name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 07:20:10 UTC 2023 年 2 月 22 日 (水) 16 時 20 分 10 秒 (日本時間) |
composite number 合成数 | 6927285089023731496961103800915657449175466003679110270778125839382980079985654316988366617943662730121<103> |
prime factors 素因数 | 25093592573343534935993563827830508533<38> 276057924698373397610887082317952402996062320393601771116020336837<66> |
factorization results 素因数分解の結果 | N=6927285089023731496961103800915657449175466003679110270778125839382980079985654316988366617943662730121 ( 103 digits) SNFS difficulty: 117 digits. Divisors found: r1=25093592573343534935993563827830508533 (pp38) r2=276057924698373397610887082317952402996062320393601771116020336837 (pp66) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 6927285089023731496961103800915657449175466003679110270778125839382980079985654316988366617943662730121 m: 50000000000000000000000000000 deg: 4 c4: 332 c0: 85 skew: 0.71 # Murphy_E = 4.274e-08 type: snfs lss: 1 rlim: 630000 alim: 630000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 630000/630000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [315000, 855001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 82289 x 82516 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117.000,4,0,0,0,0,0,0,0,0,630000,630000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 07:25:36 UTC 2023 年 2 月 22 日 (水) 16 時 25 分 36 秒 (日本時間) |
composite number 合成数 | 737970003036404967738967203004674733417741132827823200578316985190951519463405921353278349772898961818717<105> |
prime factors 素因数 | 7202852344981088803600061025457373177934510173<46> 102455245185002125571527966697140126534553661290952766716929<60> |
factorization results 素因数分解の結果 | N=737970003036404967738967203004674733417741132827823200578316985190951519463405921353278349772898961818717 ( 105 digits) SNFS difficulty: 117 digits. Divisors found: r1=7202852344981088803600061025457373177934510173 (pp46) r2=102455245185002125571527966697140126534553661290952766716929 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 737970003036404967738967203004674733417741132827823200578316985190951519463405921353278349772898961818717 m: 100000000000000000000000000000 deg: 4 c4: 83 c0: 34 skew: 0.80 # Murphy_E = 5.61e-08 type: snfs lss: 1 rlim: 650000 alim: 650000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [325000, 525001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52442 x 52669 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117.000,4,0,0,0,0,0,0,0,0,650000,650000,25,25,45,45,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 12:12:59 UTC 2023 年 2 月 22 日 (水) 21 時 12 分 59 秒 (日本時間) |
composite number 合成数 | 3567951675852585505751068025679717651822522907989530145120358376022917429999624779188861711920849527<100> |
prime factors 素因数 | 541678577927707206118528717328916646251187<42> 6586842864457465732161428546738011119635050471613880875821<58> |
factorization results 素因数分解の結果 | N=3567951675852585505751068025679717651822522907989530145120358376022917429999624779188861711920849527 ( 100 digits) SNFS difficulty: 125 digits. Divisors found: r1=541678577927707206118528717328916646251187 (pp42) r2=6586842864457465732161428546738011119635050471613880875821 (pp58) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 3567951675852585505751068025679717651822522907989530145120358376022917429999624779188861711920849527 m: 5000000000000000000000000000000 deg: 4 c4: 332 c0: 85 skew: 0.71 # Murphy_E = 1.786e-08 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 880001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 100965 x 101190 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125.000,4,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,75000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 13:05:42 UTC 2023 年 2 月 25 日 (土) 22 時 5 分 42 秒 (日本時間) |
composite number 合成数 | 393775500521871145269949710598728532118796849795995825030837840402315210171743049625201632033399753297276781478318626055603<123> |
prime factors 素因数 | 543581850736561619914488146586806753921<39> 608683689730052995044569188170421603922009<42> 1190123633962157762088763734792734666789227<43> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 393775500521871145269949710598728532118796849795995825030837840402315210171743049625201632033399753297276781478318626055603 (123 digits) Using B1=31890000, B2=144291357226, polynomial Dickson(12), sigma=1:588091635 Step 1 took 49845ms Step 2 took 18765ms ********** Factor found in step 2: 608683689730052995044569188170421603922009 Found prime factor of 42 digits: 608683689730052995044569188170421603922009 Composite cofactor 646929607554471938037754317380269587361905671724493434462150129556373859362809067 has 81 digits GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 646929607554471938037754317380269587361905671724493434462150129556373859362809067 (81 digits) Using B1=30840000, B2=144289975846, polynomial Dickson(12), sigma=1:1094456603 Step 1 took 31941ms Step 2 took 13927ms ********** Factor found in step 2: 543581850736561619914488146586806753921 Found prime factor of 39 digits: 543581850736561619914488146586806753921 Prime cofactor 1190123633962157762088763734792734666789227 has 43 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 21, 2023 03:23:18 UTC 2023 年 2 月 21 日 (火) 12 時 23 分 18 秒 (日本時間) |
composite number 合成数 | 1127411029611518609073621298560173865797337679978266775332790002716653083401249660418364574843792447704428144525944036946481934257<130> |
prime factors 素因数 | 10352345113725238739577853222859684901353<41> 108903926330352551762608247938764376190577678495980705305825069004539858883383494321695369<90> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1127411029611518609073621298560173865797337679978266775332790002716653083401249660418364574843792447704428144525944036946481934257 (130 digits) Using B1=33970000, B2=144293429296, polynomial Dickson(12), sigma=1:3911292294 Step 1 took 53514ms Step 2 took 19775ms ********** Factor found in step 2: 10352345113725238739577853222859684901353 Found prime factor of 41 digits: 10352345113725238739577853222859684901353 Prime cofactor 108903926330352551762608247938764376190577678495980705305825069004539858883383494321695369 has 90 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 6, 2023 23:39:17 UTC 2023 年 3 月 7 日 (火) 8 時 39 分 17 秒 (日本時間) |
composite number 合成数 | 17443689759673028396887506347089591811933015513263126177747540505885270458560355794020900207816774683<101> |
prime factors 素因数 | 680036579472154610922048637927289895940189<42> 25651105082042565914906636414789716876385486687513351532247<59> |
factorization results 素因数分解の結果 | 25651105082042565914906636414789716876385486687513351532247 680036579472154610922048637927289895940189 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 13, 2023 20:36:46 UTC 2023 年 3 月 14 日 (火) 5 時 36 分 46 秒 (日本時間) |
composite number 合成数 | 358217587718193764957245554676850395752554550799784914797546526357413862602644704592142496333126562560216932955241<114> |
prime factors 素因数 | 2595822085555470988587115251635076238819099<43> 137997742492255597907158639514547914711862087718951577712893738030931659<72> |
factorization results 素因数分解の結果 | N=358217587718193764957245554676850395752554550799784914797546526357413862602644704592142496333126562560216932955241 ( 114 digits) SNFS difficulty: 134 digits. Divisors found: r1=2595822085555470988587115251635076238819099 (pp43) r2=137997742492255597907158639514547914711862087718951577712893738030931659 (pp72) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 358217587718193764957245554676850395752554550799784914797546526357413862602644704592142496333126562560216932955241 m: 1000000000000000000000000000000000 deg: 4 c4: 415 c0: 17 skew: 0.45 # Murphy_E = 7.727e-09 type: snfs lss: 1 rlim: 1230000 alim: 1230000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1230000/1230000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [615000, 1415001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 162115 x 162340 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134.000,4,0,0,0,0,0,0,0,0,1230000,1230000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 28, 2023 03:08:49 UTC 2023 年 2 月 28 日 (火) 12 時 8 分 49 秒 (日本時間) |
composite number 合成数 | 227392858962387354787046695471651590872151273155830103499765210787046504184239103138579301576632464402727597807955528228049<123> |
prime factors 素因数 | 27897499493071343653241382839751528612666492289080848561<56> 8151012208777453952813927873303195839831505828924105207316103231009<67> |
factorization results 素因数分解の結果 | Number: n N=227392858962387354787046695471651590872151273155830103499765210787046504184239103138579301576632464402727597807955528228049 ( 123 digits) SNFS difficulty: 138 digits. Divisors found: Tue Feb 28 13:58:16 2023 prp56 factor: 27897499493071343653241382839751528612666492289080848561 Tue Feb 28 13:58:16 2023 prp67 factor: 8151012208777453952813927873303195839831505828924105207316103231009 Tue Feb 28 13:58:16 2023 elapsed time 00:03:02 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 83x10^137+34 = 92(136)6 # n: 227392858962387354787046695471651590872151273155830103499765210787046504184239103138579301576632464402727597807955528228049 m: 10000000000000000000000000000000000 deg: 4 c4: 415 c0: 17 skew: 0.45 # Murphy_E = 4.9e-09 type: snfs lss: 1 rlim: 1430000 alim: 1430000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1430000/1430000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 4715000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 472091 hash collisions in 6722853 relations (6990624 unique) Msieve: matrix is 204415 x 204663 (54.8 MB) Sieving start time: 2023/02/28 13:09:01 Sieving end time : 2023/02/28 13:55:02 Total sieving time: 0hrs 46min 1secs. Total relation processing time: 0hrs 1min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 27sec. Prototype def-par.txt line would be: snfs,138,4,0,0,0,0,0,0,0,0,1430000,1430000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 12, 2023 09:20:08 UTC 2023 年 3 月 12 日 (日) 18 時 20 分 8 秒 (日本時間) |
composite number 合成数 | 17389800953213596787042437909109012401738084211915763906573911940198065056437894586858576886397643933504121471<110> |
prime factors 素因数 | 167060238215029383514138170503861671925408006234022869<54> 104092997466162736543896926646107650232905753763350233859<57> |
factorization results 素因数分解の結果 | 104092997466162736543896926646107650232905753763350233859 167060238215029383514138170503861671925408006234022869 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2023 19:54:46 UTC 2023 年 2 月 23 日 (木) 4 時 54 分 46 秒 (日本時間) |
composite number 合成数 | 4080629301868239921337266470009832841691248770894788593903638151425762045231071779744346116027531956735496558505408062930186823992133726647001<142> |
prime factors 素因数 | 1836389251530597767755616061188110486480072070535595207690677670066813<70> 2222093871692566269150829656092506802353035286379094683884874581071604877<73> |
factorization results 素因数分解の結果 | Number: n N=4080629301868239921337266470009832841691248770894788593903638151425762045231071779744346116027531956735496558505408062930186823992133726647001 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: Thu Feb 23 06:49:41 2023 prp70 factor: 1836389251530597767755616061188110486480072070535595207690677670066813 Thu Feb 23 06:49:41 2023 prp73 factor: 2222093871692566269150829656092506802353035286379094683884874581071604877 Thu Feb 23 06:49:41 2023 elapsed time 00:04:42 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.068). Factorization parameters were as follows: # # N = 83x10^143+34 = 92(142)6 # n: 4080629301868239921337266470009832841691248770894788593903638151425762045231071779744346116027531956735496558505408062930186823992133726647001 m: 500000000000000000000000000000000000 deg: 4 c4: 332 c0: 85 skew: 0.71 # Murphy_E = 1.849e-09 type: snfs lss: 1 rlim: 1850000 alim: 1850000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1850000/1850000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12125000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 644308 hash collisions in 7276081 relations (7401168 unique) Msieve: matrix is 335258 x 335484 (91.5 MB) Sieving start time: 2023/02/23 05:34:04 Sieving end time : 2023/02/23 06:44:50 Total sieving time: 1hrs 10min 46secs. Total relation processing time: 0hrs 2min 52sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 24sec. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1850000,1850000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 23, 2023 06:15:06 UTC 2023 年 2 月 23 日 (木) 15 時 15 分 6 秒 (日本時間) |
composite number 合成数 | 305239009830836467200181795941161128163674541046118517864399901467376595233309657818905755513953317304828393488623789912124336926173002807<138> |
prime factors 素因数 | 2641657860012207359527639358613856208848700064923312586249897347<64> 115548275365768195227217346522047040369606675873686078660376348234269189181<75> |
factorization results 素因数分解の結果 | Number: n N=305239009830836467200181795941161128163674541046118517864399901467376595233309657818905755513953317304828393488623789912124336926173002807 ( 138 digits) SNFS difficulty: 145 digits. Divisors found: Thu Feb 23 17:10:49 2023 prp64 factor: 2641657860012207359527639358613856208848700064923312586249897347 Thu Feb 23 17:10:49 2023 prp75 factor: 115548275365768195227217346522047040369606675873686078660376348234269189181 Thu Feb 23 17:10:49 2023 elapsed time 00:04:08 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: # # N = 83x10^144+34 = 92(143)6 # n: 305239009830836467200181795941161128163674541046118517864399901467376595233309657818905755513953317304828393488623789912124336926173002807 m: 1000000000000000000000000000000000000 deg: 4 c4: 83 c0: 34 skew: 0.80 # Murphy_E = 2.404e-09 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 19345000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 488522 hash collisions in 6845145 relations (7115434 unique) Msieve: matrix is 297583 x 297808 (82.2 MB) Sieving start time: 2023/02/23 15:23:17 Sieving end time : 2023/02/23 17:06:28 Total sieving time: 1hrs 43min 11secs. Total relation processing time: 0hrs 2min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 23, 2023 23:23:40 UTC 2023 年 2 月 24 日 (金) 8 時 23 分 40 秒 (日本時間) |
composite number 合成数 | 859838243133833719991283988831804450689629677675439240278752817335200216707884221926434588111297166250824878458762152413574974628411<132> |
prime factors 素因数 | 2285276896601725318083737946325662138129480092791761319<55> 376251229954864003039085472668005747813990561846586328812756533274520287374669<78> |
factorization results 素因数分解の結果 | Number: n N=859838243133833719991283988831804450689629677675439240278752817335200216707884221926434588111297166250824878458762152413574974628411 ( 132 digits) SNFS difficulty: 147 digits. Divisors found: Fri Feb 24 10:19:31 2023 prp55 factor: 2285276896601725318083737946325662138129480092791761319 Fri Feb 24 10:19:31 2023 prp78 factor: 376251229954864003039085472668005747813990561846586328812756533274520287374669 Fri Feb 24 10:19:31 2023 elapsed time 00:05:03 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 83x10^146+34 = 92(145)6 # n: 859838243133833719991283988831804450689629677675439240278752817335200216707884221926434588111297166250824878458762152413574974628411 m: 1000000000000000000000000000000000000 deg: 4 c4: 4150 c0: 17 skew: 0.25 # Murphy_E = 1.613e-09 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 484083 hash collisions in 6058898 relations (6249609 unique) Msieve: matrix is 346895 x 347128 (98.0 MB) Sieving start time: 2023/02/24 09:13:53 Sieving end time : 2023/02/24 10:14:21 Total sieving time: 1hrs 0min 28secs. Total relation processing time: 0hrs 3min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 40sec. Prototype def-par.txt line would be: snfs,147,4,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 15, 2023 14:56:56 UTC 2023 年 3 月 15 日 (水) 23 時 56 分 56 秒 (日本時間) |
composite number 合成数 | 2736851703312518122454049381302661713880472436454638125957065360301711626877678893897537285280010999588047921207836347<118> |
prime factors 素因数 | 2797564643440207431754597165956210185039984870669<49> 978297931284608425983891207568121436875400013200544979455162391621863<69> |
factorization results 素因数分解の結果 | 2797564643440207431754597165956210185039984870669 978297931284608425983891207568121436875400013200544979455162391621863 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 22:55:12 UTC 2023 年 2 月 26 日 (日) 7 時 55 分 12 秒 (日本時間) |
composite number 合成数 | 89372133569177855154993903017065599233220489908672822302084072342245804584788791075729579669526707836846065804900383095259694217<128> |
prime factors 素因数 | 526019288654443909236199269492421102896404309000913827<54> 169902768770688163379002761752158604705107460690605196915329360504766937571<75> |
factorization results 素因数分解の結果 | Number: n N=89372133569177855154993903017065599233220489908672822302084072342245804584788791075729579669526707836846065804900383095259694217 ( 128 digits) SNFS difficulty: 150 digits. Divisors found: Sun Feb 26 09:50:14 2023 prp54 factor: 526019288654443909236199269492421102896404309000913827 Sun Feb 26 09:50:14 2023 prp75 factor: 169902768770688163379002761752158604705107460690605196915329360504766937571 Sun Feb 26 09:50:14 2023 elapsed time 00:08:31 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.081). Factorization parameters were as follows: # # N = 83x10^149+34 = 92(148)6 # n: 89372133569177855154993903017065599233220489908672822302084072342245804584788791075729579669526707836846065804900383095259694217 m: 10000000000000000000000000000000000000 deg: 4 c4: 415 c0: 17 skew: 0.45 # Murphy_E = 1.215e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 19550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1271932 hash collisions in 14108123 relations (14270514 unique) Msieve: matrix is 491245 x 491493 (82.4 MB) Sieving start time: 2023/02/26 07:54:22 Sieving end time : 2023/02/26 09:41:33 Total sieving time: 1hrs 47min 11secs. Total relation processing time: 0hrs 5min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 15sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 26, 2023 10:13:53 UTC 2023 年 2 月 26 日 (日) 19 時 13 分 53 秒 (日本時間) |
composite number 合成数 | 67513550177336246409434504998097389344100535876074730708079046102547661960446900439481774579881087899894758782962589358734866067335102796253<140> |
prime factors 素因数 | 2129865568918467367692358820945497430159054999461536331273<58> 31698503024122415305922497802860191190756427287887646444216245104171927017990558261<83> |
factorization results 素因数分解の結果 | Number: n N=67513550177336246409434504998097389344100535876074730708079046102547661960446900439481774579881087899894758782962589358734866067335102796253 ( 140 digits) SNFS difficulty: 151 digits. Divisors found: Sun Feb 26 21:10:16 2023 prp58 factor: 2129865568918467367692358820945497430159054999461536331273 Sun Feb 26 21:10:16 2023 prp83 factor: 31698503024122415305922497802860191190756427287887646444216245104171927017990558261 Sun Feb 26 21:10:16 2023 elapsed time 00:09:50 (Msieve 1.44 - dependency 8) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 83x10^150+34 = 92(149)6 # n: 67513550177336246409434504998097389344100535876074730708079046102547661960446900439481774579881087899894758782962589358734866067335102796253 m: 1000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 1.056e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 12400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1148902 hash collisions in 13685522 relations (13435473 unique) Msieve: matrix is 441970 x 442218 (83.4 MB) Sieving start time: 2023/02/26 19:32:27 Sieving end time : 2023/02/26 21:00:17 Total sieving time: 1hrs 27min 50secs. Total relation processing time: 0hrs 4min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 36sec. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 13, 2023 07:53:09 UTC 2023 年 3 月 13 日 (月) 16 時 53 分 9 秒 (日本時間) |
composite number 合成数 | 876750314461574574274643802324262473919925373816351316433136944751977178094436113145657487502477757096645761231<111> |
prime factors 素因数 | 802214971198085946893927458830739458343433<42> 1092911932511272068059518092069765655582403715518066855727164474448407<70> |
factorization results 素因数分解の結果 | 1092911932511272068059518092069765655582403715518066855727164474448407 802214971198085946893927458830739458343433 |
software ソフトウェア | CADO-NFS |
execution environment 実行環境 | 10 x Xeon L5640, Debian sid amd64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 00:42:40 UTC 2023 年 3 月 1 日 (水) 9 時 42 分 40 秒 (日本時間) |
composite number 合成数 | 146074199568824161475136816087197356697602366247159164806156545290974349757740339840393345788710745242759304319336644325057825143832928567006118467443<150> |
prime factors 素因数 | 1562462470333166279345663137017430374127542032033<49> 93489733252713925916128786288980875464792958070051627744904913412023478582494778380774891197973690771<101> |
factorization results 素因数分解の結果 | Number: n N=146074199568824161475136816087197356697602366247159164806156545290974349757740339840393345788710745242759304319336644325057825143832928567006118467443 ( 150 digits) SNFS difficulty: 156 digits. Divisors found: Wed Mar 1 11:37:43 2023 prp49 factor: 1562462470333166279345663137017430374127542032033 Wed Mar 1 11:37:43 2023 prp101 factor: 93489733252713925916128786288980875464792958070051627744904913412023478582494778380774891197973690771 Wed Mar 1 11:37:43 2023 elapsed time 00:09:00 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.106). Factorization parameters were as follows: # # N = 83x10^155+34 = 92(154)6 # n: 146074199568824161475136816087197356697602366247159164806156545290974349757740339840393345788710745242759304319336644325057825143832928567006118467443 m: 10000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 6.8e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1085185 hash collisions in 12848016 relations (12595448 unique) Msieve: matrix is 488466 x 488695 (133.8 MB) Sieving start time: 2023/03/01 09:51:41 Sieving end time : 2023/03/01 11:28:34 Total sieving time: 1hrs 36min 53secs. Total relation processing time: 0hrs 6min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 26sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 4, 2023 23:40:49 UTC 2023 年 3 月 5 日 (日) 8 時 40 分 49 秒 (日本時間) |
composite number 合成数 | 118537582183250015247889744034403992427798970533969795110933201533148435884254920546439450394410182112556654851499658788599915172029607133<138> |
prime factors 素因数 | 361354637612751536316140056385340271466495493502335328392048879239<66> 328036698148818896958355810688316388368627291683342536869878812534081147<72> |
factorization results 素因数分解の結果 | Number: n N=118537582183250015247889744034403992427798970533969795110933201533148435884254920546439450394410182112556654851499658788599915172029607133 ( 138 digits) SNFS difficulty: 157 digits. Divisors found: Sun Mar 5 10:35:47 2023 prp66 factor: 361354637612751536316140056385340271466495493502335328392048879239 Sun Mar 5 10:35:47 2023 prp72 factor: 328036698148818896958355810688316388368627291683342536869878812534081147 Sun Mar 5 10:35:47 2023 elapsed time 00:12:18 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 83x10^156+34 = 92(155)6 # n: 118537582183250015247889744034403992427798970533969795110933201533148435884254920546439450394410182112556654851499658788599915172029607133 m: 10000000000000000000000000000000 deg: 5 c5: 415 c0: 17 skew: 0.53 # Murphy_E = 6.153e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 55900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 859202 hash collisions in 12701356 relations (12712775 unique) Msieve: matrix is 571849 x 572083 (157.8 MB) Sieving start time: 2023/03/05 04:40:39 Sieving end time : 2023/03/05 10:23:09 Total sieving time: 5hrs 42min 30secs. Total relation processing time: 0hrs 8min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 10sec. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 7, 2023 12:42:59 UTC 2023 年 3 月 7 日 (火) 21 時 42 分 59 秒 (日本時間) |
composite number 合成数 | 2878062370254042328981715495377668449736504647615569380839706837694732568293913010508554006232486796114661242047938481169<121> |
prime factors 素因数 | 1816770347934099370527993830880533457457279595736289514521<58> 1584164103914822227501843217301688791460973214944498577847432889<64> |
factorization results 素因数分解の結果 | Number: n N=2878062370254042328981715495377668449736504647615569380839706837694732568293913010508554006232486796114661242047938481169 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: Tue Mar 7 23:38:54 2023 prp58 factor: 1816770347934099370527993830880533457457279595736289514521 Tue Mar 7 23:38:54 2023 prp64 factor: 1584164103914822227501843217301688791460973214944498577847432889 Tue Mar 7 23:38:54 2023 elapsed time 00:10:20 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.073). Factorization parameters were as follows: # # N = 83x10^159+34 = 92(158)6 # n: 2878062370254042328981715495377668449736504647615569380839706837694732568293913010508554006232486796114661242047938481169 m: 50000000000000000000000000000000 deg: 5 c5: 664 c0: 85 skew: 0.66 # Murphy_E = 4.225e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 12900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1866861 hash collisions in 15313416 relations (14342350 unique) Msieve: matrix is 514953 x 515195 (142.5 MB) Sieving start time: 2023/03/07 22:29:37 Sieving end time : 2023/03/07 23:28:19 Total sieving time: 0hrs 58min 42secs. Total relation processing time: 0hrs 6min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 29sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 5, 2023 20:06:00 UTC 2023 年 3 月 6 日 (月) 5 時 6 分 0 秒 (日本時間) |
composite number 合成数 | 3275132492722833168594168949374824953046635179779638195087583790417532120427868675331467675811538964160509240012923436059718560683284499529489730964123007<154> |
prime factors 素因数 | 232152227348979385523367085720472841066458799219914695435233971<63> 14107693603126791989908606461086273205339691442527276762351518739651368093275726226816960517<92> |
factorization results 素因数分解の結果 | Number: n N=3275132492722833168594168949374824953046635179779638195087583790417532120427868675331467675811538964160509240012923436059718560683284499529489730964123007 ( 154 digits) SNFS difficulty: 161 digits. Divisors found: Mon Mar 6 03:49:35 2023 prp63 factor: 232152227348979385523367085720472841066458799219914695435233971 Mon Mar 6 03:49:35 2023 prp92 factor: 14107693603126791989908606461086273205339691442527276762351518739651368093275726226816960517 Mon Mar 6 03:49:35 2023 elapsed time 00:10:16 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 83x10^160+34 = 92(159)6 # n: 3275132492722833168594168949374824953046635179779638195087583790417532120427868675331467675811538964160509240012923436059718560683284499529489730964123007 m: 100000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 4.356e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 12950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1341819 hash collisions in 13064412 relations (12519048 unique) Msieve: matrix is 529813 x 530039 (147.6 MB) Sieving start time: 2023/03/06 02:37:01 Sieving end time : 2023/03/06 03:39:02 Total sieving time: 1hrs 2min 1secs. Total relation processing time: 0hrs 7min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 8, 2023 03:39:10 UTC 2023 年 3 月 8 日 (水) 12 時 39 分 10 秒 (日本時間) |
composite number 合成数 | 3398243885822280852164927011453310176143672838368875688963240827402783612112160063018999868164514309063321156975120760486038949606909162074943151064632961000443<160> |
prime factors 素因数 | 122307941857889191377918327158342577667415528947<48> 27784327282448543442046098143579864967054404443222829050916943147346144730269395885323755408206436758646837777369<113> |
factorization results 素因数分解の結果 | Number: n N=3398243885822280852164927011453310176143672838368875688963240827402783612112160063018999868164514309063321156975120760486038949606909162074943151064632961000443 ( 160 digits) SNFS difficulty: 166 digits. Divisors found: Wed Mar 8 14:18:37 2023 prp48 factor: 122307941857889191377918327158342577667415528947 Wed Mar 8 14:18:37 2023 prp113 factor: 27784327282448543442046098143579864967054404443222829050916943147346144730269395885323755408206436758646837777369 Wed Mar 8 14:18:37 2023 elapsed time 00:14:01 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.083). Factorization parameters were as follows: # # N = 83x10^164+34 = 92(163)6 # n: 3398243885822280852164927011453310176143672838368875688963240827402783612112160063018999868164514309063321156975120760486038949606909162074943151064632961000443 m: 500000000000000000000000000000000 deg: 5 c5: 664 c0: 85 skew: 0.66 # Murphy_E = 2.697e-10 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1541016 hash collisions in 12920384 relations (12109331 unique) Msieve: matrix is 638283 x 638509 (179.6 MB) Sieving start time: 2023/03/08 12:52:54 Sieving end time : 2023/03/08 14:04:22 Total sieving time: 1hrs 11min 28secs. Total relation processing time: 0hrs 10min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 40sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 10, 2023 01:59:52 UTC 2023 年 3 月 10 日 (金) 10 時 59 分 52 秒 (日本時間) |
composite number 合成数 | 45584601175868156515176886771446812582938731482873852549326711359225577966766185274581042640835737653806226202645692601233461277233482656898721199<146> |
prime factors 素因数 | 4460286053064978945149915236239066988033785667151507314819806649889<67> 10220107103790740825889672857033395594656837015795081334129793420388117128931791<80> |
factorization results 素因数分解の結果 | Number: n N=45584601175868156515176886771446812582938731482873852549326711359225577966766185274581042640835737653806226202645692601233461277233482656898721199 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: Fri Mar 10 12:50:14 2023 prp67 factor: 4460286053064978945149915236239066988033785667151507314819806649889 Fri Mar 10 12:50:14 2023 prp80 factor: 10220107103790740825889672857033395594656837015795081334129793420388117128931791 Fri Mar 10 12:50:14 2023 elapsed time 00:19:29 (Msieve 1.44 - dependency 9) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 83x10^165+34 = 92(164)6 # n: 45584601175868156515176886771446812582938731482873852549326711359225577966766185274581042640835737653806226202645692601233461277233482656898721199 m: 1000000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 2.777e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2085287 hash collisions in 15815278 relations (14614961 unique) Msieve: matrix is 615854 x 616080 (170.4 MB) Sieving start time: 2023/03/10 11:02:51 Sieving end time : 2023/03/10 12:30:29 Total sieving time: 1hrs 27min 38secs. Total relation processing time: 0hrs 10min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 40sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 13, 2023 01:13:37 UTC 2023 年 3 月 13 日 (月) 10 時 13 分 37 秒 (日本時間) |
composite number 合成数 | 8093948598658602405696540226828560931221430106236301013421002005807515539814323777927123022688446265652162215168917409274537842398147297593662376259097<151> |
prime factors 素因数 | 58893878680477453237303397726421164812475641<44> 137432765170238991076321006473522572127007448154058839554191297802822835516065022837868727125581530057245217<108> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 8093948598658602405696540226828560931221430106236301013421002005807515539814323777927123022688446265652162215168917409274537842398147297593662376259097 (151 digits) Using B1=31440000, B2=144290666536, polynomial Dickson(12), sigma=1:357064349 Step 1 took 63163ms Step 2 took 22895ms ********** Factor found in step 2: 58893878680477453237303397726421164812475641 Found prime factor of 44 digits: 58893878680477453237303397726421164812475641 Prime cofactor 137432765170238991076321006473522572127007448154058839554191297802822835516065022837868727125581530057245217 has 108 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 23, 2023 10:29:54 UTC 2023 年 2 月 23 日 (木) 19 時 29 分 54 秒 (日本時間) |
composite number 合成数 | 937155097004781562375459862623757386410206615098072114594692950770289937621429286446484942701196520904155173518499<114> |
prime factors 素因数 | 42554246590245130140298870664268320075029661732599826911<56> 22022598732122992091222659392011405389145410435692337573309<59> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 86 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 84 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 80 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 77 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 76 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 84 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 82 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 129 Thu Feb 23 11:15:45 2023 Thu Feb 23 11:15:45 2023 Thu Feb 23 11:15:45 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 11:15:45 2023 random seeds: 8b078930 1834106a Thu Feb 23 11:15:45 2023 factoring 937155097004781562375459862623757386410206615098072114594692950770289937621429286446484942701196520904155173518499 (114 digits) Thu Feb 23 11:15:45 2023 searching for 15-digit factors Thu Feb 23 11:15:45 2023 commencing number field sieve (114-digit input) Thu Feb 23 11:15:45 2023 R0: -8388693865170274370783 Thu Feb 23 11:15:45 2023 R1: 396957927671 Thu Feb 23 11:15:45 2023 A0: 27165577947809831303399928 Thu Feb 23 11:15:45 2023 A1: 6677364398486060736162 Thu Feb 23 11:15:45 2023 A2: -282795310615668091 Thu Feb 23 11:15:45 2023 A3: -42405347322932 Thu Feb 23 11:15:45 2023 A4: 711328778 Thu Feb 23 11:15:45 2023 A5: 22560 Thu Feb 23 11:15:45 2023 skew 21861.19, size 6.975e-011, alpha -5.017, combined = 6.590e-010 rroots = 5 Thu Feb 23 11:15:45 2023 Thu Feb 23 11:15:45 2023 commencing relation filtering Thu Feb 23 11:15:45 2023 estimated available RAM is 65413.5 MB Thu Feb 23 11:15:45 2023 commencing duplicate removal, pass 1 Thu Feb 23 11:15:59 2023 found 665976 hash collisions in 7060215 relations Thu Feb 23 11:16:07 2023 added 56882 free relations Thu Feb 23 11:16:07 2023 commencing duplicate removal, pass 2 Thu Feb 23 11:16:09 2023 found 398495 duplicates and 6718602 unique relations Thu Feb 23 11:16:09 2023 memory use: 24.6 MB Thu Feb 23 11:16:09 2023 reading ideals above 100000 Thu Feb 23 11:16:09 2023 commencing singleton removal, initial pass Thu Feb 23 11:16:33 2023 memory use: 188.3 MB Thu Feb 23 11:16:33 2023 reading all ideals from disk Thu Feb 23 11:16:33 2023 memory use: 229.9 MB Thu Feb 23 11:16:33 2023 keeping 7741598 ideals with weight <= 200, target excess is 36204 Thu Feb 23 11:16:33 2023 commencing in-memory singleton removal Thu Feb 23 11:16:33 2023 begin with 6718602 relations and 7741598 unique ideals Thu Feb 23 11:16:35 2023 reduce to 1803134 relations and 1827466 ideals in 20 passes Thu Feb 23 11:16:35 2023 max relations containing the same ideal: 84 Thu Feb 23 11:16:35 2023 filtering wants 1000000 more relations Thu Feb 23 11:16:35 2023 elapsed time 00:00:50 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 88 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 131 Thu Feb 23 11:18:51 2023 Thu Feb 23 11:18:51 2023 Thu Feb 23 11:18:51 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 11:18:51 2023 random seeds: 598e4444 c0faeb2a Thu Feb 23 11:18:51 2023 factoring 937155097004781562375459862623757386410206615098072114594692950770289937621429286446484942701196520904155173518499 (114 digits) Thu Feb 23 11:18:52 2023 searching for 15-digit factors Thu Feb 23 11:18:52 2023 commencing number field sieve (114-digit input) Thu Feb 23 11:18:52 2023 R0: -8388693865170274370783 Thu Feb 23 11:18:52 2023 R1: 396957927671 Thu Feb 23 11:18:52 2023 A0: 27165577947809831303399928 Thu Feb 23 11:18:52 2023 A1: 6677364398486060736162 Thu Feb 23 11:18:52 2023 A2: -282795310615668091 Thu Feb 23 11:18:52 2023 A3: -42405347322932 Thu Feb 23 11:18:52 2023 A4: 711328778 Thu Feb 23 11:18:52 2023 A5: 22560 Thu Feb 23 11:18:52 2023 skew 21861.19, size 6.975e-011, alpha -5.017, combined = 6.590e-010 rroots = 5 Thu Feb 23 11:18:52 2023 Thu Feb 23 11:18:52 2023 commencing relation filtering Thu Feb 23 11:18:52 2023 estimated available RAM is 65413.5 MB Thu Feb 23 11:18:52 2023 commencing duplicate removal, pass 1 Thu Feb 23 11:19:07 2023 found 808864 hash collisions in 7903027 relations Thu Feb 23 11:19:15 2023 added 971 free relations Thu Feb 23 11:19:15 2023 commencing duplicate removal, pass 2 Thu Feb 23 11:19:17 2023 found 482571 duplicates and 7421427 unique relations Thu Feb 23 11:19:17 2023 memory use: 24.6 MB Thu Feb 23 11:19:17 2023 reading ideals above 100000 Thu Feb 23 11:19:17 2023 commencing singleton removal, initial pass Thu Feb 23 11:19:44 2023 memory use: 188.3 MB Thu Feb 23 11:19:44 2023 reading all ideals from disk Thu Feb 23 11:19:44 2023 memory use: 254.1 MB Thu Feb 23 11:19:44 2023 keeping 8117034 ideals with weight <= 200, target excess is 40296 Thu Feb 23 11:19:45 2023 commencing in-memory singleton removal Thu Feb 23 11:19:45 2023 begin with 7421427 relations and 8117034 unique ideals Thu Feb 23 11:19:48 2023 reduce to 2581470 relations and 2387650 ideals in 17 passes Thu Feb 23 11:19:48 2023 max relations containing the same ideal: 96 Thu Feb 23 11:19:48 2023 removing 479231 relations and 405693 ideals in 73538 cliques Thu Feb 23 11:19:48 2023 commencing in-memory singleton removal Thu Feb 23 11:19:48 2023 begin with 2102239 relations and 2387650 unique ideals Thu Feb 23 11:19:49 2023 reduce to 2029925 relations and 1907159 ideals in 12 passes Thu Feb 23 11:19:49 2023 max relations containing the same ideal: 85 Thu Feb 23 11:19:49 2023 removing 373303 relations and 299765 ideals in 73538 cliques Thu Feb 23 11:19:49 2023 commencing in-memory singleton removal Thu Feb 23 11:19:49 2023 begin with 1656622 relations and 1907159 unique ideals Thu Feb 23 11:19:49 2023 reduce to 1599807 relations and 1548467 ideals in 8 passes Thu Feb 23 11:19:49 2023 max relations containing the same ideal: 73 Thu Feb 23 11:19:50 2023 relations with 0 large ideals: 130 Thu Feb 23 11:19:50 2023 relations with 1 large ideals: 401 Thu Feb 23 11:19:50 2023 relations with 2 large ideals: 5819 Thu Feb 23 11:19:50 2023 relations with 3 large ideals: 43817 Thu Feb 23 11:19:50 2023 relations with 4 large ideals: 172637 Thu Feb 23 11:19:50 2023 relations with 5 large ideals: 377753 Thu Feb 23 11:19:50 2023 relations with 6 large ideals: 475821 Thu Feb 23 11:19:50 2023 relations with 7+ large ideals: 523429 Thu Feb 23 11:19:50 2023 commencing 2-way merge Thu Feb 23 11:19:50 2023 reduce to 915900 relation sets and 864560 unique ideals Thu Feb 23 11:19:50 2023 commencing full merge Thu Feb 23 11:20:00 2023 memory use: 101.5 MB Thu Feb 23 11:20:00 2023 found 452750 cycles, need 442760 Thu Feb 23 11:20:00 2023 weight of 442760 cycles is about 31207676 (70.48/cycle) Thu Feb 23 11:20:00 2023 distribution of cycle lengths: Thu Feb 23 11:20:00 2023 1 relations: 47279 Thu Feb 23 11:20:00 2023 2 relations: 45890 Thu Feb 23 11:20:00 2023 3 relations: 47876 Thu Feb 23 11:20:00 2023 4 relations: 44898 Thu Feb 23 11:20:00 2023 5 relations: 42071 Thu Feb 23 11:20:00 2023 6 relations: 37363 Thu Feb 23 11:20:00 2023 7 relations: 32768 Thu Feb 23 11:20:00 2023 8 relations: 28825 Thu Feb 23 11:20:00 2023 9 relations: 24781 Thu Feb 23 11:20:00 2023 10+ relations: 91009 Thu Feb 23 11:20:00 2023 heaviest cycle: 20 relations Thu Feb 23 11:20:00 2023 commencing cycle optimization Thu Feb 23 11:20:00 2023 start with 2721313 relations Thu Feb 23 11:20:03 2023 pruned 60449 relations Thu Feb 23 11:20:03 2023 memory use: 91.0 MB Thu Feb 23 11:20:03 2023 distribution of cycle lengths: Thu Feb 23 11:20:03 2023 1 relations: 47279 Thu Feb 23 11:20:03 2023 2 relations: 46870 Thu Feb 23 11:20:03 2023 3 relations: 49344 Thu Feb 23 11:20:03 2023 4 relations: 45966 Thu Feb 23 11:20:03 2023 5 relations: 43043 Thu Feb 23 11:20:03 2023 6 relations: 37768 Thu Feb 23 11:20:03 2023 7 relations: 33426 Thu Feb 23 11:20:03 2023 8 relations: 29023 Thu Feb 23 11:20:03 2023 9 relations: 24699 Thu Feb 23 11:20:03 2023 10+ relations: 85342 Thu Feb 23 11:20:03 2023 heaviest cycle: 20 relations Thu Feb 23 11:20:04 2023 RelProcTime: 72 Thu Feb 23 11:20:04 2023 elapsed time 00:01:13 Thu Feb 23 11:20:04 2023 Thu Feb 23 11:20:04 2023 Thu Feb 23 11:20:04 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 11:20:04 2023 random seeds: cb61cb80 c1c8b4b9 Thu Feb 23 11:20:04 2023 factoring 937155097004781562375459862623757386410206615098072114594692950770289937621429286446484942701196520904155173518499 (114 digits) Thu Feb 23 11:20:05 2023 searching for 15-digit factors Thu Feb 23 11:20:05 2023 commencing number field sieve (114-digit input) Thu Feb 23 11:20:05 2023 R0: -8388693865170274370783 Thu Feb 23 11:20:05 2023 R1: 396957927671 Thu Feb 23 11:20:05 2023 A0: 27165577947809831303399928 Thu Feb 23 11:20:05 2023 A1: 6677364398486060736162 Thu Feb 23 11:20:05 2023 A2: -282795310615668091 Thu Feb 23 11:20:05 2023 A3: -42405347322932 Thu Feb 23 11:20:05 2023 A4: 711328778 Thu Feb 23 11:20:05 2023 A5: 22560 Thu Feb 23 11:20:05 2023 skew 21861.19, size 6.975e-011, alpha -5.017, combined = 6.590e-010 rroots = 5 Thu Feb 23 11:20:05 2023 Thu Feb 23 11:20:05 2023 commencing linear algebra Thu Feb 23 11:20:05 2023 read 442760 cycles Thu Feb 23 11:20:05 2023 cycles contain 1525112 unique relations Thu Feb 23 11:20:09 2023 read 1525112 relations Thu Feb 23 11:20:10 2023 using 20 quadratic characters above 134208164 Thu Feb 23 11:20:14 2023 building initial matrix Thu Feb 23 11:20:21 2023 memory use: 189.8 MB Thu Feb 23 11:20:21 2023 read 442760 cycles Thu Feb 23 11:20:21 2023 matrix is 442581 x 442760 (133.0 MB) with weight 41716512 (94.22/col) Thu Feb 23 11:20:21 2023 sparse part has weight 29996678 (67.75/col) Thu Feb 23 11:20:23 2023 filtering completed in 2 passes Thu Feb 23 11:20:23 2023 matrix is 441672 x 441851 (132.9 MB) with weight 41676132 (94.32/col) Thu Feb 23 11:20:23 2023 sparse part has weight 29981533 (67.85/col) Thu Feb 23 11:20:24 2023 matrix starts at (0, 0) Thu Feb 23 11:20:24 2023 matrix is 441672 x 441851 (132.9 MB) with weight 41676132 (94.32/col) Thu Feb 23 11:20:24 2023 sparse part has weight 29981533 (67.85/col) Thu Feb 23 11:20:24 2023 saving the first 48 matrix rows for later Thu Feb 23 11:20:24 2023 matrix includes 64 packed rows Thu Feb 23 11:20:24 2023 matrix is 441624 x 441851 (127.9 MB) with weight 33167058 (75.06/col) Thu Feb 23 11:20:24 2023 sparse part has weight 29119381 (65.90/col) Thu Feb 23 11:20:24 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Thu Feb 23 11:20:25 2023 commencing Lanczos iteration (32 threads) Thu Feb 23 11:20:25 2023 memory use: 99.8 MB Thu Feb 23 11:20:31 2023 linear algebra at 2.7%, ETA 0h 3m Thu Feb 23 11:23:29 2023 lanczos halted after 6984 iterations (dim = 441622) Thu Feb 23 11:23:29 2023 recovered 29 nontrivial dependencies Thu Feb 23 11:23:29 2023 BLanczosTime: 204 Thu Feb 23 11:23:29 2023 elapsed time 00:03:25 Thu Feb 23 11:23:29 2023 Thu Feb 23 11:23:29 2023 Thu Feb 23 11:23:29 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 11:23:29 2023 random seeds: ed4469ec 0338a200 Thu Feb 23 11:23:29 2023 factoring 937155097004781562375459862623757386410206615098072114594692950770289937621429286446484942701196520904155173518499 (114 digits) Thu Feb 23 11:23:30 2023 searching for 15-digit factors Thu Feb 23 11:23:30 2023 commencing number field sieve (114-digit input) Thu Feb 23 11:23:30 2023 R0: -8388693865170274370783 Thu Feb 23 11:23:30 2023 R1: 396957927671 Thu Feb 23 11:23:30 2023 A0: 27165577947809831303399928 Thu Feb 23 11:23:30 2023 A1: 6677364398486060736162 Thu Feb 23 11:23:30 2023 A2: -282795310615668091 Thu Feb 23 11:23:30 2023 A3: -42405347322932 Thu Feb 23 11:23:30 2023 A4: 711328778 Thu Feb 23 11:23:30 2023 A5: 22560 Thu Feb 23 11:23:30 2023 skew 21861.19, size 6.975e-011, alpha -5.017, combined = 6.590e-010 rroots = 5 Thu Feb 23 11:23:30 2023 Thu Feb 23 11:23:30 2023 commencing square root phase Thu Feb 23 11:23:30 2023 reading relations for dependency 1 Thu Feb 23 11:23:30 2023 read 221487 cycles Thu Feb 23 11:23:30 2023 cycles contain 764328 unique relations Thu Feb 23 11:23:32 2023 read 764328 relations Thu Feb 23 11:23:34 2023 multiplying 764328 relations Thu Feb 23 11:23:49 2023 multiply complete, coefficients have about 33.17 million bits Thu Feb 23 11:23:49 2023 initial square root is modulo 58031 Thu Feb 23 11:24:08 2023 sqrtTime: 38 Thu Feb 23 11:24:08 2023 prp56 factor: 42554246590245130140298870664268320075029661732599826911 Thu Feb 23 11:24:08 2023 prp59 factor: 22022598732122992091222659392011405389145410435692337573309 Thu Feb 23 11:24:08 2023 elapsed time 00:00:39 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 15:30:44 UTC 2023 年 3 月 12 日 (日) 0 時 30 分 44 秒 (日本時間) |
composite number 合成数 | 26106073179067203518033589751519011713815265564544746503316709880392639149142988037579300095764879644050955465957252560206907767689096179231<140> |
prime factors 素因数 | 4035112604111025189025737592957828682289804833<46> 6469726062283862093436583316475289513836539678709256905190167347006144368695836893604242463807<94> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 26106073179067203518033589751519011713815265564544746503316709880392639149142988037579300095764879644050955465957252560206907767689096179231 (140 digits) Using B1=30330000, B2=144289285156, polynomial Dickson(12), sigma=1:2237251698 Step 1 took 62476ms Step 2 took 22427ms ********** Factor found in step 2: 4035112604111025189025737592957828682289804833 Found prime factor of 46 digits: 4035112604111025189025737592957828682289804833 Prime cofactor 6469726062283862093436583316475289513836539678709256905190167347006144368695836893604242463807 has 94 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 06:55:36 UTC 2023 年 3 月 11 日 (土) 15 時 55 分 36 秒 (日本時間) |
composite number 合成数 | 108512316156473228592746832329979653755857510612707359691656175905774715980877563145517806510388953107301237990692294582650171462027345242305720473273097020721541623<165> |
prime factors 素因数 | 79732361191450937761009403695253414780987<41> 1360957013375243361094422790789502506511764105947457274351472523128138705190097550863640132044564517948166865361030151239029<124> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 108512316156473228592746832329979653755857510612707359691656175905774715980877563145517806510388953107301237990692294582650171462027345242305720473273097020721541623 (165 digits) Using B1=31210000, B2=144290666536, polynomial Dickson(12), sigma=1:4221671195 Step 1 took 77070ms Step 2 took 26498ms ********** Factor found in step 2: 79732361191450937761009403695253414780987 Found prime factor of 41 digits: 79732361191450937761009403695253414780987 Prime cofactor 1360957013375243361094422790789502506511764105947457274351472523128138705190097550863640132044564517948166865361030151239029 has 124 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 13, 2023 01:08:02 UTC 2023 年 3 月 13 日 (月) 10 時 8 分 2 秒 (日本時間) |
composite number 合成数 | 2690664545288646741035440432398495917248411957612544896646611349818149222581504843566488279815124366477692004753952479222591290433923606724456678077910508992435646523<166> |
prime factors 素因数 | 2400016816979441364022166116870623042594841<43> 1121102371555463595147856614402448582216067940964982946211795669532971883170958272894086005620202781364248630724591414982003<124> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2690664545288646741035440432398495917248411957612544896646611349818149222581504843566488279815124366477692004753952479222591290433923606724456678077910508992435646523 (166 digits) Using B1=30820000, B2=144289975846, polynomial Dickson(12), sigma=1:2325445096 Step 1 took 74397ms Step 2 took 25635ms ********** Factor found in step 2: 2400016816979441364022166116870623042594841 Found prime factor of 43 digits: 2400016816979441364022166116870623042594841 Prime cofactor 1121102371555463595147856614402448582216067940964982946211795669532971883170958272894086005620202781364248630724591414982003 has 124 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 16, 2023 10:50:15 UTC 2023 年 3 月 16 日 (木) 19 時 50 分 15 秒 (日本時間) |
composite number 合成数 | 45482314008793182113575202687888481890731864974584209363987302246737712157906255180099825297154738245056416186680790074257881092832825319904352767939895363621896474567<167> |
prime factors 素因数 | 1089757004338959949546869256121238743<37> 56593728979834111126112089436337428324092771<44> 737470364015232141717011326311543311674488125725803357988962940252938285038639467414139<87> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 45482314008793182113575202687888481890731864974584209363987302246737712157906255180099825297154738245056416186680790074257881092832825319904352767939895363621896474567 (167 digits) Using B1=31610000, B2=144290666536, polynomial Dickson(12), sigma=1:1894945235 Step 1 took 75372ms Step 2 took 25467ms ********** Factor found in step 2: 1089757004338959949546869256121238743 Found prime factor of 37 digits: 1089757004338959949546869256121238743 Composite cofactor 41736197911737654291905296515445807246042459900740800710338978129002796720989263638220122866771372308246532947306729158704513089169 has 131 digits GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 41736197911737654291905296515445807246042459900740800710338978129002796720989263638220122866771372308246532947306729158704513089169 (131 digits) Using B1=42620000, B2=240489969736, polynomial Dickson(12), sigma=1:1830191249 Step 1 took 68128ms Step 2 took 28425ms ********** Factor found in step 2: 56593728979834111126112089436337428324092771 Found prime factor of 44 digits: 56593728979834111126112089436337428324092771 Prime cofactor 737470364015232141717011326311543311674488125725803357988962940252938285038639467414139 has 87 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 29, 2023 09:08:41 UTC 2023 年 4 月 29 日 (土) 18 時 8 分 41 秒 (日本時間) |
composite number 合成数 | 203606424825360229459646140043479898254431926719178412247804274760702324587883606429560634614556333936834020515798130702578224378234663128659<141> |
prime factors 素因数 | 1119311043236616540467251485595546802808873097998653<52> 181903346755705052800856156819690137432390230518798928294256211667530085848035936854365903<90> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3450000, q1=3550000. -> client 1 q0: 3450000 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=3550001, q1=3650000. -> client 1 q0: 3550001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=3650001, q1=3750000. -> client 1 q0: 3650001 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=3750001, q1=3850000. -> client 1 q0: 3750001 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=5150001, q1=5250000. -> client 1 q0: 5150001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5250001, q1=5350000. -> client 1 q0: 5250001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=5350001, q1=5450000. -> client 1 q0: 5350001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=5450001, q1=5550000. -> client 1 q0: 5450001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=5550001, q1=5650000. -> client 1 q0: 5550001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=5650001, q1=5750000. -> client 1 q0: 5650001 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=5750001, q1=5850000. -> client 1 q0: 5750001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=5850001, q1=5950000. -> client 1 q0: 5850001 LatSieveTime: 100 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=5950001, q1=6050000. -> client 1 q0: 5950001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=6050001, q1=6150000. -> client 1 q0: 6050001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=6150001, q1=6250000. -> client 1 q0: 6150001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=6250001, q1=6350000. -> client 1 q0: 6250001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=6350001, q1=6450000. -> client 1 q0: 6350001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=6450001, q1=6550000. -> client 1 q0: 6450001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6550001, q1=6650000. -> client 1 q0: 6550001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6650001, q1=6750000. -> client 1 q0: 6650001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 95 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=8350001, q1=8450000. -> client 1 q0: 8350001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=8450001, q1=8550000. -> client 1 q0: 8450001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=8550001, q1=8650000. -> client 1 q0: 8550001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=8650001, q1=8750000. -> client 1 q0: 8650001 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=8750001, q1=8850000. -> client 1 q0: 8750001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=8850001, q1=8950000. -> client 1 q0: 8850001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=8950001, q1=9050000. -> client 1 q0: 8950001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=9050001, q1=9150000. -> client 1 q0: 9050001 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=9150001, q1=9250000. -> client 1 q0: 9150001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=9250001, q1=9350000. -> client 1 q0: 9250001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=9350001, q1=9450000. -> client 1 q0: 9350001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=9450001, q1=9550000. -> client 1 q0: 9450001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 Sat Apr 29 10:31:55 2023 Sat Apr 29 10:31:55 2023 Sat Apr 29 10:31:55 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 10:31:55 2023 random seeds: ac953e20 1140ee16 Sat Apr 29 10:31:55 2023 factoring 203606424825360229459646140043479898254431926719178412247804274760702324587883606429560634614556333936834020515798130702578224378234663128659 (141 digits) Sat Apr 29 10:31:56 2023 searching for 15-digit factors Sat Apr 29 10:31:56 2023 commencing number field sieve (141-digit input) Sat Apr 29 10:31:56 2023 R0: -100000000000000000000000000000000000 Sat Apr 29 10:31:56 2023 R1: 1 Sat Apr 29 10:31:56 2023 A0: 17 Sat Apr 29 10:31:56 2023 A1: 0 Sat Apr 29 10:31:56 2023 A2: 0 Sat Apr 29 10:31:56 2023 A3: 0 Sat Apr 29 10:31:56 2023 A4: 0 Sat Apr 29 10:31:56 2023 A5: 41500 Sat Apr 29 10:31:56 2023 skew 0.21, size 8.330e-013, alpha -0.296, combined = 7.636e-011 rroots = 1 Sat Apr 29 10:31:56 2023 Sat Apr 29 10:31:56 2023 commencing relation filtering Sat Apr 29 10:31:56 2023 estimated available RAM is 65413.5 MB Sat Apr 29 10:31:56 2023 commencing duplicate removal, pass 1 Sat Apr 29 10:32:27 2023 found 2388049 hash collisions in 18030477 relations Sat Apr 29 10:32:41 2023 added 693906 free relations Sat Apr 29 10:32:41 2023 commencing duplicate removal, pass 2 Sat Apr 29 10:32:47 2023 found 2137190 duplicates and 16587193 unique relations Sat Apr 29 10:32:47 2023 memory use: 98.6 MB Sat Apr 29 10:32:47 2023 reading ideals above 720000 Sat Apr 29 10:32:47 2023 commencing singleton removal, initial pass Sat Apr 29 10:33:45 2023 memory use: 376.5 MB Sat Apr 29 10:33:45 2023 reading all ideals from disk Sat Apr 29 10:33:46 2023 memory use: 510.8 MB Sat Apr 29 10:33:46 2023 keeping 19113760 ideals with weight <= 200, target excess is 116037 Sat Apr 29 10:33:47 2023 commencing in-memory singleton removal Sat Apr 29 10:33:48 2023 begin with 16587193 relations and 19113760 unique ideals Sat Apr 29 10:33:57 2023 reduce to 5688797 relations and 5591341 ideals in 21 passes Sat Apr 29 10:33:57 2023 max relations containing the same ideal: 86 Sat Apr 29 10:33:57 2023 filtering wants 1000000 more relations Sat Apr 29 10:33:57 2023 elapsed time 00:02:02 -> makeJobFile(): Adjusted to q0=9550001, q1=9650000. -> client 1 q0: 9550001 LatSieveTime: 93 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 Sat Apr 29 10:36:04 2023 Sat Apr 29 10:36:04 2023 Sat Apr 29 10:36:04 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 10:36:04 2023 random seeds: 0b2eb5a0 2a8154a5 Sat Apr 29 10:36:04 2023 factoring 203606424825360229459646140043479898254431926719178412247804274760702324587883606429560634614556333936834020515798130702578224378234663128659 (141 digits) Sat Apr 29 10:36:04 2023 searching for 15-digit factors Sat Apr 29 10:36:05 2023 commencing number field sieve (141-digit input) Sat Apr 29 10:36:05 2023 R0: -100000000000000000000000000000000000 Sat Apr 29 10:36:05 2023 R1: 1 Sat Apr 29 10:36:05 2023 A0: 17 Sat Apr 29 10:36:05 2023 A1: 0 Sat Apr 29 10:36:05 2023 A2: 0 Sat Apr 29 10:36:05 2023 A3: 0 Sat Apr 29 10:36:05 2023 A4: 0 Sat Apr 29 10:36:05 2023 A5: 41500 Sat Apr 29 10:36:05 2023 skew 0.21, size 8.330e-013, alpha -0.296, combined = 7.636e-011 rroots = 1 Sat Apr 29 10:36:05 2023 Sat Apr 29 10:36:05 2023 commencing relation filtering Sat Apr 29 10:36:05 2023 estimated available RAM is 65413.5 MB Sat Apr 29 10:36:05 2023 commencing duplicate removal, pass 1 Sat Apr 29 10:36:43 2023 found 2481255 hash collisions in 18988920 relations Sat Apr 29 10:36:56 2023 added 1058 free relations Sat Apr 29 10:36:56 2023 commencing duplicate removal, pass 2 Sat Apr 29 10:37:02 2023 found 2191297 duplicates and 16798681 unique relations Sat Apr 29 10:37:02 2023 memory use: 98.6 MB Sat Apr 29 10:37:02 2023 reading ideals above 720000 Sat Apr 29 10:37:02 2023 commencing singleton removal, initial pass Sat Apr 29 10:38:01 2023 memory use: 376.5 MB Sat Apr 29 10:38:01 2023 reading all ideals from disk Sat Apr 29 10:38:01 2023 memory use: 517.3 MB Sat Apr 29 10:38:02 2023 keeping 19208109 ideals with weight <= 200, target excess is 116037 Sat Apr 29 10:38:02 2023 commencing in-memory singleton removal Sat Apr 29 10:38:03 2023 begin with 16798681 relations and 19208109 unique ideals Sat Apr 29 10:38:12 2023 reduce to 5959124 relations and 5788740 ideals in 21 passes Sat Apr 29 10:38:12 2023 max relations containing the same ideal: 90 Sat Apr 29 10:38:14 2023 removing 277631 relations and 259740 ideals in 17891 cliques Sat Apr 29 10:38:14 2023 commencing in-memory singleton removal Sat Apr 29 10:38:15 2023 begin with 5681493 relations and 5788740 unique ideals Sat Apr 29 10:38:17 2023 reduce to 5669494 relations and 5516942 ideals in 9 passes Sat Apr 29 10:38:17 2023 max relations containing the same ideal: 85 Sat Apr 29 10:38:19 2023 removing 200558 relations and 182667 ideals in 17891 cliques Sat Apr 29 10:38:19 2023 commencing in-memory singleton removal Sat Apr 29 10:38:19 2023 begin with 5468936 relations and 5516942 unique ideals Sat Apr 29 10:38:21 2023 reduce to 5462609 relations and 5327924 ideals in 8 passes Sat Apr 29 10:38:21 2023 max relations containing the same ideal: 82 Sat Apr 29 10:38:22 2023 relations with 0 large ideals: 2887 Sat Apr 29 10:38:22 2023 relations with 1 large ideals: 1193 Sat Apr 29 10:38:22 2023 relations with 2 large ideals: 22286 Sat Apr 29 10:38:22 2023 relations with 3 large ideals: 155609 Sat Apr 29 10:38:22 2023 relations with 4 large ideals: 586175 Sat Apr 29 10:38:22 2023 relations with 5 large ideals: 1265700 Sat Apr 29 10:38:22 2023 relations with 6 large ideals: 1652077 Sat Apr 29 10:38:22 2023 relations with 7+ large ideals: 1776682 Sat Apr 29 10:38:22 2023 commencing 2-way merge Sat Apr 29 10:38:24 2023 reduce to 3110805 relation sets and 2976120 unique ideals Sat Apr 29 10:38:24 2023 commencing full merge Sat Apr 29 10:39:03 2023 memory use: 353.7 MB Sat Apr 29 10:39:03 2023 found 1563321 cycles, need 1550320 Sat Apr 29 10:39:04 2023 weight of 1550320 cycles is about 108624638 (70.07/cycle) Sat Apr 29 10:39:04 2023 distribution of cycle lengths: Sat Apr 29 10:39:04 2023 1 relations: 218826 Sat Apr 29 10:39:04 2023 2 relations: 193257 Sat Apr 29 10:39:04 2023 3 relations: 182357 Sat Apr 29 10:39:04 2023 4 relations: 159827 Sat Apr 29 10:39:04 2023 5 relations: 139066 Sat Apr 29 10:39:04 2023 6 relations: 114849 Sat Apr 29 10:39:04 2023 7 relations: 98643 Sat Apr 29 10:39:04 2023 8 relations: 80962 Sat Apr 29 10:39:04 2023 9 relations: 66274 Sat Apr 29 10:39:04 2023 10+ relations: 296259 Sat Apr 29 10:39:04 2023 heaviest cycle: 27 relations Sat Apr 29 10:39:04 2023 commencing cycle optimization Sat Apr 29 10:39:05 2023 start with 9199531 relations Sat Apr 29 10:39:17 2023 pruned 186910 relations Sat Apr 29 10:39:17 2023 memory use: 311.4 MB Sat Apr 29 10:39:17 2023 distribution of cycle lengths: Sat Apr 29 10:39:17 2023 1 relations: 218826 Sat Apr 29 10:39:17 2023 2 relations: 197153 Sat Apr 29 10:39:17 2023 3 relations: 187808 Sat Apr 29 10:39:17 2023 4 relations: 162813 Sat Apr 29 10:39:17 2023 5 relations: 141417 Sat Apr 29 10:39:17 2023 6 relations: 115634 Sat Apr 29 10:39:17 2023 7 relations: 98433 Sat Apr 29 10:39:17 2023 8 relations: 80221 Sat Apr 29 10:39:17 2023 9 relations: 65379 Sat Apr 29 10:39:17 2023 10+ relations: 282636 Sat Apr 29 10:39:17 2023 heaviest cycle: 26 relations Sat Apr 29 10:39:18 2023 RelProcTime: 193 Sat Apr 29 10:39:18 2023 elapsed time 00:03:14 Sat Apr 29 10:39:18 2023 Sat Apr 29 10:39:18 2023 Sat Apr 29 10:39:18 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 10:39:18 2023 random seeds: 7918c4f0 8c4ff302 Sat Apr 29 10:39:18 2023 factoring 203606424825360229459646140043479898254431926719178412247804274760702324587883606429560634614556333936834020515798130702578224378234663128659 (141 digits) Sat Apr 29 10:39:19 2023 searching for 15-digit factors Sat Apr 29 10:39:19 2023 commencing number field sieve (141-digit input) Sat Apr 29 10:39:19 2023 R0: -100000000000000000000000000000000000 Sat Apr 29 10:39:19 2023 R1: 1 Sat Apr 29 10:39:19 2023 A0: 17 Sat Apr 29 10:39:19 2023 A1: 0 Sat Apr 29 10:39:19 2023 A2: 0 Sat Apr 29 10:39:19 2023 A3: 0 Sat Apr 29 10:39:19 2023 A4: 0 Sat Apr 29 10:39:19 2023 A5: 41500 Sat Apr 29 10:39:19 2023 skew 0.21, size 8.330e-013, alpha -0.296, combined = 7.636e-011 rroots = 1 Sat Apr 29 10:39:19 2023 Sat Apr 29 10:39:19 2023 commencing linear algebra Sat Apr 29 10:39:19 2023 read 1550320 cycles Sat Apr 29 10:39:21 2023 cycles contain 5292521 unique relations Sat Apr 29 10:39:31 2023 read 5292521 relations Sat Apr 29 10:39:36 2023 using 20 quadratic characters above 268434828 Sat Apr 29 10:39:51 2023 building initial matrix Sat Apr 29 10:40:22 2023 memory use: 650.4 MB Sat Apr 29 10:40:23 2023 read 1550320 cycles Sat Apr 29 10:40:23 2023 matrix is 1550137 x 1550320 (465.9 MB) with weight 139960241 (90.28/col) Sat Apr 29 10:40:23 2023 sparse part has weight 105066844 (67.77/col) Sat Apr 29 10:40:31 2023 filtering completed in 2 passes Sat Apr 29 10:40:31 2023 matrix is 1547187 x 1547370 (465.6 MB) with weight 139852639 (90.38/col) Sat Apr 29 10:40:31 2023 sparse part has weight 105030095 (67.88/col) Sat Apr 29 10:40:33 2023 matrix starts at (0, 0) Sat Apr 29 10:40:34 2023 matrix is 1547187 x 1547370 (465.6 MB) with weight 139852639 (90.38/col) Sat Apr 29 10:40:34 2023 sparse part has weight 105030095 (67.88/col) Sat Apr 29 10:40:34 2023 saving the first 48 matrix rows for later Sat Apr 29 10:40:34 2023 matrix includes 64 packed rows Sat Apr 29 10:40:34 2023 matrix is 1547139 x 1547370 (445.7 MB) with weight 112010184 (72.39/col) Sat Apr 29 10:40:34 2023 sparse part has weight 101357388 (65.50/col) Sat Apr 29 10:40:34 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sat Apr 29 10:40:38 2023 commencing Lanczos iteration (32 threads) Sat Apr 29 10:40:38 2023 memory use: 357.6 MB Sat Apr 29 10:40:40 2023 linear algebra at 0.1%, ETA 0h33m Sat Apr 29 10:40:40 2023 checkpointing every 3650000 dimensions Sat Apr 29 11:04:37 2023 lanczos halted after 24465 iterations (dim = 1547139) Sat Apr 29 11:04:38 2023 recovered 39 nontrivial dependencies Sat Apr 29 11:04:38 2023 BLanczosTime: 1519 Sat Apr 29 11:04:38 2023 elapsed time 00:25:20 Sat Apr 29 11:04:38 2023 Sat Apr 29 11:04:38 2023 Sat Apr 29 11:04:38 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 11:04:38 2023 random seeds: c5a64af8 00e647d7 Sat Apr 29 11:04:38 2023 factoring 203606424825360229459646140043479898254431926719178412247804274760702324587883606429560634614556333936834020515798130702578224378234663128659 (141 digits) Sat Apr 29 11:04:39 2023 searching for 15-digit factors Sat Apr 29 11:04:39 2023 commencing number field sieve (141-digit input) Sat Apr 29 11:04:39 2023 R0: -100000000000000000000000000000000000 Sat Apr 29 11:04:39 2023 R1: 1 Sat Apr 29 11:04:39 2023 A0: 17 Sat Apr 29 11:04:39 2023 A1: 0 Sat Apr 29 11:04:39 2023 A2: 0 Sat Apr 29 11:04:39 2023 A3: 0 Sat Apr 29 11:04:39 2023 A4: 0 Sat Apr 29 11:04:39 2023 A5: 41500 Sat Apr 29 11:04:39 2023 skew 0.21, size 8.330e-013, alpha -0.296, combined = 7.636e-011 rroots = 1 Sat Apr 29 11:04:39 2023 Sat Apr 29 11:04:39 2023 commencing square root phase Sat Apr 29 11:04:39 2023 reading relations for dependency 1 Sat Apr 29 11:04:39 2023 read 773553 cycles Sat Apr 29 11:04:40 2023 cycles contain 2645900 unique relations Sat Apr 29 11:04:46 2023 read 2645900 relations Sat Apr 29 11:04:53 2023 multiplying 2645900 relations Sat Apr 29 11:06:01 2023 multiply complete, coefficients have about 96.44 million bits Sat Apr 29 11:06:01 2023 initial square root is modulo 8356861 Sat Apr 29 11:07:26 2023 sqrtTime: 167 Sat Apr 29 11:07:26 2023 prp52 factor: 1119311043236616540467251485595546802808873097998653 Sat Apr 29 11:07:26 2023 prp90 factor: 181903346755705052800856156819690137432390230518798928294256211667530085848035936854365903 Sat Apr 29 11:07:26 2023 elapsed time 00:02:48 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 09:06:19 UTC 2023 年 3 月 31 日 (金) 18 時 6 分 19 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 18, 2023 14:55:53 UTC 2023 年 3 月 18 日 (土) 23 時 55 分 53 秒 (日本時間) |
composite number 合成数 | 1265253395696971982463563545213063321185467797061733441847562155031901016793909542107875388662596032465963105900011036363294177033444144225728474139557492228623093419002756603<175> |
prime factors 素因数 | 40467132249192245002254486820983327396244240533635727487703642694451483<71> 31266198649948253021649767720666961506332877303145795003873059029952888454691355094559907153581149332641<104> |
factorization results 素因数分解の結果 | Number: n N=1265253395696971982463563545213063321185467797061733441847562155031901016793909542107875388662596032465963105900011036363294177033444144225728474139557492228623093419002756603 ( 175 digits) SNFS difficulty: 182 digits. Divisors found: Sun Mar 19 01:39:54 2023 prp71 factor: 40467132249192245002254486820983327396244240533635727487703642694451483 Sun Mar 19 01:39:54 2023 prp104 factor: 31266198649948253021649767720666961506332877303145795003873059029952888454691355094559907153581149332641 Sun Mar 19 01:39:54 2023 elapsed time 00:46:13 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 83x10^181+34 = 92(180)6 # n: 1265253395696971982463563545213063321185467797061733441847562155031901016793909542107875388662596032465963105900011036363294177033444144225728474139557492228623093419002756603 m: 1000000000000000000000000000000000000 deg: 5 c5: 415 c0: 17 skew: 0.53 # Murphy_E = 6.314e-11 type: snfs lss: 1 rlim: 7500000 alim: 7500000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 14950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1468493 hash collisions in 13573485 relations (12923979 unique) Msieve: matrix is 1209758 x 1209984 (342.2 MB) Sieving start time: 2023/03/18 20:29:44 Sieving end time : 2023/03/19 00:53:25 Total sieving time: 4hrs 23min 41secs. Total relation processing time: 0hrs 41min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 31sec. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7500000,7500000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 25, 2023 08:19:05 UTC 2023 年 3 月 25 日 (土) 17 時 19 分 5 秒 (日本時間) |
composite number 合成数 | 276974002651967372857205262535251957245747495325673824978027315889921729759239881183680449758599043502726559738964987549996805306785674032191854088266461447481<159> |
prime factors 素因数 | 1175426110114675590936952749381102841496421590281<49> 235637102382339923429843833656247420285245168233400632800395984902161848669675778483027574835650490137833921201<111> |
factorization results 素因数分解の結果 | Number: n N=276974002651967372857205262535251957245747495325673824978027315889921729759239881183680449758599043502726559738964987549996805306785674032191854088266461447481 ( 159 digits) SNFS difficulty: 184 digits. Divisors found: Sat Mar 25 19:04:38 2023 prp49 factor: 1175426110114675590936952749381102841496421590281 Sat Mar 25 19:04:38 2023 prp111 factor: 235637102382339923429843833656247420285245168233400632800395984902161848669675778483027574835650490137833921201 Sat Mar 25 19:04:38 2023 elapsed time 01:15:52 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: # # N = 83x10^183+34 = 92(182)6 # n: 276974002651967372857205262535251957245747495325673824978027315889921729759239881183680449758599043502726559738964987549996805306785674032191854088266461447481 m: 1000000000000000000000000000000000000 deg: 5 c5: 41500 c0: 17 skew: 0.21 # Murphy_E = 4.794e-11 type: snfs lss: 1 rlim: 8400000 alim: 8400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1228174 hash collisions in 12068139 relations (11570991 unique) Msieve: matrix is 1561476 x 1561705 (449.0 MB) Sieving start time: 2023/03/25 13:19:57 Sieving end time : 2023/03/25 17:48:33 Total sieving time: 4hrs 28min 36secs. Total relation processing time: 1hrs 9min 56sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 48sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8400000,8400000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 23, 2023 15:15:52 UTC 2023 年 3 月 24 日 (金) 0 時 15 分 52 秒 (日本時間) |
composite number 合成数 | 1370381610518473805120372850682082050844288207434545652332404815857554035073859868533911364474147819417094575852852172060297469404171443092987254023365741584476816331<166> |
prime factors 素因数 | 1535824254679878238324266875672803921682090115258339007199971231677598382389<76> 892277619879177704938593620965540766743363737198915570473203015789038529210377927442868479<90> |
factorization results 素因数分解の結果 | Number: n N=1370381610518473805120372850682082050844288207434545652332404815857554035073859868533911364474147819417094575852852172060297469404171443092987254023365741584476816331 ( 166 digits) SNFS difficulty: 186 digits. Divisors found: Fri Mar 24 02:07:50 2023 prp76 factor: 1535824254679878238324266875672803921682090115258339007199971231677598382389 Fri Mar 24 02:07:50 2023 prp90 factor: 892277619879177704938593620965540766743363737198915570473203015789038529210377927442868479 Fri Mar 24 02:07:50 2023 elapsed time 01:10:46 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 83x10^184+34 = 92(183)6 # n: 1370381610518473805120372850682082050844288207434545652332404815857554035073859868533911364474147819417094575852852172060297469404171443092987254023365741584476816331 m: 5000000000000000000000000000000000000 deg: 5 c5: 664 c0: 85 skew: 0.66 # Murphy_E = 4.27e-11 type: snfs lss: 1 rlim: 8900000 alim: 8900000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8900000/8900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1426249 hash collisions in 12920465 relations (12256429 unique) Msieve: matrix is 1493231 x 1493457 (423.4 MB) Sieving start time: 2023/03/23 19:28:49 Sieving end time : 2023/03/24 00:56:46 Total sieving time: 5hrs 27min 57secs. Total relation processing time: 1hrs 3min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 21sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8900000,8900000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 22, 2023 01:28:56 UTC 2023 年 3 月 22 日 (水) 10 時 28 分 56 秒 (日本時間) |
composite number 合成数 | 42016373329295554944790033606186818898576850005301029412480790494453677799055026105890356150905165114278766934821002390804384556364524626873980483709633<152> |
prime factors 素因数 | 421965217335476589330790445348481781542037<42> 99573072858019764394929406318746578737074126261728428565742933622033546131494380818205382886620500539616054909<110> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 42016373329295554944790033606186818898576850005301029412480790494453677799055026105890356150905165114278766934821002390804384556364524626873980483709633 (152 digits) Using B1=31010000, B2=144289975846, polynomial Dickson(12), sigma=1:142692207 Step 1 took 60768ms Step 2 took 22487ms ********** Factor found in step 2: 421965217335476589330790445348481781542037 Found prime factor of 42 digits: 421965217335476589330790445348481781542037 Prime cofactor 99573072858019764394929406318746578737074126261728428565742933622033546131494380818205382886620500539616054909 has 110 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 24, 2023 05:32:52 UTC 2023 年 3 月 24 日 (金) 14 時 32 分 52 秒 (日本時間) |
composite number 合成数 | 354700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701<186> |
prime factors 素因数 | 287807542843933473417068466947747084115001880895422459<54> 1232423762059616334230734369128530514406735648651526387827121296780719902737464762345844999628970446626074252985550370225955221893239<133> |
factorization results 素因数分解の結果 | Number: n N=354700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701 ( 186 digits) SNFS difficulty: 187 digits. Divisors found: Fri Mar 24 16:14:12 2023 prp54 factor: 287807542843933473417068466947747084115001880895422459 Fri Mar 24 16:14:12 2023 prp133 factor: 1232423762059616334230734369128530514406735648651526387827121296780719902737464762345844999628970446626074252985550370225955221893239 Fri Mar 24 16:14:12 2023 elapsed time 01:36:50 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.109). Factorization parameters were as follows: # # N = 83x10^186+34 = 92(185)6 # n: 354700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854700854701 m: 10000000000000000000000000000000000000 deg: 5 c5: 415 c0: 17 skew: 0.53 # Murphy_E = 3.95e-11 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1358174 hash collisions in 12387809 relations (11759517 unique) Msieve: matrix is 1725300 x 1725527 (491.2 MB) Sieving start time: 2023/03/24 08:57:27 Sieving end time : 2023/03/24 14:37:07 Total sieving time: 5hrs 39min 40secs. Total relation processing time: 1hrs 25min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 37sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9400000,9400000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 28, 2023 16:53:22 UTC 2023 年 3 月 29 日 (水) 1 時 53 分 22 秒 (日本時間) |
composite number 合成数 | 1057530994552314547580451635654136176308077423080255151345722607964341353157140812911237018353760086213774653282532172647003882022795058994436765911118668359580179403283839<172> |
prime factors 素因数 | 887387619310648008158551428803233672021<39> 378668211086672614272051292190903386927584307438764943139<57> 3147174991529636464724583659497702279414171502638673571090700951481608795681<76> |
factorization results 素因数分解の結果 | Number: n N=1057530994552314547580451635654136176308077423080255151345722607964341353157140812911237018353760086213774653282532172647003882022795058994436765911118668359580179403283839 ( 172 digits) SNFS difficulty: 188 digits. Divisors found: Wed Mar 29 03:43:05 2023 prp39 factor: 887387619310648008158551428803233672021 Wed Mar 29 03:43:05 2023 prp57 factor: 378668211086672614272051292190903386927584307438764943139 Wed Mar 29 03:43:05 2023 prp76 factor: 3147174991529636464724583659497702279414171502638673571090700951481608795681 Wed Mar 29 03:43:05 2023 elapsed time 01:42:53 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 83x10^187+34 = 92(186)6 # n: 1057530994552314547580451635654136176308077423080255151345722607964341353157140812911237018353760086213774653282532172647003882022795058994436765911118668359580179403283839 m: 10000000000000000000000000000000000000 deg: 5 c5: 4150 c0: 17 skew: 0.33 # Murphy_E = 2.849e-11 type: snfs lss: 1 rlim: 9700000 alim: 9700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9700000/9700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 23289907) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1694609 hash collisions in 13289768 relations (12321491 unique) Msieve: matrix is 1775130 x 1775355 (503.2 MB) Sieving start time: 2023/03/28 17:30:28 Sieving end time : 2023/03/29 01:59:57 Total sieving time: 8hrs 29min 29secs. Total relation processing time: 1hrs 31min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 11sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9700000,9700000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 6, 2023 19:28:05 UTC 2023 年 4 月 7 日 (金) 4 時 28 分 5 秒 (日本時間) |
composite number 合成数 | 15807690399929951051168021010773293087039070694264086836253444247736044503710782807446332175338140472599545273240462639427827906312691694040789319366278042773933513<164> |
prime factors 素因数 | 650167565964672989405415075818593315671609749<45> 24313255885774015524228124788347159924049858809606952421627686711873770620938644813819966126058495991178536377660827237<119> |
factorization results 素因数分解の結果 | Number: n N=15807690399929951051168021010773293087039070694264086836253444247736044503710782807446332175338140472599545273240462639427827906312691694040789319366278042773933513 ( 164 digits) SNFS difficulty: 191 digits. Divisors found: Fri Apr 7 05:01:32 2023 prp45 factor: 650167565964672989405415075818593315671609749 Fri Apr 7 05:01:32 2023 prp119 factor: 24313255885774015524228124788347159924049858809606952421627686711873770620938644813819966126058495991178536377660827237 Fri Apr 7 05:01:32 2023 elapsed time 01:48:31 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 83x10^190+34 = 92(189)6 # n: 15807690399929951051168021010773293087039070694264086836253444247736044503710782807446332175338140472599545273240462639427827906312691694040789319366278042773933513 m: 100000000000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 2.728e-11 type: snfs lss: 1 rlim: 11100000 alim: 11100000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11100000/11100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 23950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1623852 hash collisions in 13496017 relations (12639010 unique) Msieve: matrix is 1859592 x 1859818 (525.3 MB) Sieving start time: 2023/04/06 19:07:31 Sieving end time : 2023/04/07 03:12:42 Total sieving time: 8hrs 5min 11secs. Total relation processing time: 1hrs 42min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 25sec. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,11100000,11100000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 26, 2023 20:51:06 UTC 2023 年 2 月 27 日 (月) 5 時 51 分 6 秒 (日本時間) |
2350 | Ignacio Santos | April 4, 2023 14:29:41 UTC 2023 年 4 月 4 日 (火) 23 時 29 分 41 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 20, 2023 22:27:49 UTC 2023 年 4 月 21 日 (金) 7 時 27 分 49 秒 (日本時間) |
composite number 合成数 | 182202385782625783735330408462581668981493097798245735233757780157121415152144458200066008192512950978509571049616181454469136292244759164601095294495186930801118820994089455584847113561<186> |
prime factors 素因数 | 2860731120947654403183390058172851420782441595948541734698631981114220000463654991061<85> 63690846178605164721562238862169056809164988730008125437500839344235287626648361936493629973248272501<101> |
factorization results 素因数分解の結果 | Number: n N=182202385782625783735330408462581668981493097798245735233757780157121415152144458200066008192512950978509571049616181454469136292244759164601095294495186930801118820994089455584847113561 ( 186 digits) SNFS difficulty: 193 digits. Divisors found: Sat Apr 15 14:29:23 2023 prp85 factor: 2860731120947654403183390058172851420782441595948541734698631981114220000463654991061 Sat Apr 15 14:29:23 2023 prp101 factor: 63690846178605164721562238862169056809164988730008125437500839344235287626648361936493629973248272501 Sat Apr 15 14:29:23 2023 elapsed time 02:45:52 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.092). Factorization parameters were as follows: # # N = 83x10^192+34 = 92(191)6 # n: 182202385782625783735330408462581668981493097798245735233757780157121415152144458200066008192512950978509571049616181454469136292244759164601095294495186930801118820994089455584847113561 m: 100000000000000000000000000000000000000 deg: 5 c5: 4150 c0: 17 skew: 0.33 # Murphy_E = 1.774e-11 type: snfs lss: 1 rlim: 11800000 alim: 11800000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11800000/11800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 31500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1859464 hash collisions in 13613955 relations (12461478 unique) Msieve: matrix is 2293362 x 2293588 (651.4 MB) Sieving start time: 2023/04/14 23:24:57 Sieving end time : 2023/04/15 11:43:15 Total sieving time: 12hrs 18min 18secs. Total relation processing time: 2hrs 38min 33sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 26sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11800000,11800000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 26, 2023 20:51:14 UTC 2023 年 2 月 27 日 (月) 5 時 51 分 14 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 10, 2023 23:54:13 UTC 2023 年 4 月 11 日 (火) 8 時 54 分 13 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 15, 2023 22:28:14 UTC 2023 年 4 月 16 日 (日) 7 時 28 分 14 秒 (日本時間) |
composite number 合成数 | 1744622432481766958745875357544202979714773245142461193782768997404521730563738759518881994825053831762996363400418957152971530392712651465696507193990287345972907692168941499335194199<184> |
prime factors 素因数 | 146449405703911728244529769651874512337829201305347162864445868657369<69> 11912799673690770899392418262021901881201955870812567607380782233391260132080104849271507084041697853422598921809071<116> |
factorization results 素因数分解の結果 | Number: n N=1744622432481766958745875357544202979714773245142461193782768997404521730563738759518881994825053831762996363400418957152971530392712651465696507193990287345972907692168941499335194199 ( 184 digits) SNFS difficulty: 194 digits. Divisors found: Sun Apr 16 08:19:30 2023 prp69 factor: 146449405703911728244529769651874512337829201305347162864445868657369 Sun Apr 16 08:19:30 2023 prp116 factor: 11912799673690770899392418262021901881201955870812567607380782233391260132080104849271507084041697853422598921809071 Sun Apr 16 08:19:30 2023 elapsed time 02:22:19 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 83x10^193+34 = 92(192)6 # n: 1744622432481766958745875357544202979714773245142461193782768997404521730563738759518881994825053831762996363400418957152971530392712651465696507193990287345972907692168941499335194199 m: 100000000000000000000000000000000000000 deg: 5 c5: 41500 c0: 17 skew: 0.21 # Murphy_E = 1.865e-11 type: snfs lss: 1 rlim: 12300000 alim: 12300000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12300000/12300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 31750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1830020 hash collisions in 13868587 relations (12781992 unique) Msieve: matrix is 2076204 x 2076429 (594.0 MB) Sieving start time: 2023/04/15 18:06:37 Sieving end time : 2023/04/16 05:56:56 Total sieving time: 11hrs 50min 19secs. Total relation processing time: 2hrs 8min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 18sec. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12300000,12300000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 26, 2023 20:51:22 UTC 2023 年 2 月 27 日 (月) 5 時 51 分 22 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 10, 2023 23:54:31 UTC 2023 年 4 月 11 日 (火) 8 時 54 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 29, 2023 03:15:53 UTC 2023 年 4 月 29 日 (土) 12 時 15 分 53 秒 (日本時間) |
composite number 合成数 | 4635212271158776475162517673034592357332036430431875873336609625074260821366162498668039588022430631955059200495477041550362050755364106354482512744202693373486382207194603609444784179<184> |
prime factors 素因数 | 39978193789881692067339576432401762019009278029<47> 356495359461642102565270873140373222230866941872004865413332469<63> 325231481749891267369158860367136446480767439654736376899128686105163999779<75> |
factorization results 素因数分解の結果 | Number: n N=4635212271158776475162517673034592357332036430431875873336609625074260821366162498668039588022430631955059200495477041550362050755364106354482512744202693373486382207194603609444784179 ( 184 digits) SNFS difficulty: 196 digits. Divisors found: Sat Apr 29 13:07:59 2023 prp47 factor: 39978193789881692067339576432401762019009278029 Sat Apr 29 13:07:59 2023 prp63 factor: 356495359461642102565270873140373222230866941872004865413332469 Sat Apr 29 13:07:59 2023 prp75 factor: 325231481749891267369158860367136446480767439654736376899128686105163999779 Sat Apr 29 13:07:59 2023 elapsed time 02:28:12 (Msieve 1.44 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.106). Factorization parameters were as follows: # # N = 83x10^195+34 = 92(194)6 # n: 4635212271158776475162517673034592357332036430431875873336609625074260821366162498668039588022430631955059200495477041550362050755364106354482512744202693373486382207194603609444784179 m: 1000000000000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 1.693e-11 type: snfs lss: 1 rlim: 13400000 alim: 13400000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13400000/13400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 32300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2144371 hash collisions in 15207747 relations (13851857 unique) Msieve: matrix is 2043755 x 2043980 (576.6 MB) Sieving start time: 2023/04/28 20:47:54 Sieving end time : 2023/04/29 10:39:28 Total sieving time: 13hrs 51min 34secs. Total relation processing time: 2hrs 9min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 14min 44sec. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13400000,13400000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 26, 2023 20:51:29 UTC 2023 年 2 月 27 日 (月) 5 時 51 分 29 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 10, 2023 23:54:43 UTC 2023 年 4 月 11 日 (火) 8 時 54 分 43 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | March 1, 2023 11:56:07 UTC 2023 年 3 月 1 日 (水) 20 時 56 分 7 秒 (日本時間) |
composite number 合成数 | 38884113638644085284535813304009277243552219879524647988443753862586222125489791088400165239680598957019384086696169683375844913139495745754714457509787717006967780183064720470867689438787087<191> |
prime factors 素因数 | 605250123307346782782006981296639827957375259<45> 4032665705746305531257987439353517324988327903600534739<55> 15931075474400962054608476875410741906850976927782524295741979156825412524467984243744958287<92> |
factorization results 素因数分解の結果 | Number: 92226_197 N = 38884113638644085284535813304009277243552219879524647988443753862586222125489791088400165239680598957019384086696169683375844913139495745754714457509787717006967780183064720470867689438787087 (191 digits) SNFS difficulty: 199 digits. Divisors found: r1=605250123307346782782006981296639827957375259 (pp45) r2=4032665705746305531257987439353517324988327903600534739 (pp55) r3=15931075474400962054608476875410741906850976927782524295741979156825412524467984243744958287 (pp92) Version: Msieve v. 1.53 (SVN unknown) Total time: 123.48 hours. Factorization parameters were as follows: n: 38884113638644085284535813304009277243552219879524647988443753862586222125489791088400165239680598957019384086696169683375844913139495745754714457509787717006967780183064720470867689438787087 m: 1000000000000000000000000000000000000000 deg: 5 c5: 4150 c0: 17 skew: 0.33 # Murphy_E = 1.1e-11 type: snfs lss: 1 rlim: 14300000 alim: 14300000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14300000/14300000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 27728077 Relations: 3520116 relations Pruned matrix : 2421966 x 2422192 Total sieving time: 119.91 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.91 hours. time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14300000,14300000,28,28,55,55,2.5,2.5,100000 total time: 123.48 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 2.19GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 26, 2023 20:51:38 UTC 2023 年 2 月 27 日 (月) 5 時 51 分 38 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 11, 2023 20:32:20 UTC 2023 年 6 月 12 日 (月) 5 時 32 分 20 秒 (日本時間) |
composite number 合成数 | 99627108020813831958811369749468713611933303020203293583683860232248890352061521474041479366995491112469875026139340266848070261060683468205728999470751367426266840391241<170> |
prime factors 素因数 | 297908340438847159879430344136530932759782532293079811796251083022018775879<75> 334422016765471150287813751230692654187277615506409963794547083438421107836351326527432238199279<96> |
factorization results 素因数分解の結果 | Number: n N=99627108020813831958811369749468713611933303020203293583683860232248890352061521474041479366995491112469875026139340266848070261060683468205728999470751367426266840391241 ( 170 digits) SNFS difficulty: 201 digits. Divisors found: Sat Jun 10 12:03:29 2023 prp75 factor: 297908340438847159879430344136530932759782532293079811796251083022018775879 Sat Jun 10 12:03:29 2023 prp96 factor: 334422016765471150287813751230692654187277615506409963794547083438421107836351326527432238199279 Sat Jun 10 12:03:29 2023 elapsed time 05:01:25 (Msieve 1.44 - dependency 8) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 83x10^200+34 = 92(199)6 # n: 99627108020813831958811369749468713611933303020203293583683860232248890352061521474041479366995491112469875026139340266848070261060683468205728999470751367426266840391241 m: 10000000000000000000000000000000000000000 deg: 5 c5: 83 c0: 34 skew: 0.84 # Murphy_E = 1.046e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 48125449) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2147435 hash collisions in 14287149 relations (12822100 unique) Msieve: matrix is 2879914 x 2880143 (816.1 MB) Sieving start time: 2023/06/09 10:32:19 Sieving end time : 2023/06/10 07:01:46 Total sieving time: 20hrs 29min 27secs. Total relation processing time: 4hrs 28min 21sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 28min 48sec. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) --------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:03 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 3 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:40:48 UTC 2023 年 3 月 14 日 (火) 22 時 40 分 48 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:30:36 UTC 2023 年 4 月 24 日 (月) 3 時 30 分 36 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 26, 2023 03:54:26 UTC 2023 年 7 月 26 日 (水) 12 時 54 分 26 秒 (日本時間) |
composite number 合成数 | 70557717111933301826580732148621474173699381452863734327892291215693825140182522008215007568175308673087705750537102221309092867608468692301520608797897869998534776251517030217117<179> |
prime factors 素因数 | 12220449001279253430357378246846475854679009974484673445499801<62> 5773741791692532969415469441658759180916470544530596807211705255927067777846193626547784643067023671481767009870820517<118> |
factorization results 素因数分解の結果 | Number: n N=70557717111933301826580732148621474173699381452863734327892291215693825140182522008215007568175308673087705750537102221309092867608468692301520608797897869998534776251517030217117 ( 179 digits) SNFS difficulty: 202 digits. Divisors found: Wed Jul 26 13:45:08 2023 prp62 factor: 12220449001279253430357378246846475854679009974484673445499801 Wed Jul 26 13:45:08 2023 prp118 factor: 5773741791692532969415469441658759180916470544530596807211705255927067777846193626547784643067023671481767009870820517 Wed Jul 26 13:45:08 2023 elapsed time 03:40:21 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 83x10^201+34 = 92(200)6 # n: 70557717111933301826580732148621474173699381452863734327892291215693825140182522008215007568175308673087705750537102221309092867608468692301520608797897869998534776251517030217117 m: 10000000000000000000000000000000000000000 deg: 5 c5: 415 c0: 17 skew: 0.53 # Murphy_E = 9.429e-12 type: snfs lss: 1 rlim: 16700000 alim: 16700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16700000/16700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 41150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2932059 hash collisions in 16374019 relations (14073697 unique) Msieve: matrix is 2536468 x 2536693 (717.4 MB) Sieving start time: 2023/07/25 19:14:35 Sieving end time : 2023/07/26 10:04:23 Total sieving time: 14hrs 49min 48secs. Total relation processing time: 3hrs 19min 33sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 16min 20sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16700000,16700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:07 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 7 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:40:57 UTC 2023 年 3 月 14 日 (火) 22 時 40 分 57 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:30:49 UTC 2023 年 4 月 24 日 (月) 3 時 30 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 1, 2023 02:45:04 UTC 2023 年 9 月 1 日 (金) 11 時 45 分 4 秒 (日本時間) |
composite number 合成数 | 31964312474932071077226094419629509334111926669823382598184209437992761292625838618366902559963540381028038981269067656723826409352175470983491136881391738448209<161> |
prime factors 素因数 | 71899573868232849892261731540865142726156485033<47> 444568872320601571429654510708065244725655677695234244485716866278466521174829731292907458821723257434830226637673<114> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 31964312474932071077226094419629509334111926669823382598184209437992761292625838618366902559963540381028038981269067656723826409352175470983491136881391738448209 (161 digits) Using B1=51160000, B2=288593074786, polynomial Dickson(12), sigma=1:2686203104 Step 1 took 120072ms Step 2 took 39918ms ********** Factor found in step 2: 71899573868232849892261731540865142726156485033 Found prime factor of 47 digits: 71899573868232849892261731540865142726156485033 Prime cofactor 444568872320601571429654510708065244725655677695234244485716866278466521174829731292907458821723257434830226637673 has 114 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:10 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 10 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:41:04 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 4 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:30:59 UTC 2023 年 4 月 24 日 (月) 3 時 30 分 59 秒 (日本時間) |
name 名前 | Florian Baur |
---|---|
date 日付 | February 24, 2023 10:42:40 UTC 2023 年 2 月 24 日 (金) 19 時 42 分 40 秒 (日本時間) |
composite number 合成数 | 473434274459589775825066037779669516657013334274905556500256059865006396349402603456905019836222430271451100666403901<117> |
prime factors 素因数 | 151744951458850907080305758977863408724727<42> 3119934270682950800064918563025302057850160204884343398668463108650238464363<76> |
factorization results 素因数分解の結果 | Info:Linear Algebra: Total cpu/real time for bwc: 2248.37/202.21 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 1256.7, WCT time 112.02, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (16000 iterations) Info:Linear Algebra: Lingen CPU time 152.21, WCT time 12.5 Info:Linear Algebra: Mksol: CPU time 634.13, WCT time 57.19, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (8000 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 109.94 Info:Polynomial Selection (root optimized): Rootsieve time: 109.72 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 9848381 Info:Lattice Sieving: Average J: 1892.14 for 238912 special-q, max bucket fill -bkmult 1.0,1s:1.148960 Info:Lattice Sieving: Total time: 12027.3s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 27433.6/2391.34 Info:root: Cleaning up computation data in /tmp/cado.2hur1vg5 151744951458850907080305758977863408724727 3119934270682950800064918563025302057850160204884343398668463108650238464363 |
software ソフトウェア | CADO-NFS |
execution environment 実行環境 | Ryzen 9 5900x, 32 GB, Ubuntu 22.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 27, 2023 16:17:26 UTC 2023 年 2 月 28 日 (火) 1 時 17 分 26 秒 (日本時間) |
composite number 合成数 | 3397190445389087265417983286860335452363257126405128029013467528551843554635925125522800550794695226972649701802374097598458227311<130> |
prime factors 素因数 | 275481397247753809680639381572763899011<39> 12331832491519667969813927247641970319389860526642107587466407946011500441810794524990875301<92> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1455760572 Step 1 took 4421ms Step 2 took 2469ms ********** Factor found in step 2: 275481397247753809680639381572763899011 Found prime factor of 39 digits: 275481397247753809680639381572763899011 Prime cofactor 12331832491519667969813927247641970319389860526642107587466407946011500441810794524990875301 has 92 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 19, 2023 15:45:39 UTC 2023 年 3 月 20 日 (月) 0 時 45 分 39 秒 (日本時間) |
composite number 合成数 | 17648614681130001462672901363917819113092707561269042889630074872197605365682098688984067399287390086762586957069037092011666349195589403627967322218951525732935610508353542813<176> |
prime factors 素因数 | 97272044776592047156421844662844746350169922823<47> |
composite cofactor 合成数の残り | 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131<129> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1814777150 Step 1 took 41748ms Step 2 took 14072ms ********** Factor found in step 2: 97272044776592047156421844662844746350169922823 Found probable prime factor of 47 digits: 97272044776592047156421844662844746350169922823 Composite cofactor 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 has 129 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 22, 2023 11:27:51 UTC 2023 年 3 月 22 日 (水) 20 時 27 分 51 秒 (日本時間) |
composite number 合成数 | 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131<129> |
prime factors 素因数 | 7103359509847521175413696552025100082452288573305824115935350333<64> 25542228194005523795752126458360711767658014035657277553887323607<65> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3400000, q1=3500000. -> client 1 q0: 3400000 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 96 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 86 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 99 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 90 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 95 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 148 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 154 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 92 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 108 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 94 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 147 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 101 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 98 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=6600001, q1=6700000. -> client 1 q0: 6600001 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=6800001, q1=6900000. -> client 1 q0: 6800001 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=6900001, q1=7000000. -> client 1 q0: 6900001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 158 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=7000001, q1=7100000. -> client 1 q0: 7000001 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=7100001, q1=7200000. -> client 1 q0: 7100001 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=7200001, q1=7300000. -> client 1 q0: 7200001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=7300001, q1=7400000. -> client 1 q0: 7300001 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=7400001, q1=7500000. -> client 1 q0: 7400001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7500001, q1=7600000. -> client 1 q0: 7500001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=7600001, q1=7700000. -> client 1 q0: 7600001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=7700001, q1=7800000. -> client 1 q0: 7700001 LatSieveTime: 95 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=7800001, q1=7900000. -> client 1 q0: 7800001 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=7900001, q1=8000000. -> client 1 q0: 7900001 LatSieveTime: 87 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=8000001, q1=8100000. -> client 1 q0: 8000001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=8100001, q1=8200000. -> client 1 q0: 8100001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=8200001, q1=8300000. -> client 1 q0: 8200001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=8300001, q1=8400000. -> client 1 q0: 8300001 LatSieveTime: 89 LatSieveTime: 96 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=8400001, q1=8500000. -> client 1 q0: 8400001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=8500001, q1=8600000. -> client 1 q0: 8500001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=8600001, q1=8700000. -> client 1 q0: 8600001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 151 Wed Mar 22 11:39:32 2023 Wed Mar 22 11:39:32 2023 Wed Mar 22 11:39:32 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 11:39:32 2023 random seeds: c004d500 93e255b6 Wed Mar 22 11:39:32 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 11:39:32 2023 searching for 15-digit factors Wed Mar 22 11:39:32 2023 commencing number field sieve (129-digit input) Wed Mar 22 11:39:32 2023 R0: -5685534950992457192502501 Wed Mar 22 11:39:32 2023 R1: 33402147431389 Wed Mar 22 11:39:32 2023 A0: -1637475073150227440678644063892 Wed Mar 22 11:39:32 2023 A1: 15613630362120729370647109 Wed Mar 22 11:39:32 2023 A2: 563896208255245315166 Wed Mar 22 11:39:32 2023 A3: -2800445808367111 Wed Mar 22 11:39:32 2023 A4: -37404307437 Wed Mar 22 11:39:32 2023 A5: 30540 Wed Mar 22 11:39:32 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 11:39:32 2023 Wed Mar 22 11:39:32 2023 commencing relation filtering Wed Mar 22 11:39:32 2023 estimated available RAM is 65413.5 MB Wed Mar 22 11:39:32 2023 commencing duplicate removal, pass 1 Wed Mar 22 11:40:10 2023 found 2318951 hash collisions in 19159410 relations Wed Mar 22 11:40:31 2023 added 120288 free relations Wed Mar 22 11:40:31 2023 commencing duplicate removal, pass 2 Wed Mar 22 11:40:38 2023 found 1982723 duplicates and 17296975 unique relations Wed Mar 22 11:40:38 2023 memory use: 98.6 MB Wed Mar 22 11:40:38 2023 reading ideals above 720000 Wed Mar 22 11:40:38 2023 commencing singleton removal, initial pass Wed Mar 22 11:41:37 2023 memory use: 376.5 MB Wed Mar 22 11:41:37 2023 reading all ideals from disk Wed Mar 22 11:41:37 2023 memory use: 527.9 MB Wed Mar 22 11:41:38 2023 keeping 19781295 ideals with weight <= 200, target excess is 117894 Wed Mar 22 11:41:39 2023 commencing in-memory singleton removal Wed Mar 22 11:41:40 2023 begin with 17296975 relations and 19781295 unique ideals Wed Mar 22 11:41:49 2023 reduce to 4993193 relations and 5047599 ideals in 24 passes Wed Mar 22 11:41:49 2023 max relations containing the same ideal: 82 Wed Mar 22 11:41:49 2023 filtering wants 1000000 more relations Wed Mar 22 11:41:49 2023 elapsed time 00:02:17 -> makeJobFile(): Adjusted to q0=8700001, q1=8800000. -> client 1 q0: 8700001 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 Wed Mar 22 11:44:18 2023 Wed Mar 22 11:44:18 2023 Wed Mar 22 11:44:18 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 11:44:18 2023 random seeds: f8462cec 91fe6d91 Wed Mar 22 11:44:18 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 11:44:18 2023 searching for 15-digit factors Wed Mar 22 11:44:18 2023 commencing number field sieve (129-digit input) Wed Mar 22 11:44:18 2023 R0: -5685534950992457192502501 Wed Mar 22 11:44:18 2023 R1: 33402147431389 Wed Mar 22 11:44:18 2023 A0: -1637475073150227440678644063892 Wed Mar 22 11:44:18 2023 A1: 15613630362120729370647109 Wed Mar 22 11:44:18 2023 A2: 563896208255245315166 Wed Mar 22 11:44:18 2023 A3: -2800445808367111 Wed Mar 22 11:44:18 2023 A4: -37404307437 Wed Mar 22 11:44:18 2023 A5: 30540 Wed Mar 22 11:44:18 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 11:44:18 2023 Wed Mar 22 11:44:18 2023 commencing relation filtering Wed Mar 22 11:44:18 2023 estimated available RAM is 65413.5 MB Wed Mar 22 11:44:18 2023 commencing duplicate removal, pass 1 Wed Mar 22 11:44:58 2023 found 2393056 hash collisions in 19613814 relations Wed Mar 22 11:45:19 2023 added 91 free relations Wed Mar 22 11:45:19 2023 commencing duplicate removal, pass 2 Wed Mar 22 11:45:26 2023 found 2041714 duplicates and 17572191 unique relations Wed Mar 22 11:45:26 2023 memory use: 98.6 MB Wed Mar 22 11:45:26 2023 reading ideals above 720000 Wed Mar 22 11:45:26 2023 commencing singleton removal, initial pass Wed Mar 22 11:46:26 2023 memory use: 376.5 MB Wed Mar 22 11:46:26 2023 reading all ideals from disk Wed Mar 22 11:46:26 2023 memory use: 536.4 MB Wed Mar 22 11:46:27 2023 keeping 19911513 ideals with weight <= 200, target excess is 118395 Wed Mar 22 11:46:28 2023 commencing in-memory singleton removal Wed Mar 22 11:46:28 2023 begin with 17572191 relations and 19911513 unique ideals Wed Mar 22 11:46:40 2023 reduce to 5365256 relations and 5341245 ideals in 31 passes Wed Mar 22 11:46:40 2023 max relations containing the same ideal: 85 Wed Mar 22 11:46:41 2023 filtering wants 1000000 more relations Wed Mar 22 11:46:41 2023 elapsed time 00:02:23 -> makeJobFile(): Adjusted to q0=8800001, q1=8900000. -> client 1 q0: 8800001 LatSieveTime: 79 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 146 Wed Mar 22 11:49:13 2023 Wed Mar 22 11:49:13 2023 Wed Mar 22 11:49:13 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 11:49:13 2023 random seeds: e25d075c 30f735eb Wed Mar 22 11:49:13 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 11:49:13 2023 searching for 15-digit factors Wed Mar 22 11:49:13 2023 commencing number field sieve (129-digit input) Wed Mar 22 11:49:13 2023 R0: -5685534950992457192502501 Wed Mar 22 11:49:13 2023 R1: 33402147431389 Wed Mar 22 11:49:13 2023 A0: -1637475073150227440678644063892 Wed Mar 22 11:49:13 2023 A1: 15613630362120729370647109 Wed Mar 22 11:49:13 2023 A2: 563896208255245315166 Wed Mar 22 11:49:13 2023 A3: -2800445808367111 Wed Mar 22 11:49:13 2023 A4: -37404307437 Wed Mar 22 11:49:13 2023 A5: 30540 Wed Mar 22 11:49:13 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 11:49:13 2023 Wed Mar 22 11:49:13 2023 commencing relation filtering Wed Mar 22 11:49:13 2023 estimated available RAM is 65413.5 MB Wed Mar 22 11:49:13 2023 commencing duplicate removal, pass 1 Wed Mar 22 11:49:53 2023 found 2460891 hash collisions in 19946117 relations Wed Mar 22 11:50:14 2023 added 72 free relations Wed Mar 22 11:50:14 2023 commencing duplicate removal, pass 2 Wed Mar 22 11:50:21 2023 found 2100993 duplicates and 17845196 unique relations Wed Mar 22 11:50:21 2023 memory use: 98.6 MB Wed Mar 22 11:50:21 2023 reading ideals above 720000 Wed Mar 22 11:50:21 2023 commencing singleton removal, initial pass Wed Mar 22 11:51:22 2023 memory use: 376.5 MB Wed Mar 22 11:51:22 2023 reading all ideals from disk Wed Mar 22 11:51:22 2023 memory use: 544.8 MB Wed Mar 22 11:51:23 2023 keeping 20038488 ideals with weight <= 200, target excess is 118990 Wed Mar 22 11:51:24 2023 commencing in-memory singleton removal Wed Mar 22 11:51:24 2023 begin with 17845196 relations and 20038488 unique ideals Wed Mar 22 11:51:35 2023 reduce to 5734417 relations and 5628215 ideals in 26 passes Wed Mar 22 11:51:35 2023 max relations containing the same ideal: 90 Wed Mar 22 11:51:36 2023 filtering wants 1000000 more relations Wed Mar 22 11:51:36 2023 elapsed time 00:02:23 -> makeJobFile(): Adjusted to q0=8900001, q1=9000000. -> client 1 q0: 8900001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 Wed Mar 22 11:54:03 2023 Wed Mar 22 11:54:03 2023 Wed Mar 22 11:54:03 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 11:54:03 2023 random seeds: d2b45000 e6d59c5b Wed Mar 22 11:54:03 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 11:54:03 2023 searching for 15-digit factors Wed Mar 22 11:54:03 2023 commencing number field sieve (129-digit input) Wed Mar 22 11:54:03 2023 R0: -5685534950992457192502501 Wed Mar 22 11:54:03 2023 R1: 33402147431389 Wed Mar 22 11:54:03 2023 A0: -1637475073150227440678644063892 Wed Mar 22 11:54:03 2023 A1: 15613630362120729370647109 Wed Mar 22 11:54:03 2023 A2: 563896208255245315166 Wed Mar 22 11:54:03 2023 A3: -2800445808367111 Wed Mar 22 11:54:03 2023 A4: -37404307437 Wed Mar 22 11:54:03 2023 A5: 30540 Wed Mar 22 11:54:03 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 11:54:03 2023 Wed Mar 22 11:54:03 2023 commencing relation filtering Wed Mar 22 11:54:03 2023 estimated available RAM is 65413.5 MB Wed Mar 22 11:54:03 2023 commencing duplicate removal, pass 1 Wed Mar 22 11:54:44 2023 found 2529821 hash collisions in 20280058 relations Wed Mar 22 11:55:04 2023 added 89 free relations Wed Mar 22 11:55:04 2023 commencing duplicate removal, pass 2 Wed Mar 22 11:55:12 2023 found 2161601 duplicates and 18118546 unique relations Wed Mar 22 11:55:12 2023 memory use: 98.6 MB Wed Mar 22 11:55:12 2023 reading ideals above 720000 Wed Mar 22 11:55:12 2023 commencing singleton removal, initial pass Wed Mar 22 11:56:13 2023 memory use: 376.5 MB Wed Mar 22 11:56:13 2023 reading all ideals from disk Wed Mar 22 11:56:14 2023 memory use: 553.2 MB Wed Mar 22 11:56:14 2023 keeping 20163589 ideals with weight <= 200, target excess is 119638 Wed Mar 22 11:56:15 2023 commencing in-memory singleton removal Wed Mar 22 11:56:16 2023 begin with 18118546 relations and 20163589 unique ideals Wed Mar 22 11:56:27 2023 reduce to 6098407 relations and 5905568 ideals in 24 passes Wed Mar 22 11:56:27 2023 max relations containing the same ideal: 94 Wed Mar 22 11:56:29 2023 removing 419854 relations and 392825 ideals in 27029 cliques Wed Mar 22 11:56:29 2023 commencing in-memory singleton removal Wed Mar 22 11:56:29 2023 begin with 5678553 relations and 5905568 unique ideals Wed Mar 22 11:56:32 2023 reduce to 5652002 relations and 5485983 ideals in 10 passes Wed Mar 22 11:56:32 2023 max relations containing the same ideal: 86 Wed Mar 22 11:56:34 2023 removing 302295 relations and 275266 ideals in 27029 cliques Wed Mar 22 11:56:34 2023 commencing in-memory singleton removal Wed Mar 22 11:56:34 2023 begin with 5349707 relations and 5485983 unique ideals Wed Mar 22 11:56:37 2023 reduce to 5334752 relations and 5195683 ideals in 12 passes Wed Mar 22 11:56:37 2023 max relations containing the same ideal: 84 Wed Mar 22 11:56:40 2023 relations with 0 large ideals: 520 Wed Mar 22 11:56:40 2023 relations with 1 large ideals: 1732 Wed Mar 22 11:56:40 2023 relations with 2 large ideals: 28330 Wed Mar 22 11:56:40 2023 relations with 3 large ideals: 192765 Wed Mar 22 11:56:40 2023 relations with 4 large ideals: 683609 Wed Mar 22 11:56:40 2023 relations with 5 large ideals: 1362363 Wed Mar 22 11:56:40 2023 relations with 6 large ideals: 1560466 Wed Mar 22 11:56:40 2023 relations with 7+ large ideals: 1504967 Wed Mar 22 11:56:40 2023 commencing 2-way merge Wed Mar 22 11:56:42 2023 reduce to 2920681 relation sets and 2781619 unique ideals Wed Mar 22 11:56:42 2023 ignored 8 oversize relation sets Wed Mar 22 11:56:42 2023 commencing full merge Wed Mar 22 11:57:16 2023 memory use: 314.4 MB Wed Mar 22 11:57:17 2023 found 1474901 cycles, need 1459819 Wed Mar 22 11:57:17 2023 weight of 1459819 cycles is about 102313949 (70.09/cycle) Wed Mar 22 11:57:17 2023 distribution of cycle lengths: Wed Mar 22 11:57:17 2023 1 relations: 203028 Wed Mar 22 11:57:17 2023 2 relations: 184072 Wed Mar 22 11:57:17 2023 3 relations: 178329 Wed Mar 22 11:57:17 2023 4 relations: 154628 Wed Mar 22 11:57:17 2023 5 relations: 130377 Wed Mar 22 11:57:17 2023 6 relations: 110318 Wed Mar 22 11:57:17 2023 7 relations: 92222 Wed Mar 22 11:57:17 2023 8 relations: 75712 Wed Mar 22 11:57:17 2023 9 relations: 61404 Wed Mar 22 11:57:17 2023 10+ relations: 269729 Wed Mar 22 11:57:17 2023 heaviest cycle: 24 relations Wed Mar 22 11:57:17 2023 commencing cycle optimization Wed Mar 22 11:57:18 2023 start with 8498384 relations Wed Mar 22 11:57:29 2023 pruned 150249 relations Wed Mar 22 11:57:29 2023 memory use: 297.9 MB Wed Mar 22 11:57:29 2023 distribution of cycle lengths: Wed Mar 22 11:57:29 2023 1 relations: 203028 Wed Mar 22 11:57:29 2023 2 relations: 187796 Wed Mar 22 11:57:29 2023 3 relations: 183526 Wed Mar 22 11:57:29 2023 4 relations: 156860 Wed Mar 22 11:57:29 2023 5 relations: 132073 Wed Mar 22 11:57:29 2023 6 relations: 110491 Wed Mar 22 11:57:29 2023 7 relations: 91999 Wed Mar 22 11:57:29 2023 8 relations: 74723 Wed Mar 22 11:57:29 2023 9 relations: 60408 Wed Mar 22 11:57:29 2023 10+ relations: 258915 Wed Mar 22 11:57:29 2023 heaviest cycle: 24 relations Wed Mar 22 11:57:30 2023 RelProcTime: 207 Wed Mar 22 11:57:30 2023 elapsed time 00:03:27 Wed Mar 22 11:57:30 2023 Wed Mar 22 11:57:30 2023 Wed Mar 22 11:57:30 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 11:57:30 2023 random seeds: 5c947e28 071bb4af Wed Mar 22 11:57:30 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 11:57:30 2023 searching for 15-digit factors Wed Mar 22 11:57:31 2023 commencing number field sieve (129-digit input) Wed Mar 22 11:57:31 2023 R0: -5685534950992457192502501 Wed Mar 22 11:57:31 2023 R1: 33402147431389 Wed Mar 22 11:57:31 2023 A0: -1637475073150227440678644063892 Wed Mar 22 11:57:31 2023 A1: 15613630362120729370647109 Wed Mar 22 11:57:31 2023 A2: 563896208255245315166 Wed Mar 22 11:57:31 2023 A3: -2800445808367111 Wed Mar 22 11:57:31 2023 A4: -37404307437 Wed Mar 22 11:57:31 2023 A5: 30540 Wed Mar 22 11:57:31 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 11:57:31 2023 Wed Mar 22 11:57:31 2023 commencing linear algebra Wed Mar 22 11:57:31 2023 read 1459819 cycles Wed Mar 22 11:57:33 2023 cycles contain 5144044 unique relations Wed Mar 22 11:57:43 2023 read 5144044 relations Wed Mar 22 11:57:48 2023 using 20 quadratic characters above 268435134 Wed Mar 22 11:58:02 2023 building initial matrix Wed Mar 22 11:58:34 2023 memory use: 669.0 MB Wed Mar 22 11:58:35 2023 read 1459819 cycles Wed Mar 22 11:58:35 2023 matrix is 1459638 x 1459819 (439.0 MB) with weight 139349107 (95.46/col) Wed Mar 22 11:58:35 2023 sparse part has weight 99017353 (67.83/col) Wed Mar 22 11:58:42 2023 filtering completed in 2 passes Wed Mar 22 11:58:43 2023 matrix is 1455326 x 1455506 (438.6 MB) with weight 139162682 (95.61/col) Wed Mar 22 11:58:43 2023 sparse part has weight 98960978 (67.99/col) Wed Mar 22 11:58:45 2023 matrix starts at (0, 0) Wed Mar 22 11:58:45 2023 matrix is 1455326 x 1455506 (438.6 MB) with weight 139162682 (95.61/col) Wed Mar 22 11:58:45 2023 sparse part has weight 98960978 (67.99/col) Wed Mar 22 11:58:45 2023 saving the first 48 matrix rows for later Wed Mar 22 11:58:46 2023 matrix includes 64 packed rows Wed Mar 22 11:58:46 2023 matrix is 1455278 x 1455506 (424.3 MB) with weight 110271858 (75.76/col) Wed Mar 22 11:58:46 2023 sparse part has weight 96665031 (66.41/col) Wed Mar 22 11:58:46 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Mar 22 11:58:50 2023 commencing Lanczos iteration (32 threads) Wed Mar 22 11:58:50 2023 memory use: 336.3 MB Wed Mar 22 11:58:52 2023 linear algebra at 0.1%, ETA 0h31m Wed Mar 22 11:58:52 2023 checkpointing every 3630000 dimensions Wed Mar 22 12:19:00 2023 lanczos halted after 23011 iterations (dim = 1455278) Wed Mar 22 12:19:00 2023 recovered 33 nontrivial dependencies Wed Mar 22 12:19:00 2023 BLanczosTime: 1289 Wed Mar 22 12:19:00 2023 elapsed time 00:21:30 Wed Mar 22 12:19:00 2023 Wed Mar 22 12:19:00 2023 Wed Mar 22 12:19:00 2023 Msieve v. 1.52 (SVN 927) Wed Mar 22 12:19:00 2023 random seeds: d74017c0 dc96aa1f Wed Mar 22 12:19:00 2023 factoring 181435629544584613514750062503731741008481527138540117155598688805120841526362982003824735638317271380596906796731316385286211131 (129 digits) Wed Mar 22 12:19:01 2023 searching for 15-digit factors Wed Mar 22 12:19:01 2023 commencing number field sieve (129-digit input) Wed Mar 22 12:19:01 2023 R0: -5685534950992457192502501 Wed Mar 22 12:19:01 2023 R1: 33402147431389 Wed Mar 22 12:19:01 2023 A0: -1637475073150227440678644063892 Wed Mar 22 12:19:01 2023 A1: 15613630362120729370647109 Wed Mar 22 12:19:01 2023 A2: 563896208255245315166 Wed Mar 22 12:19:01 2023 A3: -2800445808367111 Wed Mar 22 12:19:01 2023 A4: -37404307437 Wed Mar 22 12:19:01 2023 A5: 30540 Wed Mar 22 12:19:01 2023 skew 137953.72, size 1.526e-012, alpha -4.895, combined = 7.600e-011 rroots = 5 Wed Mar 22 12:19:01 2023 Wed Mar 22 12:19:01 2023 commencing square root phase Wed Mar 22 12:19:01 2023 reading relations for dependency 1 Wed Mar 22 12:19:01 2023 read 727176 cycles Wed Mar 22 12:19:02 2023 cycles contain 2568896 unique relations Wed Mar 22 12:19:08 2023 read 2568896 relations Wed Mar 22 12:19:15 2023 multiplying 2568896 relations Wed Mar 22 12:20:22 2023 multiply complete, coefficients have about 122.43 million bits Wed Mar 22 12:20:23 2023 initial square root is modulo 612848627 Wed Mar 22 12:21:59 2023 sqrtTime: 178 Wed Mar 22 12:21:59 2023 prp64 factor: 7103359509847521175413696552025100082452288573305824115935350333 Wed Mar 22 12:21:59 2023 prp65 factor: 25542228194005523795752126458360711767658014035657277553887323607 Wed Mar 22 12:21:59 2023 elapsed time 00:02:59 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:14 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 14 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | March 14, 2023 13:41:12 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 12 秒 (日本時間) |
4480 | Ignacio Santos | March 21, 2023 16:26:04 UTC 2023 年 3 月 22 日 (水) 1 時 26 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 25, 2023 10:21:56 UTC 2023 年 4 月 25 日 (火) 19 時 21 分 56 秒 (日本時間) |
composite number 合成数 | 96339659894046154429888177843695519545171289597047788290898746354370677636669497360960833239801414095748684978034986662484677588798622953770039497318933209792562892248021321267929<179> |
prime factors 素因数 | 313747111823338166739140814341534550946961<42> |
composite cofactor 合成数の残り | 307061503559886800081887666855599311658544145063218467197146676825093012556165840005393449320092438202779809125176747470516984997630764489<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4075349447 Step 1 took 30401ms Step 2 took 13442ms ********** Factor found in step 2: 313747111823338166739140814341534550946961 Found prime factor of 42 digits: 313747111823338166739140814341534550946961 Composite cofactor 307061503559886800081887666855599311658544145063218467197146676825093012556165840005393449320092438202779809125176747470516984997630764489 has 138 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 22, 2023 13:46:29 UTC 2023 年 7 月 22 日 (土) 22 時 46 分 29 秒 (日本時間) |
composite number 合成数 | 307061503559886800081887666855599311658544145063218467197146676825093012556165840005393449320092438202779809125176747470516984997630764489<138> |
prime factors 素因数 | 251093232032342826715892071443992595816019903688622461069<57> 1222898367568644024975024912561955474087671895554064629060486919051746780945019181<82> |
factorization results 素因数分解の結果 | 307061503559886800081887666855599311658544145063218467197146676825093012556165840005393449320092438202779809125176747470516984997630764489=251093232032342826715892071443992595816019903688622461069*1222898367568644024975024912561955474087671895554064629060486919051746780945019181 cado polynomial n: 307061503559886800081887666855599311658544145063218467197146676825093012556165840005393449320092438202779809125176747470516984997630764489 skew: 40563.856 c0: -43202833373547153064319317260 c1: -20404945810212597842939327 c2: -200864554238571905175 c3: 11267353343937311 c4: -259493815764 c5: 1263600 Y0: -297659652012318671718362229 Y1: 94103371189864082873 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 3.265e-07 # f(x) = 1263600*x^5-259493815764*x^4+11267353343937311*x^3-200864554238571905175*x^2-20404945810212597842939327*x-43202833373547153064319317260 # g(x) = 94103371189864082873*x-297659652012318671718362229 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1222898367568644024975024912561955474087671895554064629060486919051746780945019181 251093232032342826715892071443992595816019903688622461069 Info:Square Root: Total cpu/real time for sqrt: 1254.93/366.119 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 65655.1 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 66487/41.130/49.462/54.990/0.948 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 54684/40.000/44.064/50.100/0.973 Info:Polynomial Selection (size optimized): Total time: 36636.8 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 9529.58 Info:Polynomial Selection (root optimized): Rootsieve time: 9522.6 Info:Generate Factor Base: Total cpu/real time for makefb: 16.63/4.69597 Info:Generate Free Relations: Total cpu/real time for freerel: 644.75/163.337 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 32860130 Info:Lattice Sieving: Average J: 3801.74 for 700591 special-q, max bucket fill -bkmult 1.0,1s:1.113950 Info:Lattice Sieving: Total time: 453045s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 94.01/211.631 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 211.3s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 521.64/444.421 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 419.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 237.98/231.648 Info:Filtering - Merging: Merged matrix has 1677980 rows and total weight 286623901 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 370.47/106.815 Info:Filtering - Merging: Total cpu/real time for replay: 77.38/68.2306 Info:Linear Algebra: Total cpu/real time for bwc: 46357.5/23416 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 14808.8, iteration CPU time 0.27, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (52480 iterations) Info:Linear Algebra: Lingen CPU time 345.94, WCT time 184.53 Info:Linear Algebra: Mksol: WCT time 8180.49, iteration CPU time 0.3, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (26368 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 83.75/38.1554 Info:Square Root: Total cpu/real time for sqrt: 1254.93/366.119 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 965948/264614 Info:root: Cleaning up computation data in /tmp/cado.3pwhnoxa 1222898367568644024975024912561955474087671895554064629060486919051746780945019181 251093232032342826715892071443992595816019903688622461069 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:17 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 17 秒 (日本時間) | |
45 | 11e6 | 6480 | 1000 | Dmitry Domanov | March 14, 2023 13:41:19 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 19 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:31:11 UTC 2023 年 4 月 24 日 (月) 3 時 31 分 11 秒 (日本時間) | |||
4480 | Ignacio Santos | April 27, 2023 09:30:27 UTC 2023 年 4 月 27 日 (木) 18 時 30 分 27 秒 (日本時間) | |||
50 | 43e6 | 6454 | Ignacio Santos | April 28, 2023 06:45:01 UTC 2023 年 4 月 28 日 (金) 15 時 45 分 1 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 15, 2024 14:21:26 UTC 2024 年 11 月 15 日 (金) 23 時 21 分 26 秒 (日本時間) |
composite number 合成数 | 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179<176> |
prime factors 素因数 | 49823812289530003273415992691702385521619744430889240191272695285102819<71> 633681639625610685659675536716751729253580667806172752223057006533981452588525931155088724188453051643441<105> |
factorization results 素因数分解の結果 | 11/12/24 21:28:31, 11/12/24 21:28:31, **************************** 11/12/24 21:28:31, Starting factorization of 830000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034 11/12/24 21:28:31, using pretesting plan: normal 11/12/24 21:28:31, no tune info: using qs/gnfs crossover of 100 digits 11/12/24 21:28:31, no tune info: using qs/snfs crossover of 95 digits 11/12/24 21:28:31, **************************** 11/12/24 21:28:31, div: found prime factor = 2 11/12/24 21:28:31, div: found prime factor = 3 11/12/24 21:28:31, div: found prime factor = 3 11/12/24 21:28:31, div: found prime factor = 3 11/12/24 21:28:31, div: found prime factor = 43 11/12/24 21:28:31, div: found prime factor = 67 11/12/24 21:28:31, div: found prime factor = 383 11/12/24 21:28:31, div: found prime factor = 3119 11/12/24 21:28:31, rho: x^2 + 3, starting 1000 iterations on C199 11/12/24 21:28:32, rho: x^2 + 2, starting 1000 iterations on C199 11/12/24 21:28:32, rho: x^2 + 1, starting 1000 iterations on C199 11/12/24 21:28:32, nfs: input divides 83*10^208 + 34 11/12/24 21:28:32, nfs: using supplied cofactor: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, nfs: input divides 83*10^208 + 34 11/12/24 21:28:32, nfs: using supplied cofactor: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, nfs: commencing snfs on c199: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, pm1: starting B1 = 150K, B2 = gmp-ecm default on C199 11/12/24 21:28:32, nfs: input divides 83*10^208 + 34 11/12/24 21:28:32, nfs: using supplied cofactor: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, nfs: commencing snfs on c199: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, current ECM pretesting depth: 0.000000 11/12/24 21:28:32, scheduled 30 curves at B1=2000 toward target pretesting depth of 47.624461 11/12/24 21:28:32, ecm: commencing 32 curves using AVX-ECM method on 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283, B1=2k, B2=200k 11/12/24 21:28:32, ecm: finished 128 curves using AVX-ECM method on C199 input, B1=2k, B2=200k 11/12/24 21:28:32, nfs: input divides 83*10^208 + 34 11/12/24 21:28:32, nfs: using supplied cofactor: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, nfs: commencing snfs on c199: 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283 11/12/24 21:28:32, current ECM pretesting depth: 15.758294 11/12/24 21:28:32, scheduled 74 curves at B1=11000 toward target pretesting depth of 47.624461 11/12/24 21:28:32, ecm: commencing 80 curves using AVX-ECM method on 4466084394271673646264488007598237496357579811651979745225209679947416017571941589732742973113477206700811405064693286903654803450134940409537796740834102954366742082342010933686394174661705424891283, B1=11k, B2=1100k 11/12/24 21:28:33, ecm: finished 0 curves using AVX-ECM method on C199 input, B1=11k, B2=1100k 11/12/24 21:28:33, prp24 = 141455177125697720692577 (curve=109 stg=2 B1=11000 B2=1100000 sigma=1991613107 thread=13 vecpos=5) 11/12/24 21:28:33, nfs: input divides 83*10^208 + 34 11/12/24 21:28:33, nfs: using supplied cofactor: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:33, nfs: commencing snfs on c176: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:33, current ECM pretesting depth: 15.758294 11/12/24 21:28:33, scheduled 74 curves at B1=11000 toward target pretesting depth of 42.120126 11/12/24 21:28:33, ecm: commencing 80 curves using AVX-ECM method on 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179, B1=11k, B2=1100k 11/12/24 21:28:33, ecm: finished 128 curves using AVX-ECM method on C176 input, B1=11k, B2=1100k 11/12/24 21:28:33, nfs: input divides 83*10^208 + 34 11/12/24 21:28:33, nfs: using supplied cofactor: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:33, nfs: commencing snfs on c176: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:33, current ECM pretesting depth: 20.426864 11/12/24 21:28:33, scheduled 214 curves at B1=50000 toward target pretesting depth of 42.120126 11/12/24 21:28:33, ecm: commencing 224 curves using AVX-ECM method on 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179, B1=50k, B2=5M 11/12/24 21:28:35, ecm: finished 256 curves using AVX-ECM method on C176 input, B1=50k, B2=5M 11/12/24 21:28:35, nfs: input divides 83*10^208 + 34 11/12/24 21:28:35, nfs: using supplied cofactor: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:35, nfs: commencing snfs on c176: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:35, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C176 11/12/24 21:28:37, nfs: input divides 83*10^208 + 34 11/12/24 21:28:37, nfs: using supplied cofactor: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:37, nfs: commencing snfs on c176: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:28:37, current ECM pretesting depth: 25.402199 11/12/24 21:28:37, scheduled 430 curves at B1=250000 toward target pretesting depth of 42.120126 11/12/24 21:28:37, ecm: commencing 432 curves using AVX-ECM method on 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179, B1=250k, B2=25M 11/12/24 21:30:07, nfs: commencing nfs on c210: 830000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034 11/12/24 21:30:07, nfs: input divides 83*10^208 + 34 11/12/24 21:30:07, nfs: using supplied cofactor: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:30:07, nfs: commencing snfs on c176: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 11/12/24 21:30:07, gen: best 3 polynomials: n: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 # 83*10^208+34, difficulty: 209.92, anorm: 1.10e+37, rnorm: 1.26e+48 # scaled difficulty: 212.13, suggest sieving rational side # size = 8.330e-15, alpha = -0.296, combined = 4.387e-12, rroots = 1 type: snfs size: 209 skew: 0.2101 c5: 41500 c0: 17 Y1: -1 Y0: 100000000000000000000000000000000000000000 n: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 # 83*10^208+34, difficulty: 211.32, anorm: 4.90e+36, rnorm: 2.83e+48 # scaled difficulty: 213.67, suggest sieving rational side # size = 7.617e-15, alpha = -0.027, combined = 4.089e-12, rroots = 1 type: snfs size: 211 skew: 1.0506 c5: 332 c0: 425 Y1: -1 Y0: 500000000000000000000000000000000000000000 n: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 # 83*10^208+34, difficulty: 211.32, anorm: 4.01e+43, rnorm: 3.01e+41 # scaled difficulty: 211.74, suggest sieving algebraic side # size = 1.268e-10, alpha = -1.626, combined = 3.986e-12, rroots = 0 type: snfs size: 211 skew: 0.9283 c6: 664 c0: 425 Y1: -1 Y0: 50000000000000000000000000000000000 11/12/24 21:30:08, test: fb generation took 1.7693 seconds 11/12/24 21:30:08, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22601000 skew: 0.2101 c5: 41500 c0: 17 Y1: -1 Y0: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/12/24 21:31:36, nfs: parsing special-q from .dat file 11/12/24 21:31:38, test: fb generation took 1.7511 seconds 11/12/24 21:31:38, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23801000 skew: 1.0506 c5: 332 c0: 425 Y1: -1 Y0: 500000000000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/12/24 21:33:23, nfs: parsing special-q from .dat file 11/12/24 21:33:26, test: fb generation took 2.4548 seconds 11/12/24 21:33:26, test: commencing test sieving of polynomial 2 on the algebraic side over range 22600000-22601000 skew: 0.9283 c6: 664 c0: 425 Y1: -1 Y0: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/12/24 21:34:31, nfs: parsing special-q from .dat file 11/12/24 21:34:31, gen: selected polynomial: n: 31572435064028024382605445166994406549359676374537468220566485775219916620083056792284896937391615205468270421888676993216103272105912715309499163979868004896591416192611960179 # 83*10^208+34, difficulty: 211.32, anorm: 4.01e+43, rnorm: 3.01e+41 # scaled difficulty: 211.74, suggest sieving algebraic side # size = 1.268e-10, alpha = -1.626, combined = 3.986e-12, rroots = 0 type: snfs size: 211 skew: 0.9283 c6: 664 c0: 425 Y1: -1 Y0: 50000000000000000000000000000000000 11/12/24 21:34:34, test: fb generation took 2.4548 seconds 11/12/24 21:34:34, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22601000 skew: 0.9283 c6: 664 c0: 425 Y1: -1 Y0: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/12/24 21:35:57, nfs: parsing special-q from .dat file 11/15/24 00:30:44, nfs: commencing msieve linear algebra 11/15/24 02:37:58, nfs: commencing msieve sqrt 11/15/24 06:11:53, prp105 = 633681639625610685659675536716751729253580667806172752223057006533981452588525931155088724188453051643441 11/15/24 06:11:53, C35 = 26288754678465027308122045756524246 11/15/24 06:11:53, prp71 = 49823812289530003273415992691702385521619744430889240191272695285102819 11/12/24 21:34:31, test: test sieving took 264.60 seconds 11/12/24 21:35:57, test: test sieving took 85.80 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:20 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 20 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:41:27 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 27 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:31:26 UTC 2023 年 4 月 24 日 (月) 3 時 31 分 26 秒 (日本時間) |
composite cofactor 合成数の残り | 61921872576190371264339694225005269931000302963957741947626579458415444772880048647245515442531535664707204616831190172553709585551337196878692716619569715761457<161> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:24 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 24 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:41:35 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 35 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:31:35 UTC 2023 年 4 月 24 日 (月) 3 時 31 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 19, 2023 15:46:03 UTC 2023 年 3 月 20 日 (月) 0 時 46 分 3 秒 (日本時間) |
composite number 合成数 | 1437300377851721711797732852152188159953170792508041786897207178132865951629534620233019704221316704646359057634699495140891072311125101358384561637866348242798879383360779431<175> |
prime factors 素因数 | 562786333092241112886990153826591615013<39> |
composite cofactor 合成数の残り | 2553900642814911914894859116829347497555991474257911717679726999976277203356960195155044754622965836564623522333354771131561136051444187<136> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2017752731 Step 1 took 54252ms Step 2 took 18656ms ********** Factor found in step 2: 562786333092241112886990153826591615013 Found probable prime factor of 39 digits: 562786333092241112886990153826591615013 Composite cofactor 2553900642814911914894859116829347497555991474257911717679726999976277203356960195155044754622965836564623522333354771131561136051444187 has 136 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 21, 2023 16:32:42 UTC 2023 年 3 月 22 日 (水) 1 時 32 分 42 秒 (日本時間) |
composite number 合成数 | 2553900642814911914894859116829347497555991474257911717679726999976277203356960195155044754622965836564623522333354771131561136051444187<136> |
prime factors 素因数 | 3256651428956304699683268156434186261729<40> 784210622023305962332924440806836057896022099517296684519602323418996348219078960416795953171003<96> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1456118638 Step 1 took 20968ms Step 2 took 9079ms ********** Factor found in step 2: 3256651428956304699683268156434186261729 Found prime factor of 40 digits: 3256651428956304699683268156434186261729 Prime cofactor 784210622023305962332924440806836057896022099517296684519602323418996348219078960416795953171003 has 96 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:27 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 27 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 14, 2023 13:41:43 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 43 秒 (日本時間) |
composite cofactor 合成数の残り | 427002515813718934087663382788749753167249850991133159599318281809631493367869677840512217356740665172481560631055620001314907866551842776254582863920807758978987309163<168> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:31 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 31 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:41:49 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 49 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:31:45 UTC 2023 年 4 月 24 日 (月) 3 時 31 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:34 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 34 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:52:46 UTC 2023 年 4 月 1 日 (土) 8 時 52 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:37 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 37 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:41:57 UTC 2023 年 3 月 14 日 (火) 22 時 41 分 57 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:31:52 UTC 2023 年 4 月 24 日 (月) 3 時 31 分 52 秒 (日本時間) |
composite cofactor 合成数の残り | 1396172139840275839644403155776813246792291324640948563443714216812703346068791272760789841897314642528584972974680736296588774326558169245276556953921445424420811<163> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:41 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 41 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:42:07 UTC 2023 年 3 月 14 日 (火) 22 時 42 分 7 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:00 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 26, 2023 21:03:06 UTC 2023 年 2 月 27 日 (月) 6 時 3 分 6 秒 (日本時間) |
composite number 合成数 | 27075421168064411665394291312464113281223689553894760969455329581590899731056960782678076081458956786812258754142488314066061543787974467873624909038507487349477668701354722248446413363823118484483175557<203> |
prime factors 素因数 | 51181267228455177687833654280792296574709<41> 529010371064265629555451838575727294475135166574757849528115433033976868555503824579753797884803271221017215273098605013008453969114693726586438072673550554920273<162> |
factorization results 素因数分解の結果 | GPU: factor 51181267228455177687833654280792296574709 found in Step 1 with curve 1749 (-sigma 3:1989601671) Computing 1792 Step 1 took 213ms of CPU time / 175252ms of GPU time Throughput: 10.225 curves per second (on average 97.80ms per Step 1) ********** Factor found in step 1: 51181267228455177687833654280792296574709 Found prime factor of 41 digits: 51181267228455177687833654280792296574709 Prime cofactor 529010371064265629555451838575727294475135166574757849528115433033976868555503824579753797884803271221017215273098605013008453969114693726586438072673550554920273 has 162 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:45 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 45 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:37:53 UTC 2023 年 3 月 14 日 (火) 22 時 37 分 53 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:07 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:48 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 48 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:52:57 UTC 2023 年 4 月 1 日 (土) 8 時 52 分 57 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 12, 2023 08:51:06 UTC 2023 年 12 月 12 日 (火) 17 時 51 分 6 秒 (日本時間) |
composite number 合成数 | 7243498960578270621198319014432067787288730434425785987793894652285065971883751551576892558049685590367300841479563368521526558138205079977931<142> |
prime factors 素因数 | 2177909083631329831097384802275637699030141921312249122209933724458573<70> 3325895931569763008547451497014801906049886676479782571959179323905725047<73> |
factorization results 素因数分解の結果 | 7243498960578270621198319014432067787288730434425785987793894652285065971883751551576892558049685590367300841479563368521526558138205079977931=2177909083631329831097384802275637699030141921312249122209933724458573*3325895931569763008547451497014801906049886676479782571959179323905725047 cado polynomial n: 7243498960578270621198319014432067787288730434425785987793894652285065971883751551576892558049685590367300841479563368521526558138205079977931 skew: 658028.713 c0: 1171572138983368119545921504876940 c1: -76431286506531188777420732823 c2: -20334766843397908943180 c3: 548216995268722001 c4: 37195869018 c5: -70560 Y0: -4539646726555524685849122538 Y1: 684478868495713019231 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 1.983e-07 # f(x) = -70560*x^5+37195869018*x^4+548216995268722001*x^3-20334766843397908943180*x^2-76431286506531188777420732823*x+1171572138983368119545921504876940 # g(x) = 684478868495713019231*x-4539646726555524685849122538 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 3325895931569763008547451497014801906049886676479782571959179323905725047 2177909083631329831097384802275637699030141921312249122209933724458573 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2989.01/192.764 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Singleton removal: Total cpu/real time for purge: 349.73/428.865 Info:Filtering - Merging: Merged matrix has 2173229 rows and total weight 371430993 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 584.01/264.075 Info:Filtering - Merging: Total cpu/real time for replay: 80.92/80.1099 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 571.21/647.775 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 519.6999999999999s Info:Linear Algebra: Total cpu/real time for bwc: 55093.1/31229.9 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 34122.29, WCT time 20824.76, iteration CPU time 0.17, COMM 0.04, cpu-wait 0.08, comm-wait 0.01 (68096 iterations) Info:Linear Algebra: Lingen CPU time 225.04, WCT time 227.53 Info:Linear Algebra: Mksol: CPU time 20351.79, WCT time 9938.32, iteration CPU time 0.18, COMM 0.03, cpu-wait 0.07, comm-wait 0.0 (34304 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 34474848 Info:Lattice Sieving: Average J: 3824.03 for 1208344 special-q, max bucket fill -bkmult 1.0,1s:1.205090 Info:Lattice Sieving: Total time: 369215s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6052.52 Info:Polynomial Selection (root optimized): Rootsieve time: 6051.08 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48476/43.530/51.069/56.620/0.920 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39831/42.110/45.709/51.850/1.139 Info:Polynomial Selection (size optimized): Total time: 16467.9 Info:Square Root: Total cpu/real time for sqrt: 2989.01/192.764 Info:Generate Factor Base: Total cpu/real time for makefb: 4.55/0.313175 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 152.46/207.52 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 206.20000000000002s Info:Quadratic Characters: Total cpu/real time for characters: 59.7/15.7451 Info:Generate Free Relations: Total cpu/real time for freerel: 228.08/12.163 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 737368/64243.8 Info:root: Cleaning up computation data in /tmp/cado.yt6cg2vk 3325895931569763008547451497014801906049886676479782571959179323905725047 2177909083631329831097384802275637699030141921312249122209933724458573 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 23, 2023 16:25:35 UTC 2023 年 2 月 24 日 (金) 1 時 25 分 35 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 3, 2023 15:23:12 UTC 2023 年 3 月 4 日 (土) 0 時 23 分 12 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | April 7, 2023 07:10:27 UTC 2023 年 4 月 7 日 (金) 16 時 10 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:55 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 55 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:38:03 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 3 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:16 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:43:58 UTC 2023 年 3 月 8 日 (水) 0 時 43 分 58 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:53:04 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:30 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 30 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:53:11 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:34 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 34 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:53:18 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 18 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 15, 2023 08:02:22 UTC 2023 年 12 月 15 日 (金) 17 時 2 分 22 秒 (日本時間) |
composite number 合成数 | 15091703152164714788431832065088887259401871868288257449276368464555761668178965222222669621809395494911652907961695595369646775852873086095789<143> |
prime factors 素因数 | 78861131332128703999492967802770926502446670158434349515529<59> 191370614360134407118934589283951112663703899235114930780071277604374358575366327941<84> |
factorization results 素因数分解の結果 | 15091703152164714788431832065088887259401871868288257449276368464555761668178965222222669621809395494911652907961695595369646775852873086095789=78861131332128703999492967802770926502446670158434349515529*191370614360134407118934589283951112663703899235114930780071277604374358575366327941 cado polynomial n: 15091703152164714788431832065088887259401871868288257449276368464555761668178965222222669621809395494911652907961695595369646775852873086095789 skew: 195787.02 c0: 108639843493785922901002052410960 c1: -764256234015558765105065442 c2: -11646614837853124758579 c3: -3144129687427177 c4: 77551347690 c5: 419400 Y0: -2351743800547348241394587109 Y1: 5559585093942887839 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=3.355e+14) = 2.238e-07 # f(x) = 419400*x^5+77551347690*x^4-3144129687427177*x^3-11646614837853124758579*x^2-764256234015558765105065442*x+108639843493785922901002052410960 # g(x) = 5559585093942887839*x-2351743800547348241394587109 cado parameters (extracts) tasks.lim0 = 10000000 tasks.lim1 = 20000000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 87 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Filtering - Merging: Merged matrix has 3395882 rows and total weight 579233553 (170.6 entries per row on average) Info:Square Root: Factors: 78861131332128703999492967802770926502446670158434349515529 191370614360134407118934589283951112663703899235114930780071277604374358575366327941 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 4486.33/2007.51 Info:HTTP server: Got notification to stop serving Workunits Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 47323030 Info:Lattice Sieving: Average J: 3801 for 924046 special-q, max bucket fill -bkmult 1.0,1s:1.143550 Info:Lattice Sieving: Total time: 1.30384e+06s Info:Square Root: Total cpu/real time for sqrt: 4486.33/2007.51 Info:Filtering - Merging: Total cpu/real time for merge: 676.66/42.5912 Info:Filtering - Merging: Total cpu/real time for replay: 70.34/60.9722 Info:Filtering - Singleton removal: Total cpu/real time for purge: 578.86/419.364 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 3967.26 Info:Polynomial Selection (root optimized): Rootsieve time: 3965.19 Info:Linear Algebra: Total cpu/real time for bwc: 144381/78933.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 92819.0, WCT time 47529.1, iteration CPU time 0.3, COMM 0.04, cpu-wait 0.1, comm-wait 0.01 (106496 iterations) Info:Linear Algebra: Lingen CPU time 325.0, WCT time 333.69 Info:Linear Algebra: Mksol: CPU time 50351.75, WCT time 30970.27, iteration CPU time 0.42, COMM 0.04, cpu-wait 0.11, comm-wait 0.0 (53248 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 121.66/81.2819 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 188.06/154.504 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 154.20000000000002s Info:Generate Factor Base: Total cpu/real time for makefb: 7.77/0.852131 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 802.37/603.532 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 438.29999999999995s Info:Generate Free Relations: Total cpu/real time for freerel: 242.61/73.1622 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 81888.4 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 57040/43.280/51.217/56.370/0.933 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 47144/41.660/45.582/51.910/0.909 Info:Polynomial Selection (size optimized): Total time: 29688.8 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.91481e+06/192724 78861131332128703999492967802770926502446670158434349515529 191370614360134407118934589283951112663703899235114930780071277604374358575366327941 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 24, 2023 15:21:18 UTC 2023 年 2 月 25 日 (土) 0 時 21 分 18 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 3, 2023 16:25:43 UTC 2023 年 3 月 4 日 (土) 1 時 25 分 43 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | March 27, 2023 12:17:46 UTC 2023 年 3 月 27 日 (月) 21 時 17 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:40 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 40 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:53:25 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:45 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 45 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:42:14 UTC 2023 年 3 月 14 日 (火) 22 時 42 分 14 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:24 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:48 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 48 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:38:11 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 11 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:33 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 1, 2023 21:15:57 UTC 2023 年 4 月 2 日 (日) 6 時 15 分 57 秒 (日本時間) |
composite number 合成数 | 48988374980526190226562354825636553934203162342765126129067905683975850074825408675345269223710481131242091217339574322492924081497032853847040226106519733831283141501316341935113873615544236110395503<200> |
prime factors 素因数 | 11881255335661755963812036632695612673<38> |
composite cofactor 合成数の残り | 4123164901059477252914856222434025469879899360017066476980584326193684503832146681046660936020465879328307470819374960586199600558181452884949748063322279151545711<163> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:851928398 Step 1 took 59916ms Step 2 took 23588ms ********** Factor found in step 2: 11881255335661755963812036632695612673 Found prime factor of 38 digits: 11881255335661755963812036632695612673 Composite cofactor 4123164901059477252914856222434025469879899360017066476980584326193684503832146681046660936020465879328307470819374960586199600558181452884949748063322279151545711 has 163 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 25, 2023 21:13:56 UTC 2023 年 4 月 26 日 (水) 6 時 13 分 56 秒 (日本時間) |
composite number 合成数 | 4123164901059477252914856222434025469879899360017066476980584326193684503832146681046660936020465879328307470819374960586199600558181452884949748063322279151545711<163> |
prime factors 素因数 | 17711098245434685071823807266943347720372837<44> 232801198656457571197680719504312275145467207657284366805176436057010094686434191107712217089861336128568716416403425603<120> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3077626577 Step 1 took 25472ms Step 2 took 9051ms ********** Factor found in step 2: 17711098245434685071823807266943347720372837 Found probable prime factor of 44 digits: 17711098245434685071823807266943347720372837 Probable prime cofactor 232801198656457571197680719504312275145467207657284366805176436057010094686434191107712217089861336128568716416403425603 has 120 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:52 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 52 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 31, 2023 23:53:33 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 33 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:32:44 UTC 2023 年 4 月 24 日 (月) 3 時 32 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 19, 2023 15:44:42 UTC 2023 年 3 月 20 日 (月) 0 時 44 分 42 秒 (日本時間) |
composite number 合成数 | 7284999385547816056328289051259862022542328212574574956643726246807556859880500783895055642646331416995885872455816470650765650712611210532471025083990886614472908295147641<172> |
prime factors 素因数 | 11114317411529699284689544267513349865032977<44> 655460800317844992960305004971656276455718271266949940154936737646719337608479034507128363458789190656308667680019202762613632233<129> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1414175918 Step 1 took 26599ms ********** Factor found in step 1: 11114317411529699284689544267513349865032977 Found prime factor of 44 digits: 11114317411529699284689544267513349865032977 Prime cofactor 655460800317844992960305004971656276455718271266949940154936737646719337608479034507128363458789190656308667680019202762613632233 has 129 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:55 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 55 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 14, 2023 13:42:23 UTC 2023 年 3 月 14 日 (火) 22 時 42 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:44:59 UTC 2023 年 3 月 8 日 (水) 0 時 44 分 59 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:06:57 UTC 2023 年 3 月 24 日 (金) 8 時 6 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:03 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 3 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:09 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:09 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 9 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 31, 2023 23:53:41 UTC 2023 年 4 月 1 日 (土) 8 時 53 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:14 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 14 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:54:51 UTC 2023 年 4 月 1 日 (土) 8 時 54 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:32 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 32 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:54:59 UTC 2023 年 4 月 1 日 (土) 8 時 54 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:33 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 33 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:06 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:34 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 34 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:13 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 27, 2023 20:46:19 UTC 2023 年 2 月 28 日 (火) 5 時 46 分 19 秒 (日本時間) |
composite number 合成数 | 18853495778691005768671748840338772167216805290558371646113832398115192839475957878873730256237096539432940439060902957639474448654265140525720373911881434110669547111747434493105394734734560602349756945191386442489828395127521795149823827<239> |
prime factors 素因数 | 59774472203033958329660098946364136121<38> |
composite cofactor 合成数の残り | 315410493540653353933451891903316771525295109051080168583731789841764898895246149595300092469395987787489962453692671497169625008449750615915908575372597804714449711792421667662343516552611350139745387<201> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @f1dbee33ff5a with GMP-ECM 7.0.5-dev on Sun Feb 26 12:37:53 2023 Input number is 18853495778691005768671748840338772167216805290558371646113832398115192839475957878873730256237096539432940439060902957639474448654265140525720373911881434110669547111747434493105394734734560602349756945191386442489828395127521795149823827 (239 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:632296541 Step 1 took 0ms Step 2 took 6135ms ********** Factor found in step 2: 59774472203033958329660098946364136121 Found prime factor of 38 digits: 59774472203033958329660098946364136121 Composite cofactor 315410493540653353933451891903316771525295109051080168583731789841764898895246149595300092469395987787489962453692671497169625008449750615915908575372597804714449711792421667662343516552611350139745387 has 201 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:45:30 UTC 2023 年 3 月 8 日 (水) 0 時 45 分 30 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:21 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:18 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 18 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:17 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:21 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 21 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:27 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:25 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 25 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:35 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 05:03:25 UTC 2023 年 3 月 17 日 (金) 14 時 3 分 25 秒 (日本時間) |
composite number 合成数 | 776942645758014179027963096890759092041927699070134077788172303721663662363106548184433168624542224199823227594395569031058059731713281869145472179763928636291313475193990499557689353406266978829<195> |
prime factors 素因数 | 8116291786636399438984304462206545882110369<43> 95726307799488224368813980229324697056812740990280831694478080770176610010994900119652225101760535403646800012178045763678939765235117946698053120047341<152> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3212118747 Step 1 took 33954ms ********** Factor found in step 1: 8116291786636399438984304462206545882110369 Found prime factor of 43 digits: 8116291786636399438984304462206545882110369 Prime cofactor 95726307799488224368813980229324697056812740990280831694478080770176610010994900119652225101760535403646800012178045763678939765235117946698053120047341 has 152 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:30 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 30 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 14, 2023 13:38:19 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:35 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 35 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:42 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:38 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 38 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:38:27 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 27 秒 (日本時間) |
1000 | Dmitry Domanov | March 14, 2023 13:38:45 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:41 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 41 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:32:41 UTC 2023 年 3 月 14 日 (火) 22 時 32 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:44 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 44 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:38:37 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 37 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:34:01 UTC 2023 年 4 月 24 日 (月) 3 時 34 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:48 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 48 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:33:01 UTC 2023 年 3 月 14 日 (火) 22 時 33 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:51 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 51 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:24 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:55 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 55 秒 (日本時間) | |
45 | 11e6 | 2000 / 4038 | 1000 | Dmitry Domanov | March 14, 2023 13:38:54 UTC 2023 年 3 月 14 日 (火) 22 時 38 分 54 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:33:52 UTC 2023 年 4 月 24 日 (月) 3 時 33 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:46:58 UTC 2023 年 3 月 8 日 (水) 0 時 46 分 58 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:49 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:02 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 2 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:33 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:05 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 5 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:33:10 UTC 2023 年 3 月 14 日 (火) 22 時 33 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:08 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 8 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:55:56 UTC 2023 年 4 月 1 日 (土) 8 時 55 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:12 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 12 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:56:04 UTC 2023 年 4 月 1 日 (土) 8 時 56 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:15 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 15 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:56:11 UTC 2023 年 4 月 1 日 (土) 8 時 56 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:18 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 18 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:42 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:47:24 UTC 2023 年 3 月 8 日 (水) 0 時 47 分 24 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 31, 2023 23:56:19 UTC 2023 年 4 月 1 日 (土) 8 時 56 分 19 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 4, 2023 09:26:35 UTC 2023 年 3 月 4 日 (土) 18 時 26 分 35 秒 (日本時間) |
composite number 合成数 | 15365586588216010261324839823278147281161427186153803434075404883235199894256809474681150201874765007654221664803919199580429519236962087787366231<146> |
prime factors 素因数 | 4665542912927743125685901627606402203176375371<46> 3293418767114870690557926897510758098206528006430696168677405983669826616116560375135305282351626661<100> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:440799454 Step 1 took 20875ms Step 2 took 8953ms ********** Factor found in step 2: 4665542912927743125685901627606402203176375371 Found prime factor of 46 digits: 4665542912927743125685901627606402203176375371 Prime cofactor 3293418767114870690557926897510758098206528006430696168677405983669826616116560375135305282351626661 has 100 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 24, 2023 16:00:02 UTC 2023 年 2 月 25 日 (土) 1 時 0 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:01 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 1 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:33:18 UTC 2023 年 3 月 14 日 (火) 22 時 33 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:04 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 4 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:13 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:08 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 8 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:34:47 UTC 2023 年 3 月 14 日 (火) 22 時 34 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:11 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 11 秒 (日本時間) | |
45 | 11e6 | 6480 | 1000 | Dmitry Domanov | March 14, 2023 13:39:05 UTC 2023 年 3 月 14 日 (火) 22 時 39 分 5 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:33:28 UTC 2023 年 4 月 24 日 (月) 3 時 33 分 28 秒 (日本時間) | |||
4480 | Ignacio Santos | August 27, 2023 11:18:40 UTC 2023 年 8 月 27 日 (日) 20 時 18 分 40 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6025 | Dmitry Domanov | April 15, 2024 21:41:42 UTC 2024 年 4 月 16 日 (火) 6 時 41 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:15 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 15 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:34:33 UTC 2023 年 3 月 14 日 (火) 22 時 34 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 28, 2023 05:12:27 UTC 2023 年 2 月 28 日 (火) 14 時 12 分 27 秒 (日本時間) |
composite number 合成数 | 394065979746434841653527108661275671132073980899604275220536348761381670815119358052643469076912833342443240841762702312274050067317440634710166103191473719097390775415107496123702486004994916927500776638344625135185828230400909110592565185660221401<249> |
prime factors 素因数 | 355773690055077294793696433901082343<36> 1107631032765322024625443870574847386738142615771074029312781190933296180144113690466848412799248548339968404383835693483898649897161949450818772684627425116552124838095300532371334625442491616634401495835822515007<214> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @dab93665342f with GMP-ECM 7.0.5-dev on Sun Feb 26 19:29:43 2023 Input number is 394065979746434841653527108661275671132073980899604275220536348761381670815119358052643469076912833342443240841762702312274050067317440634710166103191473719097390775415107496123702486004994916927500776638344625135185828230400909110592565185660221401 (249 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2800918253 Step 1 took 0ms Step 2 took 6443ms ********** Factor found in step 2: 355773690055077294793696433901082343 Found prime factor of 36 digits: 355773690055077294793696433901082343 Prime cofactor 1107631032765322024625443870574847386738142615771074029312781190933296180144113690466848412799248548339968404383835693483898649897161949450818772684627425116552124838095300532371334625442491616634401495835822515007 has 214 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:18 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 18 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:33:33 UTC 2023 年 3 月 14 日 (火) 22 時 33 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:21 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 21 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:21 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:24 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 24 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:30 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:27 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 27 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:49 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:31 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 31 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:58 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:34 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 34 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:33:42 UTC 2023 年 3 月 14 日 (火) 22 時 33 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:38 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 38 秒 (日本時間) | |
45 | 11e6 | 3584 / 4038 | 1792 | Dmitry Domanov | March 14, 2023 13:35:01 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 1 秒 (日本時間) |
1792 | Dmitry Domanov | April 28, 2023 16:08:18 UTC 2023 年 4 月 29 日 (土) 1 時 8 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:41 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 41 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:34:03 UTC 2023 年 3 月 14 日 (火) 22 時 34 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:45 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 45 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:34:17 UTC 2023 年 3 月 14 日 (火) 22 時 34 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:48 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 48 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:40 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 27, 2023 17:13:30 UTC 2023 年 2 月 28 日 (火) 2 時 13 分 30 秒 (日本時間) |
composite number 合成数 | 7174288244873616389955827372766895772935857524815481259689174293556261890812685208273886445400491605206821627845963993189310080256890688356515546219997491594404465207894662399288364061862611441064116740327427498767336954873423361<229> |
prime factors 素因数 | 1784533556849151691143675976021874906197<40> |
composite cofactor 合成数の残り | 4020259645630225466621736043514614063428177092651101567830357111926857552856525867210985877769057043434830914035547845331570463816412907520221716919760306491777327912491495423248529072412413<190> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @f1dbee33ff5a with GMP-ECM 7.0.5-dev on Sun Feb 26 11:12:01 2023 Input number is 7174288244873616389955827372766895772935857524815481259689174293556261890812685208273886445400491605206821627845963993189310080256890688356515546219997491594404465207894662399288364061862611441064116740327427498767336954873423361 (229 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1954264111 Step 1 took 0ms Step 2 took 5600ms ********** Factor found in step 2: 1784533556849151691143675976021874906197 Found prime factor of 40 digits: 1784533556849151691143675976021874906197 Composite cofactor 4020259645630225466621736043514614063428177092651101567830357111926857552856525867210985877769057043434830914035547845331570463816412907520221716919760306491777327912491495423248529072412413 has 190 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:52 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 52 秒 (日本時間) | |
45 | 11e6 | 6480 | 1000 | Dmitry Domanov | March 14, 2023 13:39:15 UTC 2023 年 3 月 14 日 (火) 22 時 39 分 15 秒 (日本時間) |
1000 | Dmitry Domanov | April 23, 2023 18:33:39 UTC 2023 年 4 月 24 日 (月) 3 時 33 分 39 秒 (日本時間) | |||
4480 | Ignacio Santos | April 26, 2024 16:44:57 UTC 2024 年 4 月 27 日 (土) 1 時 44 分 57 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6025 | Dmitry Domanov | April 30, 2024 07:35:54 UTC 2024 年 4 月 30 日 (火) 16 時 35 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:50:55 UTC 2023 年 3 月 8 日 (水) 0 時 50 分 55 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 23, 2023 23:07:58 UTC 2023 年 3 月 24 日 (金) 8 時 7 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:51:02 UTC 2023 年 3 月 8 日 (水) 0 時 51 分 2 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 14, 2023 13:35:49 UTC 2023 年 3 月 14 日 (火) 22 時 35 分 49 秒 (日本時間) |