name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 15:29:05 UTC 2022 年 12 月 24 日 (土) 0 時 29 分 5 秒 (日本時間) |
composite number 合成数 | 712962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963<114> |
prime factors 素因数 | 6552068900962543296966804206518933678851624599261<49> 108814936738260471436080823403691922949412405293594121704905086383<66> |
factorization results 素因数分解の結果 | N=712962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 ( 114 digits) SNFS difficulty: 115 digits. Divisors found: r1=6552068900962543296966804206518933678851624599261 (pp49) r2=108814936738260471436080823403691922949412405293594121704905086383 (pp66) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 712962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 m: 10000000000000000000000000000 deg: 4 c4: 1925 c0: 1 skew: 0.15 # Murphy_E = 6.263e-08 type: snfs lss: 1 rlim: 580000 alim: 580000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 580000/580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [290000, 670001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63594 x 63819 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,4,0,0,0,0,0,0,0,0,580000,580000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 00:01:46 UTC 2022 年 12 月 25 日 (日) 9 時 1 分 46 秒 (日本時間) |
composite number 合成数 | 70093832367246976639309924194821891913241403942367833656075296517527915195571184947195730824471181529791<104> |
prime factors 素因数 | 1149914219319304304694993203940223652474401<43> 60955705381866886468302782860565229927946476638521438002439391<62> |
factorization results 素因数分解の結果 | N=70093832367246976639309924194821891913241403942367833656075296517527915195571184947195730824471181529791 ( 104 digits) SNFS difficulty: 123 digits. Divisors found: r1=1149914219319304304694993203940223652474401 (pp43) r2=60955705381866886468302782860565229927946476638521438002439391 (pp62) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 70093832367246976639309924194821891913241403942367833656075296517527915195571184947195730824471181529791 m: 1000000000000000000000000000000 deg: 4 c4: 1925 c0: 1 skew: 0.15 # Murphy_E = 2.626e-08 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 845001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 75393 x 75619 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123.000,4,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,75000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 22:42:05 UTC 2022 年 12 月 27 日 (火) 7 時 42 分 5 秒 (日本時間) |
composite number 合成数 | 157618460881126472942624113453304848075715454029921705330571282577204731141840108666247144176642440088750907<108> |
prime factors 素因数 | 150291635722882524151795377252026167965047<42> 1048750718048964645792699532654204684437542055653816320171056044381<67> |
factorization results 素因数分解の結果 | N=157618460881126472942624113453304848075715454029921705330571282577204731141840108666247144176642440088750907 ( 108 digits) SNFS difficulty: 131 digits. Divisors found: r1=150291635722882524151795377252026167965047 (pp42) r2=1048750718048964645792699532654204684437542055653816320171056044381 (pp67) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 157618460881126472942624113453304848075715454029921705330571282577204731141840108666247144176642440088750907 m: 100000000000000000000000000000000 deg: 4 c4: 1925 c0: 1 skew: 0.15 # Murphy_E = 1.079e-08 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 1140001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147517 x 147742 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131.000,4,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 30, 2022 00:25:01 UTC 2022 年 12 月 30 日 (金) 9 時 25 分 1 秒 (日本時間) |
composite number 合成数 | 428597050254570141706084293068844736417672923812583645535900524201559523165858381567226376118075378034097<105> |
prime factors 素因数 | 1407816567902870231486626777774243513151172167<46> 304440976208301324133288624068540142872701202262938827550791<60> |
factorization results 素因数分解の結果 | N=428597050254570141706084293068844736417672923812583645535900524201559523165858381567226376118075378034097 ( 105 digits) SNFS difficulty: 133 digits. Divisors found: r1=1407816567902870231486626777774243513151172167 (pp46) r2=304440976208301324133288624068540142872701202262938827550791 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 428597050254570141706084293068844736417672923812583645535900524201559523165858381567226376118075378034097 m: 1000000000000000000000000000000000 deg: 4 c4: 77 c0: 4 skew: 0.48 # Murphy_E = 8.338e-09 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166281 x 166506 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,133.000,4,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 03:17:10 UTC 2022 年 12 月 24 日 (土) 12 時 17 分 10 秒 (日本時間) |
composite number 合成数 | 2581017121864231795449365136827427161685638818497512838046203558451657884504511752007830202593084214901519112934582947856750197766247<133> |
prime factors 素因数 | 16283004337651938978498649824567302075324113618146814450398853009<65> 158509883578181412841287118168667151414732661362669460944832134718583<69> |
factorization results 素因数分解の結果 | Number: n N=2581017121864231795449365136827427161685638818497512838046203558451657884504511752007830202593084214901519112934582947856750197766247 ( 133 digits) SNFS difficulty: 137 digits. Divisors found: Sat Dec 24 14:13:39 2022 p65 factor: 16283004337651938978498649824567302075324113618146814450398853009 Sat Dec 24 14:13:39 2022 p69 factor: 158509883578181412841287118168667151414732661362669460944832134718583 Sat Dec 24 14:13:39 2022 elapsed time 00:02:50 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 77x10^136+4 = 85(135)6 # n: 2581017121864231795449365136827427161685638818497512838046203558451657884504511752007830202593084214901519112934582947856750197766247 m: 10000000000000000000000000000000000 deg: 4 c4: 77 c0: 4 skew: 0.48 # Murphy_E = 5.287e-09 type: snfs lss: 1 rlim: 1390000 alim: 1390000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1390000/1390000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 6295000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 446979 hash collisions in 5580968 relations (5748080 unique) Msieve: matrix is 238193 x 238418 (80.3 MB) Sieving start time : 2022/12/24 13:56:25 Sieving end time : 2022/12/24 14:08:34 Total sieving time: 0hrs 12min 9secs. Total relation processing time: 0hrs 1min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 8sec. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | December 24, 2022 00:02:04 UTC 2022 年 12 月 24 日 (土) 9 時 2 分 4 秒 (日本時間) |
composite number 合成数 | 30231677671374747565694181806142707794720473788834880979943267538525617748300420536364489832419378260017545262075693<116> |
prime factors 素因数 | 2562770158448281782387061925182297<34> 11796484195710928285493201155916221850479510268869330459416682517273456843632327669<83> |
factorization results 素因数分解の結果 | p34:2562770158448281782387061925182297 p83:11796484195710928285493201155916221850479510268869330459416682517273456843632327669 |
software ソフトウェア | ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 11:59:48 UTC 2022 年 12 月 24 日 (土) 20 時 59 分 48 秒 (日本時間) |
composite number 合成数 | 374139821818754093338932784156926414287106797977637890303383486248033402301877096128711079657744473341311222842807944943147741949<129> |
prime factors 素因数 | 18678956448341688908606379794362813<35> 45978596062084645772770410572824910297<38> 435637863478045735118833587527458119235434949321055664809<57> |
factorization results 素因数分解の結果 | Number: n N=374139821818754093338932784156926414287106797977637890303383486248033402301877096128711079657744473341311222842807944943147741949 ( 129 digits) SNFS difficulty: 143 digits. Divisors found: Sat Dec 24 22:50:48 2022 found factor: 45978596062084645772770410572824910297 Sat Dec 24 22:50:58 2022 p35 factor: 18678956448341688908606379794362813 Sat Dec 24 22:50:58 2022 p38 factor: 45978596062084645772770410572824910297 Sat Dec 24 22:50:58 2022 p57 factor: 435637863478045735118833587527458119235434949321055664809 Sat Dec 24 22:50:58 2022 elapsed time 00:02:53 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.305). Factorization parameters were as follows: # # N = 77x10^142+4 = 85(141)6 # n: 374139821818754093338932784156926414287106797977637890303383486248033402301877096128711079657744473341311222842807944943147741949 m: 100000000000000000000000000000000000 deg: 4 c4: 1925 c0: 1 skew: 0.15 # Murphy_E = 2.743e-09 type: snfs lss: 1 rlim: 1710000 alim: 1710000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1710000/1710000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 13655000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 380408 hash collisions in 5614670 relations (5880146 unique) Msieve: matrix is 273294 x 273519 (92.4 MB) Sieving start time : 2022/12/24 21:57:35 Sieving end time : 2022/12/24 22:47:37 Total sieving time: 0hrs 50min 2secs. Total relation processing time: 0hrs 1min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 21sec. Prototype def-par.txt line would be: snfs,143,4,0,0,0,0,0,0,0,0,1710000,1710000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 13, 2023 10:30:30 UTC 2023 年 1 月 13 日 (金) 19 時 30 分 30 秒 (日本時間) |
composite number 合成数 | 42513599994577404856500062416256283964409150399506342507559575543283626142327520382296213010333211608813710178294192483679360324789<131> |
prime factors 素因数 | 207406842340174123399420508680341120791078200037233599476605883<63> 204976844133471674894007041061664054224754994555411830795110634965583<69> |
factorization results 素因数分解の結果 | 207406842340174123399420508680341120791078200037233599476605883*204976844133471674894007041061664054224754994555411830795110634965583 |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 22, 2023 18:04:02 UTC 2023 年 1 月 23 日 (月) 3 時 4 分 2 秒 (日本時間) |
composite number 合成数 | 274565254809109622210880584936841158020824689647425395516202807826264337930448843032389710385290533852033777<108> |
prime factors 素因数 | 29374691327468614326801241065983969307748417237571<50> 9347000509665286936937791140765253618202356475649541248187<58> |
factorization results 素因数分解の結果 | Number: n N=274565254809109622210880584936841158020824689647425395516202807826264337930448843032389710385290533852033777 ( 108 digits) SNFS difficulty: 148 digits. Divisors found: Mon Jan 23 04:59:36 2023 prp50 factor: 29374691327468614326801241065983969307748417237571 Mon Jan 23 04:59:36 2023 prp58 factor: 9347000509665286936937791140765253618202356475649541248187 Mon Jan 23 04:59:36 2023 elapsed time 00:05:40 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 77x10^147+4 = 85(146)6 # n: 274565254809109622210880584936841158020824689647425395516202807826264337930448843032389710385290533852033777 m: 100000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 1.732e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 19450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 772640 hash collisions in 8037213 relations (7809459 unique) Msieve: matrix is 369648 x 369873 (100.3 MB) Sieving start time: 2023/01/23 04:09:22 Sieving end time : 2023/01/23 04:53:45 Total sieving time: 0hrs 44min 23secs. Total relation processing time: 0hrs 3min 26sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 37sec. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 07:09:11 UTC 2022 年 12 月 25 日 (日) 16 時 9 分 11 秒 (日本時間) |
composite number 合成数 | 1814642890048493771883067304281839564601617292133111784007089546766034362034403063243139331785008376499987701434563627182340326006449188041621<142> |
prime factors 素因数 | 154357468362458223694244213487819182570176373<45> 11756106842769642788472230135895014269581624017413900717436648695368325856312260699287176711913377<98> |
factorization results 素因数分解の結果 | Number: n N=1814642890048493771883067304281839564601617292133111784007089546766034362034403063243139331785008376499987701434563627182340326006449188041621 ( 142 digits) SNFS difficulty: 150 digits. Divisors found: Sun Dec 25 17:58:52 2022 p45 factor: 154357468362458223694244213487819182570176373 Sun Dec 25 17:58:52 2022 p98 factor: 11756106842769642788472230135895014269581624017413900717436648695368325856312260699287176711913377 Sun Dec 25 17:58:52 2022 elapsed time 00:05:48 (Msieve 1.54 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: # # N = 77x10^149+4 = 85(148)6 # n: 1814642890048493771883067304281839564601617292133111784007089546766034362034403063243139331785008376499987701434563627182340326006449188041621 m: 10000000000000000000000000000000000000 deg: 4 c4: 385 c0: 2 skew: 0.27 # Murphy_E = 1.469e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 6750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1528281 hash collisions in 14289696 relations (14150625 unique) Msieve: matrix is 444108 x 444354 (63.3 MB) Sieving start time : 2022/12/25 17:26:05 Sieving end time : 2022/12/25 17:52:46 Total sieving time: 0hrs 26min 41secs. Total relation processing time: 0hrs 1min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 3sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 07:50:27 UTC 2022 年 12 月 25 日 (日) 16 時 50 分 27 秒 (日本時間) |
composite number 合成数 | 11863315903038483224844302661562802458703132502965618131203042631073899275753006233817285042004362507227099900855982311812587104956892395679<140> |
prime factors 素因数 | 72863278480574451320548819276618972313801569549942998553432380491<65> 162816114652338565657904209214609918918988156232484690907021560275220639869<75> |
factorization results 素因数分解の結果 | Number: n N=11863315903038483224844302661562802458703132502965618131203042631073899275753006233817285042004362507227099900855982311812587104956892395679 ( 140 digits) SNFS difficulty: 152 digits. Divisors found: Sun Dec 25 18:39:53 2022 p65 factor: 72863278480574451320548819276618972313801569549942998553432380491 Sun Dec 25 18:39:53 2022 p75 factor: 162816114652338565657904209214609918918988156232484690907021560275220639869 Sun Dec 25 18:39:53 2022 elapsed time 00:05:13 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.297). Factorization parameters were as follows: # # N = 77x10^151+4 = 85(150)6 # n: 11863315903038483224844302661562802458703132502965618131203042631073899275753006233817285042004362507227099900855982311812587104956892395679 m: 1000000000000000000000000000000 deg: 5 c5: 385 c0: 2 skew: 0.35 # Murphy_E = 1.156e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 6800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1168624 hash collisions in 12955146 relations (12613255 unique) Msieve: matrix is 325368 x 325596 (109.1 MB) Sieving start time : 2022/12/25 18:04:15 Sieving end time : 2022/12/25 18:34:03 Total sieving time: 0hrs 29min 48secs. Total relation processing time: 0hrs 1min 48sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 33sec. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 2, 2023 13:07:04 UTC 2023 年 2 月 2 日 (木) 22 時 7 分 4 秒 (日本時間) |
composite number 合成数 | 530122677333610507811491838159617619903465137258501821290517267863903954699105896274685873261384869599679766698538350447<120> |
prime factors 素因数 | 5279521637644102122188015364715486473170630836549<49> 100411119362353603465102299006828659362154975710389421546300433810919203<72> |
factorization results 素因数分解の結果 | Number: n N=530122677333610507811491838159617619903465137258501821290517267863903954699105896274685873261384869599679766698538350447 ( 120 digits) SNFS difficulty: 153 digits. Divisors found: Thu Feb 2 23:54:55 2023 prp49 factor: 5279521637644102122188015364715486473170630836549 Thu Feb 2 23:54:55 2023 prp72 factor: 100411119362353603465102299006828659362154975710389421546300433810919203 Thu Feb 2 23:54:55 2023 elapsed time 00:06:39 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 77x10^152+4 = 85(151)6 # n: 530122677333610507811491838159617619903465137258501821290517267863903954699105896274685873261384869599679766698538350447 m: 1000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 1.119e-09 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1069981 hash collisions in 13758861 relations (13624232 unique) Msieve: matrix is 383510 x 383737 (105.3 MB) Sieving start time: 2023/02/02 22:02:30 Sieving end time : 2023/02/02 23:35:27 Total sieving time: 1hrs 32min 57secs. Total relation processing time: 0hrs 3min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 19sec. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 03:22:25 UTC 2022 年 12 月 30 日 (金) 12 時 22 分 25 秒 (日本時間) |
composite number 合成数 | 75351149756169116591001053409211767638348267899436392582347697116454516918526748216034616538469162273925722200927572576229262802545437954149953<143> |
prime factors 素因数 | 5303035018780867414180666351718622823252742306633386391<55> 14209061318529977623705373056042314895438124350043388765301335811415119948778049131524583<89> |
factorization results 素因数分解の結果 | Number: n N=75351149756169116591001053409211767638348267899436392582347697116454516918526748216034616538469162273925722200927572576229262802545437954149953 ( 143 digits) SNFS difficulty: 155 digits. Divisors found: Fri Dec 30 14:19:03 2022 p55 factor: 5303035018780867414180666351718622823252742306633386391 Fri Dec 30 14:19:03 2022 p89 factor: 14209061318529977623705373056042314895438124350043388765301335811415119948778049131524583 Fri Dec 30 14:19:03 2022 elapsed time 00:06:52 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.288). Factorization parameters were as follows: # # N = 77x10^154+4 = 85(153)6 # n: 75351149756169116591001053409211767638348267899436392582347697116454516918526748216034616538469162273925722200927572576229262802545437954149953 m: 5000000000000000000000000000000 deg: 5 c5: 308 c0: 5 skew: 0.44 # Murphy_E = 7.953e-10 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1978446 hash collisions in 16889680 relations (15967192 unique) Msieve: matrix is 513003 x 513250 (81.1 MB) Sieving start time : 2022/12/30 13:40:03 Sieving end time : 2022/12/30 14:11:43 Total sieving time: 0hrs 31min 40secs. Total relation processing time: 0hrs 2min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 39sec. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 09:30:24 UTC 2022 年 12 月 30 日 (金) 18 時 30 分 24 秒 (日本時間) |
composite number 合成数 | 44983670069753435150178348841269271810999778129787242315915539189453882278487741914368109473346998857035513686120107128121926516795517854121<140> |
prime factors 素因数 | 482958429404327894824023892965670238389773448529<48> 93141908973895480297896053255090860932619095101935164297991484265089122355478878147929157849<92> |
factorization results 素因数分解の結果 | Number: n N=44983670069753435150178348841269271810999778129787242315915539189453882278487741914368109473346998857035513686120107128121926516795517854121 ( 140 digits) SNFS difficulty: 158 digits. Divisors found: Fri Dec 30 20:25:55 2022 p48 factor: 482958429404327894824023892965670238389773448529 Fri Dec 30 20:25:55 2022 p92 factor: 93141908973895480297896053255090860932619095101935164297991484265089122355478878147929157849 Fri Dec 30 20:25:55 2022 elapsed time 00:05:55 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.320). Factorization parameters were as follows: # # N = 77x10^157+4 = 85(156)6 # n: 44983670069753435150178348841269271810999778129787242315915539189453882278487741914368109473346998857035513686120107128121926516795517854121 m: 10000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 7.193e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1268642 hash collisions in 13739982 relations (13354743 unique) Msieve: matrix is 411532 x 411761 (138.1 MB) Sieving start time : 2022/12/30 19:37:18 Sieving end time : 2022/12/30 20:19:43 Total sieving time: 0hrs 42min 25secs. Total relation processing time: 0hrs 2min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 22sec. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 5, 2023 19:21:17 UTC 2023 年 2 月 6 日 (月) 4 時 21 分 17 秒 (日本時間) |
composite number 合成数 | 191887043063056871003890436076157807262416063922714595730320308186215298217757670725424993429037138335251325668820989<117> |
prime factors 素因数 | 142927568992189275317173663750966531986499157622189933361<57> 1342547448446024709881781585784276995087557630298708960798349<61> |
factorization results 素因数分解の結果 | Number: n N=191887043063056871003890436076157807262416063922714595730320308186215298217757670725424993429037138335251325668820989 ( 117 digits) SNFS difficulty: 160 digits. Divisors found: Mon Feb 6 06:15:32 2023 prp57 factor: 142927568992189275317173663750966531986499157622189933361 Mon Feb 6 06:15:32 2023 prp61 factor: 1342547448446024709881781585784276995087557630298708960798349 Mon Feb 6 06:15:32 2023 elapsed time 00:12:40 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 77x10^159+4 = 85(158)6 # n: 191887043063056871003890436076157807262416063922714595730320308186215298217757670725424993429037138335251325668820989 m: 50000000000000000000000000000000 deg: 5 c5: 308 c0: 5 skew: 0.44 # Murphy_E = 5.099e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1328568 hash collisions in 16898226 relations (16333244 unique) Msieve: matrix is 556485 x 556711 (152.1 MB) Sieving start time: 2023/02/06 03:37:37 Sieving end time : 2023/02/06 06:02:41 Total sieving time: 2hrs 25min 4secs. Total relation processing time: 0hrs 8min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 1sec. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 2, 2023 10:48:33 UTC 2023 年 2 月 2 日 (木) 19 時 48 分 33 秒 (日本時間) |
composite number 合成数 | 51856461465366448590770521147580863209267198563155619150068256407666974430812431804640614882081875706659007116979475391002439<125> |
prime factors 素因数 | 1490990799490208917529186757526183635028344220105663<52> 34779866839618939670942706520853131111048301886084581274397878542961772153<74> |
factorization results 素因数分解の結果 | Number: n N=51856461465366448590770521147580863209267198563155619150068256407666974430812431804640614882081875706659007116979475391002439 ( 125 digits) SNFS difficulty: 164 digits. Divisors found: Thu Feb 2 21:45:36 2023 prp52 factor: 1490990799490208917529186757526183635028344220105663 Thu Feb 2 21:45:36 2023 prp74 factor: 34779866839618939670942706520853131111048301886084581274397878542961772153 Thu Feb 2 21:45:36 2023 elapsed time 00:13:48 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 77x10^163+4 = 85(162)6 # n: 51856461465366448590770521147580863209267198563155619150068256407666974430812431804640614882081875706659007116979475391002439 m: 100000000000000000000000000000000 deg: 5 c5: 19250 c0: 1 skew: 0.14 # Murphy_E = 3.999e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1096318 hash collisions in 12793616 relations (12527362 unique) Msieve: matrix is 605994 x 606219 (169.6 MB) Sieving start time: 2023/02/02 19:31:18 Sieving end time : 2023/02/02 21:31:39 Total sieving time: 2hrs 0min 21secs. Total relation processing time: 0hrs 9min 52sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 22sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 26, 2022 23:51:14 UTC 2022 年 12 月 27 日 (火) 8 時 51 分 14 秒 (日本時間) |
composite number 合成数 | 445457356621797656237109939315286455807749213200819835917576088108271731209040919203685156479218905219471285853503121776725526509190433205080953717489741117077<159> |
prime factors 素因数 | 8130673467086175052487889780140244572046693293599<49> 54787264354552680605847342075643831020192216621862282172844701406117411576429479839221733047213742294818155723<110> |
factorization results 素因数分解の結果 | Number: n N=445457356621797656237109939315286455807749213200819835917576088108271731209040919203685156479218905219471285853503121776725526509190433205080953717489741117077 ( 159 digits) SNFS difficulty: 166 digits. Divisors found: Tue Dec 27 10:40:15 2022 p49 factor: 8130673467086175052487889780140244572046693293599 Tue Dec 27 10:40:15 2022 p110 factor: 54787264354552680605847342075643831020192216621862282172844701406117411576429479839221733047213742294818155723 Tue Dec 27 10:40:15 2022 elapsed time 00:07:26 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.300). Factorization parameters were as follows: # # N = 77x10^165+4 = 85(164)6 # n: 445457356621797656237109939315286455807749213200819835917576088108271731209040919203685156479218905219471285853503121776725526509190433205080953717489741117077 m: 1000000000000000000000000000000000 deg: 5 c5: 77 c0: 4 skew: 0.55 # Murphy_E = 4.011e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1228603 hash collisions in 12839416 relations (12413437 unique) Msieve: matrix is 513076 x 513303 (176.3 MB) Sieving start time : 2022/12/27 09:59:41 Sieving end time : 2022/12/27 10:32:30 Total sieving time: 0hrs 32min 49secs. Total relation processing time: 0hrs 3min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 00:55:37 UTC 2022 年 12 月 27 日 (火) 9 時 55 分 37 秒 (日本時間) |
composite number 合成数 | 134595169268063016244447598795855540234010601332222146380466323485622886974268760474427681011157668943592518901795684635133650279715995410946589597430792032713<159> |
prime factors 素因数 | 155809312039511853003433969323348388556897<42> 68653711593178793660572238372510607189754712565827<50> 12582647836432338823619408530365734235404801427927262841127727443427<68> |
factorization results 素因数分解の結果 | Number: n N=134595169268063016244447598795855540234010601332222146380466323485622886974268760474427681011157668943592518901795684635133650279715995410946589597430792032713 ( 159 digits) SNFS difficulty: 167 digits. Divisors found: Tue Dec 27 11:37:10 2022 found factor: 12582647836432338823619408530365734235404801427927262841127727443427 Tue Dec 27 11:37:48 2022 p42 factor: 155809312039511853003433969323348388556897 Tue Dec 27 11:37:48 2022 p50 factor: 68653711593178793660572238372510607189754712565827 Tue Dec 27 11:37:48 2022 p68 factor: 12582647836432338823619408530365734235404801427927262841127727443427 Tue Dec 27 11:37:48 2022 elapsed time 00:09:53 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.339). Factorization parameters were as follows: # # N = 77x10^166+4 = 85(165)6 # n: 134595169268063016244447598795855540234010601332222146380466323485622886974268760474427681011157668943592518901795684635133650279715995410946589597430792032713 m: 1000000000000000000000000000000000 deg: 5 c5: 385 c0: 2 skew: 0.35 # Murphy_E = 3.03e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1353823 hash collisions in 12370724 relations (11745222 unique) Msieve: matrix is 596386 x 596612 (205.3 MB) Sieving start time : 2022/12/27 10:45:58 Sieving end time : 2022/12/27 11:27:38 Total sieving time: 0hrs 41min 40secs. Total relation processing time: 0hrs 5min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 53sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 00:18:03 UTC 2023 年 1 月 1 日 (日) 9 時 18 分 3 秒 (日本時間) |
composite number 合成数 | 96013083271814212082925982799277155149221279546579077343012147911362529112700315475086086775307536072016804417017013234356575852487<131> |
prime factors 素因数 | 872644493280976792625976500077389792319<39> 110025427320148825378776643432498373462143299365449018678398211756985844277181345965443082873<93> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 96013083271814212082925982799277155149221279546579077343012147911362529112700315475086086775307536072016804417017013234356575852487 (131 digits) Using B1=26100000, B2=96191014936, polynomial Dickson(12), sigma=1:3923575023 Step 1 took 41084ms Step 2 took 15434ms ********** Factor found in step 2: 872644493280976792625976500077389792319 Found prime factor of 39 digits: 872644493280976792625976500077389792319 Prime cofactor 110025427320148825378776643432498373462143299365449018678398211756985844277181345965443082873 has 93 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 1, 2023 01:33:22 UTC 2023 年 1 月 1 日 (日) 10 時 33 分 22 秒 (日本時間) |
composite number 合成数 | 2071152175731530614173120069764364333005592820873556875750020682763660699466348186228838575825778814937300106969846637<118> |
prime factors 素因数 | 308142229131289705018166022664184154433<39> 6721416216045733419628628905895850912541932028194147344571927904473959243903789<79> |
factorization results 素因数分解の結果 | 2071152175731530614173120069764364333005592820873556875750020682763660699466348186228838575825778814937300106969846637=308142229131289705018166022664184154433*6721416216045733419628628905895850912541932028194147344571927904473959243903789 cado polynomial n: 2071152175731530614173120069764364333005592820873556875750020682763660699466348186228838575825778814937300106969846637 skew: 70178.391 c0: -3453696636292564423483777650 c1: -194188917338893260528499 c2: 3679776712117624914 c3: 20191438483867 c4: -149671224 c5: 2880 Y0: -111540702559854786743626 Y1: 673123788476317 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.862e-06 # f(x) = 2880*x^5-149671224*x^4+20191438483867*x^3+3679776712117624914*x^2-194188917338893260528499*x-3453696636292564423483777650 # g(x) = 673123788476317*x-111540702559854786743626 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 308142229131289705018166022664184154433 6721416216045733419628628905895850912541932028194147344571927904473959243903789 Info:Square Root: Total cpu/real time for sqrt: 622.08/83.7481 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 19941/34.550/41.847/46.940/1.024 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15656/33.590/37.026/42.320/0.803 Info:Polynomial Selection (size optimized): Total time: 3164.36 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1268.1 Info:Polynomial Selection (root optimized): Rootsieve time: 1217.91 Info:Generate Factor Base: Total cpu/real time for makefb: 10.5/1.56456 Info:Generate Free Relations: Total cpu/real time for freerel: 133.14/16.76 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13446124 Info:Lattice Sieving: Average J: 1902.35 for 192361 special-q, max bucket fill -bkmult 1.0,1s:1.232410 Info:Lattice Sieving: Total time: 41298.2s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 32.32/59.2746 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 59.2s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 151.43/106.901 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 102.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 78.42/65.5967 Info:Filtering - Merging: Merged matrix has 551587 rows and total weight 55292986 (100.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 38.2/6.96927 Info:Filtering - Merging: Total cpu/real time for replay: 11.33/9.07996 Info:Linear Algebra: Total cpu/real time for bwc: 1981.75/524.17 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 310.36, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (17408 iterations) Info:Linear Algebra: Lingen CPU time 53.37, WCT time 14.52 Info:Linear Algebra: Mksol: WCT time 188.52, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (8704 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 23.13/5.19324 Info:Square Root: Total cpu/real time for sqrt: 622.08/83.7481 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 102509/11946.4 Info:root: Cleaning up computation data in /tmp/cado.7u8kc4ai 308142229131289705018166022664184154433 6721416216045733419628628905895850912541932028194147344571927904473959243903789 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 22:00:59 UTC 2022 年 12 月 29 日 (木) 7 時 0 分 59 秒 (日本時間) |
composite number 合成数 | 470529494808956066714844487178788671166214343607920487271447539162151520631433862959621673949522187319688667279029639219957718977332277030059968654131677818447903<162> |
prime factors 素因数 | 162408470985619144438855205465491778962532053313<48> 2897197984522742366451475656734000047077656474015095593187309074963624322817329057190069221719919443065810998190431<115> |
factorization results 素因数分解の結果 | Number: n N=470529494808956066714844487178788671166214343607920487271447539162151520631433862959621673949522187319688667279029639219957718977332277030059968654131677818447903 ( 162 digits) SNFS difficulty: 170 digits. Divisors found: Thu Dec 29 08:52:35 2022 p48 factor: 162408470985619144438855205465491778962532053313 Thu Dec 29 08:52:35 2022 p115 factor: 2897197984522742366451475656734000047077656474015095593187309074963624322817329057190069221719919443065810998190431 Thu Dec 29 08:52:35 2022 elapsed time 00:18:31 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: # # N = 77x10^169+4 = 85(168)6 # n: 470529494808956066714844487178788671166214343607920487271447539162151520631433862959621673949522187319688667279029639219957718977332277030059968654131677818447903 m: 5000000000000000000000000000000000 deg: 5 c5: 308 c0: 5 skew: 0.44 # Murphy_E = 2.065e-10 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 58500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1166735 hash collisions in 13671779 relations (13411736 unique) Msieve: matrix is 862719 x 862944 (295.6 MB) Sieving start time : 2022/12/29 02:06:36 Sieving end time : 2022/12/29 08:32:35 Total sieving time: 6hrs 25min 59secs. Total relation processing time: 0hrs 11min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 49sec. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 3, 2023 19:05:04 UTC 2023 年 1 月 4 日 (水) 4 時 5 分 4 秒 (日本時間) |
composite number 合成数 | 2287199799498534734540706503994615624249565350570396717843016818867156100122119897140442313055572416621566282437400324703<121> |
prime factors 素因数 | 19603024160101027535468424437550372751239207470291939<53> 116675864949132790308015867455199020306984106372180492550993821038677<69> |
factorization results 素因数分解の結果 | 2287199799498534734540706503994615624249565350570396717843016818867156100122119897140442313055572416621566282437400324703=19603024160101027535468424437550372751239207470291939*116675864949132790308015867455199020306984106372180492550993821038677 cado polynomial n: 2287199799498534734540706503994615624249565350570396717843016818867156100122119897140442313055572416621566282437400324703 skew: 13367.644 c0: 305028435890660887898779968 c1: 92016860392517428921774 c2: -6505412023626612843 c3: 189698831040851 c4: 9707087370 c5: -1305000 Y0: -142001104619749740634109 Y1: 1492474809706675079 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.411e-06 # f(x) = -1305000*x^5+9707087370*x^4+189698831040851*x^3-6505412023626612843*x^2+92016860392517428921774*x+305028435890660887898779968 # g(x) = 1492474809706675079*x-142001104619749740634109 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 19603024160101027535468424437550372751239207470291939 116675864949132790308015867455199020306984106372180492550993821038677 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20216/35.280/43.042/48.880/1.047 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16232/34.820/38.117/43.600/0.864 Info:Polynomial Selection (size optimized): Total time: 3043.69 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2056.53 Info:Polynomial Selection (root optimized): Rootsieve time: 2008.43 Info:Generate Factor Base: Total cpu/real time for makefb: 5.22/0.87324 Info:Generate Free Relations: Total cpu/real time for freerel: 132.19/16.6209 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13587523 Info:Lattice Sieving: Average J: 1895.08 for 276390 special-q, max bucket fill -bkmult 1.0,1s:1.275560 Info:Lattice Sieving: Total time: 55450.1s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 33.22/56.7499 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 56.5s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 174.45/125.345 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 116.10000000000001s Info:Filtering - Singleton removal: Total cpu/real time for purge: 86.36/84.5169 Info:Filtering - Merging: Merged matrix has 740394 rows and total weight 75054099 (101.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 51.36/9.46962 Info:Filtering - Merging: Total cpu/real time for replay: 16.51/13.0363 Info:Linear Algebra: Total cpu/real time for bwc: 3595.01/954.01 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 582.65, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (23296 iterations) Info:Linear Algebra: Lingen CPU time 74.4, WCT time 20.2 Info:Linear Algebra: Mksol: WCT time 335.63, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (11776 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 27/6.70298 Info:Square Root: Total cpu/real time for sqrt: 1131.12/149.777 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 138409/15984.7 Info:root: Cleaning up computation data in /tmp/cado.hjs7055x 19603024160101027535468424437550372751239207470291939 116675864949132790308015867455199020306984106372180492550993821038677 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 4, 2023 04:19:19 UTC 2023 年 1 月 4 日 (水) 13 時 19 分 19 秒 (日本時間) |
composite number 合成数 | 7123688030073367857443904981028987824076878952840286696028861320075362961532250596697792058297508656457252145777466023627<121> |
prime factors 素因数 | 857090524420493379357524560457981361682558370660939446722839<60> 8311476824329523073959265142717034648060443514891483708176493<61> |
factorization results 素因数分解の結果 | 7123688030073367857443904981028987824076878952840286696028861320075362961532250596697792058297508656457252145777466023627=857090524420493379357524560457981361682558370660939446722839*8311476824329523073959265142717034648060443514891483708176493 cado polynomial n: 7123688030073367857443904981028987824076878952840286696028861320075362961532250596697792058297508656457252145777466023627 skew: 25066.054 c0: -34670010219253057570678317 c1: -279221829377022701274276 c2: -42188707724220313343 c3: 515693295941696 c4: -4250935920 c5: 403200 Y0: -206231142888710436129062 Y1: 113594662090779161 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.325e-06 # f(x) = 403200*x^5-4250935920*x^4+515693295941696*x^3-42188707724220313343*x^2-279221829377022701274276*x-34670010219253057570678317 # g(x) = 113594662090779161*x-206231142888710436129062 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 857090524420493379357524560457981361682558370660939446722839 8311476824329523073959265142717034648060443514891483708176493 Info:Square Root: Total cpu/real time for sqrt: 1113.04/147.277 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20282/35.860/43.221/48.450/1.035 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16243/34.620/38.282/43.780/0.851 Info:Polynomial Selection (size optimized): Total time: 3057.68 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1907.28 Info:Polynomial Selection (root optimized): Rootsieve time: 1857.79 Info:Generate Factor Base: Total cpu/real time for makefb: 5.28/0.880969 Info:Generate Free Relations: Total cpu/real time for freerel: 132.17/16.618 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13419860 Info:Lattice Sieving: Average J: 1891.05 for 269956 special-q, max bucket fill -bkmult 1.0,1s:1.248640 Info:Lattice Sieving: Total time: 53387.5s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 32.79/55.958 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 55.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 150.12/105.535 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 101.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 58.76/48.7215 Info:Filtering - Merging: Merged matrix has 731921 rows and total weight 74253039 (101.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 50.91/9.3673 Info:Filtering - Merging: Total cpu/real time for replay: 16.06/12.802 Info:Linear Algebra: Total cpu/real time for bwc: 3471.48/917.17 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 554.58, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (23040 iterations) Info:Linear Algebra: Lingen CPU time 74.79, WCT time 20.32 Info:Linear Algebra: Mksol: WCT time 327.09, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (11520 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 26.2/6.52352 Info:Square Root: Total cpu/real time for sqrt: 1113.04/147.277 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 134337/15522.8 Info:root: Cleaning up computation data in /tmp/cado.31fnx3hf 857090524420493379357524560457981361682558370660939446722839 8311476824329523073959265142717034648060443514891483708176493 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 00:46:36 UTC 2023 年 1 月 2 日 (月) 9 時 46 分 36 秒 (日本時間) |
composite number 合成数 | 2905152492662644020208794094237745867260803946038191232721046662255180343343831395687259892946363355763412140664450050099591676431672378600651449040157285182711<160> |
prime factors 素因数 | 37375767702559064156990785307535045328721<41> 77728235999918537525458821591698500141118354293013609303801663585129993193944149536174757893012378450019179801594357191<119> |
factorization results 素因数分解の結果 | Number: n N=2905152492662644020208794094237745867260803946038191232721046662255180343343831395687259892946363355763412140664450050099591676431672378600651449040157285182711 ( 160 digits) SNFS difficulty: 173 digits. Divisors found: Mon Jan 2 11:35:10 2023 p41 factor: 37375767702559064156990785307535045328721 Mon Jan 2 11:35:10 2023 p119 factor: 77728235999918537525458821591698500141118354293013609303801663585129993193944149536174757893012378450019179801594357191 Mon Jan 2 11:35:10 2023 elapsed time 00:13:19 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.295). Factorization parameters were as follows: # # N = 77x10^172+4 = 85(171)6 # n: 2905152492662644020208794094237745867260803946038191232721046662255180343343831395687259892946363355763412140664450050099591676431672378600651449040157285182711 m: 10000000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 1.856e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1288519 hash collisions in 12024043 relations (11447174 unique) Msieve: matrix is 802689 x 802915 (278.1 MB) Sieving start time : 2023/01/02 10:32:04 Sieving end time : 2023/01/02 11:21:34 Total sieving time: 0hrs 49min 30secs. Total relation processing time: 0hrs 9min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 3sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 05:26:57 UTC 2023 年 1 月 2 日 (月) 14 時 26 分 57 秒 (日本時間) |
composite number 合成数 | 1828380874449167112856280910664814714678022695379580590415768569508086049187772576578885247448560094638672339558456909069290205165530593057701863183<148> |
prime factors 素因数 | 31105747130687522048915533464447229780681168489<47> 58779519642058984907516724648689043442710547811722008176751339532729600114901566219776164420406577847<101> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1828380874449167112856280910664814714678022695379580590415768569508086049187772576578885247448560094638672339558456909069290205165530593057701863183 (148 digits) Using B1=27150000, B2=144286522396, polynomial Dickson(12), sigma=1:2587927534 Step 1 took 56177ms Step 2 took 23318ms ********** Factor found in step 2: 31105747130687522048915533464447229780681168489 Found prime factor of 47 digits: 31105747130687522048915533464447229780681168489 Prime cofactor 58779519642058984907516724648689043442710547811722008176751339532729600114901566219776164420406577847 has 101 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 13:31:32 UTC 2022 年 12 月 27 日 (火) 22 時 31 分 32 秒 (日本時間) |
composite number 合成数 | 242054090201654035727007793220040925112165049186571096083402112813023804375846351819487581517289482856895880054906681<117> |
prime factors 素因数 | 254308802276845650063109920717604745010844914043729673<54> 951811687344384998543959144290632021990188212484295264590430897<63> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000. -> client 1 q0: 1800000 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 99 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 93 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 144 LatSieveTime: 144 Tue Dec 27 14:17:14 2022 Tue Dec 27 14:17:14 2022 Tue Dec 27 14:17:14 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 14:17:14 2022 random seeds: 4aeffba8 7824326e Tue Dec 27 14:17:14 2022 factoring 242054090201654035727007793220040925112165049186571096083402112813023804375846351819487581517289482856895880054906681 (117 digits) Tue Dec 27 14:17:14 2022 searching for 15-digit factors Tue Dec 27 14:17:14 2022 commencing number field sieve (117-digit input) Tue Dec 27 14:17:14 2022 R0: -30738981554517593539199 Tue Dec 27 14:17:14 2022 R1: 2429731373927 Tue Dec 27 14:17:14 2022 A0: 10842426122125543014685268784 Tue Dec 27 14:17:14 2022 A1: 2685260434834370791479956 Tue Dec 27 14:17:14 2022 A2: 10236349711517383248 Tue Dec 27 14:17:14 2022 A3: -710011897647331 Tue Dec 27 14:17:14 2022 A4: -907190462 Tue Dec 27 14:17:14 2022 A5: 8820 Tue Dec 27 14:17:14 2022 skew 119154.01, size 2.771e-011, alpha -6.187, combined = 3.801e-010 rroots = 5 Tue Dec 27 14:17:14 2022 Tue Dec 27 14:17:14 2022 commencing relation filtering Tue Dec 27 14:17:14 2022 estimated available RAM is 65413.5 MB Tue Dec 27 14:17:14 2022 commencing duplicate removal, pass 1 Tue Dec 27 14:17:33 2022 found 779919 hash collisions in 9075331 relations Tue Dec 27 14:17:43 2022 added 61949 free relations Tue Dec 27 14:17:43 2022 commencing duplicate removal, pass 2 Tue Dec 27 14:17:46 2022 found 566410 duplicates and 8570870 unique relations Tue Dec 27 14:17:46 2022 memory use: 32.6 MB Tue Dec 27 14:17:46 2022 reading ideals above 100000 Tue Dec 27 14:17:46 2022 commencing singleton removal, initial pass Tue Dec 27 14:18:17 2022 memory use: 188.3 MB Tue Dec 27 14:18:17 2022 reading all ideals from disk Tue Dec 27 14:18:17 2022 memory use: 297.5 MB Tue Dec 27 14:18:18 2022 keeping 9952942 ideals with weight <= 200, target excess is 45100 Tue Dec 27 14:18:18 2022 commencing in-memory singleton removal Tue Dec 27 14:18:18 2022 begin with 8570870 relations and 9952942 unique ideals Tue Dec 27 14:18:22 2022 reduce to 2218442 relations and 2278202 ideals in 24 passes Tue Dec 27 14:18:22 2022 max relations containing the same ideal: 84 Tue Dec 27 14:18:22 2022 filtering wants 1000000 more relations Tue Dec 27 14:18:22 2022 elapsed time 00:01:08 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 Tue Dec 27 14:20:48 2022 Tue Dec 27 14:20:48 2022 Tue Dec 27 14:20:48 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 14:20:48 2022 random seeds: a1d30010 7a772b3e Tue Dec 27 14:20:48 2022 factoring 242054090201654035727007793220040925112165049186571096083402112813023804375846351819487581517289482856895880054906681 (117 digits) Tue Dec 27 14:20:48 2022 searching for 15-digit factors Tue Dec 27 14:20:48 2022 commencing number field sieve (117-digit input) Tue Dec 27 14:20:48 2022 R0: -30738981554517593539199 Tue Dec 27 14:20:48 2022 R1: 2429731373927 Tue Dec 27 14:20:48 2022 A0: 10842426122125543014685268784 Tue Dec 27 14:20:48 2022 A1: 2685260434834370791479956 Tue Dec 27 14:20:48 2022 A2: 10236349711517383248 Tue Dec 27 14:20:48 2022 A3: -710011897647331 Tue Dec 27 14:20:48 2022 A4: -907190462 Tue Dec 27 14:20:48 2022 A5: 8820 Tue Dec 27 14:20:48 2022 skew 119154.01, size 2.771e-011, alpha -6.187, combined = 3.801e-010 rroots = 5 Tue Dec 27 14:20:48 2022 Tue Dec 27 14:20:48 2022 commencing relation filtering Tue Dec 27 14:20:48 2022 estimated available RAM is 65413.5 MB Tue Dec 27 14:20:48 2022 commencing duplicate removal, pass 1 Tue Dec 27 14:21:09 2022 found 893067 hash collisions in 9859406 relations Tue Dec 27 14:21:19 2022 added 269 free relations Tue Dec 27 14:21:19 2022 commencing duplicate removal, pass 2 Tue Dec 27 14:21:22 2022 found 645924 duplicates and 9213751 unique relations Tue Dec 27 14:21:22 2022 memory use: 34.6 MB Tue Dec 27 14:21:22 2022 reading ideals above 100000 Tue Dec 27 14:21:22 2022 commencing singleton removal, initial pass Tue Dec 27 14:21:56 2022 memory use: 344.5 MB Tue Dec 27 14:21:56 2022 reading all ideals from disk Tue Dec 27 14:21:56 2022 memory use: 320.0 MB Tue Dec 27 14:21:56 2022 keeping 10264411 ideals with weight <= 200, target excess is 48780 Tue Dec 27 14:21:57 2022 commencing in-memory singleton removal Tue Dec 27 14:21:57 2022 begin with 9213751 relations and 10264411 unique ideals Tue Dec 27 14:22:01 2022 reduce to 3048473 relations and 2922880 ideals in 20 passes Tue Dec 27 14:22:01 2022 max relations containing the same ideal: 99 Tue Dec 27 14:22:02 2022 removing 383811 relations and 349308 ideals in 34504 cliques Tue Dec 27 14:22:02 2022 commencing in-memory singleton removal Tue Dec 27 14:22:02 2022 begin with 2664662 relations and 2922880 unique ideals Tue Dec 27 14:22:03 2022 reduce to 2621491 relations and 2529720 ideals in 11 passes Tue Dec 27 14:22:03 2022 max relations containing the same ideal: 91 Tue Dec 27 14:22:03 2022 removing 282296 relations and 247792 ideals in 34504 cliques Tue Dec 27 14:22:03 2022 commencing in-memory singleton removal Tue Dec 27 14:22:03 2022 begin with 2339195 relations and 2529720 unique ideals Tue Dec 27 14:22:04 2022 reduce to 2311965 relations and 2254344 ideals in 10 passes Tue Dec 27 14:22:04 2022 max relations containing the same ideal: 84 Tue Dec 27 14:22:04 2022 relations with 0 large ideals: 127 Tue Dec 27 14:22:04 2022 relations with 1 large ideals: 523 Tue Dec 27 14:22:04 2022 relations with 2 large ideals: 8122 Tue Dec 27 14:22:04 2022 relations with 3 large ideals: 62327 Tue Dec 27 14:22:04 2022 relations with 4 large ideals: 250140 Tue Dec 27 14:22:04 2022 relations with 5 large ideals: 552466 Tue Dec 27 14:22:04 2022 relations with 6 large ideals: 696261 Tue Dec 27 14:22:04 2022 relations with 7+ large ideals: 741999 Tue Dec 27 14:22:04 2022 commencing 2-way merge Tue Dec 27 14:22:05 2022 reduce to 1269301 relation sets and 1211681 unique ideals Tue Dec 27 14:22:05 2022 ignored 1 oversize relation sets Tue Dec 27 14:22:05 2022 commencing full merge Tue Dec 27 14:22:18 2022 memory use: 134.4 MB Tue Dec 27 14:22:18 2022 found 633099 cycles, need 625881 Tue Dec 27 14:22:19 2022 weight of 625881 cycles is about 44060059 (70.40/cycle) Tue Dec 27 14:22:19 2022 distribution of cycle lengths: Tue Dec 27 14:22:19 2022 1 relations: 75283 Tue Dec 27 14:22:19 2022 2 relations: 74821 Tue Dec 27 14:22:19 2022 3 relations: 73749 Tue Dec 27 14:22:19 2022 4 relations: 65518 Tue Dec 27 14:22:19 2022 5 relations: 57101 Tue Dec 27 14:22:19 2022 6 relations: 49243 Tue Dec 27 14:22:19 2022 7 relations: 42316 Tue Dec 27 14:22:19 2022 8 relations: 35330 Tue Dec 27 14:22:19 2022 9 relations: 29573 Tue Dec 27 14:22:19 2022 10+ relations: 122947 Tue Dec 27 14:22:19 2022 heaviest cycle: 23 relations Tue Dec 27 14:22:19 2022 commencing cycle optimization Tue Dec 27 14:22:19 2022 start with 3742764 relations Tue Dec 27 14:22:23 2022 pruned 65164 relations Tue Dec 27 14:22:23 2022 memory use: 130.3 MB Tue Dec 27 14:22:23 2022 distribution of cycle lengths: Tue Dec 27 14:22:23 2022 1 relations: 75283 Tue Dec 27 14:22:23 2022 2 relations: 76244 Tue Dec 27 14:22:23 2022 3 relations: 75926 Tue Dec 27 14:22:23 2022 4 relations: 66434 Tue Dec 27 14:22:23 2022 5 relations: 57919 Tue Dec 27 14:22:23 2022 6 relations: 49432 Tue Dec 27 14:22:23 2022 7 relations: 42535 Tue Dec 27 14:22:23 2022 8 relations: 34974 Tue Dec 27 14:22:23 2022 9 relations: 29328 Tue Dec 27 14:22:23 2022 10+ relations: 117806 Tue Dec 27 14:22:23 2022 heaviest cycle: 23 relations Tue Dec 27 14:22:24 2022 RelProcTime: 96 Tue Dec 27 14:22:24 2022 elapsed time 00:01:36 Tue Dec 27 14:22:24 2022 Tue Dec 27 14:22:24 2022 Tue Dec 27 14:22:24 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 14:22:24 2022 random seeds: d6887270 d4db0cf3 Tue Dec 27 14:22:24 2022 factoring 242054090201654035727007793220040925112165049186571096083402112813023804375846351819487581517289482856895880054906681 (117 digits) Tue Dec 27 14:22:24 2022 searching for 15-digit factors Tue Dec 27 14:22:24 2022 commencing number field sieve (117-digit input) Tue Dec 27 14:22:24 2022 R0: -30738981554517593539199 Tue Dec 27 14:22:24 2022 R1: 2429731373927 Tue Dec 27 14:22:24 2022 A0: 10842426122125543014685268784 Tue Dec 27 14:22:24 2022 A1: 2685260434834370791479956 Tue Dec 27 14:22:24 2022 A2: 10236349711517383248 Tue Dec 27 14:22:24 2022 A3: -710011897647331 Tue Dec 27 14:22:24 2022 A4: -907190462 Tue Dec 27 14:22:24 2022 A5: 8820 Tue Dec 27 14:22:24 2022 skew 119154.01, size 2.771e-011, alpha -6.187, combined = 3.801e-010 rroots = 5 Tue Dec 27 14:22:24 2022 Tue Dec 27 14:22:24 2022 commencing linear algebra Tue Dec 27 14:22:24 2022 read 625881 cycles Tue Dec 27 14:22:25 2022 cycles contain 2232724 unique relations Tue Dec 27 14:22:30 2022 read 2232724 relations Tue Dec 27 14:22:31 2022 using 20 quadratic characters above 134216792 Tue Dec 27 14:22:37 2022 building initial matrix Tue Dec 27 14:22:48 2022 memory use: 276.5 MB Tue Dec 27 14:22:48 2022 read 625881 cycles Tue Dec 27 14:22:48 2022 matrix is 625702 x 625881 (188.3 MB) with weight 59227248 (94.63/col) Tue Dec 27 14:22:48 2022 sparse part has weight 42488081 (67.89/col) Tue Dec 27 14:22:51 2022 filtering completed in 2 passes Tue Dec 27 14:22:51 2022 matrix is 623986 x 624165 (188.2 MB) with weight 59158060 (94.78/col) Tue Dec 27 14:22:51 2022 sparse part has weight 42467219 (68.04/col) Tue Dec 27 14:22:52 2022 matrix starts at (0, 0) Tue Dec 27 14:22:52 2022 matrix is 623986 x 624165 (188.2 MB) with weight 59158060 (94.78/col) Tue Dec 27 14:22:52 2022 sparse part has weight 42467219 (68.04/col) Tue Dec 27 14:22:52 2022 saving the first 48 matrix rows for later Tue Dec 27 14:22:52 2022 matrix includes 64 packed rows Tue Dec 27 14:22:52 2022 matrix is 623938 x 624165 (181.0 MB) with weight 46935418 (75.20/col) Tue Dec 27 14:22:52 2022 sparse part has weight 41201615 (66.01/col) Tue Dec 27 14:22:52 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 14:22:54 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 14:22:54 2022 memory use: 140.6 MB Tue Dec 27 14:22:56 2022 linear algebra at 0.5%, ETA 0h 6m Tue Dec 27 14:27:50 2022 lanczos halted after 9866 iterations (dim = 623936) Tue Dec 27 14:27:50 2022 recovered 29 nontrivial dependencies Tue Dec 27 14:27:50 2022 BLanczosTime: 326 Tue Dec 27 14:27:50 2022 elapsed time 00:05:26 Tue Dec 27 14:27:50 2022 Tue Dec 27 14:27:50 2022 Tue Dec 27 14:27:50 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 14:27:50 2022 random seeds: b2db54f0 e9b0f1d1 Tue Dec 27 14:27:50 2022 factoring 242054090201654035727007793220040925112165049186571096083402112813023804375846351819487581517289482856895880054906681 (117 digits) Tue Dec 27 14:27:51 2022 searching for 15-digit factors Tue Dec 27 14:27:51 2022 commencing number field sieve (117-digit input) Tue Dec 27 14:27:51 2022 R0: -30738981554517593539199 Tue Dec 27 14:27:51 2022 R1: 2429731373927 Tue Dec 27 14:27:51 2022 A0: 10842426122125543014685268784 Tue Dec 27 14:27:51 2022 A1: 2685260434834370791479956 Tue Dec 27 14:27:51 2022 A2: 10236349711517383248 Tue Dec 27 14:27:51 2022 A3: -710011897647331 Tue Dec 27 14:27:51 2022 A4: -907190462 Tue Dec 27 14:27:51 2022 A5: 8820 Tue Dec 27 14:27:51 2022 skew 119154.01, size 2.771e-011, alpha -6.187, combined = 3.801e-010 rroots = 5 Tue Dec 27 14:27:51 2022 Tue Dec 27 14:27:51 2022 commencing square root phase Tue Dec 27 14:27:51 2022 reading relations for dependency 1 Tue Dec 27 14:27:51 2022 read 311851 cycles Tue Dec 27 14:27:51 2022 cycles contain 1116022 unique relations Tue Dec 27 14:27:54 2022 read 1116022 relations Tue Dec 27 14:27:56 2022 multiplying 1116022 relations Tue Dec 27 14:28:22 2022 multiply complete, coefficients have about 48.43 million bits Tue Dec 27 14:28:22 2022 initial square root is modulo 8969657 Tue Dec 27 14:28:58 2022 GCD is 1, no factor found Tue Dec 27 14:28:58 2022 reading relations for dependency 2 Tue Dec 27 14:28:58 2022 read 311297 cycles Tue Dec 27 14:28:58 2022 cycles contain 1113670 unique relations Tue Dec 27 14:29:01 2022 read 1113670 relations Tue Dec 27 14:29:03 2022 multiplying 1113670 relations Tue Dec 27 14:29:28 2022 multiply complete, coefficients have about 48.33 million bits Tue Dec 27 14:29:29 2022 initial square root is modulo 8673347 Tue Dec 27 14:30:04 2022 GCD is 1, no factor found Tue Dec 27 14:30:04 2022 reading relations for dependency 3 Tue Dec 27 14:30:04 2022 read 311779 cycles Tue Dec 27 14:30:04 2022 cycles contain 1114778 unique relations Tue Dec 27 14:30:07 2022 read 1114778 relations Tue Dec 27 14:30:10 2022 multiplying 1114778 relations Tue Dec 27 14:30:35 2022 multiply complete, coefficients have about 48.37 million bits Tue Dec 27 14:30:35 2022 initial square root is modulo 8799587 Tue Dec 27 14:31:10 2022 sqrtTime: 199 Tue Dec 27 14:31:10 2022 prp54 factor: 254308802276845650063109920717604745010844914043729673 Tue Dec 27 14:31:10 2022 prp63 factor: 951811687344384998543959144290632021990188212484295264590430897 Tue Dec 27 14:31:10 2022 elapsed time 00:03:20 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:19:40 UTC 2022 年 12 月 24 日 (土) 20 時 19 分 40 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 26, 2022 06:38:21 UTC 2022 年 12 月 26 日 (月) 15 時 38 分 21 秒 (日本時間) |
composite number 合成数 | 31519694092379676487149004401886492603225653409508925755392979999625349306674110691772700684829397569405129443979890313744119<125> |
prime factors 素因数 | 60942105332682845431818455314518047759584127551562180321<56> 517207174256841342740502034187696447382867809400470320826752888039639<69> |
factorization results 素因数分解の結果 | 31519694092379676487149004401886492603225653409508925755392979999625349306674110691772700684829397569405129443979890313744119=60942105332682845431818455314518047759584127551562180321*517207174256841342740502034187696447382867809400470320826752888039639 cado polynomial n: 31519694092379676487149004401886492603225653409508925755392979999625349306674110691772700684829397569405129443979890313744119 skew: 71600.916 c0: -440550177035826860928802790805 c1: -16369574168513107643089253 c2: 632262772746840247936 c3: 6342942015030610 c4: -53221129308 c5: 159120 Y0: -754639111565869949728316 Y1: 466496881772177929 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.519e-07 # f(x) = 159120*x^5-53221129308*x^4+6342942015030610*x^3+632262772746840247936*x^2-16369574168513107643089253*x-440550177035826860928802790805 # g(x) = 466496881772177929*x-754639111565869949728316 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 517207174256841342740502034187696447382867809400470320826752888039639 60942105332682845431818455314518047759584127551562180321 Info:Square Root: Total cpu/real time for sqrt: 1053.89/163.158 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20159/36.650/44.345/48.490/0.878 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15913/36.270/39.722/45.110/0.934 Info:Polynomial Selection (size optimized): Total time: 2705.78 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2831.67 Info:Polynomial Selection (root optimized): Rootsieve time: 2783.13 Info:Generate Factor Base: Total cpu/real time for makefb: 12.59/1.90699 Info:Generate Free Relations: Total cpu/real time for freerel: 131.45/16.5373 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11746731 Info:Lattice Sieving: Average J: 3795.2 for 205549 special-q, max bucket fill -bkmult 1.0,1s:1.163130 Info:Lattice Sieving: Total time: 94601.7s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 30.59/71.8055 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 71.6s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 175.75/140.514 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 130.29999999999998s Info:Filtering - Singleton removal: Total cpu/real time for purge: 97.52/107.652 Info:Filtering - Merging: Merged matrix has 818296 rows and total weight 140302760 (171.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 167.81/25.3017 Info:Filtering - Merging: Total cpu/real time for replay: 27.4/22.3913 Info:Linear Algebra: Total cpu/real time for bwc: 6738.43/1757.89 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1097.8, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (25600 iterations) Info:Linear Algebra: Lingen CPU time 82.04, WCT time 22.21 Info:Linear Algebra: Mksol: WCT time 610.92, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12800 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 41.42/10.0399 Info:Square Root: Total cpu/real time for sqrt: 1053.89/163.158 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 217684/125.145 517207174256841342740502034187696447382867809400470320826752888039639 60942105332682845431818455314518047759584127551562180321 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 09:22:03 UTC 2022 年 12 月 24 日 (土) 18 時 22 分 3 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 7, 2023 00:27:13 UTC 2023 年 1 月 7 日 (土) 9 時 27 分 13 秒 (日本時間) |
composite number 合成数 | 461895086906269988287261434901159430715075996989048878388922195398574923475423081424234024291229943995493602631563141394319383133075175729789783743473181207802883877505749<171> |
prime factors 素因数 | 1857098216890619994990088856868812485651<40> 248718717569839141610197946180527009072480222539863115664335055083733317179421360414533357002974806238497109740765647690158658081399<132> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 461895086906269988287261434901159430715075996989048878388922195398574923475423081424234024291229943995493602631563141394319383133075175729789783743473181207802883877505749 (171 digits) Using B1=26300000, B2=144285831706, polynomial Dickson(12), sigma=1:2682165215 Step 1 took 61974ms Step 2 took 25251ms ********** Factor found in step 2: 1857098216890619994990088856868812485651 Found prime factor of 40 digits: 1857098216890619994990088856868812485651 Prime cofactor 248718717569839141610197946180527009072480222539863115664335055083733317179421360414533357002974806238497109740765647690158658081399 has 132 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 8, 2023 02:36:34 UTC 2023 年 1 月 8 日 (日) 11 時 36 分 34 秒 (日本時間) |
composite number 合成数 | 5378025074795195938636576030142158913277692592997148399708067639311925209173289404507191397056994621147847770554449667794806561767434629210877261<145> |
prime factors 素因数 | 11013084374807657743232429521672383664542179<44> 488330506855771050094553241926477641307449922426661975510104823311649661830065138154399075710813465359<102> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 5378025074795195938636576030142158913277692592997148399708067639311925209173289404507191397056994621147847770554449667794806561767434629210877261 (145 digits) Using B1=33760000, B2=144292738606, polynomial Dickson(12), sigma=1:2192961039 Step 1 took 67263ms Step 2 took 21836ms ********** Factor found in step 2: 11013084374807657743232429521672383664542179 Found prime factor of 44 digits: 11013084374807657743232429521672383664542179 Prime cofactor 488330506855771050094553241926477641307449922426661975510104823311649661830065138154399075710813465359 has 102 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 23:08:48 UTC 2023 年 1 月 11 日 (水) 8 時 8 分 48 秒 (日本時間) |
composite number 合成数 | 168416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944007<183> |
prime factors 素因数 | 622500417652761026720675496095645486963012922836380093<54> 270548329234940245760745281668010418941921427631254699981330971642771663083352629206573693707456226689036514016715066998686863699<129> |
factorization results 素因数分解の結果 | Number: n N=168416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944007 ( 183 digits) SNFS difficulty: 185 digits. Divisors found: Wed Jan 11 10:00:06 2023 prp54 factor: 622500417652761026720675496095645486963012922836380093 Wed Jan 11 10:00:06 2023 prp129 factor: 270548329234940245760745281668010418941921427631254699981330971642771663083352629206573693707456226689036514016715066998686863699 Wed Jan 11 10:00:06 2023 elapsed time 01:07:31 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 77x10^184+4 = 85(183)6 # n: 168416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944006999125109361329833770778652668416447944007 m: 5000000000000000000000000000000000000 deg: 5 c5: 308 c0: 5 skew: 0.44 # Murphy_E = 5.143e-11 type: snfs lss: 1 rlim: 8300000 alim: 8300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8300000/8300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 29750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1248086 hash collisions in 13323676 relations (12925251 unique) Msieve: matrix is 1471278 x 1471503 (414.1 MB) Sieving start time: 2023/01/10 20:58:58 Sieving end time : 2023/01/11 08:52:24 Total sieving time: 11hrs 53min 26secs. Total relation processing time: 1hrs 1min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 13sec. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8300000,8300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 12, 2023 23:04:13 UTC 2023 年 1 月 13 日 (金) 8 時 4 分 13 秒 (日本時間) |
composite number 合成数 | 1125730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625731<187> |
prime factors 素因数 | 516140802217686734997559366779886327721157482547016993769<57> 2181054063765453376482859023870888061352496010337907384970872145852953135326181172758561300529884040738373005861186731340678815499<130> |
factorization results 素因数分解の結果 | Number: n N=1125730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625731 ( 187 digits) SNFS difficulty: 188 digits. Divisors found: Fri Jan 13 09:59:24 2023 prp57 factor: 516140802217686734997559366779886327721157482547016993769 Fri Jan 13 09:59:24 2023 prp130 factor: 2181054063765453376482859023870888061352496010337907384970872145852953135326181172758561300529884040738373005861186731340678815499 Fri Jan 13 09:59:24 2023 elapsed time 01:11:18 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.083). Factorization parameters were as follows: # # N = 77x10^187+4 = 85(186)6 # n: 1125730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625730994152046783625731 m: 10000000000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 4.593e-11 type: snfs lss: 1 rlim: 9200000 alim: 9200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9200000/9200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 37400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1405066 hash collisions in 14353531 relations (13868330 unique) Msieve: matrix is 1431048 x 1431273 (402.1 MB) Sieving start time: 2023/01/12 19:23:51 Sieving end time : 2023/01/13 08:47:55 Total sieving time: 13hrs 24min 4secs. Total relation processing time: 0hrs 59min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 34sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9200000,9200000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 22, 2023 21:13:26 UTC 2023 年 1 月 23 日 (月) 6 時 13 分 26 秒 (日本時間) |
composite number 合成数 | 52801078793282267088855778559562278862872500641059968315428942491978138321268298112858032220128300262743095449030494851703481943211<131> |
prime factors 素因数 | 9480980047411377735523314301862409538482535740103<49> 5569158307394467545343309861058350573960699424832048681240570834052894277673859837<82> |
factorization results 素因数分解の結果 | 52801078793282267088855778559562278862872500641059968315428942491978138321268298112858032220128300262743095449030494851703481943211=9480980047411377735523314301862409538482535740103*5569158307394467545343309861058350573960699424832048681240570834052894277673859837 cado polynomial n: 52801078793282267088855778559562278862872500641059968315428942491978138321268298112858032220128300262743095449030494851703481943211 skew: 0.14 type: snfs c0: 1 c5: 19250 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 19250*x^5+1 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 10000000 tasks.lim1 = 10000000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 9480980047411377735523314301862409538482535740103 5569158307394467545343309861058350573960699424832048681240570834052894277673859837 Info:Square Root: Total cpu/real time for sqrt: 2059.15/618.641 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 415.09/428.66 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 359.4000000000001s Info:Square Root: Total cpu/real time for sqrt: 2059.15/618.641 Info:Generate Free Relations: Total cpu/real time for freerel: 119.01/31.2448 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 104.36/100.774 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 100.10000000000001s Info:Filtering - Singleton removal: Total cpu/real time for purge: 295.44/288.05 Info:Filtering - Merging: Merged matrix has 1858958 rows and total weight 316071341 (170.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 509.72/139.433 Info:Filtering - Merging: Total cpu/real time for replay: 69.96/63.6455 Info:Generate Factor Base: Total cpu/real time for makefb: 4.27/2.21986 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24412571 Info:Lattice Sieving: Average J: 1894.23 for 1727050 special-q, max bucket fill -bkmult 1.0,1s:1.153050 Info:Lattice Sieving: Total time: 328590s Info:Linear Algebra: Total cpu/real time for bwc: 59183.8/15190.7 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 38766.32, WCT time 9892.31, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (58112 iterations) Info:Linear Algebra: Lingen CPU time 377.74, WCT time 95.94 Info:Linear Algebra: Mksol: CPU time 19690.46, WCT time 5069.17, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (29184 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 65.4/29.1159 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 680322/181108 Info:root: Cleaning up computation data in /tmp/cado.g45jl5vh 9480980047411377735523314301862409538482535740103 5569158307394467545343309861058350573960699424832048681240570834052894277673859837 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 13, 2023 14:06:58 UTC 2023 年 1 月 13 日 (金) 23 時 6 分 58 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 13, 2023 17:04:04 UTC 2023 年 1 月 14 日 (土) 2 時 4 分 4 秒 (日本時間) |
composite number 合成数 | 309005774905393273864398488282788862391099405722086223436927330395564275718220254827679459464640270362724370777464257390868147202851967011233708796004448542452621<162> |
prime factors 素因数 | 275035088436606256042859332088812240624769<42> 1123514009292007238929866784626561027145376633579246972139305119152786251308971800102623730432675853615465567895533271309<121> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:433336695 Step 1 took 6719ms Step 2 took 3078ms ********** Factor found in step 2: 275035088436606256042859332088812240624769 Found prime factor of 42 digits: 275035088436606256042859332088812240624769 Prime cofactor 1123514009292007238929866784626561027145376633579246972139305119152786251308971800102623730432675853615465567895533271309 has 121 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 7, 2023 09:12:50 UTC 2023 年 7 月 7 日 (金) 18 時 12 分 50 秒 (日本時間) |
composite number 合成数 | 15178859149780983571965704094625746789574052223154364588395534383106189482863070033186641386469161262779296656192144775539994028582585656904384799<146> |
prime factors 素因数 | 1659855514529974862988339133134270003269631335808439824589<58> 9144687002518539291808922807334383503796689811462646132325673764420902567442525956884891<88> |
factorization results 素因数分解の結果 | 15178859149780983571965704094625746789574052223154364588395534383106189482863070033186641386469161262779296656192144775539994028582585656904384799=1659855514529974862988339133134270003269631335808439824589*9144687002518539291808922807334383503796689811462646132325673764420902567442525956884891 cado polynomial n: 15178859149780983571965704094625746789574052223154364588395534383106189482863070033186641386469161262779296656192144775539994028582585656904384799 skew: 0.35 type: snfs c0: 2 c5: 385 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 385*x^5+2 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11300000 tasks.lim1 = 11300000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1659855514529974862988339133134270003269631335808439824589 9144687002518539291808922807334383503796689811462646132325673764420902567442525956884891 Info:Square Root: Total cpu/real time for sqrt: 644.99/210.633 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 27891595 Info:Lattice Sieving: Average J: 1893.73 for 2616349 special-q, max bucket fill -bkmult 1.0,1s:1.155590 Info:Lattice Sieving: Total time: 526977s Info:Linear Algebra: Total cpu/real time for bwc: 90668.1/23265.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 58012.12, WCT time 14814.46, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (71680 iterations) Info:Linear Algebra: Lingen CPU time 504.84, WCT time 128.0 Info:Linear Algebra: Mksol: CPU time 31353.37, WCT time 8039.68, iteration CPU time 0.21, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (35840 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 4.81/2.43596 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 530.89/564.483 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 467.2000000000001s Info:Generate Free Relations: Total cpu/real time for freerel: 118.51/31.145 Info:Square Root: Total cpu/real time for sqrt: 644.99/210.633 Info:Quadratic Characters: Total cpu/real time for characters: 79.73/34.7329 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 119.68/114.719 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 113.89999999999999s Info:Filtering - Singleton removal: Total cpu/real time for purge: 419.76/409.013 Info:Filtering - Merging: Merged matrix has 2287239 rows and total weight 391213718 (171.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 628.12/172.126 Info:Filtering - Merging: Total cpu/real time for replay: 87.21/79.6187 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.08392e+06/288270 Info:root: Cleaning up computation data in /tmp/cado.5772ggwt 1659855514529974862988339133134270003269631335808439824589 9144687002518539291808922807334383503796689811462646132325673764420902567442525956884891 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 9, 2023 04:53:07 UTC 2023 年 1 月 9 日 (月) 13 時 53 分 7 秒 (日本時間) |
2350 | Ignacio Santos | January 20, 2023 09:28:41 UTC 2023 年 1 月 20 日 (金) 18 時 28 分 41 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 16, 2023 13:43:48 UTC 2023 年 7 月 16 日 (日) 22 時 43 分 48 秒 (日本時間) |
composite number 合成数 | 29748525713428948665021635927781348596914465617854063726445918908252741241649737057833933219225033389476073190444814012367153944892680674361105681641<149> |
prime factors 素因数 | 61789806093679389656206419430221983383256542554389738990932543323217<68> 481447144668608831701835188575567130217014667319511597859319396752274562331400473<81> |
factorization results 素因数分解の結果 | 29748525713428948665021635927781348596914465617854063726445918908252741241649737057833933219225033389476073190444814012367153944892680674361105681641=61789806093679389656206419430221983383256542554389738990932543323217*481447144668608831701835188575567130217014667319511597859319396752274562331400473 cado polynomial n: 29748525713428948665021635927781348596914465617854063726445918908252741241649737057833933219225033389476073190444814012367153944892680674361105681641 skew: 0.55 type: snfs c0: 4 c5: 77 Y0: 1000000000000000000000000000000000000000 Y1: -1 # f(x) = 77*x^5+4 # g(x) = -x+1000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 13400000 tasks.lim1 = 13400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 61789806093679389656206419430221983383256542554389738990932543323217 481447144668608831701835188575567130217014667319511597859319396752274562331400473 Info:Square Root: Total cpu/real time for sqrt: 642.25/208.52 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 27989879 Info:Lattice Sieving: Average J: 1894.64 for 2668704 special-q, max bucket fill -bkmult 1.0,1s:1.142270 Info:Lattice Sieving: Total time: 604435s Info:Linear Algebra: Total cpu/real time for bwc: 97916.7/25104.9 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 62648.35, WCT time 15989.79, iteration CPU time 0.2, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (74752 iterations) Info:Linear Algebra: Lingen CPU time 515.35, WCT time 130.73 Info:Linear Algebra: Mksol: CPU time 33914.03, WCT time 8688.93, iteration CPU time 0.22, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (37376 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 5.62/2.66969 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 533.47/569.291 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 468.99999999999983s Info:Generate Free Relations: Total cpu/real time for freerel: 119.3/31.1619 Info:Square Root: Total cpu/real time for sqrt: 642.25/208.52 Info:Quadratic Characters: Total cpu/real time for characters: 82.21/36.5253 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 121.1/116.529 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 115.79999999999998s Info:Filtering - Singleton removal: Total cpu/real time for purge: 422.12/421.816 Info:Filtering - Merging: Merged matrix has 2385628 rows and total weight 406351769 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 656.74/179.255 Info:Filtering - Merging: Total cpu/real time for replay: 89.77/78.9648 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 1.24115e+06/328985 Info:root: Cleaning up computation data in /tmp/cado.dragzb1z 61789806093679389656206419430221983383256542554389738990932543323217 481447144668608831701835188575567130217014667319511597859319396752274562331400473 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 9, 2023 04:53:20 UTC 2023 年 1 月 9 日 (月) 13 時 53 分 20 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:50:58 UTC 2023 年 1 月 24 日 (火) 14 時 50 分 58 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 14, 2023 16:37:08 UTC 2023 年 2 月 15 日 (水) 1 時 37 分 8 秒 (日本時間) |
composite number 合成数 | 1280723523767854491992041684312038932000253673025990003615860657046501941107767296144477416536144396128864677960889807041595307743773680826718842623440052235056205509718389<172> |
prime factors 素因数 | 1632729894996753782711140761327566416264646949384834947285721991063<67> 784406243612266831864155311892488720962567031122768068754822471120916653989631608276594232614843909640403<105> |
factorization results 素因数分解の結果 | Number: n N=1280723523767854491992041684312038932000253673025990003615860657046501941107767296144477416536144396128864677960889807041595307743773680826718842623440052235056205509718389 ( 172 digits) SNFS difficulty: 198 digits. Divisors found: Wed Feb 15 02:59:25 2023 prp67 factor: 1632729894996753782711140761327566416264646949384834947285721991063 Wed Feb 15 02:59:25 2023 prp105 factor: 784406243612266831864155311892488720962567031122768068754822471120916653989631608276594232614843909640403 Wed Feb 15 02:59:25 2023 elapsed time 02:41:38 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 77x10^197+4 = 85(196)6 # n: 1280723523767854491992041684312038932000253673025990003615860657046501941107767296144477416536144396128864677960889807041595307743773680826718842623440052235056205509718389 m: 1000000000000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 1.772e-11 type: snfs lss: 1 rlim: 13700000 alim: 13700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 13700000/13700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 32450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1726917 hash collisions in 13257081 relations (12243154 unique) Msieve: matrix is 2231650 x 2231875 (631.8 MB) Sieving start time: 2023/02/14 12:36:01 Sieving end time : 2023/02/15 00:17:31 Total sieving time: 11hrs 41min 30secs. Total relation processing time: 2hrs 27min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 2sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,13700000,13700000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 9, 2023 04:53:27 UTC 2023 年 1 月 9 日 (月) 13 時 53 分 27 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:51:06 UTC 2023 年 1 月 24 日 (火) 14 時 51 分 6 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 24, 2023 18:38:34 UTC 2023 年 9 月 25 日 (月) 3 時 38 分 34 秒 (日本時間) |
composite number 合成数 | 2317126621922122452709606528799812425953485667192393236029257811196523627964038247073487069821250677949965299238475333334033088196110720762240262299<148> |
prime factors 素因数 | 3261574954976902531639083093880276490772070261711902103<55> 710431817115339490681126102906697601449974626562503163149395871645375764918996437524051154333<93> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2317126621922122452709606528799812425953485667192393236029257811196523627964038247073487069821250677949965299238475333334033088196110720762240262299 (148 digits) Using B1=67810000, B2=388138525330, polynomial Dickson(30), sigma=1:2786304444 Step 1 took 133294ms Step 2 took 52834ms ********** Factor found in step 2: 3261574954976902531639083093880276490772070261711902103 Found prime factor of 55 digits: 3261574954976902531639083093880276490772070261711902103 Prime cofactor 710431817115339490681126102906697601449974626562503163149395871645375764918996437524051154333 has 93 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 22, 2023 23:20:46 UTC 2023 年 1 月 23 日 (月) 8 時 20 分 46 秒 (日本時間) |
2350 | abc | April 18, 2023 04:35:48 UTC 2023 年 4 月 18 日 (火) 13 時 35 分 48 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 22, 2023 16:09:25 UTC 2023 年 8 月 23 日 (水) 1 時 9 分 25 秒 (日本時間) |
composite number 合成数 | 15918423983201117354247254630431224531849526712348694733125672083197879878499584294715275627044364143537941583345150028365412780758254186569650443903383361221468409359962405156957672066591<188> |
prime factors 素因数 | 4092632157498127953699559394244960124433567063<46> 3889532059224259452237168357444479532714966995399768377812754811140228599977858082730864691483216922891444095785401727359791339905209464488057<142> |
factorization results 素因数分解の結果 | Number: n N=15918423983201117354247254630431224531849526712348694733125672083197879878499584294715275627044364143537941583345150028365412780758254186569650443903383361221468409359962405156957672066591 ( 188 digits) SNFS difficulty: 204 digits. Divisors found: Tue Aug 22 17:43:26 2023 prp46 factor: 4092632157498127953699559394244960124433567063 Tue Aug 22 17:43:26 2023 prp142 factor: 3889532059224259452237168357444479532714966995399768377812754811140228599977858082730864691483216922891444095785401727359791339905209464488057 Tue Aug 22 17:43:26 2023 elapsed time 02:50:45 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 77x10^203+4 = 85(202)6 # n: 15918423983201117354247254630431224531849526712348694733125672083197879878499584294715275627044364143537941583345150028365412780758254186569650443903383361221468409359962405156957672066591 m: 10000000000000000000000000000000000000000 deg: 5 c5: 19250 c0: 1 skew: 0.14 # Murphy_E = 9.473e-12 type: snfs lss: 1 rlim: 17800000 alim: 17800000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17800000/17800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3057202 hash collisions in 17409919 relations (15070156 unique) Msieve: matrix is 2315127 x 2315353 (653.5 MB) Sieving start time: 2023/08/22 00:41:52 Sieving end time : 2023/08/22 14:52:19 Total sieving time: 14hrs 10min 27secs. Total relation processing time: 2hrs 39min 26sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 37sec. Prototype def-par.txt line would be: snfs,204,5,0,0,0,0,0,0,0,0,17800000,17800000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 23, 2023 15:00:25 UTC 2023 年 1 月 24 日 (火) 0 時 0 分 25 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 7, 2023 03:52:00 UTC 2023 年 12 月 7 日 (木) 12 時 52 分 0 秒 (日本時間) |
composite number 合成数 | 10357842461593135320478807295815297247056640690806070124369420371522938439580285575514650801649949436865629553205609973905957630876623634508970611877874086928742400391563588143828131<182> |
prime factors 素因数 | 418142713926294920830606247766894033462652550357<48> 24771070059632532543266130716598115797203090972650980875930513888942504336692719528400874732176289263858538978892127154589507076210583<134> |
factorization results 素因数分解の結果 | Number: n N=10357842461593135320478807295815297247056640690806070124369420371522938439580285575514650801649949436865629553205609973905957630876623634508970611877874086928742400391563588143828131 ( 182 digits) SNFS difficulty: 205 digits. Divisors found: Wed Dec 6 17:23:05 2023 prp48 factor: 418142713926294920830606247766894033462652550357 Wed Dec 6 17:23:05 2023 prp134 factor: 24771070059632532543266130716598115797203090972650980875930513888942504336692719528400874732176289263858538978892127154589507076210583 Wed Dec 6 17:23:05 2023 elapsed time 02:49:33 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 77x10^204+4 = 85(203)6 # n: 10357842461593135320478807295815297247056640690806070124369420371522938439580285575514650801649949436865629553205609973905957630876623634508970611877874086928742400391563588143828131 m: 10000000000000000000000000000000000 deg: 6 c6: 77 c0: 4 skew: 0.61 # Murphy_E = 8.402e-12 type: snfs lss: 1 rlim: 18900000 alim: 18900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3702044 hash collisions in 20580808 relations (17544378 unique) Msieve: matrix is 2270224 x 2270449 (641.7 MB) Sieving start time: 2023/12/05 15:49:56 Sieving end time : 2023/12/06 14:33:07 Total sieving time: 22hrs 43min 11secs. Total relation processing time: 2hrs 34min 12sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 38sec. Prototype def-par.txt line would be: snfs,205,6,0,0,0,0,0,0,0,0,18900000,18900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2080 | 1000 | Dmitry Domanov | January 23, 2023 15:00:38 UTC 2023 年 1 月 24 日 (火) 0 時 0 分 38 秒 (日本時間) |
1080 | ebina | August 27, 2023 20:00:57 UTC 2023 年 8 月 28 日 (月) 5 時 0 分 57 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | December 3, 2023 08:01:55 UTC 2023 年 12 月 3 日 (日) 17 時 1 分 55 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 27, 2024 14:40:58 UTC 2024 年 4 月 27 日 (土) 23 時 40 分 58 秒 (日本時間) |
composite number 合成数 | 7395813226344430549026453043365331614629918207229201824710622254414985827749173713779410846975426465749572256728920048083302338328265137948490907694138493096308577525519607976576919298791<187> |
prime factors 素因数 | 1096972585027431134159956459372689959160689<43> 6742021931349806012625400074704016996929239792815957577434207683161346458191241645157213296138174080345261609199317327869257811835754908747151319<145> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2940683709 Step 1 took 27329ms Step 2 took 11625ms ********** Factor found in step 2: 1096972585027431134159956459372689959160689 Found prime factor of 43 digits: 1096972585027431134159956459372689959160689 Prime cofactor 6742021931349806012625400074704016996929239792815957577434207683161346458191241645157213296138174080345261609199317327869257811835754908747151319 has 145 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1000 | Dmitry Domanov | January 23, 2023 15:00:46 UTC 2023 年 1 月 24 日 (火) 0 時 0 分 46 秒 (日本時間) |
1078 | ebina | August 27, 2023 22:37:32 UTC 2023 年 8 月 28 日 (月) 7 時 37 分 32 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | August 27, 2023 22:32:22 UTC 2023 年 8 月 28 日 (月) 7 時 32 分 22 秒 (日本時間) |
composite number 合成数 | 4035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639413<205> |
prime factors 素因数 | 1170733774262932883145096235791485975369<40> |
composite cofactor 合成数の残り | 3447102579353405537145638875158329962531915569836946816837726424129461456593800267267970722075331658588949114386650619132962300786081696079661791677465062341989744077<166> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:518965592 3e6 GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 4035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639412997903563941299790356394129979035639413 (205 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:518965592 Step 1 took 6359ms Step 2 took 3110ms ********** Factor found in step 2: 1170733774262932883145096235791485975369 Found prime factor of 40 digits: 1170733774262932883145096235791485975369 Composite cofactor 3447102579353405537145638875158329962531915569836946816837726424129461456593800267267970722075331658588949114386650619132962300786081696079661791677465062341989744077 has 166 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 20, 2024 05:25:25 UTC 2024 年 6 月 20 日 (木) 14 時 25 分 25 秒 (日本時間) |
composite number 合成数 | 3447102579353405537145638875158329962531915569836946816837726424129461456593800267267970722075331658588949114386650619132962300786081696079661791677465062341989744077<166> |
prime factors 素因数 | 892090829657114147350691343515526752455114789<45> 3864071308387219855650483988366374763277835598747196916799615658202395749875081566555275871264026316055994791710473888393<121> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3447102579353405537145638875158329962531915569836946816837726424129461456593800267267970722075331658588949114386650619132962300786081696079661791677465062341989744077 (166 digits) Using B1=73320000, B2=582192983200, polynomial Dickson(30), sigma=1:1183527231 Step 1 took 167650ms Step 2 took 73714ms ********** Factor found in step 2: 892090829657114147350691343515526752455114789 Found prime factor of 45 digits: 892090829657114147350691343515526752455114789 Prime cofactor 3864071308387219855650483988366374763277835598747196916799615658202395749875081566555275871264026316055994791710473888393 has 121 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4212 | 1000 | Dmitry Domanov | January 25, 2023 09:33:01 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 1 秒 (日本時間) |
862 | ebina | August 27, 2023 22:29:45 UTC 2023 年 8 月 28 日 (月) 7 時 29 分 45 秒 (日本時間) | |||
2350 | Ignacio Santos | June 12, 2024 07:36:53 UTC 2024 年 6 月 12 日 (水) 16 時 36 分 53 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 11, 2024 10:02:24 UTC 2024 年 9 月 11 日 (水) 19 時 2 分 24 秒 (日本時間) |
composite number 合成数 | 2506173408001464979165738520027357012792540601460296407503033204306558020350479735719346033299386357689128332480848913447311875843109179019234663096764187396595046741011750671<175> |
prime factors 素因数 | 3209579669482296332134728767624607166470869103881<49> 780841626033140206482233128207734168331224644886160369819918384391872933072695811176941479467340848860430538572010853842997591<126> |
factorization results 素因数分解の結果 | Number: n N=2506173408001464979165738520027357012792540601460296407503033204306558020350479735719346033299386357689128332480848913447311875843109179019234663096764187396595046741011750671 ( 175 digits) SNFS difficulty: 208 digits. Divisors found: Wed Sep 11 19:50:20 2024 prp49 factor: 3209579669482296332134728767624607166470869103881 Wed Sep 11 19:50:20 2024 prp126 factor: 780841626033140206482233128207734168331224644886160369819918384391872933072695811176941479467340848860430538572010853842997591 Wed Sep 11 19:50:20 2024 elapsed time 02:50:58 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.138). Factorization parameters were as follows: # # N = 77x10^207+4 = 85(206)6 # n: 2506173408001464979165738520027357012792540601460296407503033204306558020350479735719346033299386357689128332480848913447311875843109179019234663096764187396595046741011750671 m: 100000000000000000000000000000000000000000 deg: 5 c5: 1925 c0: 1 skew: 0.22 # Murphy_E = 6.725e-12 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 27 lpba: 27 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 q0: 50000 qintsize: 50000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 57/57 Sieved special-q in [50000, 48850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8033370 hash collisions in 26810960 relations (17015917 unique) Msieve: matrix is 2331684 x 2331909 (653.7 MB) Sieving start time: 2024/09/10 14:15:15 Sieving end time : 2024/09/11 16:53:03 Total sieving time: 26hrs 37min 48secs. Total relation processing time: 2hrs 42min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 53sec. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,27,27,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1000 | Dmitry Domanov | January 22, 2023 23:21:01 UTC 2023 年 1 月 23 日 (月) 8 時 21 分 1 秒 (日本時間) |
1078 | ebina | August 28, 2023 01:27:31 UTC 2023 年 8 月 28 日 (月) 10 時 27 分 31 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 14, 2024 15:00:28 UTC 2024 年 9 月 15 日 (日) 0 時 0 分 28 秒 (日本時間) |
composite number 合成数 | 1987324548188129417547063371503174624596996525575127853214166340278505796202187206282854383150196064736485747406844632826995811794835039894917586385436892215615189389303811<172> |
prime factors 素因数 | 251048028924318453595607727520949838418861<42> |
composite cofactor 合成数の残り | 7916112931471105418288719492183853757700157414787232535867202735827252799869471186564314328428488919848358181979710827374576547951<130> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3075200373 Step 1 took 4297ms ********** Factor found in step 2: 251048028924318453595607727520949838418861 Found prime factor of 42 digits: 251048028924318453595607727520949838418861 Composite cofactor 7916112931471105418288719492183853757700157414787232535867202735827252799869471186564314328428488919848358181979710827374576547951 has 130 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 15, 2024 22:22:17 UTC 2024 年 9 月 16 日 (月) 7 時 22 分 17 秒 (日本時間) |
composite number 合成数 | 7916112931471105418288719492183853757700157414787232535867202735827252799869471186564314328428488919848358181979710827374576547951<130> |
prime factors 素因数 | 4415771427891758936049619939763423104741075111<46> 1792690826674090292316192185802199518737017607823824942687075071046697966438522184441<85> |
factorization results 素因数分解の結果 | FACTORS 4415771427891758936049619939763423104741075111 1792690826674090292316192185802199518737017607823824942687075071046697966438522184441 POLYNOMIAL n: 7916112931471105418288719492183853757700157414787232535867202735827252799869471186564314328428488919848358181979710827374576547951 skew: 193144.556 c0: -6750343338165686569322702833000 c1: 28952654403643724770135286 c2: 1897828924525534424059 c3: -329500755433169 c4: -27473424816 c5: 15120 Y0: -22647326892172393951216047 Y1: 3701181729313786783 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.517e+13) = 1.617e-06 # f(x) = 15120*x^5-27473424816*x^4-329500755433169*x^3+1897828924525534424059*x^2+28952654403643724770135286*x-6750343338165686569322702833000 # g(x) = 3701181729313786783*x-22647326892172393951216047 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 4x Xeon E7-8890v4, 1024GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 22, 2023 23:21:09 UTC 2023 年 1 月 23 日 (月) 8 時 21 分 9 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 14, 2024 15:01:27 UTC 2024 年 9 月 15 日 (日) 0 時 1 分 27 秒 (日本時間) |
composite number 合成数 | 16452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991453<209> |
prime factors 素因数 | 1109788100098218450984818594794189719566761<43> 14825344992918315281027989150552864728097095409401989663647777726875868737237666263198072582945111499369624411264784336095559887583006891632624158299271305976084253973<167> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:482987656 Step 1 took 8687ms Step 2 took 3844ms ********** Factor found in step 2: 1109788100098218450984818594794189719566761 Found prime factor of 43 digits: 1109788100098218450984818594794189719566761 Prime cofactor 14825344992918315281027989150552864728097095409401989663647777726875868737237666263198072582945111499369624411264784336095559887583006891632624158299271305976084253973 has 167 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 25, 2023 09:33:09 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:17 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 17 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 15:01:53 UTC 2024 年 9 月 15 日 (日) 0 時 1 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:03:57 UTC 2023 年 1 月 24 日 (火) 0 時 3 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 15:10:50 UTC 2024 年 9 月 15 日 (日) 0 時 10 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 14, 2024 15:36:47 UTC 2024 年 9 月 15 日 (日) 0 時 36 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:25 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 15:36:58 UTC 2024 年 9 月 15 日 (日) 0 時 36 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 24, 2023 15:38:08 UTC 2023 年 1 月 25 日 (水) 0 時 38 分 8 秒 (日本時間) |
composite number 合成数 | 2388817038121320959309704484370215805569819792224250646956311404337773270364744733819277477999119692542554602250050337342342382065097066848873583517751808799387943667731261670851366627341406620189<196> |
prime factors 素因数 | 366415169950291439419988711490230935878419<42> |
composite cofactor 合成数の残り | 6519427234536693180428766527817223798467831545672450429597302290401793011683550224915744669543513476847353591532740325384241480891309142886094295164066831<154> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3223381509 Step 1 took 11247ms Step 2 took 5047ms ********** Factor found in step 2: 366415169950291439419988711490230935878419 Found prime factor of 42 digits: 366415169950291439419988711490230935878419 Composite cofactor 6519427234536693180428766527817223798467831545672450429597302290401793011683550224915744669543513476847353591532740325384241480891309142886094295164066831 has 154 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:04:04 UTC 2023 年 1 月 24 日 (火) 0 時 4 分 4 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 15:50:56 UTC 2024 年 9 月 15 日 (日) 0 時 50 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:04:12 UTC 2023 年 1 月 24 日 (火) 0 時 4 分 12 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 15:52:05 UTC 2024 年 9 月 15 日 (日) 0 時 52 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:04:19 UTC 2023 年 1 月 24 日 (火) 0 時 4 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 16:12:53 UTC 2024 年 9 月 15 日 (日) 1 時 12 分 53 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | December 28, 2024 16:08:46 UTC 2024 年 12 月 29 日 (日) 1 時 8 分 46 秒 (日本時間) |
composite number 合成数 | 172836554174189646202047341610279670145309503135623118466704135141542613650162969637205029835312349207487710310007793732393367072080518741006121257565127982270080283797<168> |
prime factors 素因数 | 81376718768841624241026426777734536748344495891063247879673495597209<68> 2123906650317868649302610880991669554712837903816661214099590028558801972923464438615968210959095133<100> |
factorization results 素因数分解の結果 | Number: 85556_220 N = 172836554174189646202047341610279670145309503135623118466704135141542613650162969637205029835312349207487710310007793732393367072080518741006121257565127982270080283797 (168 digits) SNFS difficulty: 222 digits. Divisors found: r1=81376718768841624241026426777734536748344495891063247879673495597209 (pp68) r2=2123906650317868649302610880991669554712837903816661214099590028558801972923464438615968210959095133 (pp100) Version: Msieve v. 1.52 (SVN unknown) Total time: 27.51 hours. Factorization parameters were as follows: n: 172836554174189646202047341610279670145309503135623118466704135141542613650162969637205029835312349207487710310007793732393367072080518741006121257565127982270080283797 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 77 c0: 4 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 31823890 Relations: 8060632 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 10.06 hours. Total relation processing time: 0.27 hours. Pruned matrix : 6907897 x 6908122 Matrix solve time: 16.93 hours. time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 27.51 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 22, 2023 23:21:16 UTC 2023 年 1 月 23 日 (月) 8 時 21 分 16 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 16:13:07 UTC 2024 年 9 月 15 日 (日) 1 時 13 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:33 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 16:23:57 UTC 2024 年 9 月 15 日 (日) 1 時 23 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:04:28 UTC 2023 年 1 月 24 日 (火) 0 時 4 分 28 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 16:35:32 UTC 2024 年 9 月 15 日 (日) 1 時 35 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 1, 2023 11:06:30 UTC 2023 年 2 月 1 日 (水) 20 時 6 分 30 秒 (日本時間) |
composite number 合成数 | 7465658938449229447040942449271332296285437156022188326191509470915537994774426569523900386003654100702237331940260766740625168462109163058911223813474098817400841505805955695483334516203970334380076890469669451648320537<220> |
prime factors 素因数 | 18537578752610165442633067362224149423873<41> 402731070658191255086876733803742911084543122430838125328109073048436859919365403706755374605158461546508316983976785387053218638973841926988886818855891552608170922187277599782169<180> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @09958d86fa6a with GMP-ECM 7.0.5-dev on Tue Jan 31 21:41:03 2023 Input number is 7465658938449229447040942449271332296285437156022188326191509470915537994774426569523900386003654100702237331940260766740625168462109163058911223813474098817400841505805955695483334516203970334380076890469669451648320537 (220 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1521302934 Step 1 took 0ms Step 2 took 5545ms ********** Factor found in step 2: 18537578752610165442633067362224149423873 Found prime factor of 41 digits: 18537578752610165442633067362224149423873 Prime cofactor 402731070658191255086876733803742911084543122430838125328109073048436859919365403706755374605158461546508316983976785387053218638973841926988886818855891552608170922187277599782169 has 180 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 31, 2023 21:36:08 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:41 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 41 秒 (日本時間) |
2350 | Ignacio Santos | September 14, 2024 16:50:16 UTC 2024 年 9 月 15 日 (日) 1 時 50 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 23, 2023 15:01:48 UTC 2023 年 1 月 24 日 (火) 0 時 1 分 48 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 05:58:58 UTC 2024 年 9 月 15 日 (日) 14 時 58 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:49 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 49 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 05:59:09 UTC 2024 年 9 月 15 日 (日) 14 時 59 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 31, 2023 21:36:17 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 17 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 06:15:44 UTC 2024 年 9 月 15 日 (日) 15 時 15 分 44 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 28, 2022 17:50:21 UTC 2022 年 12 月 29 日 (木) 2 時 50 分 21 秒 (日本時間) |
composite number 合成数 | 250894775215127648493282575026941442430754834978882026988614038426197984634031841970886724041727422313197863757330829983554524989887369<135> |
prime factors 素因数 | 1460888247262647591053552097738217109227<40> 171741251040415976885461226384048889678331697327711788325398368671101269397428661761084985453147<96> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3265262468 Step 1 took 16609ms Step 2 took 8188ms ********** Factor found in step 2: 1460888247262647591053552097738217109227 Found prime factor of 40 digits: 1460888247262647591053552097738217109227 Prime cofactor 171741251040415976885461226384048889678331697327711788325398368671101269397428661761084985453147 has 96 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 16:21:54 UTC 2022 年 12 月 24 日 (土) 1 時 21 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:33:57 UTC 2023 年 1 月 25 日 (水) 18 時 33 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 06:16:01 UTC 2024 年 9 月 15 日 (日) 15 時 16 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 31, 2023 21:36:25 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 06:26:03 UTC 2024 年 9 月 15 日 (日) 15 時 26 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 31, 2023 21:36:33 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 06:37:25 UTC 2024 年 9 月 15 日 (日) 15 時 37 分 25 秒 (日本時間) |
composite cofactor 合成数の残り | 9884826473556748618414519932422296325471460181971262077799377782912233662219174444313436596821926875593062492077011315272018420825694418825290803442630469<154> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 12:44:27 UTC 2022 年 12 月 25 日 (日) 21 時 44 分 27 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 29, 2022 15:57:25 UTC 2022 年 12 月 30 日 (金) 0 時 57 分 25 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | March 22, 2024 09:48:20 UTC 2024 年 3 月 22 日 (金) 18 時 48 分 20 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 2, 2023 10:06:43 UTC 2023 年 2 月 2 日 (木) 19 時 6 分 43 秒 (日本時間) |
composite number 合成数 | 10660862726854851661710057762492592777196276174494785868957229172550909080839799077350789457652838004729546373368334191740461989178532068428893430139505003682843487458948755863474499770168413940531769370926027457951895972132227926476044903<239> |
prime factors 素因数 | 21927870397624660476983829893443229467<38> |
composite cofactor 合成数の残り | 486178663661277889381901699794088398610962893887347645461329033354564287074276123082734728600068313764687048429602740345574054880933200585341395506947794293689544351796931013771471842182011076980499109<201> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @67f5386606e7 with GMP-ECM 7.0.5-dev on Wed Feb 1 20:42:42 2023 Input number is 10660862726854851661710057762492592777196276174494785868957229172550909080839799077350789457652838004729546373368334191740461989178532068428893430139505003682843487458948755863474499770168413940531769370926027457951895972132227926476044903 (239 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:18894538 Step 1 took 1ms Step 2 took 6274ms ********** Factor found in step 2: 21927870397624660476983829893443229467 Found prime factor of 38 digits: 21927870397624660476983829893443229467 Composite cofactor 486178663661277889381901699794088398610962893887347645461329033354564287074276123082734728600068313764687048429602740345574054880933200585341395506947794293689544351796931013771471842182011076980499109 has 201 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 13, 2024 07:30:06 UTC 2024 年 9 月 13 日 (金) 16 時 30 分 6 秒 (日本時間) |
composite number 合成数 | 486178663661277889381901699794088398610962893887347645461329033354564287074276123082734728600068313764687048429602740345574054880933200585341395506947794293689544351796931013771471842182011076980499109<201> |
prime factors 素因数 | 34482806510532791540476296318171709840601<41> |
composite cofactor 合成数の残り | 14099161665184484292687686900031456624815912379174590724641896774096655502376734907516608814992242064788281835874378034257013620598991783906110384721805355713709<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:43123292 Step 1 took 6484ms Step 2 took 2672ms ********** Factor found in step 2: 34482806510532791540476296318171709840601 Found prime factor of 41 digits: 34482806510532791540476296318171709840601 Composite cofactor 14099161665184484292687686900031456624815912379174590724641896774096655502376734907516608814992242064788281835874378034257013620598991783906110384721805355713709 has 161 digits |
software ソフトウェア | GMP-ECM |
name 名前 | iczero |
---|---|
date 日付 | September 16, 2024 19:53:33 UTC 2024 年 9 月 17 日 (火) 4 時 53 分 33 秒 (日本時間) |
composite number 合成数 | 14099161665184484292687686900031456624815912379174590724641896774096655502376734907516608814992242064788281835874378034257013620598991783906110384721805355713709<161> |
prime factors 素因数 | 26272866459586746408986517227613881886057261967906987<53> 536643448741004034508907814382033253836788073697157497162416555130543658806433507856687150122224598027110407<108> |
factorization results 素因数分解の結果 | 26272866459586746408986517227613881886057261967906987 * 536643448741004034508907814382033253836788073697157497162416555130543658806433507856687150122224598027110407 n: 14099161665184484292687686900031456624815912379174590724641896774096655502376734907516608814992242064788281835874378034257013620598991783906110384721805355713709 skew: 4117670.787 c0: -98879102271065671175243775239925914895 c1: 184642095336127595619260268398113 c2: 64587848499263064573177485 c3: -17184240363402737709 c4: -1394010249814 c5: 138180 Y0: -3357959936240605866787125238796 Y1: 2217550354854295718703137 # MurphyE (Bf=4.295e+09,Bg=2.147e+09,area=1.342e+15) = 2.705e-07 # f(x) = 138180*x^5-1394010249814*x^4-17184240363402737709*x^3+64587848499263064573177485*x^2+184642095336127595619260268398113*x-98879102271065671175243775239925914895 # g(x) = 2217550354854295718703137*x-3357959936240605866787125238796 |
software ソフトウェア | cado-nfs efdf316b2b8566652e877e9b6537fa6f5ac8fb17 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | February 1, 2023 20:34:22 UTC 2023 年 2 月 2 日 (木) 5 時 34 分 22 秒 (日本時間) |
286 | iczero | September 16, 2024 02:39:10 UTC 2024 年 9 月 16 日 (月) 11 時 39 分 10 秒 (日本時間) | |||
45 | 11e6 | 3975 | 30 | iczero | September 16, 2024 02:39:10 UTC 2024 年 9 月 16 日 (月) 11 時 39 分 10 秒 (日本時間) |
3945 | iczero | September 16, 2024 03:05:35 UTC 2024 年 9 月 16 日 (月) 12 時 5 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:34:05 UTC 2023 年 1 月 25 日 (水) 18 時 34 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 07:30:59 UTC 2024 年 9 月 13 日 (金) 16 時 30 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 1, 2023 20:34:38 UTC 2023 年 2 月 2 日 (木) 5 時 34 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 07:31:35 UTC 2024 年 9 月 13 日 (金) 16 時 31 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 25, 2023 09:34:16 UTC 2023 年 1 月 25 日 (水) 18 時 34 分 16 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 07:51:59 UTC 2024 年 9 月 13 日 (金) 16 時 51 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 31, 2023 21:36:44 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 44 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 07:57:15 UTC 2024 年 10 月 3 日 (木) 16 時 57 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:34:47 UTC 2023 年 2 月 2 日 (木) 5 時 34 分 47 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:00:26 UTC 2024 年 10 月 3 日 (木) 17 時 0 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 3, 2023 04:52:11 UTC 2023 年 2 月 3 日 (金) 13 時 52 分 11 秒 (日本時間) |
composite number 合成数 | 1287645116015921929186970238133341879283464356407913745142041069216891632315472277492298494225125704765797989163887744557002019154634158182740895842333052947773187674115121747715297825325260995798644759201098949252822349195402072806291023328229777<247> |
prime factors 素因数 | 798590955140973899571547445215301613251<39> |
composite cofactor 合成数の残り | 1612396318448931258582083201460757649635396689964883575289020318394680665597399744370298883298591493580406860275922890335905421725655809733006564269343252204168214118709541427862262114085361064558966080672027<208> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @67f5386606e7 with GMP-ECM 7.0.5-dev on Wed Feb 1 20:56:05 2023 Input number is 1287645116015921929186970238133341879283464356407913745142041069216891632315472277492298494225125704765797989163887744557002019154634158182740895842333052947773187674115121747715297825325260995798644759201098949252822349195402072806291023328229777 (247 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1817091904 Step 1 took 0ms Step 2 took 6419ms ********** Factor found in step 2: 798590955140973899571547445215301613251 Found prime factor of 39 digits: 798590955140973899571547445215301613251 Composite cofactor 1612396318448931258582083201460757649635396689964883575289020318394680665597399744370298883298591493580406860275922890335905421725655809733006564269343252204168214118709541427862262114085361064558966080672027 has 208 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:34:56 UTC 2023 年 2 月 2 日 (木) 5 時 34 分 56 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:02:53 UTC 2024 年 10 月 3 日 (木) 17 時 2 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 3, 2023 04:52:29 UTC 2023 年 2 月 3 日 (金) 13 時 52 分 29 秒 (日本時間) |
composite number 合成数 | 782723594678405476325778222474491470867415711508635708573404558070986215239401049714725434623397169829645516707288613383813916291235044748144279267151771963261801357307216589522384845890449373678911532128694375073473073723949516413<231> |
prime factors 素因数 | 15097180966901109087662971324642939783<38> |
composite cofactor 合成数の残り | 51845678765753682231770794333299396841200835590102157552992335048723972399905615847963098917726230168495799764648911435725150868241634265346961235996606601051067212318598748845871211107440123611<194> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @67f5386606e7 with GMP-ECM 7.0.5-dev on Wed Feb 1 21:00:34 2023 Input number is 782723594678405476325778222474491470867415711508635708573404558070986215239401049714725434623397169829645516707288613383813916291235044748144279267151771963261801357307216589522384845890449373678911532128694375073473073723949516413 (231 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2970960453 Step 1 took 0ms Step 2 took 5746ms ********** Factor found in step 2: 15097180966901109087662971324642939783 Found prime factor of 38 digits: 15097180966901109087662971324642939783 Composite cofactor 51845678765753682231770794333299396841200835590102157552992335048723972399905615847963098917726230168495799764648911435725150868241634265346961235996606601051067212318598748845871211107440123611 has 194 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:35:05 UTC 2023 年 2 月 2 日 (木) 5 時 35 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:05:21 UTC 2024 年 10 月 3 日 (木) 17 時 5 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:35:17 UTC 2023 年 2 月 2 日 (木) 5 時 35 分 17 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:08:28 UTC 2024 年 10 月 3 日 (木) 17 時 8 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1000 | Dmitry Domanov | January 25, 2023 09:34:26 UTC 2023 年 1 月 25 日 (水) 18 時 34 分 26 秒 (日本時間) |
1205 | Thomas Kozlowski | October 3, 2024 08:15:18 UTC 2024 年 10 月 3 日 (木) 17 時 15 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:35:26 UTC 2023 年 2 月 2 日 (木) 5 時 35 分 26 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:18:27 UTC 2024 年 10 月 3 日 (木) 17 時 18 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 31, 2023 21:36:53 UTC 2023 年 2 月 1 日 (水) 6 時 36 分 53 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:21:12 UTC 2024 年 10 月 3 日 (木) 17 時 21 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 21, 2023 07:42:50 UTC 2023 年 1 月 21 日 (土) 16 時 42 分 50 秒 (日本時間) |
composite number 合成数 | 16452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991453<263> |
prime factors 素因数 | 125560942573145189701754075419551226694579<42> |
composite cofactor 合成数の残り | 131035902692485818440479838247560154194963862822267759989045222046819893602621530791125760743187565663774837175107575870048580557433341684355238385445271228439182365648993052911632531409089447794514558478977620819312258607<222> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @f33d175c872d with GMP-ECM 7.0.5-dev on Thu Jan 19 13:34:49 2023 Input number is 16452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991453 (263 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:998887192 Step 1 took 0ms Step 2 took 4898ms ********** Factor found in step 2: 125560942573145189701754075419551226694579 Found prime factor of 42 digits: 125560942573145189701754075419551226694579 Composite cofactor 131035902692485818440479838247560154194963862822267759989045222046819893602621530791125760743187565663774837175107575870048580557433341684355238385445271228439182365648993052911632531409089447794514558478977620819312258607 has 222 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:10:21 UTC 2023 年 1 月 19 日 (木) 20 時 10 分 21 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:23:58 UTC 2024 年 10 月 3 日 (木) 17 時 23 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1000 | Dmitry Domanov | January 23, 2023 15:04:35 UTC 2023 年 1 月 24 日 (火) 0 時 4 分 35 秒 (日本時間) |
1203 | Thomas Kozlowski | October 3, 2024 08:30:48 UTC 2024 年 10 月 3 日 (木) 17 時 30 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:35:34 UTC 2023 年 2 月 2 日 (木) 5 時 35 分 34 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:33:55 UTC 2024 年 10 月 3 日 (木) 17 時 33 分 55 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 1, 2023 13:59:26 UTC 2023 年 2 月 1 日 (水) 22 時 59 分 26 秒 (日本時間) |
composite number 合成数 | 888471428639415060496014371356500231767539319571226649212575008097025606370710813226842959351401449350058323600548924360423633354558513955958491734419509156076861193105403437876830307738100857988311242701817458977<213> |
prime factors 素因数 | 187339670024852845330953305186933825447<39> 4742569625117566990118485207442462644786298777302378136619019291185168239848173749093055447117010218747366094988255747001944327417772117570920313573402779974019420656938303991<175> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @09958d86fa6a with GMP-ECM 7.0.5-dev on Tue Jan 31 21:58:37 2023 Input number is 888471428639415060496014371356500231767539319571226649212575008097025606370710813226842959351401449350058323600548924360423633354558513955958491734419509156076861193105403437876830307738100857988311242701817458977 (213 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2990596529 Step 1 took 0ms Step 2 took 5783ms ********** Factor found in step 2: 187339670024852845330953305186933825447 Found prime factor of 39 digits: 187339670024852845330953305186933825447 Prime cofactor 4742569625117566990118485207442462644786298777302378136619019291185168239848173749093055447117010218747366094988255747001944327417772117570920313573402779974019420656938303991 has 175 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 31, 2023 21:37:02 UTC 2023 年 2 月 1 日 (水) 6 時 37 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:36:20 UTC 2023 年 2 月 2 日 (木) 5 時 36 分 20 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:37:03 UTC 2024 年 10 月 3 日 (木) 17 時 37 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:36:57 UTC 2023 年 2 月 2 日 (木) 5 時 36 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:40:10 UTC 2024 年 10 月 3 日 (木) 17 時 40 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:36:42 UTC 2023 年 1 月 13 日 (金) 21 時 36 分 42 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:44:01 UTC 2024 年 10 月 3 日 (木) 17 時 44 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:37:05 UTC 2023 年 2 月 2 日 (木) 5 時 37 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:47:09 UTC 2024 年 10 月 3 日 (木) 17 時 47 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:37:15 UTC 2023 年 2 月 2 日 (木) 5 時 37 分 15 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:50:18 UTC 2024 年 10 月 3 日 (木) 17 時 50 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:03 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:54:09 UTC 2024 年 10 月 3 日 (木) 17 時 54 分 9 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 31, 2023 22:02:40 UTC 2023 年 2 月 1 日 (水) 7 時 2 分 40 秒 (日本時間) |
composite number 合成数 | 8349457381742915324147625912989925860036384210937566891512526231061208997368327073561228504229852747948836775261538121301585161784856568018252575093155941832250163696274767871491010592666064002500920528180745416441414229568117039<229> |
prime factors 素因数 | 364700140389295007903880059644753<33> |
composite cofactor 合成数の残り | 22894033911888221955350503638078323604696675993200485525633671851673310687659896861869852864053383996251237155006740139848426336688338331683275399322427958918362451277269972814533647134240267099263<197> |
factorization results 素因数分解の結果 | GPU: factor 364700140389295007903880059644753 found in Step 1 with curve 1197 (-sigma 3:597078235) GPU: factor 364700140389295007903880059644753 found in Step 1 with curve 1398 (-sigma 3:597078436) Computing 1792 Step 1 took 272ms of CPU time / 175301ms of GPU time Throughput: 10.222 curves per second (on average 97.82ms per Step 1) ********** Factor found in step 1: 364700140389295007903880059644753 Found prime factor of 33 digits: 364700140389295007903880059644753 Composite cofactor 22894033911888221955350503638078323604696675993200485525633671851673310687659896861869852864053383996251237155006740139848426336688338331683275399322427958918362451277269972814533647134240267099263 has 197 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 31, 2023 21:37:10 UTC 2023 年 2 月 1 日 (水) 6 時 37 分 10 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:56:36 UTC 2024 年 10 月 3 日 (木) 17 時 56 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:37:25 UTC 2023 年 2 月 2 日 (木) 5 時 37 分 25 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:59:43 UTC 2024 年 10 月 3 日 (木) 17 時 59 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:10:12 UTC 2023 年 1 月 19 日 (木) 20 時 10 分 12 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:03:10 UTC 2024 年 10 月 3 日 (木) 18 時 3 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 1, 2023 20:37:35 UTC 2023 年 2 月 2 日 (木) 5 時 37 分 35 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:06:19 UTC 2024 年 10 月 3 日 (木) 18 時 6 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:10:05 UTC 2023 年 1 月 19 日 (木) 20 時 10 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:09:49 UTC 2024 年 10 月 3 日 (木) 18 時 9 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:09:56 UTC 2023 年 1 月 19 日 (木) 20 時 9 分 56 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:13:17 UTC 2024 年 10 月 3 日 (木) 18 時 13 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 14:23:14 UTC 2022 年 12 月 26 日 (月) 23 時 23 分 14 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 3, 2023 13:29:37 UTC 2023 年 1 月 3 日 (火) 22 時 29 分 37 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | May 10, 2024 19:35:51 UTC 2024 年 5 月 11 日 (土) 4 時 35 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:11 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 11 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:17:08 UTC 2024 年 10 月 3 日 (木) 18 時 17 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:09:48 UTC 2023 年 1 月 19 日 (木) 20 時 9 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:20:38 UTC 2024 年 10 月 3 日 (木) 18 時 20 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:09:41 UTC 2023 年 1 月 19 日 (木) 20 時 9 分 41 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:24:08 UTC 2024 年 10 月 3 日 (木) 18 時 24 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:19 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 19 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:28:02 UTC 2024 年 10 月 3 日 (木) 18 時 28 分 2 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 2, 2023 14:36:12 UTC 2023 年 1 月 2 日 (月) 23 時 36 分 12 秒 (日本時間) |
composite number 合成数 | 3969604894094423205075240386218752112101046112889557432169730298563110459547294270071998055882886761746482252397496097521798609282307121641048204961426231903493910502592283<172> |
prime factors 素因数 | 1070243669104358986989560619578951305666096769<46> |
composite cofactor 合成数の残り | 3709066457189525114514817124333280755153582981374801906166900421342954196792038144012496523891959451464615632393595910974302107<127> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1696731909 Step 1 took 23453ms Step 2 took 10360ms ********** Factor found in step 2: 1070243669104358986989560619578951305666096769 Found prime factor of 46 digits: 1070243669104358986989560619578951305666096769 Composite cofactor 3709066457189525114514817124333280755153582981374801906166900421342954196792038144012496523891959451464615632393595910974302107 has 127 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 5, 2023 06:32:21 UTC 2023 年 1 月 5 日 (木) 15 時 32 分 21 秒 (日本時間) |
composite number 合成数 | 3709066457189525114514817124333280755153582981374801906166900421342954196792038144012496523891959451464615632393595910974302107<127> |
prime factors 素因数 | 4926646689866521899233739194117425604612527<43> 752858219936614776786078875790981785635686064883351080069978251698263346570942275541<84> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:4122735643 Step 1 took 16282ms Step 2 took 7781ms ********** Factor found in step 2: 4926646689866521899233739194117425604612527 Found prime factor of 43 digits: 4926646689866521899233739194117425604612527 Prime cofactor 752858219936614776786078875790981785635686064883351080069978251698263346570942275541 has 84 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 13:44:51 UTC 2022 年 12 月 26 日 (月) 22 時 44 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:09:33 UTC 2023 年 1 月 19 日 (木) 20 時 9 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:31:31 UTC 2024 年 10 月 3 日 (木) 18 時 31 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:27 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:35:21 UTC 2024 年 10 月 3 日 (木) 18 時 35 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 19, 2023 11:09:22 UTC 2023 年 1 月 19 日 (木) 20 時 9 分 22 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:38:48 UTC 2024 年 10 月 3 日 (木) 18 時 38 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:35 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 35 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:42:37 UTC 2024 年 10 月 3 日 (木) 18 時 42 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:37:42 UTC 2023 年 1 月 13 日 (金) 21 時 37 分 42 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 09:46:26 UTC 2024 年 10 月 3 日 (木) 18 時 46 分 26 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 4, 2023 23:11:17 UTC 2023 年 1 月 5 日 (木) 8 時 11 分 17 秒 (日本時間) |
composite number 合成数 | 127768379149807906756242467137530481978477376142144942179996285661798631585188536920732874866758224254573918987324426710058915141665610307726954262037908754121602984162649788098125797<183> |
prime factors 素因数 | 233518814977769604359049760493102355024519149<45> 547143831480864317517916000429090915543691277845840503217446913769300269518963304139015474589362050439780257555566885451248289896564904153<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1354236539 Step 1 took 27391ms Step 2 took 11187ms ********** Factor found in step 2: 233518814977769604359049760493102355024519149 Found prime factor of 45 digits: 233518814977769604359049760493102355024519149 Prime cofactor 547143831480864317517916000429090915543691277845840503217446913769300269518963304139015474589362050439780257555566885451248289896564904153 has 138 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 16:30:04 UTC 2022 年 12 月 27 日 (火) 1 時 30 分 4 秒 (日本時間) |