n=50767: c50767(1111111111......) = 1908745906194839 * c50751(5821157795......)
# ECM B1=2000, sigma=1876323698
n=7513: c6793(1160440157......) = 13001465102890409692329157 * c6767(8925456852......)
n=8537: c8537(1111111111......) = 1294061451713201351187002351 * c8509(8586231431......)
n=9905: c6760(1690054199......) = 46064953104703930817071 * c6737(3668850364......)
n=50411: c50411(1111111111......) = 251918625944717 * c50396(4410595314......)
# ECM B1=2000, sigma=2781382461
n=8449: c6698(5211719533......) = 375567370470574914066191 * c6675(1387692313......)
n=13020M: c1337(1643735264......) = 34600118371267189229375054370123212761 * c1299(4750663701......)
n=1060M: c198(7642264061......) = 22534789481525070481066146802824209631029690388674663333618185041786620876200193924826168812981 * p104(3391318151......)
# snfs
# Phi_1060(10) is the 1000th factorized number of the form Phi_n(10) (n<=100000, L and M are combined).
# 22534789481525070481066146802824209631029690388674663333618185041786620876200193924826168812981 is the largest known factor that appears after n=786.
Largest known factors that appear after the previous one 1 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 2 n=1060M: 22534789481525070481066146802824209631029690388674663333618185041786620876200193924826168812981 (Raman / Sep 22, 2010) 3 n=1220M: 27186363592392725942593454290345801336551729326489701011779461 (Shaopu Lin / Sep 7, 2007) 4 n=1860L: 1891014345342089253412148254805092014919223493735583702021 (Yousuke Koide / Aug 14, 2010) 5 n=5100L: 185898550709887865845976723509058449254706894935901 (Frank Boerner / Jun 28, 2010) 6 n=13020M: 38362725655723071852811291205867646748081 (Kurt Beschorner / Sep 2, 2010) 7 n=44666: 41824405819036936327873267050242047 (Alfred Reich / Aug 9, 2010) 8 n=70140M: 461904211182554850127110960541 (Alfred Reich / Apr 26, 2010) 9 n=99380M: 6592290434322258947071767721 (Alfred Reich / Apr 26, 2010) 10 n=99874: 20466106492496275108462693 (Alfred Reich / Mar 29, 2010) 11 n=99940M: 17594820928226575015141 (Alfred Reich / Dec 2008) 12 n=99992: 371044131599480009569 (Alfred Reich / Jun 17, 2010) 13 n=99999: 821893328984521 (Alfred Reich / Jul 28, 2008) 14 n=100000: 66489400001 (Kurt Beschorner / Mar 13, 2008)
n=50231: c50231(1111111111......) = 2385135848576522449 * c50212(4658481452......)
# ECM B1=2000, sigma=1657208420
n=5140L: c1005(3736005825......) = 487078568940214342862745325582579441 * c969(7670232409......)
# ECM B1=11000000, sigma=2015852523
n=5060L: c792(7068823412......) = 205091346557483823616165925832292741 * p757(3446670730......)
# ECM B1=43000000, sigma=2508016467
n=8023: c7817(1686181894......) = 4742135441442578003455646753557 * c7786(3555743852......)
n=8345: c6656(4867862010......) = 1527203565055200868368881 * c6632(3187434944......)
n=8425: c6680(5497533912......) = 5711254277731517173439801 * c6655(9625790841......)
n=8701: c6692(3155322958......) = 430955789719991502115843 * c6668(7321685968......)
n=8827: c6888(2632609985......) = 3222949859724002617977769 * c6863(8168324362......)
n=7079: c7051(1792245043......) = 584527340361663007363 * c7030(3066144079......)
n=7099: c6818(1103763911......) = 32319404248166636723599 * c6795(3415174065......)
n=7277: c6876(9000000000......) = 150008624635651302271693 * c6853(5999655034......)
n=8285: c6596(1798526111......) = 458525070416803410275164561 * c6569(3922416085......)
n=8687: c6890(2300843213......) = 4448577898302607285679 * c6868(5172087049......)
n=8275: c6594(3752939988......) = 283888519120203229151 * c6574(1321976669......)
n=8375: c6578(1045867929......) = 210865835193715786672001 * c6554(4959873790......)
n=9695: c6606(8353106118......) = 1425883089169484319431 * c6585(5858198461......)
n=60101: c60101(1111111111......) = 12004601725189237 * c60084(9255709906......)
# ECM B1=2000, sigma=3874387532
n=50051: c50051(1111111111......) = 4370191821943769 * c50035(2542476752......)
# ECM B1=161290, sigma=460965834
n=7157: c6720(9000000000......) = 16940547263192234270467 * c6698(5312697317......)
n=7201: c6770(9066588880......) = 704849410278974307481 * c6750(1286315736......)
n=7447: c6722(7631734699......) = 589671516203603436668561 * c6699(1294234923......)
n=9777: c6516(9009009009......) = 224356732306275122475391 * x6493(4015484142......)
n=9777: x6493(4015484142......) = 307236860474207816487799 * c6470(1306966923......)
n=9897: c6582(4447459224......) = 242662182644150929951074853 * c6556(1832778052......)
n=13020M: c1371(4106413947......) = 24982209953674871185248953943655321 * c1337(1643735264......)
n=12212: c5881(1009999999......) = 6219908629712986001 * c5862(1623818065......)
n=12412: c5931(3390524658......) = 3311354296550325689 * c5913(1023908756......)
n=12502: c4956(4652312452......) = 1599065973632069507573 * c4935(2909393689......)
n=12682: c5889(1456092593......) = 1504654787835811243157 * c5867(9677253582......)
n=15114: c4560(9100000000......) = 80760988474868456629135346317 * c4532(1126781651......)
n=21336: c6048(9999000100......) = 14435973064229809 * c6032(6926446908......)
n=22282: c10215(5631853196......) = 89429221632313652051 * c10195(6297553633......)
n=22712: c10619(4003074053......) = 27930911704041314849 * c10600(1433205652......)
n=23058: c6476(4336701500......) = 535296762710263 * c6461(8101490243......)
n=23202: c7718(2363672210......) = 47847988796874571 * c7701(4939961468......)
n=23692: c11818(4307377729......) = 13375183750466701 * c11802(3220425087......)
n=23836: c11601(1009999999......) = 4508533378292205589 * c11582(2240196346......)
n=8281: c6529(4957015767......) = 154060065336558487471 * c6509(3217586437......)
n=13020M: c1412(1575332317......) = 38362725655723071852811291205867646748081 * c1371(4106413947......)
# 38362725655723071852811291205867646748081 is the largest known factor that appears after n=5100L.
Largest known factors that appear after the previous one 1 n=786: 22470645744200057762885095342697894721605325430609487291715500041029950763944163993319007373686738769124162721892380653 (Serge Batalov and Bruce Dodson / Aug 12, 2009) 2 n=1060L: 1866584856050670751142049533200645741569755944852998334484263922627299824538001 (Edwards and King / Feb 16, 2010) 3 n=1220M: 27186363592392725942593454290345801336551729326489701011779461 (Shaopu Lin / Sep 7, 2007) 4 n=1860L: 1891014345342089253412148254805092014919223493735583702021 (Yousuke Koide / Aug 14, 2010) 5 n=5100L: 185898550709887865845976723509058449254706894935901 (Frank Boerner / Jun 28, 2010) 6 n=13020M: 38362725655723071852811291205867646748081 (Kurt Beschorner / Sep 2, 2010) 7 n=44666: 41824405819036936327873267050242047 (Alfred Reich / Aug 9, 2010) 8 n=70140M: 461904211182554850127110960541 (Alfred Reich / Apr 26, 2010) 9 n=99380M: 6592290434322258947071767721 (Alfred Reich / Apr 26, 2010) 10 n=99874: 20466106492496275108462693 (Alfred Reich / Mar 29, 2010) 11 n=99940M: 17594820928226575015141 (Alfred Reich / Dec 2008) 12 n=99992: 371044131599480009569 (Alfred Reich / Jun 17, 2010) 13 n=99999: 821893328984521 (Alfred Reich / Jul 28, 2008) 14 n=100000: 66489400001 (Kurt Beschorner / Mar 13, 2008)
n=4096: c2003(2701714153......) = 969220351349023606432543884535631873 * c1967(2787512819......)
n=8755: c6529(1111099999......) = 8579367620103708148681 * c6507(1295083797......)
n=12940M: c2576(2810704025......) = 1453209147041903375271490595401 * c2546(1934135930......)
# The second smallest composite in Phin10.txt was factored.
n=572: c161(1576468998......) = 40520191245153663291616075979301737566653577978261825599617472901135361 * p90(3890576401......)
# gnfs