name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 20, 2023 22:18:35 UTC 2023 年 2 月 21 日 (火) 7 時 18 分 35 秒 (日本時間) |
composite number 合成数 | 16092577524636108850917638549859868004701202422927402585661332610071422113732935539282162553114546605189404213<110> |
prime factors 素因数 | 68309205578295297221289083028111732357197<41> 235584316760805609859655708260713250445453476519439241859294828251529<69> |
factorization results 素因数分解の結果 | N=16092577524636108850917638549859868004701202422927402585661332610071422113732935539282162553114546605189404213 ( 110 digits) SNFS difficulty: 113 digits. Divisors found: r1=68309205578295297221289083028111732357197 (pp41) r2=235584316760805609859655708260713250445453476519439241859294828251529 (pp69) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 16092577524636108850917638549859868004701202422927402585661332610071422113732935539282162553114546605189404213 m: 10000000000000000000000000000 deg: 4 c4: 89 c0: -35 skew: 0.79 # Murphy_E = 7.197e-08 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [275000, 575001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61183 x 61415 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113.000,4,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 20, 2023 22:32:02 UTC 2023 年 2 月 21 日 (火) 7 時 32 分 2 秒 (日本時間) |
composite number 合成数 | 5406362871777464895157062449817828502704066803741048813318384193282016440682672860001586494147440584838953<106> |
prime factors 素因数 | 4908509179946030907520635913927373264729023429739<49> 1101426660026519068755469000495764542159550210509771524027<58> |
factorization results 素因数分解の結果 | N=5406362871777464895157062449817828502704066803741048813318384193282016440682672860001586494147440584838953 ( 106 digits) SNFS difficulty: 114 digits. Divisors found: r1=4908509179946030907520635913927373264729023429739 (pp49) r2=1101426660026519068755469000495764542159550210509771524027 (pp58) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 5406362871777464895157062449817828502704066803741048813318384193282016440682672860001586494147440584838953 m: 10000000000000000000000000000 deg: 4 c4: 178 c0: -7 skew: 0.45 # Murphy_E = 6.541e-08 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 660001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65321 x 65546 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114.000,4,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | February 25, 2023 16:41:07 UTC 2023 年 2 月 26 日 (日) 1 時 41 分 7 秒 (日本時間) |
composite number 合成数 | 197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<126> |
prime factors 素因数 | 929497314235873599854308888531677905436689937587009<51> 212779289136911654243482390677686715871345508473423966548675421019121640753<75> |
factorization results 素因数分解の結果 | n: 197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 skew: 328377.86 c0: -11559501968650737197610764719456 c1: 231736389786919586181745136 c2: 284116383293773971406 c3: -5461978758642131 c4: -4249971180 c5: 15300 Y0: -1668389088603790927858959 Y1: 8882349155653 rlim: 7400000 alim: 7400000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 nfs: commencing nfs on c126: 197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 nfs: commencing poly selection with 7 threads nfs: setting deadline of 4356 seconds nfs: completed 45 ranges of size 250 in 4461.1704 seconds nfs: best poly = # norm 5.579052e-012 alpha -7.015951 e 1.443e-010 rroots 5 nfs: commencing lattice sieving with 7 threads nfs: commencing msieve filtering nfs: raising min_rels by 5.00 percent to 10605065 nfs: commencing lattice sieving with 7 threads nfs: commencing msieve filtering nfs: raising min_rels by 5.00 percent to 11161628 nfs: commencing lattice sieving with 7 threads nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp75 = 212779289136911654243482390677686715871345508473423966548675421019121640753 prp51 = 929497314235873599854308888531677905436689937587009 NFS elapsed time = 42170.1559 seconds. |
software ソフトウェア | YAFU v1.35 r373 |
execution environment 実行環境 | Windows 10 v22H2. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 19:24:12 UTC 2023 年 2 月 26 日 (日) 4 時 24 分 12 秒 (日本時間) |
composite number 合成数 | 18926730344927868545325839628329288823971054445352363952288464619433060999693968593215464908447423265115261932343057241961786521<128> |
prime factors 素因数 | 13311806180489072813116721108417384901424652729488993<53> 1421800324336791437644878523217891859329334087152999764676124679214550749497<76> |
factorization results 素因数分解の結果 | Number: n N=18926730344927868545325839628329288823971054445352363952288464619433060999693968593215464908447423265115261932343057241961786521 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: Sun Feb 26 06:20:43 2023 prp53 factor: 13311806180489072813116721108417384901424652729488993 Sun Feb 26 06:20:43 2023 prp76 factor: 1421800324336791437644878523217891859329334087152999764676124679214550749497 Sun Feb 26 06:20:43 2023 elapsed time 00:04:15 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 89x10^135-35 = 98(134)5 # n: 18926730344927868545325839628329288823971054445352363952288464619433060999693968593215464908447423265115261932343057241961786521 m: 1000000000000000000000000000000000 deg: 4 c4: 17800 c0: -7 skew: 0.14 # Murphy_E = 5.401e-09 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 19055000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 510201 hash collisions in 6526195 relations (6720700 unique) Msieve: matrix is 272174 x 272422 (73.2 MB) Sieving start time: 2023/02/26 05:31:13 Sieving end time : 2023/02/26 06:13:56 Total sieving time: 0hrs 42min 43secs. Total relation processing time: 0hrs 2min 1sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 36sec. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 21, 2023 21:58:39 UTC 2023 年 2 月 22 日 (水) 6 時 58 分 39 秒 (日本時間) |
composite number 合成数 | 19777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<137> |
prime factors 素因数 | 50252548059615663729179159611010422099701147184478780869493<59> 393567660575439487570513941331113516861490140046536783572686528055821892565389<78> |
factorization results 素因数分解の結果 | Number: n N=19777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 ( 137 digits) SNFS difficulty: 137 digits. Divisors found: Wed Feb 22 08:55:29 2023 prp59 factor: 50252548059615663729179159611010422099701147184478780869493 Wed Feb 22 08:55:29 2023 prp78 factor: 393567660575439487570513941331113516861490140046536783572686528055821892565389 Wed Feb 22 08:55:29 2023 elapsed time 00:05:23 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.083). Factorization parameters were as follows: # # N = 89x10^136-35 = 98(135)5 # n: 19777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 m: 10000000000000000000000000000000000 deg: 4 c4: 89 c0: -35 skew: 0.79 # Murphy_E = 5.051e-09 type: snfs lss: 1 rlim: 1390000 alim: 1390000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1390000/1390000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1552548 hash collisions in 11651188 relations (10786680 unique) Msieve: matrix is 421772 x 422020 (42.7 MB) Sieving start time: 2023/02/22 08:22:50 Sieving end time : 2023/02/22 08:49:52 Total sieving time: 0hrs 27min 2secs. Total relation processing time: 0hrs 3min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 7sec. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2023 15:45:15 UTC 2023 年 2 月 23 日 (木) 0 時 45 分 15 秒 (日本時間) |
composite number 合成数 | 659259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259<138> |
prime factors 素因数 | 2026119898327420206944233025775881088696193707897610622749<58> 325380181006802003707709575519163918520427123837845442938868437161719031689135991<81> |
factorization results 素因数分解の結果 | Number: n N=659259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 ( 138 digits) SNFS difficulty: 139 digits. Divisors found: Wed Feb 22 18:24:29 2023 prp58 factor: 2026119898327420206944233025775881088696193707897610622749 Wed Feb 22 18:24:29 2023 prp81 factor: 325380181006802003707709575519163918520427123837845442938868437161719031689135991 Wed Feb 22 18:24:29 2023 elapsed time 00:03:17 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.055). Factorization parameters were as follows: # # N = 89x10^138-35 = 98(137)5 # n: 659259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 m: 10000000000000000000000000000000000 deg: 4 c4: 1780 c0: -7 skew: 0.25 # Murphy_E = 3.897e-09 type: snfs lss: 1 rlim: 1470000 alim: 1470000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1470000/1470000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 4735000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 540991 hash collisions in 6964898 relations (7176003 unique) Msieve: matrix is 231573 x 231821 (61.2 MB) Sieving start time: 2023/02/22 17:35:00 Sieving end time : 2023/02/22 18:18:57 Total sieving time: 0hrs 43min 57secs. Total relation processing time: 0hrs 1min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 18sec. Prototype def-par.txt line would be: snfs,139,4,0,0,0,0,0,0,0,0,1470000,1470000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 04:42:56 UTC 2023 年 2 月 24 日 (金) 13 時 42 分 56 秒 (日本時間) |
composite number 合成数 | 763065584783228699029860280913170232450167011006738981559415569934142437400875876132514071390785734830140810577607200766079<123> |
prime factors 素因数 | 21386252637626728987328197393218846011<38> 35680191275805832933960683196408296955680799586152393686727740900335343013847547170189<86> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 763065584783228699029860280913170232450167011006738981559415569934142437400875876132514071390785734830140810577607200766079 (123 digits) Using B1=36790000, B2=192390318136, polynomial Dickson(12), sigma=1:2330502221 Step 1 took 57316ms Step 2 took 22721ms ********** Factor found in step 2: 21386252637626728987328197393218846011 Found prime factor of 38 digits: 21386252637626728987328197393218846011 Prime cofactor 35680191275805832933960683196408296955680799586152393686727740900335343013847547170189 has 86 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 175 / 2078 | Rytis Slatkevičius | February 22, 2023 12:12:01 UTC 2023 年 2 月 22 日 (水) 21 時 12 分 1 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 23, 2023 21:20:47 UTC 2023 年 2 月 24 日 (金) 6 時 20 分 47 秒 (日本時間) |
composite number 合成数 | 628965182039696728010858090707582358988462062259036105390963052308471013204810809682671854720721542104537119449654303065352635642067483<135> |
prime factors 素因数 | 224084097700345848387238209529574288633802851449<48> 2806826492796351570801657080634910311343028474521486175516453569627439284922471188399667<88> |
factorization results 素因数分解の結果 | Number: n N=628965182039696728010858090707582358988462062259036105390963052308471013204810809682671854720721542104537119449654303065352635642067483 ( 135 digits) SNFS difficulty: 148 digits. Divisors found: Fri Feb 24 08:17:45 2023 prp48 factor: 224084097700345848387238209529574288633802851449 Fri Feb 24 08:17:45 2023 prp88 factor: 2806826492796351570801657080634910311343028474521486175516453569627439284922471188399667 Fri Feb 24 08:17:45 2023 elapsed time 00:07:06 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.030). Factorization parameters were as follows: # # N = 89x10^147-35 = 98(146)5 # n: 628965182039696728010858090707582358988462062259036105390963052308471013204810809682671854720721542104537119449654303065352635642067483 m: 1000000000000000000000000000000000000 deg: 4 c4: 17800 c0: -7 skew: 0.14 # Murphy_E = 1.353e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 631316 hash collisions in 7001531 relations (7112908 unique) Msieve: matrix is 396727 x 396952 (110.1 MB) Sieving start time: 2023/02/24 06:43:23 Sieving end time : 2023/02/24 08:10:31 Total sieving time: 1hrs 27min 8secs. Total relation processing time: 0hrs 4min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 32sec. Prototype def-par.txt line would be: snfs,148,4,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 06:47:05 UTC 2023 年 2 月 25 日 (土) 15 時 47 分 5 秒 (日本時間) |
composite number 合成数 | 21412171572036235920320338414655837742346613604923538339239036951525785974344456076656013422266825753013052256737318417537720447908111<134> |
prime factors 素因数 | 283226730036845562433862568974179780936144615754623<51> 75600814828638106924091768924237450807193264999856721076726301285523830446552390257<83> |
factorization results 素因数分解の結果 | Number: n N=21412171572036235920320338414655837742346613604923538339239036951525785974344456076656013422266825753013052256737318417537720447908111 ( 134 digits) SNFS difficulty: 150 digits. Divisors found: Sat Feb 25 17:41:54 2023 prp51 factor: 283226730036845562433862568974179780936144615754623 Sat Feb 25 17:41:54 2023 prp83 factor: 75600814828638106924091768924237450807193264999856721076726301285523830446552390257 Sat Feb 25 17:41:54 2023 elapsed time 00:06:53 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 89x10^149-35 = 98(148)5 # n: 21412171572036235920320338414655837742346613604923538339239036951525785974344456076656013422266825753013052256737318417537720447908111 m: 10000000000000000000000000000000000000 deg: 4 c4: 178 c0: -7 skew: 0.45 # Murphy_E = 1.134e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 19500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 965259 hash collisions in 11578692 relations (11846624 unique) Msieve: matrix is 428135 x 428362 (117.6 MB) Sieving start time: 2023/02/25 15:52:02 Sieving end time : 2023/02/25 17:34:51 Total sieving time: 1hrs 42min 49secs. Total relation processing time: 0hrs 4min 38sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 15sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 14:01:49 UTC 2023 年 3 月 1 日 (水) 23 時 1 分 49 秒 (日本時間) |
composite number 合成数 | 219835729519825692350993425912201423012197794538284732839824032622701849525941371712965262050137492542405251005450723559332022460322197633477<141> |
prime factors 素因数 | 42282005456224147095035098079992084213559198162780819<53> 5199273949941384497389635941203916642025802136032019160205269955660479187027209396064583<88> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 219835729519825692350993425912201423012197794538284732839824032622701849525941371712965262050137492542405251005450723559332022460322197633477 (141 digits) Using B1=35630000, B2=192388936756, polynomial Dickson(12), sigma=1:3770251832 Step 1 took 72043ms Step 2 took 28047ms ********** Factor found in step 2: 42282005456224147095035098079992084213559198162780819 Found prime factor of 53 digits: 42282005456224147095035098079992084213559198162780819 Prime cofactor 5199273949941384497389635941203916642025802136032019160205269955660479187027209396064583 has 88 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 3, 2023 08:05:09 UTC 2023 年 3 月 3 日 (金) 17 時 5 分 9 秒 (日本時間) |
composite number 合成数 | 197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777<156> |
prime factors 素因数 | 363655404250219748634533445480753235006778485106755046207735183721296214697729<78> 543860411439652804760943178591176440726755415767555799046037328741578705593713<78> |
factorization results 素因数分解の結果 | Number: n N=197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 ( 156 digits) SNFS difficulty: 156 digits. Divisors found: Fri Mar 3 19:00:57 2023 prp78 factor: 363655404250219748634533445480753235006778485106755046207735183721296214697729 Fri Mar 3 19:00:57 2023 prp78 factor: 543860411439652804760943178591176440726755415767555799046037328741578705593713 Fri Mar 3 19:00:57 2023 elapsed time 00:08:26 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.108). Factorization parameters were as follows: # # N = 89x10^155-35 = 98(154)5 # n: 197777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 m: 10000000000000000000000000000000 deg: 5 c5: 89 c0: -35 skew: 0.83 # Murphy_E = 7.596e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 19850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 853024 hash collisions in 11931263 relations (11873552 unique) Msieve: matrix is 467520 x 467750 (130.4 MB) Sieving start time: 2023/03/03 16:35:04 Sieving end time : 2023/03/03 18:52:07 Total sieving time: 2hrs 17min 3secs. Total relation processing time: 0hrs 5min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 27sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 5, 2023 10:14:29 UTC 2023 年 3 月 5 日 (日) 19 時 14 分 29 秒 (日本時間) |
composite number 合成数 | 333526328905677629939421875204940686652013993115866671913148244958224890432853467643261737597223861747715438334167149155597527408181888021345685049963368316123<159> |
prime factors 素因数 | 423355267684917305807824513210068955106562494501883691448463917<63> 787816650373900680193462614702946375589012149566140345972351274566264019693908460244505350830119<96> |
factorization results 素因数分解の結果 | Number: n N=333526328905677629939421875204940686652013993115866671913148244958224890432853467643261737597223861747715438334167149155597527408181888021345685049963368316123 ( 159 digits) SNFS difficulty: 164 digits. Divisors found: Sun Mar 5 21:10:59 2023 prp63 factor: 423355267684917305807824513210068955106562494501883691448463917 Sun Mar 5 21:10:59 2023 prp96 factor: 787816650373900680193462614702946375589012149566140345972351274566264019693908460244505350830119 Sun Mar 5 21:10:59 2023 elapsed time 00:16:23 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.083). Factorization parameters were as follows: # # N = 89x10^163-35 = 98(162)5 # n: 333526328905677629939421875204940686652013993115866671913148244958224890432853467643261737597223861747715438334167149155597527408181888021345685049963368316123 m: 100000000000000000000000000000000 deg: 5 c5: 17800 c0: -7 skew: 0.21 # Murphy_E = 3.08e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 27500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1377246 hash collisions in 14223342 relations (13754595 unique) Msieve: matrix is 675067 x 675299 (188.0 MB) Sieving start time: 2023/03/05 18:00:15 Sieving end time : 2023/03/05 20:54:25 Total sieving time: 2hrs 54min 10secs. Total relation processing time: 0hrs 12min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 23sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | March 12, 2023 17:00:42 UTC 2023 年 3 月 13 日 (月) 2 時 0 分 42 秒 (日本時間) |
composite number 合成数 | 5568843802128510734679101265822792066920841156598769895316973858868242766972183811192023070004080012676638088989768797582329590151<130> |
prime factors 素因数 | 6140943591049286509197525426540906536867607931479169003716403579<64> 906838455615414206594320498170754423151900425305049422285762720869<66> |
factorization results 素因数分解の結果 | nfs: commencing nfs on c130: 5568843802128510734679101265822792066920841156598769895316973858868242766972183811192023070004080012676638088989768797582329590151 nfs: commencing poly selection with 6 threads nfs: setting deadline of 9317 seconds nfs: completed 37 ranges of size 250 in 9421.6371 seconds nfs: best poly = # norm 1.966194e-012 alpha -6.540994 e 8.147e-011 rroots 3 nfs: commencing lattice sieving with 6 threads nfs: commencing msieve filtering nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp66 = 906838455615414206594320498170754423151900425305049422285762720869 prp64 = 6140943591049286509197525426540906536867607931479169003716403579 NFS elapsed time = 86425.5588 seconds. |
software ソフトウェア | YAFU V1.35 r373 |
execution environment 実行環境 | Windows 10 v22H2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 8, 2023 17:26:56 UTC 2023 年 3 月 9 日 (木) 2 時 26 分 56 秒 (日本時間) |
composite number 合成数 | 186466623240447327536723901061389356686019394313318102342962905191859204952414240300506974453298816831999375148645425197918722197484994321144785031<147> |
prime factors 素因数 | 46581823244853038431976875384468450741<38> 128665329899625894830880465125279703914339419<45> 31111652918374142088633804136515441305424400951037794762828676689<65> |
factorization results 素因数分解の結果 | Number: n N=4002991086465267733286926820351506342555954775116728021044593202266633589121521352348057150966958407359103691 ( 109 digits) SNFS difficulty: 166 digits. Divisors found: Thu Mar 9 04:23:13 2023 prp45 factor: 128665329899625894830880465125279703914339419 Thu Mar 9 04:23:13 2023 prp65 factor: 31111652918374142088633804136515441305424400951037794762828676689 Thu Mar 9 04:23:13 2023 elapsed time 00:13:31 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 89x10^165-35 = 98(164)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 186466623240447327536723901061389356686019394313318102342962905191859204952414240300506974453298816831999375148645425197918722197484994321144785031 (147 digits) # Using B1=30590000, B2=144289975846, polynomial Dickson(12), sigma=1:2839651735 # Step 1 took 61413ms # ********** Factor found in step 1: 46581823244853038431976875384468450741 # Found prime factor of 38 digits: 46581823244853038431976875384468450741 # Composite cofactor 4002991086465267733286926820351506342555954775116728021044593202266633589121521352348057150966958407359103691 has 109 digits # n: 4002991086465267733286926820351506342555954775116728021044593202266633589121521352348057150966958407359103691 m: 1000000000000000000000000000000000 deg: 5 c5: 89 c0: -35 skew: 0.83 # Murphy_E = 3.102e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1563230 hash collisions in 13789445 relations (13038006 unique) Msieve: matrix is 599312 x 599538 (168.3 MB) Sieving start time: 2023/03/09 02:25:07 Sieving end time : 2023/03/09 04:09:14 Total sieving time: 1hrs 44min 7secs. Total relation processing time: 0hrs 9min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 11sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 03:20:24 UTC 2023 年 3 月 9 日 (木) 12 時 20 分 24 秒 (日本時間) |
composite number 合成数 | 626371191413337736523027856097240123250087591483833663050898559678969634376004155736040702328912372706542384975121432604867892335418977994879111<144> |
prime factors 素因数 | 5802833779733869825213694561328736001848561910892296480417663961956033<70> 107942294263349455817458872936848351800123176516681719844264329461514455367<75> |
factorization results 素因数分解の結果 | Number: n N=626371191413337736523027856097240123250087591483833663050898559678969634376004155736040702328912372706542384975121432604867892335418977994879111 ( 144 digits) SNFS difficulty: 167 digits. Divisors found: Thu Mar 9 14:06:02 2023 prp70 factor: 5802833779733869825213694561328736001848561910892296480417663961956033 Thu Mar 9 14:06:02 2023 prp75 factor: 107942294263349455817458872936848351800123176516681719844264329461514455367 Thu Mar 9 14:06:02 2023 elapsed time 00:16:56 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 89x10^166-35 = 98(165)5 # n: 626371191413337736523027856097240123250087591483833663050898559678969634376004155736040702328912372706542384975121432604867892335418977994879111 m: 1000000000000000000000000000000000 deg: 5 c5: 178 c0: -7 skew: 0.52 # Murphy_E = 2.574e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1547998 hash collisions in 12842925 relations (12017432 unique) Msieve: matrix is 676559 x 676784 (190.3 MB) Sieving start time: 2023/03/09 12:31:46 Sieving end time : 2023/03/09 13:48:53 Total sieving time: 1hrs 17min 7secs. Total relation processing time: 0hrs 12min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 2sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 07:34:37 UTC 2023 年 3 月 11 日 (土) 16 時 34 分 37 秒 (日本時間) |
composite number 合成数 | 50645163363585600052921829062537171546258276013574852847561923240027826840149433332933775864655613354724931077438477932477802775636222251258359030023<149> |
prime factors 素因数 | 354228814494849495286363092399397483193<39> 142973019955501060081394199866407656316523920114659628663008505808029027521893000779567332087929523858522149311<111> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 50645163363585600052921829062537171546258276013574852847561923240027826840149433332933775864655613354724931077438477932477802775636222251258359030023 (149 digits) Using B1=31790000, B2=144291357226, polynomial Dickson(12), sigma=1:979357865 Step 1 took 65569ms ********** Factor found in step 1: 354228814494849495286363092399397483193 Found prime factor of 39 digits: 354228814494849495286363092399397483193 Prime cofactor 142973019955501060081394199866407656316523920114659628663008505808029027521893000779567332087929523858522149311 has 111 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | April 6, 2023 22:46:13 UTC 2023 年 4 月 7 日 (金) 7 時 46 分 13 秒 (日本時間) |
composite number 合成数 | 37781687324966861809399207711165256236608196539852624309792492960653813180511768473722961710683001317434478593276206165342367599<128> |
prime factors 素因数 | 82923188185964835213700628226578128397520019444394430287<56> 455622705198418812812102117811385823594117635234655280141820715344516577<72> |
factorization results 素因数分解の結果 | 455622705198418812812102117811385823594117635234655280141820715344516577 82923188185964835213700628226578128397520019444394430287 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2116 | 1816 | Rytis Slatkevičius | March 26, 2023 15:02:45 UTC 2023 年 3 月 27 日 (月) 0 時 2 分 45 秒 (日本時間) |
300 | Rytis Slatkevičius | March 27, 2023 07:29:45 UTC 2023 年 3 月 27 日 (月) 16 時 29 分 45 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 12, 2023 10:03:21 UTC 2023 年 3 月 12 日 (日) 19 時 3 分 21 秒 (日本時間) |
composite number 合成数 | 4653399710796496483675575274295004319574300001099955064173817988891953744280891294448054677476568361351391923319246914021980489104329<133> |
prime factors 素因数 | 246218431918282546833538501963090931<36> 18899477486482058540799115977477449760312787586427327195958269063638626689959903069933212928357459<98> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:17075254208336806103 Step 1 took 8547ms Step 2 took 3422ms ********** Factor found in step 2: 246218431918282546833538501963090931 Found prime factor of 36 digits: 246218431918282546833538501963090931 Prime cofactor 18899477486482058540799115977477449760312787586427327195958269063638626689959903069933212928357459 has 98 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 27, 2023 10:36:10 UTC 2023 年 2 月 27 日 (月) 19 時 36 分 10 秒 (日本時間) |
composite number 合成数 | 802034801962414766030229411369123336988449347855832633648079674068202116976064982150092580533010633009819615848264469963<120> |
prime factors 素因数 | 274139128155640743844721000712466230587<39> 2925648765859737526718294207514501116008862038876310936082137184995633996879337649<82> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2100000, q1=2200000. -> client 1 q0: 2100000 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 85 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 129 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 89 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 84 LatSieveTime: 88 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 89 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 134 Mon Feb 27 11:22:35 2023 Mon Feb 27 11:22:35 2023 Mon Feb 27 11:22:35 2023 Msieve v. 1.52 (SVN 927) Mon Feb 27 11:22:35 2023 random seeds: 2a62ec00 2d2d98ea Mon Feb 27 11:22:35 2023 factoring 802034801962414766030229411369123336988449347855832633648079674068202116976064982150092580533010633009819615848264469963 (120 digits) Mon Feb 27 11:22:35 2023 searching for 15-digit factors Mon Feb 27 11:22:35 2023 commencing number field sieve (120-digit input) Mon Feb 27 11:22:35 2023 R0: -125229903441169416921917 Mon Feb 27 11:22:35 2023 R1: 9050384064667 Mon Feb 27 11:22:35 2023 A0: 19986773048106777295389534600 Mon Feb 27 11:22:35 2023 A1: 1035923512463235375588942 Mon Feb 27 11:22:35 2023 A2: -31922132902751249305 Mon Feb 27 11:22:35 2023 A3: -1041924313173238 Mon Feb 27 11:22:35 2023 A4: 9960349970 Mon Feb 27 11:22:35 2023 A5: 26040 Mon Feb 27 11:22:35 2023 skew 68598.01, size 1.183e-011, alpha -5.496, combined = 2.380e-010 rroots = 5 Mon Feb 27 11:22:35 2023 Mon Feb 27 11:22:35 2023 commencing relation filtering Mon Feb 27 11:22:35 2023 estimated available RAM is 65413.5 MB Mon Feb 27 11:22:35 2023 commencing duplicate removal, pass 1 Mon Feb 27 11:22:52 2023 error -15 reading relation 8409850 Mon Feb 27 11:22:56 2023 found 1110007 hash collisions in 10397707 relations Mon Feb 27 11:23:06 2023 added 63521 free relations Mon Feb 27 11:23:06 2023 commencing duplicate removal, pass 2 Mon Feb 27 11:23:10 2023 found 868766 duplicates and 9592462 unique relations Mon Feb 27 11:23:10 2023 memory use: 49.3 MB Mon Feb 27 11:23:10 2023 reading ideals above 100000 Mon Feb 27 11:23:10 2023 commencing singleton removal, initial pass Mon Feb 27 11:23:46 2023 memory use: 344.5 MB Mon Feb 27 11:23:46 2023 reading all ideals from disk Mon Feb 27 11:23:46 2023 memory use: 341.6 MB Mon Feb 27 11:23:46 2023 keeping 10636754 ideals with weight <= 200, target excess is 51275 Mon Feb 27 11:23:47 2023 commencing in-memory singleton removal Mon Feb 27 11:23:47 2023 begin with 9592462 relations and 10636754 unique ideals Mon Feb 27 11:23:51 2023 reduce to 3350588 relations and 3267787 ideals in 19 passes Mon Feb 27 11:23:51 2023 max relations containing the same ideal: 102 Mon Feb 27 11:23:52 2023 removing 191645 relations and 179984 ideals in 11661 cliques Mon Feb 27 11:23:52 2023 commencing in-memory singleton removal Mon Feb 27 11:23:52 2023 begin with 3158943 relations and 3267787 unique ideals Mon Feb 27 11:23:53 2023 reduce to 3149399 relations and 3078207 ideals in 8 passes Mon Feb 27 11:23:53 2023 max relations containing the same ideal: 95 Mon Feb 27 11:23:53 2023 removing 137842 relations and 126181 ideals in 11661 cliques Mon Feb 27 11:23:53 2023 commencing in-memory singleton removal Mon Feb 27 11:23:53 2023 begin with 3011557 relations and 3078207 unique ideals Mon Feb 27 11:23:54 2023 reduce to 3005990 relations and 2946435 ideals in 11 passes Mon Feb 27 11:23:54 2023 max relations containing the same ideal: 92 Mon Feb 27 11:23:54 2023 relations with 0 large ideals: 174 Mon Feb 27 11:23:54 2023 relations with 1 large ideals: 432 Mon Feb 27 11:23:54 2023 relations with 2 large ideals: 6922 Mon Feb 27 11:23:54 2023 relations with 3 large ideals: 57774 Mon Feb 27 11:23:54 2023 relations with 4 large ideals: 252815 Mon Feb 27 11:23:54 2023 relations with 5 large ideals: 629500 Mon Feb 27 11:23:54 2023 relations with 6 large ideals: 895620 Mon Feb 27 11:23:54 2023 relations with 7+ large ideals: 1162753 Mon Feb 27 11:23:54 2023 commencing 2-way merge Mon Feb 27 11:23:56 2023 reduce to 1652609 relation sets and 1593056 unique ideals Mon Feb 27 11:23:56 2023 ignored 3 oversize relation sets Mon Feb 27 11:23:56 2023 commencing full merge Mon Feb 27 11:24:15 2023 memory use: 178.7 MB Mon Feb 27 11:24:15 2023 found 820591 cycles, need 815256 Mon Feb 27 11:24:15 2023 weight of 815256 cycles is about 57248659 (70.22/cycle) Mon Feb 27 11:24:15 2023 distribution of cycle lengths: Mon Feb 27 11:24:15 2023 1 relations: 102821 Mon Feb 27 11:24:15 2023 2 relations: 100669 Mon Feb 27 11:24:15 2023 3 relations: 99908 Mon Feb 27 11:24:15 2023 4 relations: 88008 Mon Feb 27 11:24:15 2023 5 relations: 73983 Mon Feb 27 11:24:15 2023 6 relations: 63273 Mon Feb 27 11:24:15 2023 7 relations: 52411 Mon Feb 27 11:24:15 2023 8 relations: 42295 Mon Feb 27 11:24:15 2023 9 relations: 34835 Mon Feb 27 11:24:15 2023 10+ relations: 157053 Mon Feb 27 11:24:15 2023 heaviest cycle: 26 relations Mon Feb 27 11:24:15 2023 commencing cycle optimization Mon Feb 27 11:24:16 2023 start with 4902499 relations Mon Feb 27 11:24:22 2023 pruned 87092 relations Mon Feb 27 11:24:22 2023 memory use: 170.3 MB Mon Feb 27 11:24:22 2023 distribution of cycle lengths: Mon Feb 27 11:24:22 2023 1 relations: 102821 Mon Feb 27 11:24:22 2023 2 relations: 102728 Mon Feb 27 11:24:22 2023 3 relations: 102927 Mon Feb 27 11:24:22 2023 4 relations: 89263 Mon Feb 27 11:24:22 2023 5 relations: 74974 Mon Feb 27 11:24:22 2023 6 relations: 63400 Mon Feb 27 11:24:22 2023 7 relations: 52026 Mon Feb 27 11:24:22 2023 8 relations: 41936 Mon Feb 27 11:24:22 2023 9 relations: 34295 Mon Feb 27 11:24:22 2023 10+ relations: 150886 Mon Feb 27 11:24:22 2023 heaviest cycle: 26 relations Mon Feb 27 11:24:23 2023 RelProcTime: 108 Mon Feb 27 11:24:23 2023 elapsed time 00:01:48 Mon Feb 27 11:24:23 2023 Mon Feb 27 11:24:23 2023 Mon Feb 27 11:24:23 2023 Msieve v. 1.52 (SVN 927) Mon Feb 27 11:24:23 2023 random seeds: 5cb4a950 491d7c31 Mon Feb 27 11:24:23 2023 factoring 802034801962414766030229411369123336988449347855832633648079674068202116976064982150092580533010633009819615848264469963 (120 digits) Mon Feb 27 11:24:23 2023 searching for 15-digit factors Mon Feb 27 11:24:23 2023 commencing number field sieve (120-digit input) Mon Feb 27 11:24:23 2023 R0: -125229903441169416921917 Mon Feb 27 11:24:23 2023 R1: 9050384064667 Mon Feb 27 11:24:23 2023 A0: 19986773048106777295389534600 Mon Feb 27 11:24:23 2023 A1: 1035923512463235375588942 Mon Feb 27 11:24:23 2023 A2: -31922132902751249305 Mon Feb 27 11:24:23 2023 A3: -1041924313173238 Mon Feb 27 11:24:23 2023 A4: 9960349970 Mon Feb 27 11:24:23 2023 A5: 26040 Mon Feb 27 11:24:23 2023 skew 68598.01, size 1.183e-011, alpha -5.496, combined = 2.380e-010 rroots = 5 Mon Feb 27 11:24:23 2023 Mon Feb 27 11:24:23 2023 commencing linear algebra Mon Feb 27 11:24:23 2023 read 815256 cycles Mon Feb 27 11:24:24 2023 cycles contain 2921142 unique relations Mon Feb 27 11:24:30 2023 read 2921142 relations Mon Feb 27 11:24:32 2023 using 20 quadratic characters above 134217402 Mon Feb 27 11:24:40 2023 building initial matrix Mon Feb 27 11:24:55 2023 memory use: 369.6 MB Mon Feb 27 11:24:55 2023 read 815256 cycles Mon Feb 27 11:24:56 2023 matrix is 815073 x 815256 (245.5 MB) with weight 77676982 (95.28/col) Mon Feb 27 11:24:56 2023 sparse part has weight 55395429 (67.95/col) Mon Feb 27 11:24:59 2023 filtering completed in 2 passes Mon Feb 27 11:24:59 2023 matrix is 813339 x 813522 (245.4 MB) with weight 77604412 (95.39/col) Mon Feb 27 11:24:59 2023 sparse part has weight 55375089 (68.07/col) Mon Feb 27 11:25:00 2023 matrix starts at (0, 0) Mon Feb 27 11:25:00 2023 matrix is 813339 x 813522 (245.4 MB) with weight 77604412 (95.39/col) Mon Feb 27 11:25:00 2023 sparse part has weight 55375089 (68.07/col) Mon Feb 27 11:25:00 2023 saving the first 48 matrix rows for later Mon Feb 27 11:25:01 2023 matrix includes 64 packed rows Mon Feb 27 11:25:01 2023 matrix is 813291 x 813522 (236.5 MB) with weight 61520980 (75.62/col) Mon Feb 27 11:25:01 2023 sparse part has weight 53872102 (66.22/col) Mon Feb 27 11:25:01 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Mon Feb 27 11:25:03 2023 commencing Lanczos iteration (32 threads) Mon Feb 27 11:25:03 2023 memory use: 185.8 MB Mon Feb 27 11:25:05 2023 linear algebra at 0.4%, ETA 0h 8m Mon Feb 27 11:32:21 2023 lanczos halted after 12865 iterations (dim = 813291) Mon Feb 27 11:32:21 2023 recovered 31 nontrivial dependencies Mon Feb 27 11:32:21 2023 BLanczosTime: 478 Mon Feb 27 11:32:21 2023 elapsed time 00:07:58 Mon Feb 27 11:32:21 2023 Mon Feb 27 11:32:21 2023 Mon Feb 27 11:32:21 2023 Msieve v. 1.52 (SVN 927) Mon Feb 27 11:32:21 2023 random seeds: 6fecc8e0 4100db7a Mon Feb 27 11:32:21 2023 factoring 802034801962414766030229411369123336988449347855832633648079674068202116976064982150092580533010633009819615848264469963 (120 digits) Mon Feb 27 11:32:21 2023 searching for 15-digit factors Mon Feb 27 11:32:22 2023 commencing number field sieve (120-digit input) Mon Feb 27 11:32:22 2023 R0: -125229903441169416921917 Mon Feb 27 11:32:22 2023 R1: 9050384064667 Mon Feb 27 11:32:22 2023 A0: 19986773048106777295389534600 Mon Feb 27 11:32:22 2023 A1: 1035923512463235375588942 Mon Feb 27 11:32:22 2023 A2: -31922132902751249305 Mon Feb 27 11:32:22 2023 A3: -1041924313173238 Mon Feb 27 11:32:22 2023 A4: 9960349970 Mon Feb 27 11:32:22 2023 A5: 26040 Mon Feb 27 11:32:22 2023 skew 68598.01, size 1.183e-011, alpha -5.496, combined = 2.380e-010 rroots = 5 Mon Feb 27 11:32:22 2023 Mon Feb 27 11:32:22 2023 commencing square root phase Mon Feb 27 11:32:22 2023 reading relations for dependency 1 Mon Feb 27 11:32:22 2023 read 405840 cycles Mon Feb 27 11:32:22 2023 cycles contain 1458010 unique relations Mon Feb 27 11:32:26 2023 read 1458010 relations Mon Feb 27 11:32:29 2023 multiplying 1458010 relations Mon Feb 27 11:33:05 2023 multiply complete, coefficients have about 66.99 million bits Mon Feb 27 11:33:06 2023 initial square root is modulo 64433 Mon Feb 27 11:33:53 2023 GCD is N, no factor found Mon Feb 27 11:33:53 2023 reading relations for dependency 2 Mon Feb 27 11:33:53 2023 read 406076 cycles Mon Feb 27 11:33:54 2023 cycles contain 1458386 unique relations Mon Feb 27 11:33:57 2023 read 1458386 relations Mon Feb 27 11:34:00 2023 multiplying 1458386 relations Mon Feb 27 11:34:39 2023 multiply complete, coefficients have about 67.01 million bits Mon Feb 27 11:34:39 2023 initial square root is modulo 64609 Mon Feb 27 11:35:27 2023 sqrtTime: 185 Mon Feb 27 11:35:27 2023 prp39 factor: 274139128155640743844721000712466230587 Mon Feb 27 11:35:27 2023 prp82 factor: 2925648765859737526718294207514501116008862038876310936082137184995633996879337649 Mon Feb 27 11:35:27 2023 elapsed time 00:03:06 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 16, 2023 15:12:09 UTC 2023 年 3 月 17 日 (金) 0 時 12 分 9 秒 (日本時間) |
composite number 合成数 | 10713275433496439942461284750434850646106807744855521248999392111899560033463938994516969707912777085627960445142612955840841654177876484360423475314326297479972795502831795557<176> |
prime factors 素因数 | 175847834428188320745766899112688579808548562062144545131344002253<66> 60923556257222279432915946070839429724870405559721466978204317276818810643361622095124445877178939097769771769<110> |
factorization results 素因数分解の結果 | Number: n N=10713275433496439942461284750434850646106807744855521248999392111899560033463938994516969707912777085627960445142612955840841654177876484360423475314326297479972795502831795557 ( 176 digits) SNFS difficulty: 180 digits. Divisors found: Fri Mar 17 02:08:58 2023 prp66 factor: 175847834428188320745766899112688579808548562062144545131344002253 Fri Mar 17 02:08:58 2023 prp110 factor: 60923556257222279432915946070839429724870405559721466978204317276818810643361622095124445877178939097769771769 Fri Mar 17 02:08:58 2023 elapsed time 00:40:18 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.104). Factorization parameters were as follows: # # N = 9x10^179-35 = 98(178)5 # n: 10713275433496439942461284750434850646106807744855521248999392111899560033463938994516969707912777085627960445142612955840841654177876484360423475314326297479972795502831795557 m: 100000000000000000000000000000000000 deg: 5 c5: 178000 c0: -7 skew: 0.13 # Murphy_E = 7.384e-11 type: snfs lss: 1 rlim: 7100000 alim: 7100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7100000/7100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 14750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1310124 hash collisions in 13156442 relations (12664258 unique) Msieve: matrix is 1112083 x 1112308 (316.8 MB) Sieving start time: 2023/03/16 22:01:40 Sieving end time : 2023/03/17 01:28:23 Total sieving time: 3hrs 26min 43secs. Total relation processing time: 0hrs 35min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 32sec. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7100000,7100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 21, 2023 08:25:32 UTC 2023 年 3 月 21 日 (火) 17 時 25 分 32 秒 (日本時間) |
composite number 合成数 | 629494528162453980914821835960593349915203154518478938282656370449400367357524304357579443553233947268954156438154430845901060871460928113512773054860239374406559<162> |
prime factors 素因数 | 548769983907856842270212383392869356225486429446233<51> 1147100873994142284719496098427245918585221658046432135689040806432488800864735105297374185471253199235079050423<112> |
factorization results 素因数分解の結果 | Number: n N=629494528162453980914821835960593349915203154518478938282656370449400367357524304357579443553233947268954156438154430845901060871460928113512773054860239374406559 ( 162 digits) SNFS difficulty: 181 digits. Divisors found: Tue Mar 21 19:15:58 2023 prp51 factor: 548769983907856842270212383392869356225486429446233 Tue Mar 21 19:15:58 2023 prp112 factor: 1147100873994142284719496098427245918585221658046432135689040806432488800864735105297374185471253199235079050423 Tue Mar 21 19:15:58 2023 elapsed time 00:34:16 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.007). Factorization parameters were as follows: # # N = 89x10^180-35 = 98(179)5 # n: 629494528162453980914821835960593349915203154518478938282656370449400367357524304357579443553233947268954156438154430845901060871460928113512773054860239374406559 m: 1000000000000000000000000000000000000 deg: 5 c5: 89 c0: -35 skew: 0.83 # Murphy_E = 7.812e-11 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 14900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1443911 hash collisions in 13539910 relations (12917139 unique) Msieve: matrix is 1013543 x 1013769 (286.8 MB) Sieving start time: 2023/03/21 14:49:43 Sieving end time : 2023/03/21 18:41:27 Total sieving time: 3hrs 51min 44secs. Total relation processing time: 0hrs 30min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 10sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 15, 2023 16:51:27 UTC 2023 年 3 月 16 日 (木) 1 時 51 分 27 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 19, 2023 18:31:25 UTC 2023 年 3 月 20 日 (月) 3 時 31 分 25 秒 (日本時間) |
composite number 合成数 | 58767447859164863543838868759390955779742576276558749707237830448913011192835682691713882560566453524527929278427291516587404825452972419462667402145508449<155> |
prime factors 素因数 | 3529701101984442887289340478579901426732640407527<49> 16649411993022597957865421459485361390590763814526302059976263740142651295856573929067053719638501206816887<107> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 58767447859164863543838868759390955779742576276558749707237830448913011192835682691713882560566453524527929278427291516587404825452972419462667402145508449 (155 digits) Using B1=37150000, B2=192390318136, polynomial Dickson(12), sigma=1:3058365178 Step 1 took 90093ms Step 2 took 30913ms ********** Factor found in step 2: 3529701101984442887289340478579901426732640407527 Found prime factor of 49 digits: 3529701101984442887289340478579901426732640407527 Prime cofactor 16649411993022597957865421459485361390590763814526302059976263740142651295856573929067053719638501206816887 has 107 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 15, 2023 16:13:07 UTC 2023 年 3 月 16 日 (木) 1 時 13 分 7 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 24, 2023 17:54:43 UTC 2023 年 3 月 25 日 (土) 2 時 54 分 43 秒 (日本時間) |
composite number 合成数 | 913360562306560184357983102035733612038626935635847231097908487804477738743914347872025535354496086836641237095787239307512598587279238497325360181536200675935153<162> |
prime factors 素因数 | 3081752867981450556235090070539013539<37> 120061301999121323216442380753443133947238606367918553<54> 2468546985577118428705313814445890270561083159210890073579301330220320659<73> |
factorization results 素因数分解の結果 | Number: n N=296376965134395005033206391751427458766231412152978600278874894069845822552459635433165090355428517786786937069796902055286427 ( 126 digits) SNFS difficulty: 188 digits. Divisors found: Sat Mar 25 04:45:59 2023 prp54 factor: 120061301999121323216442380753443133947238606367918553 Sat Mar 25 04:45:59 2023 prp73 factor: 2468546985577118428705313814445890270561083159210890073579301330220320659 Sat Mar 25 04:45:59 2023 elapsed time 01:27:44 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 89x10^187-35 = 98(186)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 913360562306560184357983102035733612038626935635847231097908487804477738743914347872025535354496086836641237095787239307512598587279238497325360181536200675935153 (162 digits) # Using B1=33190000, B2=144292738606, polynomial Dickson(12), sigma=1:1320121749 # Step 1 took 80042ms # ********** Factor found in step 1: 3081752867981450556235090070539013539 # Found prime factor of 37 digits: 3081752867981450556235090070539013539 # Composite cofactor 296376965134395005033206391751427458766231412152978600278874894069845822552459635433165090355428517786786937069796902055286427 has 126 digits # n: 296376965134395005033206391751427458766231412152978600278874894069845822552459635433165090355428517786786937069796902055286427 m: 10000000000000000000000000000000 deg: 6 c6: 178 c0: -7 skew: 0.58 # Murphy_E = 3.406e-11 type: snfs lss: 1 rlim: 9600000 alim: 9600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 16000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1267228 hash collisions in 11905604 relations (11602106 unique) Msieve: matrix is 1648480 x 1648709 (473.6 MB) Sieving start time: 2023/03/24 21:21:47 Sieving end time : 2023/03/25 03:17:52 Total sieving time: 5hrs 56min 5secs. Total relation processing time: 1hrs 21min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 4sec. Prototype def-par.txt line would be: snfs,188,6,0,0,0,0,0,0,0,0,9600000,9600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 29, 2023 09:55:24 UTC 2023 年 6 月 29 日 (木) 18 時 55 分 24 秒 (日本時間) |
composite number 合成数 | 5989673371920570907593849450980437015405981141132412914886216432532667411463137651852244894079928359477909034032857153155957956357661821927215851<145> |
prime factors 素因数 | 372831418809153765709895790222928216919378637572249527661<57> 16065366462547475376428958137715433463653196759166277535663418031713801626740604732676791<89> |
factorization results 素因数分解の結果 | 5989673371920570907593849450980437015405981141132412914886216432532667411463137651852244894079928359477909034032857153155957956357661821927215851=372831418809153765709895790222928216919378637572249527661*16065366462547475376428958137715433463653196759166277535663418031713801626740604732676791 cado polynomial n: 5989673371920570907593849450980437015405981141132412914886216432532667411463137651852244894079928359477909034032857153155957956357661821927215851 skew: 0.52 type: snfs c0: -7 c5: 178 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 178*x^5-7 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11200000 tasks.lim1 = 11200000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 16065366462547475376428958137715433463653196759166277535663418031713801626740604732676791 372831418809153765709895790222928216919378637572249527661 Info:Square Root: Total cpu/real time for sqrt: 2953.04/501.098 Info:Linear Algebra: Total cpu/real time for bwc: 91696.2/23797.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 58425.25, WCT time 15200.5, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (75776 iterations) Info:Linear Algebra: Lingen CPU time 779.61, WCT time 99.31 Info:Linear Algebra: Mksol: CPU time 31640.73, WCT time 8215.58, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (37888 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 162.95/20.88 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 227.58/180.077 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 178.8s Info:Quadratic Characters: Total cpu/real time for characters: 110.31/27.8979 Info:Filtering - Merging: Merged matrix has 2423345 rows and total weight 414120755 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 1480.23/202.137 Info:Filtering - Merging: Total cpu/real time for replay: 88.54/77.5303 Info:Filtering - Singleton removal: Total cpu/real time for purge: 692.24/567.822 Info:Square Root: Total cpu/real time for sqrt: 2953.04/501.098 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 28724643 Info:Lattice Sieving: Average J: 1894.91 for 3086660 special-q, max bucket fill -bkmult 1.0,1s:1.148480 Info:Lattice Sieving: Total time: 1.041e+06s Info:Generate Factor Base: Total cpu/real time for makefb: 6.19/1.65138 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 874.36/743.233 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 580.1999999999999s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.04689e+06/289267 16065366462547475376428958137715433463653196759166277535663418031713801626740604732676791 372831418809153765709895790222928216919378637572249527661 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 08:23:53 UTC 2023 年 3 月 2 日 (木) 17 時 23 分 53 秒 (日本時間) |
2350 | Ignacio Santos | April 8, 2023 10:21:40 UTC 2023 年 4 月 8 日 (土) 19 時 21 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 2, 2023 10:14:36 UTC 2023 年 3 月 2 日 (木) 19 時 14 分 36 秒 (日本時間) |
composite number 合成数 | 2256525549453115718055020530106785784895102743903768106560887178874191336530590496682932857927930379861513363436098611559958660732913527724205537<145> |
prime factors 素因数 | 57780391364256414599360129948986506943804943<44> 39053483304182450272057680677833458769939994393381112759166718951055110493892393064867981816259417359<101> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1565569880 Step 1 took 6643ms Step 2 took 3533ms ********** Factor found in step 2: 57780391364256414599360129948986506943804943 Found prime factor of 44 digits: 57780391364256414599360129948986506943804943 Prime cofactor 39053483304182450272057680677833458769939994393381112759166718951055110493892393064867981816259417359 has 101 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 2, 2023 08:24:07 UTC 2023 年 3 月 2 日 (木) 17 時 24 分 7 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 24, 2023 14:57:13 UTC 2023 年 4 月 24 日 (月) 23 時 57 分 13 秒 (日本時間) |
composite number 合成数 | 15988502649779933530944040240725770232641695859157459804185754064492948890685349860774274678882601275487290038623910895535794484864816311865624719302973142908470313482439593999820353902811461421<194> |
prime factors 素因数 | 12955069411654415565331410911082555687458160880481<50> 118338811508049489937958799859425560317004455639164647347<57> 10428956253714153812299889648453596075252734047945055170407154507501520870594643836367103<89> |
factorization results 素因数分解の結果 | Number: n N=15988502649779933530944040240725770232641695859157459804185754064492948890685349860774274678882601275487290038623910895535794484864816311865624719302973142908470313482439593999820353902811461421 ( 194 digits) SNFS difficulty: 197 digits. Divisors found: Mon Apr 24 22:47:41 2023 prp50 factor: 12955069411654415565331410911082555687458160880481 Mon Apr 24 22:47:41 2023 prp57 factor: 118338811508049489937958799859425560317004455639164647347 Mon Apr 24 22:47:41 2023 prp89 factor: 10428956253714153812299889648453596075252734047945055170407154507501520870594643836367103 Mon Apr 24 22:47:41 2023 elapsed time 02:40:57 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: # # N = 89x10^196-35 = 98(195)5 # n: 15988502649779933530944040240725770232641695859157459804185754064492948890685349860774274678882601275487290038623910895535794484864816311865624719302973142908470313482439593999820353902811461421 m: 1000000000000000000000000000000000000000 deg: 5 c5: 178 c0: -7 skew: 0.52 # Murphy_E = 1.565e-11 type: snfs lss: 1 rlim: 13600000 alim: 13600000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13600000/13600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 39600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2038869 hash collisions in 14436100 relations (13133312 unique) Msieve: matrix is 2274617 x 2274842 (643.8 MB) Sieving start time: 2023/04/24 05:38:33 Sieving end time : 2023/04/24 20:06:27 Total sieving time: 14hrs 27min 54secs. Total relation processing time: 2hrs 31min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 47sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13600000,13600000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 08:24:16 UTC 2023 年 3 月 2 日 (木) 17 時 24 分 16 秒 (日本時間) |
2350 | Ignacio Santos | April 22, 2023 07:15:02 UTC 2023 年 4 月 22 日 (土) 16 時 15 分 2 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 13, 2023 11:17:47 UTC 2023 年 5 月 13 日 (土) 20 時 17 分 47 秒 (日本時間) |
composite number 合成数 | 29148985248743283525132590684269807499658085530964847684109176249487877569956881320339498653176890909904699761711509179551959354999746227093123577828218429194445332536439<170> |
prime factors 素因数 | 78822893800471873001636212750327481807710106358654590812621837939<65> 369803541120039203866029302719244637736035667858776083610884199088987011239700550955570985476988249611501<105> |
factorization results 素因数分解の結果 | Number: n N=29148985248743283525132590684269807499658085530964847684109176249487877569956881320339498653176890909904699761711509179551959354999746227093123577828218429194445332536439 ( 170 digits) SNFS difficulty: 200 digits. Divisors found: Sat May 13 21:08:08 2023 prp65 factor: 78822893800471873001636212750327481807710106358654590812621837939 Sat May 13 21:08:08 2023 prp105 factor: 369803541120039203866029302719244637736035667858776083610884199088987011239700550955570985476988249611501 Sat May 13 21:08:08 2023 elapsed time 02:42:48 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 89x10^199-35 = 98(198)5 # n: 29148985248743283525132590684269807499658085530964847684109176249487877569956881320339498653176890909904699761711509179551959354999746227093123577828218429194445332536439 m: 1000000000000000000000000000000000 deg: 6 c6: 178 c0: -7 skew: 0.58 # Murphy_E = 1.39e-11 type: snfs lss: 1 rlim: 15200000 alim: 15200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15200000/15200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 40400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1882045 hash collisions in 14029494 relations (13146036 unique) Msieve: matrix is 2241609 x 2241836 (641.6 MB) Sieving start time: 2023/05/13 03:07:29 Sieving end time : 2023/05/13 18:25:05 Total sieving time: 15hrs 17min 36secs. Total relation processing time: 2hrs 34min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 47sec. Prototype def-par.txt line would be: snfs,200,6,0,0,0,0,0,0,0,0,15200000,15200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 08:24:23 UTC 2023 年 3 月 2 日 (木) 17 時 24 分 23 秒 (日本時間) |
2350 | Ignacio Santos | May 9, 2023 15:34:17 UTC 2023 年 5 月 10 日 (水) 0 時 34 分 17 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 27, 2023 03:34:54 UTC 2023 年 6 月 27 日 (火) 12 時 34 分 54 秒 (日本時間) |
composite number 合成数 | 12765072520697492455707221329996183882866771656395319119660957274661202511719971256289862337245047423633288515285071448353220022885106867979122010055185420401188870736613064771<176> |
prime factors 素因数 | 1160903909851662684454495210651710115748785569651899<52> 10995804572945732078997801742767676501714702618842427644420915333148549369578835641447141729429652229614134119145186981410329<125> |
factorization results 素因数分解の結果 | 12765072520697492455707221329996183882866771656395319119660957274661202511719971256289862337245047423633288515285071448353220022885106867979122010055185420401188870736613064771=1160903909851662684454495210651710115748785569651899*10995804572945732078997801742767676501714702618842427644420915333148549369578835641447141729429652229614134119145186981410329 cado polynomial n: 12765072520697492455707221329996183882866771656395319119660957274661202511719971256289862337245047423633288515285071448353220022885106867979122010055185420401188870736613064771 skew: 0.83 type: snfs c0: -35 c5: 89 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 89*x^5-35 # g(x) = -x+10000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 16300000 tasks.lim1 = 16300000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 10995804572945732078997801742767676501714702618842427644420915333148549369578835641447141729429652229614134119145186981410329 1160903909851662684454495210651710115748785569651899 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 3238.26/1355.71 Info:HTTP server: Got notification to stop serving Workunits Info:Linear Algebra: Total cpu/real time for bwc: 96130.1/26327 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 63822.97, WCT time 7952.39, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.04, comm-wait 0.0 (83968 iterations) Info:Linear Algebra: Lingen CPU time 500.3, WCT time 32.29 Info:Linear Algebra: Mksol: CPU time 31210.0, WCT time 18270.28, iteration CPU time 0.29, COMM 0.04, cpu-wait 0.11, comm-wait 0.0 (41984 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 130.85/12.094 Info:Square Root: Total cpu/real time for sqrt: 3238.26/1355.71 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 168.45/129.771 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 129.7s Info:Quadratic Characters: Total cpu/real time for characters: 87.04/56.3261 Info:Filtering - Singleton removal: Total cpu/real time for purge: 164.66/90.7155 Info:Filtering - Merging: Merged matrix has 2683289 rows and total weight 458729414 (171.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 594.44/35.2396 Info:Filtering - Merging: Total cpu/real time for replay: 50.45/43.9957 Info:Generate Factor Base: Total cpu/real time for makefb: 2.48/0.390277 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 43285182 Info:Lattice Sieving: Average J: 3789.66 for 1564232 special-q, max bucket fill -bkmult 1.0,1s:1.071790 Info:Lattice Sieving: Total time: 572381s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 393.35/233.741 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 213.0s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.19097e+06/76256.7 Info:root: Cleaning up computation data in /tmp/cado.9x04rzf7 10995804572945732078997801742767676501714702618842427644420915333148549369578835641447141729429652229614134119145186981410329 1160903909851662684454495210651710115748785569651899 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2400 | ddd | June 9, 2023 05:01:56 UTC 2023 年 6 月 9 日 (金) 14 時 1 分 56 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 10, 2023 09:34:28 UTC 2023 年 7 月 10 日 (月) 18 時 34 分 28 秒 (日本時間) |
composite number 合成数 | 467045106867243611873723884971392412330542372537236186114074564009922088483097995174511183015131923222211764912282394250034182089639754208033986575290511501493515587142683<171> |
prime factors 素因数 | 113431158919058565381113109271445556895008997<45> 4117432205735590531627825675584292415800788568887446159000197102765279407895504940392648647937979679458400371958258314914269439<127> |
factorization results 素因数分解の結果 | Input number is 467045106867243611873723884971392412330542372537236186114074564009922088483097995174511183015131923222211764912282394250034182089639754208033986575290511501493515587142683 (171 digits) Using B1=41790000, B2=192395152966, polynomial Dickson(12), sigma=1:1724699604 Step 1 took 97557ms Step 2 took 30517ms ********** Factor found in step 2: 113431158919058565381113109271445556895008997 Found prime factor of 45 digits: 113431158919058565381113109271445556895008997 Prime cofactor 4117432205735590531627825675584292415800788568887446159000197102765279407895504940392648647937979679458400371958258314914269439 has 127 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 19, 2023 10:28:53 UTC 2023 年 8 月 19 日 (土) 19 時 28 分 53 秒 (日本時間) |
composite number 合成数 | 8599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599<202> |
prime factors 素因数 | 398935188773940037419313989054908730770321074331<48> 134500340698262709196528660903746306109232599131336019223700980071<66> 160259552871755523440381568528582594334066676010880755555987500674788864817034796784376099<90> |
factorization results 素因数分解の結果 | Number: n N=21554964461402363862465627402940736486354360847856137486455116274528328633874169364620936101021152291678719250236253895909094381953473378185133606567723029 ( 155 digits) SNFS difficulty: 204 digits. Divisors found: Sat Aug 19 03:37:53 2023 prp66 factor: 134500340698262709196528660903746306109232599131336019223700980071 Sat Aug 19 03:37:53 2023 prp90 factor: 160259552871755523440381568528582594334066676010880755555987500674788864817034796784376099 Sat Aug 19 03:37:53 2023 elapsed time 03:59:06 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 89x10^203-35 = 98(202)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 8599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599 (202 digits) # Using B1=50930000, B2=288592384096, polynomial Dickson(12), sigma=1:3706627282 # Step 1 took 159539ms # Step 2 took 51629ms # ********** Factor found in step 2: 398935188773940037419313989054908730770321074331 # Found prime factor of 48 digits: 398935188773940037419313989054908730770321074331 # Composite cofactor 21554964461402363862465627402940736486354360847856137486455116274528328633874169364620936101021152291678719250236253895909094381953473378185133606567723029 has 155 digits # n: 21554964461402363862465627402940736486354360847856137486455116274528328633874169364620936101021152291678719250236253895909094381953473378185133606567723029 m: 10000000000000000000000000000000000000000 deg: 5 c5: 17800 c0: -7 skew: 0.21 # Murphy_E = 7.319e-12 type: snfs lss: 1 rlim: 17800000 alim: 17800000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17800000/17800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 48900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3279567 hash collisions in 17144433 relations (14440665 unique) Msieve: matrix is 2697038 x 2697263 (761.8 MB) Sieving start time: 2023/08/18 04:52:55 Sieving end time : 2023/08/18 23:38:25 Total sieving time: 18hrs 45min 30secs. Total relation processing time: 3hrs 47min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 0sec. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,17800000,17800000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 12, 2024 20:18:38 UTC 2024 年 1 月 13 日 (土) 5 時 18 分 38 秒 (日本時間) |
composite number 合成数 | 7284310636307584074801767401021222628782383574796092362534756772682819944620593092575423603076117876131353097409151725736753514939310408159703603288071681234808578031472139360382488871<184> |
prime factors 素因数 | 1427390251267065006675203150692319788861586607301204702388147561646138937421<76> 5103236924759329935640546667063173002297639383914384310735924467075868485916711228758481862870563977079472451<109> |
factorization results 素因数分解の結果 | Number: n N=7284310636307584074801767401021222628782383574796092362534756772682819944620593092575423603076117876131353097409151725736753514939310408159703603288071681234808578031472139360382488871 ( 184 digits) SNFS difficulty: 206 digits. Divisors found: Sat Jan 13 06:22:10 2024 prp76 factor: 1427390251267065006675203150692319788861586607301204702388147561646138937421 Sat Jan 13 06:22:10 2024 prp109 factor: 5103236924759329935640546667063173002297639383914384310735924467075868485916711228758481862870563977079472451 Sat Jan 13 06:22:10 2024 elapsed time 03:10:49 (Msieve 1.44 - dependency 7) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 89x10^205-35 = 98(204)5 # n: 7284310636307584074801767401021222628782383574796092362534756772682819944620593092575423603076117876131353097409151725736753514939310408159703603288071681234808578031472139360382488871 m: 10000000000000000000000000000000000 deg: 6 c6: 178 c0: -7 skew: 0.58 # Murphy_E = 8.814e-12 type: snfs lss: 1 rlim: 19200000 alim: 19200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19200000/19200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3378431 hash collisions in 19460651 relations (16764901 unique) Msieve: matrix is 2318991 x 2319216 (658.7 MB) Total sieving time: 0.00 hours. Total relation processing time: 2hrs 41min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 24min 3sec. Prototype def-par.txt line would be: snfs,206,6,0,0,0,0,0,0,0,0,19200000,19200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:00 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 0 秒 (日本時間) |
2350 | Ignacio Santos | January 5, 2024 10:37:04 UTC 2024 年 1 月 5 日 (金) 19 時 37 分 4 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 7, 2024 12:11:49 UTC 2024 年 1 月 7 日 (日) 21 時 11 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 10, 2024 03:51:22 UTC 2024 年 6 月 10 日 (月) 12 時 51 分 22 秒 (日本時間) |
composite number 合成数 | 375611554791209013405145579263581673163329137004291430551744285310497332294214344291048305357704362399952346452024036797340054748241760086121744321411116655513649265144905352279975290397<186> |
prime factors 素因数 | 1701638510678838234157112986976361236769586066103159<52> 5869715280971748044598134323908498098463776326046279<52> 37605780119290522462622452900384838832681806595399489259535221986351847258110171677<83> |
factorization results 素因数分解の結果 | Number: n N=375611554791209013405145579263581673163329137004291430551744285310497332294214344291048305357704362399952346452024036797340054748241760086121744321411116655513649265144905352279975290397 ( 186 digits) SNFS difficulty: 207 digits. Divisors found: Mon Jun 10 13:28:19 2024 prp52 factor: 1701638510678838234157112986976361236769586066103159 Mon Jun 10 13:28:19 2024 prp52 factor: 5869715280971748044598134323908498098463776326046279 Mon Jun 10 13:28:19 2024 prp83 factor: 37605780119290522462622452900384838832681806595399489259535221986351847258110171677 Mon Jun 10 13:28:19 2024 elapsed time 03:50:00 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.912). Factorization parameters were as follows: # # N = 89x10^206-35 = 98(205)5 # n: 375611554791209013405145579263581673163329137004291430551744285310497332294214344291048305357704362399952346452024036797340054748241760086121744321411116655513649265144905352279975290397 m: 100000000000000000000000000000000000000000 deg: 5 c5: 178 c0: -7 skew: 0.52 # Murphy_E = 5.949e-12 type: snfs lss: 1 rlim: 19900000 alim: 19900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19900000/19900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 57150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4934957 hash collisions in 21601097 relations (16605074 unique) Msieve: matrix is 2630728 x 2630953 (739.7 MB) Sieving start time: 2024/06/09 10:47:16 Sieving end time : 2024/06/10 09:37:53 Total sieving time: 22hrs 50min 37secs. Total relation processing time: 3hrs 37min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 35sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,19900000,19900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2753 | 1792 | Dmitry Domanov | August 31, 2023 20:34:07 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 7 秒 (日本時間) |
961 | Mehrshad Alipour | June 5, 2024 07:15:32 UTC 2024 年 6 月 5 日 (水) 16 時 15 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 21, 2023 11:45:51 UTC 2023 年 2 月 21 日 (火) 20 時 45 分 51 秒 (日本時間) |
composite number 合成数 | 30601957074727378388015659981297461843712220427967573841465324618241608569508142897846497596220611022959<104> |
prime factors 素因数 | 345360814637593650312860984919091799<36> 88608654420854657142753063234576866193049302700956138065467069180841<68> |
factorization results 素因数分解の結果 | N=30601957074727378388015659981297461843712220427967573841465324618241608569508142897846497596220611022959 ( 104 digits) Divisors found: r1=345360814637593650312860984919091799 (pp36) r2=88608654420854657142753063234576866193049302700956138065467069180841 (pp68) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.10 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 30601957074727378388015659981297461843712220427967573841465324618241608569508142897846497596220611022959 skew: 1208908.66 c0: 6089533246050540530654341344 c1: 8483559625195208933114 c2: -38954650248797349 c3: -14789998374 c4: 11760 Y0: -7142268527225943951209081 Y1: 36839578697713 rlim: 2360000 alim: 2360000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 40000 Factor base limits: 2360000/2360000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1180000, 1700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 294789 x 295017 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,103,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2360000,2360000,26,26,52,52,2.5,2.5,100000 total time: 0.10 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:15 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 15 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 07:33:17 UTC 2024 年 9 月 23 日 (月) 16 時 33 分 17 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 3, 2023 16:55:12 UTC 2023 年 3 月 4 日 (土) 1 時 55 分 12 秒 (日本時間) |
composite number 合成数 | 16758871727810554170381405804279122707833279010744450220051790812999299632463936351560836721565705115898373210008126674752659418189117301676083<143> |
prime factors 素因数 | 34864151096114078115949674398551213991942099<44> 480690657908446264088339895268756485477092715433268271327190790867892720226315952762232946234499617<99> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3338717781 Step 1 took 20844ms Step 2 took 9156ms ********** Factor found in step 2: 34864151096114078115949674398551213991942099 Found prime factor of 44 digits: 34864151096114078115949674398551213991942099 Prime cofactor 480690657908446264088339895268756485477092715433268271327190790867892720226315952762232946234499617 has 99 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 24, 2023 15:57:33 UTC 2023 年 2 月 25 日 (土) 0 時 57 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:24 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 24 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 07:33:34 UTC 2024 年 9 月 23 日 (月) 16 時 33 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:32 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 32 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 07:43:17 UTC 2024 年 9 月 23 日 (月) 16 時 43 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:40 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 40 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 07:44:00 UTC 2024 年 9 月 23 日 (月) 16 時 44 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:48 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 48 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 07:56:03 UTC 2024 年 9 月 23 日 (月) 16 時 56 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:34:56 UTC 2023 年 9 月 1 日 (金) 5 時 34 分 56 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 13:40:26 UTC 2024 年 9 月 23 日 (月) 22 時 40 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:04 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 4 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 13:40:48 UTC 2024 年 9 月 23 日 (月) 22 時 40 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:12 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 12 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 13:41:16 UTC 2024 年 9 月 23 日 (月) 22 時 41 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:21 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 21 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 13:57:45 UTC 2024 年 9 月 23 日 (月) 22 時 57 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:28 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 28 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 14:20:27 UTC 2024 年 9 月 23 日 (月) 23 時 20 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:37 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 23, 2024 14:20:38 UTC 2024 年 9 月 23 日 (月) 23 時 20 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 3, 2023 19:14:33 UTC 2023 年 9 月 4 日 (月) 4 時 14 分 33 秒 (日本時間) |
composite number 合成数 | 1149565053668774034919879777698603951332147752266974176684853554115178116612094288864138170830127721895015747001150017911332628800517096270216026783302828698800627893196557304347949082489860975586691<199> |
prime factors 素因数 | 2523949722719404800994417209399414329<37> 455462738944810071715412915492014577117128431960962134550934273055367616486228795994674867157519148627043349175330647860614729741440778066746710529043960404564379<162> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @98ee51f6288e with GMP-ECM 7.0.5-dev on Thu Aug 31 22:09:55 2023 Input number is 1149565053668774034919879777698603951332147752266974176684853554115178116612094288864138170830127721895015747001150017911332628800517096270216026783302828698800627893196557304347949082489860975586691 (199 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2598897324 Step 1 took 1ms Step 2 took 4441ms ********** Factor found in step 2: 2523949722719404800994417209399414329 Found prime factor of 37 digits: 2523949722719404800994417209399414329 Prime cofactor 455462738944810071715412915492014577117128431960962134550934273055367616486228795994674867157519148627043349175330647860614729741440778066746710529043960404564379 has 162 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | August 31, 2023 20:35:46 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:35:53 UTC 2023 年 9 月 1 日 (金) 5 時 35 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 05:47:43 UTC 2024 年 9 月 24 日 (火) 14 時 47 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:36:01 UTC 2023 年 9 月 1 日 (金) 5 時 36 分 1 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 05:47:55 UTC 2024 年 9 月 24 日 (火) 14 時 47 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:36:11 UTC 2023 年 9 月 1 日 (金) 5 時 36 分 11 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 05:48:05 UTC 2024 年 9 月 24 日 (火) 14 時 48 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:38:05 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 05:55:15 UTC 2024 年 9 月 24 日 (火) 14 時 55 分 15 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 24, 2024 06:20:01 UTC 2024 年 9 月 24 日 (火) 15 時 20 分 1 秒 (日本時間) |
composite number 合成数 | 14817781203051488853786260267103705214117361628844666106869731620245785994514403295771243100451537179344493295673339702222490042385773618691359664851590334867989388940048758570292568679673048864439848988177409<209> |
prime factors 素因数 | 13665142921756514330703663544305650693<38> |
composite cofactor 合成数の残り | 1084348790780653954792216179423298989885717221941306176588520399475830427351433769656285857653275321111101951650419198264701544553304807942554958672165278059732707521348813<172> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3627146982 Step 1 took 6406ms Step 2 took 3125ms ********** Factor found in step 2: 13665142921756514330703663544305650693 Found prime factor of 38 digits: 13665142921756514330703663544305650693 Composite cofactor 1084348790780653954792216179423298989885717221941306176588520399475830427351433769656285857653275321111101951650419198264701544553304807942554958672165278059732707521348813 has 172 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:38:18 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 18 秒 (日本時間) |
2350 | Ignacio Santos | September 27, 2024 16:12:46 UTC 2024 年 9 月 28 日 (土) 1 時 12 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 21:40:04 UTC 2023 年 9 月 1 日 (金) 6 時 40 分 4 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 06:20:34 UTC 2024 年 9 月 24 日 (火) 15 時 20 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:38:27 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 06:21:15 UTC 2024 年 9 月 24 日 (火) 15 時 21 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 3, 2023 23:39:53 UTC 2023 年 9 月 4 日 (月) 8 時 39 分 53 秒 (日本時間) |
composite number 合成数 | 659259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259<243> |
prime factors 素因数 | 288290630189559048516768156898281641<36> |
composite cofactor 合成数の残り | 2286786978910060640460404121774519987655309807314396684356761535556488697918573871266121048890121143412333094353285824916661538379564326417456306075909894520687885067181661712397293613432227044707891477504899<208> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @2665a3643e9a with GMP-ECM 7.0.5-dev on Sat Sep 2 09:15:25 2023 Input number is 659259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 (243 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1797092287 Step 1 took 0ms Step 2 took 7636ms ********** Factor found in step 2: 288290630189559048516768156898281641 Found prime factor of 36 digits: 288290630189559048516768156898281641 Composite cofactor 2286786978910060640460404121774519987655309807314396684356761535556488697918573871266121048890121143412333094353285824916661538379564326417456306075909894520687885067181661712397293613432227044707891477504899 has 208 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 21:39:53 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 06:32:21 UTC 2024 年 9 月 24 日 (火) 15 時 32 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:38:35 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 35 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 06:47:05 UTC 2024 年 9 月 24 日 (火) 15 時 47 分 5 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 3, 2023 20:33:09 UTC 2023 年 9 月 4 日 (月) 5 時 33 分 9 秒 (日本時間) |
composite number 合成数 | 911627269487976660426516902386903161723925049754368580050542801380212503796383309049655520228834182237166364183376182395800703652293373104308803547643946238265560830599321295387392969943133295794033321195108068623069714481909359220593<234> |
prime factors 素因数 | 4129164481129805590151788557824658295597<40> |
composite cofactor 合成数の残り | 220777659416110454054270963024528068116732597892588908554357698915421074111298275947697560065312019274933073596942706920141724926895165817148253285973488767267321000572467991030586912320218765269<195> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @2665a3643e9a with GMP-ECM 7.0.5-dev on Sat Sep 2 09:10:57 2023 Input number is 911627269487976660426516902386903161723925049754368580050542801380212503796383309049655520228834182237166364183376182395800703652293373104308803547643946238265560830599321295387392969943133295794033321195108068623069714481909359220593 (234 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1581263852 Step 1 took 0ms Step 2 took 7957ms ********** Factor found in step 2: 4129164481129805590151788557824658295597 Found prime factor of 40 digits: 4129164481129805590151788557824658295597 Composite cofactor 220777659416110454054270963024528068116732597892588908554357698915421074111298275947697560065312019274933073596942706920141724926895165817148253285973488767267321000572467991030586912320218765269 has 195 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 21:39:44 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 44 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:03:08 UTC 2024 年 9 月 24 日 (火) 16 時 3 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 20:38:43 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 43 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:07:24 UTC 2024 年 9 月 24 日 (火) 16 時 7 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | August 31, 2023 21:39:34 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 34 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:29:13 UTC 2024 年 10 月 4 日 (金) 9 時 29 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 1, 2023 11:52:28 UTC 2023 年 9 月 1 日 (金) 20 時 52 分 28 秒 (日本時間) |
composite number 合成数 | 1745268403590902800486673428195320737214155316633978323833296673529296366186353908387747662144903019806317609379714110596827477941710260439229638146225683035735807860688242651433870697680310926296168439697927387691753452081852421004468508056159<244> |
prime factors 素因数 | 140192189241249162798765278994481819248917<42> |
composite cofactor 合成数の残り | 12449112985799549182267887126431874342512358895748437095518640158021033024007400473335460320299658387676442622943963341480738331867921199628632672777665740053809819722192193861825131809266157994997656227<203> |
factorization results 素因数分解の結果 | GPU: factor 140192189241249162798765278994481819248917 found in Step 1 with curve 178 (-sigma 3:-746080414) Computing 1792 Step 1 took 292ms of CPU time / 267502ms of GPU time Throughput: 6.699 curves per second (on average 149.28ms per Step 1) ********** Factor found in step 1: 140192189241249162798765278994481819248917 Found prime factor of 42 digits: 140192189241249162798765278994481819248917 Composite cofactor 12449112985799549182267887126431874342512358895748437095518640158021033024007400473335460320299658387676442622943963341480738331867921199628632672777665740053809819722192193861825131809266157994997656227 has 203 digits Peak memory usage: 9426MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | August 31, 2023 21:39:23 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 23 秒 (日本時間) |
406 | Thomas Kozlowski | October 4, 2024 00:31:47 UTC 2024 年 10 月 4 日 (金) 9 時 31 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | August 31, 2023 21:39:12 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 12 秒 (日本時間) |
406 | Thomas Kozlowski | October 4, 2024 00:35:07 UTC 2024 年 10 月 4 日 (金) 9 時 35 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 2, 2023 09:22:01 UTC 2023 年 9 月 2 日 (土) 18 時 22 分 1 秒 (日本時間) |
composite number 合成数 | 500162118445276975316683743408071353384752452157703161415139636373896494964681903832586111076494635487827840585612917462788182123555837095571757905519806967778996713425613175426680693523161946689740428889656637040482820518363<225> |
prime factors 素因数 | 20228808605109313050916971712148761<35> |
composite cofactor 合成数の残り | 24725238555025331115172908983362431993195360535796177770725624063846358332923940850661717584490469724370920003220488942161464642013286482113916715803386890083611584591348766757572205582379283<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @98ee51f6288e with GMP-ECM 7.0.5-dev on Thu Aug 31 21:37:35 2023 Input number is 500162118445276975316683743408071353384752452157703161415139636373896494964681903832586111076494635487827840585612917462788182123555837095571757905519806967778996713425613175426680693523161946689740428889656637040482820518363 (225 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2631106685 Step 1 took 0ms Step 2 took 5199ms ********** Factor found in step 2: 20228808605109313050916971712148761 Found prime factor of 35 digits: 20228808605109313050916971712148761 Composite cofactor 24725238555025331115172908983362431993195360535796177770725624063846358332923940850661717584490469724370920003220488942161464642013286482113916715803386890083611584591348766757572205582379283 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | August 31, 2023 20:38:52 UTC 2023 年 9 月 1 日 (金) 5 時 38 分 52 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:37:20 UTC 2024 年 10 月 4 日 (金) 9 時 37 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2209 | 1792 | Dmitry Domanov | August 31, 2023 21:39:01 UTC 2023 年 9 月 1 日 (金) 6 時 39 分 1 秒 (日本時間) |
417 | Thomas Kozlowski | October 4, 2024 00:40:40 UTC 2024 年 10 月 4 日 (金) 9 時 40 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | August 31, 2023 21:38:47 UTC 2023 年 9 月 1 日 (金) 6 時 38 分 47 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:44:17 UTC 2024 年 10 月 4 日 (金) 9 時 44 分 17 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 2, 2023 09:21:41 UTC 2023 年 9 月 2 日 (土) 18 時 21 分 41 秒 (日本時間) |
composite number 合成数 | 26390302344096392859014805877532667148317720776186151068754943853861391704327869766719487557317370003263178723132834060165617728070345951940144973055125614398611049828848307344078619145979998386982153806054099414441209<218> |
prime factors 素因数 | 43129871637857941123241311524490084656699681059<47> 611879918532655194102452540350152542938917078342015201674038908943729320144117037439904161070749346188829285437942415353255559737206800437168191471414001401281518546540851<171> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @98ee51f6288e with GMP-ECM 7.0.5-dev on Thu Aug 31 21:31:43 2023 Input number is 26390302344096392859014805877532667148317720776186151068754943853861391704327869766719487557317370003263178723132834060165617728070345951940144973055125614398611049828848307344078619145979998386982153806054099414441209 (218 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:586630725 Step 1 took 0ms Step 2 took 5051ms ********** Factor found in step 2: 43129871637857941123241311524490084656699681059 Found prime factor of 47 digits: 43129871637857941123241311524490084656699681059 Prime cofactor 611879918532655194102452540350152542938917078342015201674038908943729320144117037439904161070749346188829285437942415353255559737206800437168191471414001401281518546540851 has 171 digits Resuming ECM residue saved by @98ee51f6288e with GMP-ECM 7.0.5-dev on Thu Aug 31 21:34:39 2023 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | August 31, 2023 20:39:01 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | August 31, 2023 21:40:57 UTC 2023 年 9 月 1 日 (金) 6 時 40 分 57 秒 (日本時間) |
406 | Thomas Kozlowski | October 4, 2024 00:47:34 UTC 2024 年 10 月 4 日 (金) 9 時 47 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 4, 2023 11:50:19 UTC 2023 年 9 月 4 日 (月) 20 時 50 分 19 秒 (日本時間) |
composite number 合成数 | 525431543489943543399801520100506013239233132387290773802990809136939555296112184844983521677121158347377294744957854979831598342681363018803900119401182950531334673480575318888742121282172920260357499183036142618166715192003863890011213441<240> |
prime factors 素因数 | 1036411815121843044836409393740581841<37> 506971780737729777799358644472381651098817009792625211367702663278350388705744986640910232432156588737086856279673311907818996214279752366013067918224290497697105643961680285618689361141073545246575047601<204> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @2665a3643e9a with GMP-ECM 7.0.5-dev on Sat Sep 2 09:28:50 2023 Input number is 525431543489943543399801520100506013239233132387290773802990809136939555296112184844983521677121158347377294744957854979831598342681363018803900119401182950531334673480575318888742121282172920260357499183036142618166715192003863890011213441 (240 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1346276046 Step 1 took 0ms Step 2 took 9217ms ********** Factor found in step 2: 1036411815121843044836409393740581841 Found prime factor of 37 digits: 1036411815121843044836409393740581841 Prime cofactor 506971780737729777799358644472381651098817009792625211367702663278350388705744986640910232432156588737086856279673311907818996214279752366013067918224290497697105643961680285618689361141073545246575047601 has 204 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | August 31, 2023 21:41:07 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | August 31, 2023 20:39:11 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 11 秒 (日本時間) |
409 | Thomas Kozlowski | October 4, 2024 00:50:30 UTC 2024 年 10 月 4 日 (金) 9 時 50 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | August 31, 2023 20:39:19 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 19 秒 (日本時間) |
408 | Thomas Kozlowski | October 4, 2024 00:53:23 UTC 2024 年 10 月 4 日 (金) 9 時 53 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2208 | 1792 | Dmitry Domanov | August 31, 2023 21:41:17 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 17 秒 (日本時間) |
416 | Thomas Kozlowski | October 4, 2024 00:57:05 UTC 2024 年 10 月 4 日 (金) 9 時 57 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | August 31, 2023 20:39:27 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 27 秒 (日本時間) |
413 | Thomas Kozlowski | October 4, 2024 00:59:41 UTC 2024 年 10 月 4 日 (金) 9 時 59 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | 1792 | Dmitry Domanov | August 31, 2023 21:41:27 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 27 秒 (日本時間) |
412 | Thomas Kozlowski | October 4, 2024 01:03:01 UTC 2024 年 10 月 4 日 (金) 10 時 3 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | August 31, 2023 21:41:36 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 36 秒 (日本時間) |
404 | Thomas Kozlowski | October 4, 2024 01:06:41 UTC 2024 年 10 月 4 日 (金) 10 時 6 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | August 31, 2023 21:41:45 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 45 秒 (日本時間) |
401 | Thomas Kozlowski | October 4, 2024 01:10:21 UTC 2024 年 10 月 4 日 (金) 10 時 10 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | August 31, 2023 21:41:54 UTC 2023 年 9 月 1 日 (金) 6 時 41 分 54 秒 (日本時間) |
402 | Thomas Kozlowski | October 4, 2024 01:14:06 UTC 2024 年 10 月 4 日 (金) 10 時 14 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | August 31, 2023 20:39:35 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 35 秒 (日本時間) |
403 | Thomas Kozlowski | October 4, 2024 01:16:39 UTC 2024 年 10 月 4 日 (金) 10 時 16 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | August 31, 2023 22:13:40 UTC 2023 年 9 月 1 日 (金) 7 時 13 分 40 秒 (日本時間) |
composite number 合成数 | 37847133587057891434945814212285990765436241120491782876551103933914896825917045200632480090052981320061949216976695357954399738601896851395485740201941058813852086920602584682928853993644384697<194> |
prime factors 素因数 | 222602744758783510936077981373879<33> |
composite cofactor 合成数の残り | 170020965500985856218223327890631957824597835722072685887489001042539872580026553432203228932663049983108742863660651571181326060542994706766622240077460274480143<162> |
factorization results 素因数分解の結果 | GPU: factor 222602744758783510936077981373879 found in Step 1 with curve 1077 (-sigma 3:-236231504) Computing 1792 Step 1 took 170ms of CPU time / 175168ms of GPU time Throughput: 10.230 curves per second (on average 97.75ms per Step 1) ********** Factor found in step 1: 222602744758783510936077981373879 Found prime factor of 33 digits: 222602744758783510936077981373879 Composite cofactor 170020965500985856218223327890631957824597835722072685887489001042539872580026553432203228932663049983108742863660651571181326060542994706766622240077460274480143 has 162 digits Peak memory usage: 9426MB |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 3, 2023 16:07:41 UTC 2023 年 9 月 4 日 (月) 1 時 7 分 41 秒 (日本時間) |
composite number 合成数 | 170020965500985856218223327890631957824597835722072685887489001042539872580026553432203228932663049983108742863660651571181326060542994706766622240077460274480143<162> |
prime factors 素因数 | 951533278558326952322946359002654457<36> |
composite cofactor 合成数の残り | 178681050187320311491274354302984776180948517945849907989343105000983632730990046673478609427660963734508661153752070285417799<126> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3719881846 Step 1 took 4531ms Step 2 took 1922ms ********** Factor found in step 2: 951533278558326952322946359002654457 Found prime factor of 36 digits: 951533278558326952322946359002654457 Composite cofactor 178681050187320311491274354302984776180948517945849907989343105000983632730990046673478609427660963734508661153752070285417799 has 126 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 9, 2023 19:38:07 UTC 2023 年 9 月 10 日 (日) 4 時 38 分 7 秒 (日本時間) |
composite number 合成数 | 178681050187320311491274354302984776180948517945849907989343105000983632730990046673478609427660963734508661153752070285417799<126> |
prime factors 素因数 | 18281022408631373010630310771757654876893667<44> 9774127846534238051929118136983510646842690820845695918648607022974223543299896397<82> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 178681050187320311491274354302984776180948517945849907989343105000983632730990046673478609427660963734508661153752070285417799 (126 digits) Using B1=54420000, B2=288595837546, polynomial Dickson(12), sigma=1:3731285692 Step 1 took 85084ms Step 2 took 31358ms ********** Factor found in step 2: 18281022408631373010630310771757654876893667 Found prime factor of 44 digits: 18281022408631373010630310771757654876893667 Prime cofactor 9774127846534238051929118136983510646842690820845695918648607022974223543299896397 has 82 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | August 31, 2023 20:39:44 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2210 | 1792 | Dmitry Domanov | August 31, 2023 20:39:53 UTC 2023 年 9 月 1 日 (金) 5 時 39 分 53 秒 (日本時間) |
418 | Thomas Kozlowski | October 4, 2024 01:19:34 UTC 2024 年 10 月 4 日 (金) 10 時 19 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3584 | 1792 | Dmitry Domanov | April 4, 2023 12:52:35 UTC 2023 年 4 月 4 日 (火) 21 時 52 分 35 秒 (日本時間) |
1792 | Dmitry Domanov | August 31, 2023 21:42:04 UTC 2023 年 9 月 1 日 (金) 6 時 42 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | August 31, 2023 21:42:14 UTC 2023 年 9 月 1 日 (金) 6 時 42 分 14 秒 (日本時間) |
403 | Thomas Kozlowski | October 4, 2024 01:23:40 UTC 2024 年 10 月 4 日 (金) 10 時 23 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 4, 2023 23:08:55 UTC 2023 年 4 月 5 日 (水) 8 時 8 分 55 秒 (日本時間) |
composite number 合成数 | 1750245821042281219272369714847590953785644051130776794493608652900688298918387413962635201573254670599803343166175024582104228121927236971484759095378564405113077679449360865290068829891838741396263520157325467059980334316617502458210422812192723697148475909537856440511307767944936086529<289> |
prime factors 素因数 | 32464850727928376030612471877565310411<38> 53912024290831127472473616113895523491815061796059780840718046332811359974405335946574540044962522653498073626920651186904785084090175464273135954168657192443567063668188056965453382767812430214389837714962267281108640909845175901181892854272188525539<251> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @16d064e11eba with GMP-ECM 7.0.5-dev on Tue Apr 4 13:10:22 2023 Input number is 1750245821042281219272369714847590953785644051130776794493608652900688298918387413962635201573254670599803343166175024582104228121927236971484759095378564405113077679449360865290068829891838741396263520157325467059980334316617502458210422812192723697148475909537856440511307767944936086529 (289 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:620464274 Step 1 took 1ms Step 2 took 7897ms ********** Factor found in step 2: 32464850727928376030612471877565310411 Found prime factor of 38 digits: 32464850727928376030612471877565310411 Prime cofactor 53912024290831127472473616113895523491815061796059780840718046332811359974405335946574540044962522653498073626920651186904785084090175464273135954168657192443567063668188056965453382767812430214389837714962267281108640909845175901181892854272188525539 has 251 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | April 4, 2023 12:52:47 UTC 2023 年 4 月 4 日 (火) 21 時 52 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | August 31, 2023 21:42:29 UTC 2023 年 9 月 1 日 (金) 6 時 42 分 29 秒 (日本時間) |
410 | Thomas Kozlowski | October 4, 2024 01:27:21 UTC 2024 年 10 月 4 日 (金) 10 時 27 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 4, 2023 22:20:58 UTC 2023 年 4 月 5 日 (水) 7 時 20 分 58 秒 (日本時間) |
composite number 合成数 | 10040128752343668344939907660217124325424174337547823334099630070154697783672231941223748068604809718051616189789409874584519583536352630760661000833543074590041315455225843797974484582946282609925352083047587102518132303<221> |
prime factors 素因数 | 196903623346935194788210270667960657<36> |
composite cofactor 合成数の残り | 50990066011397971387310900386697261854645137497853805843149182107345609629747621856752580574307268975863848451089206953451018430315198523991599731987533136813482987058756313518550437279<185> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @16d064e11eba with GMP-ECM 7.0.5-dev on Tue Apr 4 13:13:18 2023 Input number is 10040128752343668344939907660217124325424174337547823334099630070154697783672231941223748068604809718051616189789409874584519583536352630760661000833543074590041315455225843797974484582946282609925352083047587102518132303 (221 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1497862811 Step 1 took 0ms Step 2 took 5754ms ********** Factor found in step 2: 196903623346935194788210270667960657 Found prime factor of 36 digits: 196903623346935194788210270667960657 Composite cofactor 50990066011397971387310900386697261854645137497853805843149182107345609629747621856752580574307268975863848451089206953451018430315198523991599731987533136813482987058756313518550437279 has 185 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2599 | 1792 | Dmitry Domanov | April 4, 2023 12:52:55 UTC 2023 年 4 月 4 日 (火) 21 時 52 分 55 秒 (日本時間) |
807 | ccc | July 21, 2023 05:06:56 UTC 2023 年 7 月 21 日 (金) 14 時 6 分 56 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | July 23, 2023 09:05:34 UTC 2023 年 7 月 23 日 (日) 18 時 5 分 34 秒 (日本時間) | |
50 | 43e6 | 1792 / 6444 | Dmitry Domanov | April 16, 2024 05:42:02 UTC 2024 年 4 月 16 日 (火) 14 時 42 分 2 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 1, 2023 21:16:13 UTC 2023 年 9 月 2 日 (土) 6 時 16 分 13 秒 (日本時間) |
composite number 合成数 | 247287240432833163456976291352087589117669480447797309754536257823115356338009929280385653037272733728373015125145797927540460210057460039814153250962817506181552735279639868258750321777398642237414444637770971963165052092926368917300185807161062820378557156688813<264> |
prime factors 素因数 | 15270321195236325222144496652849026222073783<44> |
composite cofactor 合成数の残り | 16193977668916093685805845778278436053428131150797650661905165416128341584708458832263509409621792822060835250690982965264112497929263019224242736184295642265935317492355677431983054583753040611818291251931765063762708411<221> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @98ee51f6288e with GMP-ECM 7.0.5-dev on Fri Sep 1 08:27:56 2023 Input number is 247287240432833163456976291352087589117669480447797309754536257823115356338009929280385653037272733728373015125145797927540460210057460039814153250962817506181552735279639868258750321777398642237414444637770971963165052092926368917300185807161062820378557156688813 (264 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2461033297 Step 1 took 0ms Step 2 took 6293ms ********** Factor found in step 2: 15270321195236325222144496652849026222073783 Found prime factor of 44 digits: 15270321195236325222144496652849026222073783 Composite cofactor 16193977668916093685805845778278436053428131150797650661905165416128341584708458832263509409621792822060835250690982965264112497929263019224242736184295642265935317492355677431983054583753040611818291251931765063762708411 has 221 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | August 31, 2023 21:42:54 UTC 2023 年 9 月 1 日 (金) 6 時 42 分 54 秒 (日本時間) |
2350 | Ignacio Santos | October 7, 2024 06:31:13 UTC 2024 年 10 月 7 日 (月) 15 時 31 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | September 2, 2023 11:03:51 UTC 2023 年 9 月 2 日 (土) 20 時 3 分 51 秒 (日本時間) |
composite number 合成数 | 98931867567973860224568646215200762000090282460878718206973613087347414836770539766833172721813098777348008908721893740531539749786261559206909112915384350135095467684951969528975566342595938402280171655736128499018639034636305839713461<236> |
prime factors 素因数 | 23295813133812278504072006086165609<35> 4246766017554503169386564105494405769041840946365079145931819162959834666159091976738297849896041371827961723290085554613783714233126013528657558444724953422981523116541669671420952692566600390070021229<202> |
factorization results 素因数分解の結果 | GPU: factor 23295813133812278504072006086165609 found in Step 1 with curve 1581 (-sigma 3:-1368002471) Computing 1792 Step 1 took 299ms of CPU time / 267815ms of GPU time Throughput: 6.691 curves per second (on average 149.45ms per Step 1) ********** Factor found in step 1: 23295813133812278504072006086165609 Found prime factor of 35 digits: 23295813133812278504072006086165609 Prime cofactor 4246766017554503169386564105494405769041840946365079145931819162959834666159091976738297849896041371827961723290085554613783714233126013528657558444724953422981523116541669671420952692566600390070021229 has 202 digits Peak memory usage: 9426MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | August 31, 2023 21:43:35 UTC 2023 年 9 月 1 日 (金) 6 時 43 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | August 31, 2023 21:43:08 UTC 2023 年 9 月 1 日 (金) 6 時 43 分 8 秒 (日本時間) |
286 | ebina | September 22, 2024 02:48:17 UTC 2024 年 9 月 22 日 (日) 11 時 48 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | August 31, 2023 21:43:18 UTC 2023 年 9 月 1 日 (金) 6 時 43 分 18 秒 (日本時間) |
286 | ebina | September 22, 2024 02:45:50 UTC 2024 年 9 月 22 日 (日) 11 時 45 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 30, 2023 16:55:49 UTC 2023 年 3 月 31 日 (金) 1 時 55 分 49 秒 (日本時間) |
286 | ebina | September 22, 2024 02:45:01 UTC 2024 年 9 月 22 日 (日) 11 時 45 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 09:01:46 UTC 2023 年 2 月 23 日 (木) 18 時 1 分 46 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | February 23, 2023 09:01:46 UTC 2023 年 2 月 23 日 (木) 18 時 1 分 46 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | February 23, 2023 09:01:46 UTC 2023 年 2 月 23 日 (木) 18 時 1 分 46 秒 (日本時間) |