n=9139: c7766(9664749463......) = 102323103870499479272499972352456883 * c7731(9445324758......)
# ECM B1=1e6, sigma=0:32605637501090
# via Sam Wagstaff
n=742: c235(3445945715......) = 2548171182130492354464113595833821781588064140986874348075459263402328971040215243200625902015381883224397137647 * p124(1352321123......)
# snfs
# https://pastebin.com/yQ05bym2
# 1184 of 300000 Φn(10) factorizations were finished. 300000 個中 1184 個の Φn(10) の素因数分解が終わりました。
n=220531: x217774(3350137607......) is (probable) prime
# 1183 of 300000 Φn(10) factorizations were finished. 300000 個中 1183 個の Φn(10) の素因数分解が終わりました。
$ ./pfgw64 -tc -q"(10^220531-1)*9/(10^83-1)/(10^2657-1)/2686456812680882641" PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6] Primality testing (10^220531-1)*9/(10^83-1)/(10^2657-1)/2686456812680882641 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N+1 test using discriminant 7, base 9+sqrt(7) (10^220531-1)*9/(10^83-1)/(10^2657-1)/2686456812680882641 is Fermat and Lucas PRP! (4001.6080s+0.0286s)
# via Kurt Beschorner
n=35251: c35251(1111111111......) = 119046480308568500886427 * c35227(9333422611......)
# ECM B1=5e4, sigma=0:620255578917684
n=35363: c35363(1111111111......) = 2931190842118437948895849 * c35338(3790647456......)
# ECM B1=5e4, sigma=0:3356793723748038
n=56671: c56651(6725902267......) = 17327625606417916093196681 * c56626(3881606412......)
# ECM B1=5e4, sigma=0:8039459931350690
# 201923 of 300000 Φn(10) factorizations were cracked. 300000 個中 201923 個の Φn(10) の素因数が見つかりました。
# 19596 of 25997 Rprime factorizations were cracked. 25997 個中 19596 個の Rprime の素因数が見つかりました。
n=299912: c149934(2335924222......) = 26483555133285114793 * x149914(8820281910......)
# ECM B1=11e3, sigma=0:2255661832190991
n=299912: x149914(8820281910......) = 107911061915460883817 * c149894(8173658709......)
# ECM B1=11e3, sigma=0:1224499426851938
Largest known factors that appear after the previous one 1 n=604: 188981422179250214477885038956646476812007525220846625175628245017547495717341304519447280552146559165713534073382085460954497219653965265520569 (NFS@Home / Mar 16, 2017) 2 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 3 n=816: 3178246571075235723080972275640135632212436318968968029466533249264048115754831736073020454216579035062833710671458881 (Yousuke Koide / Apr 5, 2020) 4 n=1540M: 647799461893729229242068652342456021003805852058736425973158141325454469108253161834095467738437014341 (NFS@Home / Sep 18, 2013) 5 n=2340L: 54416219768345058780693800256182138078138198676424989328564702046179663087831396313663972761 (Bo Chen, Wenjie Fang, Maksym Voznyy and Kurt Beschorner / Feb 15, 2016) 6 n=2700M: 71618803865606542412383896587352242997259054038820075447553395780556284501401142201 (Bo Chen, Maksym Voznyy, Wenjie Fang, Alfred Eichhorn and Kurt Beschorner / May 7, 2017) 7 n=2820M: 832530561417330269513686172453574642103980456844602894975421 (Eric_ch / Aug 23, 2016) 8 n=5900M: 593243597135622945022444401922545308692618865123732027101 (pi / Sep 17, 2018) 9 n=13980M: 21166873440679239162423181074773929272724025103001 (Kurt Beschorner / Jul 14, 2011) 10 n=103748: 1941549624124837091592820526305327246593529 (Makoto Kamada / Jun 18, 2018) 11 n=112666: 356334694333381082120764457775238849699 (Makoto Kamada / Oct 17, 2018) 12 n=120833: 79670409416595961896605938971188364397 (Maksym Voznyy / Nov 27, 2015) 13 n=135070: 9855589830288396166509564150666175361 (Makoto Kamada / Dec 6, 2017) 14 n=199700M: 16745944922383579468094190800250901 (Serge Batalov / Jul 6, 2015) 15 n=199900L: 612937240365283738637341628923301 (Serge Batalov / Jul 6, 2015) 16 n=217319: 327136068049348903751880841 (Alfred Reich / Feb 18, 2019) 17 n=299011: 221045463366486747587120747 (Alfred Reich / Feb 18, 2019) 18 n=299807: 1096020580210100960507 (Alfred Reich / Feb 18, 2019) 19 n=299912: 107911061915460883817 (Kurt Beschorner / Oct 11, 2020) 20 n=299941: 476143900733778479 (Alfred Reich / Feb 18, 2019) 21 n=299947: 4179348094038241 (Kurt Beschorner / Jun 16, 2020) 22 n=299983: 985644503446279 (Danilo Nitsche / Jul 4, 2020) 23 n=299997: 4358711612449 (Makoto Kamada / Feb 18, 2019) 24 n=300000: 47847600001 (Makoto Kamada / Feb 15, 2019)
n=9097: c8236(2972378246......) = 55502243290677967041853006539414761 * c8201(5355420015......)
# ECM B1=1e6, sigma=0:3429806618658913
# via yoyo@home
n=469: c396(9000000900......) = 6958997628875965569003769582314963273475677604340583053 * c342(1293289835......)
# ECM B1=210596123-260000000
# 201921 of 300000 Φn(10) factorizations were cracked. 300000 個中 201921 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=35227: c35227(1111111111......) = 61546699056988639875393323 * c35201(1805313896......)
# ECM B1=5e4, sigma=0:4422238530267184
n=56501: c56478(7907580030......) = 833735079549139025506013 * c56454(9484523591......)
# ECM B1=5e4, sigma=0:8776110477941862
# 201920 of 300000 Φn(10) factorizations were cracked. 300000 個中 201920 個の Φn(10) の素因数が見つかりました。
# 19594 of 25997 Rprime factorizations were cracked. 25997 個中 19594 個の Rprime の素因数が見つかりました。