n=7380L: c954(8284776803......) = 18083439727099436159112817133086310461 * c917(4581416438......)
# ECM B1=43e6, sigma=2954795763367013
n=138587: c138578(1771415524......) = 13456808017227013951 * c138559(1316371254......)
n=138599: c138592(2505228348......) = 4336913339749953827 * c138573(5776523883......)
n=138661: c138621(1306333588......) = 4253629350519214951 * x138602(3071103475......)
n=138661: x138602(3071103475......) = 11518943054098475483 * c138583(2666133048......)
# gr-mfaktc
# via Kurt Beschorner
n=64877: c64853(7748421550......) = 58307945412705205493 * c64834(1328879194......)
# ECM B1=5e4, sigma=4058862805750220
n=7595: c5036(1645792695......) = 53301899984916861489592976390111 * c5004(3087681107......)
# ECM B1=1e6, sigma=2862452422412262
n=138511: c138492(1066089586......) = 16639782600533415413 * c138472(6406872085......)
# gr-mfaktc
# via yoyo@home
n=1290: c279(3356167181......) = 46918389192417684252494192977798983971157315180037905073531 * c220(7153202059......)
# ECM B1=2900000000, sigma=0:15756483711164029501
n=138181: c138148(1299379115......) = 260118541625705071 * c138130(4995334462......)
n=138251: c138243(6378501164......) = 128617317085653479 * c138226(4959286439......)
n=138389: c138349(1096779788......) = 377328885591268151 * c138331(2906694479......)
# gr-mfaktc
n=12180L: c1337(6612054621......) = 2750865191314983385202411742967911795988441 * c1295(2403627281......)
# ECM B1=11e6, sigma=0:3511433398072626
n=8613: c5034(2818046887......) = 36357990161285007949864483 * c5008(7750832417......)
# ECM B1=1e6, sigma=3516630546511552
n=10414: c5032(4606098032......) = 161529899335536848415319865023163477 * c4997(2851545163......)
# ECM B1=1e6, sigma=6236160411899970
n=137597: c137586(7366861401......) = 139698058612259729 * x137569(5273417164......)
n=137597: x137569(5273417164......) = 3554455399781350373 * c137551(1483607633......)
# gr-mfaktc
n=7593: c5032(1538780792......) = 112887580911050204414751529 * c5006(1363109015......)
# ECM B1=1e6, sigma=0:7734327110386253
n=136373: c136367(1357929787......) = 5918722751609848889 * c136348(2294295313......)
n=136537: c136525(1589838052......) = 987858503096180231 * c136507(1609378314......)
n=136651: c136643(2843011602......) = 1146491861927584649 * c136625(2479748611......)
n=136733: c136694(2527240626......) = 107300944919547803 * c136677(2355282731......)
# gr-mfaktc
# via yoyo@home
n=2580M: c275(3712622545......) = 5450116210658743893234594584043237507827598349697948371796539141 * p211(6812006207......)
# ECM B1=2900000000, sigma=0:10511886308721671557
# 1205 of 300000 Φn(10) factorizations were finished. 300000 個中 1205 個の Φn(10) の素因数分解が終わりました。