Table of contents 目次

4×10113-3

c113

name 名前Jo Yeong Uk
date 日付May 25, 2007 14:37:15 UTC 2007 年 5 月 25 日 (金) 23 時 37 分 15 秒 (日本時間)
composite number 合成数
30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769<113>
prime factors 素因数
1702356884234854309940250225619<31>
18074488994744710410784707596626357056720051107053667811146452741104552488586191851<83>
factorization results 素因数分解の結果
Number: 39997_113
N=30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769
  ( 113 digits)
SNFS difficulty: 113 digits.
Divisors found:
 r1=1702356884234854309940250225619 (pp31)
 r2=18074488994744710410784707596626357056720051107053667811146452741104552488586191851 (pp83)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 0.68 hours.
Scaled time: 0.63 units (timescale=0.932).
Factorization parameters were as follows:
n: 30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769
m: 20000000000000000000000
c5: 125
c0: -3
skew: 1
type: snfs
Factor base limits: 360000/360000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [180000, 300001)
Primes: RFBsize:30757, AFBsize:30524, largePrimes:971787 encountered
Relations: rels:878648, finalFF:73299
Max relations in full relation-set: 28
Initial matrix: 61346 x 73299 with sparse part having weight 3338199.
Pruned matrix : 56856 x 57226 with weight 1991611.
Total sieving time: 0.65 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,113,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000
total time: 0.68 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10119-3

c106

name 名前Jo Yeong Uk
date 日付May 25, 2007 23:33:31 UTC 2007 年 5 月 26 日 (土) 8 時 33 分 31 秒 (日本時間)
composite number 合成数
9862554874199558511652521413589225413570302672368196255395589043914114001064063424236049653226344033501007<106>
prime factors 素因数
25985319399001881232057951389966634997820353<44>
379543338404314085166151446656730517304702047891649789900943119<63>
factorization results 素因数分解の結果
Number: 39997_119
N=9862554874199558511652521413589225413570302672368196255395589043914114001064063424236049653226344033501007
  ( 106 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=25985319399001881232057951389966634997820353 (pp44)
 r2=379543338404314085166151446656730517304702047891649789900943119 (pp63)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 0.95 hours.
Scaled time: 0.89 units (timescale=0.934).
Factorization parameters were as follows:
n: 9862554874199558511652521413589225413570302672368196255395589043914114001064063424236049653226344033501007
m: 1000000000000000000000000
c5: 2
c0: -15
skew: 1.5
type: snfs
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [300000, 450001)
Primes: RFBsize:49098, AFBsize:49146, largePrimes:1924432 encountered
Relations: rels:1892891, finalFF:125989
Max relations in full relation-set: 28
Initial matrix: 98309 x 125989 with sparse part having weight 10775752.
Pruned matrix : 90888 x 91443 with weight 6048950.
Total sieving time: 0.89 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000
total time: 0.95 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10120-3

c105

name 名前Jo Yeong Uk
date 日付May 26, 2007 01:45:40 UTC 2007 年 5 月 26 日 (土) 10 時 45 分 40 秒 (日本時間)
composite number 合成数
591330874359032625073270746495953718723219748632694947903328381586309125199738351352363557080262714249281<105>
prime factors 素因数
14957350687977701210646823592952109<35>
39534466142745973691646463023061454844518637076105956734312901955956709<71>
factorization results 素因数分解の結果
Number: 39997_120
N=591330874359032625073270746495953718723219748632694947903328381586309125199738351352363557080262714249281
  ( 105 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=14957350687977701210646823592952109 (pp35)
 r2=39534466142745973691646463023061454844518637076105956734312901955956709 (pp71)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 1.00 hours.
Scaled time: 0.94 units (timescale=0.934).
Factorization parameters were as follows:
n: 591330874359032625073270746495953718723219748632694947903328381586309125199738351352363557080262714249281
m: 1000000000000000000000000
c5: 4
c0: -3
skew: 1
type: snfs
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [300000, 450001)
Primes: RFBsize:49098, AFBsize:49031, largePrimes:2089674 encountered
Relations: rels:2224684, finalFF:262044
Max relations in full relation-set: 28
Initial matrix: 98196 x 262044 with sparse part having weight 24274221.
Pruned matrix : 70560 x 71114 with weight 4834916.
Total sieving time: 0.95 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000
total time: 1.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10122-3

c98

name 名前Jo Yeong Uk
date 日付May 26, 2007 07:43:13 UTC 2007 年 5 月 26 日 (土) 16 時 43 分 13 秒 (日本時間)
composite number 合成数
81836871718643986185728151933388840266271776853244320350768896586357955470594077763743698263338641<98>
prime factors 素因数
344007467969662880678387556467819763326309749859<48>
237892718439068787805376755582318249071248333701499<51>
factorization results 素因数分解の結果
Number: 39997_122
N=81836871718643986185728151933388840266271776853244320350768896586357955470594077763743698263338641
  ( 98 digits)
SNFS difficulty: 122 digits.
Divisors found:
 r1=344007467969662880678387556467819763326309749859 (pp48)
 r2=237892718439068787805376755582318249071248333701499 (pp51)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 1.16 hours.
Scaled time: 1.08 units (timescale=0.932).
Factorization parameters were as follows:
n: 81836871718643986185728151933388840266271776853244320350768896586357955470594077763743698263338641
m: 2000000000000000000000000
c5: 25
c0: -6
skew: 1
type: snfs
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [300000, 480001)
Primes: RFBsize:49098, AFBsize:49121, largePrimes:2037427 encountered
Relations: rels:2086785, finalFF:182743
Max relations in full relation-set: 28
Initial matrix: 98283 x 182743 with sparse part having weight 16947217.
Pruned matrix : 82061 x 82616 with weight 5173414.
Total sieving time: 1.10 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000
total time: 1.16 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10125-3

c101

name 名前Jo Yeong Uk
date 日付May 26, 2007 14:49:59 UTC 2007 年 5 月 26 日 (土) 23 時 49 分 59 秒 (日本時間)
composite number 合成数
11629199144464747273873992857836226276685046458776844818521404624591944271991616740778007884136069049<101>
prime factors 素因数
14176781570225689422590837043552305747546179<44>
820298957620154295413668754748555247326186604713123112531<57>
factorization results 素因数分解の結果
Number: 39997_125
N=11629199144464747273873992857836226276685046458776844818521404624591944271991616740778007884136069049
  ( 101 digits)
SNFS difficulty: 125 digits.
Divisors found:
 r1=14176781570225689422590837043552305747546179 (pp44)
 r2=820298957620154295413668754748555247326186604713123112531 (pp57)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 1.38 hours.
Scaled time: 1.29 units (timescale=0.935).
Factorization parameters were as follows:
n: 11629199144464747273873992857836226276685046458776844818521404624591944271991616740778007884136069049
m: 10000000000000000000000000
c5: 4
c0: -3
skew: 1
type: snfs
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [500000, 750001)
Primes: RFBsize:78498, AFBsize:78486, largePrimes:1470046 encountered
Relations: rels:1503361, finalFF:207858
Max relations in full relation-set: 28
Initial matrix: 157051 x 207858 with sparse part having weight 9056955.
Pruned matrix : 123990 x 124839 with weight 4351782.
Total sieving time: 1.32 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000
total time: 1.38 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10127-3

c112

name 名前Jo Yeong Uk
date 日付May 27, 2007 00:20:55 UTC 2007 年 5 月 27 日 (日) 9 時 20 分 55 秒 (日本時間)
composite number 合成数
6472032925278781041797362499390546042050955598537907195224264982188752618866909381403194723929818401764832614973<112>
prime factors 素因数
705022162775505898789224106446296802990040895033<48>
9179899962009583566770141001685302094407984058465806768333958181<64>
factorization results 素因数分解の結果
Number: 39997_127
N=6472032925278781041797362499390546042050955598537907195224264982188752618866909381403194723929818401764832614973
  ( 112 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=705022162775505898789224106446296802990040895033 (pp48)
 r2=9179899962009583566770141001685302094407984058465806768333958181 (pp64)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 1.86 hours.
Scaled time: 1.74 units (timescale=0.934).
Factorization parameters were as follows:
n: 6472032925278781041797362499390546042050955598537907195224264982188752618866909381403194723929818401764832614973
m: 20000000000000000000000000
c5: 25
c0: -6
skew: 1
type: snfs
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [500000, 850001)
Primes: RFBsize:78498, AFBsize:78301, largePrimes:1560655 encountered
Relations: rels:1638252, finalFF:247040
Max relations in full relation-set: 28
Initial matrix: 156863 x 247040 with sparse part having weight 11693537.
Pruned matrix : 113199 x 114047 with weight 4653390.
Total sieving time: 1.80 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000
total time: 1.86 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10133-3

c100

name 名前Jo Yeong Uk
date 日付May 27, 2007 08:27:20 UTC 2007 年 5 月 27 日 (日) 17 時 27 分 20 秒 (日本時間)
composite number 合成数
1270318609119342242678692386755510163774768851318400499046674123124105513718087324363376691475620641<100>
prime factors 素因数
19092348197612899949161309484911390214209<41>
66535483009793897303525410667693774065268754524280636711649<59>
factorization results 素因数分解の結果
Number: 39997_133
N=1270318609119342242678692386755510163774768851318400499046674123124105513718087324363376691475620641
  ( 100 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=19092348197612899949161309484911390214209 (pp41)
 r2=66535483009793897303525410667693774065268754524280636711649 (pp59)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 2.94 hours.
Scaled time: 2.75 units (timescale=0.934).
Factorization parameters were as follows:
n: 1270318609119342242678692386755510163774768851318400499046674123124105513718087324363376691475620641
m: 200000000000000000000000000
c5: 125
c0: -3
skew: 1
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [700000, 1200001)
Primes: RFBsize:107126, AFBsize:107023, largePrimes:1614997 encountered
Relations: rels:1684678, finalFF:247912
Max relations in full relation-set: 28
Initial matrix: 214214 x 247912 with sparse part having weight 10516119.
Pruned matrix : 188686 x 189821 with weight 6629000.
Total sieving time: 2.82 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,133,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000
total time: 2.94 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10136-3

c131

name 名前Jo Yeong Uk
date 日付May 27, 2007 12:40:30 UTC 2007 年 5 月 27 日 (日) 21 時 40 分 30 秒 (日本時間)
composite number 合成数
20498702688353610820855175128104080113029846623581810066195435656365897743246574282430100705001632209201560156261610593319575287379<131>
prime factors 素因数
15081196794111057038592942294865571<35>
1359222545014331678259321655350929515123649897436325733988274979310778665003786733637386489826449<97>
factorization results 素因数分解の結果
Number: 39997_136
N=20498702688353610820855175128104080113029846623581810066195435656365897743246574282430100705001632209201560156261610593319575287379
  ( 131 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=15081196794111057038592942294865571 (pp35)
 r2=1359222545014331678259321655350929515123649897436325733988274979310778665003786733637386489826449 (pp97)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 3.84 hours.
Scaled time: 3.58 units (timescale=0.932).
Factorization parameters were as follows:
n: 20498702688353610820855175128104080113029846623581810066195435656365897743246574282430100705001632209201560156261610593319575287379
m: 2000000000000000000000000000
c5: 5
c0: -12
skew: 1.19
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [700000, 1400001)
Primes: RFBsize:107126, AFBsize:106758, largePrimes:1667272 encountered
Relations: rels:1757157, finalFF:266622
Max relations in full relation-set: 28
Initial matrix: 213950 x 266622 with sparse part having weight 12122124.
Pruned matrix : 185668 x 186801 with weight 7034894.
Total sieving time: 3.71 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000
total time: 3.84 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10138-3

c129

name 名前Jo Yeong Uk
date 日付May 28, 2007 00:46:11 UTC 2007 年 5 月 28 日 (月) 9 時 46 分 11 秒 (日本時間)
composite number 合成数
386612108312603782474518587555742467131354168827475971306232718709990983848984480161415704893794803065494070892108722517002555123<129>
prime factors 素因数
234806247524789276541047560136279747605593670548390630143<57>
1646515424474759157709862360552930904493428048558253258347121490936014861<73>
factorization results 素因数分解の結果
Number: 39997_138
N=386612108312603782474518587555742467131354168827475971306232718709990983848984480161415704893794803065494070892108722517002555123
  ( 129 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=234806247524789276541047560136279747605593670548390630143 (pp57)
 r2=1646515424474759157709862360552930904493428048558253258347121490936014861 (pp73)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 4.94 hours.
Scaled time: 4.61 units (timescale=0.934).
Factorization parameters were as follows:
n: 386612108312603782474518587555742467131354168827475971306232718709990983848984480161415704893794803065494070892108722517002555123
m: 2000000000000000000000000000
c5: 125
c0: -3
skew: 1
type: snfs
Factor base limits: 1400000/1400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [700000, 1600001)
Primes: RFBsize:107126, AFBsize:107023, largePrimes:1685915 encountered
Relations: rels:1768512, finalFF:259015
Max relations in full relation-set: 28
Initial matrix: 214214 x 259015 with sparse part having weight 14204838.
Pruned matrix : 192969 x 194104 with weight 8814070.
Total sieving time: 4.78 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,138,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000
total time: 4.94 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10141-3

c137

name 名前Robert Backstrom
date 日付May 28, 2007 16:17:48 UTC 2007 年 5 月 29 日 (火) 1 時 17 分 48 秒 (日本時間)
composite number 合成数
10923261358143700964797059458042387715700276631593894989226933485530774923468900109505695115390602172090521066874936849895273231728797267<137>
prime factors 素因数
72534046490829353664593295091274835834185520668502881701648559<62>
150594953495731883967116548567354812204313653884473343476632001562146074013<75>
factorization results 素因数分解の結果
Number: n
N=10923261358143700964797059458042387715700276631593894989226933485530774923468900109505695115390602172090521066874936849895273231728797267
  ( 137 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=72534046490829353664593295091274835834185520668502881701648559 (pp62)
 r2=150594953495731883967116548567354812204313653884473343476632001562146074013 (pp75)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 7.74 hours.
Scaled time: 10.58 units (timescale=1.366).
Factorization parameters were as follows:
name: KA_3_9_140_7
n: 10923261358143700964797059458042387715700276631593894989226933485530774923468900109505695115390602172090521066874936849895273231728797267
skew: 0.60
deg: 5
c5: 40
c0: -3
m: 10000000000000000000000000000
type: snfs
rlim: 2500000
alim: 2500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 700001)
Primes: RFBsize:183072, AFBsize:182506, largePrimes:5965783 encountered
Relations: rels:5451650, finalFF:451267
Max relations in full relation-set: 28
Initial matrix: 365644 x 451267 with sparse part having weight 21857445.
Pruned matrix : 283591 x 285483 with weight 10333770.
Total sieving time: 6.72 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 0.83 hours.
Total square root time: 0.06 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,141,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000
total time: 7.74 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

4×10144-3

c129

name 名前Robert Backstrom
date 日付May 29, 2007 03:06:36 UTC 2007 年 5 月 29 日 (火) 12 時 6 分 36 秒 (日本時間)
composite number 合成数
139134082728901552207477531234965837137139548962918480744051676763860644141313152952523265954505770179676760121611692870007824513<129>
prime factors 素因数
1127069158597835253730690599540227387<37>
25704964961697827080699390888797399431064217<44>
4802484227003858903586540234824184542371863661547<49>
factorization results 素因数分解の結果
Number: n
N=139134082728901552207477531234965837137139548962918480744051676763860644141313152952523265954505770179676760121611692870007824513
  ( 129 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=1127069158597835253730690599540227387 (pp37)
 r2=25704964961697827080699390888797399431064217 (pp44)
 r3=4802484227003858903586540234824184542371863661547 (pp49)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 10.39 hours.
Scaled time: 14.13 units (timescale=1.361).
Factorization parameters were as follows:
name: KA_3_9_143_7
n: 139134082728901552207477531234965837137139548962918480744051676763860644141313152952523265954505770179676760121611692870007824513
skew: 1.50
deg: 5
c5: 2
c0: -15
m: 100000000000000000000000000000
type: snfs
rlim: 2500000
alim: 2500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1100001)
Primes: RFBsize:183072, AFBsize:182991, largePrimes:6720704 encountered
Relations: rels:6184111, finalFF:468239
Max relations in full relation-set: 28
Initial matrix: 366128 x 468238 with sparse part having weight 29402590.
Pruned matrix : 281075 x 282969 with weight 14990558.
Total sieving time: 8.64 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 1.31 hours.
Total square root time: 0.25 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000
total time: 10.39 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

4×10145-3

c122

name 名前Jo Yeong Uk
date 日付May 29, 2007 09:29:16 UTC 2007 年 5 月 29 日 (火) 18 時 29 分 16 秒 (日本時間)
composite number 合成数
58572012470742541478080301062763303277153080662009129442516557774603576611369036613001881755526790043397812934327370079257<122>
prime factors 素因数
22032652827179182252311595341228758697101383067<47>
2658418526818926672086758087119698387445371990728081899202841400303836244571<76>
factorization results 素因数分解の結果
Number: 39997_145
N=58572012470742541478080301062763303277153080662009129442516557774603576611369036613001881755526790043397812934327370079257
  ( 122 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=22032652827179182252311595341228758697101383067 (pp47)
 r2=2658418526818926672086758087119698387445371990728081899202841400303836244571 (pp76)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 9.31 hours.
Scaled time: 8.69 units (timescale=0.933).
Factorization parameters were as follows:
n: 58572012470742541478080301062763303277153080662009129442516557774603576611369036613001881755526790043397812934327370079257
m: 100000000000000000000000000000
c5: 4
c0: -3
skew: 1
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [750000, 1350001)
Primes: RFBsize:114155, AFBsize:113917, largePrimes:2689998 encountered
Relations: rels:2699548, finalFF:315804
Max relations in full relation-set: 28
Initial matrix: 228139 x 315804 with sparse part having weight 21287815.
Pruned matrix : 191614 x 192818 with weight 10724400.
Total sieving time: 9.13 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000
total time: 9.31 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10146-3

c112

name 名前Robert Backstrom
date 日付May 29, 2007 14:32:14 UTC 2007 年 5 月 29 日 (火) 23 時 32 分 14 秒 (日本時間)
composite number 合成数
7074560940000117910361767328829998654766660683366389419564365970920304578753086742163420558422550942946917809351<112>
prime factors 素因数
396348820700316782956965255363264113551018768822430003<54>
17849330111541476189358027901066221476707550990700167833117<59>
factorization results 素因数分解の結果
Number: n
N=7074560940000117910361767328829998654766660683366389419564365970920304578753086742163420558422550942946917809351
  ( 112 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=396348820700316782956965255363264113551018768822430003 (pp54)
 r2=17849330111541476189358027901066221476707550990700167833117 (pp59)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 9.64 hours.
Scaled time: 12.58 units (timescale=1.305).
Factorization parameters were as follows:
name: KA_3_9_145_7
n: 7074560940000117910361767328829998654766660683366389419564365970920304578753086742163420558422550942946917809351
skew: 0.60
deg: 5
c5: 40
c0: -3
m: 100000000000000000000000000000
type: snfs
rlim: 2500000
alim: 2500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1000001)
Primes: RFBsize:183072, AFBsize:182506, largePrimes:6452273 encountered
Relations: rels:5881816, finalFF:435332
Max relations in full relation-set: 28
Initial matrix: 365644 x 435332 with sparse part having weight 25318441.
Pruned matrix : 305134 x 307026 with weight 14058892.
Total sieving time: 7.61 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 1.77 hours.
Total square root time: 0.09 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,146,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000
total time: 9.64 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

4×10148-3

c113

name 名前suberi
date 日付May 27, 2007 08:11:17 UTC 2007 年 5 月 27 日 (日) 17 時 11 分 17 秒 (日本時間)
composite number 合成数
38264540757489334400643074829672319627478182018604819246012623990963599420993201083075264207109162058329774833053<113>
prime factors 素因数
64183606304071153348418983401419<32>
6908604692602464799988145292045693<34>
86294287414556460254625701135729827536592888259<47>
factorization results 素因数分解の結果
Input number is 38264540757489334400643074829672319627478182018604819246012623990963599420993201083075264207109162058329774833053 (113 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3953659318
Step 1 took 50797ms
Step 2 took 32796ms
********** Factor found in step 2: 6908604692602464799988145292045693
Found probable prime factor of 34 digits: 6908604692602464799988145292045693
Composite cofactor 5538678569706254011261695426721774138491854232285156975782913679145001209039521 has 79 digits

Sat May 19 13:39:49 2007  
Sat May 19 13:39:49 2007  
Sat May 19 13:39:49 2007  Msieve v. 1.21
Sat May 19 13:39:49 2007  random seeds: ab5a05f8 8d5d6b6c
Sat May 19 13:39:49 2007  factoring 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 (107 digits)
Sat May 19 13:39:49 2007  commencing quadratic sieve (106-digit input)
Sat May 19 13:39:50 2007  using multiplier of 11
Sat May 19 13:39:50 2007  using 64kb Pentium 4 sieve core
Sat May 19 13:39:50 2007  sieve interval: 21 blocks of size 65536
Sat May 19 13:39:50 2007  processing polynomials in batches of 5
Sat May 19 13:39:50 2007  using a sieve bound of 4662979 (163333 primes)
Sat May 19 13:39:50 2007  using large prime bound of 699446850 (29 bits)
Sat May 19 13:39:50 2007  using double large prime bound of 8328340221930300 (45-53 bits)
Sat May 19 13:39:50 2007  using trial factoring cutoff of 53 bits
Sat May 19 13:39:50 2007  polynomial 'A' values have 14 factors
Sat May 19 13:42:08 2007  18 relations (18 full + 0 combined from 995 partial), need 163429
Sat May 19 13:42:08 2007  c107 factor: 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791
Sat May 19 13:42:08 2007  elapsed time 00:02:19
Sun May 27 16:46:55 2007  
Sun May 27 16:46:55 2007  
Sun May 27 16:46:55 2007  Msieve v. 1.21
Sun May 27 16:46:55 2007  random seeds: 8d7ccf94 2a377ae6
Sun May 27 16:46:55 2007  factoring 79 (2 digits)
Sun May 27 16:46:55 2007  p2 factor: 79
Sun May 27 16:46:55 2007  elapsed time 00:00:00
Sun May 27 16:47:44 2007  
Sun May 27 16:47:44 2007  
Sun May 27 16:47:44 2007  Msieve v. 1.21
Sun May 27 16:47:44 2007  random seeds: 48e51ae0 131d458c
Sun May 27 16:47:44 2007  factoring 5538678569706254011261695426721774138491854232285156975782913679145001209039521 (79 digits)
Sun May 27 16:47:45 2007  commencing quadratic sieve (79-digit input)
Sun May 27 16:47:45 2007  using multiplier of 1
Sun May 27 16:47:45 2007  using 64kb Pentium 4 sieve core
Sun May 27 16:47:45 2007  sieve interval: 6 blocks of size 65536
Sun May 27 16:47:45 2007  processing polynomials in batches of 17
Sun May 27 16:47:45 2007  using a sieve bound of 1168879 (45267 primes)
Sun May 27 16:47:45 2007  using large prime bound of 116887900 (26 bits)
Sun May 27 16:47:45 2007  using trial factoring cutoff of 27 bits
Sun May 27 16:47:45 2007  polynomial 'A' values have 10 factors
Sun May 27 16:59:38 2007  45549 relations (24447 full + 21102 combined from 238802 partial), need 45363
Sun May 27 16:59:38 2007  begin with 263249 relations
Sun May 27 16:59:39 2007  reduce to 64059 relations in 2 passes
Sun May 27 16:59:39 2007  attempting to read 64059 relations
Sun May 27 16:59:40 2007  recovered 64059 relations
Sun May 27 16:59:40 2007  recovered 47555 polynomials
Sun May 27 16:59:40 2007  attempting to build 45549 cycles
Sun May 27 16:59:40 2007  found 45549 cycles in 1 passes
Sun May 27 16:59:40 2007  distribution of cycle lengths:
Sun May 27 16:59:40 2007     length 1 : 24447
Sun May 27 16:59:40 2007     length 2 : 21102
Sun May 27 16:59:40 2007  largest cycle: 2 relations
Sun May 27 16:59:40 2007  matrix is 45267 x 45549 with weight 1349433 (avg 29.63/col)
Sun May 27 16:59:40 2007  filtering completed in 4 passes
Sun May 27 16:59:40 2007  matrix is 37509 x 37573 with weight 1083366 (avg 28.83/col)
Sun May 27 16:59:41 2007  saving the first 48 matrix rows for later
Sun May 27 16:59:41 2007  matrix is 37461 x 37573 with weight 738243 (avg 19.65/col)
Sun May 27 16:59:41 2007  matrix includes 32 packed rows
Sun May 27 17:00:24 2007  lanczos halted after 593 iterations
Sun May 27 17:00:25 2007  recovered 12 nontrivial dependencies
Sun May 27 17:00:25 2007  prp32 factor: 64183606304071153348418983401419
Sun May 27 17:00:25 2007  prp47 factor: 86294287414556460254625701135729827536592888259
Sun May 27 17:00:25 2007  elapsed time 00:12:41
software ソフトウェア
GMP-ECM 6.1.2
execution environment 実行環境
Pentium 4 2.26GHz, Windows XP

4×10151-3

c92

name 名前Jo Yeong Uk
date 日付May 27, 2007 14:03:43 UTC 2007 年 5 月 27 日 (日) 23 時 3 分 43 秒 (日本時間)
composite number 合成数
22833200693189167378341858058780999507653626440332814574305576940890044459677406916695318683<92>
prime factors 素因数
1910611134746116246492096414368671609087657<43>
11950731510953569288974090598473301504132412787619<50>
factorization results 素因数分解の結果
Sun May 27 21:42:43 2007  
Sun May 27 21:42:43 2007  
Sun May 27 21:42:43 2007  Msieve v. 1.21
Sun May 27 21:42:43 2007  random seeds: 82914263 85d6b2cd
Sun May 27 21:42:43 2007  factoring 22833200693189167378341858058780999507653626440332814574305576940890044459677406916695318683 (92 digits)
Sun May 27 21:42:43 2007  commencing quadratic sieve (92-digit input)
Sun May 27 21:42:43 2007  using multiplier of 3
Sun May 27 21:42:43 2007  using 32kb Intel Core sieve core
Sun May 27 21:42:43 2007  sieve interval: 36 blocks of size 32768
Sun May 27 21:42:43 2007  processing polynomials in batches of 6
Sun May 27 21:42:43 2007  using a sieve bound of 1787717 (67004 primes)
Sun May 27 21:42:43 2007  using large prime bound of 187710285 (27 bits)
Sun May 27 21:42:43 2007  using double large prime bound of 780330238063215 (42-50 bits)
Sun May 27 21:42:43 2007  using trial factoring cutoff of 50 bits
Sun May 27 21:42:43 2007  polynomial 'A' values have 12 factors
Sun May 27 23:02:34 2007  67494 relations (17641 full + 49853 combined from 828022 partial), need 67100
Sun May 27 23:02:35 2007  begin with 845663 relations
Sun May 27 23:02:35 2007  reduce to 168237 relations in 10 passes
Sun May 27 23:02:35 2007  attempting to read 168237 relations
Sun May 27 23:02:36 2007  recovered 168237 relations
Sun May 27 23:02:36 2007  recovered 147912 polynomials
Sun May 27 23:02:36 2007  attempting to build 67494 cycles
Sun May 27 23:02:36 2007  found 67493 cycles in 5 passes
Sun May 27 23:02:37 2007  distribution of cycle lengths:
Sun May 27 23:02:37 2007     length 1 : 17641
Sun May 27 23:02:37 2007     length 2 : 12653
Sun May 27 23:02:37 2007     length 3 : 11612
Sun May 27 23:02:37 2007     length 4 : 9122
Sun May 27 23:02:37 2007     length 5 : 6485
Sun May 27 23:02:37 2007     length 6 : 4245
Sun May 27 23:02:37 2007     length 7 : 2509
Sun May 27 23:02:37 2007     length 9+: 3226
Sun May 27 23:02:37 2007  largest cycle: 19 relations
Sun May 27 23:02:37 2007  matrix is 67004 x 67493 with weight 4127294 (avg 61.15/col)
Sun May 27 23:02:37 2007  filtering completed in 4 passes
Sun May 27 23:02:37 2007  matrix is 65382 x 65446 with weight 3919902 (avg 59.90/col)
Sun May 27 23:02:38 2007  saving the first 48 matrix rows for later
Sun May 27 23:02:38 2007  matrix is 65334 x 65446 with weight 3070899 (avg 46.92/col)
Sun May 27 23:02:38 2007  matrix includes 32 packed rows
Sun May 27 23:02:38 2007  using block size 26178 for processor cache size 4096 kB
Sun May 27 23:02:58 2007  lanczos halted after 1034 iterations
Sun May 27 23:02:58 2007  recovered 18 nontrivial dependencies
Sun May 27 23:02:59 2007  prp43 factor: 1910611134746116246492096414368671609087657
Sun May 27 23:02:59 2007  prp50 factor: 11950731510953569288974090598473301504132412787619
Sun May 27 23:02:59 2007  elapsed time 01:20:16
execution environment 実行環境
Core 2 Quad Q6600

4×10152-3

c101

name 名前Jo Yeong Uk
date 日付May 29, 2007 14:16:30 UTC 2007 年 5 月 29 日 (火) 23 時 16 分 30 秒 (日本時間)
composite number 合成数
50239945822147965823364715757449975132547131611251114455272136849140078848825124186413611002367119027<101>
prime factors 素因数
230079279032884613931774793453258451457362123<45>
218359280476393118332391848988420792397153683310217125049<57>
factorization results 素因数分解の結果
Number: 39997_152
N=50239945822147965823364715757449975132547131611251114455272136849140078848825124186413611002367119027
  ( 101 digits)
Divisors found:
 r1=230079279032884613931774793453258451457362123 (pp45)
 r2=218359280476393118332391848988420792397153683310217125049 (pp57)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 4.32 hours.
Scaled time: 4.04 units (timescale=0.935).
Factorization parameters were as follows:
name: 39997_152
n: 50239945822147965823364715757449975132547131611251114455272136849140078848825124186413611002367119027
skew: 2745.59
# norm 4.18e+13
c5: 253440
c4: -2237299026
c3: -1907163396717
c2: 18351442515410243
c1: 16149480465216217123
c0: -4732032708429412165896
# alpha -5.26
Y1: 20037749981
Y0: -11466639011392083421
# Murphy_E 3.20e-09
# M 9786743912553846833483490233928381167753400889953592353099544647107720629570548238023689159496745801
type: gnfs
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [750000, 1300001)
Primes: RFBsize:114155, AFBsize:114153, largePrimes:3944606 encountered
Relations: rels:3941658, finalFF:355357
Max relations in full relation-set: 28
Initial matrix: 228389 x 355357 with sparse part having weight 29022648.
Pruned matrix : 163717 x 164922 with weight 11611115.
Polynomial selection time: 0.28 hours.
Total sieving time: 3.83 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000
total time: 4.32 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Intel(R) Core(TM)2 Quad CPU           @ 2.40GHz stepping 07
Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676)
Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150)
Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133)
Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148)
Total of 4 processors activated (19246.21 BogoMIPS).
execution environment 実行環境
Core 2 Quad Q6600

4×10153-3

c140

name 名前Robert Backstrom
date 日付May 31, 2007 01:19:21 UTC 2007 年 5 月 31 日 (木) 10 時 19 分 21 秒 (日本時間)
composite number 合成数
15613458145631164347237085705726909851541504966835942770071043310541639583131603539496937230552694437403073893194338315775770015008095349819<140>
prime factors 素因数
701099996975822570854039960283603801308933<42>
22269944676906901137452796561787706700352178347453639664548712306567745747002959525951900206522943<98>
factorization results 素因数分解の結果
Number: n
N=15613458145631164347237085705726909851541504966835942770071043310541639583131603539496937230552694437403073893194338315775770015008095349819
  ( 140 digits)
SNFS difficulty: 153 digits.
Divisors found:
 r1=701099996975822570854039960283603801308933 (pp42)
 r2=22269944676906901137452796561787706700352178347453639664548712306567745747002959525951900206522943 (pp98)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 19.25 hours.
Scaled time: 27.83 units (timescale=1.446).
Factorization parameters were as follows:
name: KA_3_9_152_7
n: 15613458145631164347237085705726909851541504966835942770071043310541639583131603539496937230552694437403073893194338315775770015008095349819
skew: 0.47
deg: 5
c5: 125
c0: -3
m: 2000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 900001)
Primes: RFBsize:216816, AFBsize:216491, largePrimes:6596221 encountered
Relations: rels:6125563, finalFF:526499
Max relations in full relation-set: 28
Initial matrix: 433372 x 526499 with sparse part having weight 29888782.
Pruned matrix : 349897 x 352127 with weight 15831553.
Total sieving time: 16.64 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 2.14 hours.
Total square root time: 0.30 hours, sqrts: 6.
Prototype def-par.txt line would be:
snfs,153,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 19.25 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

4×10154-3

c151

name 名前suberi
date 日付May 26, 2007 03:10:24 UTC 2007 年 5 月 26 日 (土) 12 時 10 分 24 秒 (日本時間)
composite number 合成数
1267386964925065745698805487785558125534678875827762111466683565159532334209942650739837140775007129051677703494819555780868793764456132568676531161877<151>
prime factors 素因数
13650357197160249109048459378477<32>
92846432266895293000127005136899584386269985976279393784014840396257054232599914470996487908411988310488572830000344201<119>
factorization results 素因数分解の結果
Input number is 1267386964925065745698805487785558125534678875827762111466683565159532334209942650739837140775007129051677703494819555780868793764456132568676531161877 (151 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1519448081
Step 1 took 25312ms
Step 2 took 17688ms
********** Factor found in step 2: 13650357197160249109048459378477
Found probable prime factor of 32 digits: 13650357197160249109048459378477
Probable prime cofactor 92846432266895293000127005136899584386269985976279393784014840396257054232599914470996487908411988310488572830000344201 has 119 digits
software ソフトウェア
GMP-ECM 6.1.2
execution environment 実行環境
Pentium 4 2.26GHz, Windows XP

4×10156-3

c121

name 名前Robert Backstrom
date 日付June 1, 2007 02:09:33 UTC 2007 年 6 月 1 日 (金) 11 時 9 分 33 秒 (日本時間)
composite number 合成数
8771024837061048350610970945063973785556427253671346977621808892523940551674405429952867892855853749371963409409062730747<121>
prime factors 素因数
2702234461760532104363775230161432847793282975403282127651<58>
3245841528993986751667674942064439467735740830325023575616058697<64>
factorization results 素因数分解の結果
Number: n
N=8771024837061048350610970945063973785556427253671346977621808892523940551674405429952867892855853749371963409409062730747
  ( 121 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=2702234461760532104363775230161432847793282975403282127651 (pp58)
 r2=3245841528993986751667674942064439467735740830325023575616058697 (pp64)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 23.94 hours.
Scaled time: 34.62 units (timescale=1.446).
Factorization parameters were as follows:
name: KA_3_9_155_7
n: 8771024837061048350610970945063973785556427253671346977621808892523940551674405429952867892855853749371963409409062730747
skew: 0.60
deg: 5
c5: 40
c0: -3
m: 10000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1100001)
Primes: RFBsize:216816, AFBsize:215821, largePrimes:7084810 encountered
Relations: rels:6713200, finalFF:621804
Max relations in full relation-set: 28
Initial matrix: 432703 x 621804 with sparse part having weight 40249107.
Pruned matrix : 274950 x 277177 with weight 20349576.
Total sieving time: 21.56 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 2.09 hours.
Total square root time: 0.10 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 23.94 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

4×10157-3

c127

name 名前Robert Backstrom
date 日付May 31, 2007 16:48:30 UTC 2007 年 6 月 1 日 (金) 1 時 48 分 30 秒 (日本時間)
composite number 合成数
7092940415519647107164452375583848937791288014004790562603527535983493708218098596017581274013665407674547484777535415090658809<127>
prime factors 素因数
62340393015907132203772014784207<32>
113777601846523036079732053245822156937012105295007861651633387620863333730618728133717777250487<96>
factorization results 素因数分解の結果
GMP-ECM 5.0 [powered by GMP 4.1.2] [ECM]
Input number is 7092940415519647107164452375583848937791288014004790562603527535983493708218098596017581274013665407674547484777535415090658809 (127 digits)
Using B1=560000, B2=367500144, polynomial Dickson(3), sigma=3591233526
Step 1 took 9300ms
Step 2 took 6780ms
********** Factor found in step 2: 62340393015907132203772014784207
Found probable prime factor of 32 digits: 62340393015907132203772014784207
Probable prime cofactor 113777601846523036079732053245822156937012105295007861651633387620863333730618728133717777250487 has 96 digits

4×10159-3

c154

name 名前Robert Backstrom
date 日付June 3, 2007 10:33:49 UTC 2007 年 6 月 3 日 (日) 19 時 33 分 49 秒 (日本時間)
composite number 合成数
7127088459640188939115065061408775940374777946650179335363365696254180482824607698324599680350082585137526080689331995816399074191209092739456808953048523<154>
prime factors 素因数
6869025736566408403013738614059587089<37>
1037569042972137310167842357523279974289448792553913560988035736213951007069294488349444811458102522621741991129070107<118>
factorization results 素因数分解の結果
GMP-ECM 5.0 [powered by GMP 4.1.2] [ECM]
Input number is 7127088459640188939115065061408775940374777946650179335363365696254180482824607698324599680350082585137526080689331995816399074191209092739456808953048523 (154 digits)
Using B1=1175000, B2=1056424386, polynomial Dickson(6), sigma=1004187034
Step 1 took 23460ms
Step 2 took 15220ms
********** Factor found in step 2: 6869025736566408403013738614059587089
Found probable prime factor of 37 digits: 6869025736566408403013738614059587089
Probable prime cofactor 1037569042972137310167842357523279974289448792553913560988035736213951007069294488349444811458102522621741991129070107 has 118 digits

4×10161-3

c119

name 名前Robert Backstrom
date 日付November 4, 2007 16:47:50 UTC 2007 年 11 月 5 日 (月) 1 時 47 分 50 秒 (日本時間)
composite number 合成数
43940548035309899548763925751595996999472868799993550808813202591598052489814547810338118021293899624001452203163049393<119>
prime factors 素因数
2846805213519635781879812334100609838888539<43>
15435038486874269067278126927452408807037060575563649377214970000125309743587<77>
factorization results 素因数分解の結果
Number: n
N=43940548035309899548763925751595996999472868799993550808813202591598052489814547810338118021293899624001452203163049393
  ( 119 digits)
SNFS difficulty: 161 digits.
Divisors found:

Mon Nov 05 02:38:02 2007  prp43 factor: 2846805213519635781879812334100609838888539
Mon Nov 05 02:38:02 2007  prp77 factor: 15435038486874269067278126927452408807037060575563649377214970000125309743587
Mon Nov 05 02:38:02 2007  elapsed time 01:17:03 (Msieve 1.29)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 33.21 hours.
Scaled time: 43.87 units (timescale=1.321).
Factorization parameters were as follows:
name: KA_3_9_160_7
n: 43940548035309899548763925751595996999472868799993550808813202591598052489814547810338118021293899624001452203163049393
skew: 0.60
deg: 5
c5: 40
c0: -3
m: 100000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 1700000)
Primes: RFBsize:216816, AFBsize:215821, largePrimes:7042289 encountered
Relations: rels:6514886, finalFF:501112
Max relations in full relation-set: 28
Initial matrix: 432703 x 501112 with sparse part having weight 40819259.
Pruned matrix : 378693 x 380920 with weight 25477509.
Total sieving time: 33.00 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 33.21 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

4×10164-3

c125

name 名前Robert Backstrom
date 日付January 27, 2008 00:45:37 UTC 2008 年 1 月 27 日 (日) 9 時 45 分 37 秒 (日本時間)
composite number 合成数
45790281893890598486295666026597222165266252397383601814245248633156502378328634705462088304720803101638935560085478241687391<125>
prime factors 素因数
618354792441051937903025593120469857<36>
74051794299396180801895939838809464335023542105428143074269478481756813823421500448195263<89>
factorization results 素因数分解の結果
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM]
Input number is 45790281893890598486295666026597222165266252397383601814245248633156502378328634705462088304720803101638935560085478241687391 (125 digits)
Using B1=1904000, B2=2101473673, polynomial Dickson(6), sigma=1737887603
Step 1 took 20656ms
Step 2 took 12110ms
********** Factor found in step 2: 618354792441051937903025593120469857
Found probable prime factor of 36 digits: 618354792441051937903025593120469857
Probable prime cofactor 74051794299396180801895939838809464335023542105428143074269478481756813823421500448195263 has 89 digits

4×10166-3

c156

name 名前suberi
date 日付June 17, 2007 04:08:21 UTC 2007 年 6 月 17 日 (日) 13 時 8 分 21 秒 (日本時間)
composite number 合成数
989335362089028305765390973047428719920445796368171784709416930176797854872077574006758920600143987814184992264724538185120819258288642085578904921297160381<156>
prime factors 素因数
10558902718487179894422921589845289<35>
93696796766281288719136025075673968299994681684211285870697078809182558148593470010534568057803410687480015936158750023029<122>
factorization results 素因数分解の結果
Input number is 989335362089028305765390973047428719920445796368171784709416930176797854872077574006758920600143987814184992264724538185120819258288642085578904921297160381 (156 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2108914274
Step 1 took 265404ms
Step 2 took 96471ms
********** Factor found in step 2: 10558902718487179894422921589845289
Found probable prime factor of 35 digits: 10558902718487179894422921589845289
Probable prime cofactor 93696796766281288719136025075673968299994681684211285870697078809182558148593470010534568057803410687480015936158750023029 has 122 digits
software ソフトウェア
GMP-ECM 6.1.2
execution environment 実行環境
Sempron 3400+ 1.80GHz, Windows Vista

4×10167-3

c150

name 名前Robert Backstrom
date 日付May 3, 2008 03:10:29 UTC 2008 年 5 月 3 日 (土) 12 時 10 分 29 秒 (日本時間)
composite number 合成数
374060339385416889430110381945106309862426286979244992667492320805419072529582709129344665255156355799651740239660308846387388622669297398516411833601<150>
prime factors 素因数
618273762409165239603405636857538455481103354894431607<54>
605007623043639365025444446465689291883809981765758204992885675613074765084447457982884602953543<96>
factorization results 素因数分解の結果
Number: n
N=374060339385416889430110381945106309862426286979244992667492320805419072529582709129344665255156355799651740239660308846387388622669297398516411833601
  ( 150 digits)
SNFS difficulty: 167 digits.
Divisors found:

Sat May  3 12:45:02 2008  prp54 factor: 618273762409165239603405636857538455481103354894431607
Sat May  3 12:45:02 2008  prp96 factor: 605007623043639365025444446465689291883809981765758204992885675613074765084447457982884602953543
Sat May  3 12:45:02 2008  elapsed time 00:55:23 (Msieve 1.34)

Version: GGNFS-0.77.1-20050930-k8
Total time: 25.57 hours.
Scaled time: 21.45 units (timescale=0.839).
Factorization parameters were as follows:
name: KA_3_9_166_7
n: 374060339385416889430110381945106309862426286979244992667492320805419072529582709129344665255156355799651740239660308846387388622669297398516411833601
type: snfs
deg: 5
c5: 25
c0: -6
skew: 0.75
m: 2000000000000000000000000000000000
rlim: 3000000
alim: 3000000
lbpr: 28
lbpa: 28
mbpr: 48
mbpa: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3300203)
Primes: RFBsize:216816, AFBsize:215956, largePrimes:5607000 encountered
Relations: rels:5453742, finalFF:481499
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 25.40 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000
total time: 25.57 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

4×10168-3

c158

name 名前Robert Backstrom
date 日付July 2, 2008 05:57:25 UTC 2008 年 7 月 2 日 (水) 14 時 57 分 25 秒 (日本時間)
composite number 合成数
47542617632082091100384231437845636303263529996343334801020808732923113197004353274453935504867471617106807111737038599279044427284432373996054873344064002523<158>
prime factors 素因数
21544306803353103509843977179159206218824143080472857184693633917823174539019<77>
2206736938256127773273970339311752643567289428173222443185875220281755576364296817<82>
factorization results 素因数分解の結果
Number: n
N=47542617632082091100384231437845636303263529996343334801020808732923113197004353274453935504867471617106807111737038599279044427284432373996054873344064002523
  ( 158 digits)
SNFS difficulty: 168 digits.
Divisors found:

Wed Jul  2 15:47:50 2008  prp77 factor: 21544306803353103509843977179159206218824143080472857184693633917823174539019
Wed Jul  2 15:47:50 2008  prp82 factor: 2206736938256127773273970339311752643567289428173222443185875220281755576364296817
Wed Jul  2 15:47:50 2008  elapsed time 01:07:16

Version: GGNFS-0.77.1-20050930-k8
Total time: 57.18 hours.
Scaled time: 47.92 units (timescale=0.838).
Factorization parameters were as follows:
name: KA_3_9_167_7
n: 47542617632082091100384231437845636303263529996343334801020808732923113197004353274453935504867471617106807111737038599279044427284432373996054873344064002523
type: snfs
deg: 5
c5: 125
c0: -3
skew: 0.47
m: 2000000000000000000000000000000000
rlim: 5500000
alim: 5500000
lbpr: 28
lbpa: 28
mbpr: 48
mbpa: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 5500000/5500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3200111)
Primes: RFBsize:380800, AFBsize:379892, largePrimes:5594103 encountered
Relations: rels:5729847, finalFF:793042
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 57.00 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.5,2.5,100000
total time: 57.18 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM)
Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888)
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

4×10170-3

c164

name 名前matsui
date 日付March 28, 2008 22:11:25 UTC 2008 年 3 月 29 日 (土) 7 時 11 分 25 秒 (日本時間)
composite number 合成数
23707228529563299218829039529492118265169025723587584073981725638496414074246653917314283943017068434056358364630332296517449616657078080527647043936784438053634167<164>
prime factors 素因数
1360033104762423088299063931973963977671913<43>
3590519653945782877764230523114444807700131409621<49>
4854829677573519382682020652046055052653649124445093405710647102555118179<73>
factorization results 素因数分解の結果
N=23707228529563299218829039529492118265169025723587584073981725638496414074246653917314283943017068434056358364630332296517449616657078080527647043936784438053634167
  ( 164 digits)

SNFS difficulty: 170 digits.

Divisors found:

 r1=1360033104762423088299063931973963977671913 (pp43)
 r2=3590519653945782877764230523114444807700131409621 (pp49)

 r3=4854829677573519382682020652046055052653649124445093405710647102555118179 (pp73)

Version: GGNFS-0.77.1-20060513-prescott

Total time: 130.67 hours.

Scaled time: 146.09 units (timescale=1.118).

Factorization parameters were as follows:

n: 23707228529563299218829039529492118265169025723587584073981725638496414074246653917314283943017068434056358364630332296517449616657078080527647043936784438053634167
m: 10000000000000000000000000000000000
c5: 4
c0: -3
skew: 0.94
type: snfs


Factor base limits: 6000000/6000000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [3000000, 7100001)

Primes: RFBsize:412849, AFBsize:412766, largePrimes:6063551 encountered

Relations: rels:6355124, finalFF:952227

Max relations in full relation-set: 28

Initial matrix: 825682 x 952227 with sparse part having weight 57621045.

Pruned matrix : 720478 x 724670 with weight 41769639.

Total sieving time: 120.70 hours.

Total relation processing time: 0.14 hours.

Matrix solve time: 9.54 hours.

Time per square root: 0.29 hours.

Prototype def-par.txt line would be:

snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000

total time: 130.67 hours.

4×10171-3

c142

name 名前suberi
date 日付June 20, 2008 09:06:19 UTC 2008 年 6 月 20 日 (金) 18 時 6 分 19 秒 (日本時間)
composite number 合成数
2738142751399714266539963368430676759401489128665082139359214101729356022392010734956586690462444844928275853444784628651132444458796165842001<142>
prime factors 素因数
1249207319055289192086424463607428111<37>
2191904185664257747583477319317672323649397459016399392947765286350833997120102120957046738111957790744991<106>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3148089844
Step 1 took 24482ms
Step 2 took 9028ms
********** Factor found in step 2: 1249207319055289192086424463607428111
Found probable prime factor of 37 digits: 1249207319055289192086424463607428111
Probable prime cofactor 2191904185664257747583477319317672323649397459016399392947765286350833997120102120957046738111957790744991 has 106 digits
software ソフトウェア
GMP-ECM 6.2.1
execution environment 実行環境
Turion 64 X2 Mobile 1.8GHz, Gentoo Linux

4×10174-3

c175

name 名前Jo Yeong Uk
date 日付May 25, 2007 13:42:27 UTC 2007 年 5 月 25 日 (金) 22 時 42 分 27 秒 (日本時間)
composite number 合成数
3999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997<175>
prime factors 素因数
60245455742914874964935791279271<32>
composite cofactor 合成数の残り
66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107<143>
factorization results 素因数分解の結果
GMP-ECM 6.1.2 [powered by GMP 4.2.1] [ECM]
Input number is 3999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 (175 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=314052089
Step 1 took 30132ms
Step 2 took 11978ms
********** Factor found in step 2: 60245455742914874964935791279271
Found probable prime factor of 32 digits: 60245455742914874964935791279271
Composite cofactor 66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107 has 143 digits
execution environment 実行環境
Core 2 Quad Q6600

c143

name 名前Warut Roonguthai
date 日付September 23, 2011 23:35:27 UTC 2011 年 9 月 24 日 (土) 8 時 35 分 27 秒 (日本時間)
composite number 合成数
66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107<143>
prime factors 素因数
607774847420791048914654367551267917766139342948849<51>
109242838055647323468269962770165507744473968570265336406291259296580147900196558487369582443<93>
factorization results 素因数分解の結果
N = 66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107 (143 digits)
SNFS difficulty: 176 digits.
Divisors found:
r1=607774847420791048914654367551267917766139342948849 (pp51)
r2=109242838055647323468269962770165507744473968570265336406291259296580147900196558487369582443 (pp93)
Version: Msieve v. 1.47
Total time: 33.53 hours.
Factorization parameters were as follows:
name: 4*10^174-3
n: 66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107
Y0: 100000000000000000000000000000000000
Y1: -1
c0: -15
c1: 0
c2: 0
c3: 0
c4: 0
c5: 2
skew: 1.50
type: snfs
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20401519
Relations: 2295114 relations
Pruned matrix : 1309233 x 1309458
Polynomial selection time: 0.00 hours.
Total sieving time: 29.61 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 3.72 hours.
time per square root: 0.06 hours.
Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,55,55,2.5,2.5,100000
total time: 33.53 hours.
Intel64 Family 6 Model 37 Stepping 5, GenuineIntel
Windows-7-6.1.7600
processors: 4, speed: 2.53GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e61000250Lionel DebrouxSeptember 30, 2009 19:51:42 UTC 2009 年 10 月 1 日 (木) 4 時 51 分 42 秒 (日本時間)
750Lionel DebrouxOctober 1, 2009 05:28:00 UTC 2009 年 10 月 1 日 (木) 14 時 28 分 0 秒 (日本時間)
403e62063Wataru SakaiMay 25, 2010 12:29:46 UTC 2010 年 5 月 25 日 (火) 21 時 29 分 46 秒 (日本時間)

4×10177-3

c130

name 名前Warut Roonguthai
date 日付December 7, 2011 11:47:49 UTC 2011 年 12 月 7 日 (水) 20 時 47 分 49 秒 (日本時間)
composite number 合成数
7042429192906424012095954898321448692172680100055856776993084295288494275835228990855496106111694690400340761913941822915514261377<130>
prime factors 素因数
63224187335558142488978610210973178703114619175033664316325471293<65>
111388212165214594894961563138072669090100915626062887665542359189<66>
factorization results 素因数分解の結果
N = 7042429192906424012095954898321448692172680100055856776993084295288494275835228990855496106111694690400340761913941822915514261377 (130 digits)
SNFS difficulty: 178 digits.
Divisors found:
r1=63224187335558142488978610210973178703114619175033664316325471293 (pp65)
r2=111388212165214594894961563138072669090100915626062887665542359189 (pp66)
Version: Msieve v. 1.48
Total time: 31.09 hours.
Factorization parameters were as follows:
name: 4*10^177-3
n: 7042429192906424012095954898321448692172680100055856776993084295288494275835228990855496106111694690400340761913941822915514261377
Y0: 100000000000000000000000000000000000
Y1: -1
c0: -3
c1: 0
c2: 0
c3: 0
c4: 0
c5: 400
skew: 0.38
type: snfs
Factor base limits: 6500000/6500000
Large primes per side: 3
Large prime bits: 28/28
Sieved rational special-q in [0, 0)
Total raw relations: 20022267
Relations: 2468406 relations
Pruned matrix : 1392351 x 1392576
Polynomial selection time: 0.00 hours.
Total sieving time: 28.34 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 2.55 hours.
time per square root: 0.07 hours.
Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,28,28,55,55,2.5,2.5,100000
total time: 31.09 hours.
Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 4, speed: 2.29GHz

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61070300Dmitry DomanovMay 18, 2011 07:48:54 UTC 2011 年 5 月 18 日 (水) 16 時 48 分 54 秒 (日本時間)
770Ignacio SantosJune 29, 2011 16:48:47 UTC 2011 年 6 月 30 日 (木) 1 時 48 分 47 秒 (日本時間)
4511e64220220Ignacio SantosJune 29, 2011 16:48:47 UTC 2011 年 6 月 30 日 (木) 1 時 48 分 47 秒 (日本時間)
4000Wataru SakaiNovember 28, 2011 13:30:34 UTC 2011 年 11 月 28 日 (月) 22 時 30 分 34 秒 (日本時間)
5043e661 / 6566Ignacio SantosJune 29, 2011 16:48:47 UTC 2011 年 6 月 30 日 (木) 1 時 48 分 47 秒 (日本時間)

4×10179-3

c149

name 名前suberi
date 日付June 13, 2007 08:22:41 UTC 2007 年 6 月 13 日 (水) 17 時 22 分 41 秒 (日本時間)
composite number 合成数
40937790385734832381825760180241053079706344764063747728889833618966215116036022888828134331177448603683334495384964739081040453162962498699481535747<149>
prime factors 素因数
5440737829768967253704195829959<31>
7524308589497537700550163236387070963072198888286762101154838011070880004644191216696466958842086243668442125836776933<118>
factorization results 素因数分解の結果
Input number is 40937790385734832381825760180241053079706344764063747728889833618966215116036022888828134331177448603683334495384964739081040453162962498699481535747 (149 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3294625248
Step 1 took 243393ms
********** Factor found in step 1: 5440737829768967253704195829959
Found probable prime factor of 31 digits: 5440737829768967253704195829959
Probable prime cofactor 7524308589497537700550163236387070963072198888286762101154838011070880004644191216696466958842086243668442125836776933 has 118 digits
software ソフトウェア
GMP-ECM 6.1.2
execution environment 実行環境
Sempron 3400+ 1.80GHz, Windows Vista

4×10181-3

c137

name 名前Dmitry Domanov
date 日付May 22, 2013 05:28:58 UTC 2013 年 5 月 22 日 (水) 14 時 28 分 58 秒 (日本時間)
composite number 合成数
19897828227445873871956157628279839871658250521576796072644887258104496175433402377572037925905789194291543290519291431564516077026024111<137>
prime factors 素因数
1610703356861443104917170340729425061243949975177989668523<58>
12353502674892318391055956643949191085736809403224331052816482028936976548742157<80>
factorization results 素因数分解の結果
N=19897828227445873871956157628279839871658250521576796072644887258104496175433402377572037925905789194291543290519291431564516077026024111
  ( 137 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=1610703356861443104917170340729425061243949975177989668523 (pp58)
 r2=12353502674892318391055956643949191085736809403224331052816482028936976548742157 (pp80)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 93.96 hours.
Scaled time: 180.87 units (timescale=1.925).
Factorization parameters were as follows:
n: 19897828227445873871956157628279839871658250521576796072644887258104496175433402377572037925905789194291543290519291431564516077026024111
m: 1000000000000000000000000000000000000
deg: 5
c5: 40
c0: -3
skew: 0.60
# Murphy_E = 1.169e-10
type: snfs
lss: 1
rlim: 7400000
alim: 7400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3700000, 8500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1277590 x 1277817
Total sieving time: 91.61 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 2.06 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,181.000,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000
total time: 93.96 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6700300Dmitry DomanovMay 18, 2011 07:49:03 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 3 秒 (日本時間)
400Tapio RajalaMarch 23, 2013 17:37:06 UTC 2013 年 3 月 24 日 (日) 2 時 37 分 6 秒 (日本時間)
4511e6500 / 4324Tapio RajalaMarch 24, 2013 15:28:29 UTC 2013 年 3 月 25 日 (月) 0 時 28 分 29 秒 (日本時間)

4×10182-3

c170

name 名前suberi
date 日付June 20, 2008 09:08:38 UTC 2008 年 6 月 20 日 (金) 18 時 8 分 38 秒 (日本時間)
composite number 合成数
59722744987656201941631385483096327970096868207838641751515773042571059819351891224156327206330122175888053761974066639312330017668904720206029310147634656371179005716731<170>
prime factors 素因数
39387975579353615896504296945339241<35>
1516268457802174096132783680473005131671559431263031934817627015235299434290293219117245850021882172515022423742506186276722478373533891<136>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2421712102
Step 1 took 32054ms
Step 2 took 10801ms
********** Factor found in step 2: 39387975579353615896504296945339241
Found probable prime factor of 35 digits: 39387975579353615896504296945339241
Probable prime cofactor 1516268457802174096132783680473005131671559431263031934817627015235299434290293219117245850021882172515022423742506186276722478373533891 has 136 digits
software ソフトウェア
GMP-ECM 6.2.1
execution environment 実行環境
Turion 64 X2 Mobile 1.8GHz, Gentoo Linux

4×10184-3

c161

name 名前Dmitry Domanov
date 日付June 13, 2013 13:04:28 UTC 2013 年 6 月 13 日 (木) 22 時 4 分 28 秒 (日本時間)
composite number 合成数
46232542533035156454001969191075700663377951751542947000241440733456941405937047716774280151233364457060382332182637363398327474885951118725856060311448752067657<161>
prime factors 素因数
34534145325744924551610736069746683871669092538005717108954621175789535293680147<80>
1338748710788831131175479530384595489834198458367075025613019266634148662315537331<82>
factorization results 素因数分解の結果
N=46232542533035156454001969191075700663377951751542947000241440733456941405937047716774280151233364457060382332182637363398327474885951118725856060311448752067657
  ( 161 digits)
SNFS difficulty: 185 digits.
Divisors found:
 r1=34534145325744924551610736069746683871669092538005717108954621175789535293680147 (pp80)
 r2=1338748710788831131175479530384595489834198458367075025613019266634148662315537331 (pp82)
Version: Msieve v. 1.50 (SVN unknown)
Total time: 144.12 hours.
Scaled time: 277.44 units (timescale=1.925).
Factorization parameters were as follows:
n: 46232542533035156454001969191075700663377951751542947000241440733456941405937047716774280151233364457060382332182637363398327474885951118725856060311448752067657
m: 10000000000000000000000000000000000000
deg: 5
c5: 2
c0: -15
skew: 1.50
# Murphy_E = 7.053e-11
type: snfs
lss: 1
rlim: 8600000
alim: 8600000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 400000
Factor base limits: 8600000/8600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4300000, 11500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1895326 x 1895551
Total sieving time: 140.16 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 3.53 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,185.000,5,0,0,0,0,0,0,0,0,8600000,8600000,28,28,54,54,2.5,2.5,100000
total time: 144.12 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:49:12 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 12 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:57:48 UTC 2013 年 3 月 29 日 (金) 22 時 57 分 48 秒 (日本時間)
4511e6400 / 4192Dmitry DomanovMarch 29, 2013 13:57:48 UTC 2013 年 3 月 29 日 (金) 22 時 57 分 48 秒 (日本時間)

4×10185-3

c176

name 名前Robert Backstrom
date 日付February 3, 2012 14:25:57 UTC 2012 年 2 月 3 日 (金) 23 時 25 分 57 秒 (日本時間)
composite number 合成数
11353613894204264023992972108230969725003357460187956744283215637230733521496346856921603608313285682267099847459380560671096678642240707500004755674059847972316399906235759571<176>
prime factors 素因数
24544359207043689314883852987401263868524717<44>
1711254231106590390191469193234817699792475403912781328971783723<64>
270313594614181001025713349777904935988854107792014326687398953865981<69>
factorization results 素因数分解の結果
Number: n
N=11353613894204264023992972108230969725003357460187956744283215637230733521496346856921603608313285682267099847459380560671096678642240707500004755674059847972316399906235759571
  ( 176 digits)
SNFS difficulty: 185 digits.
Divisors found:

Sat Feb  4 01:11:19 2012  prp44 factor: 24544359207043689314883852987401263868524717
Sat Feb  4 01:11:19 2012  prp64 factor: 1711254231106590390191469193234817699792475403912781328971783723
Sat Feb  4 01:11:19 2012  prp69 factor: 270313594614181001025713349777904935988854107792014326687398953865981
Sat Feb  4 01:11:19 2012  elapsed time 02:30:31 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.659).
Factorization parameters were as follows:
name: KA_39997_185
n: 11353613894204264023992972108230969725003357460187956744283215637230733521496346856921603608313285682267099847459380560671096678642240707500004755674059847972316399906235759571
m: 10000000000000000000000000000000000000
#  c176, diff: 185.6
skew: 0.94
deg: 5
c5: 4
c0: -3
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 9000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 6028189 hash collisions in 77551835 relations (74348982 unique)
Msieve: matrix is 1097464 x 1097712 (300.8 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,185,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.06 BogoMIPS (lpj=2797533)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Total of 8 processors activated (44760.82 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 18, 2011 07:49:20 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 20 秒 (日本時間)

4×10186-3

c175

name 名前Robert Backstrom
date 日付February 21, 2012 09:59:55 UTC 2012 年 2 月 21 日 (火) 18 時 59 分 55 秒 (日本時間)
composite number 合成数
1386073722394237385667707080376673333733102454735988906843612461646853974976645202149448609623268373027185703012694838977855794137228362182272244438249363077580902610355303643<175>
prime factors 素因数
4847068969936404860710521156459235585519080320343476286401234398015921<70>
285961213052931476822620205722956711645466417142175363075429539354193601891794737064219841656408375838283<105>
factorization results 素因数分解の結果
Number: n
N=1386073722394237385667707080376673333733102454735988906843612461646853974976645202149448609623268373027185703012694838977855794137228362182272244438249363077580902610355303643
  ( 175 digits)
SNFS difficulty: 186 digits.
Divisors found:

Tue Feb 21 19:45:58 2012  prp70 factor: 4847068969936404860710521156459235585519080320343476286401234398015921
Tue Feb 21 19:45:58 2012  prp105 factor: 285961213052931476822620205722956711645466417142175363075429539354193601891794737064219841656408375838283
Tue Feb 21 19:45:58 2012  elapsed time 02:54:17 (Msieve 1.44 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=1.658).
Factorization parameters were as follows:
name: KA_39997_186
n: 1386073722394237385667707080376673333733102454735988906843612461646853974976645202149448609623268373027185703012694838977855794137228362182272244438249363077580902610355303643
m: 10000000000000000000000000000000000000
#  c175, diff: 186.6
skew: 0.6
deg: 5
c5: 40
c0: -3
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved  special-q in [100000, 9000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 8309191 hash collisions in 78424716 relations (74977056 unique)
Msieve: matrix is 1157708 x 1157953 (319.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,186,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU1: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU2: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU3: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU4: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU5: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU6: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
CPU7: Intel(R) Core(TM) i7 CPU         930  @ 2.80GHz stepping 05
Memory: 6059348k/6815744k available (3972k kernel code, 525828k absent, 230568k reserved, 2498k data, 1292k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5595.76 BogoMIPS (lpj=2797881)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797555)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797552)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797553)
Calibrating delay using timer specific routine.. 5595.10 BogoMIPS (lpj=2797554)
Calibrating delay using timer specific routine.. 5595.11 BogoMIPS (lpj=2797556)
Total of 8 processors activated (44761.52 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 18, 2011 07:49:28 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 28 秒 (日本時間)

4×10188-3

c160

name 名前Daniel Morel
date 日付December 17, 2014 16:18:23 UTC 2014 年 12 月 18 日 (木) 1 時 18 分 23 秒 (日本時間)
composite number 合成数
1323604367824830365446812101635373005900328781335332188667793636513128284501701704888908950746632715367704774110799546210762367186905822641546878361391896109801<160>
prime factors 素因数
3589458682616526115303944010645313849880359656503121<52>
368747625995792928886003610636829284961689064502743227973824854743419752177358550714772256180281142630317081<108>
factorization results 素因数分解の結果
Polynomial: X^5 - 75 ; m = 100000000000000000000000000000000000000
rlim = alim = 24000000
lpbr = lpba = 28
mfbr = mfba = 49
rlambda = alambda = 2.4
skew = 4.5
qIntSize = 100000

Initial matrix: 3012450 x 3779400
Pruned matrix: 2234422 x 2249548

time: 26 days or so

p52 = 3589458682616526115303944010645313849880359656503121
p108 = 368747625995792928886003610636829284961689064502743227973824854743419752177358550714772256180281142630317081
software ソフトウェア
GGNFS-0.77.1
execution environment 実行環境
Windows 7 (AMD Athlon 2,7 GHz and Intel Core I5 3.2 GHz for matrix step)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:49:35 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 35 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:58:16 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 16 秒 (日本時間)
4511e61400 / 4192400Dmitry DomanovMarch 29, 2013 13:58:16 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 16 秒 (日本時間)
1000Dmitry DomanovAugust 4, 2014 12:32:33 UTC 2014 年 8 月 4 日 (月) 21 時 32 分 33 秒 (日本時間)

4×10189-3

c137

name 名前jafarism
date 日付May 20, 2017 07:12:44 UTC 2017 年 5 月 20 日 (土) 16 時 12 分 44 秒 (日本時間)
composite number 合成数
65690521616277898013818798682364724712280279417538283651273540111107403848406641788440166732373008904205185184763921643472182793286827659<137>
prime factors 素因数
42951207869419459061300421901875659455265174321275046370207861095761<68>
1529421985430320101703540035314141898971020909779238676210675105896219<70>
factorization results 素因数分解の結果
-> Q0=16000001, QSTEP=100000.
-> makeJobFile(): q0=16000000, q1=16100000.
-> makeJobFile(): Adjusted to q0=16000001, q1=16100000.
-> Lattice sieving rational q-values from q=16000001 to 16100000.
=> "..\gnfs-lasieve4I13e.exe" -k -o spairs.out.T1 -v -n0 -r 39997_189.job.T1
=> "..\gnfs-lasieve4I13e.exe" -k -o spairs.out.T2 -v -n0 -r 39997_189.job.T2
=> "..\gnfs-lasieve4I13e.exe" -k -o spairs.out.T3 -v -n0 -r 39997_189.job.T3
=> "..\gnfs-lasieve4I13e.exe" -k -o spairs.out.T4 -v -n0 -r 39997_189.job.T4
gnfs-lasieve4I13e (with asm64): L1_BITS=15, SVN $Revision$
gnfs-lasieve4I13e (with asm64): L1_BITS=15, SVN $Revision$
gnfs-lasieve4I13e (with asm64): L1_BITS=15, SVN $Revision$
gnfs-lasieve4I13e (with asm64): L1_BITS=15, SVN $Revision$
FBsize 689797+0 (deg 5), 689381+0 (deg 1)
FBsize 689797+0 (deg 5), 689381+0 (deg 1)
FBsize 689797+0 (deg 5), 689381+0 (deg 1)
FBsize 689797+0 (deg 5), 689381+0 (deg 1)
total yield: 42873, q=16025017 (0.03975 sec/rel) ETA 0h00m)
1481 Special q, 9786 reduction iterations
reports: 933846747->15152802->13889040->8987649->5901805->3911661
Number of relations with k rational and l algebraic primes for (k,l)=:

Total yield: 42873
0/0 mpqs failures, 8381/8941 vain mpqs
milliseconds total: Sieve 568326 Sched 0 medsched 313532
TD 145602 (Init 3253, MPQS 16969) Sieve-Change 676730
TD side 0: init/small/medium/large/search: 8135 15026 10548 21836 12773
sieve: init/small/medium/large/search: 8859 85281 14268 146489 23810
TD side 1: init/small/medium/large/search: 8962 7636 9591 20848 9618
sieve: init/small/medium/large/search: 9577 108817 15141 147320 8764
total yield: 43483, q=16100027 (0.03951 sec/rel) ETA 0h00m)
1496 Special q, 9965 reduction iterations
reports: 943405648->15287779->14022597->9092435->5974432->3958634
Number of relations with k rational and l algebraic primes for (k,l)=:
Total yield: 43483
0/0 mpqs failures, 8603/8866 vain mpqs
milliseconds total: Sieve 576557 Sched 0 medsched 312230
TD 146346 (Init 3291, MPQS 17297) Sieve-Change 682793
TD side 0: init/small/medium/large/search: 7799 13629 10507 20962 13789
sieve: init/small/medium/large/search: 8040 84728 14648 150150 25379
TD side 1: init/small/medium/large/search: 8764 7941 10559 22101 9363
sieve: init/small/medium/large/search: 10438 113517 13672 147508 8477
total yield: 43870, q=16050007 (0.03929 sec/rel) ETA 0h00m)
1504 Special q, 9972 reduction iterations
reports: 949068898->15430893->14138360->9145602->6008584->3980433
Number of relations with k rational and l algebraic primes for (k,l)=:

Total yield: 43870
0/0 mpqs failures, 8621/9023 vain mpqs
milliseconds total: Sieve 575848 Sched 0 medsched 316175
TD 145467 (Init 3770, MPQS 16736) Sieve-Change 686233
TD side 0: init/small/medium/large/search: 7942 13724 10223 23123 12130
sieve: init/small/medium/large/search: 8867 85823 14418 149310 25042
TD side 1: init/small/medium/large/search: 8010 8823 10055 21507 8893
sieve: init/small/medium/large/search: 9924 111007 14506 148353 8598
total yield: 44032, q=16075001 (0.03925 sec/rel) ETA 0h00m)
1508 Special q, 10024 reduction iterations
reports: 949989859->15438224->14155558->9167935->6024330->3989368
Number of relations with k rational and l algebraic primes for (k,l)=:

Total yield: 44032
0/0 mpqs failures, 8456/9002 vain mpqs
milliseconds total: Sieve 580061 Sched 0 medsched 316005
TD 144967 (Init 3295, MPQS 16649) Sieve-Change 687424
TD side 0: init/small/medium/large/search: 7835 14318 10039 22505 13140
sieve: init/small/medium/large/search: 8616 85509 13846 150770 25277
TD side 1: init/small/medium/large/search: 8361 7984 9796 21279 9395
sieve: init/small/medium/large/search: 9613 114148 15509 149005 7768
=>"c:/cygwin64/bin/cat.exe" spairs.out.T1 >> spairs.out
=>"c:/cygwin64/bin/cat.exe" spairs.out.T2 >> spairs.out
=>"c:/cygwin64/bin/cat.exe" spairs.out.T3 >> spairs.out
=>"c:/cygwin64/bin/cat.exe" spairs.out.T4 >> spairs.out
=>"c:/cygwin64/bin/cat.exe" spairs.out >> 39997_189.dat
Found 22645523 relations, need at least 5532435 to proceed.
=> "../msieve.exe" -s 39997_189.dat -l ggnfs.log -i 39997_189.ini -v -nf 39997_189.fb -t 4 -nc1

Msieve v. 1.53 (SVN 1005)
Wed May 17 14:02:52 2017
random seeds: e16d4fe8 b0cb31f3
factoring 65690521616277898013818798682364724712280279417538283651273540111107403848406641788440166732373008904205185184763921643472182793286827659 (137 digits)
searching for 15-digit factors
commencing number field sieve (137-digit input)
R0: -100000000000000000000000000000000000000
R1: 1
A0: -15
A1: 0
A2: 0
A3: 0
A4: 0
A5: 2
skew 1.50, size 3.027e-013, alpha 1.848, combined = 3.915e-011 rroots = 1

commencing relation filtering
estimated available RAM is 3998.3 MB
commencing duplicate removal, pass 1
read 10M relations
read 20M relations
found 3468753 hash collisions in 22645522 relations
added 345 free relations
commencing duplicate removal, pass 2
found 3328931 duplicates and 19316936 unique relations
memory use: 106.6 MB
reading ideals above 720000
commencing singleton removal, initial pass
memory use: 689.0 MB
reading all ideals from disk
memory use: 619.7 MB
keeping 21484226 ideals with weight <= 200, target excess is 116250
commencing in-memory singleton removal
begin with 19316936 relations and 21484226 unique ideals
reduce to 7889673 relations and 7731825 ideals in 18 passes
max relations containing the same ideal: 107
removing 210320 relations and 198821 ideals in 11499 cliques
commencing in-memory singleton removal
begin with 7679353 relations and 7731825 unique ideals
reduce to 7674294 relations and 7527933 ideals in 8 passes
max relations containing the same ideal: 105
removing 151201 relations and 139702 ideals in 11499 cliques
commencing in-memory singleton removal
begin with 7523093 relations and 7527933 unique ideals
reduce to 7520445 relations and 7385579 ideals in 8 passes
max relations containing the same ideal: 104
relations with 0 large ideals: 2902
relations with 1 large ideals: 732
relations with 2 large ideals: 14824
relations with 3 large ideals: 120888
relations with 4 large ideals: 534927
relations with 5 large ideals: 1371897
relations with 6 large ideals: 2194397
relations with 7+ large ideals: 3279878
commencing 2-way merge
reduce to 4380900 relation sets and 4246034 unique ideals
commencing full merge
memory use: 509.9 MB
found 2220766 cycles, need 2214234
weight of 2214234 cycles is about 155055160 (70.03/cycle)
distribution of cycle lengths:
1 relations: 335156
2 relations: 290800
3 relations: 268739
4 relations: 230570
5 relations: 196032
6 relations: 161311
7 relations: 135442
8 relations: 110339
9 relations: 89241
10+ relations: 396604
heaviest cycle: 28 relations
commencing cycle optimization
start with 12850805 relations
pruned 280011 relations
memory use: 431.7 MB
distribution of cycle lengths:
1 relations: 335156
2 relations: 296993
3 relations: 277694
4 relations: 234458
5 relations: 199328
6 relations: 162197
7 relations: 135131
8 relations: 108966
9 relations: 87273
10+ relations: 377038
heaviest cycle: 28 relations
RelProcTime: 624
elapsed time 00:10:25
-> Doing matrix solving step...
=> "../msieve.exe" -s 39997_189.dat -l ggnfs.log -i 39997_189.ini -v -nf 39997_189.fb -t 4 -nc2


Msieve v. 1.53 (SVN 1005)
Wed May 17 14:13:18 2017
random seeds: 76691870 85de943a
factoring 65690521616277898013818798682364724712280279417538283651273540111107403848406641788440166732373008904205185184763921643472182793286827659 (137 digits)
searching for 15-digit factors
commencing number field sieve (137-digit input)
R0: -100000000000000000000000000000000000000
R1: 1
A0: -15
A1: 0
A2: 0
A3: 0
A4: 0
A5: 2
skew 1.50, size 3.027e-013, alpha 1.848, combined = 3.915e-011 rroots = 1

commencing linear algebra
read 2214234 cycles
cycles contain 7329246 unique relations
read 7329246 relations
using 20 quadratic characters above 4294917295
building initial matrix
memory use: 895.3 MB
read 2214234 cycles
matrix is 2214057 x 2214234 (664.4 MB) with weight 195421342 (88.26/col)
sparse part has weight 149810991 (67.66/col)
filtering completed in 2 passes
matrix is 2211822 x 2211999 (664.2 MB) with weight 195346253 (88.31/col)
sparse part has weight 149786688 (67.72/col)
matrix starts at (0, 0)
matrix is 2211822 x 2211999 (664.2 MB) with weight 195346253 (88.31/col)
sparse part has weight 149786688 (67.72/col)
saving the first 48 matrix rows for later
matrix includes 64 packed rows
matrix is 2211774 x 2211999 (629.8 MB) with weight 154688630 (69.93/col)
sparse part has weight 142987673 (64.64/col)
using block size 8192 and superblock size 294912 for processor cache size 3072 kB
commencing Lanczos iteration (4 threads)
memory use: 509.6 MB
linear algebra at 0.1%, ETA 4h50m2211999 dimensions (0.1%, ETA 4h50m)
checkpointing every 430000 dimensions999 dimensions (0.1%, ETA 5h 8m)
linear algebra completed 2211767 of 2211999 dimensions (100.0%, ETA 0h 0m)
lanczos halted after 34981 iterations (dim = 2211767)
recovered 35 nontrivial dependencies
BLanczosTime: 32225
elapsed time 08:57:06
=> "../msieve.exe" -s 39997_189.dat -l ggnfs.log -i 39997_189.ini -v -nf 39997_189.fb -t 4 -nc3


Msieve v. 1.53 (SVN 1005)
Wed May 17 23:10:25 2017
random seeds: 954961a4 ed798d0c
factoring 65690521616277898013818798682364724712280279417538283651273540111107403848406641788440166732373008904205185184763921643472182793286827659 (137 digits)
searching for 15-digit factors
commencing number field sieve (137-digit input)
R0: -100000000000000000000000000000000000000
R1: 1
A0: -15
A1: 0
A2: 0
A3: 0
A4: 0
A5: 2
skew 1.50, size 3.027e-013, alpha 1.848, combined = 3.915e-011 rroots = 1

commencing square root phase
reading relations for dependency 1
read 1105469 cycles
cycles contain 3662030 unique relations
read 3662030 relations
multiplying 3662030 relations
multiply complete, coefficients have about 87.54 million bits
initial square root is modulo 1920521
GCD is N, no factor found
reading relations for dependency 2
read 1104801 cycles
cycles contain 3662542 unique relations
read 3662542 relations
multiplying 3662542 relations
multiply complete, coefficients have about 87.54 million bits
initial square root is modulo 1922771
GCD is N, no factor found
reading relations for dependency 3
read 1104673 cycles
cycles contain 3660660 unique relations
read 3660660 relations
multiplying 3660660 relations
multiply complete, coefficients have about 87.50 million bits
initial square root is modulo 1908251
GCD is 1, no factor found
reading relations for dependency 4
read 1105723 cycles
cycles contain 3663770 unique relations
read 3663770 relations
multiplying 3663770 relations
multiply complete, coefficients have about 87.57 million bits
initial square root is modulo 1932331
sqrtTime: 1312
p68 factor: 42951207869419459061300421901875659455265174321275046370207861095761
p70 factor: 1529421985430320101703540035314141898971020909779238676210675105896219
elapsed time 00:21:53
software ソフトウェア
ggnfs+msieve
execution environment 実行環境
Windows 10 Creator's edition on Core i5

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:49:43 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 43 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:58:28 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 28 秒 (日本時間)
4511e61400 / 4192400Dmitry DomanovMarch 29, 2013 13:58:28 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 28 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:01:09 UTC 2014 年 8 月 5 日 (火) 20 時 1 分 9 秒 (日本時間)

4×10190-3

c183

name 名前Wataru Sakai
date 日付June 20, 2010 07:09:24 UTC 2010 年 6 月 20 日 (日) 16 時 9 分 24 秒 (日本時間)
composite number 合成数
297327111773430378028454100532228166476690747461999049251961037690351697313745433120603465809831378138740159466787829446895084701915781902327553192693694657529081025897169135932402919<183>
prime factors 素因数
1716323154172044902113264015543934465977<40>
composite cofactor 合成数の残り
173234924350164766480818160910759086382896410137382983241643957601382770042213907784820986962968502145443741516209118128259040052623725952326047<144>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2212708475
Step 1 took 18232ms
Step 2 took 6986ms
********** Factor found in step 2: 1716323154172044902113264015543934465977
Found probable prime factor of 40 digits: 1716323154172044902113264015543934465977
Composite cofactor 173234924350164766480818160910759086382896410137382983241643957601382770042213907784820986962968502145443741516209118128259040052623725952326047 has 144 digits
software ソフトウェア
GMP-ECM 6.2.3

c144

name 名前Wataru Sakai
date 日付June 21, 2010 00:16:51 UTC 2010 年 6 月 21 日 (月) 9 時 16 分 51 秒 (日本時間)
composite number 合成数
173234924350164766480818160910759086382896410137382983241643957601382770042213907784820986962968502145443741516209118128259040052623725952326047<144>
prime factors 素因数
87669989277938702330798029761042050099<38>
1975988884873260107276431644586768793669743214417979395740447602843978441558180122551894143256764261249253<106>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1719767535
Step 1 took 13274ms
Step 2 took 5627ms
********** Factor found in step 2: 87669989277938702330798029761042050099
Found probable prime factor of 38 digits: 87669989277938702330798029761042050099
Probable prime cofactor 1975988884873260107276431644586768793669743214417979395740447602843978441558180122551894143256764261249253 has 106 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e60 / 1732--
4511e6175 / 4479Dmitry DomanovJune 20, 2010 03:18:49 UTC 2010 年 6 月 20 日 (日) 12 時 18 分 49 秒 (日本時間)

4×10191-3

c147

name 名前Taiyo Kodama
date 日付November 6, 2020 00:12:57 UTC 2020 年 11 月 6 日 (金) 9 時 12 分 57 秒 (日本時間)
composite number 合成数
356190149584275523195576561147499332086015646525597867121960594664691220473516464510001055670663735998707729228821428958114201172144961290600778899<147>
prime factors 素因数
3145607281375230516990722687994928919065671266212250293137017<61>
113234144546026251582982939108674252477271173985388614004470326878470095488252494602347<87>
factorization results 素因数分解の結果
Tue Nov 03 12:32:15 2020 -> factmsieve.py (v0.86)
Tue Nov 03 12:32:15 2020 -> This is client 1 of 1
Tue Nov 03 12:32:15 2020 -> Running on 6 Cores with 1 hyper-thread per Core
Tue Nov 03 12:32:15 2020 -> Working with NAME = numto
Tue Nov 03 12:32:15 2020 -> Selected lattice siever: gnfs-lasieve4I13e
Tue Nov 03 12:32:15 2020 -> Creating param file to detect parameter changes...
Tue Nov 03 12:32:15 2020 -> Running setup ...
Tue Nov 03 12:32:15 2020 -> Estimated minimum relations needed: 2.2022e+07
Tue Nov 03 12:32:15 2020 -> cleaning up before a restart
Tue Nov 03 12:32:15 2020 -> Running lattice siever ...
Tue Nov 03 12:32:15 2020 -> entering sieving loop

Wed Nov 04 03:02:28 2020 Found 22090096 relations, 100.3% of the estimated minimum (22022019).
Wed Nov 04 03:02:28 2020 -> msieve.gpu.ivybridge -s 39997_191\numto.dat -l 39997_191\numto.log -i 39997_191\numto.ini -nf 39997_191\numto.fb -t 6 -nc1
Wed Nov  4 03:02:28 2020  
Wed Nov  4 03:02:28 2020  
Wed Nov  4 03:02:28 2020  Msieve v. 1.53 (SVN 998)
Wed Nov  4 03:02:28 2020  random seeds: 20442d00 323f6d49
Wed Nov  4 03:02:28 2020  factoring 356190149584275523195576561147499332086015646525597867121960594664691220473516464510001055670663735998707729228821428958114201172144961290600778899 (147 digits)
Wed Nov  4 03:02:29 2020  searching for 15-digit factors
Wed Nov  4 03:02:29 2020  commencing number field sieve (147-digit input)
Wed Nov  4 03:02:29 2020  R0: -100000000000000000000000000000000000000
Wed Nov  4 03:02:29 2020  R1: 1
Wed Nov  4 03:02:29 2020  A0: -3
Wed Nov  4 03:02:29 2020  A1: 0
Wed Nov  4 03:02:29 2020  A2: 0
Wed Nov  4 03:02:29 2020  A3: 0
Wed Nov  4 03:02:29 2020  A4: 0
Wed Nov  4 03:02:29 2020  A5: 40
Wed Nov  4 03:02:29 2020  skew 0.60, size 3.292e-13, alpha 0.443, combined = 4.062e-11 rroots = 1
Wed Nov  4 03:02:29 2020  
Wed Nov  4 03:02:29 2020  commencing relation filtering
Wed Nov  4 03:02:29 2020  estimated available RAM is 32688.8 MB
Wed Nov  4 03:02:29 2020  commencing duplicate removal, pass 1
Wed Nov  4 03:05:46 2020  found 3209140 hash collisions in 22090095 relations
Wed Nov  4 03:06:11 2020  added 716122 free relations
Wed Nov  4 03:06:11 2020  commencing duplicate removal, pass 2
Wed Nov  4 03:06:17 2020  found 2871045 duplicates and 19935172 unique relations
Wed Nov  4 03:06:17 2020  memory use: 98.6 MB
Wed Nov  4 03:06:17 2020  reading ideals above 720000
Wed Nov  4 03:06:17 2020  commencing singleton removal, initial pass
Wed Nov  4 03:08:55 2020  memory use: 689.0 MB
Wed Nov  4 03:08:55 2020  reading all ideals from disk
Wed Nov  4 03:08:56 2020  memory use: 637.8 MB
Wed Nov  4 03:08:56 2020  keeping 21675463 ideals with weight <= 200, target excess is 116911
Wed Nov  4 03:08:57 2020  commencing in-memory singleton removal
Wed Nov  4 03:08:58 2020  begin with 19935172 relations and 21675463 unique ideals
Wed Nov  4 03:09:06 2020  reduce to 8772156 relations and 8314080 ideals in 18 passes
Wed Nov  4 03:09:06 2020  max relations containing the same ideal: 120
Wed Nov  4 03:09:08 2020  removing 1245197 relations and 1083967 ideals in 161230 cliques
Wed Nov  4 03:09:08 2020  commencing in-memory singleton removal
Wed Nov  4 03:09:09 2020  begin with 7526959 relations and 8314080 unique ideals
Wed Nov  4 03:09:11 2020  reduce to 7374197 relations and 7073533 ideals in 9 passes
Wed Nov  4 03:09:11 2020  max relations containing the same ideal: 108
Wed Nov  4 03:09:13 2020  removing 939245 relations and 778015 ideals in 161230 cliques
Wed Nov  4 03:09:13 2020  commencing in-memory singleton removal
Wed Nov  4 03:09:14 2020  begin with 6434952 relations and 7073533 unique ideals
Wed Nov  4 03:09:16 2020  reduce to 6334739 relations and 6193123 ideals in 10 passes
Wed Nov  4 03:09:16 2020  max relations containing the same ideal: 99
Wed Nov  4 03:09:18 2020  relations with 0 large ideals: 2964
Wed Nov  4 03:09:18 2020  relations with 1 large ideals: 850
Wed Nov  4 03:09:18 2020  relations with 2 large ideals: 15927
Wed Nov  4 03:09:18 2020  relations with 3 large ideals: 124331
Wed Nov  4 03:09:18 2020  relations with 4 large ideals: 515893
Wed Nov  4 03:09:18 2020  relations with 5 large ideals: 1241593
Wed Nov  4 03:09:18 2020  relations with 6 large ideals: 1849437
Wed Nov  4 03:09:18 2020  relations with 7+ large ideals: 2583744
Wed Nov  4 03:09:18 2020  commencing 2-way merge
Wed Nov  4 03:09:21 2020  reduce to 3805248 relation sets and 3663632 unique ideals
Wed Nov  4 03:09:21 2020  commencing full merge
Wed Nov  4 03:10:00 2020  memory use: 454.4 MB
Wed Nov  4 03:10:00 2020  found 1957776 cycles, need 1935832
Wed Nov  4 03:10:00 2020  weight of 1935832 cycles is about 135845997 (70.17/cycle)
Wed Nov  4 03:10:00 2020  distribution of cycle lengths:
Wed Nov  4 03:10:00 2020  1 relations: 265929
Wed Nov  4 03:10:00 2020  2 relations: 234718
Wed Nov  4 03:10:00 2020  3 relations: 220074
Wed Nov  4 03:10:00 2020  4 relations: 195502
Wed Nov  4 03:10:00 2020  5 relations: 175402
Wed Nov  4 03:10:00 2020  6 relations: 149731
Wed Nov  4 03:10:00 2020  7 relations: 130155
Wed Nov  4 03:10:00 2020  8 relations: 111814
Wed Nov  4 03:10:00 2020  9 relations: 94929
Wed Nov  4 03:10:00 2020  10+ relations: 357578
Wed Nov  4 03:10:00 2020  heaviest cycle: 23 relations
Wed Nov  4 03:10:01 2020  commencing cycle optimization
Wed Nov  4 03:10:02 2020  start with 11172406 relations
Wed Nov  4 03:10:13 2020  pruned 263980 relations
Wed Nov  4 03:10:13 2020  memory use: 368.6 MB
Wed Nov  4 03:10:13 2020  distribution of cycle lengths:
Wed Nov  4 03:10:13 2020  1 relations: 265929
Wed Nov  4 03:10:13 2020  2 relations: 239636
Wed Nov  4 03:10:13 2020  3 relations: 227299
Wed Nov  4 03:10:13 2020  4 relations: 200038
Wed Nov  4 03:10:13 2020  5 relations: 179004
Wed Nov  4 03:10:13 2020  6 relations: 151686
Wed Nov  4 03:10:13 2020  7 relations: 131282
Wed Nov  4 03:10:13 2020  8 relations: 111996
Wed Nov  4 03:10:13 2020  9 relations: 94200
Wed Nov  4 03:10:13 2020  10+ relations: 334762
Wed Nov  4 03:10:13 2020  heaviest cycle: 22 relations
Wed Nov  4 03:10:15 2020  RelProcTime: 466
Wed Nov  4 03:10:15 2020  elapsed time 00:07:47
Wed Nov 04 03:10:15 2020 LatSieveTime: 975.82
Wed Nov 04 03:10:15 2020 -> Running matrix solving step ...
Wed Nov 04 03:10:15 2020 -> msieve.gpu.ivybridge -s 39997_191\numto.dat -l 39997_191\numto.log -i 39997_191\numto.ini -nf 39997_191\numto.fb -t 6 -nc2
Wed Nov  4 03:10:15 2020  
Wed Nov  4 03:10:15 2020  
Wed Nov  4 03:10:15 2020  Msieve v. 1.53 (SVN 998)
Wed Nov  4 03:10:15 2020  random seeds: ee9481f0 dda01e22
Wed Nov  4 03:10:15 2020  factoring 356190149584275523195576561147499332086015646525597867121960594664691220473516464510001055670663735998707729228821428958114201172144961290600778899 (147 digits)
Wed Nov  4 03:10:15 2020  searching for 15-digit factors
Wed Nov  4 03:10:15 2020  commencing number field sieve (147-digit input)
Wed Nov  4 03:10:15 2020  R0: -100000000000000000000000000000000000000
Wed Nov  4 03:10:15 2020  R1: 1
Wed Nov  4 03:10:15 2020  A0: -3
Wed Nov  4 03:10:15 2020  A1: 0
Wed Nov  4 03:10:15 2020  A2: 0
Wed Nov  4 03:10:15 2020  A3: 0
Wed Nov  4 03:10:15 2020  A4: 0
Wed Nov  4 03:10:15 2020  A5: 40
Wed Nov  4 03:10:15 2020  skew 0.60, size 3.292e-13, alpha 0.443, combined = 4.062e-11 rroots = 1
Wed Nov  4 03:10:15 2020  
Wed Nov  4 03:10:15 2020  commencing linear algebra
Wed Nov  4 03:10:16 2020  read 1935832 cycles
Wed Nov  4 03:10:18 2020  cycles contain 6163680 unique relations
Wed Nov  4 03:10:59 2020  read 6163680 relations
Wed Nov  4 03:11:05 2020  using 20 quadratic characters above 4294917295
Wed Nov  4 03:11:27 2020  building initial matrix
Wed Nov  4 03:12:02 2020  memory use: 771.1 MB
Wed Nov  4 03:12:03 2020  read 1935832 cycles
Wed Nov  4 03:12:03 2020  matrix is 1935655 x 1935832 (580.8 MB) with weight 173684315 (89.72/col)
Wed Nov  4 03:12:03 2020  sparse part has weight 130950823 (67.65/col)
Wed Nov  4 03:12:12 2020  filtering completed in 2 passes
Wed Nov  4 03:12:12 2020  matrix is 1933585 x 1933762 (580.6 MB) with weight 173612614 (89.78/col)
Wed Nov  4 03:12:12 2020  sparse part has weight 130926171 (67.71/col)
Wed Nov  4 03:12:14 2020  matrix starts at (0, 0)
Wed Nov  4 03:12:15 2020  matrix is 1933585 x 1933762 (580.6 MB) with weight 173612614 (89.78/col)
Wed Nov  4 03:12:15 2020  sparse part has weight 130926171 (67.71/col)
Wed Nov  4 03:12:15 2020  saving the first 48 matrix rows for later
Wed Nov  4 03:12:15 2020  matrix includes 64 packed rows
Wed Nov  4 03:12:16 2020  matrix is 1933537 x 1933762 (554.1 MB) with weight 137927396 (71.33/col)
Wed Nov  4 03:12:16 2020  sparse part has weight 125909810 (65.11/col)
Wed Nov  4 03:12:16 2020  using block size 8192 and superblock size 1179648 for processor cache size 12288 kB
Wed Nov  4 03:12:21 2020  commencing Lanczos iteration (6 threads)
Wed Nov  4 03:12:21 2020  memory use: 445.3 MB
Wed Nov  4 03:12:23 2020  linear algebra at 0.1%, ETA 0h42m
Wed Nov  4 03:12:23 2020  checkpointing every 3650000 dimensions
Wed Nov  4 03:53:36 2020  lanczos halted after 30576 iterations (dim = 1933534)
Wed Nov  4 03:53:37 2020  recovered 37 nontrivial dependencies
Wed Nov  4 03:53:37 2020  BLanczosTime: 2602
Wed Nov  4 03:53:37 2020  elapsed time 00:43:22
Wed Nov 04 03:53:37 2020 -> Running square root step ...
Wed Nov 04 03:53:37 2020 -> msieve.gpu.ivybridge -s 39997_191\numto.dat -l 39997_191\numto.log -i 39997_191\numto.ini -nf 39997_191\numto.fb -t 6 -nc3
Wed Nov  4 03:53:37 2020  
Wed Nov  4 03:53:37 2020  
Wed Nov  4 03:53:37 2020  Msieve v. 1.53 (SVN 998)
Wed Nov  4 03:53:37 2020  random seeds: 7f3ad3c8 eaf950b9
Wed Nov  4 03:53:37 2020  factoring 356190149584275523195576561147499332086015646525597867121960594664691220473516464510001055670663735998707729228821428958114201172144961290600778899 (147 digits)
Wed Nov  4 03:53:38 2020  searching for 15-digit factors
Wed Nov  4 03:53:38 2020  commencing number field sieve (147-digit input)
Wed Nov  4 03:53:38 2020  R0: -100000000000000000000000000000000000000
Wed Nov  4 03:53:38 2020  R1: 1
Wed Nov  4 03:53:38 2020  A0: -3
Wed Nov  4 03:53:38 2020  A1: 0
Wed Nov  4 03:53:38 2020  A2: 0
Wed Nov  4 03:53:38 2020  A3: 0
Wed Nov  4 03:53:38 2020  A4: 0
Wed Nov  4 03:53:38 2020  A5: 40
Wed Nov  4 03:53:38 2020  skew 0.60, size 3.292e-13, alpha 0.443, combined = 4.062e-11 rroots = 1
Wed Nov  4 03:53:38 2020  
Wed Nov  4 03:53:38 2020  commencing square root phase
Wed Nov  4 03:53:38 2020  reading relations for dependency 1
Wed Nov  4 03:53:38 2020  read 965880 cycles
Wed Nov  4 03:53:39 2020  cycles contain 3079344 unique relations
Wed Nov  4 03:54:01 2020  read 3079344 relations
Wed Nov  4 03:54:10 2020  multiplying 3079344 relations
Wed Nov  4 03:54:57 2020  multiply complete, coefficients have about 84.86 million bits
Wed Nov  4 03:54:58 2020  initial square root is modulo 1233721
Wed Nov  4 03:55:55 2020  sqrtTime: 137
Wed Nov  4 03:55:55 2020  p61 factor: 3145607281375230516990722687994928919065671266212250293137017
Wed Nov  4 03:55:55 2020  p87 factor: 113234144546026251582982939108674252477271173985388614004470326878470095488252494602347
Wed Nov  4 03:55:55 2020  elapsed time 00:02:18
Wed Nov 04 03:55:55 2020 -> Computing time scale for this machine...
Wed Nov 04 03:55:55 2020 -> procrels -speedtest> PIPE
Wed Nov 04 11:28:42 2020 -> factmsieve.py (v0.86)
Wed Nov 04 11:28:42 2020 -> This is client 1 of 1
Wed Nov 04 11:28:42 2020 -> Running on 6 Cores with 1 hyper-thread per Core
Wed Nov 04 11:28:42 2020 -> Working with NAME = numto
Wed Nov 04 11:28:42 2020 -> Selected lattice siever: gnfs-lasieve4I13e
Wed Nov 04 11:28:42 2020 -> Creating param file to detect parameter changes...
Wed Nov 04 11:28:42 2020 -> Running lattice siever ...
Wed Nov 04 11:28:42 2020 -> entering sieving loop
Wed Nov 04 11:28:42 2020 -> Running square root step ...
Wed Nov 04 11:28:42 2020 -> msieve.gpu.ivybridge -s 39997_191\numto.dat -l 39997_191\numto.log -i 39997_191\numto.ini -nf 39997_191\numto.fb -t 6 -nc3
Wed Nov  4 11:28:42 2020  
Wed Nov  4 11:28:42 2020  
Wed Nov  4 11:28:42 2020  Msieve v. 1.53 (SVN 998)
Wed Nov  4 11:28:42 2020  random seeds: 9fc27178 c0175dee
Wed Nov  4 11:28:42 2020  factoring 356190149584275523195576561147499332086015646525597867121960594664691220473516464510001055670663735998707729228821428958114201172144961290600778899 (147 digits)
Wed Nov  4 11:28:42 2020  searching for 15-digit factors
Wed Nov  4 11:28:43 2020  commencing number field sieve (147-digit input)
Wed Nov  4 11:28:43 2020  R0: -100000000000000000000000000000000000000
Wed Nov  4 11:28:43 2020  R1: 1
Wed Nov  4 11:28:43 2020  A0: -3
Wed Nov  4 11:28:43 2020  A1: 0
Wed Nov  4 11:28:43 2020  A2: 0
Wed Nov  4 11:28:43 2020  A3: 0
Wed Nov  4 11:28:43 2020  A4: 0
Wed Nov  4 11:28:43 2020  A5: 40
Wed Nov  4 11:28:43 2020  skew 0.60, size 3.292e-13, alpha 0.443, combined = 4.062e-11 rroots = 1
Wed Nov  4 11:28:43 2020  
Wed Nov  4 11:28:43 2020  commencing square root phase
Wed Nov  4 11:28:43 2020  reading relations for dependency 1
Wed Nov  4 11:28:43 2020  read 965880 cycles
Wed Nov  4 11:28:44 2020  cycles contain 3079344 unique relations
Wed Nov  4 11:29:10 2020  read 3079344 relations
Wed Nov  4 11:29:19 2020  multiplying 3079344 relations
Wed Nov  4 11:30:07 2020  multiply complete, coefficients have about 84.86 million bits
Wed Nov  4 11:30:07 2020  initial square root is modulo 1233721
software ソフトウェア
GGNFS
execution environment 実行環境
Core i7-9700F 3.00GHz 8core
Windows 10

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:49:52 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 52 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:58:39 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 39 秒 (日本時間)
4511e65400400Dmitry DomanovMarch 29, 2013 13:58:39 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 39 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:01:33 UTC 2014 年 8 月 5 日 (火) 20 時 1 分 33 秒 (日本時間)
4000Robert BalfourApril 15, 2020 11:07:19 UTC 2020 年 4 月 15 日 (水) 20 時 7 分 19 秒 (日本時間)

4×10192-3

c177

name 名前matsui
date 日付November 8, 2011 01:52:22 UTC 2011 年 11 月 8 日 (火) 10 時 52 分 22 秒 (日本時間)
composite number 合成数
781227542681823859790957603156406430575181387298808470504260574525604491999625601520881940038956175118291673481749284999672505650007975167123784406037036563148820753525787950121<177>
prime factors 素因数
16957967335361069900199472268490978355464810229996017075468063815639<68>
46068466062721657161827993298568302396403742512448314772822505916915071152871619883154383609653122872421411839<110>
factorization results 素因数分解の結果
N=781227542681823859790957603156406430575181387298808470504260574525604491999625601520881940038956175118291673481749284999672505650007975167123784406037036563148820753525787950121
  ( 177 digits)
SNFS difficulty: 192 digits.
Divisors found:
 r1=16957967335361069900199472268490978355464810229996017075468063815639 (pp68)
 r2=46068466062721657161827993298568302396403742512448314772822505916915071152871619883154383609653122872421411839 (pp110)
Version: Msieve v. 1.50
Total time:
Scaled time: 12.36 units (timescale=0.384).
Factorization parameters were as follows:
n: 781227542681823859790957603156406430575181387298808470504260574525604491999625601520881940038956175118291673481749284999672505650007975167123784406037036563148820753525787950121
m: 100000000000000000000000000000000000000
deg: 5
c5: 400
c0: -3
skew: 0.38
type: snfs
lss: 1
rlim: 11400000
alim: 11400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 160000
Factor base limits: 11400000/11400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [5700000, 16740001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2353371 x 2353536
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,192.000,5,0,0,0,0,0,0,0,0,11400000,11400000,28,28,55,55,2.5,2.5,100000
total time:

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMay 18, 2011 07:49:59 UTC 2011 年 5 月 18 日 (水) 16 時 49 分 59 秒 (日本時間)

4×10193-3

c163

name 名前Eric Jeancolas
date 日付January 9, 2021 08:34:50 UTC 2021 年 1 月 9 日 (土) 17 時 34 分 50 秒 (日本時間)
composite number 合成数
4595131812341038524673377425547981526256392877400040967588225812152509612718673550314089210300607006960890832290659727712513631897072820523735853258609334800261893<163>
prime factors 素因数
1967077206937553176476527486492437202408915555829814288958322379771330442433233041<82>
2336020058661030256665403317184074482164824870308340512976360456362723784743793973<82>
factorization results 素因数分解の結果
4595131812341038524673377425547981526256392877400040967588225812152509612718673550314089210300607006960890832290659727712513631897072820523735853258609334800261893=1967077206937553176476527486492437202408915555829814288958322379771330442433233041*2336020058661030256665403317184074482164824870308340512976360456362723784743793973

cado polynomial
n: 4595131812341038524673377425547981526256392877400040967588225812152509612718673550314089210300607006960890832290659727712513631897072820523735853258609334800261893
skew: 0.47
type: snfs
c0: -3
c5: 125
Y0: 200000000000000000000000000000000000000
Y1: -1
# f(x) = 125*x^5-3
# g(x) = -x+200000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 11800000
tasks.lim1 = 11800000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 55
tasks.sieve.mfb1 = 55
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 1967077206937553176476527486492437202408915555829814288958322379771330442433233041 2336020058661030256665403317184074482164824870308340512976360456362723784743793973
Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info)
Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info)
Info:Generate Factor Base: Total cpu/real time for makefb: 5.01/2.03299
Info:Generate Free Relations: Total cpu/real time for freerel: 102.27/26.3199
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 27181661
Info:Lattice Sieving: Average J: 1895.11 for 2248098 special-q, max bucket fill -bkmult 1.0,1s:1.110970
Info:Lattice Sieving: Total time: 546422s
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 50.49/133.853
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 132.80000000000004s
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 460.97/466.047
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 407.29999999999995s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 394.43/470.907
Info:Filtering - Merging: Merged matrix has 2181275 rows and total weight 371284511 (170.2 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 314.69/91.1206
Info:Filtering - Merging: Total cpu/real time for replay: 83.66/76.2256
Info:Linear Algebra: Total cpu/real time for bwc: 81946.3/20943.8
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: WCT time 13362.33, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (68608 iterations)
Info:Linear Algebra: Lingen CPU time 436.85, WCT time 126.9
Info:Linear Algebra: Mksol: WCT time 7254.93, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (34304 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 76.58/31.7732
Info:Square Root: Total cpu/real time for sqrt: 588.71/184.209
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.10085e+06/65560.4
Info:root: Cleaning up computation data in /tmp/cado.pod6mret
1967077206937553176476527486492437202408915555829814288958322379771330442433233041 2336020058661030256665403317184074482164824870308340512976360456362723784743793973
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:50:06 UTC 2011 年 5 月 18 日 (水) 16 時 50 分 6 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:58:54 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 54 秒 (日本時間)
4511e62100 / 4192400Dmitry DomanovMarch 29, 2013 13:58:54 UTC 2013 年 3 月 29 日 (金) 22 時 58 分 54 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:01:49 UTC 2014 年 8 月 5 日 (火) 20 時 1 分 49 秒 (日本時間)
700Eric JeancolasOctober 16, 2020 05:07:24 UTC 2020 年 10 月 16 日 (金) 14 時 7 分 24 秒 (日本時間)

4×10195-3

c190

name 名前suberi
date 日付July 2, 2007 09:47:47 UTC 2007 年 7 月 2 日 (月) 18 時 47 分 47 秒 (日本時間)
composite number 合成数
5646694777795502125274746992782112400282899408367554656476264824338383831254173260359214488289460867699353029945834080343996645863301989471737586800286287425234231957751429672534053098694343<190>
prime factors 素因数
3771194733060677910727165656242155763<37>
1497322513815848534027864445072580097326790638319429568818602330439582708603315019200778229678277949703995368212735241456117614079298626340503579378845661<154>
factorization results 素因数分解の結果
Input number is 5646694777795502125274746992782112400282899408367554656476264824338383831254173260359214488289460867699353029945834080343996645863301989471737586800286287425234231957751429672534053098694343 (190 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=623019224
Step 1 took 396305ms
Step 2 took 127016ms
********** Factor found in step 2: 3771194733060677910727165656242155763
Found probable prime factor of 37 digits: 3771194733060677910727165656242155763
Probable prime cofactor 1497322513815848534027864445072580097326790638319429568818602330439582708603315019200778229678277949703995368212735241456117614079298626340503579378845661 has 154 digits
software ソフトウェア
GMP-ECM 6.1.2
execution environment 実行環境
Sempron 3400+ 1.80GHz, Windows Vista

4×10199-3

c179

name 名前Bob Backstrom
date 日付April 5, 2021 10:38:12 UTC 2021 年 4 月 5 日 (月) 19 時 38 分 12 秒 (日本時間)
composite number 合成数
20579468022679290363403006217927211257782345065101645447343343299782815525132234892412631316922585660099256128786300617930853341609588826485809160148169001698279353098407314749177<179>
prime factors 素因数
6785644468543497585542777373671393311082725757766787870117930329262201<70>
3032794912565845566045216287888224449850189382677556463454540484423621415548328597081854558348320189856219777<109>
factorization results 素因数分解の結果
Number: n
N=20579468022679290363403006217927211257782345065101645447343343299782815525132234892412631316922585660099256128786300617930853341609588826485809160148169001698279353098407314749177  ( 179 digits)
SNFS difficulty: 200 digits.
Divisors found:

Mon Apr  5 20:33:02 2021  p70 factor: 6785644468543497585542777373671393311082725757766787870117930329262201
Mon Apr  5 20:33:02 2021  p109 factor: 3032794912565845566045216287888224449850189382677556463454540484423621415548328597081854558348320189856219777
Mon Apr  5 20:33:02 2021  elapsed time 01:35:00 (Msieve 1.54 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.324).
Factorization parameters were as follows:
#
# N = 4x10^199-3 = 39(198)7
#
n: 20579468022679290363403006217927211257782345065101645447343343299782815525132234892412631316922585660099256128786300617930853341609588826485809160148169001698279353098407314749177
m: 10000000000000000000000000000000000000000
deg: 5
c5: 2
c0: -15
skew: 1.50
# Murphy_E = 1.694e-11
type: snfs
lss: 1
rlim: 15300000
alim: 15300000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15300000/15300000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 20450000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 5157170 hash collisions in 46332639 relations (43095613 unique)
Msieve: matrix is 2007696 x 2007921 (698.6 MB)

Sieving start time : 2021/04/05 13:00:35
Sieving end time  : 2021/04/05 18:57:19

Total sieving time: 5hrs 56min 44secs.

Total relation processing time: 1hrs 17min 51sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 4min 39sec.

Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15300000,15300000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.119768] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16241112K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486124K reserved, 0K cma-reserved)
[    0.153507] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.05 BogoMIPS (lpj=12798104)
[    0.152038] smpboot: Total of 16 processors activated (102384.83 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e61300300Dmitry DomanovMay 18, 2011 07:50:16 UTC 2011 年 5 月 18 日 (水) 16 時 50 分 16 秒 (日本時間)
1000Dmitry DomanovMarch 29, 2013 13:59:08 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 8 秒 (日本時間)
4511e61400 / 4192400Dmitry DomanovMarch 29, 2013 13:59:08 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 8 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:02:03 UTC 2014 年 8 月 5 日 (火) 20 時 2 分 3 秒 (日本時間)

4×10200-3

c199

name 名前Wataru Sakai
date 日付December 6, 2008 03:02:03 UTC 2008 年 12 月 6 日 (土) 12 時 2 分 3 秒 (日本時間)
composite number 合成数
1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801<199>
prime factors 素因数
1591080945026496112917339112958930463606304590528911569<55>
633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729<144>
factorization results 素因数分解の結果
Number: 39997_200
N=1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801
  ( 199 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=1591080945026496112917339112958930463606304590528911569
 r2=633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729
Version: 
Total time: 626.57 hours.
Scaled time: 1243.74 units (timescale=1.985).
Factorization parameters were as follows:
n: 1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801
m: 10000000000000000000000000000000000000000
deg: 5
c5: 4
c0: -3
skew: 0.94
type: snfs
lss: 1
rlim: 15400000
alim: 15400000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15400000/15400000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7700000, 14100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2802786 x 2803034
Total sieving time: 626.57 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000
total time: 626.57 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMay 25, 2007 09:00:00 UTC 2007 年 5 月 25 日 (金) 18 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Serge BatalovNovember 14, 2008 00:52:01 UTC 2008 年 11 月 14 日 (金) 9 時 52 分 1 秒 (日本時間)

4×10201-3

c150

name 名前Dmitry Domanov
date 日付March 20, 2013 05:09:40 UTC 2013 年 3 月 20 日 (水) 14 時 9 分 40 秒 (日本時間)
composite number 合成数
141113590702925032944238841136856562480990950297901073287724256639941315944424318754432449356622330448284519294928084476684062013703126034013493546589<150>
prime factors 素因数
46856702191880789007097991806729637684419<41>
3011598855699598071151625486968596848471071678142658545952126968331471634833200049073377848121174521051598431<109>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=775643045
Step 1 took 20681ms
Step 2 took 8490ms
********** Factor found in step 2: 46856702191880789007097991806729637684419
Found probable prime factor of 41 digits: 46856702191880789007097991806729637684419

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10202-3

c187

name 名前Dmitry Domanov
date 日付March 20, 2013 05:10:15 UTC 2013 年 3 月 20 日 (水) 14 時 10 分 15 秒 (日本時間)
composite number 合成数
4999121207068111937781108541729352884094415590437635843787663289600644874359948936443438047479687404210750230378603586688142562711138105831956154149320456768771674342694875248283272428633<187>
prime factors 素因数
1379639989526695106325647538991007<34>
composite cofactor 合成数の残り
3623496886882157385533754490420340641545791104069751230621273857796214198295322804574188072647769287143144148327406327050825808698880935235446520869728519<154>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=804843122
Step 1 took 33216ms
Step 2 took 12021ms
********** Factor found in step 2: 1379639989526695106325647538991007
Found probable prime factor of 34 digits: 1379639989526695106325647538991007

c154

name 名前ebina
date 日付May 28, 2023 09:01:23 UTC 2023 年 5 月 28 日 (日) 18 時 1 分 23 秒 (日本時間)
composite number 合成数
3623496886882157385533754490420340641545791104069751230621273857796214198295322804574188072647769287143144148327406327050825808698880935235446520869728519<154>
prime factors 素因数
4803412946736822466187621536991436029073062578380991295299813<61>
754358812590486128246044555963112521672413691175749421899958131956992967555726224916300343163<93>
factorization results 素因数分解の結果
Sun May 28 17:00:52 2023  Msieve v. 1.53 (SVN unknown)
Sun May 28 17:00:52 2023  random seeds: f34cce88 88778b4f
Sun May 28 17:00:52 2023  factoring 3623496886882157385533754490420340641545791104069751230621273857796214198295322804574188072647769287143144148327406327050825808698880935235446520869728519 (154 digits)
Sun May 28 17:00:52 2023  searching for 15-digit factors
Sun May 28 17:00:53 2023  commencing number field sieve (154-digit input)
Sun May 28 17:00:53 2023  R0: -10000000000000000000000000000000000000000
Sun May 28 17:00:53 2023  R1: 1
Sun May 28 17:00:53 2023  A0: -3
Sun May 28 17:00:53 2023  A1: 0
Sun May 28 17:00:53 2023  A2: 0
Sun May 28 17:00:53 2023  A3: 0
Sun May 28 17:00:53 2023  A4: 0
Sun May 28 17:00:53 2023  A5: 400
Sun May 28 17:00:53 2023  skew 0.38, size 5.510e-14, alpha -0.182, combined = 1.346e-11 rroots = 1
Sun May 28 17:00:53 2023  
Sun May 28 17:00:53 2023  commencing square root phase
Sun May 28 17:00:53 2023  reading relations for dependency 1
Sun May 28 17:00:57 2023  read 1679493 cycles
Sun May 28 17:00:59 2023  cycles contain 5716082 unique relations
Sun May 28 17:02:21 2023  read 5716082 relations
Sun May 28 17:02:46 2023  multiplying 5716082 relations
Sun May 28 17:05:11 2023  multiply complete, coefficients have about 181.13 million bits
Sun May 28 17:05:12 2023  initial square root is modulo 3163841
Sun May 28 17:08:18 2023  sqrtTime: 445
Sun May 28 17:08:18 2023  p61 factor: 4803412946736822466187621536991436029073062578380991295299813
Sun May 28 17:08:18 2023  p93 factor: 754358812590486128246044555963112521672413691175749421899958131956992967555726224916300343163
Sun May 28 17:08:18 2023  elapsed time 00:07:26

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 13:59:23 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 23 秒 (日本時間)
4511e6594060Tapio RajalaMarch 24, 2013 17:01:12 UTC 2013 年 3 月 25 日 (月) 2 時 1 分 12 秒 (日本時間)
400Dmitry DomanovMarch 29, 2013 13:59:23 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 23 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:02:14 UTC 2014 年 8 月 5 日 (火) 20 時 2 分 14 秒 (日本時間)
4480Ignacio SantosAugust 29, 2021 20:42:42 UTC 2021 年 8 月 30 日 (月) 5 時 42 分 42 秒 (日本時間)

4×10203-3

c185

name 名前Bob Backstrom
date 日付September 10, 2021 00:59:33 UTC 2021 年 9 月 10 日 (金) 9 時 59 分 33 秒 (日本時間)
composite number 合成数
17896454940949744298786450883441074515339765224441039510052425530410450777491242227178496522725027220389002227185018621743684205355105051588102530949405937340848331541448843173424704931<185>
prime factors 素因数
922504946806946040717128954276705984204349926746858992346931726777<66>
19399847125909192111818178616766938233852193467867524320315879160701668473637950517016190975811995309611205776609439803<119>
factorization results 素因数分解の結果
Number: n
N=17896454940949744298786450883441074515339765224441039510052425530410450777491242227178496522725027220389002227185018621743684205355105051588102530949405937340848331541448843173424704931  ( 185 digits)
SNFS difficulty: 203 digits.
Divisors found:

Fri Sep 10 10:54:41 2021  p66 factor: 922504946806946040717128954276705984204349926746858992346931726777
Fri Sep 10 10:54:41 2021  p119 factor: 19399847125909192111818178616766938233852193467867524320315879160701668473637950517016190975811995309611205776609439803
Fri Sep 10 10:54:41 2021  elapsed time 01:40:02 (Msieve 1.54 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.349).
Factorization parameters were as follows:
#
# N = 4x10^203-3 = 39(202)7
#
n: 17896454940949744298786450883441074515339765224441039510052425530410450777491242227178496522725027220389002227185018621743684205355105051588102530949405937340848331541448843173424704931
m: 20000000000000000000000000000000000000000
deg: 5
c5: 125
c0: -3
skew: 0.47
# Murphy_E = 1.332e-11
type: snfs
lss: 1
rlim: 17300000
alim: 17300000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 17300000/17300000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved  special-q in [100000, 35850000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 10015491 hash collisions in 68322566 relations (61126473 unique)
Msieve: matrix is 1996692 x 1996922 (685.0 MB)

Sieving start time : 2021/09/09 22:21:24
Sieving end time  : 2021/09/10 09:12:49

Total sieving time: 10hrs 51min 25secs.

Total relation processing time: 1hrs 16min 16sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 6min 36sec.

Prototype def-par.txt line would be:
snfs,203,5,0,0,0,0,0,0,0,0,17300000,17300000,29,29,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.116939] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2)
[    0.000000] Memory: 16239968K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2736K init, 4964K bss, 487268K reserved, 0K cma-reserved)
[    0.154077] x86/mm: Memory block size: 128MB
[    0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.20 BogoMIPS (lpj=12798404)
[    0.152034] smpboot: Total of 16 processors activated (102387.23 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 13:59:49 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 49 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 13:59:49 UTC 2013 年 3 月 29 日 (金) 22 時 59 分 49 秒 (日本時間)

4×10209-3

c167

name 名前Bob Backstrom
date 日付November 21, 2024 06:44:18 UTC 2024 年 11 月 21 日 (木) 15 時 44 分 18 秒 (日本時間)
composite number 合成数
56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607<167>
prime factors 素因数
5973744119474884926531389937687602367978105123395237615981<58>
9381744134427795475194221004653830722915361759613937694779416906766584758454024656778577833255243848750420547<109>
factorization results 素因数分解の結果
11/19/24 15:13:17 v1.34.5 @ TRIGKEY,
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, ****************************
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, Starting factorization of 399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, using pretesting plan: normal
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, ****************************
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, div: found prime factor = 13
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, div: found prime factor = 107
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, div: found prime factor = 2657
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C204
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C204
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, prp5 = 21911
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C199
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C199
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C199
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, prp14 = 27895933803593
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 57.23
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C186 input, B1=2K, B2=gmp-ecm default
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18
11/19/24 15:13:17 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 57.23
11/19/24 15:13:18 v1.34.5 @ TRIGKEY, prp19 = 3159424662082742971 (curve 17 stg1 B1=11000 sigma=3396121711 thread=0)
11/19/24 15:13:18 v1.34.5 @ TRIGKEY, Finished 17 curves using Lenstra ECM method on C186 input, B1=11K, B2=gmp-ecm default
11/19/24 15:13:18 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 16.33
11/19/24 15:13:18 v1.34.5 @ TRIGKEY, scheduled 57 curves at B1=11000 toward target pretesting depth of 51.38
11/19/24 15:13:19 v1.34.5 @ TRIGKEY, Finished 57 curves using Lenstra ECM method on C167 input, B1=11K, B2=gmp-ecm default
11/19/24 15:13:19 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24
11/19/24 15:13:19 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 51.38
11/19/24 15:13:49 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c210: 399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997
11/19/24 15:13:49 v1.34.5 @ TRIGKEY, nfs: input divides 4*10^209 - 3
11/19/24 15:13:49 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
11/19/24 15:13:49 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c167: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
11/19/24 15:13:49 v1.34.5 @ TRIGKEY, gen: best 3 polynomials:
n: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
# 4*10^209-3, difficulty: 210.00, anorm: -8.75e+030, rnorm: 8.45e+040
# scaled difficulty: 211.66, suggest sieving rational side
# size = 2.388e-010, alpha = 0.602, combined = 6.151e-012, rroots = 2
type: snfs
size: 210
skew: 1.3991
c6: 2
c0: -15
Y1: -1
Y0: 100000000000000000000000000000000000
m: 100000000000000000000000000000000000
n: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
# 4*10^209-3, difficulty: 210.00, anorm: 8.56e+024, rnorm: 8.18e+047
# scaled difficulty: 213.83, suggest sieving rational side
# size = 1.405e-014, alpha = 1.848, combined = 5.677e-012, rroots = 1
type: snfs
size: 210
skew: 1.4963
c5: 2
c0: -15
Y1: -1
Y0: 1000000000000000000000000000000000000000000
m: 1000000000000000000000000000000000000000000
n: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
# 4*10^209-3, difficulty: 210.30, anorm: 7.03e+025, rnorm: 5.78e+047
# scaled difficulty: 213.95, suggest sieving rational side
# size = 1.252e-014, alpha = 0.808, combined = 5.374e-012, rroots = 1
type: snfs
size: 210
skew: 0.7481
c5: 64
c0: -15
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
11/19/24 15:13:51 v1.34.5 @ TRIGKEY, test: fb generation took 2.2215 seconds
11/19/24 15:13:51 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000
skew: 1.3991
c6: 2
c0: -15
Y1: -1
Y0: 100000000000000000000000000000000000
m: 100000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
11/19/24 15:16:42 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/19/24 15:16:44 v1.34.5 @ TRIGKEY, test: fb generation took 1.5182 seconds
11/19/24 15:16:44 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000
skew: 1.4963
c5: 2
c0: -15
Y1: -1
Y0: 1000000000000000000000000000000000000000000
m: 1000000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
11/19/24 15:19:36 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/19/24 15:19:38 v1.34.5 @ TRIGKEY, test: fb generation took 1.5932 seconds
11/19/24 15:19:38 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000
skew: 0.7481
c5: 64
c0: -15
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
11/19/24 15:22:31 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/19/24 15:22:31 v1.34.5 @ TRIGKEY, gen: selected polynomial:
n: 56044138853456037524090330246912450640469433430748997663596863156110715977631475565288359475979856249181230253441534377606318106657765348647113353872093443867437961607
# 4*10^209-3, difficulty: 210.00, anorm: -8.75e+030, rnorm: 8.45e+040
# scaled difficulty: 211.66, suggest sieving rational side
# size = 2.388e-010, alpha = 0.602, combined = 6.151e-012, rroots = 2
type: snfs
size: 210
skew: 1.3991
c6: 2
c0: -15
Y1: -1
Y0: 100000000000000000000000000000000000
m: 100000000000000000000000000000000000
11/21/24 03:23:05 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/21/24 03:25:01 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22185026
11/21/24 05:36:17 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/21/24 05:38:20 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23332783
11/21/24 08:05:32 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/21/24 08:07:42 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24604741
11/21/24 10:36:21 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/21/24 10:38:36 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25855826
11/21/24 13:22:05 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/21/24 13:26:14 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra
11/21/24 16:10:11 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt
11/21/24 16:13:14 v1.34.5 @ TRIGKEY, prp58 = 5973744119474884926531389937687602367978105123395237615981
11/21/24 16:13:15 v1.34.5 @ TRIGKEY, prp109 = 9381744134427795475194221004653830722915361759613937694779416906766584758454024656778577833255243848750420547
11/21/24 16:13:15 v1.34.5 @ TRIGKEY, NFS elapsed time = 176365.8149 seconds.
11/21/24 16:13:15 v1.34.5 @ TRIGKEY,
11/21/24 16:13:15 v1.34.5 @ TRIGKEY,
11/19/24 15:22:31 v1.34.5 @ TRIGKEY, test: test sieving took 521.83 second
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:00:06 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 6 秒 (日本時間)
4511e61400 / 4254400Dmitry DomanovMarch 29, 2013 14:00:06 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 6 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:02:27 UTC 2014 年 8 月 5 日 (火) 20 時 2 分 27 秒 (日本時間)

4×10210-3

c183

name 名前Dmitry Domanov
date 日付March 25, 2013 05:43:57 UTC 2013 年 3 月 25 日 (月) 14 時 43 分 57 秒 (日本時間)
composite number 合成数
649961483671897025132344929591030528561136903320207012490103418782683823480316551932301750685122257793736518568117739148456181151654082108266664704081660928939342784751482991515694009<183>
prime factors 素因数
3431353117210616330501280155754076747850232841<46>
composite cofactor 合成数の残り
189418419343637145322935112667440405023801612393991400728989282924002579261924200180276728341036357393657116975144685782189601649013132849<138>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2439796343
Step 1 took 82794ms
Step 2 took 27920ms
********** Factor found in step 2: 3431353117210616330501280155754076747850232841
Found probable prime factor of 46 digits: 3431353117210616330501280155754076747850232841

c138

name 名前Erik Branger
date 日付May 20, 2014 16:44:52 UTC 2014 年 5 月 21 日 (水) 1 時 44 分 52 秒 (日本時間)
composite number 合成数
189418419343637145322935112667440405023801612393991400728989282924002579261924200180276728341036357393657116975144685782189601649013132849<138>
prime factors 素因数
3142916137495335145294364794230667601713425082370109479<55>
60268365765110488409452647085714459841742817465419193799019829725093188239880941031<83>
factorization results 素因数分解の結果
Number: 39997_210
N = 189418419343637145322935112667440405023801612393991400728989282924002579261924200180276728341036357393657116975144685782189601649013132849 (138 digits)
Divisors found:
r1=3142916137495335145294364794230667601713425082370109479 (pp55)
r2=60268365765110488409452647085714459841742817465419193799019829725093188239880941031 (pp83)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 115.56 hours.
Factorization parameters were as follows:
# Murphy_E = 2.961e-11, selected by Erik Branger
# expecting poly E from 3.01e-011 to > 3.46e-011
n: 189418419343637145322935112667440405023801612393991400728989282924002579261924200180276728341036357393657116975144685782189601649013132849
Y0: -552718429480330006306389810
Y1: 27055259216197
c0: -295854885772602173693938714163588303
c1: 456947362637782532940223324132
c2: 248632224955394318690369
c3: -205060397590106086
c4: -33267848748
c5: 3672
skew: 3059113.99
type: gnfs
# selected mechanically
rlim: 15400000
alim: 15400000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 15400000/15400000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23169073
Relations: 3227152 relations
Pruned matrix : 2023030 x 2023256
Polynomial selection time: 0.00 hours.
Total sieving time: 112.79 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 2.48 hours.
time per square root: 0.17 hours.
Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,15400000,15400000,28,28,55,55,2.6,2.6,100000
total time: 115.56 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:00:18 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 18 秒 (日本時間)
4511e62500 / 4254400Dmitry DomanovMarch 29, 2013 14:00:18 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 18 秒 (日本時間)
850Serge BatalovNovember 8, 2013 01:45:48 UTC 2013 年 11 月 8 日 (金) 10 時 45 分 48 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:08:55 UTC 2013 年 11 月 9 日 (土) 2 時 8 分 55 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:23:13 UTC 2014 年 1 月 6 日 (月) 11 時 23 分 13 秒 (日本時間)

4×10211-3

c188

composite cofactor 合成数の残り
89744325669048042911139453143418918652979412950347345156304866056925759072498304400779350524836283516729261436588043166608769113714234944448698571603511653943635091339797059958184755308051<188>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:00:34 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 34 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:00:34 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 34 秒 (日本時間)

4×10212-3

c213

name 名前Dmitry Domanov
date 日付March 25, 2013 05:44:27 UTC 2013 年 3 月 25 日 (月) 14 時 44 分 27 秒 (日本時間)
composite number 合成数
399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997<213>
prime factors 素因数
275358944512162957357367015050275313055209<42>
1452649379916298624310249792586760462253299945710487449071079615919133567148324891947719820392803152245132343622166772500419874279637328912708440056342516304730825738610933<172>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=893454024
Step 1 took 94014ms
Step 2 took 28895ms
********** Factor found in step 2: 275358944512162957357367015050275313055209
Found probable prime factor of 42 digits: 275358944512162957357367015050275313055209

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10213-3

c198

name 名前Warut Roonguthai
date 日付March 19, 2013 18:14:16 UTC 2013 年 3 月 20 日 (水) 3 時 14 分 16 秒 (日本時間)
composite number 合成数
115782800784868075379448744133634746416374568272413687740444220898589327884929974600305804385193960966233160659542497489230513637271895946577317731980285922039353239451837528415746744110249196978503<198>
prime factors 素因数
22444405982293684765365886124533<32>
composite cofactor 合成数の残り
5158648479100259170818054364303197925814031875330221529824616559953158840260775644126474632905549517067535304881971259641888539940321369446029317028513401487604262091<166>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3224966958
Step 1 took 9766ms
Step 2 took 5819ms
********** Factor found in step 2: 22444405982293684765365886124533
Found probable prime factor of 32 digits: 22444405982293684765365886124533
Composite cofactor 5158648479100259170818054364303197925814031875330221529824616559953158840260775644126474632905549517067535304881971259641888539940321369446029317028513401487604262091 has 166 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:00:47 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 47 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:00:47 UTC 2013 年 3 月 29 日 (金) 23 時 0 分 47 秒 (日本時間)

4×10214-3

c207

name 名前Bob Backstrom
date 日付November 22, 2019 08:13:28 UTC 2019 年 11 月 22 日 (金) 17 時 13 分 28 秒 (日本時間)
composite number 合成数
384727321769513689564735955242977858336686632700181488381316637116562596804006658052557811026960238363967839450518588865196846070819778227590275520644030458823591760221851471189102991032746729647042210098417<207>
prime factors 素因数
128382637344132420338642205360544536114551413119723872256425562481<66>
2996723931899325527902099906260227540286529251033325912063889161737958992443003226007228129689727254324957184954855235834484100299998282077057<142>
factorization results 素因数分解の結果
Number: n
N=384727321769513689564735955242977858336686632700181488381316637116562596804006658052557811026960238363967839450518588865196846070819778227590275520644030458823591760221851471189102991032746729647042210098417
  ( 207 digits)
SNFS difficulty: 216 digits.
Divisors found:

Fri Nov 22 19:09:51 2019  p66 factor: 128382637344132420338642205360544536114551413119723872256425562481
Fri Nov 22 19:09:51 2019  p142 factor: 2996723931899325527902099906260227540286529251033325912063889161737958992443003226007228129689727254324957184954855235834484100299998282077057
Fri Nov 22 19:09:51 2019  elapsed time 06:01:12 (Msieve 1.54 - dependency 1)

Version:
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.132).
Factorization parameters were as follows:
#
# N = 4x10^214-3 = 39(213)7
#
n: 384727321769513689564735955242977858336686632700181488381316637116562596804006658052557811026960238363967839450518588865196846070819778227590275520644030458823591760221851471189102991032746729647042210098417
m: 1000000000000000000000000000000000000
deg: 6
c6: 1
c0: -75
skew: 2.05
# Murphy_E = 3.719e-12
type: snfs
lss: 1
rlim: 28000000
alim: 28000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
Factor base limits: 28000000/28000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 68400000)
Primes: , ,
Relations:
Max relations in full relation-set: 28
Initial matrix:
Pruned matrix :

Msieve: found 8892507 hash collisions in 57947000 relations (51486745 unique)
Msieve: matrix is 3641309 x 3641535 (1275.6 MB)

Sieving start time: 2019/11/21 08:07:35
Sieving end time  : 2019/11/22 13:07:45

Total sieving time: 29hrs 0min 10secs.

Total relation processing time: 5hrs 37min 40sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 5min 38sec.

Prototype def-par.txt line would be:
snfs,216,6,0,0,0,0,0,0,0,0,28000000,28000000,29,29,58,58,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
[    0.149891] smpboot: CPU0: AMD Ryzen 7 1700 Eight-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.000000] Memory: 16283576K/16703460K available (12300K kernel code, 2481K rwdata, 4264K rodata, 2432K init, 2388K bss, 419884K reserved, 0K cma-reserved)
[    0.184561] x86/mm: Memory block size: 128MB
[    0.024000] Calibrating delay loop (skipped), value calculated using timer frequency.. 5988.88 BogoMIPS (lpj=11977760)
[    0.182217] smpboot: Total of 16 processors activated (95822.08 BogoMIPS)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:01:01 UTC 2013 年 3 月 29 日 (金) 23 時 1 分 1 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:01:01 UTC 2013 年 3 月 29 日 (金) 23 時 1 分 1 秒 (日本時間)

4×10216-3

c165

name 名前Dmitry Domanov
date 日付March 20, 2013 08:29:48 UTC 2013 年 3 月 20 日 (水) 17 時 29 分 48 秒 (日本時間)
composite number 合成数
100851030491207942377056003354731035816878670441341473774592704980767015904759717861470151034604361751795964740779941508999326653696555400037242813418131055249166377<165>
prime factors 素因数
543579564463872369276493054721622609175569103201<48>
19908205731456826539052940025491068433262821979493597<53>
9319338760453768484785456879744583150887539719939897393270232541<64>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2192195301
Step 1 took 27548ms
********** Factor found in step 1: 543579564463872369276493054721622609175569103201
Found probable prime factor of 48 digits: 543579564463872369276493054721622609175569103201
Composite cofactor 185531313324253471181553030116734627123683088840027612710810227862066596068141116613734697901553875584841825610539977 has 117 digits
Wed Mar 20 11:56:19 2013  commencing relation filtering
Wed Mar 20 11:56:19 2013  estimated available RAM is 48157.8 MB
Wed Mar 20 11:56:19 2013  commencing duplicate removal, pass 1
Wed Mar 20 11:58:38 2013  found 941552 hash collisions in 11243168 relations
Wed Mar 20 11:58:57 2013  added 63239 free relations
Wed Mar 20 11:58:57 2013  commencing duplicate removal, pass 2
Wed Mar 20 11:59:01 2013  found 594301 duplicates and 10712106 unique relations
Wed Mar 20 11:59:01 2013  memory use: 49.3 MB
Wed Mar 20 11:59:01 2013  reading ideals above 720000
Wed Mar 20 11:59:02 2013  commencing singleton removal, initial pass
Wed Mar 20 12:01:24 2013  memory use: 344.5 MB
Wed Mar 20 12:01:24 2013  reading all ideals from disk
Wed Mar 20 12:01:24 2013  memory use: 299.5 MB
Wed Mar 20 12:01:25 2013  keeping 11037837 ideals with weight <= 200, target excess is 116410
Wed Mar 20 12:01:25 2013  commencing in-memory singleton removal
Wed Mar 20 12:01:26 2013  begin with 10712106 relations and 11037837 unique ideals
Wed Mar 20 12:01:33 2013  reduce to 4751129 relations and 4099561 ideals in 16 passes
Wed Mar 20 12:01:33 2013  max relations containing the same ideal: 109
Wed Mar 20 12:01:35 2013  removing 1329264 relations and 1070998 ideals in 258266 cliques
Wed Mar 20 12:01:35 2013  commencing in-memory singleton removal
Wed Mar 20 12:01:35 2013  begin with 3421865 relations and 4099561 unique ideals
Wed Mar 20 12:01:37 2013  reduce to 3192321 relations and 2783765 ideals in 9 passes
Wed Mar 20 12:01:37 2013  max relations containing the same ideal: 82
Wed Mar 20 12:01:38 2013  removing 985972 relations and 727706 ideals in 258266 cliques
Wed Mar 20 12:01:39 2013  commencing in-memory singleton removal
Wed Mar 20 12:01:39 2013  begin with 2206349 relations and 2783765 unique ideals
Wed Mar 20 12:01:40 2013  reduce to 1999189 relations and 1831642 ideals in 10 passes
Wed Mar 20 12:01:40 2013  max relations containing the same ideal: 61
Wed Mar 20 12:01:41 2013  removing 202599 relations and 170088 ideals in 32511 cliques
Wed Mar 20 12:01:41 2013  commencing in-memory singleton removal
Wed Mar 20 12:01:41 2013  begin with 1796590 relations and 1831642 unique ideals
Wed Mar 20 12:01:42 2013  reduce to 1782042 relations and 1646760 ideals in 8 passes
Wed Mar 20 12:01:42 2013  max relations containing the same ideal: 54
Wed Mar 20 12:01:43 2013  relations with 0 large ideals: 502
Wed Mar 20 12:01:43 2013  relations with 1 large ideals: 4625
Wed Mar 20 12:01:43 2013  relations with 2 large ideals: 48984
Wed Mar 20 12:01:43 2013  relations with 3 large ideals: 208699
Wed Mar 20 12:01:43 2013  relations with 4 large ideals: 449778
Wed Mar 20 12:01:43 2013  relations with 5 large ideals: 531503
Wed Mar 20 12:01:43 2013  relations with 6 large ideals: 362268
Wed Mar 20 12:01:43 2013  relations with 7+ large ideals: 175683
Wed Mar 20 12:01:43 2013  commencing 2-way merge
Wed Mar 20 12:01:44 2013  reduce to 1084582 relation sets and 949300 unique ideals
Wed Mar 20 12:01:44 2013  commencing full merge
Wed Mar 20 12:01:56 2013  memory use: 102.5 MB
Wed Mar 20 12:01:56 2013  found 531377 cycles, need 513500
Wed Mar 20 12:01:56 2013  weight of 513500 cycles is about 36070024 (70.24/cycle)
Wed Mar 20 12:01:56 2013  distribution of cycle lengths:
Wed Mar 20 12:01:56 2013  1 relations: 54494
Wed Mar 20 12:01:56 2013  2 relations: 53002
Wed Mar 20 12:01:56 2013  3 relations: 55105
Wed Mar 20 12:01:56 2013  4 relations: 53715
Wed Mar 20 12:01:56 2013  5 relations: 49481
Wed Mar 20 12:01:56 2013  6 relations: 44879
Wed Mar 20 12:01:56 2013  7 relations: 39204
Wed Mar 20 12:01:56 2013  8 relations: 34283
Wed Mar 20 12:01:56 2013  9 relations: 29121
Wed Mar 20 12:01:56 2013  10+ relations: 100216
Wed Mar 20 12:01:56 2013  heaviest cycle: 19 relations
Wed Mar 20 12:01:57 2013  commencing cycle optimization
Wed Mar 20 12:01:57 2013  start with 3097084 relations
Wed Mar 20 12:02:01 2013  pruned 79306 relations
Wed Mar 20 12:02:01 2013  memory use: 101.7 MB
Wed Mar 20 12:02:01 2013  distribution of cycle lengths:
Wed Mar 20 12:02:01 2013  1 relations: 54494
Wed Mar 20 12:02:01 2013  2 relations: 54279
Wed Mar 20 12:02:01 2013  3 relations: 57011
Wed Mar 20 12:02:01 2013  4 relations: 55125
Wed Mar 20 12:02:01 2013  5 relations: 50929
Wed Mar 20 12:02:01 2013  6 relations: 45816
Wed Mar 20 12:02:01 2013  7 relations: 39937
Wed Mar 20 12:02:01 2013  8 relations: 34546
Wed Mar 20 12:02:01 2013  9 relations: 29186
Wed Mar 20 12:02:01 2013  10+ relations: 92177
Wed Mar 20 12:02:01 2013  heaviest cycle: 18 relations
Wed Mar 20 12:02:02 2013  RelProcTime: 343
Wed Mar 20 12:02:02 2013  
Wed Mar 20 12:02:02 2013  commencing linear algebra
Wed Mar 20 12:02:02 2013  read 513500 cycles
Wed Mar 20 12:02:03 2013  cycles contain 1686433 unique relations
Wed Mar 20 12:02:25 2013  read 1686433 relations
Wed Mar 20 12:02:26 2013  using 20 quadratic characters above 134214552
Wed Mar 20 12:02:35 2013  building initial matrix
Wed Mar 20 12:02:54 2013  memory use: 215.3 MB
Wed Mar 20 12:02:54 2013  read 513500 cycles
Wed Mar 20 12:02:55 2013  matrix is 513322 x 513500 (155.3 MB) with weight 49208518 (95.83/col)
Wed Mar 20 12:02:55 2013  sparse part has weight 34538686 (67.26/col)
Wed Mar 20 12:03:00 2013  filtering completed in 2 passes
Wed Mar 20 12:03:00 2013  matrix is 512194 x 512377 (155.1 MB) with weight 49152188 (95.93/col)
Wed Mar 20 12:03:00 2013  sparse part has weight 34515824 (67.36/col)
Wed Mar 20 12:03:01 2013  matrix starts at (0, 0)
Wed Mar 20 12:03:01 2013  matrix is 512194 x 512377 (155.1 MB) with weight 49152188 (95.93/col)
Wed Mar 20 12:03:01 2013  sparse part has weight 34515824 (67.36/col)
Wed Mar 20 12:03:01 2013  saving the first 48 matrix rows for later
Wed Mar 20 12:03:02 2013  matrix includes 64 packed rows
Wed Mar 20 12:03:02 2013  matrix is 512146 x 512377 (148.6 MB) with weight 38993093 (76.10/col)
Wed Mar 20 12:03:02 2013  sparse part has weight 33822308 (66.01/col)
Wed Mar 20 12:03:02 2013  using block size 204858 for processor cache size 12288 kB
Wed Mar 20 12:03:03 2013  commencing Lanczos iteration (16 threads)
Wed Mar 20 12:03:03 2013  memory use: 215.3 MB
Wed Mar 20 12:03:09 2013  linear algebra at 0.6%, ETA 0h16m
Wed Mar 20 12:19:28 2013  lanczos halted after 8100 iterations (dim = 512146)
Wed Mar 20 12:19:29 2013  recovered 34 nontrivial dependencies
Wed Mar 20 12:19:29 2013  BLanczosTime: 1047
Wed Mar 20 12:19:29 2013  
Wed Mar 20 12:19:29 2013  commencing square root phase
Wed Mar 20 12:19:29 2013  reading relations for dependency 1
Wed Mar 20 12:19:29 2013  read 256050 cycles
Wed Mar 20 12:19:29 2013  cycles contain 842328 unique relations
Wed Mar 20 12:19:42 2013  read 842328 relations
Wed Mar 20 12:19:45 2013  multiplying 842328 relations
Wed Mar 20 12:20:30 2013  multiply complete, coefficients have about 32.44 million bits
Wed Mar 20 12:20:30 2013  initial square root is modulo 2076305159
Wed Mar 20 12:21:28 2013  GCD is N, no factor found
Wed Mar 20 12:21:28 2013  reading relations for dependency 2
Wed Mar 20 12:21:28 2013  read 256608 cycles
Wed Mar 20 12:21:28 2013  cycles contain 844066 unique relations
Wed Mar 20 12:21:40 2013  read 844066 relations
Wed Mar 20 12:21:43 2013  multiplying 844066 relations
Wed Mar 20 12:22:28 2013  multiply complete, coefficients have about 32.51 million bits
Wed Mar 20 12:22:28 2013  initial square root is modulo 2168552563
Wed Mar 20 12:23:27 2013  sqrtTime: 238


prp53 = 19908205731456826539052940025491068433262821979493597
prp64 = 9319338760453768484785456879744583150887539719939897393270232541
NFS elapsed time = 11101.9755 seconds.

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10217-3

c185

name 名前Dmitry Domanov
date 日付March 25, 2013 05:45:01 UTC 2013 年 3 月 25 日 (月) 14 時 45 分 1 秒 (日本時間)
composite number 合成数
17964886445876238091053396642423882101816598094775170772630019387175799950637310543091031210730975882085377232748912922724966092193581033088390530704359222601898840329188619864829334597<185>
prime factors 素因数
5304421748735442838522170610939694351<37>
composite cofactor 合成数の残り
3386775655642202564438718488309730890041436203373149222804338752301168190671206303097197979559016826870889243147734222236106059314257633890129015147<148>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=40276203
Step 1 took 75454ms
Step 2 took 27713ms
********** Factor found in step 2: 5304421748735442838522170610939694351
Found probable prime factor of 37 digits: 5304421748735442838522170610939694351

c148

name 名前Erik Branger
date 日付May 6, 2019 15:11:30 UTC 2019 年 5 月 7 日 (火) 0 時 11 分 30 秒 (日本時間)
composite number 合成数
3386775655642202564438718488309730890041436203373149222804338752301168190671206303097197979559016826870889243147734222236106059314257633890129015147<148>
prime factors 素因数
474022733754457291005197482362060627657696707074199960708047<60>
7144753646766116348263931693224040362690408321190112596853850769321817738598658649019301<88>
factorization results 素因数分解の結果
Number: 39997_217
N = 3386775655642202564438718488309730890041436203373149222804338752301168190671206303097197979559016826870889243147734222236106059314257633890129015147 (148 digits)
SNFS difficulty: 220 digits.
Divisors found:
r1=474022733754457291005197482362060627657696707074199960708047 (pp60)
r2=7144753646766116348263931693224040362690408321190112596853850769321817738598658649019301 (pp88)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 57.08 hours.
Factorization parameters were as follows:
n: 3386775655642202564438718488309730890041436203373149222804338752301168190671206303097197979559016826870889243147734222236106059314257633890129015147
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 1
c0: -750
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 268435456
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/268435456
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 52320063
Relations: 8017068 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 31.60 hours.
Total relation processing time: 0.77 hours.
Pruned matrix : 6781750 x 6781995
Matrix solve time: 24.54 hours.
time per square root: 0.17 hours.
Prototype def-par.txt line would be: snfs,220,4,0,0,0,0,0,0,0,0,536870912,268435456,29,29,58,58,2.8,2.8,100000
total time: 57.08 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17763-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:01:12 UTC 2013 年 3 月 29 日 (金) 23 時 1 分 12 秒 (日本時間)
4511e62550400Dmitry DomanovMarch 29, 2013 14:01:12 UTC 2013 年 3 月 29 日 (金) 23 時 1 分 12 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:10:42 UTC 2013 年 11 月 9 日 (土) 2 時 10 分 42 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:24:49 UTC 2014 年 1 月 6 日 (月) 11 時 24 分 49 秒 (日本時間)
900Serge BatalovMay 24, 2014 19:01:51 UTC 2014 年 5 月 25 日 (日) 4 時 1 分 51 秒 (日本時間)
5043e61000 / 6943Rich DickersonNovember 25, 2015 00:23:27 UTC 2015 年 11 月 25 日 (水) 9 時 23 分 27 秒 (日本時間)

4×10218-3

c219

name 名前NFS@Home + Lionel Debroux
date 日付September 24, 2015 05:49:20 UTC 2015 年 9 月 24 日 (木) 14 時 49 分 20 秒 (日本時間)
composite number 合成数
399999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997<219>
prime factors 素因数
10067831582637022132817905111256783184575163431814522785441218512027016129455219736741<86>
39730501718944109275533248415809468732659894963488711511851403087021043769617025638792340956819600016474235519149275235236442233719417<134>
factorization results 素因数分解の結果
p86 factor: 10067831582637022132817905111256783184575163431814522785441218512027016129455219736741
software ソフトウェア
ggnfs-lasieve4I14e on the NFS@Home grid + msieve 1.53 SVN

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:02:00 UTC 2013 年 3 月 29 日 (金) 23 時 2 分 0 秒 (日本時間)
4511e61250400Dmitry DomanovMarch 29, 2013 14:02:00 UTC 2013 年 3 月 29 日 (金) 23 時 2 分 0 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:14:47 UTC 2013 年 11 月 9 日 (土) 2 時 14 分 47 秒 (日本時間)
5043e62000Serge BatalovNovember 25, 2013 10:25:26 UTC 2013 年 11 月 25 日 (月) 19 時 25 分 26 秒 (日本時間)
5511e70 / 12320--
6026e72000 / 41762Serge BatalovNovember 25, 2013 10:25:55 UTC 2013 年 11 月 25 日 (月) 19 時 25 分 55 秒 (日本時間)

4×10219-3

c218

name 名前Warut Roonguthai
date 日付March 19, 2013 20:26:06 UTC 2013 年 3 月 20 日 (水) 5 時 26 分 6 秒 (日本時間)
composite number 合成数
81632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653<218>
prime factors 素因数
1246612768507574610673925215234477<34>
composite cofactor 合成数の残り
65483568854307364858591061353745838644763192360921850964445040988688378593507665385450169619548705780793170382024412780613289569992092618153890464004124984380757840913163914211691214689<185>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=969435131
Step 1 took 11591ms
Step 2 took 6536ms
********** Factor found in step 2: 1246612768507574610673925215234477
Found probable prime factor of 34 digits: 1246612768507574610673925215234477
Composite cofactor 65483568854307364858591061353745838644763192360921850964445040988688378593507665385450169619548705780793170382024412780613289569992092618153890464004124984380757840913163914211691214689 has 185 digits
software ソフトウェア
GMP-ECM 6.3

c185

name 名前Erik Branger
date 日付January 2, 2021 16:26:45 UTC 2021 年 1 月 3 日 (日) 1 時 26 分 45 秒 (日本時間)
composite number 合成数
65483568854307364858591061353745838644763192360921850964445040988688378593507665385450169619548705780793170382024412780613289569992092618153890464004124984380757840913163914211691214689<185>
prime factors 素因数
166805447302665778699167530958795773645050058680599613099001396303777<69>
392574522674241514762630940899300679969830253377328911295761130219902624945195518070035967528898563755154942239672257<117>
factorization results 素因数分解の結果
Number: 39997_219
N = 65483568854307364858591061353745838644763192360921850964445040988688378593507665385450169619548705780793170382024412780613289569992092618153890464004124984380757840913163914211691214689 (185 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=166805447302665778699167530958795773645050058680599613099001396303777 (pp69)
r2=392574522674241514762630940899300679969830253377328911295761130219902624945195518070035967528898563755154942239672257 (pp117)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 52.02 hours.
Factorization parameters were as follows:
n: 65483568854307364858591061353745838644763192360921850964445040988688378593507665385450169619548705780793170382024412780613289569992092618153890464004124984380757840913163914211691214689
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 2
c0: -15
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 6570214 relations
Pruned matrix : 5809828 x 5810054
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 27.43 hours.
Total relation processing time: 0.34 hours.
Matrix solve time: 23.61 hours.
time per square root: 0.63 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 52.02 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:03:16 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 16 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:03:16 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 16 秒 (日本時間)

4×10220-3

c203

name 名前Dmitry Domanov
date 日付March 20, 2013 05:10:46 UTC 2013 年 3 月 20 日 (水) 14 時 10 分 46 秒 (日本時間)
composite number 合成数
44419847691838566901178465916429628219731984100401997795414693746827272109051036722970358541582511454535879977495414428346664180802457508477964875813165299483904336561243680379335734196825537407910103597<203>
prime factors 素因数
72070815572721926275001962564127<32>
616336131884305043803315200341692880412921733794801412902763944974434685535922496702796960092699977969842089948100992504762318462224390239768390769589994461343110915586611<171>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=866281183
Step 1 took 38464ms
Step 2 took 13650ms
********** Factor found in step 2: 72070815572721926275001962564127
Found probable prime factor of 32 digits: 72070815572721926275001962564127

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10222-3

c169

name 名前Dmitry Domanov
date 日付March 20, 2013 05:12:51 UTC 2013 年 3 月 20 日 (水) 14 時 12 分 51 秒 (日本時間)
composite number 合成数
1074967545343025811491984427419417172887007711257950535396221022901704738248118862628689061771292910539134159079944406954986461610007394310523754451736478975217962561707<169>
prime factors 素因数
223035807665583287889849404921823227<36>
4819708353534051502665747978121034351625741975799558660604331149441142172135112905085070941010399416481189542559972958171805763732241<133>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2297520921
Step 1 took 27850ms
Step 2 took 10701ms
********** Factor found in step 2: 223035807665583287889849404921823227
Found probable prime factor of 36 digits: 223035807665583287889849404921823227

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10226-3

c205

composite cofactor 合成数の残り
9187276427029102349163695740036260975378164042342605966092797232945345169491319618900076347178940226307457149089177344009941689282950854195331942759778262532989175969648609375114483827165820029572679545523<205>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:03:29 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 29 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:03:29 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 29 秒 (日本時間)

4×10227-3

c213

composite cofactor 合成数の残り
230017537536693018454303014150419206077930454225295371490143159036110390919331199449326251122057277492956301398175135722762196558115425779920148357747126581576813370802968067602101193438972915633667221751297575873<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:03:41 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 41 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:03:41 UTC 2013 年 3 月 29 日 (金) 23 時 3 分 41 秒 (日本時間)

4×10228-3

c181

composite cofactor 合成数の残り
1169006499352578198525690517431493618054375953829479585470402398221089728390454236064938879641461960215466536926906860547646501967164259735226527147072752604595192842266258142684351<181>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:04:08 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 8 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:04:08 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 8 秒 (日本時間)

4×10229-3

c206

composite cofactor 合成数の残り
22518563016659922703722107154622647163779876897640348549547911759067272343964700357989788651299927373125698253763376929159654747820156822137394984213853112245038242310859277408961531398994531927478556867161<206>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:04:20 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 20 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:04:20 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 20 秒 (日本時間)

4×10230-3

c178

composite cofactor 合成数の残り
5885839629441864086350648683894161386602538514753687975494496325589542151815282399868938848631356649238793515051474248422336839697556287812051750200808302021945748763717076502813<178>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:04:33 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 33 秒 (日本時間)
4511e61400 / 4254400Dmitry DomanovMarch 29, 2013 14:04:33 UTC 2013 年 3 月 29 日 (金) 23 時 4 分 33 秒 (日本時間)
1000Dmitry DomanovAugust 5, 2014 11:03:00 UTC 2014 年 8 月 5 日 (火) 20 時 3 分 0 秒 (日本時間)

4×10233-3

c207

composite cofactor 合成数の残り
345670665940936223013973126326300617269444324166040746755002156872712158229996603019922978046268038520527486689186489766218761575957013857350936120409952196842312646278861036785926736299492947419001704315601<207>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:05:46 UTC 2013 年 3 月 29 日 (金) 23 時 5 分 46 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:05:46 UTC 2013 年 3 月 29 日 (金) 23 時 5 分 46 秒 (日本時間)

4×10234-3

c215

composite cofactor 合成数の残り
23206425678271950445835592711491490549603238235018520678641524781311631560958724727207695637224421209324091251532586105073434738542673839556024169051654975480369695714518811389569073477132629151650108851004623814923<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:05:59 UTC 2013 年 3 月 29 日 (金) 23 時 5 分 59 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:05:59 UTC 2013 年 3 月 29 日 (金) 23 時 5 分 59 秒 (日本時間)

4×10235-3

c228

name 名前Dmitry Domanov
date 日付March 25, 2013 05:43:18 UTC 2013 年 3 月 25 日 (月) 14 時 43 分 18 秒 (日本時間)
composite number 合成数
570406752920058334928214381445854773556576086121836857479751594133577596715780446847238526150518620236830887388773000458022362425983841488982942941485236796591682753681950634803536299409470722853804307161355535712689084669281801<228>
prime factors 素因数
22391847221311050664336660065689307107<38>
25473858734494385118046428291843859591024320113483126223184458766126155533013800194305744399645247290851064248248636723003213487525081351098571084093305189573347221520288132187872132957316643<191>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2526242207
Step 1 took 122656ms
Step 2 took 40786ms
********** Factor found in step 2: 22391847221311050664336660065689307107
Found probable prime factor of 38 digits: 22391847221311050664336660065689307107

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10236-3

c227

composite cofactor 合成数の残り
63413932685391657529766617714635391302736739984533985469449731453813849070570231610484231895683003963953725413189058422255986798053742255596656515681920502036132519754750718220692509343869781888813761046482945176891810545763037<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:06:11 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 11 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:06:11 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 11 秒 (日本時間)

4×10238-3

c238

composite cofactor 合成数の残り
1081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081081<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:06:24 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 24 秒 (日本時間)
4511e62450400Dmitry DomanovMarch 29, 2013 14:06:24 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 24 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:17:16 UTC 2013 年 11 月 9 日 (土) 2 時 17 分 16 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:29:51 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 51 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:24:52 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 52 秒 (日本時間)
5043e6760 / 6965Serge BatalovFebruary 24, 2014 02:26:49 UTC 2014 年 2 月 24 日 (月) 11 時 26 分 49 秒 (日本時間)

4×10239-3

c239

composite cofactor 合成数の残り
30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:06:39 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 39 秒 (日本時間)
4511e62450400Dmitry DomanovMarch 29, 2013 14:06:39 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 39 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:17:18 UTC 2013 年 11 月 9 日 (土) 2 時 17 分 18 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:29:53 UTC 2014 年 1 月 6 日 (月) 11 時 29 分 53 秒 (日本時間)
800Serge BatalovFebruary 23, 2014 19:24:52 UTC 2014 年 2 月 24 日 (月) 4 時 24 分 52 秒 (日本時間)
5043e6760 / 6965Serge BatalovFebruary 24, 2014 02:26:50 UTC 2014 年 2 月 24 日 (月) 11 時 26 分 50 秒 (日本時間)

4×10240-3

c214

name 名前Dmitry Domanov
date 日付March 20, 2013 05:08:31 UTC 2013 年 3 月 20 日 (水) 14 時 8 分 31 秒 (日本時間)
composite number 合成数
6638192474132853406803722390242137975499441747629709410829882599168904746941447758094294766575972672041554665559196063304010243397225635732399247399273489478187733066136682335258598017256773602705675072889606369953<214>
prime factors 素因数
79349947136857964305668137506688317<35>
83657175759470924823693263439826465083136882480613079419002053388178698340504033830068281799588771303765978244755348829683856580231030075491812320049247559206858722044086071040309<179>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1745716713
Step 1 took 44914ms
Step 2 took 14608ms
********** Factor found in step 2: 79349947136857964305668137506688317
Found probable prime factor of 35 digits: 79349947136857964305668137506688317

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10241-3

c198

name 名前Dmitry Domanov
date 日付March 25, 2013 05:47:30 UTC 2013 年 3 月 25 日 (月) 14 時 47 分 30 秒 (日本時間)
composite number 合成数
499825362438192565179719292205493366395584518248834881863277186314718621800247603223560519753387989775732780636804610165205775106283820593172737325696130498889745955124198878801825871144904891613229<198>
prime factors 素因数
108008530106947381244923767476259797371<39>
composite cofactor 合成数の残り
4627647112161213796803303050186459001719592262813332647430682976158857980733089981569542156850652824224010444060356321590859140521089787325700327813334244628599<160>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2295438255
Step 1 took 98810ms
Step 2 took 31078ms
********** Factor found in step 2: 108008530106947381244923767476259797371
Found probable prime factor of 39 digits: 108008530106947381244923767476259797371

c160

name 名前Erik Branger
date 日付December 10, 2023 08:55:44 UTC 2023 年 12 月 10 日 (日) 17 時 55 分 44 秒 (日本時間)
composite number 合成数
4627647112161213796803303050186459001719592262813332647430682976158857980733089981569542156850652824224010444060356321590859140521089787325700327813334244628599<160>
prime factors 素因数
137686018437817498306053359970728884711159990246889746705004251<63>
33610145493830055997350112476453467220670035085438103952300795937152245132106207169837614269395349<98>
factorization results 素因数分解の結果
Number: 39997_241
N = 4627647112161213796803303050186459001719592262813332647430682976158857980733089981569542156850652824224010444060356321590859140521089787325700327813334244628599 (160 digits)
SNFS difficulty: 242 digits.
Divisors found:
r1=137686018437817498306053359970728884711159990246889746705004251 (pp63)
r2=33610145493830055997350112476453467220670035085438103952300795937152245132106207169837614269395349 (pp98)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 176.42 hours.
Factorization parameters were as follows:
# Murphy_E = 1.561e-11, selected by Dmitry Domanov
n: 4627647112161213796803303050186459001719592262813332647430682976158857980733089981569542156850652824224010444060356321590859140521089787325700327813334244628599 
m: 1000000000000000000000000000000000000000000000000000000000000
deg: 4
c4: 40
c0: -3
skew: 1.00
type: snfs
lss: 1
rlim: 500000000
alim: 150000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 8
Number of threads per core: 1
Factor base limits: 500000000/150000000
Large primes per side: 3
Large prime bits: 29/29
Total raw relations: 64904813
Relations: 13875306 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 44.12 hours.
Total relation processing time: 0.61 hours.
Pruned matrix : 11109282 x 11109507
Matrix solve time: 131.19 hours.
time per square root: 0.49 hours.
Prototype def-par.txt line would be: snfs,242,4,0,0,0,0,0,0,0,0,500000000,150000000,29,29,58,58,2.8,2.8,100000
total time: 176.42 hours.
Intel64 Family 6 Model 165 Stepping 5, GenuineIntel
Windows-10-10.0.22631-SP0
processors: 16, speed: 3.79GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:06:55 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 55 秒 (日本時間)
4511e61650400Dmitry DomanovMarch 29, 2013 14:06:55 UTC 2013 年 3 月 29 日 (金) 23 時 6 分 55 秒 (日本時間)
850Serge BatalovNovember 8, 2013 17:12:44 UTC 2013 年 11 月 9 日 (土) 2 時 12 分 44 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:26:29 UTC 2014 年 1 月 6 日 (月) 11 時 26 分 29 秒 (日本時間)
5043e6800Erik BrangerJanuary 29, 2014 22:19:31 UTC 2014 年 1 月 30 日 (木) 7 時 19 分 31 秒 (日本時間)
5511e710000 / 17373yoyo@HomeAugust 4, 2022 00:23:35 UTC 2022 年 8 月 4 日 (木) 9 時 23 分 35 秒 (日本時間)

4×10242-3

c240

composite cofactor 合成数の残り
113346557098328138282799659960328705015585151601020119013884953244545196939642958345140266364409181071124964579200906772456786625106262397279682629640124681212808160952111079625956361575517143666761122130915273448568999716633607254179654293<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:07:08 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 8 秒 (日本時間)
4511e6400Dmitry DomanovMarch 29, 2013 14:07:08 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 8 秒 (日本時間)
5043e61100 / 7425500Dmitry DomanovMay 8, 2013 16:24:05 UTC 2013 年 5 月 9 日 (木) 1 時 24 分 5 秒 (日本時間)
600Dmitry DomanovMay 24, 2013 15:49:22 UTC 2013 年 5 月 25 日 (土) 0 時 49 分 22 秒 (日本時間)

4×10243-3

c177

name 名前Dmitry Domanov
date 日付March 20, 2013 05:09:02 UTC 2013 年 3 月 20 日 (水) 14 時 9 分 2 秒 (日本時間)
composite number 合成数
114565271173707134536957616380938620470986588839777130090577590220108028920365212172573351731592622245201536760577227290596826905967508040676328208815792569097453961846305731021<177>
prime factors 素因数
1116057707099624213130629762575971433721779<43>
102651745017231922769321319293535454050199954655215497668536209630320785327089075742019401192220923777396685226798295827836109293443199<135>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1704325369
Step 1 took 31990ms
Step 2 took 11780ms
********** Factor found in step 2: 1116057707099624213130629762575971433721779
Found probable prime factor of 43 digits: 1116057707099624213130629762575971433721779

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e40--
351e6118 / 904Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)

4×10244-3

c214

composite cofactor 合成数の残り
9944784201136793635565867304885017744354497045873807886105544734033049376364688897549263181203275773937010404459037602130507515558678186563889674638998594156592074617926991086983547393383646550007429714000051387069<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:07:34 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 34 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:07:34 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 34 秒 (日本時間)

4×10245-3

c233

composite cofactor 合成数の残り
11645300915449701868914795276236466234406941272979754649222820225441097971821989751300027252205462118325516992178311830494424901882198686663196937557904156499553893893007631244327787286194540033422918418893776006504414366395221269793<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:07:47 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 47 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:07:47 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 47 秒 (日本時間)

4×10247-3

c227

name 名前Dmitry Domanov
date 日付March 25, 2013 05:42:37 UTC 2013 年 3 月 25 日 (月) 14 時 42 分 37 秒 (日本時間)
composite number 合成数
23841692197161983970714869276061473192497088588721038219554873021909700803918285497425644675235368719983222013565288865432105867848079040176991707064087341045457557781785729771021245429269638442579797718459231796766289525480137<227>
prime factors 素因数
1302880934933551458494198693845196266651<40>
composite cofactor 合成数の残り
18299210279240090196329674836447761834668004162087269082755337622736940561028637087943471978670864020359365090278631819863915298592576434689180172274476040207222078036833739689555209556587<188>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2724775150
Step 1 took 121158ms
Step 2 took 36423ms
********** Factor found in step 2: 1302880934933551458494198693845196266651
Found probable prime factor of 40 digits: 1302880934933551458494198693845196266651

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:07:58 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 58 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:07:58 UTC 2013 年 3 月 29 日 (金) 23 時 7 分 58 秒 (日本時間)

4×10249-3

c209

name 名前Dmitry Domanov
date 日付March 20, 2013 05:11:19 UTC 2013 年 3 月 20 日 (水) 14 時 11 分 19 秒 (日本時間)
composite number 合成数
31012647124170366360672595785184258746446709507300078998912281616478920447525946346336432452160982232176602383967896619692770970154680975046985353349058065132970170409130759659064246429928785496909025357007751<209>
prime factors 素因数
9859890000758151500364257584249<31>
composite cofactor 合成数の残り
3145333986665746441343186218347376991352568895757343791641157789369007326951412566718314788972102056523375602462736044789298287824881016671304975482203162826880013221213009407999<178>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=602926246
Step 1 took 38613ms
Step 2 took 13526ms
********** Factor found in step 2: 9859890000758151500364257584249
Found probable prime factor of 31 digits: 9859890000758151500364257584249

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:08:10 UTC 2013 年 3 月 29 日 (金) 23 時 8 分 10 秒 (日本時間)
4511e6400 / 4254Dmitry DomanovMarch 29, 2013 14:08:10 UTC 2013 年 3 月 29 日 (金) 23 時 8 分 10 秒 (日本時間)

4×10250-3

c234

composite cofactor 合成数の残り
584577183355124059933098604933483077382973426513602005237820835754223223629833736147424378046826300391371918799062659320044274616348033723697116135626041449125383556261102735551252903049266644648576640248396501370020120573672058792379<234>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6118Makoto KamadaMarch 19, 2013 15:00:00 UTC 2013 年 3 月 20 日 (水) 0 時 0 分 0 秒 (日本時間)
403e61000Dmitry DomanovMarch 29, 2013 14:08:23 UTC 2013 年 3 月 29 日 (金) 23 時 8 分 23 秒 (日本時間)
4511e6400Dmitry DomanovMarch 29, 2013 14:08:23 UTC 2013 年 3 月 29 日 (金) 23 時 8 分 23 秒 (日本時間)
5043e61100 / 7425500Dmitry DomanovMay 2, 2013 19:50:44 UTC 2013 年 5 月 3 日 (金) 4 時 50 分 44 秒 (日本時間)
600Dmitry DomanovMay 8, 2013 15:59:45 UTC 2013 年 5 月 9 日 (木) 0 時 59 分 45 秒 (日本時間)

4×10254-3

c218

composite cofactor 合成数の残り
10666018337714775801296767177552570367425148359458458450890895947010836657551241280104084578314659851106822947195471359843180823705237727733089170106699890380533320702725184327666762996110760108557752541964948945678671<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10255-3

c217

composite cofactor 合成数の残り
1104894765205165436457334199343631186014169569079604366868756199788251761823827410840386374256479393355348641674223177007031263036425378488462391470686201210558144761213325977955149779153506965680652409735081031882857<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10258-3

c193

composite cofactor 合成数の残り
1939388081119584664275263679618817106747026167901860620712621008188817556257920546249942021074402426420364720743227653362713103186986614567566551545767621115703372830726456805493009298413282097<193>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10259-3

c207

composite cofactor 合成数の残り
102292290365768958191549585350306544778657814012354299805646257317314676713467724235751339926127315543034737110499022392588226989466204683007438720028793974607215944718817877492859144054853393883445551607463<207>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10262-3

c253

composite cofactor 合成数の残り
3855760481178372270738103377401350361100485473317365884376374079471296549670545273460504803744548858734954102900649676449030760662271392820182566520624009424587532714328729548988932900240910893438996409768295844204895413104712282497897158120981533234343<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10265-3

c244

composite cofactor 合成数の残り
4284600625688975722175896172123478858721027143147570468648653182202864739929702816217996585159407990040238260586070429980536834148463768198475351230670310137658918208784617735766662156489134802892607170826904727555103293655712288878586737918229<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10267-3

c195

composite cofactor 合成数の残り
383386834372137883374208094283593129809609553265059858711189437438825150800134511007613230620053872288779520121294173774955152104768857881219327819970526491603395932507449360710931502359113433809<195>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10268-3

c223

composite cofactor 合成数の残り
4001046595356988705514561129926114455416266874153633971020513548177706263374659685608028871125603012311165579879238356085087509231423510587520174804081340487029610601175257466899062684644031595771248526925873737575319409549<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10269-3

c212

composite cofactor 合成数の残り
57375688129186834654649768170426211566979537190934635719810383000192505050425519803644700175769870666168847618901556781889407622383319316588993519756378169581660537711836744202613339339941601798524008803486539187<212>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10270-3

c240

composite cofactor 合成数の残り
404839307761586352645222105660381382800171984413653864107134001692423140035804226225712119906524919994699667481528072437673418309693754932002329275718316951764000480938071168672521605036867041839623366737735182574796558777352331494860091049<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10271-3

c228

composite cofactor 合成数の残り
101307314502427018247453100197219220048607565153173714886015237846555146506233837844436969767453791216559237420726099291061409590253385514157340299997721119956527526789661683958997842431690266505886368099285681345969555126378591<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10274-3

c260

composite cofactor 合成数の残り
98190724323438803470337537959857700184748811510337376109825760051573226025462094389776902267953002653716513804295651483096968208858015487514250487638540295821181703620394932204567748208880111250325511619745478763203682664091924726851524528110426430789876344311<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10276-3

c269

composite cofactor 合成数の残り
36639756566922959626533159698748287904325095180240626288488564333518110679013373062309908935457429178258836815418551831758371870647626291996821024800984063253923103465057502296557041766876782541331866692730968163156762712994805371032907072206728541383840187421148381387<269>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10277-3

c260

composite cofactor 合成数の残り
50500189286833525663992823344022687158035346894911999319996931099835517397882902113003286709525296761102943145332917730392759626548666585033696603327028527483444794223942265616357990667334987997917137704889875579228865028558350527828989546686157756423260531239<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10279-3

c260

composite cofactor 合成数の残り
15492226294294409282210205818000594431423964625859133197207628181343257576200461056374266451779581125334924582003126293288268282633229901213690489303608959969402960868256247121087530848776833688223294215544535191978889834833862957532316395763340020138732054317<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10281-3

c247

composite cofactor 合成数の残り
1650249687643791622417779093202194632483632319222419935366858316004297539590871799201412243448704230553144208418137082519560819444670111797695066433140948429175577222937054003477591379570883941339438230578084137516334465173551827828914447818627497<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10282-3

c222

composite cofactor 合成数の残り
222185873386915090298334063844528942056235693810217948367516354650516813183724279357138295351138292055662048668463586976512023324782818151773997592711218966961478759485236274818620333527759356709197035590296275403566521063<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10284-3

c273

composite cofactor 合成数の残り
172135827031116700553407462459684265084218820355065350114919747026164564502362317852081072969751036968301575225609789562725894708724456108529534090325158988265376091857016860762313517924036358064844277418886562107745549645145759359104908599239963647334094377274140391896553<273>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10285-3

c242

composite cofactor 合成数の残り
19871960079467295307555342778871026384417780490558040001749275034500767955353497042148311261821220848461745983840113785026933312982398372447672656273748476831645579340913700901461982055764560819883736689047462654255537515000415150635921176027<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10286-3

c237

composite cofactor 合成数の残り
102348799646477911547122667061819945412531474900114313360493108479837160658498816137551527853345033735990162268947666453784727952450288317095313424479293088783880786826311085884580681126828566705006936704772570964863594639997044383629889<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10287-3

c275

composite cofactor 合成数の残り
80221323437227334217370510893672544320477564502081928083177089790727653088121216207128166859802169632561387256821948506296079566801203481065854194610618720241313819796132008241333926030629888933120922948637289540177315455596589173264755627234826894861776467723141007683726229<275>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10288-3

c257

composite cofactor 合成数の残り
21328836696718879167091835901808463239797766291954300054231400544145416187958554067196398406952985467492124608507636193456020449099966278955773275269206398954398764052201846337034074193230838897509843264110953522258046274669113305103170509981728018811741717<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10289-3

c222

composite cofactor 合成数の残り
264697561928745965348981624696745748044244397888254506663456098272324512761362884159359574250689244209728629997112747552437193564377641695062689743206486274077209033538316112329867945362579523437574691450029480790384760011<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10290-3

c256

composite cofactor 合成数の残り
1004923814166760467500225722512740869662464944713315246052860974277839738757337904178962660214941638229539131309751079707046820025039630046674717267250775466488886062462530883113722356480781965621548401082235010733056702306231331332166106778183565330164501<256>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10291-3

c262

composite cofactor 合成数の残り
8329776180356604037404148078291196406347178564895564205591451616033187144483608674145132046989776444206742574955339465950016042536747446569987289104450039309749807544977102453193767195426940041827951114757161641732585118332917385859418269179973630499577785828717<262>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10293-3

c226

composite cofactor 合成数の残り
2458474217531464191969233080775191477893877284151102444225264945454591189617431850525735775676947093394366899614363594996437669156844041833357579157886890382721966586295782263607734810871053275731821201784565240993536492502079<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10295-3

c250

composite cofactor 合成数の残り
2332588824287044309508443714048081017084632623092658298221341970723398381707252643944317916369012167522476525837053923563419731127844612353859210025101116573119473058680843070406344880082570603771668928398131482521010348789737722677375039517948222907<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10296-3

c270

composite cofactor 合成数の残り
148178675084750902647199649260575192275600689155955141375392558472849933690836342138509287921785282467583898322011638010215250788598244611885988117455856960715572300326822855229364495289330644622161511907272573553027918790758012285556367801953359173664176827705084654469<270>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10297-3

c290

composite cofactor 合成数の残り
50346897043326865561160409883654740162244637863517340711134061464423328088739024077509853548554402761255429582444610955618215905090762302242265769463144365863147391711659695656279921396913929046797679949533277341710016498804028340822161556169219898367488017973439469291344390409777045185673<290>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10298-3

c273

composite cofactor 合成数の残り
152276452870829541485838912558084773650760768279019801425053300470269743256546031369279266207954022454163106316548822261075350923557727270236051478414755618924074339953695363498212434695164456542822403589618640748594761166447412558381395901328772394498287622611040982374397<273>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10299-3

c287

composite cofactor 合成数の残り
12814232828981872038039975858650515240109720040997672781292876173525630141188599542254474081991034467736322574190037445881277999229867579047280680424288593696904810176658040383957574639534671134344935181591964088340940463785035079626287715154994268870202720497709878595377437544869726191<287>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)