localhost
[32;1mInfo[0m:Client Launcher: Starting client id localhost+5 on host localhost
[32;1mInfo[0m:Client Launcher: Starting client id localhost+6 on host localhost
[32;1mInfo[0m:Client Launcher: Running clients: localhost (Host localhost, PID 15354), localhost+2 (Host localhost, PID 15357), localhost+3 (Host localhost, PID 15360), localhost+4 (Host localhost, PID 15363), localhost+5 (Host localhost, PID 15366), localhost+6 (Host localhost, PID 15369)
[32;1mInfo[0m:Polynomial Selection (size optimized): Starting
[32;1mInfo[0m:Polynomial Selection (size optimized): 0 polynomials in queue from previous run
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_0-4000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_4000-8000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_8000-12000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_12000-16000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_16000-20000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_20000-24000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_24000-28000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_28000-32000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_32000-36000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_36000-40000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_0-4000 to client localhost
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_4000-8000 to client localhost+2
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_8000-12000 to client localhost+3
[33;1mWarning[0m:HTTP server: 127.0.0.1 Connection error: [Errno 104] Connection reset by peer
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_12000-16000 to client localhost+4
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_16000-20000 to client localhost+5
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_20000-24000 to client localhost+6
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_40000-44000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_44000-48000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_48000-52000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_52000-56000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_56000-60000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_60000-64000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_24000-28000 to client localhost
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_28000-32000 to client localhost+3
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_64000-68000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_68000-72000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 637 polynomials, added 264 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.990000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_0-4000 as ok (1.0% => ETA Unknown)
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 629 polynomials, added 57 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.740000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_8000-12000 as ok (2.0% => ETA Wed Mar 20 13:02:17 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_32000-36000 to client localhost+4
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_72000-76000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 667 polynomials, added 26 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.630000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_12000-16000 as ok (3.0% => ETA Wed Mar 20 10:31:26 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_36000-40000 to client localhost+6
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_76000-80000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 703 polynomials, added 29 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.510000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_20000-24000 as ok (4.0% => ETA Wed Mar 20 09:43:51 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_40000-44000 to client localhost+2
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_80000-84000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 624 polynomials, added 23 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.420000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_4000-8000 as ok (5.0% => ETA Wed Mar 20 09:17:09 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_44000-48000 to client localhost+5
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_84000-88000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 685 polynomials, added 17 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.370000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_16000-20000 as ok (6.0% => ETA Wed Mar 20 09:05:08 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_48000-52000 to client localhost+3
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_88000-92000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 640 polynomials, added 13 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.330000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_28000-32000 as ok (7.0% => ETA Wed Mar 20 09:47:13 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_52000-56000 to client localhost
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_92000-96000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 669 polynomials, added 10 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.300000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_24000-28000 as ok (8.0% => ETA Wed Mar 20 09:33:23 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_56000-60000 to client localhost+2
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect1_60000-64000 to client localhost+4
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_96000-100000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Adding workunit c140_polyselect1_100000-104000 to database
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 669 polynomials, added 8 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.290000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_32000-36000 as ok (9.0% => ETA Wed Mar 20 09:22:47 2019)
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 672 polynomials, added 9 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Worst polynomial in queue now has lognorm 37.260000
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_40000-44000 as ok (10.0% => ETA Wed Mar 20 09:12:31 2019)
... EJ: many similar lines
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 661 polynomials, added 0 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_396000-400000 as ok (98.0% => ETA Wed Mar 20 09:01:48 2019)
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 657 polynomials, added 0 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_380000-384000 as ok (99.0% => ETA Wed Mar 20 09:01:14 2019)
[32;1mInfo[0m:Polynomial Selection (size optimized): Parsed 695 polynomials, added 0 to priority queue (has 100)
[32;1mInfo[0m:Polynomial Selection (size optimized): Marking workunit c140_polyselect1_392000-396000 as ok (100.0% => ETA Wed Mar 20 09:00:31 2019)
[32;1mInfo[0m:Polynomial Selection (size optimized): Finished
[32;1mInfo[0m:Polynomial Selection (size optimized): Aggregate statistics:
[32;1mInfo[0m:Polynomial Selection (size optimized): potential collisions: 65655.1
[32;1mInfo[0m:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66250/41.090/49.312/54.020/0.987
[32;1mInfo[0m:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 66250/39.450/43.978/49.930/1.103
[32;1mInfo[0m:Polynomial Selection (size optimized): Total time: 50083.3
[32;1mInfo[0m:Polynomial Selection (root optimized): Starting
[32;1mInfo[0m:Polynomial Selection (root optimized): No polynomial was previously found
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_0 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_6 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_12 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_18 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_24 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_30 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_36 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_42 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_48 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_54 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_0 to client localhost+6
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_60 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_6 to client localhost+5
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_66 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_12 to client localhost+2
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_72 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_18 to client localhost
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_24 to client localhost+3
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_78 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_84 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_30 to client localhost+4
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_90 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_36 to client localhost+6
[32;1mInfo[0m:Polynomial Selection (root optimized): Adding workunit c140_polyselect2_96 to database
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.z88dabvc.opt_0: Murphy E = 7.98e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_0 as ok (4.0% => ETA Unknown)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_42 to client localhost+3
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.46eeo12g.opt_24: Murphy E = 8.94e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_24 as ok (10.0% => ETA Wed Mar 20 09:44:10 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_48 to client localhost+6
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.pkv6bvwh.opt_36 with E=8.72e-10 is no better than current best with E=8.94e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_36 as ok (16.0% => ETA Wed Mar 20 09:23:24 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_54 to client localhost+5
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.fs2agdnj.opt_6: Murphy E = 9.03e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_6 as ok (22.0% => ETA Wed Mar 20 09:15:57 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_60 to client localhost
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.70qqay47.opt_18 with E=8.66e-10 is no better than current best with E=9.03e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_18 as ok (28.0% => ETA Wed Mar 20 09:12:38 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_66 to client localhost+4
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.861fxok_.opt_30: Murphy E = 9.25e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_30 as ok (34.0% => ETA Wed Mar 20 09:11:26 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_72 to client localhost+2
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.dss28rfb.opt_12: Murphy E = 9.29e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_12 as ok (40.0% => ETA Wed Mar 20 09:11:48 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_78 to client localhost+5
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.gli5qhwc.opt_54 with E=8.7e-10 is no better than current best with E=9.29e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_54 as ok (46.0% => ETA Wed Mar 20 09:10:59 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_84 to client localhost+3
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.r58gp5ne.opt_42 with E=9.09e-10 is no better than current best with E=9.29e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_42 as ok (52.0% => ETA Wed Mar 20 09:11:07 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_90 to client localhost
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.jppfqlaa.opt_60: Murphy E = 9.99e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_60 as ok (58.0% => ETA Wed Mar 20 09:10:44 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_polyselect2_96 to client localhost+4
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.bojnz96t.opt_66 with E=9.37e-10 is no better than current best with E=9.99e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_66 as ok (64.0% => ETA Wed Mar 20 09:10:01 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.9rlt_8pf.opt_72 with E=9.75e-10 is no better than current best with E=9.99e-10
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_72 as ok (70.0% => ETA Wed Mar 20 09:09:58 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): New best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.86jx_1yt.opt_48: Murphy E = 1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_48 as ok (76.0% => ETA Wed Mar 20 09:09:35 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.zf65sy3x.opt_96 with E=9.42e-10 is no better than current best with E=1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_96 as ok (82.0% => ETA Wed Mar 20 09:09:38 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.tym6_ouk.opt_78 with E=8.95e-10 is no better than current best with E=1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_78 as ok (88.0% => ETA Wed Mar 20 09:09:07 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.ddu2q_8v.opt_90 with E=9.82e-10 is no better than current best with E=1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_90 as ok (94.0% => ETA Wed Mar 20 09:09:06 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.dwg0lgtq.opt_84 with E=9.92e-10 is no better than current best with E=1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Marking workunit c140_polyselect2_84 as ok (100.0% => ETA Wed Mar 20 09:08:52 2019)
[32;1mInfo[0m:Polynomial Selection (root optimized): Finished, best polynomial from file /tmp/cado.n7y6evpb/c140.upload/c140.polyselect2.86jx_1yt.opt_48 has Murphy_E = 1e-09
[32;1mInfo[0m:Polynomial Selection (root optimized): Best overall polynomial was 4-th in list after size optimization
[32;1mInfo[0m:Polynomial Selection (root optimized): Aggregate statistics:
[32;1mInfo[0m:Polynomial Selection (root optimized): Total time: 4880.39
[32;1mInfo[0m:Polynomial Selection (root optimized): Rootsieve time: 4878.39
[32;1mInfo[0m:Generate Factor Base: Starting
[32;1mInfo[0m:Generate Factor Base: Finished
[32;1mInfo[0m:Generate Factor Base: Total cpu/real time for makefb: 23.02/2.45816
[32;1mInfo[0m:Generate Free Relations: Starting
[32;1mInfo[0m:Generate Free Relations: Found 121716 free relations
[32;1mInfo[0m:Generate Free Relations: Finished
[32;1mInfo[0m:Generate Free Relations: Total cpu/real time for freerel: 299.14/26.5705
[32;1mInfo[0m:Lattice Sieving: Starting
[32;1mInfo[0m:Lattice Sieving: We want 25172582 relations
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10122724-10130000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10130000-10140000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10140000-10150000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10150000-10160000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10160000-10170000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10170000-10180000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10180000-10190000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10190000-10200000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10200000-10210000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10210000-10220000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10122724-10130000 to client localhost+5
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10130000-10140000 to client localhost+3
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10220000-10230000 to database
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10230000-10240000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10140000-10150000 to client localhost
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10240000-10250000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10150000-10160000 to client localhost+4
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10250000-10260000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10160000-10170000 to client localhost+6
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10260000-10270000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10170000-10180000 to client localhost+2
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10270000-10280000 to database
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10180000-10190000 to client localhost+5
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_10280000-10290000 to database
[32;1mInfo[0m:Lattice Sieving: Found 17194 relations in '/tmp/cado.n7y6evpb/c140.upload/c140.10122724-10130000.dbe3nqvy.gz', total is now 17194/25172582
[32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_10122724-10130000 as ok (0.1% => ETA Unknown)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_10190000-10200000 to client localhost+4
... EJ: many similar lines
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22280000-22290000 to client localhost+5
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_22380000-22390000 to database
[32;1mInfo[0m:Lattice Sieving: Found 18890 relations in '/tmp/cado.n7y6evpb/c140.upload/c140.22220000-22230000.eye7cp2u.gz', total is now 25165680/25172582
[32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_22220000-22230000 as ok (100.0% => ETA Thu Mar 21 18:41:28 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22290000-22300000 to client localhost
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_22390000-22400000 to database
[32;1mInfo[0m:Lattice Sieving: Found 18013 relations in '/tmp/cado.n7y6evpb/c140.upload/c140.22230000-22240000.aygxmmmg.gz', total is now 25183693/25172582
[32;1mInfo[0m:Lattice Sieving: Marking workunit c140_sieving_22230000-22240000 as ok (100.0% => ETA Thu Mar 21 18:42:56 2019)
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22300000-22310000 to client localhost+3
[32;1mInfo[0m:Lattice Sieving: Adding workunit c140_sieving_22400000-22410000 to database
[32;1mInfo[0m:Lattice Sieving: Reached target of 25172582 relations, now have 25183693
[32;1mInfo[0m:Lattice Sieving: Aggregate statistics:
[32;1mInfo[0m:Lattice Sieving: Total number of relations: 25183693
[32;1mInfo[0m:Lattice Sieving: Average J: 3837.96 for 730416 special-q, max bucket fill: 0.637323
[32;1mInfo[0m:Lattice Sieving: Total CPU time: 1.3952e+06s
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Starting
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Splitting 1212 new files
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22310000-22320000 to client localhost+2
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 12589125, 1: 12594568
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 121.17/213.941
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 213.8s
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Starting
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22320000-22330000 to client localhost+4
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22330000-22340000 to client localhost+6
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22340000-22350000 to client localhost+5
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 10619356 unique relations remain on slice 0
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22350000-22360000 to client localhost
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 10621831 unique relations remain on slice 1
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Of 25183693 newly added relations 21241187 were unique (ratio 0.843450)
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: 21241187 unique relations remain in total
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 518.34/344.816
[32;1mInfo[0m:Filtering - Singleton removal: Starting
[32;1mInfo[0m:Filtering - Singleton removal: Reading 21241187 unique and 121716 free relations, total 21362903
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22360000-22370000 to client localhost+3
[32;1mInfo[0m:HTTP server: 127.0.0.1 Sending workunit c140_sieving_22370000-22380000 to client localhost+2
[32;1mInfo[0m:Filtering - Singleton removal: After purge, 7476247 relations with 7476087 primes remain with weight 146554464 and excess 160
[32;1mInfo[0m:Filtering - Singleton removal: Have enough relations
[32;1mInfo[0m:HTTP server: Got notification to stop serving Workunits
[32;1mInfo[0m:Lattice Sieving: Cancelling remaining workunits
[32;1mInfo[0m:Client Launcher: Stopped client localhost (Host localhost, PID 15354)
[32;1mInfo[0m:Client Launcher: Stopped client localhost+2 (Host localhost, PID 15357)
[32;1mInfo[0m:Client Launcher: Stopped client localhost+3 (Host localhost, PID 15360)
[32;1mInfo[0m:Client Launcher: Stopped client localhost+4 (Host localhost, PID 15363)
[32;1mInfo[0m:Client Launcher: Stopped client localhost+5 (Host localhost, PID 15366)
[32;1mInfo[0m:Client Launcher: Stopped client localhost+6 (Host localhost, PID 15369)
[32;1mInfo[0m:Filtering - Singleton removal: Total cpu/real time for purge: 278.17/231.123
[32;1mInfo[0m:Filtering - Merging: Starting
[32;1mInfo[0m:Filtering - Merging: Merged matrix has 1833517 rows and total weight 311698348 (170.0 entries per row on average)
[32;1mInfo[0m:Filtering - Merging: Total cpu/real time for merge: 835.71/754.612
[32;1mInfo[0m:Filtering - Merging: Total cpu/real time for replay: 64.84/50.3083
[32;1mInfo[0m:Linear Algebra: Starting
[32;1mInfo[0m:Linear Algebra: krylov: N=1000 ; ETA (N=58000): Thu Mar 21 22:28:17 2019 [0.199 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=2000 ; ETA (N=58000): Thu Mar 21 22:30:54 2019 [0.202 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=3000 ; ETA (N=58000): Thu Mar 21 22:32:21 2019 [0.203 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=4000 ; ETA (N=58000): Thu Mar 21 22:33:15 2019 [0.204 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=5000 ; ETA (N=58000): Thu Mar 21 22:33:41 2019 [0.204 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=6000 ; ETA (N=58000): Thu Mar 21 22:33:55 2019 [0.205 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=7000 ; ETA (N=58000): Thu Mar 21 22:34:14 2019 [0.205 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=8000 ; ETA (N=58000): Thu Mar 21 22:34:23 2019 [0.205 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=9000 ; ETA (N=58000): Thu Mar 21 22:34:30 2019 [0.205 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=10000 ; ETA (N=58000): Thu Mar 21 22:34:36 2019 [0.205 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=11000 ; ETA (N=58000): Thu Mar 21 22:34:42 2019 [0.205 s/iter]
... EJ: many similar lines
[32;1mInfo[0m:Linear Algebra: krylov: N=57000 ; ETA (N=58000): Thu Mar 21 22:35:18 2019 [0.206 s/iter]
[32;1mInfo[0m:Linear Algebra: krylov: N=58000 ; ETA (N=58000): Thu Mar 21 22:35:18 2019 [0.206 s/iter]
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:35:35 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:38:30 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:31 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:33 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:47 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:47 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:48 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:47 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:44 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:44 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:46 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:42 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:47 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:48 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:51 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:46 2019
[32;1mInfo[0m:Linear Algebra: lingen ETA: Thu Mar 21 22:36:42 2019
[32;1mInfo[0m:Linear Algebra: mksol: N=1000 ; ETA (N=29000): Fri Mar 22 00:22:19 2019 [0.219 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=2000 ; ETA (N=29000): Fri Mar 22 00:23:23 2019 [0.221 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=3000 ; ETA (N=29000): Fri Mar 22 00:23:42 2019 [0.221 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=4000 ; ETA (N=29000): Fri Mar 22 00:23:53 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=5000 ; ETA (N=29000): Fri Mar 22 00:23:56 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=6000 ; ETA (N=29000): Fri Mar 22 00:23:58 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=7000 ; ETA (N=29000): Fri Mar 22 00:23:58 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=8000 ; ETA (N=29000): Fri Mar 22 00:24:00 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=9000 ; ETA (N=29000): Fri Mar 22 00:24:01 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=10000 ; ETA (N=29000): Fri Mar 22 00:24:03 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=11000 ; ETA (N=29000): Fri Mar 22 00:24:01 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=12000 ; ETA (N=29000): Fri Mar 22 00:24:02 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=13000 ; ETA (N=29000): Fri Mar 22 00:24:00 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=14000 ; ETA (N=29000): Fri Mar 22 00:24:02 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=15000 ; ETA (N=29000): Fri Mar 22 00:24:02 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=16000 ; ETA (N=29000): Fri Mar 22 00:24:00 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=17000 ; ETA (N=29000): Fri Mar 22 00:23:58 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=18000 ; ETA (N=29000): Fri Mar 22 00:23:56 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=19000 ; ETA (N=29000): Fri Mar 22 00:23:56 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=20000 ; ETA (N=29000): Fri Mar 22 00:23:56 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=21000 ; ETA (N=29000): Fri Mar 22 00:23:54 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=22000 ; ETA (N=29000): Fri Mar 22 00:23:53 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=23000 ; ETA (N=29000): Fri Mar 22 00:23:53 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=24000 ; ETA (N=29000): Fri Mar 22 00:23:52 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=25000 ; ETA (N=29000): Fri Mar 22 00:23:53 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=26000 ; ETA (N=29000): Fri Mar 22 00:23:52 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=27000 ; ETA (N=29000): Fri Mar 22 00:23:51 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=28000 ; ETA (N=29000): Fri Mar 22 00:23:51 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: mksol: N=29000 ; ETA (N=29000): Fri Mar 22 00:23:46 2019 [0.222 s/iter]
[32;1mInfo[0m:Linear Algebra: Total cpu/real time for bwc: 198728/0.00033021
[32;1mInfo[0m:Linear Algebra: Aggregate statistics:
[32;1mInfo[0m:Linear Algebra: Krylov: WCT time 11954.24
[32;1mInfo[0m:Linear Algebra: Lingen CPU time 713.78, WCT time 81.32
[32;1mInfo[0m:Linear Algebra: Mksol: WCT time 6426.17
[32;1mInfo[0m:Quadratic Characters: Starting
[32;1mInfo[0m:Quadratic Characters: Total cpu/real time for characters: 76.47/17.6878
[32;1mInfo[0m:Square Root: Starting
[32;1mInfo[0m:Square Root: Creating file of (a,b) values
[32;1mInfo[0m:Square Root: finished
[32;1mInfo[0m:Square Root: Factors: 34682819935341342859394422046502567181262534792452537778649893230050269 3021763348075547035706547018038538455650055957580059600770724074963
[32;1mInfo[0m:Square Root: Total cpu/real time for sqrt: 4226.58/628.011
[32;1mInfo[0m:Polynomial Selection (size optimized): Aggregate statistics:
[32;1mInfo[0m:Polynomial Selection (size optimized): potential collisions: 65655.1
[32;1mInfo[0m:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66250/41.090/49.312/54.020/0.987
[32;1mInfo[0m:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 66250/39.450/43.978/49.930/1.103
[32;1mInfo[0m:Polynomial Selection (size optimized): Total time: 50083.3
[32;1mInfo[0m:Polynomial Selection (root optimized): Aggregate statistics:
[32;1mInfo[0m:Polynomial Selection (root optimized): Total time: 4880.39
[32;1mInfo[0m:Polynomial Selection (root optimized): Rootsieve time: 4878.39
[32;1mInfo[0m:Generate Factor Base: Total cpu/real time for makefb: 23.02/2.45816
[32;1mInfo[0m:Generate Free Relations: Total cpu/real time for freerel: 299.14/26.5705
[32;1mInfo[0m:Lattice Sieving: Aggregate statistics:
[32;1mInfo[0m:Lattice Sieving: Total number of relations: 25183693
[32;1mInfo[0m:Lattice Sieving: Average J: 3837.96 for 730416 special-q, max bucket fill: 0.637323
[32;1mInfo[0m:Lattice Sieving: Total CPU time: 1.3952e+06s
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 121.17/213.941
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
[32;1mInfo[0m:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 213.8s
[32;1mInfo[0m:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 518.34/344.816
[32;1mInfo[0m:Filtering - Singleton removal: Total cpu/real time for purge: 278.17/231.123
[32;1mInfo[0m:Filtering - Merging: Total cpu/real time for merge: 835.71/754.612
[32;1mInfo[0m:Filtering - Merging: Total cpu/real time for replay: 64.84/50.3083
[32;1mInfo[0m:Linear Algebra: Total cpu/real time for bwc: 198728/0.00033021
[32;1mInfo[0m:Linear Algebra: Aggregate statistics:
[32;1mInfo[0m:Linear Algebra: Krylov: WCT time 11954.24
[32;1mInfo[0m:Linear Algebra: Lingen CPU time 713.78, WCT time 81.32
[32;1mInfo[0m:Linear Algebra: Mksol: WCT time 6426.17
[32;1mInfo[0m:Quadratic Characters: Total cpu/real time for characters: 76.47/17.6878
[32;1mInfo[0m:Square Root: Total cpu/real time for sqrt: 4226.58/628.011
[32;1mInfo[0m:HTTP server: Shutting down HTTP server
[32;1mInfo[0m:Complete Factorization: Total cpu/elapsed time for entire factorization: 1.65534e+06/146684
[32;1mInfo[0m:root: Cleaning up computation data in /tmp/cado.n7y6evpb
34682819935341342859394422046502567181262534792452537778649893230050269 3021763348075547035706547018038538455650055957580059600770724074963
software ソフトウェア
cado-nfs-2.3.0
execution environment 実行環境
Linux Ubuntu 18.04 LTS 
GenuineIntel Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz [Family 6 Model 63 Stepping 2] (12 processors) 

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:19:43 UTC 2009 年 3 月 6 日 (金) 14 時 19 分 43 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 8, 2010 19:47:09 UTC 2010 年 8 月 9 日 (月) 4 時 47 分 9 秒 (日本時間)
351e660Rich DickersonAugust 8, 2010 19:47:09 UTC 2010 年 8 月 9 日 (月) 4 時 47 分 9 秒 (日本時間)
403e61950250Rich DickersonAugust 8, 2010 19:47:09 UTC 2010 年 8 月 9 日 (月) 4 時 47 分 9 秒 (日本時間)
1700Warut RoonguthaiMarch 31, 2013 04:08:50 UTC 2013 年 3 月 31 日 (日) 13 時 8 分 50 秒 (日本時間)
4511e61440 / 4047440Rich DickersonAugust 9, 2010 16:30:57 UTC 2010 年 8 月 10 日 (火) 1 時 30 分 57 秒 (日本時間)
1000KTakahashiJune 21, 2014 11:01:42 UTC 2014 年 6 月 21 日 (土) 20 時 1 分 42 秒 (日本時間)

85×10194+419

c181

name 名前Bob Backstrom
date 日付February 28, 2021 23:52:42 UTC 2021 年 3 月 1 日 (月) 8 時 52 分 42 秒 (日本時間)
composite number 合成数
2034546338162194856589068503354825954909689773058924327168650859457362645404483535659006367556645937150672177274393355169846519530470866284335294739992694848373708534235773177046491<181>
prime factors 素因数
1809350999941814293397136338190476806431997850491777278431676013211025756521<76>
1124461941451726320211205624449943891119933988423525646329717357593734817215365529214118170843508199313571<106>
factorization results 素因数分解の結果
Number: n
N=2034546338162194856589068503354825954909689773058924327168650859457362645404483535659006367556645937150672177274393355169846519530470866284335294739992694848373708534235773177046491  ( 181 digits)
SNFS difficulty: 195 digits.
Divisors found:

Mon Mar  1 10:47:00 2021  p76 factor: 1809350999941814293397136338190476806431997850491777278431676013211025756521
Mon Mar  1 10:47:00 2021  p106 factor: 1124461941451726320211205624449943891119933988423525646329717357593734817215365529214118170843508199313571
Mon Mar  1 10:47:00 2021  elapsed time 00:58:07 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.327).
Factorization parameters were as follows:
#
# N = 85x10^194+41 = 94(193)9
#
n: 2034546338162194856589068503354825954909689773058924327168650859457362645404483535659006367556645937150672177274393355169846519530470866284335294739992694848373708534235773177046491
m: 500000000000000000000000000000000000000
deg: 5
c5: 272
c0: 41
skew: 0.68
# Murphy_E = 2.576e-11
type: snfs
lss: 1
rlim: 12900000
alim: 12900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 12900000/12900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved  special-q in [100000, 19250000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3487583 hash collisions in 28684308 relations (26810349 unique)
Msieve: matrix is 1532081 x 1532306 (534.3 MB)

Sieving start time : 2021/03/01 05:14:56
Sieving end time  : 2021/03/01 09:48:19

Total sieving time: 4hrs 33min 23secs.

Total relation processing time: 0hrs 45min 26sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 11sec.

Prototype def-par.txt line would be:
snfs,195,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116873] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241916K/16727236K available (14339K kernel code, 2400K rwdata, 4964K rodata, 2732K init, 4968K bss, 485320K reserved, 0K cma-reserved)
[    0.153556] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.16 BogoMIPS (lpj=12798332)
[    0.152039] smpboot: Total of 16 processors activated (102386.65 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:20:22 UTC 2009 年 3 月 6 日 (金) 14 時 20 分 22 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 9, 2010 16:52:08 UTC 2010 年 8 月 10 日 (火) 1 時 52 分 8 秒 (日本時間)
351e660Rich DickersonAugust 9, 2010 16:52:08 UTC 2010 年 8 月 10 日 (火) 1 時 52 分 8 秒 (日本時間)
403e61770270Rich DickersonAugust 9, 2010 21:55:41 UTC 2010 年 8 月 10 日 (火) 6 時 55 分 41 秒 (日本時間)
1500Warut RoonguthaiMarch 31, 2013 05:05:58 UTC 2013 年 3 月 31 日 (日) 14 時 5 分 58 秒 (日本時間)
4511e6220 / 4086Rich DickersonAugust 10, 2010 12:37:34 UTC 2010 年 8 月 10 日 (火) 21 時 37 分 34 秒 (日本時間)

85×10195+419

c129

name 名前Robert Backstrom
date 日付January 30, 2008 22:02:45 UTC 2008 年 1 月 31 日 (木) 7 時 2 分 45 秒 (日本時間)
composite number 合成数
972564350491546545147205599284218262224405374403653035025318106240841093313007765387765814323889960983051835806443072289350847213<129>
prime factors 素因数
7002080819084472935961485898736537<34>
138896476007643400498736213707955873126885773149612346584374896337109150206915149170156100613749<96>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 972564350491546545147205599284218262224405374403653035025318106240841093313007765387765814323889960983051835806443072289350847213 (129 digits)
Using B1=630000, B2=522408822, polynomial Dickson(3), sigma=929253017
Step 1 took 6206ms
Step 2 took 2732ms
********** Factor found in step 2: 7002080819084472935961485898736537
Found probable prime factor of 34 digits: 7002080819084472935961485898736537
Probable prime cofactor 138896476007643400498736213707955873126885773149612346584374896337109150206915149170156100613749 has 96 digits

85×10196+419

c136

name 名前Robert Backstrom
date 日付February 7, 2008 16:01:15 UTC 2008 年 2 月 8 日 (金) 1 時 1 分 15 秒 (日本時間)
composite number 合成数
2684556121034523448923272418548576956251615538288410359216227245729626667805316822361181882742397835243692276800270113730037153783214063<136>
prime factors 素因数
2407634926344711449945182476308102251067<40>
1115017933848565544621714725552050157636428911348616213426982933949668333318971941695775582247389<97>
factorization results 素因数分解の結果
GMP-ECM 6.1.3 [powered by GMP 4.2.1] [ECM]
Input number is 2684556121034523448923272418548576956251615538288410359216227245729626667805316822361181882742397835243692276800270113730037153783214063 (136 digits)
Using B1=1010000, B2=1045563762, polynomial Dickson(6), sigma=3239498153
Step 1 took 11034ms
Step 2 took 5344ms
********** Factor found in step 2: 2407634926344711449945182476308102251067
Found probable prime factor of 40 digits: 2407634926344711449945182476308102251067
Probable prime cofactor 1115017933848565544621714725552050157636428911348616213426982933949668333318971941695775582247389 has 97 digits

85×10197+419

c163

name 名前Eric Jeancolas
date 日付October 5, 2021 06:08:12 UTC 2021 年 10 月 5 日 (火) 15 時 8 分 12 秒 (日本時間)
composite number 合成数
8075654149513973154156418735256799052110782780225576259732270970181686496977207281880006073572993167691951645628342331080666691991070356317742809837481536761504123<163>
prime factors 素因数
1458827736430759030435930372395901145026566639111500120501785566901<67>
5535714702869766424552208926462746398026842692167440443388600143331929724053102195310101452205423<97>
factorization results 素因数分解の結果
8075654149513973154156418735256799052110782780225576259732270970181686496977207281880006073572993167691951645628342331080666691991070356317742809837481536761504123=1458827736430759030435930372395901145026566639111500120501785566901*5535714702869766424552208926462746398026842692167440443388600143331929724053102195310101452205423

cado polynomial
n: 8075654149513973154156418735256799052110782780225576259732270970181686496977207281880006073572993167691951645628342331080666691991070356317742809837481536761504123
skew: 1.30
type: snfs
c0: 82
c6: 17
Y0: 1000000000000000000000000000000000
Y1: -1
# f(x) = 17*x^6+82
# g(x) = -x+1000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 14600000
tasks.lim1 = 14600000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 55
tasks.sieve.mfb1 = 55
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 5535714702869766424552208926462746398026842692167440443388600143331929724053102195310101452205423 1458827736430759030435930372395901145026566639111500120501785566901
Info:Square Root: Total cpu/real time for sqrt: 738.68/224.606
Info:Filtering - Singleton removal: Total cpu/real time for purge: 434.13/508.691
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 28539705
Info:Lattice Sieving: Average J: 1893.05 for 3602493 special-q, max bucket fill -bkmult 1.0,1s:1.187190
Info:Lattice Sieving: Total time: 792550s
Info:Generate Factor Base: Total cpu/real time for makefb: 9.47/3.78192
Info:Linear Algebra: Total cpu/real time for bwc: 120348/30811.9
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 77217.97, WCT time 19697.33, iteration CPU time 0.23, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (82432 iterations)
Info:Linear Algebra: Lingen CPU time 570.21, WCT time 144.74
Info:Linear Algebra: Mksol: CPU time 41604.7,  WCT time 10633.78, iteration CPU time 0.24, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (41472 iterations)
Info:Generate Free Relations: Total cpu/real time for freerel: 182.08/46.5923
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 121.75/143.877
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 143.29999999999998s
Info:Filtering - Merging: Merged matrix has 2625281 rows and total weight 446793303 (170.2 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 723.91/200.396
Info:Filtering - Merging: Total cpu/real time for replay: 104.22/90.7729
Info:Quadratic Characters: Total cpu/real time for characters: 90.29/40.4686
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 548.32/557.799
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 452.50000000000006s
Info:Square Root: Total cpu/real time for sqrt: 738.68/224.606
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.60898e+06/428967
Info:root: Cleaning up computation data in /tmp/cado.wza9kxi3
5535714702869766424552208926462746398026842692167440443388600143331929724053102195310101452205423 1458827736430759030435930372395901145026566639111500120501785566901
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 20.04.1 LTS [5.4.0-72-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.3)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:20:55 UTC 2009 年 3 月 6 日 (金) 14 時 20 分 55 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 9, 2010 16:51:42 UTC 2010 年 8 月 10 日 (火) 1 時 51 分 42 秒 (日本時間)
351e660Rich DickersonAugust 9, 2010 16:51:42 UTC 2010 年 8 月 10 日 (火) 1 時 51 分 42 秒 (日本時間)
403e62110310Rich DickersonAugust 9, 2010 21:48:19 UTC 2010 年 8 月 10 日 (火) 6 時 48 分 19 秒 (日本時間)
1800Warut RoonguthaiMarch 31, 2013 04:05:55 UTC 2013 年 3 月 31 日 (日) 13 時 5 分 55 秒 (日本時間)
4511e65884280Rich DickersonAugust 11, 2010 00:05:01 UTC 2010 年 8 月 11 日 (水) 9 時 5 分 1 秒 (日本時間)
1124KTakahashiJuly 15, 2014 20:34:54 UTC 2014 年 7 月 16 日 (水) 5 時 34 分 54 秒 (日本時間)
4480Ignacio SantosAugust 18, 2021 16:59:10 UTC 2021 年 8 月 19 日 (木) 1 時 59 分 10 秒 (日本時間)

85×10198+419

c194

name 名前Robert Backstrom
date 日付April 11, 2010 11:07:07 UTC 2010 年 4 月 11 日 (日) 20 時 7 分 7 秒 (日本時間)
composite number 合成数
24006803245606825614298790932658657432237973509481133900628215675990626614280997654958972373253257935025163366296086354448305303272296742163826379409732019116193775007675116214110182189041995807<194>
prime factors 素因数
79887247779874380711956398911612904986865448614726236846210609519289<68>
300508578187052613066521182309896159665396432480583060908082855706848957868498513677844713081120712525637959029059441255085463<126>
factorization results 素因数分解の結果
Number: n
N=24006803245606825614298790932658657432237973509481133900628215675990626614280997654958972373253257935025163366296086354448305303272296742163826379409732019116193775007675116214110182189041995807
  ( 194 digits)
SNFS difficulty: 199 digits.
Divisors found:

Sun Apr 11 21:00:51 2010  prp68 factor: 79887247779874380711956398911612904986865448614726236846210609519289
Sun Apr 11 21:00:51 2010  prp126 factor: 300508578187052613066521182309896159665396432480583060908082855706848957868498513677844713081120712525637959029059441255085463
Sun Apr 11 21:00:51 2010  elapsed time 05:59:37 (Msieve 1.42 - dependency 5)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.073).
Factorization parameters were as follows:
name: KA_9_4_197_9
n: 24006803245606825614298790932658657432237973509481133900628215675990626614280997654958972373253257935025163366296086354448305303272296742163826379409732019116193775007675116214110182189041995807
m: 1000000000000000000000000000000000000000
deg: 5
c5: 85000
c0: 41
skew: 0.22
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 17100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 4839109 hash collisions in 32138863 relations
Msieve: matrix is 1966690 x 1966915 (559.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,199,5,0,0,0,0,0,0,0,0,15000000,15000000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6060216k/7077888k available (3972k kernel code, 787972k absent, 229700k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5596.79 BogoMIPS (lpj=2798398)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797551)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44762.55 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
255e4214Dennis LangdeauDecember 8, 2008 04:25:26 UTC 2008 年 12 月 8 日 (月) 13 時 25 分 26 秒 (日本時間)
3025e4403Andreas TeteApril 7, 2009 13:13:57 UTC 2009 年 4 月 7 日 (火) 22 時 13 分 57 秒 (日本時間)
351e61200Dmitry DomanovJuly 11, 2009 05:53:52 UTC 2009 年 7 月 11 日 (土) 14 時 53 分 52 秒 (日本時間)
403e62500Dmitry DomanovJuly 11, 2009 05:53:52 UTC 2009 年 7 月 11 日 (土) 14 時 53 分 52 秒 (日本時間)
4511e60--
5043e61115 / 7452yoyo@homeFebruary 26, 2010 08:50:06 UTC 2010 年 2 月 26 日 (金) 17 時 50 分 6 秒 (日本時間)

85×10199+419

c190

name 名前Robert Backstrom
date 日付March 21, 2012 14:22:07 UTC 2012 年 3 月 21 日 (水) 23 時 22 分 7 秒 (日本時間)
composite number 合成数
2679218578027884566909510621566622508412370353960459174047801723835998181533243266063199114190769934128418445951926515332699120266854698440095481379308951468716210952261128283586069543668193<190>
prime factors 素因数
17172951815942890395723115752397752369299357155529839067435281<62>
156013864520400774935358855562151083090273183660015396454333014613364465179241655628894677010186402588859037028524954871134694353<129>
factorization results 素因数分解の結果
Number: n
N=2679218578027884566909510621566622508412370353960459174047801723835998181533243266063199114190769934128418445951926515332699120266854698440095481379308951468716210952261128283586069543668193
  ( 190 digits)
SNFS difficulty: 200 digits.
Divisors found:

Thu Mar 22 01:03:19 2012  prp62 factor: 17172951815942890395723115752397752369299357155529839067435281
Thu Mar 22 01:03:19 2012  prp129 factor: 156013864520400774935358855562151083090273183660015396454333014613364465179241655628894677010186402588859037028524954871134694353
Thu Mar 22 01:03:19 2012  elapsed time 05:06:26 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.659).
Factorization parameters were as follows:
name: KA_94449_199
n: 2679218578027884566909510621566622508412370353960459174047801723835998181533243266063199114190769934128418445951926515332699120266854698440095481379308951468716210952261128283586069543668193
m: 5000000000000000000000000000000000000000
#  c190, diff: 200.93
skew: 0.68
deg: 5
c5: 272
c0: 41
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 17200000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 15086792 hash collisions in 78711047 relations (62682256 unique)
Msieve: matrix is 1792692 x 1792919 (507.2 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.73 BogoMIPS (lpj=2797867)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.12 BogoMIPS (lpj=2797563)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.09 BogoMIPS (lpj=2797547)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Total of 8 processors activated (44761.49 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Max DettweilerMarch 6, 2009 05:21:40 UTC 2009 年 3 月 6 日 (金) 14 時 21 分 40 秒 (日本時間)
255e40--
3025e430Rich DickersonAugust 10, 2010 13:12:44 UTC 2010 年 8 月 10 日 (火) 22 時 12 分 44 秒 (日本時間)
351e660Rich DickersonAugust 10, 2010 13:12:44 UTC 2010 年 8 月 10 日 (火) 22 時 12 分 44 秒 (日本時間)
403e6500 / 1574Rich DickersonAugust 11, 2010 00:02:55 UTC 2010 年 8 月 11 日 (水) 9 時 2 分 55 秒 (日本時間)
4511e6220 / 4367Rich DickersonAugust 11, 2010 10:25:55 UTC 2010 年 8 月 11 日 (水) 19 時 25 分 55 秒 (日本時間)

85×10202+419

c182

name 名前Bob Backstrom
date 日付September 22, 2021 12:35:35 UTC 2021 年 9 月 22 日 (水) 21 時 35 分 35 秒 (日本時間)
composite number 合成数
65078874093979477856265691291526017918730689908064105275219090367085850555745761848382987045234943990947650128409997227340286953050635384769546968482184063524661017125450347433090603<182>
prime factors 素因数
505596567911919536285314244934947618093642314874240396333<57>
26357519864149922592808330812816335216703622591699110381694457<62>
4883502012817934707553529280733844246142229106324324586389705263<64>
factorization results 素因数分解の結果
Number: n
N=65078874093979477856265691291526017918730689908064105275219090367085850555745761848382987045234943990947650128409997227340286953050635384769546968482184063524661017125450347433090603  ( 182 digits)
SNFS difficulty: 203 digits.
Divisors found:

Wed Sep 22 22:23:02 2021  found factor: 26357519864149922592808330812816335216703622591699110381694457
Wed Sep 22 22:26:03 2021  p57 factor: 505596567911919536285314244934947618093642314874240396333
Wed Sep 22 22:26:03 2021  p62 factor: 26357519864149922592808330812816335216703622591699110381694457
Wed Sep 22 22:26:03 2021  p64 factor: 4883502012817934707553529280733844246142229106324324586389705263
Wed Sep 22 22:26:03 2021  elapsed time 01:50:07 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.351).
Factorization parameters were as follows:
#
# N = 85x10^202+41 = 94(201)9
#
n: 65078874093979477856265691291526017918730689908064105275219090367085850555745761848382987045234943990947650128409997227340286953050635384769546968482184063524661017125450347433090603
m: 10000000000000000000000000000000000000000
deg: 5
c5: 8500
c0: 41
skew: 0.34
# Murphy_E = 8.796e-12
type: snfs
lss: 1
rlim: 17500000
alim: 17500000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 17500000/17500000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 35950000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 9761022 hash collisions in 64482659 relations (57147400 unique)
Msieve: matrix is 2109806 x 2110034 (732.9 MB)

Sieving start time : 2021/09/22 07:37:00
Sieving end time  : 2021/09/22 20:34:58

Total sieving time: 12hrs 57min 58secs.

Total relation processing time: 1hrs 25min 16sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 9min 4sec.

Prototype def-par.txt line would be:
snfs,203,5,0,0,0,0,0,0,0,0,17500000,17500000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.119850] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239964K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487272K reserved, 0K cma-reserved)
[    0.154026] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.44 BogoMIPS (lpj=12798892)
[    0.150212] smpboot: Total of 16 processors activated (102391.13 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:36:54 UTC 2013 年 11 月 30 日 (土) 23 時 36 分 54 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:12:24 UTC 2013 年 12 月 10 日 (火) 14 時 12 分 24 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:50:40 UTC 2013 年 12 月 13 日 (金) 18 時 50 分 40 秒 (日本時間)

85×10203+419

c173

name 名前ebina
date 日付April 4, 2023 08:35:13 UTC 2023 年 4 月 4 日 (火) 17 時 35 分 13 秒 (日本時間)
composite number 合成数
85298589420193430108329870773553837688007214796557829660940659539810973940655102623322493757564469400812133701084841923755686521004401679396801297601254590457249076746300341<173>
prime factors 素因数
3536183461301938954864721845325547845385029991481<49>
24121652723523714115176488939535527127452465282089386845092486581904061259548848603116645740628955251794169325395745511220061<125>
factorization results 素因数分解の結果
Number: 94449_203
N = 85298589420193430108329870773553837688007214796557829660940659539810973940655102623322493757564469400812133701084841923755686521004401679396801297601254590457249076746300341 (173 digits)
SNFS difficulty: 206 digits.
Divisors found:
r1=3536183461301938954864721845325547845385029991481 (pp49)
r2=24121652723523714115176488939535527127452465282089386845092486581904061259548848603116645740628955251794169325395745511220061 (pp125)
Version: Msieve v. 1.53 (SVN unknown)
Total time: 106.23 hours.
Factorization parameters were as follows:
n: 85298589420193430108329870773553837688007214796557829660940659539810973940655102623322493757564469400812133701084841923755686521004401679396801297601254590457249076746300341
m: 50000000000000000000000000000000000000000
deg: 5
c5: 136
c0: 205
skew: 1.09
# Murphy_E = 8.852e-12
type: snfs
lss: 1
rlim: 18700000
alim: 18700000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 18700000/18700000
Large primes per side: 3
Large prime bits: 29/29
Sieved rational special-q in [0, 0)
Total raw relations: 39172532
Relations: 6259170 relations
Pruned matrix : 3734466 x 3734692
Total sieving time: 98.08 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 7.65 hours.
time per square root: 0.16 hours.
Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,18700000,18700000,29,29,56,56,2.6,2.6,100000
total time: 106.23 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
processors: 8, speed: 2.19GHz
Windows-post2008Server-6.2.9200
Running Python 3.2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:37:13 UTC 2013 年 11 月 30 日 (土) 23 時 37 分 13 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:12:47 UTC 2013 年 12 月 10 日 (火) 14 時 12 分 47 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 12, 2013 13:21:33 UTC 2013 年 12 月 12 日 (木) 22 時 21 分 33 秒 (日本時間)

85×10204+419

c148

name 名前KTakahashi
date 日付November 30, 2013 14:39:05 UTC 2013 年 11 月 30 日 (土) 23 時 39 分 5 秒 (日本時間)
composite number 合成数
1687792067743352994677894029391494988389879983018256764145433359887620910976697428677347798736591231381302963640335449853425143871408686961734764809<148>
prime factors 素因数
3541445546408180153291825167<28>
composite cofactor 合成数の残り
476582809371487467307902405119745244100245929961455553680601224930284815209960436123471172875562039436972269847761005927<120>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 1687792067743352994677894029391494988389879983018256764145433359887620910976697428677347798736591231381302963640335449853425143871408686961734764809 (148 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1143612221
Step 1 took 3432ms
Step 2 took 2043ms
********** Factor found in step 2: 3541445546408180153291825167
Found probable prime factor of 28 digits: 3541445546408180153291825167
Composite cofactor 476582809371487467307902405119745244100245929961455553680601224930284815209960436123471172875562039436972269847761005927 has 120 digits

c120

name 名前Dmitry Domanov
date 日付December 14, 2013 20:17:18 UTC 2013 年 12 月 15 日 (日) 5 時 17 分 18 秒 (日本時間)
composite number 合成数
476582809371487467307902405119745244100245929961455553680601224930284815209960436123471172875562039436972269847761005927<120>
prime factors 素因数
5746573780217973170452993212659207443280921822542456974953<58>
82933383890776429687610253387205715373165681099494332158042959<62>
factorization results 素因数分解の結果
N=476582809371487467307902405119745244100245929961455553680601224930284815209960436123471172875562039436972269847761005927
  ( 120 digits)
Divisors found:
 r1=5746573780217973170452993212659207443280921822542456974953 (pp58)
 r2=82933383890776429687610253387205715373165681099494332158042959 (pp62)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 44.02 hours.
Scaled time: 45.78 units (timescale=1.040).
Factorization parameters were as follows:
n: 476582809371487467307902405119745244100245929961455553680601224930284815209960436123471172875562039436972269847761005927
skew: 259910.03
c0: -428024208681303374883969072405
c1: 1315272844567720686784956
c2: 16756647938849640995
c3: -90134782060450
c4: -208951468
c5: 1032
Y0: -215224525708976383384228
Y1: 297224762789
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
type: gnfs
qintsize: 200000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved algebraic special-q in [2500000, 4300001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 614206 x 614435
Total sieving time: 43.10 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 0.54 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,54,54,2.5,2.5,100000
total time: 44.02 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:37:27 UTC 2013 年 11 月 30 日 (土) 23 時 37 分 27 秒 (日本時間)
403e6604 / 2104KTakahashiDecember 1, 2013 13:16:52 UTC 2013 年 12 月 1 日 (日) 22 時 16 分 52 秒 (日本時間)

85×10205+419

c186

name 名前Bob Backstrom
date 日付October 18, 2021 16:04:02 UTC 2021 年 10 月 19 日 (火) 1 時 4 分 2 秒 (日本時間)
composite number 合成数
701955760308111492182779396464024867580781086781090152943996144296632597744782529931313235596217879487496523522364856399837505587070388804995431519523480019672324004052291562994540666357<186>
prime factors 素因数
118649362274543150112836522079009913287054931242103621965522017887<66>
5916220254803003042425079321806174092958735544053924189518886640717975838311238959467902494232866287983493058806283680811<121>
factorization results 素因数分解の結果
Number: n
N=701955760308111492182779396464024867580781086781090152943996144296632597744782529931313235596217879487496523522364856399837505587070388804995431519523480019672324004052291562994540666357  ( 186 digits)
SNFS difficulty: 206 digits.
Divisors found:

Tue Oct 19 02:58:33 2021  p66 factor: 118649362274543150112836522079009913287054931242103621965522017887
Tue Oct 19 02:58:33 2021  p121 factor: 5916220254803003042425079321806174092958735544053924189518886640717975838311238959467902494232866287983493058806283680811
Tue Oct 19 02:58:33 2021  elapsed time 02:23:52 (Msieve 1.54 - dependency 13)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.347).
Factorization parameters were as follows:
#
# N = 85x10^205+41 = 94(204)9
#
n: 701955760308111492182779396464024867580781086781090152943996144296632597744782529931313235596217879487496523522364856399837505587070388804995431519523480019672324004052291562994540666357
m: 100000000000000000000000000000000000000000
deg: 5
c5: 85
c0: 41
skew: 0.86
# Murphy_E = 8.332e-12
type: snfs
lss: 1
rlim: 19700000
alim: 19700000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 19700000/19700000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 37050000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 9532389 hash collisions in 64416953 relations (57381737 unique)
Msieve: matrix is 2199255 x 2199480 (764.6 MB)

Sieving start time : 2021/10/18 10:59:31
Sieving end time  : 2021/10/19 00:33:14

Total sieving time: 13hrs 33min 43secs.

Total relation processing time: 1hrs 33min 38sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 34min 2sec.

Prototype def-par.txt line would be:
snfs,206,5,0,0,0,0,0,0,0,0,19700000,19700000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.118347] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239960K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2728K init, 4972K bss, 487276K reserved, 0K cma-reserved)
[    0.154098] x86/mm: Memory block size: 128MB
[    0.000006] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.48 BogoMIPS (lpj=12798968)
[    0.150212] smpboot: Total of 16 processors activated (102391.74 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:40:05 UTC 2013 年 11 月 30 日 (土) 23 時 40 分 5 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:12:59 UTC 2013 年 12 月 10 日 (火) 14 時 12 分 59 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:51:00 UTC 2013 年 12 月 13 日 (金) 18 時 51 分 0 秒 (日本時間)

85×10207+419

c169

name 名前KTakahashi
date 日付November 30, 2013 14:42:02 UTC 2013 年 11 月 30 日 (土) 23 時 42 分 2 秒 (日本時間)
composite number 合成数
1354119731218284921259407864404847539012352303043838348720033981704977009178166220169834018249293384807744289208240202924467249459903770599550799130760606402862685795793<169>
prime factors 素因数
2008652297523958019245501803559172651<37>
composite cofactor 合成数の残り
674143420883491051396192557475079935446589830903569153274506812513250622375712120380594435795317643311559722263569258764968540601843<132>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 1354119731218284921259407864404847539012352303043838348720033981704977009178166220169834018249293384807744289208240202924467249459903770599550799130760606402862685795793 (169 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1881113858
Step 1 took 3963ms
Step 2 took 2246ms
********** Factor found in step 2: 2008652297523958019245501803559172651
Found probable prime factor of 37 digits: 2008652297523958019245501803559172651
Composite cofactor 674143420883491051396192557475079935446589830903569153274506812513250622375712120380594435795317643311559722263569258764968540601843 has 132 digits

c132

name 名前Serge Batalov
date 日付January 5, 2014 04:09:00 UTC 2014 年 1 月 5 日 (日) 13 時 9 分 0 秒 (日本時間)
composite number 合成数
674143420883491051396192557475079935446589830903569153274506812513250622375712120380594435795317643311559722263569258764968540601843<132>
prime factors 素因数
108028549408341984709621490607951100854629<42>
257867345253173105118338409124585146745589737<45>
24200113719727796866493113017449201080735344991<47>
factorization results 素因数分解の結果
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2778661189
Step 1 took 30572ms
Step 2 took 20835ms
********** Factor found in step 2: 108028549408341984709621490607951100854629
Found probable prime factor of 42 digits: 108028549408341984709621490607951100854629
Composite cofactor

SIQS elapsed time = 235.0631 seconds.
***factors found***

PRP47 = 24200113719727796866493113017449201080735344991
PRP45 = 257867345253173105118338409124585146745589737

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:40:28 UTC 2013 年 11 月 30 日 (土) 23 時 40 分 28 秒 (日本時間)
403e62104604KTakahashiDecember 1, 2013 13:17:15 UTC 2013 年 12 月 1 日 (日) 22 時 17 分 15 秒 (日本時間)
1500Dmitry DomanovDecember 10, 2013 05:13:11 UTC 2013 年 12 月 10 日 (火) 14 時 13 分 11 秒 (日本時間)

85×10208+419

c169

name 名前KTakahashi
date 日付November 30, 2013 14:44:18 UTC 2013 年 11 月 30 日 (土) 23 時 44 分 18 秒 (日本時間)
composite number 合成数
2256978595814941459465153234597724099848015880939991653026511551351158608649895159283918393464118934222575950486581175042887543473700047072675277196346149800594980763367<169>
prime factors 素因数
33046585061574925340653967943547969<35>
68296878228402913086223839009967520727752685331566362481485105262575829893354640413093944378301391572874101282943347061067559231490343<134>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 2256978595814941459465153234597724099848015880939991653026511551351158608649895159283918393464118934222575950486581175042887543473700047072675277196346149800594980763367 (169 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=531165994
Step 1 took 3978ms
********** Factor found in step 1: 33046585061574925340653967943547969
Found probable prime factor of 35 digits: 33046585061574925340653967943547969
Probable prime cofactor 68296878228402913086223839009967520727752685331566362481485105262575829893354640413093944378301391572874101282943347061067559231490343 has 134 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)

85×10212+419

c136

name 名前KTakahashi
date 日付November 30, 2013 14:46:48 UTC 2013 年 11 月 30 日 (土) 23 時 46 分 48 秒 (日本時間)
composite number 合成数
2386517559401519901778567700188128749271897659135556723029353103825558791181194991635654747408992949361237798859444038917098373391899019<136>
prime factors 素因数
593932018069025505750123635520810298999695953<45>
4018166198819346943705281833186944843901176644615319527609216767358851761226495301459325723<91>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 2386517559401519901778567700188128749271897659135556723029353103825558791181194991635654747408992949361237798859444038917098373391899019 (136 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=898960914
Step 1 took 3603ms
Step 2 took 1950ms
********** Factor found in step 2: 593932018069025505750123635520810298999695953
Found probable prime factor of 45 digits: 593932018069025505750123635520810298999695953
Probable prime cofactor 4018166198819346943705281833186944843901176644615319527609216767358851761226495301459325723 has 91 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)

85×10213+419

c179

name 名前Dmitry Domanov
date 日付December 18, 2013 05:25:45 UTC 2013 年 12 月 18 日 (水) 14 時 25 分 45 秒 (日本時間)
composite number 合成数
33492384798631602191322178417041225605604799703089122545985067630275842931768442549335549381878051948333496048894881586719755631543496685392590912808478499647943822937609261764677<179>
prime factors 素因数
17180867357943274133369945380665730977406493<44>
1949400114723950923493220209478230786268131681935745818967503694582649547599503283416624015069734756281361360399884816056043493776687689<136>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1411532741
Step 1 took 78701ms
Step 2 took 24822ms
********** Factor found in step 2: 17180867357943274133369945380665730977406493
Found probable prime factor of 44 digits: 17180867357943274133369945380665730977406493

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:48:17 UTC 2013 年 11 月 30 日 (土) 23 時 48 分 17 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:13:23 UTC 2013 年 12 月 10 日 (火) 14 時 13 分 23 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 17, 2013 14:16:12 UTC 2013 年 12 月 17 日 (火) 23 時 16 分 12 秒 (日本時間)

85×10215+419

c190

name 名前KTakahashi
date 日付November 30, 2013 14:50:37 UTC 2013 年 11 月 30 日 (土) 23 時 50 分 37 秒 (日本時間)
composite number 合成数
1381752597029071157541476886909445059771933481874986473265051652608206942194159710724119233308897395867595262567796291201060698692246839456638797086866641524230757671192700755505482478925807<190>
prime factors 素因数
1140001490392044973963453145353<31>
composite cofactor 合成数の残り
1212062097001196291664982355467790985929939560626144440610127408620021841659208114131841691228469197627200849367294240248826287550595594868391948203188427089719<160>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 1381752597029071157541476886909445059771933481874986473265051652608206942194159710724119233308897395867595262567796291201060698692246839456638797086866641524230757671192700755505482478925807 (190 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2931338481
Step 1 took 4477ms
Step 2 took 2558ms
********** Factor found in step 2: 1140001490392044973963453145353
Found probable prime factor of 31 digits: 1140001490392044973963453145353
Composite cofactor 1212062097001196291664982355467790985929939560626144440610127408620021841659208114131841691228469197627200849367294240248826287550595594868391948203188427089719 has 160 digits

c160

name 名前Dmitry Domanov
date 日付December 11, 2013 12:17:49 UTC 2013 年 12 月 11 日 (水) 21 時 17 分 49 秒 (日本時間)
composite number 合成数
1212062097001196291664982355467790985929939560626144440610127408620021841659208114131841691228469197627200849367294240248826287550595594868391948203188427089719<160>
prime factors 素因数
173997161568569314809747162837131309021629<42>
6965987755630963464241793002383542197215851862520293248624332885649990371227700089536236884943981121835813780897694211<118>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3211250458
Step 1 took 19376ms
Step 2 took 7915ms
********** Factor found in step 2: 173997161568569314809747162837131309021629
Found probable prime factor of 42 digits: 173997161568569314809747162837131309021629

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:49:01 UTC 2013 年 11 月 30 日 (土) 23 時 49 分 1 秒 (日本時間)
403e61570 / 210470KTakahashiDecember 1, 2013 13:17:36 UTC 2013 年 12 月 1 日 (日) 22 時 17 分 36 秒 (日本時間)
1500Dmitry DomanovDecember 10, 2013 05:13:36 UTC 2013 年 12 月 10 日 (火) 14 時 13 分 36 秒 (日本時間)

85×10216+419

c173

name 名前Dmitry Domanov
date 日付December 11, 2013 12:15:37 UTC 2013 年 12 月 11 日 (水) 21 時 15 分 37 秒 (日本時間)
composite number 合成数
42522491321404853830027994790770209498580431910564204546884254565082761832184686989785518382360150665780390722783634284590093920637133969632997131841372439191934432796158471<173>
prime factors 素因数
84809389903317296270807905097848207753<38>
composite cofactor 合成数の残り
501388954334897274406504898572986887900106075405826312499925421141529277447457309395398946422087097602085228668347958518831169543451407<135>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4126233248
Step 1 took 19373ms
Step 2 took 8288ms
********** Factor found in step 2: 84809389903317296270807905097848207753
Found probable prime factor of 38 digits: 84809389903317296270807905097848207753

c135

name 名前Erik Branger
date 日付June 17, 2014 07:22:52 UTC 2014 年 6 月 17 日 (火) 16 時 22 分 52 秒 (日本時間)
composite number 合成数
501388954334897274406504898572986887900106075405826312499925421141529277447457309395398946422087097602085228668347958518831169543451407<135>
prime factors 素因数
759234883535475378286745427993298237673633288830151<51>
660387141328536955655005325374560817438904747526187322230527142092244559975424212857<84>
factorization results 素因数分解の結果
Number: 94449_216
N = 501388954334897274406504898572986887900106075405826312499925421141529277447457309395398946422087097602085228668347958518831169543451407 (135 digits)
Divisors found:
r1=759234883535475378286745427993298237673633288830151 (pp51)
r2=660387141328536955655005325374560817438904747526187322230527142092244559975424212857 (pp84)
Version: Msieve v. 1.51 (SVN 845)
Total time: 171.92 hours.
Factorization parameters were as follows:
# Murphy_E = 4.029e-11, selected by Erik Branger
# expecting poly E from 4.31e-011 to > 4.96e-011
n: 501388954334897274406504898572986887900106075405826312499925421141529277447457309395398946422087097602085228668347958518831169543451407
Y0: -384065430105154548644820842
Y1: 35879356772299
c0: -5620776749825387795200415001352518945
c1: 4311027851575256283213249442791
c2: 1029950458590848417914589
c3: -27011164206357331
c4: -3812011564
c5: 60
skew: 15668606.95
type: gnfs
# selected mechanically
rlim: 13100000
alim: 13100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.6
alambda: 2.6
Factor base limits: 13100000/13100000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 21283760
Relations: 3185168 relations
Pruned matrix : 1919759 x 1919992
Polynomial selection time: 0.00 hours.
Total sieving time: 167.77 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 3.69 hours.
time per square root: 0.29 hours.
Prototype def-par.txt line would be: gnfs,134,5,65,2000,1e-05,0.28,250,20,50000,3600,13100000,13100000,28,28,54,54,2.6,2.6,100000
total time: 171.92 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:51:45 UTC 2013 年 11 月 30 日 (土) 23 時 51 分 45 秒 (日本時間)
403e6157070KTakahashiNovember 30, 2013 22:35:47 UTC 2013 年 12 月 1 日 (日) 7 時 35 分 47 秒 (日本時間)
1500Dmitry DomanovDecember 10, 2013 05:13:47 UTC 2013 年 12 月 10 日 (火) 14 時 13 分 47 秒 (日本時間)
4511e63200 / 40921000Dmitry DomanovDecember 13, 2013 09:51:55 UTC 2013 年 12 月 13 日 (金) 18 時 51 分 55 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:22:53 UTC 2014 年 1 月 6 日 (月) 11 時 22 分 53 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:35:00 UTC 2014 年 5 月 25 日 (日) 2 時 35 分 0 秒 (日本時間)

85×10217+419

c192

composite cofactor 合成数の残り
209732900687860154249966976142434934614821238843681093428212648343265980348530262553297538054124618115557556478233270760480109044419561890559931829125207180348193481706352093059627904920363963<192>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:52:14 UTC 2013 年 11 月 30 日 (土) 23 時 52 分 14 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:13:58 UTC 2013 年 12 月 10 日 (火) 14 時 13 分 58 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:51:23 UTC 2013 年 12 月 13 日 (金) 18 時 51 分 23 秒 (日本時間)

85×10218+419

c213

name 名前Dmitry Domanov
date 日付December 16, 2013 05:22:19 UTC 2013 年 12 月 16 日 (月) 14 時 22 分 19 秒 (日本時間)
composite number 合成数
258426285467829560628797973305537610130261745391066008731585721017393274732588840648302165147104906569624860195179948455205193358955235429234354971487827924334364575824719605200035474328221631003687256644147400151<213>
prime factors 素因数
45003034666579582297900326224335268713<38>
29535974674962446671170842330671581692651<41>
composite cofactor 合成数の残り
194421181464497228457238253896500344911746136173487496042517917199004647721343713041636073141332513102188667186034580700491931138273277<135>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1506667502
Step 1 took 123189ms
Step 2 took 40631ms
********** Factor found in step 2: 29535974674962446671170842330671581692651
Found probable prime factor of 41 digits: 29535974674962446671170842330671581692651

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1617552057
Step 1 took 74024ms
Step 2 took 26289ms
********** Factor found in step 2: 45003034666579582297900326224335268713
Found probable prime factor of 38 digits: 45003034666579582297900326224335268713

c135

name 名前Erik Branger
date 日付June 7, 2014 09:18:41 UTC 2014 年 6 月 7 日 (土) 18 時 18 分 41 秒 (日本時間)
composite number 合成数
194421181464497228457238253896500344911746136173487496042517917199004647721343713041636073141332513102188667186034580700491931138273277<135>
prime factors 素因数
51541957557962320854322151662741558039875169639632299441516921<62>
3772095408791135340169627593804292244734824141040984662925443001988003237<73>
factorization results 素因数分解の結果
Number: 94449_218
N = 194421181464497228457238253896500344911746136173487496042517917199004647721343713041636073141332513102188667186034580700491931138273277 (135 digits)
Divisors found:
r1=51541957557962320854322151662741558039875169639632299441516921 (pp62)
r2=3772095408791135340169627593804292244734824141040984662925443001988003237 (pp73)
Version: Msieve v. 1.51 (SVN 845)
Total time: 167.33 hours.
Factorization parameters were as follows:
# Murphy_E = 5.226e-11, selected by Dmitry Domanov
n: 194421181464497228457238253896500344911746136173487496042517917199004647721343713041636073141332513102188667186034580700491931138273277
Y0: -160951209840931696278427204
Y1: 34329528809401
c0: -18286966742225222909863798587535275
c1: 98528131564909663984892559000
c2: 6206993250468722989737
c3: -32846219035330591
c4: -3009976261
c5: 1800
skew: 2558425.34
type: gnfs
# selected mechanically
rlim: 12800000
alim: 12800000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.6
alambda: 2.6
Factor base limits: 12800000/12800000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 20160407
Relations: 3121970 relations
Pruned matrix : 1853854 x 1854083
Polynomial selection time: 0.00 hours.
Total sieving time: 163.53 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 3.21 hours.
time per square root: 0.40 hours.
Prototype def-par.txt line would be: gnfs,134,5,65,2000,1e-05,0.28,250,20,50000,3600,12800000,12800000,28,28,54,54,2.6,2.6,100000
total time: 167.33 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:52:37 UTC 2013 年 11 月 30 日 (土) 23 時 52 分 37 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:14:24 UTC 2013 年 12 月 10 日 (火) 14 時 14 分 24 秒 (日本時間)
4511e637001500Dmitry DomanovDecember 13, 2013 09:51:36 UTC 2013 年 12 月 13 日 (金) 18 時 51 分 36 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:22:49 UTC 2014 年 1 月 6 日 (月) 11 時 22 分 49 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:34:59 UTC 2014 年 5 月 25 日 (日) 2 時 34 分 59 秒 (日本時間)
5043e6450 / 6661Ignacio SantosMay 3, 2014 15:04:09 UTC 2014 年 5 月 4 日 (日) 0 時 4 分 9 秒 (日本時間)

85×10219+419

c196

name 名前KTakahashi
date 日付November 30, 2013 14:55:19 UTC 2013 年 11 月 30 日 (土) 23 時 55 分 19 秒 (日本時間)
composite number 合成数
4083378073426748050213699321377246370337685583435105163867092902760285133616774284282607347337548093891615012176006077708988103787601270849731360744039306152040523550954385622602265587662277087437<196>
prime factors 素因数
1112085296989178126713565200205899961<37>
composite cofactor 合成数の残り
3671820933593805108177354320186125094180210129315977374635543778343140825808648616318541873144342853066184306691161537641251318516177675726647141815482733672117<160>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 4083378073426748050213699321377246370337685583435105163867092902760285133616774284282607347337548093891615012176006077708988103787601270849731360744039306152040523550954385622602265587662277087437 (196 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3050402681
Step 1 took 5101ms
Step 2 took 2746ms
********** Factor found in step 2: 1112085296989178126713565200205899961
Found probable prime factor of 37 digits: 1112085296989178126713565200205899961
Composite cofactor 3671820933593805108177354320186125094180210129315977374635543778343140825808648616318541873144342853066184306691161537641251318516177675726647141815482733672117 has 160 digits

c160

name 名前Dmitry Domanov
date 日付December 11, 2013 12:19:03 UTC 2013 年 12 月 11 日 (水) 21 時 19 分 3 秒 (日本時間)
composite number 合成数
3671820933593805108177354320186125094180210129315977374635543778343140825808648616318541873144342853066184306691161537641251318516177675726647141815482733672117<160>
prime factors 素因数
925150873689763806122562068046615289<36>
3968888792105381571485117494072581220737133709162742901260707570020249415733269860896712848995055396260962765939762466436253<124>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2897594141
Step 1 took 19918ms
Step 2 took 7934ms
********** Factor found in step 2: 925150873689763806122562068046615289
Found probable prime factor of 36 digits: 925150873689763806122562068046615289

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:53:12 UTC 2013 年 11 月 30 日 (土) 23 時 53 分 12 秒 (日本時間)
403e61570 / 210470KTakahashiDecember 1, 2013 13:17:52 UTC 2013 年 12 月 1 日 (日) 22 時 17 分 52 秒 (日本時間)
1500Dmitry DomanovDecember 10, 2013 05:14:34 UTC 2013 年 12 月 10 日 (火) 14 時 14 分 34 秒 (日本時間)

85×10221+419

c209

name 名前Dmitry Domanov
date 日付December 11, 2013 12:19:36 UTC 2013 年 12 月 11 日 (水) 21 時 19 分 36 秒 (日本時間)
composite number 合成数
22562644292795206836512060808658814597908746731049023172203829583154511960130864611507856828285886638331233665895321992346582835300751458837297812966776109206471160798991050724149133547743091364310841518238013<209>
prime factors 素因数
319722039463371569650263769<27>
composite cofactor 合成数の残り
70569562019136497857043706631160278984304363503404305596398978309799621110197704070661433305123792344550324615060162475900491880340224012648882297883307956667295923722360514132246277<182>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3514440151
Step 1 took 26766ms
Step 2 took 10285ms
********** Factor found in step 2: 319722039463371569650263769
Found probable prime factor of 27 digits: 319722039463371569650263769

c182

name 名前Erik Branger
date 日付April 24, 2020 06:57:01 UTC 2020 年 4 月 24 日 (金) 15 時 57 分 1 秒 (日本時間)
composite number 合成数
70569562019136497857043706631160278984304363503404305596398978309799621110197704070661433305123792344550324615060162475900491880340224012648882297883307956667295923722360514132246277<182>
prime factors 素因数
553092188055824066838452883790296825375116840404057419002086049<63>
127590957788060191697194634712357090982373152588008963306365893912793057782982763685575214029478363823559188142413350373<120>
factorization results 素因数分解の結果
Fri Apr 24 02:16:07 2020  Msieve v. 1.52 (SVN unknown)
Fri Apr 24 02:16:07 2020  random seeds: 8d6ee140 4fc50a7a
Fri Apr 24 02:16:07 2020  factoring 70569562019136497857043706631160278984304363503404305596398978309799621110197704070661433305123792344550324615060162475900491880340224012648882297883307956667295923722360514132246277 (182 digits)
Fri Apr 24 02:16:08 2020  no P-1/P+1/ECM available, skipping
Fri Apr 24 02:16:08 2020  commencing number field sieve (182-digit input)
Fri Apr 24 02:16:08 2020  R0: -10000000000000000000000000000000000000000000000000000000
Fri Apr 24 02:16:08 2020  R1: 1
Fri Apr 24 02:16:08 2020  A0: 41
Fri Apr 24 02:16:08 2020  A1: 0
Fri Apr 24 02:16:08 2020  A2: 0
Fri Apr 24 02:16:08 2020  A3: 0
Fri Apr 24 02:16:08 2020  A4: 850
Fri Apr 24 02:16:08 2020  skew 1.00, size 4.475e-023, alpha -0.103, combined = 1.203e-013 rroots = 0
Fri Apr 24 02:16:08 2020  
Fri Apr 24 02:16:08 2020  commencing square root phase
Fri Apr 24 02:16:08 2020  reading relations for dependency 1
Fri Apr 24 02:16:10 2020  read 3834894 cycles
Fri Apr 24 02:16:16 2020  cycles contain 8914062 unique relations
Fri Apr 24 02:18:38 2020  read 8914062 relations
Fri Apr 24 02:19:42 2020  multiplying 8914062 relations
Fri Apr 24 02:24:59 2020  multiply complete, coefficients have about 320.40 million bits
Fri Apr 24 02:25:02 2020  initial square root is modulo 561229
Fri Apr 24 02:32:31 2020  GCD is 1, no factor found
Fri Apr 24 02:32:31 2020  reading relations for dependency 2
Fri Apr 24 02:32:33 2020  read 3833499 cycles
Fri Apr 24 02:32:38 2020  cycles contain 8908378 unique relations
Fri Apr 24 02:34:27 2020  read 8908378 relations
Fri Apr 24 02:35:30 2020  multiplying 8908378 relations
Fri Apr 24 02:40:48 2020  multiply complete, coefficients have about 320.20 million bits
Fri Apr 24 02:40:51 2020  initial square root is modulo 556477
Fri Apr 24 02:48:32 2020  GCD is N, no factor found
Fri Apr 24 02:48:32 2020  reading relations for dependency 3
Fri Apr 24 02:48:35 2020  read 3833061 cycles
Fri Apr 24 02:48:40 2020  cycles contain 8913206 unique relations
Fri Apr 24 02:50:30 2020  read 8913206 relations
Fri Apr 24 02:51:34 2020  multiplying 8913206 relations
Fri Apr 24 02:56:26 2020  multiply complete, coefficients have about 320.37 million bits
Fri Apr 24 02:56:28 2020  initial square root is modulo 560437
Fri Apr 24 03:03:16 2020  GCD is 1, no factor found
Fri Apr 24 03:03:16 2020  reading relations for dependency 4
Fri Apr 24 03:03:18 2020  read 3833536 cycles
Fri Apr 24 03:03:23 2020  cycles contain 8909928 unique relations
Fri Apr 24 03:04:58 2020  read 8909928 relations
Fri Apr 24 03:05:55 2020  multiplying 8909928 relations
Fri Apr 24 03:10:03 2020  multiply complete, coefficients have about 320.26 million bits
Fri Apr 24 03:10:05 2020  initial square root is modulo 557789
Fri Apr 24 03:15:17 2020  sqrtTime: 3549
Fri Apr 24 03:15:17 2020  prp63 factor: 553092188055824066838452883790296825375116840404057419002086049
Fri Apr 24 03:15:17 2020  prp120 factor: 127590957788060191697194634712357090982373152588008963306365893912793057782982763685575214029478363823559188142413350373
Fri Apr 24 03:15:17 2020  elapsed time 00:59:10
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:56:32 UTC 2013 年 11 月 30 日 (土) 23 時 56 分 32 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:14:45 UTC 2013 年 12 月 10 日 (火) 14 時 14 分 45 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:53:00 UTC 2013 年 12 月 13 日 (金) 18 時 53 分 0 秒 (日本時間)

85×10222+419

c183

name 名前KTakahashi
date 日付November 30, 2013 14:58:02 UTC 2013 年 11 月 30 日 (土) 23 時 58 分 2 秒 (日本時間)
composite number 合成数
145833980013154115830702414875500919593617647795770019165567712802929798238734498599027116120637978749599770324814380900063613470441246765235051712474464164199190083151650733871271807<183>
prime factors 素因数
6009704684192957380885545370222729<34>
24266413688635042453919396451581720451117825328073686514706439982535638664861710373883212939926085056639748777560357818250666266425319186655531875783<149>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 145833980013154115830702414875500919593617647795770019165567712802929798238734498599027116120637978749599770324814380900063613470441246765235051712474464164199190083151650733871271807 (183 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1060967156
Step 1 took 4524ms
Step 2 took 2449ms
********** Factor found in step 2: 6009704684192957380885545370222729
Found probable prime factor of 34 digits: 6009704684192957380885545370222729
Probable prime cofactor 24266413688635042453919396451581720451117825328073686514706439982535638664861710373883212939926085056639748777560357818250666266425319186655531875783 has 149 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)

85×10223+419

c161

name 名前Dmitry Domanov
date 日付December 13, 2013 11:53:36 UTC 2013 年 12 月 13 日 (金) 20 時 53 分 36 秒 (日本時間)
composite number 合成数
23420641770526276852660181329367125513996938057068958380730933008236712680838880032875068738684900388142359694017173728393024754951712187030989061651410023767693<161>
prime factors 素因数
7266539748641302625821710351446319111303381131<46>
327582034552778142500457839132679412859822776472437<51>
9839002297196524565526481996917659832414860328515528826325107019<64>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=25241833
Step 1 took 78207ms
Step 2 took 24019ms
********** Factor found in step 2: 7266539748641302625821710351446319111303381131
Found probable prime factor of 46 digits: 7266539748641302625821710351446319111303381131
Composite cofactor 3223080390485095428808163740480196198767432285532970299310407144059064130436843715281410584699759115696219328735303 has 115 digits

N=3223080390485095428808163740480196198767432285532970299310407144059064130436843715281410584699759115696219328735303
  ( 115 digits)
Divisors found:
 r1=327582034552778142500457839132679412859822776472437 (pp51)
 r2=9839002297196524565526481996917659832414860328515528826325107019 (pp64)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 30.22 hours.
Scaled time: 29.82 units (timescale=0.987).
Factorization parameters were as follows:
n: 3223080390485095428808163740480196198767432285532970299310407144059064130436843715281410584699759115696219328735303
skew: 81281.60
c0: 5920904023715811780699544271
c1: -758686492961034536100595
c2: -7401710554442679725
c3: 10856162427415
c4: -162705726
c5: 12600
Y0: -12066468224296112543940
Y1: 591834474653
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
type: gnfs
qintsize: 200000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved algebraic special-q in [2250000, 3450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 544260 x 544485
Total sieving time: 29.44 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 0.45 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,54,54,2.5,2.5,100000
total time: 30.22 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:58:59 UTC 2013 年 11 月 30 日 (土) 23 時 58 分 59 秒 (日本時間)
403e6157070KTakahashiNovember 30, 2013 22:36:06 UTC 2013 年 12 月 1 日 (日) 7 時 36 分 6 秒 (日本時間)
1500Dmitry DomanovDecember 10, 2013 05:14:55 UTC 2013 年 12 月 10 日 (火) 14 時 14 分 55 秒 (日本時間)
4511e61500 / 4092Dmitry DomanovDecember 12, 2013 13:22:09 UTC 2013 年 12 月 12 日 (木) 22 時 22 分 9 秒 (日本時間)

85×10224+419

c208

composite cofactor 合成数の残り
1152013916113894218523105136818191906170011315544225087339817390265070980402916380609377693534284792029873813195063155444621149077128866908968774446527322908010711786598259824490673846970964726050511666214687<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:59:29 UTC 2013 年 11 月 30 日 (土) 23 時 59 分 29 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:15:05 UTC 2013 年 12 月 10 日 (火) 14 時 15 分 5 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:53:18 UTC 2013 年 12 月 13 日 (金) 18 時 53 分 18 秒 (日本時間)

85×10225+419

c222

name 名前KTakahashi
date 日付November 30, 2013 15:01:34 UTC 2013 年 12 月 1 日 (日) 0 時 1 分 34 秒 (日本時間)
composite number 合成数
611964261287140830975471032491702484574900825791773760412391916312087374097352714601467274311180227074738835252021281957133703391721923439671123206404745962835770391009165064760218003268609113227787497210162926485093270553<222>
prime factors 素因数
3790952634723024506462142867213939022411603<43>
composite cofactor 合成数の残り
161427567224630415641721319492806584440315822403291887494293320957984560188171174678303321178786281697623513672324846737389312723392722956073777917474098343403161581719176563639651<180>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 611964261287140830975471032491702484574900825791773760412391916312087374097352714601467274311180227074738835252021281957133703391721923439671123206404745962835770391009165064760218003268609113227787497210162926485093270553 (222 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=989531873
Step 1 took 5647ms
Step 2 took 3073ms
********** Factor found in step 2: 3790952634723024506462142867213939022411603
Found probable prime factor of 43 digits: 3790952634723024506462142867213939022411603
Composite cofactor 161427567224630415641721319492806584440315822403291887494293320957984560188171174678303321178786281697623513672324846737389312723392722956073777917474098343403161581719176563639651 has 180 digits

c180

name 名前Dmitry Domanov
date 日付December 11, 2013 12:16:42 UTC 2013 年 12 月 11 日 (水) 21 時 16 分 42 秒 (日本時間)
composite number 合成数
161427567224630415641721319492806584440315822403291887494293320957984560188171174678303321178786281697623513672324846737389312723392722956073777917474098343403161581719176563639651<180>
prime factors 素因数
1017696296859667750087504773077023233101<40>
158620570520647180054824698548842283211760193146781654977122756116698483358669371608446960812979238861525466352349229928788957946931319101551<141>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=456150138
Step 1 took 22869ms
********** Factor found in step 1: 1017696296859667750087504773077023233101
Found probable prime factor of 40 digits: 1017696296859667750087504773077023233101

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 14:59:55 UTC 2013 年 11 月 30 日 (土) 23 時 59 分 55 秒 (日本時間)
403e61500 / 2104Dmitry DomanovDecember 10, 2013 05:15:17 UTC 2013 年 12 月 10 日 (火) 14 時 15 分 17 秒 (日本時間)

85×10227+419

c193

name 名前Dmitry Domanov
date 日付December 11, 2013 12:16:10 UTC 2013 年 12 月 11 日 (水) 21 時 16 分 10 秒 (日本時間)
composite number 合成数
5610198898785568965436239405046148366741375766790296423584681761622284435275442721916236076870321645879834025608049343615209018886968769834473434212802606113459897778821171689195313051638710553<193>
prime factors 素因数
18866703817119199361883866802002125151<38>
composite cofactor 合成数の残り
297359780127305947699827485955791877861231058110628404011911756847148301992243439009430056247560013248765609984069621140202587583432884900554645193396820103<156>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1404342232
Step 1 took 27519ms
********** Factor found in step 1: 18866703817119199361883866802002125151
Found probable prime factor of 38 digits: 18866703817119199361883866802002125151

c156

name 名前yoyo
date 日付July 21, 2022 18:39:39 UTC 2022 年 7 月 22 日 (金) 3 時 39 分 39 秒 (日本時間)
composite number 合成数
297359780127305947699827485955791877861231058110628404011911756847148301992243439009430056247560013248765609984069621140202587583432884900554645193396820103<156>
prime factors 素因数
6092932781520104951823255242712085519740293383516821041<55>
48804047375871209531832208157126652747231172379335433434990431047949274781168233357661294238675145783<101>
factorization results 素因数分解の結果
GMP-ECM 7.0.5-dev [configured with GMP 6.0.0, --enable-asm-redc, --enable-assert] [ECM]
Tuned for x86_64/core2/params.h
Running on test-MS-7B86
Input number is 297359780127305947699827485955791877861231058110628404011911756847148301992243439009430056247560013248765609984069621140202587583432884900554645193396820103 (156 digits)
[Thu Jul 21 14:57:23 2022]
Using MODMULN [mulredc:1, sqrredc:1]
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:15833381866100516478
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
35  40      45      50      55      60      65      70      75      80
34      135     614     3135    17884   111314  752662  5482978 4.3e+07 3.6e+08
Writing checkpoint to checkpnt at p = 110000000
Step 1 took 350316ms
Using 20 small primes for NTT
Estimated memory usage: 471.18MB
Initializing tables of differences for F took 305ms
Computing roots of F took 11167ms
Building F from its roots took 4834ms
Computing 1/F took 2063ms
Initializing table of differences for G took 314ms
Computing roots of G took 9479ms
Building G from its roots took 5328ms
Computing roots of G took 9447ms
Building G from its roots took 5196ms
Computing G * H took 965ms
Reducing  G * H mod F took 1070ms
Computing roots of G took 9361ms
Building G from its roots took 5008ms
Computing G * H took 1045ms
Reducing  G * H mod F took 1110ms
Computing roots of G took 9836ms
Building G from its roots took 5066ms
Computing G * H took 1045ms
Reducing  G * H mod F took 1148ms
Computing polyeval(F,G) took 9631ms
Computing product of all F(g_i) took 45ms
Step 2 took 93852ms
********** Factor found in step 2: 6092932781520104951823255242712085519740293383516821041
Found prime factor of 55 digits: 6092932781520104951823255242712085519740293383516821041
Prime cofactor 48804047375871209531832208157126652747231172379335433434990431047949274781168233357661294238675145783 has 101 digits
Peak memory usage: 613MB
software ソフトウェア
GMP-ECM 7.0.5-dev

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:02:59 UTC 2013 年 12 月 1 日 (日) 0 時 2 分 59 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:15:28 UTC 2013 年 12 月 10 日 (火) 14 時 15 分 28 秒 (日本時間)
4511e641071500Dmitry DomanovDecember 17, 2013 14:16:34 UTC 2013 年 12 月 17 日 (火) 23 時 16 分 34 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:26:00 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 0 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:02:53 UTC 2014 年 5 月 25 日 (日) 4 時 2 分 53 秒 (日本時間)
1307KTakahashiAugust 16, 2014 15:11:25 UTC 2014 年 8 月 17 日 (日) 0 時 11 分 25 秒 (日本時間)
5043e65000 / 6570yoyo@HomeMarch 25, 2021 12:57:37 UTC 2021 年 3 月 25 日 (木) 21 時 57 分 37 秒 (日本時間)

85×10230+419

c193

name 名前KTakahashi
date 日付November 30, 2013 15:05:00 UTC 2013 年 12 月 1 日 (日) 0 時 5 分 0 秒 (日本時間)
composite number 合成数
1190219360637900934400146985470538746950827778041327116813163305989635889002752829300094243174424137227094565084604624988670653842091439528795268130192586755532983950389600531297297086134694559<193>
prime factors 素因数
583641099067437245274039669941<30>
2039300115327169844040491821201350062555261062964818201099304334312610213482975955749480326265332104218439933877986811581932073424483903092038308766345454685434499<163>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 1190219360637900934400146985470538746950827778041327116813163305989635889002752829300094243174424137227094565084604624988670653842091439528795268130192586755532983950389600531297297086134694559 (193 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=212905020
Step 1 took 4368ms
********** Factor found in step 1: 583641099067437245274039669941
Found probable prime factor of 30 digits: 583641099067437245274039669941
Probable prime cofactor 2039300115327169844040491821201350062555261062964818201099304334312610213482975955749480326265332104218439933877986811581932073424483903092038308766345454685434499 has 163 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)

85×10231+419

c182

composite cofactor 合成数の残り
76343716816226722759177404602361280497735064155257310810715461511469728130707419647376076948594622519299794544787989561832827691233791128544207464908330693579784711488579815069418777<182>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:06:09 UTC 2013 年 12 月 1 日 (日) 0 時 6 分 9 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:15:44 UTC 2013 年 12 月 10 日 (火) 14 時 15 分 44 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:53:39 UTC 2013 年 12 月 13 日 (金) 18 時 53 分 39 秒 (日本時間)

85×10233+419

c197

composite cofactor 合成数の残り
69159254768935467790446930079742006941119629346082865429620444051334651485811072731751827397887066277417823604056547406067070124610862773164266605423676033422823885394657982711584373873749280531269<197>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:06:35 UTC 2013 年 12 月 1 日 (日) 0 時 6 分 35 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:15:58 UTC 2013 年 12 月 10 日 (火) 14 時 15 分 58 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:53:53 UTC 2013 年 12 月 13 日 (金) 18 時 53 分 53 秒 (日本時間)

85×10235+419

c205

composite cofactor 合成数の残り
7355289771439827338839718837754583766102297507334032206242493382422429038761413972326796152067113917683579625644994725223652511183346883121914457168083392073240275766767897756295531672236246371599887309891<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:07:04 UTC 2013 年 12 月 1 日 (日) 0 時 7 分 4 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:16:11 UTC 2013 年 12 月 10 日 (火) 14 時 16 分 11 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:54:06 UTC 2013 年 12 月 13 日 (金) 18 時 54 分 6 秒 (日本時間)

85×10236+419

c199

composite cofactor 合成数の残り
1190796740907391487229255043236020997697630666806375647254934474448138817508687405303466268065219254004183652726050446040717231725684474266255469375071409968169594812352580365767059844323826355299103<199>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:07:29 UTC 2013 年 12 月 1 日 (日) 0 時 7 分 29 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:16:24 UTC 2013 年 12 月 10 日 (火) 14 時 16 分 24 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:54:20 UTC 2013 年 12 月 13 日 (金) 18 時 54 分 20 秒 (日本時間)

85×10238+419

c217

composite cofactor 合成数の残り
3982180630342557552488999112141342389386111576714805985439647040799610162797589250137402701362463085638478396502228864398697072300716669556743121272962424655910783860023584657785387565782049413523376248088410985457361<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:07:55 UTC 2013 年 12 月 1 日 (日) 0 時 7 分 55 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:16:36 UTC 2013 年 12 月 10 日 (火) 14 時 16 分 36 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:54:33 UTC 2013 年 12 月 13 日 (金) 18 時 54 分 33 秒 (日本時間)

85×10239+419

c229

name 名前Dmitry Domanov
date 日付December 12, 2013 05:12:44 UTC 2013 年 12 月 12 日 (木) 14 時 12 分 44 秒 (日本時間)
composite number 合成数
6442592147311181469275779922474563001410535127057996932838654976315224759856230777004611917895726937893652063937802608393373446540077948854523294352803451336699274530886728282584708201740644843455712424455944654108990120418979091<229>
prime factors 素因数
68299439037682086167412786154211634692419<41>
composite cofactor 合成数の残り
94328624628332336785041893360730948681610572446374327763068456236477357809201669328167345279513844352879802070711458331005466829154713322227368438453590976443955272004327651864203333730289<188>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1184791963
Step 1 took 31353ms
Step 2 took 11416ms
********** Factor found in step 2: 68299439037682086167412786154211634692419
Found probable prime factor of 41 digits: 68299439037682086167412786154211634692419

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:08:15 UTC 2013 年 12 月 1 日 (日) 0 時 8 分 15 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:16:46 UTC 2013 年 12 月 10 日 (火) 14 時 16 分 46 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:54:46 UTC 2013 年 12 月 13 日 (金) 18 時 54 分 46 秒 (日本時間)

85×10240+419

c204

composite cofactor 合成数の残り
314136143191535191704401497483639080570170585013536993104616538762890310412910699608424478275503654777908725026223150831027156076819955561887262452728782693594013169130177825994706126942941385237353983967<204>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:08:42 UTC 2013 年 12 月 1 日 (日) 0 時 8 分 42 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:16:57 UTC 2013 年 12 月 10 日 (火) 14 時 16 分 57 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:55:00 UTC 2013 年 12 月 13 日 (金) 18 時 55 分 0 秒 (日本時間)

85×10243+419

c227

composite cofactor 合成数の残り
32392969341223908683835604393326558575810981835977168252932857001821219568724416722546993248154021946367924172465335353380332264864292613027644156860155301000297758480215837552566801774521538190133004535666256316307203037868709<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:09:09 UTC 2013 年 12 月 1 日 (日) 0 時 9 分 9 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:17:07 UTC 2013 年 12 月 10 日 (火) 14 時 17 分 7 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:55:13 UTC 2013 年 12 月 13 日 (金) 18 時 55 分 13 秒 (日本時間)

85×10244+419

c239

name 名前KTakahashi
date 日付November 30, 2013 15:11:17 UTC 2013 年 12 月 1 日 (日) 0 時 11 分 17 秒 (日本時間)
composite number 合成数
68003519862188066854340380658102863404209801899346310165014141131944989472655104628215556437201189533570257596533196558253855219546163709433600283150655877948242601037029676656063717858036331960542277668292110799654990142289764918232167697<239>
prime factors 素因数
4602361406221730223059105956511<31>
composite cofactor 合成数の残り
14775788744068880695859841974158690590874665430341850229355306054376377198280684150794306389580760405257495216314811919288782269626678293157102745698839146903318022994692419219691237029141279016866602318862927<209>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 68003519862188066854340380658102863404209801899346310165014141131944989472655104628215556437201189533570257596533196558253855219546163709433600283150655877948242601037029676656063717858036331960542277668292110799654990142289764918232167697 (239 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1436604002
Step 1 took 6708ms
Step 2 took 3370ms
********** Factor found in step 2: 4602361406221730223059105956511
Found probable prime factor of 31 digits: 4602361406221730223059105956511
Composite cofactor 14775788744068880695859841974158690590874665430341850229355306054376377198280684150794306389580760405257495216314811919288782269626678293157102745698839146903318022994692419219691237029141279016866602318862927 has 209 digits

c209

name 名前Dmitry Domanov
date 日付December 11, 2013 12:18:31 UTC 2013 年 12 月 11 日 (水) 21 時 18 分 31 秒 (日本時間)
composite number 合成数
14775788744068880695859841974158690590874665430341850229355306054376377198280684150794306389580760405257495216314811919288782269626678293157102745698839146903318022994692419219691237029141279016866602318862927<209>
prime factors 素因数
832366124975769815868315405768359646137<39>
composite cofactor 合成数の残り
17751549829708656172013796231685004401848430751656420596826082074979609132156557336368851848710703036575546220500436690241808397469672322076979911938027362185774210265671<170>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=682948594
Step 1 took 26755ms
Step 2 took 10325ms
********** Factor found in step 2: 832366124975769815868315405768359646137
Found probable prime factor of 39 digits: 832366124975769815868315405768359646137

c170

name 名前Erik Branger
date 日付February 21, 2014 14:51:59 UTC 2014 年 2 月 21 日 (金) 23 時 51 分 59 秒 (日本時間)
composite number 合成数
17751549829708656172013796231685004401848430751656420596826082074979609132156557336368851848710703036575546220500436690241808397469672322076979911938027362185774210265671<170>
prime factors 素因数
40671611928391260796580280685993724359554173897<47>
436460444719108707334074713444492739809910565320936192810284797652877219724228516482724155745938287731134866838493382227343<123>
factorization results 素因数分解の結果
GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM]
Input number is 17751549829708656172013796231685004401848430751656420596826082074979609132156557336368851848710703036575546220500436690241808397469672322076979911938027362185774210265671 (170 digits)
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:1918278302
Step 1 took 173286ms
Step 2 took 88999ms
********** Factor found in step 2: 40671611928391260796580280685993724359554173897
Found probable prime factor of 47 digits: 40671611928391260796580280685993724359554173897
Probable prime cofactor 436460444719108707334074713444492739809910565320936192810284797652877219724228516482724155745938287731134866838493382227343 has 123 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:09:52 UTC 2013 年 12 月 1 日 (日) 0 時 9 分 52 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:17:18 UTC 2013 年 12 月 10 日 (火) 14 時 17 分 18 秒 (日本時間)
4511e61900 / 41071500Dmitry DomanovDecember 17, 2013 14:16:56 UTC 2013 年 12 月 17 日 (火) 23 時 16 分 56 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:27:04 UTC 2014 年 1 月 6 日 (月) 11 時 27 分 4 秒 (日本時間)

85×10245+419

c176

name 名前Dmitry Domanov
date 日付December 18, 2013 05:27:36 UTC 2013 年 12 月 18 日 (水) 14 時 27 分 36 秒 (日本時間)
composite number 合成数
17915031451231273064957061086779953404134470134771917464642227038842471086101996807386107831385445532005117242056291628899445537874240894354081337521640548030710388743086593609<176>
prime factors 素因数
2751400586595764017482256474499744438404693<43>
6511240689018342076224867768296256913984376554843879193680738895280362699037122134545812351053699748061901545850310554343828849458213<133>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2025177213
Step 1 took 89778ms
Step 2 took 30198ms
********** Factor found in step 2: 2751400586595764017482256474499744438404693
Found probable prime factor of 43 digits: 2751400586595764017482256474499744438404693

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:12:35 UTC 2013 年 12 月 1 日 (日) 0 時 12 分 35 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:17:28 UTC 2013 年 12 月 10 日 (火) 14 時 17 分 28 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 17, 2013 14:17:17 UTC 2013 年 12 月 17 日 (火) 23 時 17 分 17 秒 (日本時間)

85×10246+419

c221

composite cofactor 合成数の残り
14123085192023210235958679409644935413523544877633225985856834496051577327358011004407267281010130785919079469856364573615016953154637629221721608128971012520745085532946155471392456566012194143679643345457381921439229601<221>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:12:54 UTC 2013 年 12 月 1 日 (日) 0 時 12 分 54 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:17:39 UTC 2013 年 12 月 10 日 (火) 14 時 17 分 39 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:55:41 UTC 2013 年 12 月 13 日 (金) 18 時 55 分 41 秒 (日本時間)

85×10247+419

c233

name 名前Dmitry Domanov
date 日付December 11, 2013 12:17:13 UTC 2013 年 12 月 11 日 (水) 21 時 17 分 13 秒 (日本時間)
composite number 合成数
20533613582048879484280393692882098236891897265713089634279753453036207398013803270111647952024529059643501816672887769283113520082418908702834814751643286291870403843886376692902934401378288979913681773587515978385923599997416534709<233>
prime factors 素因数
2023461970636131155169802253548303<34>
10147763526088691921420004920213493271714803270001033744771039722442644212029820489720695025487084066101289055653886528906250182532730120681489519442085415918570149084529029812786772749695967996036603<200>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4123872800
Step 1 took 35519ms
Step 2 took 12311ms
********** Factor found in step 2: 2023461970636131155169802253548303
Found probable prime factor of 34 digits: 2023461970636131155169802253548303

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:13:08 UTC 2013 年 12 月 1 日 (日) 0 時 13 分 8 秒 (日本時間)
403e61500 / 2104Dmitry DomanovDecember 10, 2013 05:17:50 UTC 2013 年 12 月 10 日 (火) 14 時 17 分 50 秒 (日本時間)

85×10249+419

c244

composite cofactor 合成数の残り
8616619918969306282012643723953098419945062458836632637100306680708715974615234974718330297748821879970079040761376700680013506805152982004341357231173876598040864472023710505089026410142795639017149810682723180339671212085731921545777009783513<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:13:22 UTC 2013 年 12 月 1 日 (日) 0 時 13 分 22 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:18:01 UTC 2013 年 12 月 10 日 (火) 14 時 18 分 1 秒 (日本時間)
4511e61500 / 4107Dmitry DomanovDecember 13, 2013 09:55:53 UTC 2013 年 12 月 13 日 (金) 18 時 55 分 53 秒 (日本時間)

85×10250+419

c206

name 名前Dmitry Domanov
date 日付December 16, 2013 05:19:43 UTC 2013 年 12 月 16 日 (月) 14 時 19 分 43 秒 (日本時間)
composite number 合成数
22413506768203033802781395943422015366221863172540118292825882020685185667314063351684049092317644897830073330712696455393054324406787126204904370711848788535094101828872587786597808466617929205701575452279<206>
prime factors 素因数
11333188690626050223370633037861447965879<41>
composite cofactor 合成数の残り
1977687602319881787619976727746527028129113397405666494922457244959978081526304286885389359720485128303773579329634385515515857593532359839488047800954367203875521601<166>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=138496636
Step 1 took 101698ms
Step 2 took 29271ms
********** Factor found in step 2: 11333188690626050223370633037861447965879
Found probable prime factor of 41 digits: 11333188690626050223370633037861447965879

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaNovember 29, 2013 16:00:00 UTC 2013 年 11 月 30 日 (土) 1 時 0 分 0 秒 (日本時間)
786KTakahashiNovember 30, 2013 15:13:36 UTC 2013 年 12 月 1 日 (日) 0 時 13 分 36 秒 (日本時間)
403e61500Dmitry DomanovDecember 10, 2013 05:18:14 UTC 2013 年 12 月 10 日 (火) 14 時 18 分 14 秒 (日本時間)
4511e61500Dmitry DomanovDecember 13, 2013 09:56:06 UTC 2013 年 12 月 13 日 (金) 18 時 56 分 6 秒 (日本時間)
5043e62592 / 7155800Dmitry DomanovDecember 13, 2013 12:43:35 UTC 2013 年 12 月 13 日 (金) 21 時 43 分 35 秒 (日本時間)
1792Dmitry DomanovSeptember 13, 2024 05:24:05 UTC 2024 年 9 月 13 日 (金) 14 時 24 分 5 秒 (日本時間)

85×10252+419

c212

name 名前Ignacio Santos
date 日付January 19, 2022 09:43:45 UTC 2022 年 1 月 19 日 (水) 18 時 43 分 45 秒 (日本時間)
composite number 合成数
36621995495108049532513754356929406049976147607926317909704557964219853659086278916102934462600119830954595439791174607871809465418467632091740698024813505143405525362920856781545003099999892473920539953818728653<212>
prime factors 素因数
30044052532112023711176003437600114363<38>
1218943265259082958130757548183401449157210075860487195890984110989685483519832737664242118739265960680488495936290174183428632254546397357819835534391329251756847032953911831<175>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:896197588
Step 1 took 9954ms
Step 2 took 4968ms
********** Factor found in step 2: 30044052532112023711176003437600114363
Found prime factor of 38 digits: 30044052532112023711176003437600114363
Prime cofactor 1218943265259082958130757548183401449157210075860487195890984110989685483519832737664242118739265960680488495936290174183428632254546397357819835534391329251756847032953911831 has 175 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:31:35 UTC 2021 年 5 月 27 日 (木) 19 時 31 分 35 秒 (日本時間)

85×10253+419

c192

composite cofactor 合成数の残り
356469483880623344732744060018569545900257662233250954550340026707121721567165530447587887231269567167793622048498102561564789640424878963681575800460767286798721313103822539013410464367975519<192>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:31:52 UTC 2021 年 5 月 27 日 (木) 19 時 31 分 52 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 09:56:43 UTC 2022 年 1 月 19 日 (水) 18 時 56 分 43 秒 (日本時間)

85×10254+419

c201

composite cofactor 合成数の残り
283912826750689718525653380397270758314189722838194908099735464938716074795946623274174257995826253144576698602014921272126473440878005372124949952095242369926774347160952820329377805812911623846737787<201>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:32:12 UTC 2021 年 5 月 27 日 (木) 19 時 32 分 12 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 10:01:03 UTC 2022 年 1 月 19 日 (水) 19 時 1 分 3 秒 (日本時間)

85×10255+419

c217

composite cofactor 合成数の残り
3907110656332818181233533437526673199976989268395656406217434307950220909468860993774309755618567543095344939921645166291825027996711101662734776754413270470473787775906621148564718550173841888676702825650046311482691<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:32:23 UTC 2021 年 5 月 27 日 (木) 19 時 32 分 23 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 10:21:26 UTC 2022 年 1 月 19 日 (水) 19 時 21 分 26 秒 (日本時間)

85×10256+419

c253

name 名前Ignacio Santos
date 日付January 19, 2022 10:38:07 UTC 2022 年 1 月 19 日 (水) 19 時 38 分 7 秒 (日本時間)
composite number 合成数
7299207391950262342100969506487707276021674352302685249589956290628676439017269065959072914788194176091231505096564220144094941219912237765240315669251444813698465448987127633081725360881400760835029325639110011936350911542193712376879545903427192553091<253>
prime factors 素因数
11764398060346258954340762494177995929329<41>
composite cofactor 合成数の残り
620448862279947909874276983298518114617159433903914763244576848385722102108816602278645855251863069134759820073729551633520005448012655339661703044686028383950242786430803813928985423828660731220938317850442060979<213>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:413826815
Step 1 took 10735ms
********** Factor found in step 2: 11764398060346258954340762494177995929329
Found prime factor of 41 digits: 11764398060346258954340762494177995929329
Composite cofactor 620448862279947909874276983298518114617159433903914763244576848385722102108816602278645855251863069134759820073729551633520005448012655339661703044686028383950242786430803813928985423828660731220938317850442060979 has 213 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:32:39 UTC 2021 年 5 月 27 日 (木) 19 時 32 分 39 秒 (日本時間)
403e62350Ignacio SantosJanuary 21, 2022 09:16:49 UTC 2022 年 1 月 21 日 (金) 18 時 16 分 49 秒 (日本時間)

85×10260+419

c184

composite cofactor 合成数の残り
1313470489454058774841484775317837923981652827658018119251941670001530142434085409260788835235101904464090579435528968414352637253265315824773639265975099188292476380983627457047973891<184>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:32:58 UTC 2021 年 5 月 27 日 (木) 19 時 32 分 58 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 10:38:36 UTC 2022 年 1 月 19 日 (水) 19 時 38 分 36 秒 (日本時間)

85×10261+419

c230

name 名前Ignacio Santos
date 日付January 19, 2022 10:39:17 UTC 2022 年 1 月 19 日 (水) 19 時 39 分 17 秒 (日本時間)
composite number 合成数
50001260522920695033127960126856907412125564397944840692459387244593499581947764942119830188054622997546674476871577176364176963750223180490821192127931933883322086376877711415363210424629104384737949853480416990920307947833843419<230>
prime factors 素因数
386459634246860728106900228295843538163<39>
composite cofactor 合成数の残り
129382880104319363522473104351377250795554734292081220679037109818797075408557504258640479997000227106445356431660957209323722363998730270766229893642934543205042849342230320246760996654037113<192>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3977590039
Step 1 took 8547ms
Step 2 took 3719ms
********** Factor found in step 2: 386459634246860728106900228295843538163
Found prime factor of 39 digits: 386459634246860728106900228295843538163
Composite cofactor 129382880104319363522473104351377250795554734292081220679037109818797075408557504258640479997000227106445356431660957209323722363998730270766229893642934543205042849342230320246760996654037113 has 192 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:33:35 UTC 2021 年 5 月 27 日 (木) 19 時 33 分 35 秒 (日本時間)
403e62350Ignacio SantosJanuary 21, 2022 09:27:22 UTC 2022 年 1 月 21 日 (金) 18 時 27 分 22 秒 (日本時間)

85×10264+419

c212

composite cofactor 合成数の残り
26234961485649184287187621143174649858814188935486922080017503107883799620101764230747502409102289459285801159027830143556031035439796151886751439353458293622115178209188403909272139365203120901649085061061363969<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:33:53 UTC 2021 年 5 月 27 日 (木) 19 時 33 分 53 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 11:03:55 UTC 2022 年 1 月 19 日 (水) 20 時 3 分 55 秒 (日本時間)

85×10266+419

c227

composite cofactor 合成数の残り
33864367838288271510581246108872859578262755007053317280749582199347866838742792593241971198813590923332197878341936546678539809817852245016372040291570615208618913841716799111936417592934448871561628626793097467508347477747807<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:34:13 UTC 2021 年 5 月 27 日 (木) 19 時 34 分 13 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 11:04:30 UTC 2022 年 1 月 19 日 (水) 20 時 4 分 30 秒 (日本時間)

85×10267+419

c250

composite cofactor 合成数の残り
5214512130260295209455329030844546556248923103288804106114042172143157805472816760617151068159007973065762924121695890544463475849012241706165249397503686810115797449746820357825172455783396760343220438147886561121028188386970264335221736007751224547<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:34:31 UTC 2021 年 5 月 27 日 (木) 19 時 34 分 31 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 11:20:43 UTC 2022 年 1 月 19 日 (水) 20 時 20 分 43 秒 (日本時間)

85×10268+419

c194

name 名前Ignacio Santos
date 日付January 19, 2022 11:39:24 UTC 2022 年 1 月 19 日 (水) 20 時 39 分 24 秒 (日本時間)
composite number 合成数
14074425837088093790210965250578714700884922419472230560576511460498078657037276980397265683960845041890298648438112991333025767925517976703140272616356220217789152644491994395836818286709435459<194>
prime factors 素因数
15786269242432842383030156643320923<35>
composite cofactor 合成数の残り
891561243568342041643198914565537992294427473260732200353154942425424846640514416391177831706005753198214852576775134129437874852489565409935882017744342015033<159>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1366733949
Step 1 took 7109ms
********** Factor found in step 2: 15786269242432842383030156643320923
Found prime factor of 35 digits: 15786269242432842383030156643320923
Composite cofactor 891561243568342041643198914565537992294427473260732200353154942425424846640514416391177831706005753198214852576775134129437874852489565409935882017744342015033 has 159 digits
software ソフトウェア
GMP-ECM

c159

name 名前Ignacio Santos
date 日付January 21, 2022 19:04:11 UTC 2022 年 1 月 22 日 (土) 4 時 4 分 11 秒 (日本時間)
composite number 合成数
891561243568342041643198914565537992294427473260732200353154942425424846640514416391177831706005753198214852576775134129437874852489565409935882017744342015033<159>
prime factors 素因数
41898199991809476340100013217175345121855671<44>
21279225449843431010269832015563733820091936776586282332313145525258922690074014881281573590859657949974812670292623<116>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:412097134
Step 1 took 25984ms
Step 2 took 11938ms
********** Factor found in step 2: 41898199991809476340100013217175345121855671
Found prime factor of 44 digits: 41898199991809476340100013217175345121855671
Prime cofactor 21279225449843431010269832015563733820091936776586282332313145525258922690074014881281573590859657949974812670292623 has 116 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:34:51 UTC 2021 年 5 月 27 日 (木) 19 時 34 分 51 秒 (日本時間)
403e62350Ignacio SantosJanuary 21, 2022 09:37:30 UTC 2022 年 1 月 21 日 (金) 18 時 37 分 30 秒 (日本時間)

85×10270+419

c253

composite cofactor 合成数の残り
1346868349399439467965835416438068002369606926993975334297850536877907652149236847741351025097124647436301538771869396759894581852688024000049183563581577344742502929901932768707681758530719098580549198132083557485564817464551756024201962162022990138689<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:35:04 UTC 2021 年 5 月 27 日 (木) 19 時 35 分 4 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 11:47:01 UTC 2022 年 1 月 19 日 (水) 20 時 47 分 1 秒 (日本時間)

85×10272+419

c243

composite cofactor 合成数の残り
428408843258365408234441800365775481861721910863044260641433795047656943583474304695220992000222188593977304869380073444362456337145703087598901225568851880669482573899295502267763931846881738299715854371844349327026787790278789864813515021971<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:35:44 UTC 2021 年 5 月 27 日 (木) 19 時 35 分 44 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 12:07:13 UTC 2022 年 1 月 19 日 (水) 21 時 7 分 13 秒 (日本時間)

85×10273+419

c211

composite cofactor 合成数の残り
5451949070041426790875809468622169299216878054306432369630459171955969116084877262105033292594933915399583649832517160575810458443137530691980394530930304143775979667648802650441906165146293206068103355144804249<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:36:16 UTC 2021 年 5 月 27 日 (木) 19 時 36 分 16 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 12:21:18 UTC 2022 年 1 月 19 日 (水) 21 時 21 分 18 秒 (日本時間)

85×10275+419

c233

composite cofactor 合成数の残り
62337700913534291511173069523007891197568510838058180215070592223455574893483759488385729726198462456293442516464397200362882504867929585619415199474671310214257225131269083110323919082361258285224991398843263441753934694741728827299<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:36:28 UTC 2021 年 5 月 27 日 (木) 19 時 36 分 28 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 12:39:25 UTC 2022 年 1 月 19 日 (水) 21 時 39 分 25 秒 (日本時間)

85×10277+419

c224

composite cofactor 合成数の残り
66762673562696430976303523957419657058591668107110220104257752722474984041903799280649458805132055382490535108433618648775368246720675131761525681476335506669099968438432768211436123657749972177382710613044466478543022170383<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:36:40 UTC 2021 年 5 月 27 日 (木) 19 時 36 分 40 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 12:48:35 UTC 2022 年 1 月 19 日 (水) 21 時 48 分 35 秒 (日本時間)

85×10278+419

c271

composite cofactor 合成数の残り
6244178345919257148349878940404631116668459223347936651999672073383893532621882965581237545210358078409004044055328700515897614525013143756670164457031561999438886380088220881106412396290175556785834995913769286923493938691232251594300896697875958916723885929548714946517<271>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:36:55 UTC 2021 年 5 月 27 日 (木) 19 時 36 分 55 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 13:10:40 UTC 2022 年 1 月 19 日 (水) 22 時 10 分 40 秒 (日本時間)

85×10279+419

c248

composite cofactor 合成数の残り
25187169511288659284171783880774654914444923313209569185214078464499203934324501606304517229870514631052193418643922258833764937483770968517673245708824860507554100799825231364877015365115006283652448134087741721460066019680618953016531965493420333<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:37:08 UTC 2021 年 5 月 27 日 (木) 19 時 37 分 8 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 13:43:57 UTC 2022 年 1 月 19 日 (水) 22 時 43 分 57 秒 (日本時間)

85×10280+419

c266

name 名前Ignacio Santos
date 日付January 19, 2022 13:44:45 UTC 2022 年 1 月 19 日 (水) 22 時 44 分 45 秒 (日本時間)
composite number 合成数
12644975151729253540080491548322756980266357427751803651157728872450112757103467678953316790026257250761099465267725715754847831119941266932493001783692566796125373885062992098918981005612063978413089752698030472531987664145200356928533101264564536821129290875545789<266>
prime factors 素因数
1545945990271834768030761920849694338644853<43>
composite cofactor 合成数の残り
8179441734252175843238170523187005064365956357923509743444327149250189354072840826958817260043649440089491693183607592069655806622604119212839776447065112780962254520185839451929379639069834324439015477521438293510340015913<223>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:887421508
Step 1 took 15328ms
Step 2 took 5860ms
********** Factor found in step 2: 1545945990271834768030761920849694338644853
Found prime factor of 43 digits: 1545945990271834768030761920849694338644853
Composite cofactor 8179441734252175843238170523187005064365956357923509743444327149250189354072840826958817260043649440089491693183607592069655806622604119212839776447065112780962254520185839451929379639069834324439015477521438293510340015913 has 223 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:37:19 UTC 2021 年 5 月 27 日 (木) 19 時 37 分 19 秒 (日本時間)
403e62350Ignacio SantosJanuary 21, 2022 09:47:26 UTC 2022 年 1 月 21 日 (金) 18 時 47 分 26 秒 (日本時間)

85×10281+419

c245

composite cofactor 合成数の残り
58818071469998771557661504585534322908315447706911948345137652051135406836799057287464325720357180561096805064933497689845558976018861367625789152991305237179080065324137279482110784390493381336376124343891446330899574971291528700492402884795119<245>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:37:38 UTC 2021 年 5 月 27 日 (木) 19 時 37 分 38 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 14:08:32 UTC 2022 年 1 月 19 日 (水) 23 時 8 分 32 秒 (日本時間)

85×10286+419

c255

composite cofactor 合成数の残り
202136655328707748934592990741624852098325343605822354135876454512465396984168027621907201740082685555110938888376374442976194224607355256185441351648687155874149034864948198376477180425275239151526482241176469278425784282046290486697130844292698495710973<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:37:52 UTC 2021 年 5 月 27 日 (木) 19 時 37 分 52 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 14:17:40 UTC 2022 年 1 月 19 日 (水) 23 時 17 分 40 秒 (日本時間)

85×10287+419

c222

composite cofactor 合成数の残り
303240130992961561617785893411816812734624240684607314662813264083461221389023369919998922264488294314538693836978251571186547898170962125732076529845056448965848807458969728368627385173257941002547441702550055744233227067<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:38:13 UTC 2021 年 5 月 27 日 (木) 19 時 38 分 13 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 14:26:05 UTC 2022 年 1 月 19 日 (水) 23 時 26 分 5 秒 (日本時間)

85×10288+419

c231

composite cofactor 合成数の残り
892101125215895360846766872764222085494846755724096282954280120628844242534156658663269158922196697201281740895364016440685745089629768337900004401529281405364060882279552398672937270806612694026901337210839789030921587476423921957<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:38:25 UTC 2021 年 5 月 27 日 (木) 19 時 38 分 25 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 14:49:20 UTC 2022 年 1 月 19 日 (水) 23 時 49 分 20 秒 (日本時間)

85×10289+419

c222

composite cofactor 合成数の残り
360252581502501278204586467259480889849856724853183225060787763352939734870238305629359116066058381707032683234141105472480923753558136557651409077187135069554169279837194284609724570068151588891351083478675667865503893897<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:38:39 UTC 2021 年 5 月 27 日 (木) 19 時 38 分 39 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 15:01:06 UTC 2022 年 1 月 20 日 (木) 0 時 1 分 6 秒 (日本時間)

85×10291+419

c287

composite cofactor 合成数の残り
35586100990005329541948267857000811781762583768635080443427937936165233384116792746129174197313626169265080028954526405514924601425202411649131092078826981632966629029131619590441657006086897909337499837769245486740409441118190651908063936082338701810662684372635879246730160644033069117<287>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:38:53 UTC 2021 年 5 月 27 日 (木) 19 時 38 分 53 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 15:19:57 UTC 2022 年 1 月 20 日 (木) 0 時 19 分 57 秒 (日本時間)

85×10293+419

c276

composite cofactor 合成数の残り
537093172997876665057093617807240349081131922668046764297856772187114891941681514187789729663314304550060960887802491255587314262109164019070051349708451974677772032762427583931120128516854129259719804230484311272834572958239118318262181830334664492087858304552724228642932579<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:39:16 UTC 2021 年 5 月 27 日 (木) 19 時 39 分 16 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 15:41:13 UTC 2022 年 1 月 20 日 (木) 0 時 41 分 13 秒 (日本時間)

85×10294+419

c200

composite cofactor 合成数の残り
32363375375862808122844907576294956773303479747738537378622824526822860202862724262449691493857071126093807010939532183683283011865245607220759103812344268785564321665152850195856635756865429366617533<200>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:40:20 UTC 2021 年 5 月 27 日 (木) 19 時 40 分 20 秒 (日本時間)
403e62350Ignacio SantosMay 29, 2021 10:25:21 UTC 2021 年 5 月 29 日 (土) 19 時 25 分 21 秒 (日本時間)
4511e64480Ignacio SantosMay 30, 2021 14:18:06 UTC 2021 年 5 月 30 日 (日) 23 時 18 分 6 秒 (日本時間)
5043e67000SyjApril 22, 2022 10:32:57 UTC 2022 年 4 月 22 日 (金) 19 時 32 分 57 秒 (日本時間)

85×10296+419

c250

composite cofactor 合成数の残り
1159237698338570533872916045468300536334628219767612517033506561595820993715688515940296708146639287958304012847753322334855076878780341278961094038115233494497741484570076081224795072782377152002485409340095719190946791171768553804702715220108467277<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:40:43 UTC 2021 年 5 月 27 日 (木) 19 時 40 分 43 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 15:58:34 UTC 2022 年 1 月 20 日 (木) 0 時 58 分 34 秒 (日本時間)

85×10297+419

c265

composite cofactor 合成数の残り
1422592193508227642417245905643766890590864280654618151696583125732289295899808784398554246006896658867308448381758267739514864666592539167023224436137625925370905126366347993277627704639209583958386623412120206192651686694974897941905752049887922687099950673686911<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:40:59 UTC 2021 年 5 月 27 日 (木) 19 時 40 分 59 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 16:16:07 UTC 2022 年 1 月 20 日 (木) 1 時 16 分 7 秒 (日本時間)

85×10299+419

c276

composite cofactor 合成数の残り
110565621911233050127033469575983150256213218715987815388407605201450990525468475115625413609347632642159443857141517437794946336544084202294991839276353690488809396897826105127478519828005269529481434742384785265415731736086640844309658556141343272259272986929822381457504221<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:41:18 UTC 2021 年 5 月 27 日 (木) 19 時 41 分 18 秒 (日本時間)
403e62350Ignacio SantosJanuary 19, 2022 16:30:20 UTC 2022 年 1 月 20 日 (木) 1 時 30 分 20 秒 (日本時間)

85×10300+419

c248

composite cofactor 合成数の残り
11015908252443506325812718274163993575960125559360392266685834752938983804966282636500809312927502273011012543658023227602569972234798286478506163825202625772586807371191702534369893972521794122616561153809385443892124788272305155149407558767332657<248>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
255e4214Makoto KamadaMay 26, 2021 05:00:00 UTC 2021 年 5 月 26 日 (水) 14 時 0 分 0 秒 (日本時間)
3025e40--
351e61200Eric JeancolasMay 27, 2021 10:41:30 UTC 2021 年 5 月 27 日 (木) 19 時 41 分 30 秒 (日本時間)
403e61200Dmitry DomanovMay 27, 2021 15:37:09 UTC 2021 年 5 月 28 日 (金) 0 時 37 分 9 秒 (日本時間)
4511e62000Dmitry DomanovMay 27, 2021 23:15:49 UTC 2021 年 5 月 28 日 (金) 8 時 15 分 49 秒 (日本時間)
5043e6620 / 7052Dmitry DomanovMay 29, 2021 00:07:49 UTC 2021 年 5 月 29 日 (土) 9 時 7 分 49 秒 (日本時間)