name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 14:54:25 UTC 2022 年 12 月 23 日 (金) 23 時 54 分 25 秒 (日本時間) |
composite number 合成数 | 188526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021<108> |
prime factors 素因数 | 12329992605649317535712417369797046491<38> 15290046073070802688289887686907153252292819336575618756088565912331831<71> |
factorization results 素因数分解の結果 | N=188526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=12329992605649317535712417369797046491 (pp38) r2=15290046073070802688289887686907153252292819336575618756088565912331831 (pp71) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 188526155021000381825124093165330278732340588010691103474608629247804505536464299350897289041618938526155021 m: 1000000000000000000000000000 deg: 4 c4: 1975 c0: -4 skew: 0.21 # Murphy_E = 1.037e-07 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 470001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 49386 x 49611 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111.000,4,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 15:49:47 UTC 2022 年 12 月 24 日 (土) 0 時 49 分 47 秒 (日本時間) |
composite number 合成数 | 5486111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<115> |
prime factors 素因数 | 1446259418275298846189935540846817891942979877<46> 3793310551196574536758927249970676826221592326624229393552863851813243<70> |
factorization results 素因数分解の結果 | N=5486111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: r1=1446259418275298846189935540846817891942979877 (pp46) r2=3793310551196574536758927249970676826221592326624229393552863851813243 (pp70) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 5486111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 50000000000000000000000000000 deg: 4 c4: 79 c0: -10 skew: 0.60 # Murphy_E = 5.965e-08 type: snfs lss: 1 rlim: 620000 alim: 620000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 620000/620000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [310000, 690001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 64468 x 64693 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116.000,4,0,0,0,0,0,0,0,0,620000,620000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 22:33:18 UTC 2022 年 12 月 25 日 (日) 7 時 33 分 18 秒 (日本時間) |
composite number 合成数 | 473348672227015626497938836161441856006135557472917265842201131243409069120889655833573003547119164030294315022529<114> |
prime factors 素因数 | 1959638590065912064624085694275878231<37> 31259244203557363235635253398737225773<38> 7727281022159607836499380596141597899683<40> |
factorization results 素因数分解の結果 | N=473348672227015626497938836161441856006135557472917265842201131243409069120889655833573003547119164030294315022529 ( 114 digits) SNFS difficulty: 118 digits. Divisors found: r1=1959638590065912064624085694275878231 (pp37) r2=31259244203557363235635253398737225773 (pp38) r3=31259244203557363235635253398737225773 (pp38) r4=7727281022159607836499380596141597899683 (pp40) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 473348672227015626497938836161441856006135557472917265842201131243409069120889655833573003547119164030294315022529 m: 100000000000000000000000000000 deg: 4 c4: 395 c0: -8 skew: 0.38 # Murphy_E = 5.073e-08 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 580001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 54096 x 54321 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118.000,4,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 21:50:36 UTC 2022 年 12 月 27 日 (火) 6 時 50 分 36 秒 (日本時間) |
composite number 合成数 | 339610384952914979760528976832284146315413801476889357860342674833119371585595037941891868877603777593<102> |
prime factors 素因数 | 4417392425011228533410155001888327633<37> 76880284176258514528754743174957694224620369110761077773505798121<65> |
factorization results 素因数分解の結果 | N=339610384952914979760528976832284146315413801476889357860342674833119371585595037941891868877603777593 ( 102 digits) SNFS difficulty: 130 digits. Divisors found: r1=4417392425011228533410155001888327633 (pp37) r2=76880284176258514528754743174957694224620369110761077773505798121 (pp65) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 339610384952914979760528976832284146315413801476889357860342674833119371585595037941891868877603777593 m: 100000000000000000000000000000000 deg: 4 c4: 395 c0: -8 skew: 0.38 # Murphy_E = 1.35e-08 type: snfs lss: 1 rlim: 1050000 alim: 1050000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1050000/1050000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [525000, 1025001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 119057 x 119282 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130.000,4,0,0,0,0,0,0,0,0,1050000,1050000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 1, 2023 00:14:03 UTC 2023 年 1 月 1 日 (日) 9 時 14 分 3 秒 (日本時間) |
composite number 合成数 | 1568251919449899563648382230912708894783777316218949901357099194339089915210358772994016635407534463<100> |
prime factors 素因数 | 11995274785038063780279610389322946255877510887<47> 130739140832856138503022659686162237927756386439323049<54> |
factorization results 素因数分解の結果 | N=1568251919449899563648382230912708894783777316218949901357099194339089915210358772994016635407534463 ( 100 digits) Divisors found: r1=11995274785038063780279610389322946255877510887 (pp47) r2=130739140832856138503022659686162237927756386439323049 (pp54) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.05 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1568251919449899563648382230912708894783777316218949901357099194339089915210358772994016635407534463 skew: 842478.02 c0: -1222542172957468278470539767 c1: 4927079155928717064575 c2: -4781072009495009 c3: 7662094389 c4: 11340 Y0: -609815546162965078547990 Y1: 18301377530941 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [900000, 1200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 226551 x 226778 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,99,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,52,52,2.5,2.5,100000 total time: 0.05 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 21:39:14 UTC 2022 年 12 月 25 日 (日) 6 時 39 分 14 秒 (日本時間) |
composite number 合成数 | 30126914393800719995118677161510769418512416864970406980291659039599731527243883092318018182927573372383916041247177985233998413570077491<137> |
prime factors 素因数 | 132846175390752478814356074771824831115531939755169414976010549<63> 226780442155641290207912652545433473833457297708820960962487063331707989959<75> |
factorization results 素因数分解の結果 | Number: n N=30126914393800719995118677161510769418512416864970406980291659039599731527243883092318018182927573372383916041247177985233998413570077491 ( 137 digits) SNFS difficulty: 141 digits. Divisors found: Sat Dec 24 13:19:13 2022 p63 factor: 132846175390752478814356074771824831115531939755169414976010549 Sat Dec 24 13:19:13 2022 p75 factor: 226780442155641290207912652545433473833457297708820960962487063331707989959 Sat Dec 24 13:19:13 2022 elapsed time 00:02:56 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 79x10^140-16 = 87(139)6 # n: 30126914393800719995118677161510769418512416864970406980291659039599731527243883092318018182927573372383916041247177985233998413570077491 m: 100000000000000000000000000000000000 deg: 4 c4: 79 c0: -16 skew: 0.67 # Murphy_E = 3.798e-09 type: snfs lss: 1 rlim: 1620000 alim: 1620000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1620000/1620000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6410000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 446072 hash collisions in 6538792 relations (6820844 unique) Msieve: matrix is 223759 x 223984 (73.8 MB) Sieving start time : 2022/12/24 12:59:30 Sieving end time : 2022/12/24 13:16:02 Total sieving time: 0hrs 16min 32secs. Total relation processing time: 0hrs 1min 18sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 7sec. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 13, 2023 12:52:46 UTC 2023 年 1 月 13 日 (金) 21 時 52 分 46 秒 (日本時間) |
composite number 合成数 | 154312539212050854712539294722106512163436381660388502542092021416959593391881922362611734853331787580751961<108> |
prime factors 素因数 | 16859060082018336650346123857015940688873776047<47> 9153092667167055514661981747128066283103767019709885647763063<61> |
factorization results 素因数分解の結果 | 16859060082018336650346123857015940688873776047*9153092667167055514661981747128066283103767019709885647763063 |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 23, 2022 21:21:30 UTC 2022 年 12 月 24 日 (土) 6 時 21 分 30 秒 (日本時間) |
composite number 合成数 | 2031893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893<142> |
prime factors 素因数 | 196463228694313434698328018962768182049617<42> 10342357791934419279986366148137600790104079981412219938707502525981433703225081774297415831434879029<101> |
factorization results 素因数分解の結果 | Number: n N=2031893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893 ( 142 digits) SNFS difficulty: 144 digits. Divisors found: Sat Dec 24 08:13:09 2022 p42 factor: 196463228694313434698328018962768182049617 Sat Dec 24 08:13:09 2022 p101 factor: 10342357791934419279986366148137600790104079981412219938707502525981433703225081774297415831434879029 Sat Dec 24 08:13:09 2022 elapsed time 00:02:41 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: # # N = 79x10^143-16 = 87(142)6 # n: 2031893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893004115226337448559670781893 m: 500000000000000000000000000000000000 deg: 4 c4: 79 c0: -10 skew: 0.60 # Murphy_E = 2.575e-09 type: snfs lss: 1 rlim: 1810000 alim: 1810000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1810000/1810000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6505000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 542181 hash collisions in 7055599 relations (6809584 unique) Msieve: matrix is 263729 x 263954 (89.4 MB) Sieving start time : 2022/12/24 07:36:32 Sieving end time : 2022/12/24 08:02:44 Total sieving time: 0hrs 26min 12secs. Total relation processing time: 0hrs 1min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 8sec. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1810000,1810000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 01:36:22 UTC 2022 年 12 月 25 日 (日) 10 時 36 分 22 秒 (日本時間) |
composite number 合成数 | 10735842797394603274144821846663198190370251897400671661722188651377691513568601734328166210789622683689732112314349582276564916729943995907999<143> |
prime factors 素因数 | 685248995057668816032529283089586641235987971<45> 15667068284414050100842357053256750425351122955960322808238275527873539478097807936521646081078069<98> |
factorization results 素因数分解の結果 | Number: n N=10735842797394603274144821846663198190370251897400671661722188651377691513568601734328166210789622683689732112314349582276564916729943995907999 ( 143 digits) SNFS difficulty: 151 digits. Divisors found: Sun Dec 25 12:32:09 2022 p45 factor: 685248995057668816032529283089586641235987971 Sun Dec 25 12:32:09 2022 p98 factor: 15667068284414050100842357053256750425351122955960322808238275527873539478097807936521646081078069 Sun Dec 25 12:32:09 2022 elapsed time 00:05:05 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.322). Factorization parameters were as follows: # # N = 79x10^150-16 = 87(149)6 # n: 10735842797394603274144821846663198190370251897400671661722188651377691513568601734328166210789622683689732112314349582276564916729943995907999 m: 1000000000000000000000000000000 deg: 5 c5: 79 c0: -16 skew: 0.73 # Murphy_E = 1.217e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 6800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1217000 hash collisions in 13375794 relations (13011660 unique) Msieve: matrix is 334761 x 335009 (84.4 MB) Sieving start time : 2022/12/25 12:05:30 Sieving end time : 2022/12/25 12:26:45 Total sieving time: 0hrs 21min 15secs. Total relation processing time: 0hrs 1min 26sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 27sec. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 04:19:13 UTC 2022 年 12 月 30 日 (金) 13 時 19 分 13 秒 (日本時間) |
composite number 合成数 | 31952576342766639219678623064466378414240612058197446015268043057333631491802266104152998365664710299884412825093835559676573970822222273864057<143> |
prime factors 素因数 | 3938589097110525975319786852510680754343848885912798864869833257591<67> 8112696083531045120489079369892748860412448437314966524640760526800176650127<76> |
factorization results 素因数分解の結果 | Number: n N=31952576342766639219678623064466378414240612058197446015268043057333631491802266104152998365664710299884412825093835559676573970822222273864057 ( 143 digits) SNFS difficulty: 152 digits. Divisors found: Fri Dec 30 15:15:36 2022 p67 factor: 3938589097110525975319786852510680754343848885912798864869833257591 Fri Dec 30 15:15:36 2022 p76 factor: 8112696083531045120489079369892748860412448437314966524640760526800176650127 Fri Dec 30 15:15:36 2022 elapsed time 00:10:23 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.285). Factorization parameters were as follows: # # N = 79x10^151-16 = 87(150)6 # n: 31952576342766639219678623064466378414240612058197446015268043057333631491802266104152998365664710299884412825093835559676573970822222273864057 m: 1000000000000000000000000000000 deg: 5 c5: 395 c0: -8 skew: 0.46 # Murphy_E = 1.175e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 6800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3577250 hash collisions in 28522467 relations (26182964 unique) Msieve: matrix is 776802 x 777050 (74.0 MB) Sieving start time : 2022/12/30 14:25:31 Sieving end time : 2022/12/30 15:04:44 Total sieving time: 0hrs 39min 13secs. Total relation processing time: 0hrs 3min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 19sec. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 06:16:32 UTC 2022 年 12 月 28 日 (水) 15 時 16 分 32 秒 (日本時間) |
composite number 合成数 | 175723342355502866701769316826926624531157657059846209252143887092417946672493507299687686845296052409745294311209759094209245248305250878091<141> |
prime factors 素因数 | 374404754953803743549132478875508454700659<42> 469340573351384504160763327393255566200804293040031462469653949216669091483403802985020068973946249<99> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 175723342355502866701769316826926624531157657059846209252143887092417946672493507299687686845296052409745294311209759094209245248305250878091 (141 digits) Using B1=28200000, B2=144287213086, polynomial Dickson(12), sigma=1:2535996108 Step 1 took 59295ms Step 2 took 22638ms ********** Factor found in step 2: 374404754953803743549132478875508454700659 Found prime factor of 42 digits: 374404754953803743549132478875508454700659 Prime cofactor 469340573351384504160763327393255566200804293040031462469653949216669091483403802985020068973946249 has 99 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 10:00:10 UTC 2022 年 12 月 31 日 (土) 19 時 0 分 10 秒 (日本時間) |
composite number 合成数 | 1884978173817012564544083849533746396749165021518342229344698031381373806375461257346273207650919080310530985181520485229790457132014887386616931584795073<154> |
prime factors 素因数 | 1018951132326282354735857770991491459786116485077<49> 1849920093335169169248743781374053611567005495288625435310972820426366759290637524218768581862655579941949<106> |
factorization results 素因数分解の結果 | Number: n N=1884978173817012564544083849533746396749165021518342229344698031381373806375461257346273207650919080310530985181520485229790457132014887386616931584795073 ( 154 digits) SNFS difficulty: 166 digits. Divisors found: Sat Dec 31 20:30:32 2022 p49 factor: 1018951132326282354735857770991491459786116485077 Sat Dec 31 20:30:32 2022 p106 factor: 1849920093335169169248743781374053611567005495288625435310972820426366759290637524218768581862655579941949 Sat Dec 31 20:30:32 2022 elapsed time 00:09:08 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 79x10^165-16 = 87(164)6 # n: 1884978173817012564544083849533746396749165021518342229344698031381373806375461257346273207650919080310530985181520485229790457132014887386616931584795073 m: 1000000000000000000000000000000000 deg: 5 c5: 79 c0: -16 skew: 0.73 # Murphy_E = 3.198e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1283938 hash collisions in 12994558 relations (12517973 unique) Msieve: matrix is 589052 x 589277 (200.5 MB) Sieving start time : 2022/12/31 19:17:42 Sieving end time : 2022/12/31 20:21:06 Total sieving time: 1hrs 3min 24secs. Total relation processing time: 0hrs 4min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 8sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 30, 2023 11:33:52 UTC 2023 年 1 月 30 日 (月) 20 時 33 分 52 秒 (日本時間) |
composite number 合成数 | 1812246194810097331855947675207461634097023812894994268648578943897277054698457704343620796337201227090809381500830993162560453133178199<136> |
prime factors 素因数 | 88512731160091729357953549460306063556503037495901419617963<59> 20474412788509634630467341509270145137264083128129415145349775529249013306373<77> |
factorization results 素因数分解の結果 | Number: n N=1812246194810097331855947675207461634097023812894994268648578943897277054698457704343620796337201227090809381500830993162560453133178199 ( 136 digits) SNFS difficulty: 167 digits. Divisors found: Mon Jan 30 22:23:59 2023 prp59 factor: 88512731160091729357953549460306063556503037495901419617963 Mon Jan 30 22:23:59 2023 prp77 factor: 20474412788509634630467341509270145137264083128129415145349775529249013306373 Mon Jan 30 22:23:59 2023 elapsed time 00:17:21 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 79x10^166-16 = 87(165)6 # n: 1812246194810097331855947675207461634097023812894994268648578943897277054698457704343620796337201227090809381500830993162560453133178199 m: 1000000000000000000000000000000000 deg: 5 c5: 395 c0: -8 skew: 0.46 # Murphy_E = 3.083e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1065858 hash collisions in 12271358 relations (11992817 unique) Msieve: matrix is 703019 x 703245 (196.8 MB) Sieving start time: 2023/01/30 19:47:42 Sieving end time : 2023/01/30 22:06:28 Total sieving time: 2hrs 18min 46secs. Total relation processing time: 0hrs 13min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 26sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 3, 2023 22:35:08 UTC 2023 年 1 月 4 日 (水) 7 時 35 分 8 秒 (日本時間) |
composite number 合成数 | 810036867186659680919540191261070295060857033163684843256674292295453913949047085035248764790835918187609243006185077935905129052272547374271<141> |
prime factors 素因数 | 4099343701479531602460531668803978187665659083<46> 197601598249569039944758259714059309170865195661429553666672797885220208417734932420065828185437<96> |
factorization results 素因数分解の結果 | Number: n N=810036867186659680919540191261070295060857033163684843256674292295453913949047085035248764790835918187609243006185077935905129052272547374271 ( 141 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jan 4 08:57:45 2023 p46 factor: 4099343701479531602460531668803978187665659083 Wed Jan 4 08:57:45 2023 p96 factor: 197601598249569039944758259714059309170865195661429553666672797885220208417734932420065828185437 Wed Jan 4 08:57:45 2023 elapsed time 00:09:02 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.276). Factorization parameters were as follows: # # N = 79x10^167-16 = 87(166)6 # n: 810036867186659680919540191261070295060857033163684843256674292295453913949047085035248764790835918187609243006185077935905129052272547374271 m: 1000000000000000000000000000000000 deg: 5 c5: 1975 c0: -4 skew: 0.29 # Murphy_E = 2.673e-10 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 7850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1956140 hash collisions in 16071487 relations (15071790 unique) Msieve: matrix is 567506 x 567731 (194.4 MB) Sieving start time : 2023/01/04 07:58:42 Sieving end time : 2023/01/04 08:48:20 Total sieving time: 0hrs 49min 38secs. Total relation processing time: 0hrs 4min 33sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 36sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 12:15:15 UTC 2022 年 12 月 31 日 (土) 21 時 15 分 15 秒 (日本時間) |
composite number 合成数 | 67522420234948893123470652641126721181733969782211642315707710247960703108922330218581740975308983543553636185584368549556547567127509<134> |
prime factors 素因数 | 56457204599990676348382495509500977<35> 1195992977572255572592244820665891445091113986011834706921603588724361594134744882254988640156351717<100> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 67522420234948893123470652641126721181733969782211642315707710247960703108922330218581740975308983543553636185584368549556547567127509 (134 digits) Using B1=25500000, B2=96190324246, polynomial Dickson(12), sigma=1:1478739320 Step 1 took 40222ms Step 2 took 15506ms ********** Factor found in step 2: 56457204599990676348382495509500977 Found prime factor of 35 digits: 56457204599990676348382495509500977 Prime cofactor 1195992977572255572592244820665891445091113986011834706921603588724361594134744882254988640156351717 has 100 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 06:35:24 UTC 2022 年 12 月 31 日 (土) 15 時 35 分 24 秒 (日本時間) |
composite number 合成数 | 11608918052815995708581878668766052529330314049515830220357496344983487248295179563809065072824315418222954813524206621931008934468223330403133961949860741<155> |
prime factors 素因数 | 36917580025543452984817789969587275831<38> 314455011536068423379050824069606229000191230768046241321121993442602510147656537740856384320320390016605176635288611<117> |
factorization results 素因数分解の結果 | Number: n N=11608918052815995708581878668766052529330314049515830220357496344983487248295179563809065072824315418222954813524206621931008934468223330403133961949860741 ( 155 digits) SNFS difficulty: 170 digits. Divisors found: Sat Dec 31 16:27:19 2022 p38 factor: 36917580025543452984817789969587275831 Sat Dec 31 16:27:19 2022 p117 factor: 314455011536068423379050824069606229000191230768046241321121993442602510147656537740856384320320390016605176635288611 Sat Dec 31 16:27:19 2022 elapsed time 00:11:59 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.330). Factorization parameters were as follows: # # N = 79x10^169-16 = 87(168)6 # n: 11608918052815995708581878668766052529330314049515830220357496344983487248295179563809065072824315418222954813524206621931008934468223330403133961949860741 m: 5000000000000000000000000000000000 deg: 5 c5: 79 c0: -5 skew: 0.58 # Murphy_E = 2.612e-10 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1237119 hash collisions in 12680651 relations (12230378 unique) Msieve: matrix is 646868 x 647094 (223.8 MB) Sieving start time : 2022/12/31 15:36:03 Sieving end time : 2022/12/31 16:15:03 Total sieving time: 0hrs 39min 0secs. Total relation processing time: 0hrs 6min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 49sec. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 08:53:29 UTC 2023 年 1 月 1 日 (日) 17 時 53 分 29 秒 (日本時間) |
composite number 合成数 | 3908579012471271759301676602757986484532705357855597744111324806972074920707446892579868464531230292234441681556982187932954173773568192699796717191452603<154> |
prime factors 素因数 | 2064253074378648785359406976469222409837586379372568197<55> 1893459218244243111727066108058498987897481452678729649234994098155300771769406647449701735469486399<100> |
factorization results 素因数分解の結果 | Number: n N=3908579012471271759301676602757986484532705357855597744111324806972074920707446892579868464531230292234441681556982187932954173773568192699796717191452603 ( 154 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jan 1 19:49:21 2023 p55 factor: 2064253074378648785359406976469222409837586379372568197 Sun Jan 1 19:49:21 2023 p100 factor: 1893459218244243111727066108058498987897481452678729649234994098155300771769406647449701735469486399 Sun Jan 1 19:49:21 2023 elapsed time 00:12:39 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 79x10^170-16 = 87(169)6 # n: 3908579012471271759301676602757986484532705357855597744111324806972074920707446892579868464531230292234441681556982187932954173773568192699796717191452603 m: 10000000000000000000000000000000000 deg: 5 c5: 79 c0: -16 skew: 0.73 # Murphy_E = 2.029e-10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1294192 hash collisions in 12127697 relations (11555200 unique) Msieve: matrix is 766007 x 766232 (265.6 MB) Sieving start time : 2023/01/01 18:48:41 Sieving end time : 2023/01/01 19:36:23 Total sieving time: 0hrs 47min 42secs. Total relation processing time: 0hrs 8min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 52sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 17:09:33 UTC 2022 年 12 月 28 日 (水) 2 時 9 分 33 秒 (日本時間) |
composite number 合成数 | 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527<118> |
prime factors 素因数 | 544547275013945807304655516859992506666540601<45> 4460656814303820238383156066339719890373228561036354045871422444834579327<73> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1900000, q1=2000000. -> client 1 q0: 1900000 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 92 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 85 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 146 Tue Dec 27 17:53:00 2022 Tue Dec 27 17:53:00 2022 Tue Dec 27 17:53:00 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 17:53:00 2022 random seeds: e6061ae0 8cfd662f Tue Dec 27 17:53:00 2022 factoring 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527 (118 digits) Tue Dec 27 17:53:00 2022 searching for 15-digit factors Tue Dec 27 17:53:01 2022 commencing number field sieve (118-digit input) Tue Dec 27 17:53:01 2022 R0: -69481353960565899359754 Tue Dec 27 17:53:01 2022 R1: 586207442989 Tue Dec 27 17:53:01 2022 A0: 19378541351974941156462370565 Tue Dec 27 17:53:01 2022 A1: -844656125140510254426055 Tue Dec 27 17:53:01 2022 A2: -24219564111595634563 Tue Dec 27 17:53:01 2022 A3: -109361335877141 Tue Dec 27 17:53:01 2022 A4: 727705502 Tue Dec 27 17:53:01 2022 A5: 1500 Tue Dec 27 17:53:01 2022 skew 164650.30, size 2.096e-011, alpha -5.143, combined = 3.287e-010 rroots = 3 Tue Dec 27 17:53:01 2022 Tue Dec 27 17:53:01 2022 commencing relation filtering Tue Dec 27 17:53:01 2022 estimated available RAM is 65413.5 MB Tue Dec 27 17:53:01 2022 commencing duplicate removal, pass 1 Tue Dec 27 17:53:19 2022 found 1039726 hash collisions in 9156391 relations Tue Dec 27 17:53:29 2022 added 62871 free relations Tue Dec 27 17:53:29 2022 commencing duplicate removal, pass 2 Tue Dec 27 17:53:31 2022 found 620964 duplicates and 8598298 unique relations Tue Dec 27 17:53:31 2022 memory use: 41.3 MB Tue Dec 27 17:53:31 2022 reading ideals above 100000 Tue Dec 27 17:53:31 2022 commencing singleton removal, initial pass Tue Dec 27 17:54:03 2022 memory use: 188.3 MB Tue Dec 27 17:54:03 2022 reading all ideals from disk Tue Dec 27 17:54:03 2022 memory use: 301.8 MB Tue Dec 27 17:54:03 2022 keeping 10046184 ideals with weight <= 200, target excess is 45685 Tue Dec 27 17:54:04 2022 commencing in-memory singleton removal Tue Dec 27 17:54:04 2022 begin with 8598298 relations and 10046184 unique ideals Tue Dec 27 17:54:08 2022 reduce to 2131226 relations and 2239449 ideals in 30 passes Tue Dec 27 17:54:08 2022 max relations containing the same ideal: 80 Tue Dec 27 17:54:08 2022 filtering wants 1000000 more relations Tue Dec 27 17:54:08 2022 elapsed time 00:01:08 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 133 Tue Dec 27 17:56:26 2022 Tue Dec 27 17:56:26 2022 Tue Dec 27 17:56:26 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 17:56:26 2022 random seeds: 398c6860 23422b2e Tue Dec 27 17:56:26 2022 factoring 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527 (118 digits) Tue Dec 27 17:56:27 2022 searching for 15-digit factors Tue Dec 27 17:56:27 2022 commencing number field sieve (118-digit input) Tue Dec 27 17:56:27 2022 R0: -69481353960565899359754 Tue Dec 27 17:56:27 2022 R1: 586207442989 Tue Dec 27 17:56:27 2022 A0: 19378541351974941156462370565 Tue Dec 27 17:56:27 2022 A1: -844656125140510254426055 Tue Dec 27 17:56:27 2022 A2: -24219564111595634563 Tue Dec 27 17:56:27 2022 A3: -109361335877141 Tue Dec 27 17:56:27 2022 A4: 727705502 Tue Dec 27 17:56:27 2022 A5: 1500 Tue Dec 27 17:56:27 2022 skew 164650.30, size 2.096e-011, alpha -5.143, combined = 3.287e-010 rroots = 3 Tue Dec 27 17:56:27 2022 Tue Dec 27 17:56:27 2022 commencing relation filtering Tue Dec 27 17:56:27 2022 estimated available RAM is 65413.5 MB Tue Dec 27 17:56:27 2022 commencing duplicate removal, pass 1 Tue Dec 27 17:56:47 2022 found 928082 hash collisions in 9817695 relations Tue Dec 27 17:56:57 2022 added 215 free relations Tue Dec 27 17:56:57 2022 commencing duplicate removal, pass 2 Tue Dec 27 17:57:00 2022 found 691846 duplicates and 9126064 unique relations Tue Dec 27 17:57:00 2022 memory use: 34.6 MB Tue Dec 27 17:57:00 2022 reading ideals above 100000 Tue Dec 27 17:57:00 2022 commencing singleton removal, initial pass Tue Dec 27 17:57:33 2022 memory use: 344.5 MB Tue Dec 27 17:57:33 2022 reading all ideals from disk Tue Dec 27 17:57:33 2022 memory use: 320.5 MB Tue Dec 27 17:57:34 2022 keeping 10301930 ideals with weight <= 200, target excess is 48692 Tue Dec 27 17:57:34 2022 commencing in-memory singleton removal Tue Dec 27 17:57:35 2022 begin with 9126064 relations and 10301930 unique ideals Tue Dec 27 17:57:39 2022 reduce to 2849366 relations and 2813633 ideals in 23 passes Tue Dec 27 17:57:39 2022 max relations containing the same ideal: 91 Tue Dec 27 17:57:39 2022 filtering wants 1000000 more relations Tue Dec 27 17:57:39 2022 elapsed time 00:01:13 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 145 Tue Dec 27 18:00:10 2022 Tue Dec 27 18:00:10 2022 Tue Dec 27 18:00:10 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 18:00:10 2022 random seeds: a129d854 ec5b1487 Tue Dec 27 18:00:10 2022 factoring 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527 (118 digits) Tue Dec 27 18:00:10 2022 searching for 15-digit factors Tue Dec 27 18:00:10 2022 commencing number field sieve (118-digit input) Tue Dec 27 18:00:10 2022 R0: -69481353960565899359754 Tue Dec 27 18:00:10 2022 R1: 586207442989 Tue Dec 27 18:00:10 2022 A0: 19378541351974941156462370565 Tue Dec 27 18:00:10 2022 A1: -844656125140510254426055 Tue Dec 27 18:00:10 2022 A2: -24219564111595634563 Tue Dec 27 18:00:10 2022 A3: -109361335877141 Tue Dec 27 18:00:10 2022 A4: 727705502 Tue Dec 27 18:00:10 2022 A5: 1500 Tue Dec 27 18:00:10 2022 skew 164650.30, size 2.096e-011, alpha -5.143, combined = 3.287e-010 rroots = 3 Tue Dec 27 18:00:10 2022 Tue Dec 27 18:00:10 2022 commencing relation filtering Tue Dec 27 18:00:10 2022 estimated available RAM is 65413.5 MB Tue Dec 27 18:00:10 2022 commencing duplicate removal, pass 1 Tue Dec 27 18:00:31 2022 found 1030026 hash collisions in 10440986 relations Tue Dec 27 18:00:41 2022 added 168 free relations Tue Dec 27 18:00:41 2022 commencing duplicate removal, pass 2 Tue Dec 27 18:00:45 2022 found 768092 duplicates and 9673062 unique relations Tue Dec 27 18:00:45 2022 memory use: 49.3 MB Tue Dec 27 18:00:45 2022 reading ideals above 100000 Tue Dec 27 18:00:45 2022 commencing singleton removal, initial pass Tue Dec 27 18:01:20 2022 memory use: 344.5 MB Tue Dec 27 18:01:20 2022 reading all ideals from disk Tue Dec 27 18:01:20 2022 memory use: 339.9 MB Tue Dec 27 18:01:21 2022 keeping 10549162 ideals with weight <= 200, target excess is 51682 Tue Dec 27 18:01:21 2022 commencing in-memory singleton removal Tue Dec 27 18:01:21 2022 begin with 9673062 relations and 10549162 unique ideals Tue Dec 27 18:01:26 2022 reduce to 3565833 relations and 3347752 ideals in 20 passes Tue Dec 27 18:01:26 2022 max relations containing the same ideal: 100 Tue Dec 27 18:01:27 2022 removing 638615 relations and 559550 ideals in 79065 cliques Tue Dec 27 18:01:27 2022 commencing in-memory singleton removal Tue Dec 27 18:01:27 2022 begin with 2927218 relations and 3347752 unique ideals Tue Dec 27 18:01:28 2022 reduce to 2831043 relations and 2689222 ideals in 10 passes Tue Dec 27 18:01:28 2022 max relations containing the same ideal: 85 Tue Dec 27 18:01:28 2022 removing 478840 relations and 399775 ideals in 79065 cliques Tue Dec 27 18:01:28 2022 commencing in-memory singleton removal Tue Dec 27 18:01:28 2022 begin with 2352203 relations and 2689222 unique ideals Tue Dec 27 18:01:29 2022 reduce to 2282167 relations and 2217393 ideals in 10 passes Tue Dec 27 18:01:29 2022 max relations containing the same ideal: 75 Tue Dec 27 18:01:30 2022 relations with 0 large ideals: 148 Tue Dec 27 18:01:30 2022 relations with 1 large ideals: 536 Tue Dec 27 18:01:30 2022 relations with 2 large ideals: 8358 Tue Dec 27 18:01:30 2022 relations with 3 large ideals: 63090 Tue Dec 27 18:01:30 2022 relations with 4 large ideals: 249157 Tue Dec 27 18:01:30 2022 relations with 5 large ideals: 544173 Tue Dec 27 18:01:30 2022 relations with 6 large ideals: 681554 Tue Dec 27 18:01:30 2022 relations with 7+ large ideals: 735151 Tue Dec 27 18:01:30 2022 commencing 2-way merge Tue Dec 27 18:01:31 2022 reduce to 1278373 relation sets and 1213599 unique ideals Tue Dec 27 18:01:31 2022 commencing full merge Tue Dec 27 18:01:44 2022 memory use: 139.7 MB Tue Dec 27 18:01:45 2022 found 635229 cycles, need 623799 Tue Dec 27 18:01:45 2022 weight of 623799 cycles is about 43681202 (70.02/cycle) Tue Dec 27 18:01:45 2022 distribution of cycle lengths: Tue Dec 27 18:01:45 2022 1 relations: 73116 Tue Dec 27 18:01:45 2022 2 relations: 70862 Tue Dec 27 18:01:45 2022 3 relations: 70503 Tue Dec 27 18:01:45 2022 4 relations: 63431 Tue Dec 27 18:01:45 2022 5 relations: 58177 Tue Dec 27 18:01:45 2022 6 relations: 49744 Tue Dec 27 18:01:45 2022 7 relations: 44255 Tue Dec 27 18:01:45 2022 8 relations: 38515 Tue Dec 27 18:01:45 2022 9 relations: 32301 Tue Dec 27 18:01:45 2022 10+ relations: 122895 Tue Dec 27 18:01:45 2022 heaviest cycle: 21 relations Tue Dec 27 18:01:45 2022 commencing cycle optimization Tue Dec 27 18:01:45 2022 start with 3735627 relations Tue Dec 27 18:01:49 2022 pruned 72460 relations Tue Dec 27 18:01:49 2022 memory use: 128.2 MB Tue Dec 27 18:01:49 2022 distribution of cycle lengths: Tue Dec 27 18:01:49 2022 1 relations: 73116 Tue Dec 27 18:01:49 2022 2 relations: 72204 Tue Dec 27 18:01:49 2022 3 relations: 72638 Tue Dec 27 18:01:49 2022 4 relations: 64680 Tue Dec 27 18:01:49 2022 5 relations: 59063 Tue Dec 27 18:01:49 2022 6 relations: 50296 Tue Dec 27 18:01:49 2022 7 relations: 44645 Tue Dec 27 18:01:49 2022 8 relations: 38495 Tue Dec 27 18:01:49 2022 9 relations: 32181 Tue Dec 27 18:01:49 2022 10+ relations: 116481 Tue Dec 27 18:01:49 2022 heaviest cycle: 21 relations Tue Dec 27 18:01:50 2022 RelProcTime: 100 Tue Dec 27 18:01:50 2022 elapsed time 00:01:40 Tue Dec 27 18:01:50 2022 Tue Dec 27 18:01:50 2022 Tue Dec 27 18:01:50 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 18:01:50 2022 random seeds: 0f243788 1476251b Tue Dec 27 18:01:50 2022 factoring 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527 (118 digits) Tue Dec 27 18:01:50 2022 searching for 15-digit factors Tue Dec 27 18:01:50 2022 commencing number field sieve (118-digit input) Tue Dec 27 18:01:50 2022 R0: -69481353960565899359754 Tue Dec 27 18:01:50 2022 R1: 586207442989 Tue Dec 27 18:01:50 2022 A0: 19378541351974941156462370565 Tue Dec 27 18:01:50 2022 A1: -844656125140510254426055 Tue Dec 27 18:01:50 2022 A2: -24219564111595634563 Tue Dec 27 18:01:50 2022 A3: -109361335877141 Tue Dec 27 18:01:50 2022 A4: 727705502 Tue Dec 27 18:01:50 2022 A5: 1500 Tue Dec 27 18:01:50 2022 skew 164650.30, size 2.096e-011, alpha -5.143, combined = 3.287e-010 rroots = 3 Tue Dec 27 18:01:50 2022 Tue Dec 27 18:01:50 2022 commencing linear algebra Tue Dec 27 18:01:50 2022 read 623799 cycles Tue Dec 27 18:01:51 2022 cycles contain 2178913 unique relations Tue Dec 27 18:01:56 2022 read 2178913 relations Tue Dec 27 18:01:58 2022 using 20 quadratic characters above 134216802 Tue Dec 27 18:02:03 2022 building initial matrix Tue Dec 27 18:02:15 2022 memory use: 269.1 MB Tue Dec 27 18:02:15 2022 read 623799 cycles Tue Dec 27 18:02:15 2022 matrix is 623619 x 623799 (187.0 MB) with weight 58658418 (94.03/col) Tue Dec 27 18:02:15 2022 sparse part has weight 42153491 (67.58/col) Tue Dec 27 18:02:18 2022 filtering completed in 2 passes Tue Dec 27 18:02:18 2022 matrix is 621796 x 621975 (186.8 MB) with weight 58584137 (94.19/col) Tue Dec 27 18:02:18 2022 sparse part has weight 42128686 (67.73/col) Tue Dec 27 18:02:19 2022 matrix starts at (0, 0) Tue Dec 27 18:02:19 2022 matrix is 621796 x 621975 (186.8 MB) with weight 58584137 (94.19/col) Tue Dec 27 18:02:19 2022 sparse part has weight 42128686 (67.73/col) Tue Dec 27 18:02:19 2022 saving the first 48 matrix rows for later Tue Dec 27 18:02:19 2022 matrix includes 64 packed rows Tue Dec 27 18:02:19 2022 matrix is 621748 x 621975 (179.8 MB) with weight 46496792 (74.76/col) Tue Dec 27 18:02:19 2022 sparse part has weight 40906094 (65.77/col) Tue Dec 27 18:02:19 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 18:02:21 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 18:02:21 2022 memory use: 140.4 MB Tue Dec 27 18:02:23 2022 linear algebra at 0.5%, ETA 0h 6m Tue Dec 27 18:07:02 2022 lanczos halted after 9834 iterations (dim = 621748) Tue Dec 27 18:07:03 2022 recovered 33 nontrivial dependencies Tue Dec 27 18:07:03 2022 BLanczosTime: 313 Tue Dec 27 18:07:03 2022 elapsed time 00:05:13 Tue Dec 27 18:07:03 2022 Tue Dec 27 18:07:03 2022 Tue Dec 27 18:07:03 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 18:07:03 2022 random seeds: 4c186138 af190514 Tue Dec 27 18:07:03 2022 factoring 2429038513001533793285877665528977147726284579030443081559198254659358810541414942201332339211973847987453312200755527 (118 digits) Tue Dec 27 18:07:03 2022 searching for 15-digit factors Tue Dec 27 18:07:03 2022 commencing number field sieve (118-digit input) Tue Dec 27 18:07:03 2022 R0: -69481353960565899359754 Tue Dec 27 18:07:03 2022 R1: 586207442989 Tue Dec 27 18:07:03 2022 A0: 19378541351974941156462370565 Tue Dec 27 18:07:03 2022 A1: -844656125140510254426055 Tue Dec 27 18:07:03 2022 A2: -24219564111595634563 Tue Dec 27 18:07:03 2022 A3: -109361335877141 Tue Dec 27 18:07:03 2022 A4: 727705502 Tue Dec 27 18:07:03 2022 A5: 1500 Tue Dec 27 18:07:03 2022 skew 164650.30, size 2.096e-011, alpha -5.143, combined = 3.287e-010 rroots = 3 Tue Dec 27 18:07:03 2022 Tue Dec 27 18:07:03 2022 commencing square root phase Tue Dec 27 18:07:03 2022 reading relations for dependency 1 Tue Dec 27 18:07:03 2022 read 311062 cycles Tue Dec 27 18:07:03 2022 cycles contain 1087552 unique relations Tue Dec 27 18:07:06 2022 read 1087552 relations Tue Dec 27 18:07:09 2022 multiplying 1087552 relations Tue Dec 27 18:07:32 2022 multiply complete, coefficients have about 44.98 million bits Tue Dec 27 18:07:33 2022 initial square root is modulo 2867737 Tue Dec 27 18:08:06 2022 GCD is 1, no factor found Tue Dec 27 18:08:06 2022 reading relations for dependency 2 Tue Dec 27 18:08:06 2022 read 310701 cycles Tue Dec 27 18:08:06 2022 cycles contain 1087924 unique relations Tue Dec 27 18:08:09 2022 read 1087924 relations Tue Dec 27 18:08:11 2022 multiplying 1087924 relations Tue Dec 27 18:08:35 2022 multiply complete, coefficients have about 44.99 million bits Tue Dec 27 18:08:35 2022 initial square root is modulo 2883109 Tue Dec 27 18:09:08 2022 sqrtTime: 125 Tue Dec 27 18:09:08 2022 prp45 factor: 544547275013945807304655516859992506666540601 Tue Dec 27 18:09:08 2022 prp73 factor: 4460656814303820238383156066339719890373228561036354045871422444834579327 Tue Dec 27 18:09:08 2022 elapsed time 00:02:05 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 10:41:31 UTC 2022 年 12 月 24 日 (土) 19 時 41 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 10:19:37 UTC 2023 年 1 月 1 日 (日) 19 時 19 分 37 秒 (日本時間) |
composite number 合成数 | 19140399966955097083772327850787989142034263387089125784759265828617321531107079372532696912816277775374699108225302025864813881504167200135441171483417497086635389<164> |
prime factors 素因数 | 1824553639905068549015160883451592873355932134887693046858469087241<67> 10490456157787156812952839804174725143603758939013134794924655450080977685472959308914199397449429<98> |
factorization results 素因数分解の結果 | Number: n N=19140399966955097083772327850787989142034263387089125784759265828617321531107079372532696912816277775374699108225302025864813881504167200135441171483417497086635389 ( 164 digits) SNFS difficulty: 175 digits. Divisors found: Sun Jan 1 21:11:47 2023 p67 factor: 1824553639905068549015160883451592873355932134887693046858469087241 Sun Jan 1 21:11:47 2023 p98 factor: 10490456157787156812952839804174725143603758939013134794924655450080977685472959308914199397449429 Sun Jan 1 21:11:47 2023 elapsed time 00:13:04 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 79x10^174-16 = 87(173)6 # n: 19140399966955097083772327850787989142034263387089125784759265828617321531107079372532696912816277775374699108225302025864813881504167200135441171483417497086635389 m: 50000000000000000000000000000000000 deg: 5 c5: 79 c0: -5 skew: 0.58 # Murphy_E = 1.651e-10 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 15550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1500729 hash collisions in 12081285 relations (11243254 unique) Msieve: matrix is 741363 x 741591 (256.2 MB) Sieving start time : 2023/01/01 19:56:38 Sieving end time : 2023/01/01 20:58:26 Total sieving time: 1hrs 1min 48secs. Total relation processing time: 0hrs 7min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 7sec. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 17:27:31 UTC 2022 年 12 月 25 日 (日) 2 時 27 分 31 秒 (日本時間) |
composite number 合成数 | 165195827759118709999428196898128030601090675150985653234195174405661741881058551298488224362041231591<102> |
prime factors 素因数 | 103405370310352400090991618631874383<36> 1597555593711559633820338222982471827306984790147023719794485292777<67> |
factorization results 素因数分解の結果 | 12/24/22 18:21:43, starting SIQS on c102: 165195827759118709999428196898128030601090675150985653234195174405661741881058551298488224362041231591 12/24/22 18:21:43, random seed: 16235199411730249989 12/24/22 18:21:44, ==== sieve params ==== 12/24/22 18:21:44, n = 102 digits, 337 bits 12/24/22 18:21:44, factor base: 132064 primes (max prime = 3709759) 12/24/22 18:21:44, single large prime cutoff: 556463850 (150 * pmax) 12/24/22 18:21:44, double large prime range from 13762311838081 to 15102831216721548 12/24/22 18:21:44, DLP MFB = 1.85 12/24/22 18:21:44, allocating 9 large prime slices of factor base 12/24/22 18:21:44, buckets hold 2048 elements 12/24/22 18:21:44, large prime hashtables have 1769472 bytes 12/24/22 18:21:44, using AVX2 enabled 32k sieve core 12/24/22 18:21:44, sieve interval: 12 blocks of size 32768 12/24/22 18:21:44, polynomial A has ~ 13 factors 12/24/22 18:21:44, using multiplier of 1 12/24/22 18:21:44, using multiplier of 1 (kn mod 8 == 7) 12/24/22 18:21:44, using SPV correction of 20 bits, starting at offset 34 12/24/22 18:21:44, trial factoring cutoff at 100 bits 12/24/22 18:21:44, ==== sieving started (46 threads) ==== 12/24/22 18:26:26, trial division touched 430307462 sieve locations out of 4148523958272 12/24/22 18:26:26, total reports = 430307462, total surviving reports = 92232621 12/24/22 18:26:26, total blocks sieved = 126603984, avg surviving reports per block = 0.73 12/24/22 18:26:26, dlp-ecm: 5 failures, 2342170 attempts, 79560345 outside range, 9827591 prp, 1865844 useful 12/24/22 18:26:26, 133524 relations found: 32646 full + 100878 from 2335713 partial, using 5275121 polys (2615 A polys) 12/24/22 18:26:26, on average, sieving found 0.45 rels/poly and 8386.91 rels/sec 12/24/22 18:26:26, trial division touched 430307462 sieve locations out of 4148523958272 12/24/22 18:26:26, ==== post processing stage (msieve-1.38) ==== 12/24/22 18:26:26, QS elapsed time = 282.3900 seconds. 12/24/22 18:26:27, begin singleton removal with 2368359 relations 12/24/22 18:26:27, reduce to 356991 relations in 12 passes 12/24/22 18:26:30, recovered 356991 relations 12/24/22 18:26:30, recovered 345098 polynomials 12/24/22 18:26:30, attempting to build 133524 cycles 12/24/22 18:26:30, found 133524 cycles from 356991 relations in 6 passes 12/24/22 18:26:30, distribution of cycle lengths: 12/24/22 18:26:30, length 1 : 32646 12/24/22 18:26:30, length 2 : 22170 12/24/22 18:26:30, length 3 : 21799 12/24/22 18:26:30, length 4 : 17777 12/24/22 18:26:30, length 5 : 13801 12/24/22 18:26:30, length 6 : 9399 12/24/22 18:26:30, length 7 : 6343 12/24/22 18:26:30, length 9+: 9589 12/24/22 18:26:30, largest cycle: 24 relations 12/24/22 18:26:31, matrix is 132064 x 133524 (42.3 MB) with weight 10015112 (75.01/col) 12/24/22 18:26:31, sparse part has weight 10015112 (75.01/col) 12/24/22 18:26:31, filtering completed in 3 passes 12/24/22 18:26:31, matrix is 125735 x 125799 (39.6 MB) with weight 9368564 (74.47/col) 12/24/22 18:26:31, sparse part has weight 9368564 (74.47/col) 12/24/22 18:26:31, saving the first 48 matrix rows for later 12/24/22 18:26:31, matrix is 125687 x 125799 (34.1 MB) with weight 8346474 (66.35/col) 12/24/22 18:26:31, sparse part has weight 7672033 (60.99/col) 12/24/22 18:26:31, matrix includes 64 packed rows 12/24/22 18:26:31, using block size 50319 for processor cache size 131072 kB 12/24/22 18:26:32, commencing Lanczos iteration 12/24/22 18:26:32, memory use: 26.3 MB 12/24/22 18:27:03, lanczos halted after 1989 iterations (dim = 125685) 12/24/22 18:27:03, recovered 16 nontrivial dependencies 12/24/22 18:27:03, prp36 = 103405370310352400090991618631874383 12/24/22 18:27:03, prp67 = 1597555593711559633820338222982471827306984790147023719794485292777 12/24/22 18:27:03, Lanczos elapsed time = 36.7610 seconds. 12/24/22 18:27:03, Sqrt elapsed time = 0.6380 seconds. 12/24/22 18:27:03, SIQS elapsed time = 319.7922 seconds. 12/24/22 18:27:03, 12/24/22 18:27:03, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 22:08:50 UTC 2023 年 1 月 5 日 (木) 7 時 8 分 50 秒 (日本時間) |
composite number 合成数 | 213520916260845577190953487655715296278846116533006616597961073854086501005581347238413193013763498194724740957241211222156056143278927<135> |
prime factors 素因数 | 472128847246908242980251929771152468107851<42> 452251366350383133737986057588670823321128188686630719580406261476058415348876524193073934477<93> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 213520916260845577190953487655715296278846116533006616597961073854086501005581347238413193013763498194724740957241211222156056143278927 (135 digits) Using B1=25790000, B2=96191014936, polynomial Dickson(12), sigma=1:4149437653 Step 1 took 41627ms Step 2 took 15106ms ********** Factor found in step 2: 472128847246908242980251929771152468107851 Found prime factor of 42 digits: 472128847246908242980251929771152468107851 Prime cofactor 452251366350383133737986057588670823321128188686630719580406261476058415348876524193073934477 has 93 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 31, 2023 01:54:41 UTC 2023 年 1 月 31 日 (火) 10 時 54 分 41 秒 (日本時間) |
composite number 合成数 | 51877104490169689818516678169986728221270414062387720573432399688352130561593947844836802378032273864595408450885384360743420487334058532817250992451553<152> |
prime factors 素因数 | 234992987979634950836194617442575980815650608793242768890321992203533116749<75> 220760223256812593142372056808744952765802873083779977651016387846285510548197<78> |
factorization results 素因数分解の結果 | Number: n N=51877104490169689818516678169986728221270414062387720573432399688352130561593947844836802378032273864595408450885384360743420487334058532817250992451553 ( 152 digits) SNFS difficulty: 183 digits. Divisors found: Tue Jan 31 12:43:07 2023 prp75 factor: 234992987979634950836194617442575980815650608793242768890321992203533116749 Tue Jan 31 12:43:07 2023 prp78 factor: 220760223256812593142372056808744952765802873083779977651016387846285510548197 Tue Jan 31 12:43:07 2023 elapsed time 00:52:14 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.109). Factorization parameters were as follows: # # N = 79x10^182-16 = 87(181)6 # n: 51877104490169689818516678169986728221270414062387720573432399688352130561593947844836802378032273864595408450885384360743420487334058532817250992451553 m: 1000000000000000000000000000000000000 deg: 5 c5: 1975 c0: -4 skew: 0.29 # Murphy_E = 6.712e-11 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 22150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1070559 hash collisions in 12232620 relations (11945474 unique) Msieve: matrix is 1259145 x 1259370 (355.0 MB) Sieving start time: 2023/01/31 02:37:29 Sieving end time : 2023/01/31 11:50:40 Total sieving time: 9hrs 13min 11secs. Total relation processing time: 0hrs 44min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 41sec. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,7500000,7500000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 9, 2023 08:07:53 UTC 2023 年 1 月 9 日 (月) 17 時 7 分 53 秒 (日本時間) |
composite number 合成数 | 1919217210533527649649861748987064482426273415162248456031992028166984528183018178220086979095342855035990845354492500514974860277359511192613295090834838206833<160> |
prime factors 素因数 | 542574578418506270417781069636266278899903904340003<51> 8832051730247711805187230361766178444436740263275051<52> 400500519510298908302136923398226586088530883003252252561<57> |
factorization results 素因数分解の結果 | Number: n N=1919217210533527649649861748987064482426273415162248456031992028166984528183018178220086979095342855035990845354492500514974860277359511192613295090834838206833 ( 160 digits) SNFS difficulty: 183 digits. Divisors found: Mon Jan 9 19:02:49 2023 prp51 factor: 542574578418506270417781069636266278899903904340003 Mon Jan 9 19:02:49 2023 prp52 factor: 8832051730247711805187230361766178444436740263275051 Mon Jan 9 19:02:49 2023 prp57 factor: 400500519510298908302136923398226586088530883003252252561 Mon Jan 9 19:02:49 2023 elapsed time 01:09:49 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.118). Factorization parameters were as follows: # # N = 79x10^183-16 = 87(182)6 # n: 1919217210533527649649861748987064482426273415162248456031992028166984528183018178220086979095342855035990845354492500514974860277359511192613295090834838206833 m: 1000000000000000000000000000000000000 deg: 5 c5: 9875 c0: -2 skew: 0.18 # Murphy_E = 5.735e-11 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 29450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1037318 hash collisions in 11723179 relations (11431191 unique) Msieve: matrix is 1398782 x 1399007 (395.5 MB) Sieving start time: 2023/01/09 07:46:23 Sieving end time : 2023/01/09 17:52:49 Total sieving time: 10hrs 6min 26secs. Total relation processing time: 0hrs 56min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 48sec. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,7700000,7700000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 08:22:48 UTC 2022 年 12 月 24 日 (土) 17 時 22 分 48 秒 (日本時間) |
composite number 合成数 | 20027606949213226721883073598081184835213729979591495914757586635437487088873836480567211051001181047779506520931843732717534831<128> |
prime factors 素因数 | 72486949815263872638825615532624549<35> |
composite cofactor 合成数の残り | 276292587841734952544730921060417816947167226818239376070668183235917885708606569072402111619<93> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1884110707 Step 1 took 2703ms Step 2 took 1875ms ********** Factor found in step 2: 72486949815263872638825615532624549 Found prime factor of 35 digits: 72486949815263872638825615532624549 Composite cofactor 276292587841734952544730921060417816947167226818239376070668183235917885708606569072402111619 has 93 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 16:57:42 UTC 2022 年 12 月 25 日 (日) 1 時 57 分 42 秒 (日本時間) |
composite number 合成数 | 276292587841734952544730921060417816947167226818239376070668183235917885708606569072402111619<93> |
prime factors 素因数 | 133260220052977860638588871055742161531417<42> 2073331319218100456817291605320897368425188792250107<52> |
factorization results 素因数分解の結果 | 12/24/22 17:51:32, starting SIQS on c93: 276292587841734952544730921060417816947167226818239376070668183235917885708606569072402111619 12/24/22 17:51:32, random seed: 9235057062123550565 12/24/22 17:51:32, ==== sieve params ==== 12/24/22 17:51:32, n = 93 digits, 308 bits 12/24/22 17:51:32, factor base: 83712 primes (max prime = 2273303) 12/24/22 17:51:32, single large prime cutoff: 272796360 (120 * pmax) 12/24/22 17:51:32, double large prime range from 5167906529809 to 4039255793404370 12/24/22 17:51:32, DLP MFB = 1.85 12/24/22 17:51:32, allocating 8 large prime slices of factor base 12/24/22 17:51:32, buckets hold 2048 elements 12/24/22 17:51:32, large prime hashtables have 1179648 bytes 12/24/22 17:51:32, using AVX2 enabled 32k sieve core 12/24/22 17:51:32, sieve interval: 9 blocks of size 32768 12/24/22 17:51:32, polynomial A has ~ 12 factors 12/24/22 17:51:32, using multiplier of 1 12/24/22 17:51:32, using multiplier of 1 (kn mod 8 == 3) 12/24/22 17:51:32, using SPV correction of 21 bits, starting at offset 32 12/24/22 17:51:32, trial factoring cutoff at 94 bits 12/24/22 17:51:32, ==== sieving started (46 threads) ==== 12/24/22 17:52:12, trial division touched 84963528 sieve locations out of 693302722560 12/24/22 17:52:12, total reports = 84963528, total surviving reports = 17898941 12/24/22 17:52:12, total blocks sieved = 21158730, avg surviving reports per block = 0.85 12/24/22 17:52:12, dlp-ecm: 2 failures, 1190849 attempts, 11198932 outside range, 5186697 prp, 962861 useful 12/24/22 17:52:12, 85449 relations found: 22852 full + 62597 from 1262472 partial, using 1175440 polys (1331 A polys) 12/24/22 17:52:12, on average, sieving found 1.09 rels/poly and 31915.56 rels/sec 12/24/22 17:52:12, trial division touched 84963528 sieve locations out of 693302722560 12/24/22 17:52:12, ==== post processing stage (msieve-1.38) ==== 12/24/22 17:52:12, QS elapsed time = 40.2746 seconds. 12/24/22 17:52:12, begin singleton removal with 1285324 relations 12/24/22 17:52:13, reduce to 214630 relations in 13 passes 12/24/22 17:52:14, recovered 214630 relations 12/24/22 17:52:14, recovered 196301 polynomials 12/24/22 17:52:14, attempting to build 85449 cycles 12/24/22 17:52:14, found 85449 cycles from 214630 relations in 6 passes 12/24/22 17:52:14, distribution of cycle lengths: 12/24/22 17:52:14, length 1 : 22852 12/24/22 17:52:14, length 2 : 15935 12/24/22 17:52:14, length 3 : 14666 12/24/22 17:52:14, length 4 : 11295 12/24/22 17:52:14, length 5 : 8119 12/24/22 17:52:14, length 6 : 5244 12/24/22 17:52:14, length 7 : 3218 12/24/22 17:52:14, length 9+: 4120 12/24/22 17:52:14, largest cycle: 21 relations 12/24/22 17:52:14, matrix is 83712 x 85449 (23.4 MB) with weight 5454210 (63.83/col) 12/24/22 17:52:14, sparse part has weight 5454210 (63.83/col) 12/24/22 17:52:15, filtering completed in 3 passes 12/24/22 17:52:15, matrix is 77739 x 77803 (21.0 MB) with weight 4878227 (62.70/col) 12/24/22 17:52:15, sparse part has weight 4878227 (62.70/col) 12/24/22 17:52:15, saving the first 48 matrix rows for later 12/24/22 17:52:15, matrix is 77691 x 77803 (17.7 MB) with weight 4257642 (54.72/col) 12/24/22 17:52:15, sparse part has weight 3866724 (49.70/col) 12/24/22 17:52:15, matrix includes 64 packed rows 12/24/22 17:52:15, using block size 31121 for processor cache size 131072 kB 12/24/22 17:52:15, commencing Lanczos iteration 12/24/22 17:52:15, memory use: 14.1 MB 12/24/22 17:52:23, lanczos halted after 1230 iterations (dim = 77687) 12/24/22 17:52:23, recovered 15 nontrivial dependencies 12/24/22 17:52:24, prp42 = 133260220052977860638588871055742161531417 12/24/22 17:52:24, prp52 = 2073331319218100456817291605320897368425188792250107 12/24/22 17:52:24, Lanczos elapsed time = 11.2070 seconds. 12/24/22 17:52:24, Sqrt elapsed time = 0.3270 seconds. 12/24/22 17:52:24, SIQS elapsed time = 51.8089 seconds. |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 07:28:15 UTC 2023 年 1 月 10 日 (火) 16 時 28 分 15 秒 (日本時間) |
composite number 合成数 | 5931508050633154697333914771287056158016575786953445320205329287294018997644215232953596686284191014380978809950277444412008856116931497238770378859684846213265194571483832060536821<181> |
prime factors 素因数 | 190499416308020621231192688782088667462507<42> 31136620602776196837405723389028667074790065297921334825808998429573228017654748594803194554701727565295428884335832252463331001646829199903<140> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 5931508050633154697333914771287056158016575786953445320205329287294018997644215232953596686284191014380978809950277444412008856116931497238770378859684846213265194571483832060536821 (181 digits) Using B1=26970000, B2=144286522396, polynomial Dickson(12), sigma=1:1687776207 Step 1 took 75202ms Step 2 took 28042ms ********** Factor found in step 2: 190499416308020621231192688782088667462507 Found prime factor of 42 digits: 190499416308020621231192688782088667462507 Prime cofactor 31136620602776196837405723389028667074790065297921334825808998429573228017654748594803194554701727565295428884335832252463331001646829199903 has 140 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 28, 2022 05:19:32 UTC 2022 年 12 月 28 日 (水) 14 時 19 分 32 秒 (日本時間) |
composite number 合成数 | 2610124794752622149883311049478069331786962572842696544968954249945296107351241766725143960546061925979683161913351806765602907<127> |
prime factors 素因数 | 11069424541190393521243131576352107317<38> 235795888489062526450915497415850030327825396826761037148283101180282723764252518291560271<90> |
factorization results 素因数分解の結果 | 2610124794752622149883311049478069331786962572842696544968954249945296107351241766725143960546061925979683161913351806765602907=11069424541190393521243131576352107317*235795888489062526450915497415850030327825396826761037148283101180282723764252518291560271 cado polynomial n: 2610124794752622149883311049478069331786962572842696544968954249945296107351241766725143960546061925979683161913351806765602907 skew: 51492.388 c0: -53475377486395140695611173408 c1: -10584578532097518827492656 c2: -124483444333716284782 c3: 8559475060725311 c4: -25467192090 c5: -532800 Y0: -2361133111425020543407989 Y1: 67337869996606337 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.052e-07 # f(x) = -532800*x^5-25467192090*x^4+8559475060725311*x^3-124483444333716284782*x^2-10584578532097518827492656*x-53475377486395140695611173408 # g(x) = 67337869996606337*x-2361133111425020543407989 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 235795888489062526450915497415850030327825396826761037148283101180282723764252518291560271 11069424541190393521243131576352107317 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20299/36.380/45.062/48.970/0.860 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16051/36.870/40.452/46.010/1.034 Info:Polynomial Selection (size optimized): Total time: 2728.82 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3427.92 Info:Polynomial Selection (root optimized): Rootsieve time: 3379.64 Info:Generate Factor Base: Total cpu/real time for makefb: 8.82/1.44248 Info:Generate Free Relations: Total cpu/real time for freerel: 133.83/16.8531 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 12318898 Info:Lattice Sieving: Average J: 3789.68 for 271307 special-q, max bucket fill -bkmult 1.0,1s:1.162110 Info:Lattice Sieving: Total time: 119958s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 32.05/66.7963 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 66.3s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 248.06/219.623 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 195.10000000000002s Info:Filtering - Singleton removal: Total cpu/real time for purge: 185.17/206.963 Info:Filtering - Merging: Merged matrix has 846238 rows and total weight 144092831 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 173.94/26.1538 Info:Filtering - Merging: Total cpu/real time for replay: 27.57/22.7889 Info:Linear Algebra: Total cpu/real time for bwc: 7242.78/1901.35 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1181.68, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (26624 iterations) Info:Linear Algebra: Lingen CPU time 84.68, WCT time 23.07 Info:Linear Algebra: Mksol: WCT time 668.64, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (13312 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 42.83/10.2858 Info:Square Root: Total cpu/real time for sqrt: 382.89/63.3914 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 267030/33183.9 Info:root: Cleaning up computation data in /tmp/cado.anq3hie1 235795888489062526450915497415850030327825396826761037148283101180282723764252518291560271 11069424541190393521243131576352107317 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 10:11:15 UTC 2022 年 12 月 24 日 (土) 19 時 11 分 15 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 25, 2022 09:20:57 UTC 2022 年 12 月 25 日 (日) 18 時 20 分 57 秒 (日本時間) |
composite number 合成数 | 217793502635196412640222596448449969721590549341445822094173248547918689439212306434996809663887991498090973<108> |
prime factors 素因数 | 204222020278309820447694856321853314208945267364221<51> 1066454549506422659277695916365377222744601168897858054113<58> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1250000, q1=1400000. -> client 1 q0: 1250000 LatSieveTime: 56 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 70 LatSieveTime: 70 -> makeJobFile(): Adjusted to q0=1400001, q1=1550000. -> client 1 q0: 1400001 LatSieveTime: 53 LatSieveTime: 55 LatSieveTime: 55 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 -> makeJobFile(): Adjusted to q0=1550001, q1=1700000. -> client 1 q0: 1550001 LatSieveTime: 53 LatSieveTime: 55 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 68 LatSieveTime: 69 -> makeJobFile(): Adjusted to q0=1700001, q1=1850000. -> client 1 q0: 1700001 LatSieveTime: 53 LatSieveTime: 55 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 73 -> makeJobFile(): Adjusted to q0=1850001, q1=2000000. -> client 1 q0: 1850001 LatSieveTime: 56 LatSieveTime: 56 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 -> makeJobFile(): Adjusted to q0=2000001, q1=2150000. -> client 1 q0: 2000001 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 -> makeJobFile(): Adjusted to q0=2150001, q1=2300000. -> client 1 q0: 2150001 LatSieveTime: 52 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=2300001, q1=2450000. -> client 1 q0: 2300001 LatSieveTime: 54 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 73 -> makeJobFile(): Adjusted to q0=2450001, q1=2600000. -> client 1 q0: 2450001 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=2600001, q1=2750000. -> client 1 q0: 2600001 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 76 Sun Dec 25 10:17:15 2022 Sun Dec 25 10:17:15 2022 Sun Dec 25 10:17:15 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 10:17:15 2022 random seeds: 41c21104 70841cf6 Sun Dec 25 10:17:15 2022 factoring 217793502635196412640222596448449969721590549341445822094173248547918689439212306434996809663887991498090973 (108 digits) Sun Dec 25 10:17:15 2022 searching for 15-digit factors Sun Dec 25 10:17:16 2022 commencing number field sieve (108-digit input) Sun Dec 25 10:17:16 2022 R0: -462793746998982291326 Sun Dec 25 10:17:16 2022 R1: 293706225329 Sun Dec 25 10:17:16 2022 A0: -15086955888833614958709615 Sun Dec 25 10:17:16 2022 A1: 1206072162084820896632 Sun Dec 25 10:17:16 2022 A2: 337002513681044483 Sun Dec 25 10:17:16 2022 A3: -14616092093088 Sun Dec 25 10:17:16 2022 A4: -1483469112 Sun Dec 25 10:17:16 2022 A5: 10260 Sun Dec 25 10:17:16 2022 skew 16524.40, size 2.152e-010, alpha -5.010, combined = 1.148e-009 rroots = 5 Sun Dec 25 10:17:16 2022 Sun Dec 25 10:17:16 2022 commencing relation filtering Sun Dec 25 10:17:16 2022 estimated available RAM is 65413.5 MB Sun Dec 25 10:17:16 2022 commencing duplicate removal, pass 1 Sun Dec 25 10:17:26 2022 found 695149 hash collisions in 5473713 relations Sun Dec 25 10:17:31 2022 added 32221 free relations Sun Dec 25 10:17:31 2022 commencing duplicate removal, pass 2 Sun Dec 25 10:17:32 2022 found 582171 duplicates and 4923763 unique relations Sun Dec 25 10:17:32 2022 memory use: 24.6 MB Sun Dec 25 10:17:32 2022 reading ideals above 100000 Sun Dec 25 10:17:32 2022 commencing singleton removal, initial pass Sun Dec 25 10:17:49 2022 memory use: 94.1 MB Sun Dec 25 10:17:49 2022 reading all ideals from disk Sun Dec 25 10:17:49 2022 memory use: 160.4 MB Sun Dec 25 10:17:49 2022 keeping 5041941 ideals with weight <= 200, target excess is 25971 Sun Dec 25 10:17:49 2022 commencing in-memory singleton removal Sun Dec 25 10:17:49 2022 begin with 4923763 relations and 5041941 unique ideals Sun Dec 25 10:17:50 2022 reduce to 2241392 relations and 1958147 ideals in 14 passes Sun Dec 25 10:17:50 2022 max relations containing the same ideal: 116 Sun Dec 25 10:17:51 2022 removing 549932 relations and 423373 ideals in 126559 cliques Sun Dec 25 10:17:51 2022 commencing in-memory singleton removal Sun Dec 25 10:17:51 2022 begin with 1691460 relations and 1958147 unique ideals Sun Dec 25 10:17:51 2022 reduce to 1589907 relations and 1426236 ideals in 9 passes Sun Dec 25 10:17:51 2022 max relations containing the same ideal: 91 Sun Dec 25 10:17:51 2022 removing 444520 relations and 317961 ideals in 126559 cliques Sun Dec 25 10:17:51 2022 commencing in-memory singleton removal Sun Dec 25 10:17:51 2022 begin with 1145387 relations and 1426236 unique ideals Sun Dec 25 10:17:51 2022 reduce to 1055893 relations and 1011351 ideals in 10 passes Sun Dec 25 10:17:51 2022 max relations containing the same ideal: 71 Sun Dec 25 10:17:52 2022 removing 82214 relations and 67799 ideals in 14415 cliques Sun Dec 25 10:17:52 2022 commencing in-memory singleton removal Sun Dec 25 10:17:52 2022 begin with 973679 relations and 1011351 unique ideals Sun Dec 25 10:17:52 2022 reduce to 969781 relations and 939599 ideals in 7 passes Sun Dec 25 10:17:52 2022 max relations containing the same ideal: 66 Sun Dec 25 10:17:52 2022 relations with 0 large ideals: 74 Sun Dec 25 10:17:52 2022 relations with 1 large ideals: 240 Sun Dec 25 10:17:52 2022 relations with 2 large ideals: 3929 Sun Dec 25 10:17:52 2022 relations with 3 large ideals: 29164 Sun Dec 25 10:17:52 2022 relations with 4 large ideals: 110537 Sun Dec 25 10:17:52 2022 relations with 5 large ideals: 233877 Sun Dec 25 10:17:52 2022 relations with 6 large ideals: 286242 Sun Dec 25 10:17:52 2022 relations with 7+ large ideals: 305718 Sun Dec 25 10:17:52 2022 commencing 2-way merge Sun Dec 25 10:17:52 2022 reduce to 589472 relation sets and 559290 unique ideals Sun Dec 25 10:17:52 2022 commencing full merge Sun Dec 25 10:17:58 2022 memory use: 71.6 MB Sun Dec 25 10:17:58 2022 found 299380 cycles, need 295490 Sun Dec 25 10:17:58 2022 weight of 295490 cycles is about 20945978 (70.89/cycle) Sun Dec 25 10:17:58 2022 distribution of cycle lengths: Sun Dec 25 10:17:58 2022 1 relations: 25921 Sun Dec 25 10:17:58 2022 2 relations: 29195 Sun Dec 25 10:17:58 2022 3 relations: 30589 Sun Dec 25 10:17:58 2022 4 relations: 29392 Sun Dec 25 10:17:58 2022 5 relations: 28399 Sun Dec 25 10:17:58 2022 6 relations: 26046 Sun Dec 25 10:17:58 2022 7 relations: 23845 Sun Dec 25 10:17:58 2022 8 relations: 20831 Sun Dec 25 10:17:58 2022 9 relations: 17589 Sun Dec 25 10:17:58 2022 10+ relations: 63683 Sun Dec 25 10:17:58 2022 heaviest cycle: 20 relations Sun Dec 25 10:17:59 2022 commencing cycle optimization Sun Dec 25 10:17:59 2022 start with 1879331 relations Sun Dec 25 10:18:01 2022 pruned 53633 relations Sun Dec 25 10:18:01 2022 memory use: 59.1 MB Sun Dec 25 10:18:01 2022 distribution of cycle lengths: Sun Dec 25 10:18:01 2022 1 relations: 25921 Sun Dec 25 10:18:01 2022 2 relations: 29820 Sun Dec 25 10:18:01 2022 3 relations: 31665 Sun Dec 25 10:18:01 2022 4 relations: 30244 Sun Dec 25 10:18:01 2022 5 relations: 29364 Sun Dec 25 10:18:01 2022 6 relations: 26711 Sun Dec 25 10:18:01 2022 7 relations: 24423 Sun Dec 25 10:18:01 2022 8 relations: 21087 Sun Dec 25 10:18:01 2022 9 relations: 17889 Sun Dec 25 10:18:01 2022 10+ relations: 58366 Sun Dec 25 10:18:01 2022 heaviest cycle: 20 relations Sun Dec 25 10:18:01 2022 RelProcTime: 45 Sun Dec 25 10:18:01 2022 elapsed time 00:00:46 Sun Dec 25 10:18:01 2022 Sun Dec 25 10:18:01 2022 Sun Dec 25 10:18:01 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 10:18:01 2022 random seeds: ebf92a14 20748f9a Sun Dec 25 10:18:01 2022 factoring 217793502635196412640222596448449969721590549341445822094173248547918689439212306434996809663887991498090973 (108 digits) Sun Dec 25 10:18:02 2022 searching for 15-digit factors Sun Dec 25 10:18:02 2022 commencing number field sieve (108-digit input) Sun Dec 25 10:18:02 2022 R0: -462793746998982291326 Sun Dec 25 10:18:02 2022 R1: 293706225329 Sun Dec 25 10:18:02 2022 A0: -15086955888833614958709615 Sun Dec 25 10:18:02 2022 A1: 1206072162084820896632 Sun Dec 25 10:18:02 2022 A2: 337002513681044483 Sun Dec 25 10:18:02 2022 A3: -14616092093088 Sun Dec 25 10:18:02 2022 A4: -1483469112 Sun Dec 25 10:18:02 2022 A5: 10260 Sun Dec 25 10:18:02 2022 skew 16524.40, size 2.152e-010, alpha -5.010, combined = 1.148e-009 rroots = 5 Sun Dec 25 10:18:02 2022 Sun Dec 25 10:18:02 2022 commencing linear algebra Sun Dec 25 10:18:02 2022 read 295490 cycles Sun Dec 25 10:18:02 2022 cycles contain 950301 unique relations Sun Dec 25 10:18:04 2022 read 950301 relations Sun Dec 25 10:18:05 2022 using 20 quadratic characters above 67104884 Sun Dec 25 10:18:07 2022 building initial matrix Sun Dec 25 10:18:12 2022 memory use: 117.4 MB Sun Dec 25 10:18:12 2022 read 295490 cycles Sun Dec 25 10:18:12 2022 matrix is 295313 x 295490 (88.5 MB) with weight 27962648 (94.63/col) Sun Dec 25 10:18:12 2022 sparse part has weight 19943998 (67.49/col) Sun Dec 25 10:18:13 2022 filtering completed in 2 passes Sun Dec 25 10:18:13 2022 matrix is 295252 x 295429 (88.5 MB) with weight 27960521 (94.64/col) Sun Dec 25 10:18:13 2022 sparse part has weight 19943489 (67.51/col) Sun Dec 25 10:18:14 2022 matrix starts at (0, 0) Sun Dec 25 10:18:14 2022 matrix is 295252 x 295429 (88.5 MB) with weight 27960521 (94.64/col) Sun Dec 25 10:18:14 2022 sparse part has weight 19943489 (67.51/col) Sun Dec 25 10:18:14 2022 saving the first 48 matrix rows for later Sun Dec 25 10:18:14 2022 matrix includes 64 packed rows Sun Dec 25 10:18:14 2022 matrix is 295204 x 295429 (85.2 MB) with weight 22188683 (75.11/col) Sun Dec 25 10:18:14 2022 sparse part has weight 19369570 (65.56/col) Sun Dec 25 10:18:14 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Dec 25 10:18:15 2022 commencing Lanczos iteration (32 threads) Sun Dec 25 10:18:15 2022 memory use: 65.5 MB Sun Dec 25 10:18:19 2022 linear algebra at 4.1%, ETA 0h 1m Sun Dec 25 10:20:11 2022 lanczos halted after 4670 iterations (dim = 295204) Sun Dec 25 10:20:11 2022 recovered 33 nontrivial dependencies Sun Dec 25 10:20:11 2022 BLanczosTime: 129 Sun Dec 25 10:20:11 2022 elapsed time 00:02:10 Sun Dec 25 10:20:11 2022 Sun Dec 25 10:20:11 2022 Sun Dec 25 10:20:11 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 10:20:11 2022 random seeds: 40579fbc 459b5756 Sun Dec 25 10:20:11 2022 factoring 217793502635196412640222596448449969721590549341445822094173248547918689439212306434996809663887991498090973 (108 digits) Sun Dec 25 10:20:12 2022 searching for 15-digit factors Sun Dec 25 10:20:12 2022 commencing number field sieve (108-digit input) Sun Dec 25 10:20:12 2022 R0: -462793746998982291326 Sun Dec 25 10:20:12 2022 R1: 293706225329 Sun Dec 25 10:20:12 2022 A0: -15086955888833614958709615 Sun Dec 25 10:20:12 2022 A1: 1206072162084820896632 Sun Dec 25 10:20:12 2022 A2: 337002513681044483 Sun Dec 25 10:20:12 2022 A3: -14616092093088 Sun Dec 25 10:20:12 2022 A4: -1483469112 Sun Dec 25 10:20:12 2022 A5: 10260 Sun Dec 25 10:20:12 2022 skew 16524.40, size 2.152e-010, alpha -5.010, combined = 1.148e-009 rroots = 5 Sun Dec 25 10:20:12 2022 Sun Dec 25 10:20:12 2022 commencing square root phase Sun Dec 25 10:20:12 2022 reading relations for dependency 1 Sun Dec 25 10:20:12 2022 read 147702 cycles Sun Dec 25 10:20:12 2022 cycles contain 475406 unique relations Sun Dec 25 10:20:13 2022 read 475406 relations Sun Dec 25 10:20:14 2022 multiplying 475406 relations Sun Dec 25 10:20:23 2022 multiply complete, coefficients have about 20.26 million bits Sun Dec 25 10:20:23 2022 initial square root is modulo 659353 Sun Dec 25 10:20:35 2022 sqrtTime: 23 Sun Dec 25 10:20:35 2022 prp51 factor: 204222020278309820447694856321853314208945267364221 Sun Dec 25 10:20:35 2022 prp58 factor: 1066454549506422659277695916365377222744601168897858054113 Sun Dec 25 10:20:35 2022 elapsed time 00:00:24 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:44:12 UTC 2022 年 12 月 25 日 (日) 1 時 44 分 12 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 17, 2023 22:11:07 UTC 2023 年 1 月 18 日 (水) 7 時 11 分 7 秒 (日本時間) |
composite number 合成数 | 47340525309022015100389597028668474291118711566340614370449141538071100952756932510997292958996094726685869372721089896774308922043969911493821176156812109164976210955263<170> |
prime factors 素因数 | 1396075480877606414505033161756078161818962697204912001519212577<64> 33909717602992804814499624355782201351391078082414548045315902968303400706874576704637768300369966436261919<107> |
factorization results 素因数分解の結果 | Number: n N=47340525309022015100389597028668474291118711566340614370449141538071100952756932510997292958996094726685869372721089896774308922043969911493821176156812109164976210955263 ( 170 digits) SNFS difficulty: 191 digits. Divisors found: Wed Jan 18 09:06:40 2023 prp64 factor: 1396075480877606414505033161756078161818962697204912001519212577 Wed Jan 18 09:06:40 2023 prp107 factor: 33909717602992804814499624355782201351391078082414548045315902968303400706874576704637768300369966436261919 Wed Jan 18 09:06:40 2023 elapsed time 01:45:04 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: # # N = 79x10^190-16 = 87(189)6 # n: 47340525309022015100389597028668474291118711566340614370449141538071100952756932510997292958996094726685869372721089896774308922043969911493821176156812109164976210955263 m: 100000000000000000000000000000000000000 deg: 5 c5: 79 c0: -16 skew: 0.73 # Murphy_E = 3.14e-11 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 38220557) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1234964 hash collisions in 12833121 relations (12403334 unique) Msieve: matrix is 1864896 x 1865121 (526.5 MB) Sieving start time: 2023/01/17 15:17:55 Sieving end time : 2023/01/18 07:21:25 Total sieving time: 16hrs 3min 30secs. Total relation processing time: 1hrs 39min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 22sec. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10800000,10800000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 18:15:48 UTC 2023 年 1 月 11 日 (水) 3 時 15 分 48 秒 (日本時間) |
2350 | Ignacio Santos | January 15, 2023 10:48:58 UTC 2023 年 1 月 15 日 (日) 19 時 48 分 58 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 3, 2023 08:03:33 UTC 2023 年 7 月 3 日 (月) 17 時 3 分 33 秒 (日本時間) |
composite number 合成数 | 1288885391505845343071278608428965207939709412085619875637189775059791360518687590830566916411078135391452058162979741090648469589068809410153<142> |
prime factors 素因数 | 35894095797868899294396217624749610867190500528463887<53> 35908005560690817542713845179774862411925695065180190709528062565663053703598000887654919<89> |
factorization results 素因数分解の結果 | 1288885391505845343071278608428965207939709412085619875637189775059791360518687590830566916411078135391452058162979741090648469589068809410153=35894095797868899294396217624749610867190500528463887*35908005560690817542713845179774862411925695065180190709528062565663053703598000887654919 cado polynomial n: 1288885391505845343071278608428965207939709412085619875637189775059791360518687590830566916411078135391452058162979741090648469589068809410153 skew: 0.46 type: snfs c0: -8 c5: 395 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 395*x^5-8 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11400000 tasks.lim1 = 11400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 35908005560690817542713845179774862411925695065180190709528062565663053703598000887654919 35894095797868899294396217624749610867190500528463887 Info:Square Root: Total cpu/real time for sqrt: 1138.8/353.993 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 27257065 Info:Lattice Sieving: Average J: 1893.86 for 2298418 special-q, max bucket fill -bkmult 1.0,1s:1.141830 Info:Lattice Sieving: Total time: 469149s Info:Linear Algebra: Total cpu/real time for bwc: 80107.8/20545.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 51123.09, WCT time 13047.22, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (68096 iterations) Info:Linear Algebra: Lingen CPU time 483.13, WCT time 122.45 Info:Linear Algebra: Mksol: CPU time 27761.79, WCT time 7120.56, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (34304 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 120.21/31.4116 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 524.92/562.354 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 463.99999999999994s Info:Square Root: Total cpu/real time for sqrt: 1138.8/353.993 Info:Quadratic Characters: Total cpu/real time for characters: 75.77/34.2183 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 117.27/115.491 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 114.79999999999998s Info:Filtering - Singleton removal: Total cpu/real time for purge: 410.02/392.669 Info:Filtering - Merging: Merged matrix has 2175539 rows and total weight 370835771 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 588.58/161.429 Info:Filtering - Merging: Total cpu/real time for replay: 81.96/73.8387 Info:Generate Factor Base: Total cpu/real time for makefb: 4.88/2.42425 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 966911/256751 Info:root: Cleaning up computation data in /tmp/cado.s3f31_f9 35908005560690817542713845179774862411925695065180190709528062565663053703598000887654919 35894095797868899294396217624749610867190500528463887 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 18:15:56 UTC 2023 年 1 月 11 日 (水) 3 時 15 分 56 秒 (日本時間) |
2350 | Ignacio Santos | January 20, 2023 09:28:51 UTC 2023 年 1 月 20 日 (金) 18 時 28 分 51 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 26, 2022 06:16:03 UTC 2022 年 12 月 26 日 (月) 15 時 16 分 3 秒 (日本時間) |
composite number 合成数 | 165844789525649174070948472806135252608879108654777006304764528766838331239821281268684760959450300607369091153679083406277384633<129> |
prime factors 素因数 | 3881405063312823649889545508341775782081583<43> 42728029365762394269377238239873585570731699985095288190240626166414397240814934003351<86> |
factorization results 素因数分解の結果 | 165844789525649174070948472806135252608879108654777006304764528766838331239821281268684760959450300607369091153679083406277384633=3881405063312823649889545508341775782081583*42728029365762394269377238239873585570731699985095288190240626166414397240814934003351 cado polynomial n: 165844789525649174070948472806135252608879108654777006304764528766838331239821281268684760959450300607369091153679083406277384633 skew: 224007.27 c0: -7418504587589031142726043707974 c1: -287788155119300245426229227 c2: 2532628916187648966742 c3: 11248506756844035 c4: -16489377360 c5: -43200 Y0: -9071018557817441837645402 Y1: 3163277207742547 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.197e-07 # f(x) = -43200*x^5-16489377360*x^4+11248506756844035*x^3+2532628916187648966742*x^2-287788155119300245426229227*x-7418504587589031142726043707974 # g(x) = 3163277207742547*x-9071018557817441837645402 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 42728029365762394269377238239873585570731699985095288190240626166414397240814934003351 3881405063312823649889545508341775782081583 Info:Square Root: Total cpu/real time for sqrt: 681.86/206.519 Info:Generate Factor Base: Total cpu/real time for makefb: 40.38/11.3446 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 282.66/277.102 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 258.9s Info:Square Root: Total cpu/real time for sqrt: 681.86/206.519 Info:Generate Free Relations: Total cpu/real time for freerel: 253.34/66.0842 Info:Filtering - Singleton removal: Total cpu/real time for purge: 112.38/113.971 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 103.57/105.864 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 105.7s Info:Filtering - Merging: Merged matrix has 1697823 rows and total weight 289335250 (170.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 433.85/122.628 Info:Filtering - Merging: Total cpu/real time for replay: 67.27/58.7442 Info:Linear Algebra: Total cpu/real time for bwc: 47179.7/12547.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 30159.61, WCT time 7958.07, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (53248 iterations) Info:Linear Algebra: Lingen CPU time 345.25, WCT time 89.46 Info:Linear Algebra: Mksol: CPU time 16366.84, WCT time 4383.06, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (26624 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 23212322 Info:Lattice Sieving: Average J: 8100.15 for 50090 special-q, max bucket fill -bkmult 1.0,1s:1.068550 Info:Lattice Sieving: Total time: 75204.2s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5300.68 Info:Polynomial Selection (root optimized): Rootsieve time: 5298.13 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 38210.8 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38745/38.220/45.750/50.040/0.852 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30688/37.390/41.013/46.550/0.923 Info:Polynomial Selection (size optimized): Total time: 4860.12 Info:Quadratic Characters: Total cpu/real time for characters: 65.92/29.6209 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 198641/54671.9 Info:root: Cleaning up computation data in /tmp/cado.1jn_uqxu 42728029365762394269377238239873585570731699985095288190240626166414397240814934003351 3881405063312823649889545508341775782081583 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 08:23:42 UTC 2022 年 12 月 24 日 (土) 17 時 23 分 42 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 12, 2023 19:23:46 UTC 2023 年 2 月 13 日 (月) 4 時 23 分 46 秒 (日本時間) |
composite number 合成数 | 26397476904278689057999254596297624848491367144502775508278438612914700675414398886994810330874725842087672151920133225842228479100547884815821749505569586870188671250303512123372032819<185> |
prime factors 素因数 | 77792028170528293002422612012457355774466248164213703<53> 339333959083990563373054442939458270667244724635434412831256866905680080035214509221177268603435234126717041760354668996316489227573<132> |
factorization results 素因数分解の結果 | Number: n N=26397476904278689057999254596297624848491367144502775508278438612914700675414398886994810330874725842087672151920133225842228479100547884815821749505569586870188671250303512123372032819 ( 185 digits) SNFS difficulty: 197 digits. Divisors found: Mon Feb 13 06:17:56 2023 prp53 factor: 77792028170528293002422612012457355774466248164213703 Mon Feb 13 06:17:56 2023 prp132 factor: 339333959083990563373054442939458270667244724635434412831256866905680080035214509221177268603435234126717041760354668996316489227573 Mon Feb 13 06:17:56 2023 elapsed time 02:21:51 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 79x10^196-16 = 87(195)6 # n: 26397476904278689057999254596297624848491367144502775508278438612914700675414398886994810330874725842087672151920133225842228479100547884815821749505569586870188671250303512123372032819 m: 1000000000000000000000000000000000000000 deg: 5 c5: 395 c0: -8 skew: 0.46 # Murphy_E = 1.873e-11 type: snfs lss: 1 rlim: 13400000 alim: 13400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 13400000/13400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 32300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1752978 hash collisions in 13516845 relations (12495514 unique) Msieve: matrix is 2081469 x 2081694 (589.9 MB) Sieving start time: 2023/02/12 16:45:29 Sieving end time : 2023/02/13 03:55:47 Total sieving time: 11hrs 10min 18secs. Total relation processing time: 2hrs 15min 15sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 51sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13400000,13400000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 18:16:03 UTC 2023 年 1 月 11 日 (水) 3 時 16 分 3 秒 (日本時間) |
2350 | Ignacio Santos | February 5, 2023 16:19:28 UTC 2023 年 2 月 6 日 (月) 1 時 19 分 28 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 6, 2023 20:54:25 UTC 2023 年 2 月 7 日 (火) 5 時 54 分 25 秒 (日本時間) |
composite number 合成数 | 677297668038408779149519890260631001371742112482853223593964334705075445816186556927297668038408779149519890260631001371742112482853223593964334705075445816186556927297668038408779149519890260631<195> |
prime factors 素因数 | 8115090946412587326635326086045160791259<40> 83461500617909849082374516791476770768439468391119654490252711168694588225590991230920491151666164143647956520936076628667432248196916547961918976536862709<155> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 677297668038408779149519890260631001371742112482853223593964334705075445816186556927297668038408779149519890260631001371742112482853223593964334705075445816186556927297668038408779149519890260631 (195 digits) Using B1=40880000, B2=192394462276, polynomial Dickson(12), sigma=1:840601984 Step 1 took 131790ms ********** Factor found in step 1: 8115090946412587326635326086045160791259 Found prime factor of 40 digits: 8115090946412587326635326086045160791259 Prime cofactor 83461500617909849082374516791476770768439468391119654490252711168694588225590991230920491151666164143647956520936076628667432248196916547961918976536862709 has 155 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 10, 2023 18:16:12 UTC 2023 年 1 月 11 日 (水) 3 時 16 分 12 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 27, 2022 14:42:41 UTC 2022 年 12 月 27 日 (火) 23 時 42 分 41 秒 (日本時間) |
composite number 合成数 | 2067335866868804860712260035073743994644946716518160899769091477131808564854881811881318284554899958313467562359257770882923949<127> |
prime factors 素因数 | 462856208400571190002547596092173944653952627489308029<54> 4466475396349579686483125810843267578866331571543845927179285755465578481<73> |
factorization results 素因数分解の結果 | 2067335866868804860712260035073743994644946716518160899769091477131808564854881811881318284554899958313467562359257770882923949=462856208400571190002547596092173944653952627489308029*4466475396349579686483125810843267578866331571543845927179285755465578481 cado polynomial n: 2067335866868804860712260035073743994644946716518160899769091477131808564854881811881318284554899958313467562359257770882923949 skew: 66271.013 c0: 33187246447884370630130956880 c1: 5433714706765943460953510 c2: -14809295629274752333 c3: -1361105515858079 c4: -4855219846 c5: 90360 Y0: -2148337617672070557224799 Y1: 4402676835544669 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.124e-07 # f(x) = 90360*x^5-4855219846*x^4-1361105515858079*x^3-14809295629274752333*x^2+5433714706765943460953510*x+33187246447884370630130956880 # g(x) = 4402676835544669*x-2148337617672070557224799 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 462856208400571190002547596092173944653952627489308029 4466475396349579686483125810843267578866331571543845927179285755465578481 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20033/37.420/45.028/49.330/0.851 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15879/36.990/40.420/45.820/1.035 Info:Polynomial Selection (size optimized): Total time: 2689.59 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3155.32 Info:Polynomial Selection (root optimized): Rootsieve time: 3109.52 Info:Generate Factor Base: Total cpu/real time for makefb: 8.76/1.40921 Info:Generate Free Relations: Total cpu/real time for freerel: 131.43/16.5345 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 12354403 Info:Lattice Sieving: Average J: 3810.61 for 273563 special-q, max bucket fill -bkmult 1.0,1s:1.159590 Info:Lattice Sieving: Total time: 120264s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 31.82/67.0008 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 66.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 249.25/221.195 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 195.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 187.34/202.657 Info:Filtering - Merging: Merged matrix has 851372 rows and total weight 144992852 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 175.58/26.4112 Info:Filtering - Merging: Total cpu/real time for replay: 28.89/23.5394 Info:Linear Algebra: Total cpu/real time for bwc: 7333.09/1917.91 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1200.17, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (26624 iterations) Info:Linear Algebra: Lingen CPU time 90.76, WCT time 24.72 Info:Linear Algebra: Mksol: WCT time 664.69, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (13312 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 39.37/10.0185 Info:Square Root: Total cpu/real time for sqrt: 390.37/66.0997 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 267430/33263.9 Info:root: Cleaning up computation data in /tmp/cado.jc1wzh0v 462856208400571190002547596092173944653952627489308029 4466475396349579686483125810843267578866331571543845927179285755465578481 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 09:40:08 UTC 2022 年 12 月 24 日 (土) 18 時 40 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 9, 2023 00:31:17 UTC 2023 年 6 月 9 日 (金) 9 時 31 分 17 秒 (日本時間) |
composite number 合成数 | 716780915363864206869638150500968693737022677137326030157425765164397670457439902113106053197287569999115419303794911413355398632280420569046255086760158920338717985961246917467<177> |
prime factors 素因数 | 47500234068367461554864515355389784343903521950123507227364564261342067<71> 15090050173904317644924825417660559326162707401206091216982540891700888107450720436410107789901283058286201<107> |
factorization results 素因数分解の結果 | Number: n N=716780915363864206869638150500968693737022677137326030157425765164397670457439902113106053197287569999115419303794911413355398632280420569046255086760158920338717985961246917467 ( 177 digits) SNFS difficulty: 201 digits. Divisors found: Fri Jun 9 10:16:32 2023 prp71 factor: 47500234068367461554864515355389784343903521950123507227364564261342067 Fri Jun 9 10:16:32 2023 prp107 factor: 15090050173904317644924825417660559326162707401206091216982540891700888107450720436410107789901283058286201 Fri Jun 9 10:16:32 2023 elapsed time 02:50:59 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 79x10^200-16 = 87(199)6 # n: 716780915363864206869638150500968693737022677137326030157425765164397670457439902113106053197287569999115419303794911413355398632280420569046255086760158920338717985961246917467 m: 10000000000000000000000000000000000000000 deg: 5 c5: 79 c0: -16 skew: 0.73 # Murphy_E = 1.204e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 12103381) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2426947 hash collisions in 15966421 relations (14315169 unique) Msieve: matrix is 2345686 x 2345911 (659.9 MB) Sieving start time: 2023/06/08 08:53:10 Sieving end time : 2023/06/09 07:24:44 Total sieving time: 22hrs 31min 34secs. Total relation processing time: 2hrs 43min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 52sec. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 4, 2023 19:40:35 UTC 2023 年 2 月 5 日 (日) 4 時 40 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 1, 2023 23:39:33 UTC 2023 年 7 月 2 日 (日) 8 時 39 分 33 秒 (日本時間) |
composite number 合成数 | 540411632961075286163819519416695458239814232840863777464349730755961512439142395214597139083523687938994455410401763257472640170038039275102013199564131622331685685506746318252168411357903<189> |
prime factors 素因数 | 106633560102765206836631984035957784262560078932211<51> 5067932013526212615988901412454159909459550562018752145576279675227003979229993410481749324480950623242417436071765051667113236573632091573<139> |
factorization results 素因数分解の結果 | Number: n N=540411632961075286163819519416695458239814232840863777464349730755961512439142395214597139083523687938994455410401763257472640170038039275102013199564131622331685685506746318252168411357903 ( 189 digits) SNFS difficulty: 202 digits. Divisors found: Sun Jul 2 09:31:27 2023 prp51 factor: 106633560102765206836631984035957784262560078932211 Sun Jul 2 09:31:27 2023 prp139 factor: 5067932013526212615988901412454159909459550562018752145576279675227003979229993410481749324480950623242417436071765051667113236573632091573 Sun Jul 2 09:31:27 2023 elapsed time 02:46:38 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 79x10^201-16 = 87(200)6 # n: 540411632961075286163819519416695458239814232840863777464349730755961512439142395214597139083523687938994455410401763257472640170038039275102013199564131622331685685506746318252168411357903 m: 10000000000000000000000000000000000000000 deg: 5 c5: 395 c0: -8 skew: 0.46 # Murphy_E = 1.157e-11 type: snfs lss: 1 rlim: 16700000 alim: 16700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16700000/16700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 33950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2660595 hash collisions in 16226348 relations (14288844 unique) Msieve: matrix is 2265900 x 2266125 (639.4 MB) Sieving start time: 2023/07/01 19:30:48 Sieving end time : 2023/07/02 06:44:28 Total sieving time: 11hrs 13min 40secs. Total relation processing time: 2hrs 33min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 39sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16700000,16700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 5, 2023 19:40:25 UTC 2023 年 2 月 6 日 (月) 4 時 40 分 25 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:06:24 UTC 2023 年 2 月 20 日 (月) 15 時 6 分 24 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 6, 2023 19:05:20 UTC 2023 年 8 月 7 日 (月) 4 時 5 分 20 秒 (日本時間) |
composite number 合成数 | 2736422518138992754893223825428921758009118675580880205659409183594266627552093277331085146492205331974880204379055151981354753790069173812273177855013716528511195427721420798857<178> |
prime factors 素因数 | 41855360460670654843811667437953407503933071280037868109278193564382594515533<77> 65378065987754884533121929924032672458735110233474066804874493761786897962667276740861602920742134829<101> |
factorization results 素因数分解の結果 | Number: n N=2736422518138992754893223825428921758009118675580880205659409183594266627552093277331085146492205331974880204379055151981354753790069173812273177855013716528511195427721420798857 ( 178 digits) SNFS difficulty: 203 digits. Divisors found: Sun Aug 6 13:46:13 2023 prp77 factor: 41855360460670654843811667437953407503933071280037868109278193564382594515533 Sun Aug 6 13:46:13 2023 prp101 factor: 65378065987754884533121929924032672458735110233474066804874493761786897962667276740861602920742134829 Sun Aug 6 13:46:13 2023 elapsed time 03:31:49 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.081). Factorization parameters were as follows: # # N = 79x10^203-16 = 87(202)6 # n: 2736422518138992754893223825428921758009118675580880205659409183594266627552093277331085146492205331974880204379055151981354753790069173812273177855013716528511195427721420798857 m: 10000000000000000000000000000000000000000 deg: 5 c5: 9875 c0: -2 skew: 0.18 # Murphy_E = 8.532e-12 type: snfs lss: 1 rlim: 17600000 alim: 17600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17600000/17600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2879052 hash collisions in 16285727 relations (14047499 unique) Msieve: matrix is 2559761 x 2559986 (724.4 MB) Sieving start time: 2023/08/05 20:21:16 Sieving end time : 2023/08/06 10:14:02 Total sieving time: 13hrs 52min 46secs. Total relation processing time: 3hrs 20min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 2sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17600000,17600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 4, 2023 20:22:56 UTC 2023 年 2 月 5 日 (日) 5 時 22 分 56 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 18, 2024 07:25:06 UTC 2024 年 7 月 18 日 (木) 16 時 25 分 6 秒 (日本時間) |
composite number 合成数 | 1786540923198179289452882756513701406186998603319122429042041459269962915772764641156373285687776965666377437282308286009298182678263983018423016645181573593<157> |
prime factors 素因数 | 4070276064945912339098806168621702745548928831348839845544452112916432347853<76> 438923771924035243439976083364786531460741394764424161865484574780190492642507581<81> |
factorization results 素因数分解の結果 | Number: n N=1786540923198179289452882756513701406186998603319122429042041459269962915772764641156373285687776965666377437282308286009298182678263983018423016645181573593 ( 157 digits) SNFS difficulty: 206 digits. Divisors found: Thu Jul 18 17:18:41 2024 prp76 factor: 4070276064945912339098806168621702745548928831348839845544452112916432347853 Thu Jul 18 17:18:41 2024 prp81 factor: 438923771924035243439976083364786531460741394764424161865484574780190492642507581 Thu Jul 18 17:18:41 2024 elapsed time 09:51:36 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.123). Factorization parameters were as follows: # # N = 79x10^205-16 = 87(204)6 # n: 1786540923198179289452882756513701406186998603319122429042041459269962915772764641156373285687776965666377437282308286009298182678263983018423016645181573593 m: 10000000000000000000000000000000000 deg: 6 c6: 395 c0: -8 skew: 0.52 # Murphy_E = 8.545e-12 type: snfs lss: 1 rlim: 19400000 alim: 19400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 q0: 70000000 qintsize: 50000 Factor base limits: 19400000/19400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [70000000, 111600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4113821 hash collisions in 17751524 relations (14001712 unique) Msieve: matrix is 3970399 x 3970624 (1128.4 MB) Sieving start time: 2024/07/16 21:14:39 Sieving end time : 2024/07/18 07:26:16 Total sieving time: 34hrs 11min 37secs. Total relation processing time: 9hrs 19min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 22min 7sec. Prototype def-par.txt line would be: snfs,206,6,0,0,0,0,0,0,0,0,19400000,19400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 4, 2023 20:23:08 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 8 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | February 18, 2023 22:42:32 UTC 2023 年 2 月 19 日 (日) 7 時 42 分 32 秒 (日本時間) |
4480 | Ignacio Santos | March 11, 2024 16:07:02 UTC 2024 年 3 月 12 日 (火) 1 時 7 分 2 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 25, 2024 08:29:57 UTC 2024 年 7 月 25 日 (木) 17 時 29 分 57 秒 (日本時間) |
composite number 合成数 | 2130082921384234338775422525510033213532339440508511132304273950924917909420699126456056786687082246331514870645501536190912583215011572575541440302593849038248015907813914180281<178> |
prime factors 素因数 | 168069131522175311536409779734956954751379<42> 12673849755112156167060098523155977290873188298643136767360105969065927994273531753245408803032518120133717230652174440476427823341953539<137> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2130082921384234338775422525510033213532339440508511132304273950924917909420699126456056786687082246331514870645501536190912583215011572575541440302593849038248015907813914180281 (178 digits) Using B1=61820000, B2=388130449990, polynomial Dickson(30), sigma=1:3051804462 Step 1 took 165948ms Step 2 took 63382ms ********** Factor found in step 2: 168069131522175311536409779734956954751379 Found prime factor of 42 digits: 168069131522175311536409779734956954751379 Prime cofactor 12673849755112156167060098523155977290873188298643136767360105969065927994273531753245408803032518120133717230652174440476427823341953539 has 137 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2805 | 1000 | Dmitry Domanov | February 4, 2023 20:23:15 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 15 秒 (日本時間) |
1805 | ccc | August 5, 2023 14:13:01 UTC 2023 年 8 月 5 日 (土) 23 時 13 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 13:59:21 UTC 2023 年 2 月 22 日 (水) 22 時 59 分 21 秒 (日本時間) |
composite number 合成数 | 243545318397271464977455090031050530461253714376852688492527873846349919022669606379047243926953459967460817505856522272797858279657969649986175998636069048872208310587623542591767800222165241<192> |
prime factors 素因数 | 3132557290211392888999126071531253712399<40> |
composite cofactor 合成数の残り | 77746485007090296791436823674191740791363932927605723809191689000769042977709301834223219201819888265809839387473134572352742388786684772681186686986359<152> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1226443149 Step 1 took 30698ms Step 2 took 13858ms ********** Factor found in step 2: 3132557290211392888999126071531253712399 Found prime factor of 40 digits: 3132557290211392888999126071531253712399 Composite cofactor 77746485007090296791436823674191740791363932927605723809191689000769042977709301834223219201819888265809839387473134572352742388786684772681186686986359 has 152 digits |
name 名前 | Seth Troisi |
---|---|
date 日付 | January 2, 2024 18:55:43 UTC 2024 年 1 月 3 日 (水) 3 時 55 分 43 秒 (日本時間) |
composite number 合成数 | 77746485007090296791436823674191740791363932927605723809191689000769042977709301834223219201819888265809839387473134572352742388786684772681186686986359<152> |
prime factors 素因数 | 8336880910593090283874013013669704282193103<43> 9325608202979520451736172817236296616229916144847311115480280156690686013587305271173107528020580379083707353<109> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Wed Nov 15 16:12:21 2023 Input number is 77746485007090296791436823674191740791363932927605723809191689000769042977709301834223219201819888265809839387473134572352742388786684772681186686986359 (152 digits) Using mpz_mod Using lmax = 8388608 with NTT which takes about 1920MB of memory Using B1=4000000000-4000000000, B2=205705378426380, polynomial x^1 P = 24249225, l = 8388608, s_1 = 4147200, k = s_2 = 2, m_1 = 79 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.71 0.43 0.21 0.087 0.032 0.01 0.003 0.00079 0.00019 4.5e-05 Step 1 took 0ms Computing F from factored S_1 took 17978ms Computing h took 2164ms Computing DCT-I of h took 5763ms Multi-point evaluation 1 of 2: Computing g_i took 6781ms Computing g*h took 11214ms Computing gcd of coefficients and N took 2481ms Step 2 took 46562ms ********** Factor found in step 2: 8336880910593090283874013013669704282193103 Found prime factor of 43 digits: 8336880910593090283874013013669704282193103 Prime cofactor 9325608202979520451736172817236296616229916144847311115480280156690686013587305271173107528020580379083707353 has 109 digits |
software ソフトウェア | GMP-ECM 7.0.6, ecm-db 0.1 |
execution environment 実行環境 | 1080 Ti for PM1 stage1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 5, 2023 19:40:44 UTC 2023 年 2 月 6 日 (月) 4 時 40 分 44 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:06:31 UTC 2023 年 2 月 20 日 (月) 15 時 6 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2025 23:40:22 UTC 2025 年 1 月 3 日 (金) 8 時 40 分 22 秒 (日本時間) |
composite number 合成数 | 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979<175> |
prime factors 素因数 | 837485490921221329249196399054322707083550321999<48> 2449598169625139890634221477782048698683903029608662343041353055301696150331363706997855778072367336037644674329155624402033021<127> |
factorization results 素因数分解の結果 | 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, **************************** 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, Starting factorization of 789999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, using pretesting plan: normal 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, **************************** 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 2 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 2 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 2 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 2 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 3 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 3 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 13 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, div: found prime factor = 1889 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C204 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C204 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C204 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C204 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 01/01/25 04:34:11 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 62.77 01/01/25 04:34:12 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C204 input, B1=2K, B2=gmp-ecm default 01/01/25 04:34:12 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 01/01/25 04:34:12 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 62.77 01/01/25 04:34:14 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C204 input, B1=11K, B2=gmp-ecm default 01/01/25 04:34:14 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 01/01/25 04:34:14 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 62.77 01/01/25 04:34:43 v1.34.5 @ TRIGKEY, Finished 214 curves using Lenstra ECM method on C204 input, B1=50K, B2=gmp-ecm default 01/01/25 04:34:43 v1.34.5 @ TRIGKEY, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C204 01/01/25 04:34:45 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 25.33 01/01/25 04:34:45 v1.34.5 @ TRIGKEY, scheduled 430 curves at B1=250000 toward target pretesting depth of 62.77 01/01/25 04:36:23 v1.34.5 @ TRIGKEY, prp30 = 108897309108398384900069680337 (curve 160 stg2 B1=250000 sigma=23109794 thread=0) 01/01/25 04:36:23 v1.34.5 @ TRIGKEY, Finished 160 curves using Lenstra ECM method on C204 input, B1=250K, B2=gmp-ecm default 01/01/25 04:36:23 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 27.19 01/01/25 04:36:23 v1.34.5 @ TRIGKEY, scheduled 270 curves at B1=250000 toward target pretesting depth of 53.85 01/01/25 04:38:50 v1.34.5 @ TRIGKEY, Finished 270 curves using Lenstra ECM method on C175 input, B1=250K, B2=gmp-ecm default 01/01/25 04:38:50 v1.34.5 @ TRIGKEY, pm1: starting B1 = 15M, B2 = gmp-ecm default on C175 01/01/25 04:38:54 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 30.45 01/01/25 04:38:54 v1.34.5 @ TRIGKEY, scheduled 904 curves at B1=1000000 toward target pretesting depth of 53.85 01/01/25 05:12:25 v1.34.5 @ TRIGKEY, Finished 904 curves using Lenstra ECM method on C175 input, B1=1M, B2=gmp-ecm default 01/01/25 05:12:25 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 35.56 01/01/25 05:12:25 v1.34.5 @ TRIGKEY, scheduled 2350 curves at B1=3000000 toward target pretesting depth of 53.85 01/01/25 05:41:48 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c210: 789999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984 01/01/25 05:41:48 v1.34.5 @ TRIGKEY, nfs: input divides 79*10^208 - 16 01/01/25 05:41:48 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 01/01/25 05:41:48 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c175: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 01/01/25 05:41:48 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 # 79*10^208-16, difficulty: 211.30, anorm: -1.71e+031, rnorm: 5.50e+040 # scaled difficulty: 212.88, suggest sieving rational side # size = 1.988e-010, alpha = -0.421, combined = 5.417e-012, rroots = 2 type: snfs size: 211 skew: 0.8255 c6: 79 c0: -25 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 n: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 # 79*10^208-16, difficulty: 212.90, anorm: -1.02e+027, rnorm: 2.34e+047 # scaled difficulty: 216.29, suggest sieving rational side # size = 1.150e-014, alpha = 0.455, combined = 5.248e-012, rroots = 1 type: snfs size: 212 skew: 0.1825 c5: 9875 c0: -2 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 # 79*10^208-16, difficulty: 211.30, anorm: -6.40e+025, rnorm: 5.23e+047 # scaled difficulty: 214.95, suggest sieving rational side # size = 1.051e-014, alpha = 0.723, combined = 4.889e-012, rroots = 1 type: snfs size: 211 skew: 0.9126 c5: 79 c0: -50 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 01/01/25 05:41:50 v1.34.5 @ TRIGKEY, test: fb generation took 2.4005 seconds 01/01/25 05:41:50 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.8255 c6: 79 c0: -25 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 01/01/25 05:44:43 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 01/01/25 05:44:44 v1.34.5 @ TRIGKEY, test: fb generation took 1.8172 seconds 01/01/25 05:44:44 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23802000 skew: 0.1825 c5: 9875 c0: -2 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 01/01/25 05:47:57 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 01/01/25 05:47:59 v1.34.5 @ TRIGKEY, test: fb generation took 1.6492 seconds 01/01/25 05:47:59 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000 skew: 0.9126 c5: 79 c0: -50 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 01/01/25 05:50:54 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 01/01/25 05:50:54 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 2051502925648235479574817229950440174722123066793622149502988691710525039958205424319453159673417287771371355640931559178608866084636789282936257979833510736679607734780728979 # 79*10^208-16, difficulty: 211.30, anorm: -6.40e+025, rnorm: 5.23e+047 # scaled difficulty: 214.95, suggest sieving rational side # size = 1.051e-014, alpha = 0.723, combined = 4.889e-012, rroots = 1 type: snfs size: 211 skew: 0.9126 c5: 79 c0: -50 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 01/03/25 03:14:45 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 01/03/25 03:20:54 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 01/03/25 08:20:41 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 01/03/25 08:29:33 v1.34.5 @ TRIGKEY, prp127 = 2449598169625139890634221477782048698683903029608662343041353055301696150331363706997855778072367336037644674329155624402033021 01/03/25 08:29:33 v1.34.5 @ TRIGKEY, prp48 = 837485490921221329249196399054322707083550321999 01/03/25 08:29:34 v1.34.5 @ TRIGKEY, NFS elapsed time = 182866.0572 seconds. 01/03/25 08:29:34 v1.34.5 @ TRIGKEY, 01/03/25 08:29:34 v1.34.5 @ TRIGKEY, 01/01/25 05:50:54 v1.34.5 @ TRIGKEY, test: test sieving took 546.16 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 4, 2023 20:23:23 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:45:29 UTC 2024 年 9 月 13 日 (金) 15 時 45 分 29 秒 (日本時間) | |||
45 | 11e6 | 5000 | ddd | October 4, 2024 21:33:49 UTC 2024 年 10 月 5 日 (土) 6 時 33 分 49 秒 (日本時間) |
composite cofactor 合成数の残り | 19685244433400542258839862091000538714152671525842051547026990518049913586493833241699565470473295885169864080759614108952424988260840899061612983791182095645151232233<167> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 4, 2023 20:23:32 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 32 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | February 18, 2023 22:42:42 UTC 2023 年 2 月 19 日 (日) 7 時 42 分 42 秒 (日本時間) |
4480 | Ignacio Santos | January 2, 2025 10:27:04 UTC 2025 年 1 月 2 日 (木) 19 時 27 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 5, 2023 08:57:56 UTC 2023 年 2 月 5 日 (日) 17 時 57 分 56 秒 (日本時間) |
composite number 合成数 | 3018418315249656439591499101406719585465879134637130329138173019188283726171249446100382304793476493978193570811320254375332574523795541918263784735519868379470706731370201<172> |
prime factors 素因数 | 3796625343957115089822984694041391817<37> |
composite cofactor 合成数の残り | 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753<135> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1653418765 Step 1 took 8800ms Step 2 took 4614ms ********** Factor found in step 2: 3796625343957115089822984694041391817 Found prime factor of 37 digits: 3796625343957115089822984694041391817 Composite cofactor 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753 has 135 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 8, 2023 12:13:53 UTC 2023 年 2 月 8 日 (水) 21 時 13 分 53 秒 (日本時間) |
composite number 合成数 | 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753<135> |
prime factors 素因数 | 1901306579657285329416703639747786880285226010951237<52> 418147528133148847471978675675562771323485365856029543022832180915561700972205122269<84> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=6650000, q1=6750000. -> client 1 q0: 6650000 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 156 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 167 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 108 LatSieveTime: 124 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 111 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 160 LatSieveTime: 164 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 169 LatSieveTime: 174 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 108 LatSieveTime: 114 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 171 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 106 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 172 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 167 LatSieveTime: 170 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 127 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 165 LatSieveTime: 169 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 181 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 170 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 168 LatSieveTime: 168 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 122 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 167 -> makeJobFile(): Adjusted to q0=8350001, q1=8450000. -> client 1 q0: 8350001 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 170 -> makeJobFile(): Adjusted to q0=8450001, q1=8550000. -> client 1 q0: 8450001 LatSieveTime: 123 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 171 LatSieveTime: 174 -> makeJobFile(): Adjusted to q0=8550001, q1=8650000. -> client 1 q0: 8550001 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 174 LatSieveTime: 185 -> makeJobFile(): Adjusted to q0=8650001, q1=8750000. -> client 1 q0: 8650001 LatSieveTime: 120 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=8750001, q1=8850000. -> client 1 q0: 8750001 LatSieveTime: 118 LatSieveTime: 125 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=8850001, q1=8950000. -> client 1 q0: 8850001 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 173 LatSieveTime: 173 -> makeJobFile(): Adjusted to q0=8950001, q1=9050000. -> client 1 q0: 8950001 LatSieveTime: 108 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 166 -> makeJobFile(): Adjusted to q0=9050001, q1=9150000. -> client 1 q0: 9050001 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 168 LatSieveTime: 173 LatSieveTime: 175 LatSieveTime: 182 -> makeJobFile(): Adjusted to q0=9150001, q1=9250000. -> client 1 q0: 9150001 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 162 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 170 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 178 LatSieveTime: 186 -> makeJobFile(): Adjusted to q0=9250001, q1=9350000. -> client 1 q0: 9250001 LatSieveTime: 121 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 176 LatSieveTime: 179 LatSieveTime: 180 LatSieveTime: 189 -> makeJobFile(): Adjusted to q0=9350001, q1=9450000. -> client 1 q0: 9350001 LatSieveTime: 112 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 172 -> makeJobFile(): Adjusted to q0=9450001, q1=9550000. -> client 1 q0: 9450001 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 190 -> makeJobFile(): Adjusted to q0=9550001, q1=9650000. -> client 1 q0: 9550001 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 175 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=9650001, q1=9750000. -> client 1 q0: 9650001 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 172 LatSieveTime: 177 -> makeJobFile(): Adjusted to q0=9750001, q1=9850000. -> client 1 q0: 9750001 LatSieveTime: 129 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 184 -> makeJobFile(): Adjusted to q0=9850001, q1=9950000. -> client 1 q0: 9850001 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 173 -> makeJobFile(): Adjusted to q0=9950001, q1=10050000. -> client 1 q0: 9950001 LatSieveTime: 122 LatSieveTime: 127 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 170 LatSieveTime: 171 -> makeJobFile(): Adjusted to q0=10050001, q1=10150000. -> client 1 q0: 10050001 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 175 -> makeJobFile(): Adjusted to q0=10150001, q1=10250000. -> client 1 q0: 10150001 LatSieveTime: 122 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 173 -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> client 1 q0: 10250001 -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> client 1 q0: 10250001 LatSieveTime: 117 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 169 -> makeJobFile(): Adjusted to q0=10350001, q1=10450000. -> client 1 q0: 10350001 LatSieveTime: 127 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 178 LatSieveTime: 180 -> makeJobFile(): Adjusted to q0=10450001, q1=10550000. -> client 1 q0: 10450001 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 176 LatSieveTime: 178 LatSieveTime: 179 LatSieveTime: 185 -> makeJobFile(): Adjusted to q0=10550001, q1=10650000. -> client 1 q0: 10550001 LatSieveTime: 120 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 188 -> makeJobFile(): Adjusted to q0=10650001, q1=10750000. -> client 1 q0: 10650001 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 180 LatSieveTime: 181 LatSieveTime: 182 LatSieveTime: 186 -> makeJobFile(): Adjusted to q0=10750001, q1=10850000. -> client 1 q0: 10750001 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 174 LatSieveTime: 178 LatSieveTime: 182 -> makeJobFile(): Adjusted to q0=10850001, q1=10950000. -> client 1 q0: 10850001 LatSieveTime: 117 LatSieveTime: 125 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 175 LatSieveTime: 180 LatSieveTime: 190 LatSieveTime: 191 -> makeJobFile(): Adjusted to q0=10950001, q1=11050000. -> client 1 q0: 10950001 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 175 -> makeJobFile(): Adjusted to q0=11050001, q1=11150000. -> client 1 q0: 11050001 LatSieveTime: 130 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=11150001, q1=11250000. -> client 1 q0: 11150001 LatSieveTime: 120 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 174 -> makeJobFile(): Adjusted to q0=11250001, q1=11350000. -> client 1 q0: 11250001 LatSieveTime: 113 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 172 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=11350001, q1=11450000. -> client 1 q0: 11350001 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 175 LatSieveTime: 180 -> makeJobFile(): Adjusted to q0=11450001, q1=11550000. -> client 1 q0: 11450001 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 179 LatSieveTime: 184 -> makeJobFile(): Adjusted to q0=11550001, q1=11650000. -> client 1 q0: 11550001 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=11650001, q1=11750000. -> client 1 q0: 11650001 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=11750001, q1=11850000. -> client 1 q0: 11750001 LatSieveTime: 125 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 174 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 181 LatSieveTime: 182 -> makeJobFile(): Adjusted to q0=11850001, q1=11950000. -> client 1 q0: 11850001 LatSieveTime: 126 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 176 LatSieveTime: 183 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=11950001, q1=12050000. -> client 1 q0: 11950001 LatSieveTime: 124 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 178 LatSieveTime: 181 -> makeJobFile(): Adjusted to q0=12050001, q1=12150000. -> client 1 q0: 12050001 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 179 LatSieveTime: 181 LatSieveTime: 184 -> makeJobFile(): Adjusted to q0=12150001, q1=12250000. -> client 1 q0: 12150001 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 176 LatSieveTime: 183 LatSieveTime: 184 -> makeJobFile(): Adjusted to q0=12250001, q1=12350000. -> client 1 q0: 12250001 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 128 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 179 LatSieveTime: 183 LatSieveTime: 189 -> makeJobFile(): Adjusted to q0=12350001, q1=12450000. -> client 1 q0: 12350001 LatSieveTime: 129 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 176 LatSieveTime: 182 LatSieveTime: 183 LatSieveTime: 183 LatSieveTime: 185 LatSieveTime: 186 LatSieveTime: 196 -> makeJobFile(): Adjusted to q0=12450001, q1=12550000. -> client 1 q0: 12450001 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 176 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=12550001, q1=12650000. -> client 1 q0: 12550001 LatSieveTime: 124 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 175 LatSieveTime: 176 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=12650001, q1=12750000. -> client 1 q0: 12650001 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 176 LatSieveTime: 179 LatSieveTime: 180 LatSieveTime: 180 LatSieveTime: 183 LatSieveTime: 185 LatSieveTime: 186 LatSieveTime: 201 LatSieveTime: 206 -> makeJobFile(): Adjusted to q0=12750001, q1=12850000. -> client 1 q0: 12750001 LatSieveTime: 116 LatSieveTime: 127 LatSieveTime: 134 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 175 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 183 LatSieveTime: 185 LatSieveTime: 188 LatSieveTime: 194 -> makeJobFile(): Adjusted to q0=12850001, q1=12950000. -> client 1 q0: 12850001 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 175 LatSieveTime: 177 LatSieveTime: 202 -> makeJobFile(): Adjusted to q0=12950001, q1=13050000. -> client 1 q0: 12950001 LatSieveTime: 124 LatSieveTime: 130 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 177 LatSieveTime: 177 LatSieveTime: 179 LatSieveTime: 180 LatSieveTime: 181 LatSieveTime: 185 -> makeJobFile(): Adjusted to q0=13050001, q1=13150000. -> client 1 q0: 13050001 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 175 LatSieveTime: 177 -> makeJobFile(): Adjusted to q0=13150001, q1=13250000. -> client 1 q0: 13150001 LatSieveTime: 130 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 176 LatSieveTime: 179 LatSieveTime: 180 LatSieveTime: 186 -> makeJobFile(): Adjusted to q0=13250001, q1=13350000. -> client 1 q0: 13250001 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 176 LatSieveTime: 178 LatSieveTime: 178 LatSieveTime: 180 LatSieveTime: 180 LatSieveTime: 182 LatSieveTime: 182 LatSieveTime: 184 LatSieveTime: 190 -> makeJobFile(): Adjusted to q0=13350001, q1=13450000. -> client 1 q0: 13350001 LatSieveTime: 126 LatSieveTime: 133 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 177 LatSieveTime: 178 LatSieveTime: 178 LatSieveTime: 180 LatSieveTime: 180 LatSieveTime: 183 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=13450001, q1=13550000. -> client 1 q0: 13450001 LatSieveTime: 119 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=13550001, q1=13650000. -> client 1 q0: 13550001 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 -> makeJobFile(): Adjusted to q0=13650001, q1=13750000. -> client 1 q0: 13650001 LatSieveTime: 123 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 177 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=13750001, q1=13850000. -> client 1 q0: 13750001 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 171 LatSieveTime: 176 LatSieveTime: 192 -> makeJobFile(): Adjusted to q0=13850001, q1=13950000. -> client 1 q0: 13850001 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 170 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=13950001, q1=14050000. -> client 1 q0: 13950001 LatSieveTime: 109 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 172 LatSieveTime: 172 LatSieveTime: 176 LatSieveTime: 177 -> makeJobFile(): Adjusted to q0=14050001, q1=14150000. -> client 1 q0: 14050001 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 170 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 181 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=14150001, q1=14250000. -> client 1 q0: 14150001 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 176 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=14250001, q1=14350000. -> client 1 q0: 14250001 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 176 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=14350001, q1=14450000. -> client 1 q0: 14350001 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 167 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 172 LatSieveTime: 175 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 176 LatSieveTime: 179 LatSieveTime: 179 LatSieveTime: 180 LatSieveTime: 180 LatSieveTime: 180 LatSieveTime: 185 -> makeJobFile(): Adjusted to q0=14450001, q1=14550000. -> client 1 q0: 14450001 LatSieveTime: 125 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 168 LatSieveTime: 178 LatSieveTime: 178 LatSieveTime: 183 LatSieveTime: 187 -> makeJobFile(): Adjusted to q0=14550001, q1=14650000. -> client 1 q0: 14550001 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 168 LatSieveTime: 169 LatSieveTime: 174 LatSieveTime: 175 LatSieveTime: 188 -> makeJobFile(): Adjusted to q0=14650001, q1=14750000. -> client 1 q0: 14650001 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 176 LatSieveTime: 183 -> makeJobFile(): Adjusted to q0=14750001, q1=14850000. -> client 1 q0: 14750001 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 163 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 170 LatSieveTime: 174 -> makeJobFile(): Adjusted to q0=14850001, q1=14950000. -> client 1 q0: 14850001 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 125 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 170 LatSieveTime: 171 LatSieveTime: 176 LatSieveTime: 178 -> makeJobFile(): Adjusted to q0=14950001, q1=15050000. -> client 1 q0: 14950001 LatSieveTime: 122 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 168 LatSieveTime: 171 LatSieveTime: 172 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 174 LatSieveTime: 175 -> makeJobFile(): Adjusted to q0=15050001, q1=15150000. -> client 1 q0: 15050001 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 161 LatSieveTime: 161 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 166 LatSieveTime: 168 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 173 LatSieveTime: 176 -> makeJobFile(): Adjusted to q0=15150001, q1=15250000. -> client 1 q0: 15150001 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 160 LatSieveTime: 160 LatSieveTime: 162 LatSieveTime: 162 LatSieveTime: 164 LatSieveTime: 164 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 171 LatSieveTime: 173 LatSieveTime: 174 LatSieveTime: 178 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=15250001, q1=15350000. -> client 1 q0: 15250001 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 164 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 165 LatSieveTime: 167 LatSieveTime: 167 LatSieveTime: 168 LatSieveTime: 179 -> makeJobFile(): Adjusted to q0=15350001, q1=15450000. -> client 1 q0: 15350001 LatSieveTime: 115 LatSieveTime: 123 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 162 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 170 LatSieveTime: 170 LatSieveTime: 173 -> makeJobFile(): Adjusted to q0=15450001, q1=15550000. -> client 1 q0: 15450001 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 157 LatSieveTime: 159 LatSieveTime: 159 LatSieveTime: 161 LatSieveTime: 162 LatSieveTime: 163 LatSieveTime: 163 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 166 LatSieveTime: 167 LatSieveTime: 169 LatSieveTime: 171 LatSieveTime: 171 Wed Feb 08 12:19:42 2023 Wed Feb 08 12:19:42 2023 Wed Feb 08 12:19:42 2023 Msieve v. 1.52 (SVN 927) Wed Feb 08 12:19:42 2023 random seeds: 47b63f00 f60c114d Wed Feb 08 12:19:42 2023 factoring 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753 (135 digits) Wed Feb 08 12:19:42 2023 searching for 15-digit factors Wed Feb 08 12:19:42 2023 commencing number field sieve (135-digit input) Wed Feb 08 12:19:42 2023 R0: -98022145691952496391709899 Wed Feb 08 12:19:42 2023 R1: 1438357722836855509 Wed Feb 08 12:19:42 2023 A0: -368738493032487044278770133500 Wed Feb 08 12:19:42 2023 A1: 27525221150866862852754340 Wed Feb 08 12:19:42 2023 A2: 231154485851024141495 Wed Feb 08 12:19:42 2023 A3: -23097567148334333 Wed Feb 08 12:19:42 2023 A4: -43076411190 Wed Feb 08 12:19:42 2023 A5: 527760 Wed Feb 08 12:19:42 2023 skew 65616.91, size 4.926e-013, alpha -5.499, combined = 4.221e-011 rroots = 5 Wed Feb 08 12:19:42 2023 Wed Feb 08 12:19:42 2023 commencing relation filtering Wed Feb 08 12:19:42 2023 estimated available RAM is 65413.5 MB Wed Feb 08 12:19:42 2023 commencing duplicate removal, pass 1 Wed Feb 08 12:20:01 2023 error -15 reading relation 8933368 Wed Feb 08 12:20:01 2023 error -15 reading relation 8933872 Wed Feb 08 12:20:01 2023 error -15 reading relation 8934546 Wed Feb 08 12:20:01 2023 error -15 reading relation 8935254 Wed Feb 08 12:20:01 2023 error -15 reading relation 8935793 Wed Feb 08 12:20:01 2023 error -9 reading relation 8936367 Wed Feb 08 12:20:01 2023 error -15 reading relation 8937008 Wed Feb 08 12:20:01 2023 error -15 reading relation 8937613 Wed Feb 08 12:20:01 2023 error -9 reading relation 8938219 Wed Feb 08 12:20:01 2023 error -11 reading relation 8939331 Wed Feb 08 12:20:01 2023 error -15 reading relation 8939801 Wed Feb 08 12:20:01 2023 error -15 reading relation 8940443 Wed Feb 08 12:20:01 2023 error -15 reading relation 8940981 Wed Feb 08 12:20:01 2023 error -15 reading relation 8941522 Wed Feb 08 12:20:01 2023 error -5 reading relation 8941995 Wed Feb 08 12:20:01 2023 error -15 reading relation 8942501 Wed Feb 08 12:20:01 2023 error -9 reading relation 8943174 Wed Feb 08 12:20:01 2023 error -11 reading relation 8943846 Wed Feb 08 12:20:01 2023 error -15 reading relation 8944352 Wed Feb 08 12:20:01 2023 error -15 reading relation 8944823 Wed Feb 08 12:20:01 2023 error -15 reading relation 8945327 Wed Feb 08 12:20:01 2023 error -15 reading relation 8945968 Wed Feb 08 12:20:01 2023 error -11 reading relation 8946576 Wed Feb 08 12:20:01 2023 error -15 reading relation 8947046 Wed Feb 08 12:20:01 2023 error -11 reading relation 8947652 Wed Feb 08 12:20:01 2023 error -1 reading relation 8948123 Wed Feb 08 12:20:01 2023 error -15 reading relation 8948762 Wed Feb 08 12:20:01 2023 error -9 reading relation 8949302 Wed Feb 08 12:20:01 2023 error -5 reading relation 8949841 Wed Feb 08 12:20:01 2023 error -15 reading relation 8950412 Wed Feb 08 12:20:01 2023 error -15 reading relation 8950882 Wed Feb 08 12:20:01 2023 error -1 reading relation 8951487 Wed Feb 08 12:20:01 2023 error -9 reading relation 8952094 Wed Feb 08 12:20:01 2023 error -5 reading relation 8952598 Wed Feb 08 12:20:01 2023 error -9 reading relation 8953068 Wed Feb 08 12:20:01 2023 error -15 reading relation 8953573 Wed Feb 08 12:20:01 2023 error -15 reading relation 8954077 Wed Feb 08 12:20:01 2023 error -15 reading relation 8954615 Wed Feb 08 12:20:01 2023 error -15 reading relation 8955085 Wed Feb 08 12:20:01 2023 error -15 reading relation 8955557 Wed Feb 08 12:20:01 2023 error -11 reading relation 8956196 Wed Feb 08 12:20:01 2023 error -11 reading relation 8956701 Wed Feb 08 12:20:01 2023 error -9 reading relation 8957208 Wed Feb 08 12:20:01 2023 error -9 reading relation 8957678 Wed Feb 08 12:20:01 2023 error -15 reading relation 8958251 Wed Feb 08 12:20:26 2023 found 2762349 hash collisions in 21031302 relations Wed Feb 08 12:20:47 2023 added 120854 free relations Wed Feb 08 12:20:47 2023 commencing duplicate removal, pass 2 Wed Feb 08 12:20:55 2023 found 2390477 duplicates and 18761679 unique relations Wed Feb 08 12:20:55 2023 memory use: 98.6 MB Wed Feb 08 12:20:55 2023 reading ideals above 720000 Wed Feb 08 12:20:55 2023 commencing singleton removal, initial pass Wed Feb 08 12:22:02 2023 memory use: 376.5 MB Wed Feb 08 12:22:02 2023 reading all ideals from disk Wed Feb 08 12:22:03 2023 memory use: 596.6 MB Wed Feb 08 12:22:04 2023 keeping 20173094 ideals with weight <= 200, target excess is 118173 Wed Feb 08 12:22:05 2023 commencing in-memory singleton removal Wed Feb 08 12:22:05 2023 begin with 18761679 relations and 20173094 unique ideals Wed Feb 08 12:22:16 2023 reduce to 7761381 relations and 7455064 ideals in 17 passes Wed Feb 08 12:22:16 2023 max relations containing the same ideal: 110 Wed Feb 08 12:22:19 2023 removing 809783 relations and 725165 ideals in 84618 cliques Wed Feb 08 12:22:19 2023 commencing in-memory singleton removal Wed Feb 08 12:22:19 2023 begin with 6951598 relations and 7455064 unique ideals Wed Feb 08 12:22:23 2023 reduce to 6881420 relations and 6658700 ideals in 10 passes Wed Feb 08 12:22:23 2023 max relations containing the same ideal: 97 Wed Feb 08 12:22:25 2023 removing 603983 relations and 519365 ideals in 84618 cliques Wed Feb 08 12:22:25 2023 commencing in-memory singleton removal Wed Feb 08 12:22:26 2023 begin with 6277437 relations and 6658700 unique ideals Wed Feb 08 12:22:29 2023 reduce to 6233389 relations and 6094704 ideals in 9 passes Wed Feb 08 12:22:29 2023 max relations containing the same ideal: 92 Wed Feb 08 12:22:31 2023 relations with 0 large ideals: 479 Wed Feb 08 12:22:31 2023 relations with 1 large ideals: 1016 Wed Feb 08 12:22:31 2023 relations with 2 large ideals: 18948 Wed Feb 08 12:22:31 2023 relations with 3 large ideals: 141470 Wed Feb 08 12:22:31 2023 relations with 4 large ideals: 564858 Wed Feb 08 12:22:31 2023 relations with 5 large ideals: 1296802 Wed Feb 08 12:22:31 2023 relations with 6 large ideals: 1796914 Wed Feb 08 12:22:31 2023 relations with 7+ large ideals: 2412902 Wed Feb 08 12:22:31 2023 commencing 2-way merge Wed Feb 08 12:22:35 2023 reduce to 3669061 relation sets and 3530376 unique ideals Wed Feb 08 12:22:35 2023 commencing full merge Wed Feb 08 12:23:20 2023 memory use: 426.1 MB Wed Feb 08 12:23:20 2023 found 1886466 cycles, need 1868576 Wed Feb 08 12:23:20 2023 weight of 1868576 cycles is about 130981785 (70.10/cycle) Wed Feb 08 12:23:20 2023 distribution of cycle lengths: Wed Feb 08 12:23:20 2023 1 relations: 269438 Wed Feb 08 12:23:20 2023 2 relations: 233447 Wed Feb 08 12:23:20 2023 3 relations: 217956 Wed Feb 08 12:23:20 2023 4 relations: 188585 Wed Feb 08 12:23:20 2023 5 relations: 168167 Wed Feb 08 12:23:20 2023 6 relations: 140151 Wed Feb 08 12:23:20 2023 7 relations: 121229 Wed Feb 08 12:23:20 2023 8 relations: 101880 Wed Feb 08 12:23:20 2023 9 relations: 85976 Wed Feb 08 12:23:20 2023 10+ relations: 341747 Wed Feb 08 12:23:20 2023 heaviest cycle: 23 relations Wed Feb 08 12:23:21 2023 commencing cycle optimization Wed Feb 08 12:23:23 2023 start with 10685410 relations Wed Feb 08 12:23:36 2023 pruned 235642 relations Wed Feb 08 12:23:36 2023 memory use: 359.2 MB Wed Feb 08 12:23:36 2023 distribution of cycle lengths: Wed Feb 08 12:23:36 2023 1 relations: 269438 Wed Feb 08 12:23:36 2023 2 relations: 238688 Wed Feb 08 12:23:36 2023 3 relations: 225044 Wed Feb 08 12:23:36 2023 4 relations: 192186 Wed Feb 08 12:23:36 2023 5 relations: 171211 Wed Feb 08 12:23:36 2023 6 relations: 141314 Wed Feb 08 12:23:36 2023 7 relations: 121767 Wed Feb 08 12:23:36 2023 8 relations: 101279 Wed Feb 08 12:23:36 2023 9 relations: 84884 Wed Feb 08 12:23:36 2023 10+ relations: 322765 Wed Feb 08 12:23:36 2023 heaviest cycle: 22 relations Wed Feb 08 12:23:38 2023 RelProcTime: 236 Wed Feb 08 12:23:38 2023 elapsed time 00:03:56 Wed Feb 08 12:23:38 2023 Wed Feb 08 12:23:38 2023 Wed Feb 08 12:23:38 2023 Msieve v. 1.52 (SVN 927) Wed Feb 08 12:23:38 2023 random seeds: e98eb51c 71d2edf4 Wed Feb 08 12:23:38 2023 factoring 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753 (135 digits) Wed Feb 08 12:23:38 2023 searching for 15-digit factors Wed Feb 08 12:23:38 2023 commencing number field sieve (135-digit input) Wed Feb 08 12:23:38 2023 R0: -98022145691952496391709899 Wed Feb 08 12:23:38 2023 R1: 1438357722836855509 Wed Feb 08 12:23:38 2023 A0: -368738493032487044278770133500 Wed Feb 08 12:23:38 2023 A1: 27525221150866862852754340 Wed Feb 08 12:23:38 2023 A2: 231154485851024141495 Wed Feb 08 12:23:38 2023 A3: -23097567148334333 Wed Feb 08 12:23:38 2023 A4: -43076411190 Wed Feb 08 12:23:38 2023 A5: 527760 Wed Feb 08 12:23:38 2023 skew 65616.91, size 4.926e-013, alpha -5.499, combined = 4.221e-011 rroots = 5 Wed Feb 08 12:23:38 2023 Wed Feb 08 12:23:38 2023 commencing linear algebra Wed Feb 08 12:23:39 2023 read 1868576 cycles Wed Feb 08 12:23:41 2023 cycles contain 6080721 unique relations Wed Feb 08 12:23:54 2023 read 6080721 relations Wed Feb 08 12:24:00 2023 using 20 quadratic characters above 268434962 Wed Feb 08 12:24:16 2023 building initial matrix Wed Feb 08 12:24:53 2023 memory use: 788.8 MB Wed Feb 08 12:24:54 2023 read 1868576 cycles Wed Feb 08 12:24:55 2023 matrix is 1868397 x 1868576 (560.6 MB) with weight 175793506 (94.08/col) Wed Feb 08 12:24:55 2023 sparse part has weight 126416053 (67.65/col) Wed Feb 08 12:25:04 2023 filtering completed in 2 passes Wed Feb 08 12:25:05 2023 matrix is 1866111 x 1866290 (560.5 MB) with weight 175703499 (94.15/col) Wed Feb 08 12:25:05 2023 sparse part has weight 126390392 (67.72/col) Wed Feb 08 12:25:07 2023 matrix starts at (0, 0) Wed Feb 08 12:25:08 2023 matrix is 1866111 x 1866290 (560.5 MB) with weight 175703499 (94.15/col) Wed Feb 08 12:25:08 2023 sparse part has weight 126390392 (67.72/col) Wed Feb 08 12:25:08 2023 saving the first 48 matrix rows for later Wed Feb 08 12:25:08 2023 matrix includes 64 packed rows Wed Feb 08 12:25:08 2023 matrix is 1866063 x 1866290 (542.3 MB) with weight 139284741 (74.63/col) Wed Feb 08 12:25:08 2023 sparse part has weight 123491797 (66.17/col) Wed Feb 08 12:25:08 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Feb 08 12:25:14 2023 commencing Lanczos iteration (32 threads) Wed Feb 08 12:25:14 2023 memory use: 431.2 MB Wed Feb 08 12:25:15 2023 linear algebra at 0.1%, ETA 0h20m Wed Feb 08 12:25:16 2023 checkpointing every 3650000 dimensions Wed Feb 08 13:00:54 2023 lanczos halted after 29511 iterations (dim = 1866062) Wed Feb 08 13:00:55 2023 recovered 28 nontrivial dependencies Wed Feb 08 13:00:55 2023 BLanczosTime: 2237 Wed Feb 08 13:00:55 2023 elapsed time 00:37:17 Wed Feb 08 13:00:55 2023 Wed Feb 08 13:00:55 2023 Wed Feb 08 13:00:55 2023 Msieve v. 1.52 (SVN 927) Wed Feb 08 13:00:55 2023 random seeds: 6efead30 fc2ebf1e Wed Feb 08 13:00:55 2023 factoring 795026646506985727458517667150868325599107454071412587303745467425481466494752334091498719210973767900984098147245384394046500581796753 (135 digits) Wed Feb 08 13:00:56 2023 searching for 15-digit factors Wed Feb 08 13:00:56 2023 commencing number field sieve (135-digit input) Wed Feb 08 13:00:56 2023 R0: -98022145691952496391709899 Wed Feb 08 13:00:56 2023 R1: 1438357722836855509 Wed Feb 08 13:00:56 2023 A0: -368738493032487044278770133500 Wed Feb 08 13:00:56 2023 A1: 27525221150866862852754340 Wed Feb 08 13:00:56 2023 A2: 231154485851024141495 Wed Feb 08 13:00:56 2023 A3: -23097567148334333 Wed Feb 08 13:00:56 2023 A4: -43076411190 Wed Feb 08 13:00:56 2023 A5: 527760 Wed Feb 08 13:00:56 2023 skew 65616.91, size 4.926e-013, alpha -5.499, combined = 4.221e-011 rroots = 5 Wed Feb 08 13:00:56 2023 Wed Feb 08 13:00:56 2023 commencing square root phase Wed Feb 08 13:00:56 2023 reading relations for dependency 1 Wed Feb 08 13:00:56 2023 read 932362 cycles Wed Feb 08 13:00:57 2023 cycles contain 3038308 unique relations Wed Feb 08 13:01:05 2023 read 3038308 relations Wed Feb 08 13:01:14 2023 multiplying 3038308 relations Wed Feb 08 13:02:58 2023 multiply complete, coefficients have about 153.25 million bits Wed Feb 08 13:02:59 2023 initial square root is modulo 316109 Wed Feb 08 13:05:01 2023 GCD is N, no factor found Wed Feb 08 13:05:01 2023 reading relations for dependency 2 Wed Feb 08 13:05:01 2023 read 934457 cycles Wed Feb 08 13:05:02 2023 cycles contain 3043518 unique relations Wed Feb 08 13:05:10 2023 read 3043518 relations Wed Feb 08 13:05:19 2023 multiplying 3043518 relations Wed Feb 08 13:07:03 2023 multiply complete, coefficients have about 153.51 million bits Wed Feb 08 13:07:03 2023 initial square root is modulo 323087 Wed Feb 08 13:09:05 2023 GCD is 1, no factor found Wed Feb 08 13:09:05 2023 reading relations for dependency 3 Wed Feb 08 13:09:05 2023 read 933336 cycles Wed Feb 08 13:09:06 2023 cycles contain 3040034 unique relations Wed Feb 08 13:09:14 2023 read 3040034 relations Wed Feb 08 13:09:22 2023 multiplying 3040034 relations Wed Feb 08 13:11:05 2023 multiply complete, coefficients have about 153.34 million bits Wed Feb 08 13:11:06 2023 initial square root is modulo 318443 Wed Feb 08 13:13:08 2023 sqrtTime: 732 Wed Feb 08 13:13:08 2023 prp52 factor: 1901306579657285329416703639747786880285226010951237 Wed Feb 08 13:13:08 2023 prp84 factor: 418147528133148847471978675675562771323485365856029543022832180915561700972205122269 Wed Feb 08 13:13:08 2023 elapsed time 00:12:13 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 4, 2023 20:23:40 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 40 秒 (日本時間) |
2350 | Ignacio Santos | February 6, 2023 17:43:52 UTC 2023 年 2 月 7 日 (火) 2 時 43 分 52 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | February 7, 2023 10:26:24 UTC 2023 年 2 月 7 日 (火) 19 時 26 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 4, 2023 20:23:49 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 49 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:46:18 UTC 2024 年 9 月 13 日 (金) 15 時 46 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 21, 2023 23:25:53 UTC 2023 年 2 月 22 日 (水) 8 時 25 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 07:01:53 UTC 2024 年 9 月 13 日 (金) 16 時 1 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 7, 2023 06:08:17 UTC 2023 年 2 月 7 日 (火) 15 時 8 分 17 秒 (日本時間) |
composite number 合成数 | 460245870846970731927871182511405392379142990404465467742972786708856641938472959924333357137820068052230255735294348721494083874494091303274864630807798813889837732825567582426056221177<186> |
prime factors 素因数 | 2225065905723357874326539263397591<34> |
composite cofactor 合成数の残り | 206845949894390694597970068228763374897432465874853323021737093184269216759892924656343146312412729808213494966879220970873658022237478044717247459478447<153> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1491636610 Step 1 took 11182ms Step 2 took 5392ms ********** Factor found in step 2: 2225065905723357874326539263397591 Found prime factor of 34 digits: 2225065905723357874326539263397591 Composite cofactor 206845949894390694597970068228763374897432465874853323021737093184269216759892924656343146312412729808213494966879220970873658022237478044717247459478447 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 6, 2023 10:42:37 UTC 2023 年 2 月 6 日 (月) 19 時 42 分 37 秒 (日本時間) |
2350 | Ignacio Santos | February 10, 2023 16:21:35 UTC 2023 年 2 月 11 日 (土) 1 時 21 分 35 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | February 12, 2023 15:52:33 UTC 2023 年 2 月 13 日 (月) 0 時 52 分 33 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | February 28, 2024 15:35:11 UTC 2024 年 2 月 29 日 (木) 0 時 35 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 10:42:46 UTC 2023 年 2 月 6 日 (月) 19 時 42 分 46 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:07:15 UTC 2023 年 2 月 20 日 (月) 15 時 7 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 20, 2023 06:07:35 UTC 2023 年 2 月 20 日 (月) 15 時 7 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:07:35 UTC 2023 年 2 月 20 日 (月) 15 時 7 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 21, 2023 23:26:09 UTC 2023 年 2 月 22 日 (水) 8 時 26 分 9 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 15:53:11 UTC 2024 年 9 月 14 日 (土) 0 時 53 分 11 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 13, 2024 15:53:35 UTC 2024 年 9 月 14 日 (土) 0 時 53 分 35 秒 (日本時間) |
composite number 合成数 | 25177591171506431041475216647470329694212108602453705089719102711603467157327816481732895221232070824219817070470407603993798096880969388287432369700252114191966817083542199139377522306317412874296749<200> |
prime factors 素因数 | 357977146046180759885625076527041437271<39> 70332956864956964734415233333912842845051167864021583567447701444361522840537872982874623798326604395101722583552819281878167915201718769004192844021996231006619<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1609628636 Step 1 took 8656ms Step 2 took 3719ms ********** Factor found in step 2: 357977146046180759885625076527041437271 Found prime factor of 39 digits: 357977146046180759885625076527041437271 Prime cofactor 70332956864956964734415233333912842845051167864021583567447701444361522840537872982874623798326604395101722583552819281878167915201718769004192844021996231006619 has 161 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 8, 2023 20:52:04 UTC 2023 年 2 月 9 日 (木) 5 時 52 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 6, 2023 10:42:53 UTC 2023 年 2 月 6 日 (月) 19 時 42 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 16:07:02 UTC 2024 年 9 月 14 日 (土) 1 時 7 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 21, 2023 23:26:18 UTC 2023 年 2 月 22 日 (水) 8 時 26 分 18 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 06:10:04 UTC 2024 年 9 月 14 日 (土) 15 時 10 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 6, 2023 10:43:00 UTC 2023 年 2 月 6 日 (月) 19 時 43 分 0 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 06:10:17 UTC 2024 年 9 月 14 日 (土) 15 時 10 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 06:27:10 UTC 2024 年 9 月 14 日 (土) 15 時 27 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 06:40:04 UTC 2024 年 9 月 14 日 (土) 15 時 40 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 9, 2023 22:20:56 UTC 2023 年 2 月 10 日 (金) 7 時 20 分 56 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 06:55:33 UTC 2024 年 9 月 14 日 (土) 15 時 55 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 07:23:43 UTC 2024 年 9 月 14 日 (土) 16 時 23 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 6, 2023 10:43:11 UTC 2023 年 2 月 6 日 (月) 19 時 43 分 11 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 07:24:01 UTC 2024 年 9 月 14 日 (土) 16 時 24 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 07:30:13 UTC 2024 年 9 月 14 日 (土) 16 時 30 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 4, 2023 20:23:59 UTC 2023 年 2 月 5 日 (日) 5 時 23 分 59 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 08:17:36 UTC 2024 年 9 月 14 日 (土) 17 時 17 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 6, 2023 10:43:20 UTC 2023 年 2 月 6 日 (月) 19 時 43 分 20 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 08:17:47 UTC 2024 年 9 月 14 日 (土) 17 時 17 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 08:18:15 UTC 2024 年 9 月 14 日 (土) 17 時 18 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 08:18:31 UTC 2024 年 9 月 14 日 (土) 17 時 18 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 21, 2023 23:26:25 UTC 2023 年 2 月 22 日 (水) 8 時 26 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 08:25:41 UTC 2024 年 9 月 14 日 (土) 17 時 25 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 4, 2024 01:18:21 UTC 2024 年 10 月 4 日 (金) 10 時 18 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 4, 2024 01:34:03 UTC 2024 年 10 月 4 日 (金) 10 時 34 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 4, 2024 01:48:02 UTC 2024 年 10 月 4 日 (金) 10 時 48 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 4, 2024 02:01:54 UTC 2024 年 10 月 4 日 (金) 11 時 1 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:21:03 UTC 2023 年 2 月 10 日 (金) 7 時 21 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:05:05 UTC 2024 年 10 月 4 日 (金) 11 時 5 分 5 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 04:48:03 UTC 2023 年 2 月 22 日 (水) 13 時 48 分 3 秒 (日本時間) |
composite number 合成数 | 14337961499919682245768470979623336496898019354663478668381257939800885855870049956369293197530645489362691025691854342456583826734812193857013077615521650184052585772649088143199213167869757218761893509<203> |
prime factors 素因数 | 37066187587190712208891331924861393<35> 386820507671379115666967712807383254428744287092493486497954094454492702075819757026575114720833125980842765450429762378748970260107189439002892847504362731928516317813<168> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3265389258 Step 1 took 11359ms Step 2 took 5263ms ********** Factor found in step 2: 37066187587190712208891331924861393 Found prime factor of 35 digits: 37066187587190712208891331924861393 Prime cofactor 386820507671379115666967712807383254428744287092493486497954094454492702075819757026575114720833125980842765450429762378748970260107189439002892847504362731928516317813 has 168 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 21, 2023 23:26:34 UTC 2023 年 2 月 22 日 (水) 8 時 26 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | February 6, 2023 10:43:27 UTC 2023 年 2 月 6 日 (月) 19 時 43 分 27 秒 (日本時間) |
1200 | Thomas Kozlowski | October 4, 2024 02:11:54 UTC 2024 年 10 月 4 日 (金) 11 時 11 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:21:10 UTC 2023 年 2 月 10 日 (金) 7 時 21 分 10 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:15:03 UTC 2024 年 10 月 4 日 (金) 11 時 15 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:01 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 1 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:18:32 UTC 2024 年 10 月 4 日 (金) 11 時 18 分 32 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 02:23:02 UTC 2024 年 10 月 4 日 (金) 11 時 23 分 2 秒 (日本時間) |
composite number 合成数 | 4673916388390639907341171446295784108232276288400409414499749429985569954752665860755140995393036439460166579219625550685062868060021467033343887998878339796052644980572509868530487697121178078512502657255603423340851<217> |
prime factors 素因数 | 3493398723414170679129396790622862979<37> |
composite cofactor 合成数の残り | 1337928120561836396200502704457457478137191435698454652865904574891023423737309694758044794644829655862999255978626578689140277269889580859487072976167018460010618290585297258490769<181> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 4673916388390639907341171446295784108232276288400409414499749429985569954752665860755140995393036439460166579219625550685062868060021467033343887998878339796052644980572509868530487697121178078512502657255603423340851 (217 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3210777897 Step 1 took 12673ms Step 2 took 4420ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2990292074 Step 1 took 10160ms Step 2 took 4450ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:231478813 Step 1 took 10127ms Step 2 took 4388ms Run 9 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3321598737 Step 1 took 10105ms Step 2 took 4379ms ** Factor found in step 2: 3493398723414170679129396790622862979 Found prime factor of 37 digits: 3493398723414170679129396790622862979 Composite cofactor 1337928120561836396200502704457457478137191435698454652865904574891023423737309694758044794644829655862999255978626578689140277269889580859487072976167018460010618290585297258490769 has 181 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 7, 2024 02:19:29 UTC 2024 年 10 月 7 日 (月) 11 時 19 分 29 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | October 9, 2024 06:27:58 UTC 2024 年 10 月 9 日 (水) 15 時 27 分 58 秒 (日本時間) | |
50 | 43e6 | 3584 / 6459 | 1792 | Dmitry Domanov | October 9, 2024 17:09:38 UTC 2024 年 10 月 10 日 (木) 2 時 9 分 38 秒 (日本時間) |
1792 | Dmitry Domanov | October 9, 2024 17:11:40 UTC 2024 年 10 月 10 日 (木) 2 時 11 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 4, 2024 02:36:35 UTC 2024 年 10 月 4 日 (金) 11 時 36 分 35 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 14, 2023 02:15:57 UTC 2023 年 11 月 14 日 (火) 11 時 15 分 57 秒 (日本時間) |
composite number 合成数 | 12833543877243931048986338461461322999807154906550914754726115326177837773557357867852791815497789403700187778974547405864805021378697273028984921474420674889912442382974403112846127605101920535458793582547314028370916671949840746358277<236> |
prime factors 素因数 | 100041158794537080621316545277272786390523<42> |
composite cofactor 合成数の残り | 128282639184550596834312932915802538587526524513901331835336298422992818236180776879928180078339815585792883366045776039628269906736194948944435417775587983026474673521665101388792181208216345599<195> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6-dev [configured with GMP 6.3.0, --enable-asm-redc, --enable-gpu, --enable-assert] [P-1] Tuned for x86_64/params.h Running on five Input number is 123 (3 digits) GPU: will use device -1: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, 28 MPs. GPU: maxSharedPerBlock = 49152 maxThreadsPerBlock = 1024 maxRegsPerBlock = 65536 GPU: Selection and initialization of the device took 3ms GPU P-1: Loading numbers from 'pm1_stdkmd_batch_11_799.txt' Computing batch product (of 1442697344 bits) of primes up to B1=1000000000 took 47051ms GPU: Large B1, S = 1442697344 bits = 171 MB GPU P-1: Largest number line 1792, 799 bits GPU: Using device code targeted for architecture compile_61 GPU: Ptx version is 61 GPU: maxThreadsPerBlock = 1024 GPU: numRegsPerThread = 48 sharedMemPerBlock = 0 bytes Copying 917504 bytes of instances data to GPU CGBN<1024, 8> running kernel<56 block x 256 threads> input number is 799 bits Computing 2000 bits/call, 0/1442697344 (0.0%) Computing 2200 bits/call, 2000/1442697344 (0.0%) Computing 2420 bits/call, 4200/1442697344 (0.0%) Computing 5184 bits/call, 31866/1442697344 (0.0%) Computing 13438 bits/call, 114459/1442697344 (0.0%) Computing 13438 bits/call, 1189499/1442697344 (0.1%), ETA 9244 + 8 = 9252 seconds (~5163 ms/instances) Computing 13438 bits/call, 2533299/1442697344 (0.2%), ETA 9202 + 16 = 9218 seconds (~5144 ms/instances) Computing 13438 bits/call, 3877099/1442697344 (0.3%), ETA 9190 + 25 = 9215 seconds (~5142 ms/instances) Computing 13438 bits/call, 5220899/1442697344 (0.4%), ETA 9182 + 33 = 9216 seconds (~5143 ms/instances) Computing 13438 bits/call, 13283699/1442697344 (0.9%), ETA 9163 + 85 = 9248 seconds (~5161 ms/instances) Computing 13438 bits/call, 26721699/1442697344 (1.9%), ETA 9117 + 172 = 9289 seconds (~5184 ms/instances) Computing 13438 bits/call, 40159699/1442697344 (2.8%), ETA 9050 + 259 = 9309 seconds (~5195 ms/instances) Computing 13438 bits/call, 53597699/1442697344 (3.7%), ETA 8973 + 346 = 9319 seconds (~5200 ms/instances) Computing 13438 bits/call, 134225699/1442697344 (9.3%), ETA 8465 + 868 = 9333 seconds (~5208 ms/instances) Computing 13438 bits/call, 268605699/1442697344 (18.6%), ETA 7599 + 1738 = 9337 seconds (~5211 ms/instances) Computing 13438 bits/call, 402985699/1442697344 (27.9%), ETA 6730 + 2609 = 9339 seconds (~5211 ms/instances) Computing 13303 bits/call, 536062145/1442697344 (37.2%), ETA 5869 + 3470 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 669092145/1442697344 (46.4%), ETA 5008 + 4332 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 802122145/1442697344 (55.6%), ETA 4147 + 5193 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 935152145/1442697344 (64.8%), ETA 3286 + 6054 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 1068182145/1442697344 (74.0%), ETA 2425 + 6915 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 1201212145/1442697344 (83.3%), ETA 1563 + 7776 = 9340 seconds (~5212 ms/instances) Computing 13303 bits/call, 1334242145/1442697344 (92.5%), ETA 702 + 8638 = 9340 seconds (~5212 ms/instances) Copying results back to CPU ... GPU P-1: factor 100041158794537080621316545277272786390523 found in Step 1 with curve 178 Peak memory usage: 10608MB |
software ソフトウェア | gmp-ecm 7.0.5 |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 02:47:50 UTC 2024 年 10 月 4 日 (金) 11 時 47 分 50 秒 (日本時間) |
composite number 合成数 | 128282639184550596834312932915802538587526524513901331835336298422992818236180776879928180078339815585792883366045776039628269906736194948944435417775587983026474673521665101388792181208216345599<195> |
prime factors 素因数 | 945504448709249504411833049810744824679<39> |
composite cofactor 合成数の残り | 135676399365095507011551366406013273719087703667732186535042809111733548769971957414606412681351303860282034622456640850729625189820126474569109808265325481<156> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 128282639184550596834312932915802538587526524513901331835336298422992818236180776879928180078339815585792883366045776039628269906736194948944435417775587983026474673521665101388792181208216345599 (195 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1680484652 Step 1 took 10623ms Step 2 took 3940ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:464174175 Step 1 took 8891ms Step 2 took 3912ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1063378621 Step 1 took 8951ms Step 2 took 3926ms Run 22 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:7378032 Step 1 took 8883ms Step 2 took 3924ms ** Factor found in step 2: 945504448709249504411833049810744824679 Found prime factor of 39 digits: 945504448709249504411833049810744824679 Composite cofactor 135676399365095507011551366406013273719087703667732186535042809111733548769971957414606412681351303860282034622456640850729625189820126474569109808265325481 has 156 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 5, 2024 10:52:44 UTC 2024 年 10 月 5 日 (土) 19 時 52 分 44 秒 (日本時間) |
composite number 合成数 | 135676399365095507011551366406013273719087703667732186535042809111733548769971957414606412681351303860282034622456640850729625189820126474569109808265325481<156> |
prime factors 素因数 | 44171959249643840929724865305553744399305955979<47> 3071550405955548995677381172085365811329108508856939698989344217047080661202933847741925700132351405694483739<109> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 135676399365095507011551366406013273719087703667732186535042809111733548769971957414606412681351303860282034622456640850729625189820126474569109808265325481 (156 digits) Using B1=51980000, B2=288593765476, polynomial Dickson(12), sigma=1:3837360006 Step 1 took 123304ms Step 2 took 41152ms ********** Factor found in step 2: 44171959249643840929724865305553744399305955979 Found prime factor of 47 digits: 44171959249643840929724865305553744399305955979 Prime cofactor 3071550405955548995677381172085365811329108508856939698989344217047080661202933847741925700132351405694483739 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 05:47:01 UTC 2023 年 1 月 19 日 (木) 14 時 47 分 1 秒 (日本時間) |
composite number 合成数 | 5823609503075370250717561674214040515664617852775367681643817638259814515452953636481602388211100974083023629163238064148409185277682775814698524208534297715267475035520409955177956983153085445292895225495752505448307684534155344422665459888711669323022541<256> |
prime factors 素因数 | 38625926447679254406570790035481700356673<41> |
composite cofactor 合成数の残り | 150769445257545862085665979719022910490301028950655479409446285882671106574250149534384460737426327627235911584658909880621942437091104585584193631222115077406976658163499399907178111697553717538774851233115083256717<216> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 10:33:08 2023 Input number is 5823609503075370250717561674214040515664617852775367681643817638259814515452953636481602388211100974083023629163238064148409185277682775814698524208534297715267475035520409955177956983153085445292895225495752505448307684534155344422665459888711669323022541 (256 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2834645615 Step 1 took 0ms Step 2 took 5003ms ********** Factor found in step 2: 38625926447679254406570790035481700356673 Found prime factor of 41 digits: 38625926447679254406570790035481700356673 Composite cofactor 150769445257545862085665979719022910490301028950655479409446285882671106574250149534384460737426327627235911584658909880621942437091104585584193631222115077406976658163499399907178111697553717538774851233115083256717 has 216 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:09 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 9 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:44:05 UTC 2024 年 10 月 4 日 (金) 11 時 44 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:16 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 16 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:47:34 UTC 2024 年 10 月 4 日 (金) 11 時 47 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:21:18 UTC 2023 年 2 月 10 日 (金) 7 時 21 分 18 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:50:43 UTC 2024 年 10 月 4 日 (金) 11 時 50 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:25 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 25 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:54:13 UTC 2024 年 10 月 4 日 (金) 11 時 54 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:33 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 02:57:29 UTC 2024 年 10 月 4 日 (金) 11 時 57 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:40 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:00:58 UTC 2024 年 10 月 4 日 (金) 12 時 0 分 58 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 03:12:09 UTC 2024 年 10 月 4 日 (金) 12 時 12 分 9 秒 (日本時間) |
composite number 合成数 | 22303045820166471117049625222983945958266460467862410966911568483990166323523109638971770818441741676557903925579678293903273733664056823015255354210119217224608686550215561962693861880006242642321583064683524842258950319954685199412605441<239> |
prime factors 素因数 | 574711204870502494126167783689849710489<39> |
composite cofactor 合成数の残り | 38807396882390577755962035062212687657272755136028225622021163519372251042937875894789242184825127259798470466769063930169180320275361820229045647008547658573725005212056416888186566440115026748915369<200> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 22303045820166471117049625222983945958266460467862410966911568483990166323523109638971770818441741676557903925579678293903273733664056823015255354210119217224608686550215561962693861880006242642321583064683524842258950319954685199412605441 (239 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2414811888 Step 1 took 14364ms Step 2 took 4800ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1594009372 Step 1 took 11797ms Step 2 took 4785ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3885914746 Step 1 took 11727ms Step 2 took 4799ms Run 11 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2589863532 Step 1 took 11879ms Step 2 took 4796ms ** Factor found in step 2: 574711204870502494126167783689849710489 Found prime factor of 39 digits: 574711204870502494126167783689849710489 Composite cofactor 38807396882390577755962035062212687657272755136028225622021163519372251042937875894789242184825127259798470466769063930169180320275361820229045647008547658573725005212056416888186566440115026748915369 has 200 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 7, 2024 02:41:25 UTC 2024 年 10 月 7 日 (月) 11 時 41 分 25 秒 (日本時間) |
composite number 合成数 | 38807396882390577755962035062212687657272755136028225622021163519372251042937875894789242184825127259798470466769063930169180320275361820229045647008547658573725005212056416888186566440115026748915369<200> |
prime factors 素因数 | 44454923205083210178916762406222681019109<41> 872960610084984591695001611684177897668314097489191907441503876726724862882802674976378225580874153395253638084111081040951309276765092071343276900957786369141<159> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 38807396882390577755962035062212687657272755136028225622021163519372251042937875894789242184825127259798470466769063930169180320275361820229045647008547658573725005212056416888186566440115026748915369 (200 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2583197919 Step 1 took 10824ms Step 2 took 3949ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2982836271 Step 1 took 9410ms Step 2 took 3919ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:37973627 Step 1 took 9337ms Step 2 took 3940ms Run 37 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3059946465 Step 1 took 8947ms Step 2 took 3946ms ********** Factor found in step 2: 44454923205083210178916762406222681019109 Found prime factor of 41 digits: 44454923205083210178916762406222681019109 Prime cofactor 872960610084984591695001611684177897668314097489191907441503876726724862882802674976378225580874153395253638084111081040951309276765092071343276900957786369141 has 159 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:48 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:07:36 UTC 2024 年 10 月 4 日 (金) 12 時 7 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:31:56 UTC 2023 年 1 月 18 日 (水) 17 時 31 分 56 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:11:05 UTC 2024 年 10 月 4 日 (金) 12 時 11 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:34:03 UTC 2023 年 1 月 18 日 (水) 17 時 34 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:14:56 UTC 2024 年 10 月 4 日 (金) 12 時 14 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:32:04 UTC 2023 年 1 月 18 日 (水) 17 時 32 分 4 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:18:24 UTC 2024 年 10 月 4 日 (金) 12 時 18 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:32:12 UTC 2023 年 1 月 18 日 (水) 17 時 32 分 12 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:21:52 UTC 2024 年 10 月 4 日 (金) 12 時 21 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 4, 2024 03:35:44 UTC 2024 年 10 月 4 日 (金) 12 時 35 分 44 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 03:47:56 UTC 2024 年 10 月 4 日 (金) 12 時 47 分 56 秒 (日本時間) |
composite number 合成数 | 67267386106156619342204650045173126657778096982084953588350812128863940847925537515549604208979089357157191893115883201941621511674589857048473399259141374304095082244274553526836384644937489324465167737373515748140725096285259<227> |
prime factors 素因数 | 791512722767056118095897262076632147<36> 84985855781314527896535515767978149698533991172658318638417538746517043852290630906793988637207247355724230231929011872239275085524123544414681912090921836407816727291557743808437874266061097<191> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 67267386106156619342204650045173126657778096982084953588350812128863940847925537515549604208979089357157191893115883201941621511674589857048473399259141374304095082244274553526836384644937489324465167737373515748140725096285259 (227 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2767739471 Step 1 took 11806ms Step 2 took 4468ms ** Factor found in step 2: 791512722767056118095897262076632147 Found prime factor of 36 digits: 791512722767056118095897262076632147 Prime cofactor 84985855781314527896535515767978149698533991172658318638417538746517043852290630906793988637207247355724230231929011872239275085524123544414681912090921836407816727291557743808437874266061097 has 191 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 09:50:10 UTC 2023 年 1 月 19 日 (木) 18 時 50 分 10 秒 (日本時間) |
composite number 合成数 | 422008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547<285> |
prime factors 素因数 | 59319377689706409310540828906157933923<38> 7114176908868304492332878132183652738901910690897349958053927383810882671805537084967726938775906189574480005473320224783451704129217519065938976485035870604132689152497957166319841584352647692898616557504725506132710277609589090911289218548237889<247> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 13:50:03 2023 Input number is 422008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547008547 (285 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2629857702 Step 1 took 0ms Step 2 took 4354ms ********** Factor found in step 2: 59319377689706409310540828906157933923 Found prime factor of 38 digits: 59319377689706409310540828906157933923 Prime cofactor 7114176908868304492332878132183652738901910690897349958053927383810882671805537084967726938775906189574480005473320224783451704129217519065938976485035870604132689152497957166319841584352647692898616557504725506132710277609589090911289218548237889 has 247 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 18, 2023 08:33:55 UTC 2023 年 1 月 18 日 (水) 17 時 33 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:33:47 UTC 2023 年 1 月 18 日 (水) 17 時 33 分 47 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:39:32 UTC 2024 年 10 月 4 日 (金) 12 時 39 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:33:39 UTC 2023 年 1 月 18 日 (水) 17 時 33 分 39 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 03:43:25 UTC 2024 年 10 月 4 日 (金) 12 時 43 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 4, 2024 03:59:11 UTC 2024 年 10 月 4 日 (金) 12 時 59 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 4, 2023 10:22:17 UTC 2023 年 2 月 4 日 (土) 19 時 22 分 17 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:01:41 UTC 2024 年 10 月 4 日 (金) 13 時 1 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:32:20 UTC 2023 年 1 月 18 日 (水) 17 時 32 分 20 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:05:11 UTC 2024 年 10 月 4 日 (金) 13 時 5 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:32:27 UTC 2023 年 1 月 18 日 (水) 17 時 32 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:08:41 UTC 2024 年 10 月 4 日 (金) 13 時 8 分 41 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 4, 2023 16:48:39 UTC 2023 年 2 月 5 日 (日) 1 時 48 分 39 秒 (日本時間) |
composite number 合成数 | 221577267006910908639000115131847909853323200608302977902531859335633225856230462432682551694757392928416922957560598075374871906391105462234088744148699540917944759436825955878404960171564625420839039237283237592257667876417964471825920376341901<246> |
prime factors 素因数 | 8028311385231913344827762936328636461<37> 27599485916117118761290629626118557540013240117854541562021090623304822507387741686812874247288937064232940383953201651944132524501863836697461746568577202920105931678686187073145587487762184458594476409827041<209> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @e728b1f474c5 with GMP-ECM 7.0.5-dev on Sat Feb 4 10:16:58 2023 Input number is 221577267006910908639000115131847909853323200608302977902531859335633225856230462432682551694757392928416922957560598075374871906391105462234088744148699540917944759436825955878404960171564625420839039237283237592257667876417964471825920376341901 (246 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:721376482 Step 1 took 0ms Step 2 took 6658ms ********** Factor found in step 2: 8028311385231913344827762936328636461 Found prime factor of 37 digits: 8028311385231913344827762936328636461 Prime cofactor 27599485916117118761290629626118557540013240117854541562021090623304822507387741686812874247288937064232940383953201651944132524501863836697461746568577202920105931678686187073145587487762184458594476409827041 has 209 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | February 4, 2023 10:12:48 UTC 2023 年 2 月 4 日 (土) 19 時 12 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 18, 2023 20:24:43 UTC 2023 年 1 月 19 日 (木) 5 時 24 分 43 秒 (日本時間) |
composite number 合成数 | 17679620352370175354014778092272119966149504761705478767566684735206588289498137555751655658916413154629502028557765392604468052782068081755739375422706886403518083034731090275881760527399311793705316621171384590268019775279174884706517242280778812163<251> |
prime factors 素因数 | 96898495173097151100874663296840729341<38> 182455055889028255554156156581542164449708035466356722505423100327454933024169529917226763364522680819841358870694519242542177483166360493538659138968437583146903792642195564248530999726833021795384631206945580543<213> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 11:22:18 2023 Input number is 17679620352370175354014778092272119966149504761705478767566684735206588289498137555751655658916413154629502028557765392604468052782068081755739375422706886403518083034731090275881760527399311793705316621171384590268019775279174884706517242280778812163 (251 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:800195330 Step 1 took 0ms Step 2 took 6944ms ********** Factor found in step 2: 96898495173097151100874663296840729341 Found prime factor of 38 digits: 96898495173097151100874663296840729341 Prime cofactor 182455055889028255554156156581542164449708035466356722505423100327454933024169529917226763364522680819841358870694519242542177483166360493538659138968437583146903792642195564248530999726833021795384631206945580543 has 213 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 18, 2023 08:32:35 UTC 2023 年 1 月 18 日 (水) 17 時 32 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 4, 2023 10:13:03 UTC 2023 年 2 月 4 日 (土) 19 時 13 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:11:50 UTC 2024 年 10 月 4 日 (金) 13 時 11 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:33:32 UTC 2023 年 1 月 18 日 (水) 17 時 33 分 32 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:15:46 UTC 2024 年 10 月 4 日 (金) 13 時 15 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:33:19 UTC 2023 年 1 月 18 日 (水) 17 時 33 分 19 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 04:20:03 UTC 2024 年 10 月 4 日 (金) 13 時 20 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 10:40:55 UTC 2022 年 12 月 26 日 (月) 19 時 40 分 55 秒 (日本時間) |
composite number 合成数 | 233866728007642988046578741769733155846168284305014900144683589711466301702213063909264541184111098591532441692946664025815628410534296912963315826608145775896579679199941566350637301917336682136636454855221321142647589174688661690386911100847622860279042410747723475798731114331160632424633<291> |
prime factors 素因数 | 6929719960723490999154096854619147304993<40> |
composite cofactor 合成数の残り | 33748366360135907822293226253110916566638299622127470230964571498572010329935137200871662233656548770677813601227296393061784673066465050187933081975840554957987346510982026551479516879250725864517151283885953960261699201459101670679479557061796611481<251> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @0527e4d83ba2 with GMP-ECM 7.0.5-dev on Sun Dec 25 18:04:52 2022 Input number is 233866728007642988046578741769733155846168284305014900144683589711466301702213063909264541184111098591532441692946664025815628410534296912963315826608145775896579679199941566350637301917336682136636454855221321142647589174688661690386911100847622860279042410747723475798731114331160632424633 (291 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:2688211014 Step 1 took 1ms Step 2 took 20001ms ********** Factor found in step 2: 6929719960723490999154096854619147304993 Found prime factor of 40 digits: 6929719960723490999154096854619147304993 Composite cofactor 33748366360135907822293226253110916566638299622127470230964571498572010329935137200871662233656548770677813601227296393061784673066465050187933081975840554957987346510982026551479516879250725864517151283885953960261699201459101670679479557061796611481 has 251 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:40:00 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 0 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:40:00 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 0 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:40:00 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 0 秒 (日本時間) |