name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 22:19:21 UTC 2022 年 12 月 25 日 (日) 7 時 19 分 21 秒 (日本時間) |
composite number 合成数 | 1091403062925516375680669218456732147860296819771080450160406348796272125954491781435921633073878418894848248627<112> |
prime factors 素因数 | 13901454022795768902874428911671961076446685043778189<53> 78509993352912631343560561198076369450158254462996166628543<59> |
factorization results 素因数分解の結果 | N=1091403062925516375680669218456732147860296819771080450160406348796272125954491781435921633073878418894848248627 ( 112 digits) SNFS difficulty: 117 digits. Divisors found: r1=13901454022795768902874428911671961076446685043778189 (pp53) r2=78509993352912631343560561198076369450158254462996166628543 (pp59) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1091403062925516375680669218456732147860296819771080450160406348796272125954491781435921633073878418894848248627 m: 100000000000000000000000000000 deg: 4 c4: 73 c0: 26 skew: 0.77 # Murphy_E = 4.14e-08 type: snfs lss: 1 rlim: 640000 alim: 640000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 640000/640000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [320000, 620001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60542 x 60767 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117.000,4,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 23:06:43 UTC 2022 年 12 月 25 日 (日) 8 時 6 分 43 秒 (日本時間) |
composite number 合成数 | 30860932983604258890648073848712187667339762207400568165897672375780417229436856009892572086308796573<101> |
prime factors 素因数 | 246554217460527021086039540817667610717<39> 125168951890044429231012155643075809633234263300423454135426369<63> |
factorization results 素因数分解の結果 | N=30860932983604258890648073848712187667339762207400568165897672375780417229436856009892572086308796573 ( 101 digits) SNFS difficulty: 121 digits. Divisors found: r1=246554217460527021086039540817667610717 (pp39) r2=125168951890044429231012155643075809633234263300423454135426369 (pp63) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 30860932983604258890648073848712187667339762207400568165897672375780417229436856009892572086308796573 m: 500000000000000000000000000000 deg: 4 c4: 292 c0: 65 skew: 0.69 # Murphy_E = 3.398e-08 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 65205 x 65430 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,4,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 23:18:26 UTC 2022 年 12 月 25 日 (日) 8 時 18 分 26 秒 (日本時間) |
composite number 合成数 | 39726708859758618936778470730192806266602504549575274083338342249875323572004070157160115153597311865789<104> |
prime factors 素因数 | 3502792911762020354853552326800842093743<40> 11341438063997558512445403795271838817824214462210749045745987923<65> |
factorization results 素因数分解の結果 | N=39726708859758618936778470730192806266602504549575274083338342249875323572004070157160115153597311865789 ( 104 digits) SNFS difficulty: 121 digits. Divisors found: r1=3502792911762020354853552326800842093743 (pp40) r2=11341438063997558512445403795271838817824214462210749045745987923 (pp65) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 39726708859758618936778470730192806266602504549575274083338342249875323572004070157160115153597311865789 m: 1000000000000000000000000000000 deg: 4 c4: 73 c0: 26 skew: 0.77 # Murphy_E = 2.679e-08 type: snfs lss: 1 rlim: 750000 alim: 750000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 750000/750000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [375000, 750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 76834 x 77060 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121.000,4,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,75000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 22:45:26 UTC 2022 年 12 月 26 日 (月) 7 時 45 分 26 秒 (日本時間) |
composite number 合成数 | 5781518120572364757153140857245715573541015049973925393227780180047623051202941150271047765097518249<100> |
prime factors 素因数 | 1063117203341360475983648422697084701<37> 5438269743355807975796370117967000886603421648995682813490237949<64> |
factorization results 素因数分解の結果 | N=5781518120572364757153140857245715573541015049973925393227780180047623051202941150271047765097518249 ( 100 digits) SNFS difficulty: 129 digits. Divisors found: r1=1063117203341360475983648422697084701 (pp37) r2=5438269743355807975796370117967000886603421648995682813490237949 (pp64) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 5781518120572364757153140857245715573541015049973925393227780180047623051202941150271047765097518249 m: 100000000000000000000000000000000 deg: 4 c4: 73 c0: 26 skew: 0.77 # Murphy_E = 1.105e-08 type: snfs lss: 1 rlim: 1020000 alim: 1020000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1020000/1020000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [510000, 1110001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130801 x 131029 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129.000,4,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 5, 2023 16:41:58 UTC 2023 年 1 月 6 日 (金) 1 時 41 分 58 秒 (日本時間) |
composite number 合成数 | 61520993515097688710103941230390767132788631201054597739651459059763690753587764144901476446846624417495221732552869431<119> |
prime factors 素因数 | 325268425489526508664800872845918622817221437259537<51> 189139149988226065793319846912594867439663105099740725533396384497863<69> |
factorization results 素因数分解の結果 | N=61520993515097688710103941230390767132788631201054597739651459059763690753587764144901476446846624417495221732552869431 ( 119 digits) SNFS difficulty: 134 digits. Divisors found: r1=325268425489526508664800872845918622817221437259537 (pp51) r2=189139149988226065793319846912594867439663105099740725533396384497863 (pp69) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.05 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 61520993515097688710103941230390767132788631201054597739651459059763690753587764144901476446846624417495221732552869431 m: 1000000000000000000000000000000000 deg: 4 c4: 365 c0: 13 skew: 0.43 # Murphy_E = 7.538e-09 type: snfs lss: 1 rlim: 1220000 alim: 1220000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1220000/1220000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [610000, 1410001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 164587 x 164812 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134.000,4,0,0,0,0,0,0,0,0,1220000,1220000,26,26,47,47,2.3,2.3,100000 total time: 0.05 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 6, 2023 22:50:15 UTC 2023 年 1 月 7 日 (土) 7 時 50 分 15 秒 (日本時間) |
composite number 合成数 | 142084020028430174765946473651162697983238937935167277800795663653276973096678359592107671550469135517989159687025821759035243<126> |
prime factors 素因数 | 2559248108655043119780700731901676203805242844127790008097<58> 55517876343415302758272685582512257573635126452898032654766888446219<68> |
factorization results 素因数分解の結果 | N=142084020028430174765946473651162697983238937935167277800795663653276973096678359592107671550469135517989159687025821759035243 ( 126 digits) SNFS difficulty: 137 digits. Divisors found: r1=2559248108655043119780700731901676203805242844127790008097 (pp58) r2=55517876343415302758272685582512257573635126452898032654766888446219 (pp68) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 142084020028430174765946473651162697983238937935167277800795663653276973096678359592107671550469135517989159687025821759035243 m: 1000000000000000000000000000 deg: 5 c5: 365 c0: 13 skew: 0.51 # Murphy_E = 4.701e-09 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1210001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158317 x 158542 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137.000,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 22, 2023 10:42:55 UTC 2023 年 1 月 22 日 (日) 19 時 42 分 55 秒 (日本時間) |
composite number 合成数 | 5807407187120165459173754374823732561349971426206622255737209146688238534829199370521063491754885447124050739695209551820482992209<130> |
prime factors 素因数 | 2393268813130614576558224979960263959693984690472392268374279<61> 2426558669572744533170758608708225329471125343323634421550001573469671<70> |
factorization results 素因数分解の結果 | Number: n N=5807407187120165459173754374823732561349971426206622255737209146688238534829199370521063491754885447124050739695209551820482992209 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: Sun Jan 22 21:39:49 2023 prp61 factor: 2393268813130614576558224979960263959693984690472392268374279 Sun Jan 22 21:39:49 2023 prp70 factor: 2426558669572744533170758608708225329471125343323634421550001573469671 Sun Jan 22 21:39:49 2023 elapsed time 00:06:01 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 73x10^145+26 = 81(144)4 # # n: 5807407187120165459173754374823732561349971426206622255737209146688238534829199370521063491754885447124050739695209551820482992209 - 130 digits # n: 5807407187120165459173754374823732561349971426206622255737209146688238534829199370521063491754885447124050739695209551820482992209 m: 100000000000000000000000000000 deg: 5 c5: 73 c0: 26 skew: 0.81 # Murphy_E = 1.898e-09 type: snfs lss: 1 rlim: 1960000 alim: 1960000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1960000/1960000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12180000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 382516 hash collisions in 5200608 relations (5164189 unique) Msieve: matrix is 375320 x 375545 (104.7 MB) Sieving start time: 2023/01/22 21:05:45 Sieving end time : 2023/01/22 21:33:39 Total sieving time: 0hrs 27min 54secs. Total relation processing time: 0hrs 3min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 20sec. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 17:16:00 UTC 2022 年 12 月 25 日 (日) 2 時 16 分 0 秒 (日本時間) |
composite number 合成数 | 2809739663457964737677317659786289660647939113457993329179939047954367241801617497144568614422806631<100> |
prime factors 素因数 | 53804629689112273093162186261732103419<38> 52221150478924945799835793227755491525793801639682332566498949<62> |
factorization results 素因数分解の結果 | 12/24/22 18:12:24, starting SIQS on c100: 2809739663457964737677317659786289660647939113457993329179939047954367241801617497144568614422806631 12/24/22 18:12:24, random seed: 1690384808633171865 12/24/22 18:12:25, ==== sieve params ==== 12/24/22 18:12:25, n = 102 digits, 338 bits 12/24/22 18:12:25, factor base: 117888 primes (max prime = 3282089) 12/24/22 18:12:25, single large prime cutoff: 492313350 (150 * pmax) 12/24/22 18:12:25, double large prime range from 10772108203921 to 12040568239484498 12/24/22 18:12:25, DLP MFB = 1.85 12/24/22 18:12:25, allocating 8 large prime slices of factor base 12/24/22 18:12:25, buckets hold 2048 elements 12/24/22 18:12:25, large prime hashtables have 1572864 bytes 12/24/22 18:12:25, using AVX2 enabled 32k sieve core 12/24/22 18:12:25, sieve interval: 12 blocks of size 32768 12/24/22 18:12:25, polynomial A has ~ 13 factors 12/24/22 18:12:25, using multiplier of 191 12/24/22 18:12:25, using multiplier of 191 12/24/22 18:12:25, using Q2(x) polynomials for kN mod 8 = 1 12/24/22 18:12:25, using SPV correction of 22 bits, starting at offset 40 12/24/22 18:12:25, trial factoring cutoff at 100 bits 12/24/22 18:12:25, ==== sieving started (46 threads) ==== 12/24/22 18:15:08, trial division touched 222093065 sieve locations out of 2656982532096 12/24/22 18:15:08, total reports = 222093065, total surviving reports = 58065524 12/24/22 18:15:08, total blocks sieved = 81085728, avg surviving reports per block = 0.72 12/24/22 18:15:08, dlp-ecm: 2 failures, 1997496 attempts, 47229267 outside range, 8372370 prp, 1593478 useful 12/24/22 18:15:08, 120171 relations found: 30996 full + 89175 from 2028873 partial, using 3378528 polys (1680 A polys) 12/24/22 18:15:08, on average, sieving found 0.61 rels/poly and 12609.96 rels/sec 12/24/22 18:15:08, trial division touched 222093065 sieve locations out of 2656982532096 12/24/22 18:15:08, ==== post processing stage (msieve-1.38) ==== 12/24/22 18:15:08, QS elapsed time = 163.3548 seconds. 12/24/22 18:15:08, begin singleton removal with 2059869 relations 12/24/22 18:15:09, reduce to 311886 relations in 11 passes 12/24/22 18:15:10, failed to read relation 102742 12/24/22 18:15:11, recovered 311885 relations 12/24/22 18:15:11, recovered 297857 polynomials 12/24/22 18:15:12, attempting to build 120170 cycles 12/24/22 18:15:12, found 120168 cycles from 311885 relations in 5 passes 12/24/22 18:15:12, distribution of cycle lengths: 12/24/22 18:15:12, length 1 : 30996 12/24/22 18:15:12, length 2 : 20916 12/24/22 18:15:12, length 3 : 20294 12/24/22 18:15:12, length 4 : 16156 12/24/22 18:15:12, length 5 : 11685 12/24/22 18:15:12, length 6 : 7939 12/24/22 18:15:12, length 7 : 5148 12/24/22 18:15:12, length 9+: 7034 12/24/22 18:15:12, largest cycle: 22 relations 12/24/22 18:15:12, matrix is 117888 x 120168 (36.8 MB) with weight 8676060 (72.20/col) 12/24/22 18:15:12, sparse part has weight 8676060 (72.20/col) 12/24/22 18:15:12, filtering completed in 3 passes 12/24/22 18:15:12, matrix is 111064 x 111128 (33.5 MB) with weight 7889364 (70.99/col) 12/24/22 18:15:12, sparse part has weight 7889364 (70.99/col) 12/24/22 18:15:12, saving the first 48 matrix rows for later 12/24/22 18:15:13, matrix is 111016 x 111128 (28.7 MB) with weight 6965422 (62.68/col) 12/24/22 18:15:13, sparse part has weight 6405087 (57.64/col) 12/24/22 18:15:13, matrix includes 64 packed rows 12/24/22 18:15:13, using block size 44451 for processor cache size 131072 kB 12/24/22 18:15:13, commencing Lanczos iteration 12/24/22 18:15:13, memory use: 22.2 MB 12/24/22 18:15:35, lanczos halted after 1757 iterations (dim = 111010) 12/24/22 18:15:35, recovered 12 nontrivial dependencies 12/24/22 18:15:35, prp38 = 53804629689112273093162186261732103419 12/24/22 18:15:35, prp62 = 52221150478924945799835793227755491525793801639682332566498949 12/24/22 18:15:35, Lanczos elapsed time = 27.4180 seconds. 12/24/22 18:15:35, Sqrt elapsed time = 0.1320 seconds. 12/24/22 18:15:35, SIQS elapsed time = 190.9078 seconds. 12/24/22 18:15:35, 12/24/22 18:15:35, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 26, 2023 13:30:45 UTC 2023 年 1 月 26 日 (木) 22 時 30 分 45 秒 (日本時間) |
composite number 合成数 | 19094116696349764848267434035827530256632785516315581423906729612654650087180016052044825231966238522068906213649309457<119> |
prime factors 素因数 | 3425171768317884413149015205605857499097<40> 5574645006993900952795979621939642385616863242638285472979954927667414212965881<79> |
factorization results 素因数分解の結果 | p40 factor: 3425171768317884413149015205605857499097 p79 factor: 5574645006993900952795979621939642385616863242638285472979954927667414212965881 |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 23, 2022 23:13:55 UTC 2022 年 12 月 24 日 (土) 8 時 13 分 55 秒 (日本時間) |
composite number 合成数 | 4734148446272088813064522965881304882406735421876154223370832840314095902437246992439934431496701815977823877341<112> |
prime factors 素因数 | 17320605711958826626446067313217839<35> 273324647243915190791509749265039917487999498040246422654303505393736417565619<78> |
factorization results 素因数分解の結果 | Z:\ALL\ECM>ecm70dev-svn2256-x64-nehalem\ecm -primetest -one -nn -sigma 1:4247706760 3e6 GMP-ECM 7.0-dev [configured with MPIR 2.6.0, --enable-openmp] [ECM] Input number is 4734148446272088813064522965881304882406735421876154223370832840314095902437246992439934431496701815977823877341 (112 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4247706760 Step 1 took 2281ms Step 2 took 3234ms ********** Factor found in step 2: 17320605711958826626446067313217839 Found probable prime factor of 35 digits: 17320605711958826626446067313217839 Probable prime cofactor 273324647243915190791509749265039917487999498040246422654303505393736417565619 has 78 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 10, 2023 04:42:11 UTC 2023 年 1 月 10 日 (火) 13 時 42 分 11 秒 (日本時間) |
composite number 合成数 | 41178095392459890317378167651130437750639906780066928064534823852546897471390910305219411707553895158666703663104451287363145223194644961<137> |
prime factors 素因数 | 2164370311132187389909369041429127996426711555895602437353<58> 19025439029848606711064168728271398601230481135705677094453788604431748430369337<80> |
factorization results 素因数分解の結果 | 41178095392459890317378167651130437750639906780066928064534823852546897471390910305219411707553895158666703663104451287363145223194644961=2164370311132187389909369041429127996426711555895602437353*19025439029848606711064168728271398601230481135705677094453788604431748430369337 cado polynomial n: 41178095392459890317378167651130437750639906780066928064534823852546897471390910305219411707553895158666703663104451287363145223194644961 skew: 0.81 type: snfs c0: 26 c5: 73 Y0: 10000000000000000000000000000000 Y1: -1 # f(x) = 73*x^5+26 # g(x) = -x+10000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 2900000 tasks.lim1 = 2900000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 50 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 2164370311132187389909369041429127996426711555895602437353 19025439029848606711064168728271398601230481135705677094453788604431748430369337 Info:Square Root: Total cpu/real time for sqrt: 69.37/13.9669 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 1.47/0.351285 Info:Generate Free Relations: Total cpu/real time for freerel: 49.56/6.51354 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11674557 Info:Lattice Sieving: Average J: 1894.69 for 219639 special-q, max bucket fill -bkmult 1.0,1s:1.154320 Info:Lattice Sieving: Total time: 29295.4s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 26.25/19.4447 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 19.4s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 117.61/36.569 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 34.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 104.08/39.1059 Info:Filtering - Merging: Merged matrix has 311005 rows and total weight 52890831 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 62.91/9.08963 Info:Filtering - Merging: Total cpu/real time for replay: 9.19/7.59641 Info:Linear Algebra: Total cpu/real time for bwc: 988.11/260.44 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 156.82, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9856 iterations) Info:Linear Algebra: Lingen CPU time 26.94, WCT time 7.32 Info:Linear Algebra: Mksol: WCT time 89.93, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (4864 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 10.92/2.8127 Info:Square Root: Total cpu/real time for sqrt: 69.37/13.9669 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 63258.9/15187.2 Info:root: Cleaning up computation data in /tmp/cado.prttgqxr 2164370311132187389909369041429127996426711555895602437353 19025439029848606711064168728271398601230481135705677094453788604431748430369337 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 30, 2023 15:53:22 UTC 2023 年 1 月 31 日 (火) 0 時 53 分 22 秒 (日本時間) |
composite number 合成数 | 6454165648162757855208743333427969115211463790213237145424616955976614523799098436889818324611789485449311190608494968465975789911593<133> |
prime factors 素因数 | 16034831425206692613088548142788708215565243739327302034743919249<65> 402509105148235894003090292571607636436564092939728291650387201285657<69> |
factorization results 素因数分解の結果 | Number: n N=6454165648162757855208743333427969115211463790213237145424616955976614523799098436889818324611789485449311190608494968465975789911593 ( 133 digits) SNFS difficulty: 161 digits. Divisors found: Tue Jan 31 02:28:19 2023 prp65 factor: 16034831425206692613088548142788708215565243739327302034743919249 Tue Jan 31 02:28:19 2023 prp69 factor: 402509105148235894003090292571607636436564092939728291650387201285657 Tue Jan 31 02:28:19 2023 elapsed time 00:11:16 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.092). Factorization parameters were as follows: # # N = 73x10^159+26 = 81(158)4 # n: 6454165648162757855208743333427969115211463790213237145424616955976614523799098436889818324611789485449311190608494968465975789911593 m: 50000000000000000000000000000000 deg: 5 c5: 584 c0: 65 skew: 0.64 # Murphy_E = 5.039e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 12900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1011265 hash collisions in 12423963 relations (12226723 unique) Msieve: matrix is 555044 x 555271 (156.6 MB) Sieving start time: 2023/01/31 00:38:43 Sieving end time : 2023/01/31 02:16:53 Total sieving time: 1hrs 38min 10secs. Total relation processing time: 0hrs 8min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 34sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 08:38:07 UTC 2022 年 12 月 28 日 (水) 17 時 38 分 7 秒 (日本時間) |
composite number 合成数 | 3560702396830019176797326581935126165338527969127672810019082147845896625876518318819345490626686495263051655242383400121379098199215717<136> |
prime factors 素因数 | 18736669111879064497769572542772873219029876857317693<53> 190039242064243465942883842131084904217871846309013946971601526584760799182040759369<84> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3560702396830019176797326581935126165338527969127672810019082147845896625876518318819345490626686495263051655242383400121379098199215717 (136 digits) Using B1=28590000, B2=144287903776, polynomial Dickson(12), sigma=1:2127328834 Step 1 took 59407ms Step 2 took 22297ms ********** Factor found in step 2: 18736669111879064497769572542772873219029876857317693 Found prime factor of 53 digits: 18736669111879064497769572542772873219029876857317693 Prime cofactor 190039242064243465942883842131084904217871846309013946971601526584760799182040759369 has 84 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 14:47:01 UTC 2022 年 12 月 31 日 (土) 23 時 47 分 1 秒 (日本時間) |
composite number 合成数 | 7973330647222965242637032732557559798855759653037934774437513178167186606145439548690852164465185507006664525013648823166355423657022482975015380349133<151> |
prime factors 素因数 | 214690423259125899139403376016925490659109908164829322223382020118065433593<75> 37138734584352452696816602352982942750540767831256271095368882333917625841781<77> |
factorization results 素因数分解の結果 | Number: n N=7973330647222965242637032732557559798855759653037934774437513178167186606145439548690852164465185507006664525013648823166355423657022482975015380349133 ( 151 digits) SNFS difficulty: 166 digits. Divisors found: Sun Jan 1 01:41:55 2023 p75 factor: 214690423259125899139403376016925490659109908164829322223382020118065433593 Sun Jan 1 01:41:55 2023 p77 factor: 37138734584352452696816602352982942750540767831256271095368882333917625841781 Sun Jan 1 01:41:55 2023 elapsed time 00:13:12 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: # # N = 73x10^165+26 = 81(164)4 # n: 7973330647222965242637032732557559798855759653037934774437513178167186606145439548690852164465185507006664525013648823166355423657022482975015380349133 m: 1000000000000000000000000000000000 deg: 5 c5: 73 c0: 26 skew: 0.81 # Murphy_E = 3.228e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 22100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2448766 hash collisions in 21356812 relations (19765446 unique) Msieve: matrix is 885600 x 885845 (135.4 MB) Sieving start time : 2022/12/31 23:27:28 Sieving end time : 2023/01/01 01:28:14 Total sieving time: 2hrs 0min 46secs. Total relation processing time: 0hrs 6min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 3sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 26, 2022 07:42:40 UTC 2022 年 12 月 26 日 (月) 16 時 42 分 40 秒 (日本時間) |
composite number 合成数 | 3589559224368648204630310009190769493193228688259202507137958522030852457454541320009782535474298781872104960563264359247021567750032371114678378287599634960587<160> |
prime factors 素因数 | 621911925960386916739514526134599248299472467521<48> 5771812815497105463538793643402235697785789149564741909627512077523521412451664987157069451032059565407539035147<112> |
factorization results 素因数分解の結果 | Number: n N=3589559224368648204630310009190769493193228688259202507137958522030852457454541320009782535474298781872104960563264359247021567750032371114678378287599634960587 ( 160 digits) SNFS difficulty: 171 digits. Divisors found: Mon Dec 26 18:31:32 2022 p48 factor: 621911925960386916739514526134599248299472467521 Mon Dec 26 18:31:32 2022 p112 factor: 5771812815497105463538793643402235697785789149564741909627512077523521412451664987157069451032059565407539035147 Mon Dec 26 18:31:32 2022 elapsed time 00:11:25 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.331). Factorization parameters were as follows: # # N = 73x10^169+26 = 81(168)4 # n: 3589559224368648204630310009190769493193228688259202507137958522030852457454541320009782535474298781872104960563264359247021567750032371114678378287599634960587 m: 5000000000000000000000000000000000 deg: 5 c5: 584 c0: 65 skew: 0.64 # Murphy_E = 2.043e-10 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1269792 hash collisions in 12238437 relations (11704156 unique) Msieve: matrix is 722052 x 722277 (252.5 MB) Sieving start time : 2022/12/26 17:34:15 Sieving end time : 2022/12/26 18:19:48 Total sieving time: 0hrs 45min 33secs. Total relation processing time: 0hrs 7min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 54sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 31, 2023 06:09:27 UTC 2023 年 1 月 31 日 (火) 15 時 9 分 27 秒 (日本時間) |
composite number 合成数 | 296730202058338088666743326668888373576235169487276829743298769754900900860262053700486330731494294611325713831679372095122999539<129> |
prime factors 素因数 | 345043097038909161066203920531968080525905645249832760629<57> 859980114382282465666921102070735585614861055097760506669971655451398791<72> |
factorization results 素因数分解の結果 | Number: n N=296730202058338088666743326668888373576235169487276829743298769754900900860262053700486330731494294611325713831679372095122999539 ( 129 digits) SNFS difficulty: 172 digits. Divisors found: Tue Jan 31 17:05:57 2023 prp57 factor: 345043097038909161066203920531968080525905645249832760629 Tue Jan 31 17:05:57 2023 prp72 factor: 859980114382282465666921102070735585614861055097760506669971655451398791 Tue Jan 31 17:05:57 2023 elapsed time 00:22:49 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 73x10^171+26 = 81(170)4 # n: 296730202058338088666743326668888373576235169487276829743298769754900900860262053700486330731494294611325713831679372095122999539 m: 10000000000000000000000000000000000 deg: 5 c5: 365 c0: 13 skew: 0.51 # Murphy_E = 2.151e-10 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 28250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1469191 hash collisions in 14932151 relations (14428604 unique) Msieve: matrix is 822645 x 822871 (233.0 MB) Sieving start time: 2023/01/31 13:08:31 Sieving end time : 2023/01/31 16:42:55 Total sieving time: 3hrs 34min 24secs. Total relation processing time: 0hrs 18min 48sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 50sec. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 14:50:12 UTC 2022 年 12 月 27 日 (火) 23 時 50 分 12 秒 (日本時間) |
composite number 合成数 | 472771101880314109669426943143571382435262561642108876130645681496993698613440298566392398847625188490955468907020851<117> |
prime factors 素因数 | 259980044837380801829875644842038749197227869939797<51> 1818489962089342238496864690046234100496263784136875309159547054183<67> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000. -> client 1 q0: 1800000 LatSieveTime: 95 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 138 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 148 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 84 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 160 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 96 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 142 Tue Dec 27 15:39:20 2022 Tue Dec 27 15:39:20 2022 Tue Dec 27 15:39:20 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 15:39:20 2022 random seeds: 0750a124 82d64ca6 Tue Dec 27 15:39:20 2022 factoring 472771101880314109669426943143571382435262561642108876130645681496993698613440298566392398847625188490955468907020851 (117 digits) Tue Dec 27 15:39:20 2022 searching for 15-digit factors Tue Dec 27 15:39:20 2022 commencing number field sieve (117-digit input) Tue Dec 27 15:39:20 2022 R0: -51382535914233939436660 Tue Dec 27 15:39:20 2022 R1: 1413305546959 Tue Dec 27 15:39:20 2022 A0: -430555317244566998459801391 Tue Dec 27 15:39:20 2022 A1: 139278133402443293355861 Tue Dec 27 15:39:20 2022 A2: -6929140380861034399 Tue Dec 27 15:39:20 2022 A3: -59965734908604 Tue Dec 27 15:39:20 2022 A4: -75259113 Tue Dec 27 15:39:20 2022 A5: 1320 Tue Dec 27 15:39:20 2022 skew 94382.76, size 2.911e-011, alpha -5.014, combined = 3.959e-010 rroots = 3 Tue Dec 27 15:39:20 2022 Tue Dec 27 15:39:20 2022 commencing relation filtering Tue Dec 27 15:39:20 2022 estimated available RAM is 65413.5 MB Tue Dec 27 15:39:20 2022 commencing duplicate removal, pass 1 Tue Dec 27 15:39:39 2022 found 851916 hash collisions in 9705239 relations Tue Dec 27 15:39:49 2022 added 62233 free relations Tue Dec 27 15:39:49 2022 commencing duplicate removal, pass 2 Tue Dec 27 15:39:52 2022 found 606972 duplicates and 9160500 unique relations Tue Dec 27 15:39:52 2022 memory use: 34.6 MB Tue Dec 27 15:39:52 2022 reading ideals above 100000 Tue Dec 27 15:39:52 2022 commencing singleton removal, initial pass Tue Dec 27 15:40:25 2022 memory use: 344.5 MB Tue Dec 27 15:40:25 2022 reading all ideals from disk Tue Dec 27 15:40:25 2022 memory use: 318.0 MB Tue Dec 27 15:40:26 2022 keeping 10225570 ideals with weight <= 200, target excess is 48565 Tue Dec 27 15:40:26 2022 commencing in-memory singleton removal Tue Dec 27 15:40:26 2022 begin with 9160500 relations and 10225570 unique ideals Tue Dec 27 15:40:30 2022 reduce to 2996243 relations and 2877337 ideals in 21 passes Tue Dec 27 15:40:30 2022 max relations containing the same ideal: 97 Tue Dec 27 15:40:31 2022 removing 362246 relations and 330961 ideals in 31285 cliques Tue Dec 27 15:40:31 2022 commencing in-memory singleton removal Tue Dec 27 15:40:31 2022 begin with 2633997 relations and 2877337 unique ideals Tue Dec 27 15:40:32 2022 reduce to 2594863 relations and 2506651 ideals in 9 passes Tue Dec 27 15:40:32 2022 max relations containing the same ideal: 85 Tue Dec 27 15:40:32 2022 removing 264860 relations and 233575 ideals in 31285 cliques Tue Dec 27 15:40:32 2022 commencing in-memory singleton removal Tue Dec 27 15:40:32 2022 begin with 2330003 relations and 2506651 unique ideals Tue Dec 27 15:40:33 2022 reduce to 2305503 relations and 2248252 ideals in 9 passes Tue Dec 27 15:40:33 2022 max relations containing the same ideal: 84 Tue Dec 27 15:40:33 2022 relations with 0 large ideals: 137 Tue Dec 27 15:40:33 2022 relations with 1 large ideals: 523 Tue Dec 27 15:40:33 2022 relations with 2 large ideals: 7917 Tue Dec 27 15:40:33 2022 relations with 3 large ideals: 62303 Tue Dec 27 15:40:33 2022 relations with 4 large ideals: 248950 Tue Dec 27 15:40:33 2022 relations with 5 large ideals: 553595 Tue Dec 27 15:40:33 2022 relations with 6 large ideals: 695186 Tue Dec 27 15:40:33 2022 relations with 7+ large ideals: 736892 Tue Dec 27 15:40:33 2022 commencing 2-way merge Tue Dec 27 15:40:34 2022 reduce to 1261821 relation sets and 1204570 unique ideals Tue Dec 27 15:40:34 2022 ignored 1 oversize relation sets Tue Dec 27 15:40:34 2022 commencing full merge Tue Dec 27 15:40:48 2022 memory use: 132.4 MB Tue Dec 27 15:40:48 2022 found 623423 cycles, need 616770 Tue Dec 27 15:40:48 2022 weight of 616770 cycles is about 43281540 (70.17/cycle) Tue Dec 27 15:40:48 2022 distribution of cycle lengths: Tue Dec 27 15:40:48 2022 1 relations: 73558 Tue Dec 27 15:40:48 2022 2 relations: 73045 Tue Dec 27 15:40:48 2022 3 relations: 71811 Tue Dec 27 15:40:48 2022 4 relations: 63538 Tue Dec 27 15:40:48 2022 5 relations: 56005 Tue Dec 27 15:40:48 2022 6 relations: 47368 Tue Dec 27 15:40:48 2022 7 relations: 40832 Tue Dec 27 15:40:48 2022 8 relations: 34726 Tue Dec 27 15:40:48 2022 9 relations: 29213 Tue Dec 27 15:40:48 2022 10+ relations: 126674 Tue Dec 27 15:40:48 2022 heaviest cycle: 23 relations Tue Dec 27 15:40:48 2022 commencing cycle optimization Tue Dec 27 15:40:48 2022 start with 3760636 relations Tue Dec 27 15:40:53 2022 pruned 65915 relations Tue Dec 27 15:40:53 2022 memory use: 130.2 MB Tue Dec 27 15:40:53 2022 distribution of cycle lengths: Tue Dec 27 15:40:53 2022 1 relations: 73558 Tue Dec 27 15:40:53 2022 2 relations: 74420 Tue Dec 27 15:40:53 2022 3 relations: 73805 Tue Dec 27 15:40:53 2022 4 relations: 64614 Tue Dec 27 15:40:53 2022 5 relations: 56862 Tue Dec 27 15:40:53 2022 6 relations: 47465 Tue Dec 27 15:40:53 2022 7 relations: 40954 Tue Dec 27 15:40:53 2022 8 relations: 34489 Tue Dec 27 15:40:53 2022 9 relations: 28971 Tue Dec 27 15:40:53 2022 10+ relations: 121632 Tue Dec 27 15:40:53 2022 heaviest cycle: 23 relations Tue Dec 27 15:40:53 2022 RelProcTime: 93 Tue Dec 27 15:40:53 2022 elapsed time 00:01:33 Tue Dec 27 15:40:53 2022 Tue Dec 27 15:40:53 2022 Tue Dec 27 15:40:53 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 15:40:53 2022 random seeds: c8fdee30 a1456b13 Tue Dec 27 15:40:53 2022 factoring 472771101880314109669426943143571382435262561642108876130645681496993698613440298566392398847625188490955468907020851 (117 digits) Tue Dec 27 15:40:53 2022 searching for 15-digit factors Tue Dec 27 15:40:54 2022 commencing number field sieve (117-digit input) Tue Dec 27 15:40:54 2022 R0: -51382535914233939436660 Tue Dec 27 15:40:54 2022 R1: 1413305546959 Tue Dec 27 15:40:54 2022 A0: -430555317244566998459801391 Tue Dec 27 15:40:54 2022 A1: 139278133402443293355861 Tue Dec 27 15:40:54 2022 A2: -6929140380861034399 Tue Dec 27 15:40:54 2022 A3: -59965734908604 Tue Dec 27 15:40:54 2022 A4: -75259113 Tue Dec 27 15:40:54 2022 A5: 1320 Tue Dec 27 15:40:54 2022 skew 94382.76, size 2.911e-011, alpha -5.014, combined = 3.959e-010 rroots = 3 Tue Dec 27 15:40:54 2022 Tue Dec 27 15:40:54 2022 commencing linear algebra Tue Dec 27 15:40:54 2022 read 616770 cycles Tue Dec 27 15:40:54 2022 cycles contain 2225643 unique relations Tue Dec 27 15:40:59 2022 read 2225643 relations Tue Dec 27 15:41:01 2022 using 20 quadratic characters above 134217690 Tue Dec 27 15:41:06 2022 building initial matrix Tue Dec 27 15:41:17 2022 memory use: 275.6 MB Tue Dec 27 15:41:18 2022 read 616770 cycles Tue Dec 27 15:41:18 2022 matrix is 616593 x 616770 (187.7 MB) with weight 59185797 (95.96/col) Tue Dec 27 15:41:18 2022 sparse part has weight 41795135 (67.76/col) Tue Dec 27 15:41:21 2022 filtering completed in 2 passes Tue Dec 27 15:41:21 2022 matrix is 614894 x 615070 (187.5 MB) with weight 59115643 (96.11/col) Tue Dec 27 15:41:21 2022 sparse part has weight 41774826 (67.92/col) Tue Dec 27 15:41:22 2022 matrix starts at (0, 0) Tue Dec 27 15:41:22 2022 matrix is 614894 x 615070 (187.5 MB) with weight 59115643 (96.11/col) Tue Dec 27 15:41:22 2022 sparse part has weight 41774826 (67.92/col) Tue Dec 27 15:41:22 2022 saving the first 48 matrix rows for later Tue Dec 27 15:41:22 2022 matrix includes 64 packed rows Tue Dec 27 15:41:22 2022 matrix is 614846 x 615070 (180.3 MB) with weight 47055818 (76.50/col) Tue Dec 27 15:41:22 2022 sparse part has weight 41111391 (66.84/col) Tue Dec 27 15:41:22 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 15:41:24 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 15:41:24 2022 memory use: 140.3 MB Tue Dec 27 15:41:25 2022 linear algebra at 0.5%, ETA 0h 3m Tue Dec 27 15:46:08 2022 lanczos halted after 9725 iterations (dim = 614846) Tue Dec 27 15:46:08 2022 recovered 34 nontrivial dependencies Tue Dec 27 15:46:08 2022 BLanczosTime: 314 Tue Dec 27 15:46:08 2022 elapsed time 00:05:15 Tue Dec 27 15:46:08 2022 Tue Dec 27 15:46:08 2022 Tue Dec 27 15:46:08 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 15:46:08 2022 random seeds: 03012300 75565e33 Tue Dec 27 15:46:08 2022 factoring 472771101880314109669426943143571382435262561642108876130645681496993698613440298566392398847625188490955468907020851 (117 digits) Tue Dec 27 15:46:08 2022 searching for 15-digit factors Tue Dec 27 15:46:08 2022 commencing number field sieve (117-digit input) Tue Dec 27 15:46:08 2022 R0: -51382535914233939436660 Tue Dec 27 15:46:08 2022 R1: 1413305546959 Tue Dec 27 15:46:08 2022 A0: -430555317244566998459801391 Tue Dec 27 15:46:08 2022 A1: 139278133402443293355861 Tue Dec 27 15:46:08 2022 A2: -6929140380861034399 Tue Dec 27 15:46:08 2022 A3: -59965734908604 Tue Dec 27 15:46:08 2022 A4: -75259113 Tue Dec 27 15:46:08 2022 A5: 1320 Tue Dec 27 15:46:08 2022 skew 94382.76, size 2.911e-011, alpha -5.014, combined = 3.959e-010 rroots = 3 Tue Dec 27 15:46:08 2022 Tue Dec 27 15:46:08 2022 commencing square root phase Tue Dec 27 15:46:08 2022 reading relations for dependency 1 Tue Dec 27 15:46:09 2022 read 307873 cycles Tue Dec 27 15:46:09 2022 cycles contain 1115164 unique relations Tue Dec 27 15:46:12 2022 read 1115164 relations Tue Dec 27 15:46:14 2022 multiplying 1115164 relations Tue Dec 27 15:46:38 2022 multiply complete, coefficients have about 45.20 million bits Tue Dec 27 15:46:38 2022 initial square root is modulo 3084511 Tue Dec 27 15:47:12 2022 GCD is 1, no factor found Tue Dec 27 15:47:12 2022 reading relations for dependency 2 Tue Dec 27 15:47:12 2022 read 307775 cycles Tue Dec 27 15:47:12 2022 cycles contain 1113066 unique relations Tue Dec 27 15:47:15 2022 read 1113066 relations Tue Dec 27 15:47:17 2022 multiplying 1113066 relations Tue Dec 27 15:47:41 2022 multiply complete, coefficients have about 45.11 million bits Tue Dec 27 15:47:41 2022 initial square root is modulo 2999299 Tue Dec 27 15:48:15 2022 GCD is 1, no factor found Tue Dec 27 15:48:15 2022 reading relations for dependency 3 Tue Dec 27 15:48:15 2022 read 308038 cycles Tue Dec 27 15:48:15 2022 cycles contain 1115422 unique relations Tue Dec 27 15:48:18 2022 read 1115422 relations Tue Dec 27 15:48:20 2022 multiplying 1115422 relations Tue Dec 27 15:48:44 2022 multiply complete, coefficients have about 45.21 million bits Tue Dec 27 15:48:44 2022 initial square root is modulo 3093863 Tue Dec 27 15:49:18 2022 sqrtTime: 190 Tue Dec 27 15:49:18 2022 prp51 factor: 259980044837380801829875644842038749197227869939797 Tue Dec 27 15:49:18 2022 prp67 factor: 1818489962089342238496864690046234100496263784136875309159547054183 Tue Dec 27 15:49:18 2022 elapsed time 00:03:10 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:22:49 UTC 2022 年 12 月 24 日 (土) 20 時 22 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 21, 2023 03:53:08 UTC 2023 年 1 月 21 日 (土) 12 時 53 分 8 秒 (日本時間) |
composite number 合成数 | 1599013388565378875891082067930740569689939745354879612542918107128659631930303857726251496951883780340682776714798411633391338839<130> |
prime factors 素因数 | 5860681751506351057667427362861370154024266501284346905071542251<64> 272837437070250387506375046272082710257030881216125275337176203589<66> |
factorization results 素因数分解の結果 | Number: n N=1599013388565378875891082067930740569689939745354879612542918107128659631930303857726251496951883780340682776714798411633391338839 ( 130 digits) Divisors found: Sat Jan 21 14:49:23 2023 prp64 factor: 5860681751506351057667427362861370154024266501284346905071542251 Sat Jan 21 14:49:23 2023 prp66 factor: 272837437070250387506375046272082710257030881216125275337176203589 Sat Jan 21 14:49:23 2023 elapsed time 00:37:44 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 73x10^173+26 = 81(172)4 # # n: 1599013388565378875891082067930740569689939745354879612542918107128659631930303857726251496951883780340682776714798411633391338839 (130 digits) # n: 1599013388565378875891082067930740569689939745354879612542918107128659631930303857726251496951883780340682776714798411633391338839 Y0: -24532219373016564475749993 Y1: 432805595425813 c0: -1808137013642507449709479095104200 c1: 9139635100224967128519356192 c2: 16097055812271652606402 c3: -8188884775222328 c4: -2456961723 c5: 180 # skew 2436370.01, size 1.666e-12, alpha -7.120, combined = 8.077e-11 rroots = 5 skew: 2436370.01 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 99600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1262005 hash collisions in 9615174 relations (8544901 unique) Msieve: matrix is 1106545 x 1106770 (322.3 MB) Sieving start time: 2023/01/21 10:29:16 Sieving end time : 2023/01/21 14:11:26 Total sieving time: 3hrs 42min 10secs. Total relation processing time: 0hrs 33min 40sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 45sec. Prototype def-par.txt line would be: gnfs,129,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,50,50,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 12:38:06 UTC 2023 年 1 月 2 日 (月) 21 時 38 分 6 秒 (日本時間) |
composite number 合成数 | 2145604200953272869128421457742081056143180807613721428982740636474699030140728864758945860410045082829508924558629162143543849175688048791760165923132099<154> |
prime factors 素因数 | 4155472892779112130067921720406446381279<40> 21192261153044857126483436563193876079386448093047123<53> 24364183403905858848855347028156692990170106386768586117421647<62> |
factorization results 素因数分解の結果 | Number: n N=2145604200953272869128421457742081056143180807613721428982740636474699030140728864758945860410045082829508924558629162143543849175688048791760165923132099 ( 154 digits) SNFS difficulty: 176 digits. Divisors found: Mon Jan 2 23:32:47 2023 found factor: 21192261153044857126483436563193876079386448093047123 Mon Jan 2 23:33:55 2023 p40 factor: 4155472892779112130067921720406446381279 Mon Jan 2 23:33:55 2023 p53 factor: 21192261153044857126483436563193876079386448093047123 Mon Jan 2 23:33:55 2023 p62 factor: 24364183403905858848855347028156692990170106386768586117421647 Mon Jan 2 23:33:55 2023 elapsed time 00:22:31 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.283). Factorization parameters were as follows: # # N = 73x10^175+26 = 81(174)4 # n: 2145604200953272869128421457742081056143180807613721428982740636474699030140728864758945860410045082829508924558629162143543849175688048791760165923132099 m: 100000000000000000000000000000000000 deg: 5 c5: 73 c0: 26 skew: 0.81 # Murphy_E = 1.293e-10 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1278170 hash collisions in 11840741 relations (11260395 unique) Msieve: matrix is 1021696 x 1021921 (355.1 MB) Sieving start time : 2023/01/02 21:19:34 Sieving end time : 2023/01/02 23:11:08 Total sieving time: 1hrs 51min 34secs. Total relation processing time: 0hrs 16min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 18sec. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 26, 2022 17:41:54 UTC 2022 年 12 月 27 日 (火) 2 時 41 分 54 秒 (日本時間) |
composite number 合成数 | 158025714832513322945957232051784960271499038552068917397612331561944893313643308849088921310864638646835545233<111> |
prime factors 素因数 | 2055977593846771386594221199108407041923127<43> 76861593874106547485772201627456079035688194808588105936568171746679<68> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1600000, q1=1700000. -> client 1 q0: 1600000 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=1700001, q1=1800000. -> client 1 q0: 1700001 LatSieveTime: 84 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 85 LatSieveTime: 88 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 87 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 Mon Dec 26 18:35:37 2022 Mon Dec 26 18:35:37 2022 Mon Dec 26 18:35:37 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:35:37 2022 random seeds: 58e3e960 f13b8c1e Mon Dec 26 18:35:37 2022 factoring 158025714832513322945957232051784960271499038552068917397612331561944893313643308849088921310864638646835545233 (111 digits) Mon Dec 26 18:35:37 2022 searching for 15-digit factors Mon Dec 26 18:35:37 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:35:37 2022 R0: -1710282943373495532934 Mon Dec 26 18:35:37 2022 R1: 421905992959 Mon Dec 26 18:35:37 2022 A0: -1227083736800402699211843915 Mon Dec 26 18:35:37 2022 A1: -41798669283695513084677 Mon Dec 26 18:35:37 2022 A2: 3604087221472399433 Mon Dec 26 18:35:37 2022 A3: 35982942987023 Mon Dec 26 18:35:37 2022 A4: -3610231672 Mon Dec 26 18:35:37 2022 A5: 10800 Mon Dec 26 18:35:37 2022 skew 43605.08, size 1.115e-010, alpha -6.283, combined = 7.964e-010 rroots = 3 Mon Dec 26 18:35:37 2022 Mon Dec 26 18:35:37 2022 commencing relation filtering Mon Dec 26 18:35:37 2022 estimated available RAM is 65413.5 MB Mon Dec 26 18:35:37 2022 commencing duplicate removal, pass 1 Mon Dec 26 18:35:50 2022 found 611682 hash collisions in 7009982 relations Mon Dec 26 18:35:58 2022 added 57015 free relations Mon Dec 26 18:35:58 2022 commencing duplicate removal, pass 2 Mon Dec 26 18:35:59 2022 found 334307 duplicates and 6732690 unique relations Mon Dec 26 18:35:59 2022 memory use: 24.6 MB Mon Dec 26 18:35:59 2022 reading ideals above 100000 Mon Dec 26 18:35:59 2022 commencing singleton removal, initial pass Mon Dec 26 18:36:22 2022 memory use: 188.3 MB Mon Dec 26 18:36:22 2022 reading all ideals from disk Mon Dec 26 18:36:22 2022 memory use: 226.0 MB Mon Dec 26 18:36:22 2022 keeping 7671268 ideals with weight <= 200, target excess is 36432 Mon Dec 26 18:36:23 2022 commencing in-memory singleton removal Mon Dec 26 18:36:23 2022 begin with 6732690 relations and 7671268 unique ideals Mon Dec 26 18:36:25 2022 reduce to 1887473 relations and 1838873 ideals in 22 passes Mon Dec 26 18:36:25 2022 max relations containing the same ideal: 81 Mon Dec 26 18:36:25 2022 relations with 0 large ideals: 117 Mon Dec 26 18:36:25 2022 relations with 1 large ideals: 398 Mon Dec 26 18:36:25 2022 relations with 2 large ideals: 5961 Mon Dec 26 18:36:25 2022 relations with 3 large ideals: 46431 Mon Dec 26 18:36:25 2022 relations with 4 large ideals: 189904 Mon Dec 26 18:36:25 2022 relations with 5 large ideals: 435793 Mon Dec 26 18:36:25 2022 relations with 6 large ideals: 572038 Mon Dec 26 18:36:25 2022 relations with 7+ large ideals: 636831 Mon Dec 26 18:36:25 2022 commencing 2-way merge Mon Dec 26 18:36:26 2022 reduce to 1012824 relation sets and 964517 unique ideals Mon Dec 26 18:36:26 2022 ignored 293 oversize relation sets Mon Dec 26 18:36:26 2022 commencing full merge Mon Dec 26 18:36:37 2022 memory use: 98.0 MB Mon Dec 26 18:36:37 2022 found 474544 cycles, need 470717 Mon Dec 26 18:36:37 2022 weight of 470717 cycles is about 33185581 (70.50/cycle) Mon Dec 26 18:36:37 2022 distribution of cycle lengths: Mon Dec 26 18:36:37 2022 1 relations: 55932 Mon Dec 26 18:36:37 2022 2 relations: 56890 Mon Dec 26 18:36:37 2022 3 relations: 56793 Mon Dec 26 18:36:37 2022 4 relations: 49677 Mon Dec 26 18:36:37 2022 5 relations: 42877 Mon Dec 26 18:36:37 2022 6 relations: 35886 Mon Dec 26 18:36:37 2022 7 relations: 30545 Mon Dec 26 18:36:37 2022 8 relations: 25381 Mon Dec 26 18:36:37 2022 9 relations: 20674 Mon Dec 26 18:36:37 2022 10+ relations: 96062 Mon Dec 26 18:36:37 2022 heaviest cycle: 27 relations Mon Dec 26 18:36:37 2022 commencing cycle optimization Mon Dec 26 18:36:37 2022 start with 2926402 relations Mon Dec 26 18:36:41 2022 pruned 54392 relations Mon Dec 26 18:36:41 2022 memory use: 100.8 MB Mon Dec 26 18:36:41 2022 distribution of cycle lengths: Mon Dec 26 18:36:41 2022 1 relations: 55932 Mon Dec 26 18:36:41 2022 2 relations: 58024 Mon Dec 26 18:36:41 2022 3 relations: 58520 Mon Dec 26 18:36:41 2022 4 relations: 50357 Mon Dec 26 18:36:41 2022 5 relations: 43561 Mon Dec 26 18:36:41 2022 6 relations: 36059 Mon Dec 26 18:36:41 2022 7 relations: 30467 Mon Dec 26 18:36:41 2022 8 relations: 25181 Mon Dec 26 18:36:41 2022 9 relations: 20436 Mon Dec 26 18:36:41 2022 10+ relations: 92180 Mon Dec 26 18:36:41 2022 heaviest cycle: 27 relations Mon Dec 26 18:36:41 2022 RelProcTime: 64 Mon Dec 26 18:36:41 2022 elapsed time 00:01:04 Mon Dec 26 18:36:41 2022 Mon Dec 26 18:36:41 2022 Mon Dec 26 18:36:41 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:36:41 2022 random seeds: 27848908 6f7a3006 Mon Dec 26 18:36:41 2022 factoring 158025714832513322945957232051784960271499038552068917397612331561944893313643308849088921310864638646835545233 (111 digits) Mon Dec 26 18:36:41 2022 searching for 15-digit factors Mon Dec 26 18:36:41 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:36:41 2022 R0: -1710282943373495532934 Mon Dec 26 18:36:41 2022 R1: 421905992959 Mon Dec 26 18:36:41 2022 A0: -1227083736800402699211843915 Mon Dec 26 18:36:41 2022 A1: -41798669283695513084677 Mon Dec 26 18:36:41 2022 A2: 3604087221472399433 Mon Dec 26 18:36:41 2022 A3: 35982942987023 Mon Dec 26 18:36:41 2022 A4: -3610231672 Mon Dec 26 18:36:41 2022 A5: 10800 Mon Dec 26 18:36:41 2022 skew 43605.08, size 1.115e-010, alpha -6.283, combined = 7.964e-010 rroots = 3 Mon Dec 26 18:36:41 2022 Mon Dec 26 18:36:41 2022 commencing linear algebra Mon Dec 26 18:36:41 2022 read 470717 cycles Mon Dec 26 18:36:42 2022 cycles contain 1720670 unique relations Mon Dec 26 18:36:45 2022 read 1720670 relations Mon Dec 26 18:36:47 2022 using 20 quadratic characters above 134217324 Mon Dec 26 18:36:51 2022 building initial matrix Mon Dec 26 18:36:59 2022 memory use: 215.0 MB Mon Dec 26 18:36:59 2022 read 470717 cycles Mon Dec 26 18:36:59 2022 matrix is 470530 x 470717 (143.5 MB) with weight 45576614 (96.82/col) Mon Dec 26 18:36:59 2022 sparse part has weight 31967061 (67.91/col) Mon Dec 26 18:37:01 2022 filtering completed in 2 passes Mon Dec 26 18:37:01 2022 matrix is 468426 x 468614 (143.2 MB) with weight 45451448 (96.99/col) Mon Dec 26 18:37:01 2022 sparse part has weight 31913000 (68.10/col) Mon Dec 26 18:37:02 2022 matrix starts at (0, 0) Mon Dec 26 18:37:02 2022 matrix is 468426 x 468614 (143.2 MB) with weight 45451448 (96.99/col) Mon Dec 26 18:37:02 2022 sparse part has weight 31913000 (68.10/col) Mon Dec 26 18:37:02 2022 saving the first 48 matrix rows for later Mon Dec 26 18:37:02 2022 matrix includes 64 packed rows Mon Dec 26 18:37:02 2022 matrix is 468378 x 468614 (137.9 MB) with weight 36356208 (77.58/col) Mon Dec 26 18:37:02 2022 sparse part has weight 31471528 (67.16/col) Mon Dec 26 18:37:02 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Mon Dec 26 18:37:04 2022 commencing Lanczos iteration (32 threads) Mon Dec 26 18:37:04 2022 memory use: 106.7 MB Mon Dec 26 18:37:09 2022 linear algebra at 2.6%, ETA 0h 3m Mon Dec 26 18:40:36 2022 lanczos halted after 7407 iterations (dim = 468378) Mon Dec 26 18:40:36 2022 recovered 33 nontrivial dependencies Mon Dec 26 18:40:36 2022 BLanczosTime: 235 Mon Dec 26 18:40:36 2022 elapsed time 00:03:55 Mon Dec 26 18:40:36 2022 Mon Dec 26 18:40:36 2022 Mon Dec 26 18:40:36 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:40:36 2022 random seeds: 5a3c143c b8477abb Mon Dec 26 18:40:36 2022 factoring 158025714832513322945957232051784960271499038552068917397612331561944893313643308849088921310864638646835545233 (111 digits) Mon Dec 26 18:40:36 2022 searching for 15-digit factors Mon Dec 26 18:40:36 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:40:36 2022 R0: -1710282943373495532934 Mon Dec 26 18:40:36 2022 R1: 421905992959 Mon Dec 26 18:40:36 2022 A0: -1227083736800402699211843915 Mon Dec 26 18:40:36 2022 A1: -41798669283695513084677 Mon Dec 26 18:40:36 2022 A2: 3604087221472399433 Mon Dec 26 18:40:36 2022 A3: 35982942987023 Mon Dec 26 18:40:36 2022 A4: -3610231672 Mon Dec 26 18:40:36 2022 A5: 10800 Mon Dec 26 18:40:36 2022 skew 43605.08, size 1.115e-010, alpha -6.283, combined = 7.964e-010 rroots = 3 Mon Dec 26 18:40:36 2022 Mon Dec 26 18:40:36 2022 commencing square root phase Mon Dec 26 18:40:36 2022 reading relations for dependency 1 Mon Dec 26 18:40:36 2022 read 233701 cycles Mon Dec 26 18:40:37 2022 cycles contain 858212 unique relations Mon Dec 26 18:40:39 2022 read 858212 relations Mon Dec 26 18:40:40 2022 multiplying 858212 relations Mon Dec 26 18:41:01 2022 multiply complete, coefficients have about 37.81 million bits Mon Dec 26 18:41:01 2022 initial square root is modulo 268171 Mon Dec 26 18:41:26 2022 sqrtTime: 50 Mon Dec 26 18:41:26 2022 prp43 factor: 2055977593846771386594221199108407041923127 Mon Dec 26 18:41:26 2022 prp68 factor: 76861593874106547485772201627456079035688194808588105936568171746679 Mon Dec 26 18:41:26 2022 elapsed time 00:00:50 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:46:08 UTC 2022 年 12 月 24 日 (土) 20 時 46 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 22:15:47 UTC 2023 年 1 月 5 日 (木) 7 時 15 分 47 秒 (日本時間) |
composite number 合成数 | 195082725535196100614849313220963043631824550722556910266331633157116078886705687934417945633380816140625887449774784591968044280286770294376968162001<150> |
prime factors 素因数 | 10064888795742210327588616881032993<35> 19382501833276361358912192312967851354569555603892645390995766596714732442149767992053122705649507973334230189159857<116> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 195082725535196100614849313220963043631824550722556910266331633157116078886705687934417945633380816140625887449774784591968044280286770294376968162001 (150 digits) Using B1=27330000, B2=144286522396, polynomial Dickson(12), sigma=1:2015923223 Step 1 took 54966ms Step 2 took 22803ms ********** Factor found in step 2: 10064888795742210327588616881032993 Found prime factor of 35 digits: 10064888795742210327588616881032993 Prime cofactor 19382501833276361358912192312967851354569555603892645390995766596714732442149767992053122705649507973334230189159857 has 116 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 25, 2022 10:27:47 UTC 2022 年 12 月 25 日 (日) 19 時 27 分 47 秒 (日本時間) |
composite number 合成数 | 16917282646754160867175549190756272268314652528482419821412263476209070373698006409267218521237584361500791273<110> |
prime factors 素因数 | 2312866691232357808539089422268313448256927270154490729<55> 7314421843197618965995002645538255160826541567850756737<55> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1600000, q1=1700000. -> client 1 q0: 1600000 LatSieveTime: 88 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 129 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=1700001, q1=1800000. -> client 1 q0: 1700001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 130 Sun Dec 25 11:19:34 2022 Sun Dec 25 11:19:34 2022 Sun Dec 25 11:19:34 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 11:19:34 2022 random seeds: d10eadc8 360483b1 Sun Dec 25 11:19:34 2022 factoring 16917282646754160867175549190756272268314652528482419821412263476209070373698006409267218521237584361500791273 (110 digits) Sun Dec 25 11:19:34 2022 searching for 15-digit factors Sun Dec 25 11:19:35 2022 commencing number field sieve (110-digit input) Sun Dec 25 11:19:35 2022 R0: -952301424006630849808 Sun Dec 25 11:19:35 2022 R1: 112913402077 Sun Dec 25 11:19:35 2022 A0: -89045295244394286093269155 Sun Dec 25 11:19:35 2022 A1: 71036562801921979708501 Sun Dec 25 11:19:35 2022 A2: -3438745035599415553 Sun Dec 25 11:19:35 2022 A3: -80598552587573 Sun Dec 25 11:19:35 2022 A4: 1965435460 Sun Dec 25 11:19:35 2022 A5: 21600 Sun Dec 25 11:19:35 2022 skew 38875.29, size 1.405e-010, alpha -6.026, combined = 9.077e-010 rroots = 5 Sun Dec 25 11:19:35 2022 Sun Dec 25 11:19:35 2022 commencing relation filtering Sun Dec 25 11:19:35 2022 estimated available RAM is 65413.5 MB Sun Dec 25 11:19:35 2022 commencing duplicate removal, pass 1 Sun Dec 25 11:19:47 2022 found 487309 hash collisions in 6202172 relations Sun Dec 25 11:19:54 2022 added 56089 free relations Sun Dec 25 11:19:54 2022 commencing duplicate removal, pass 2 Sun Dec 25 11:19:55 2022 found 262946 duplicates and 5995315 unique relations Sun Dec 25 11:19:55 2022 memory use: 24.6 MB Sun Dec 25 11:19:55 2022 reading ideals above 100000 Sun Dec 25 11:19:55 2022 commencing singleton removal, initial pass Sun Dec 25 11:20:16 2022 memory use: 188.3 MB Sun Dec 25 11:20:16 2022 reading all ideals from disk Sun Dec 25 11:20:16 2022 memory use: 201.0 MB Sun Dec 25 11:20:17 2022 keeping 7234205 ideals with weight <= 200, target excess is 32475 Sun Dec 25 11:20:17 2022 commencing in-memory singleton removal Sun Dec 25 11:20:17 2022 begin with 5995315 relations and 7234205 unique ideals Sun Dec 25 11:20:19 2022 reduce to 1055199 relations and 1170524 ideals in 31 passes Sun Dec 25 11:20:19 2022 max relations containing the same ideal: 58 Sun Dec 25 11:20:19 2022 filtering wants 1000000 more relations Sun Dec 25 11:20:19 2022 elapsed time 00:00:45 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 Sun Dec 25 11:22:33 2022 Sun Dec 25 11:22:33 2022 Sun Dec 25 11:22:33 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 11:22:33 2022 random seeds: f0361b00 ce0da2d0 Sun Dec 25 11:22:33 2022 factoring 16917282646754160867175549190756272268314652528482419821412263476209070373698006409267218521237584361500791273 (110 digits) Sun Dec 25 11:22:34 2022 searching for 15-digit factors Sun Dec 25 11:22:34 2022 commencing number field sieve (110-digit input) Sun Dec 25 11:22:34 2022 R0: -952301424006630849808 Sun Dec 25 11:22:34 2022 R1: 112913402077 Sun Dec 25 11:22:34 2022 A0: -89045295244394286093269155 Sun Dec 25 11:22:34 2022 A1: 71036562801921979708501 Sun Dec 25 11:22:34 2022 A2: -3438745035599415553 Sun Dec 25 11:22:34 2022 A3: -80598552587573 Sun Dec 25 11:22:34 2022 A4: 1965435460 Sun Dec 25 11:22:34 2022 A5: 21600 Sun Dec 25 11:22:34 2022 skew 38875.29, size 1.405e-010, alpha -6.026, combined = 9.077e-010 rroots = 5 Sun Dec 25 11:22:34 2022 Sun Dec 25 11:22:34 2022 commencing relation filtering Sun Dec 25 11:22:34 2022 estimated available RAM is 65413.5 MB Sun Dec 25 11:22:34 2022 commencing duplicate removal, pass 1 Sun Dec 25 11:22:49 2022 found 653032 hash collisions in 7318626 relations Sun Dec 25 11:22:57 2022 added 1658 free relations Sun Dec 25 11:22:57 2022 commencing duplicate removal, pass 2 Sun Dec 25 11:22:58 2022 found 351562 duplicates and 6968722 unique relations Sun Dec 25 11:22:58 2022 memory use: 24.6 MB Sun Dec 25 11:22:58 2022 reading ideals above 100000 Sun Dec 25 11:22:59 2022 commencing singleton removal, initial pass Sun Dec 25 11:23:23 2022 memory use: 188.3 MB Sun Dec 25 11:23:23 2022 reading all ideals from disk Sun Dec 25 11:23:24 2022 memory use: 233.8 MB Sun Dec 25 11:23:24 2022 keeping 7791204 ideals with weight <= 200, target excess is 38575 Sun Dec 25 11:23:24 2022 commencing in-memory singleton removal Sun Dec 25 11:23:24 2022 begin with 6968722 relations and 7791204 unique ideals Sun Dec 25 11:23:26 2022 reduce to 2149652 relations and 2022729 ideals in 16 passes Sun Dec 25 11:23:26 2022 max relations containing the same ideal: 89 Sun Dec 25 11:23:27 2022 removing 337485 relations and 296397 ideals in 41088 cliques Sun Dec 25 11:23:27 2022 commencing in-memory singleton removal Sun Dec 25 11:23:27 2022 begin with 1812167 relations and 2022729 unique ideals Sun Dec 25 11:23:27 2022 reduce to 1768198 relations and 1681287 ideals in 10 passes Sun Dec 25 11:23:27 2022 max relations containing the same ideal: 79 Sun Dec 25 11:23:27 2022 removing 256434 relations and 215346 ideals in 41088 cliques Sun Dec 25 11:23:27 2022 commencing in-memory singleton removal Sun Dec 25 11:23:27 2022 begin with 1511764 relations and 1681287 unique ideals Sun Dec 25 11:23:28 2022 reduce to 1480058 relations and 1433443 ideals in 10 passes Sun Dec 25 11:23:28 2022 max relations containing the same ideal: 72 Sun Dec 25 11:23:28 2022 relations with 0 large ideals: 107 Sun Dec 25 11:23:28 2022 relations with 1 large ideals: 636 Sun Dec 25 11:23:28 2022 relations with 2 large ideals: 7559 Sun Dec 25 11:23:28 2022 relations with 3 large ideals: 49632 Sun Dec 25 11:23:28 2022 relations with 4 large ideals: 181750 Sun Dec 25 11:23:28 2022 relations with 5 large ideals: 370350 Sun Dec 25 11:23:28 2022 relations with 6 large ideals: 437170 Sun Dec 25 11:23:28 2022 relations with 7+ large ideals: 432854 Sun Dec 25 11:23:28 2022 commencing 2-way merge Sun Dec 25 11:23:28 2022 reduce to 826833 relation sets and 780219 unique ideals Sun Dec 25 11:23:28 2022 ignored 1 oversize relation sets Sun Dec 25 11:23:28 2022 commencing full merge Sun Dec 25 11:23:36 2022 memory use: 87.0 MB Sun Dec 25 11:23:37 2022 found 409413 cycles, need 402419 Sun Dec 25 11:23:37 2022 weight of 402419 cycles is about 28222162 (70.13/cycle) Sun Dec 25 11:23:37 2022 distribution of cycle lengths: Sun Dec 25 11:23:37 2022 1 relations: 44288 Sun Dec 25 11:23:37 2022 2 relations: 44353 Sun Dec 25 11:23:37 2022 3 relations: 44783 Sun Dec 25 11:23:37 2022 4 relations: 41220 Sun Dec 25 11:23:37 2022 5 relations: 37435 Sun Dec 25 11:23:37 2022 6 relations: 32126 Sun Dec 25 11:23:37 2022 7 relations: 28729 Sun Dec 25 11:23:37 2022 8 relations: 24753 Sun Dec 25 11:23:37 2022 9 relations: 21565 Sun Dec 25 11:23:37 2022 10+ relations: 83167 Sun Dec 25 11:23:37 2022 heaviest cycle: 21 relations Sun Dec 25 11:23:37 2022 commencing cycle optimization Sun Dec 25 11:23:37 2022 start with 2466558 relations Sun Dec 25 11:23:40 2022 pruned 48396 relations Sun Dec 25 11:23:40 2022 memory use: 83.9 MB Sun Dec 25 11:23:40 2022 distribution of cycle lengths: Sun Dec 25 11:23:40 2022 1 relations: 44288 Sun Dec 25 11:23:40 2022 2 relations: 45211 Sun Dec 25 11:23:40 2022 3 relations: 46081 Sun Dec 25 11:23:40 2022 4 relations: 42046 Sun Dec 25 11:23:40 2022 5 relations: 38094 Sun Dec 25 11:23:40 2022 6 relations: 32469 Sun Dec 25 11:23:40 2022 7 relations: 29018 Sun Dec 25 11:23:40 2022 8 relations: 24816 Sun Dec 25 11:23:40 2022 9 relations: 21444 Sun Dec 25 11:23:40 2022 10+ relations: 78952 Sun Dec 25 11:23:40 2022 heaviest cycle: 21 relations Sun Dec 25 11:23:40 2022 RelProcTime: 66 Sun Dec 25 11:23:40 2022 elapsed time 00:01:07 Sun Dec 25 11:23:40 2022 Sun Dec 25 11:23:40 2022 Sun Dec 25 11:23:40 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 11:23:40 2022 random seeds: 9b03d61c c4249246 Sun Dec 25 11:23:40 2022 factoring 16917282646754160867175549190756272268314652528482419821412263476209070373698006409267218521237584361500791273 (110 digits) Sun Dec 25 11:23:40 2022 searching for 15-digit factors Sun Dec 25 11:23:41 2022 commencing number field sieve (110-digit input) Sun Dec 25 11:23:41 2022 R0: -952301424006630849808 Sun Dec 25 11:23:41 2022 R1: 112913402077 Sun Dec 25 11:23:41 2022 A0: -89045295244394286093269155 Sun Dec 25 11:23:41 2022 A1: 71036562801921979708501 Sun Dec 25 11:23:41 2022 A2: -3438745035599415553 Sun Dec 25 11:23:41 2022 A3: -80598552587573 Sun Dec 25 11:23:41 2022 A4: 1965435460 Sun Dec 25 11:23:41 2022 A5: 21600 Sun Dec 25 11:23:41 2022 skew 38875.29, size 1.405e-010, alpha -6.026, combined = 9.077e-010 rroots = 5 Sun Dec 25 11:23:41 2022 Sun Dec 25 11:23:41 2022 commencing linear algebra Sun Dec 25 11:23:41 2022 read 402419 cycles Sun Dec 25 11:23:41 2022 cycles contain 1419147 unique relations Sun Dec 25 11:23:45 2022 read 1419147 relations Sun Dec 25 11:23:46 2022 using 20 quadratic characters above 134216934 Sun Dec 25 11:23:50 2022 building initial matrix Sun Dec 25 11:23:56 2022 memory use: 178.3 MB Sun Dec 25 11:23:56 2022 read 402419 cycles Sun Dec 25 11:23:57 2022 matrix is 402239 x 402419 (120.6 MB) with weight 38266179 (95.09/col) Sun Dec 25 11:23:57 2022 sparse part has weight 27179696 (67.54/col) Sun Dec 25 11:23:58 2022 filtering completed in 2 passes Sun Dec 25 11:23:58 2022 matrix is 401226 x 401406 (120.5 MB) with weight 38224296 (95.23/col) Sun Dec 25 11:23:58 2022 sparse part has weight 27167071 (67.68/col) Sun Dec 25 11:23:59 2022 matrix starts at (0, 0) Sun Dec 25 11:23:59 2022 matrix is 401226 x 401406 (120.5 MB) with weight 38224296 (95.23/col) Sun Dec 25 11:23:59 2022 sparse part has weight 27167071 (67.68/col) Sun Dec 25 11:23:59 2022 saving the first 48 matrix rows for later Sun Dec 25 11:23:59 2022 matrix includes 64 packed rows Sun Dec 25 11:23:59 2022 matrix is 401178 x 401406 (116.2 MB) with weight 30315114 (75.52/col) Sun Dec 25 11:23:59 2022 sparse part has weight 26454060 (65.90/col) Sun Dec 25 11:23:59 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Dec 25 11:24:00 2022 commencing Lanczos iteration (32 threads) Sun Dec 25 11:24:00 2022 memory use: 89.8 MB Sun Dec 25 11:24:05 2022 linear algebra at 3.0%, ETA 0h 2m Sun Dec 25 11:26:47 2022 lanczos halted after 6347 iterations (dim = 401177) Sun Dec 25 11:26:47 2022 recovered 31 nontrivial dependencies Sun Dec 25 11:26:47 2022 BLanczosTime: 186 Sun Dec 25 11:26:47 2022 elapsed time 00:03:07 Sun Dec 25 11:26:47 2022 Sun Dec 25 11:26:47 2022 Sun Dec 25 11:26:47 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 11:26:47 2022 random seeds: cc015a98 9d9c61c5 Sun Dec 25 11:26:47 2022 factoring 16917282646754160867175549190756272268314652528482419821412263476209070373698006409267218521237584361500791273 (110 digits) Sun Dec 25 11:26:48 2022 searching for 15-digit factors Sun Dec 25 11:26:48 2022 commencing number field sieve (110-digit input) Sun Dec 25 11:26:48 2022 R0: -952301424006630849808 Sun Dec 25 11:26:48 2022 R1: 112913402077 Sun Dec 25 11:26:48 2022 A0: -89045295244394286093269155 Sun Dec 25 11:26:48 2022 A1: 71036562801921979708501 Sun Dec 25 11:26:48 2022 A2: -3438745035599415553 Sun Dec 25 11:26:48 2022 A3: -80598552587573 Sun Dec 25 11:26:48 2022 A4: 1965435460 Sun Dec 25 11:26:48 2022 A5: 21600 Sun Dec 25 11:26:48 2022 skew 38875.29, size 1.405e-010, alpha -6.026, combined = 9.077e-010 rroots = 5 Sun Dec 25 11:26:48 2022 Sun Dec 25 11:26:48 2022 commencing square root phase Sun Dec 25 11:26:48 2022 reading relations for dependency 1 Sun Dec 25 11:26:48 2022 read 201304 cycles Sun Dec 25 11:26:48 2022 cycles contain 711740 unique relations Sun Dec 25 11:26:50 2022 read 711740 relations Sun Dec 25 11:26:51 2022 multiplying 711740 relations Sun Dec 25 11:27:05 2022 multiply complete, coefficients have about 31.08 million bits Sun Dec 25 11:27:05 2022 initial square root is modulo 842108129 Sun Dec 25 11:27:23 2022 sqrtTime: 35 Sun Dec 25 11:27:23 2022 prp55 factor: 2312866691232357808539089422268313448256927270154490729 Sun Dec 25 11:27:23 2022 prp55 factor: 7314421843197618965995002645538255160826541567850756737 Sun Dec 25 11:27:23 2022 elapsed time 00:00:36 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:18:29 UTC 2022 年 12 月 25 日 (日) 1 時 18 分 29 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 26, 2022 17:12:08 UTC 2022 年 12 月 27 日 (火) 2 時 12 分 8 秒 (日本時間) |
composite number 合成数 | 117123355538668458791048810073046152550823025105665321563405290513914298222815892743837748307826268091227258671<111> |
prime factors 素因数 | 5687834269581437451884086040324553380912352497<46> 20591907215905476786317243042059830450804849865457720313425382943<65> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1600000, q1=1700000. -> client 1 q0: 1600000 LatSieveTime: 84 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=1700001, q1=1800000. -> client 1 q0: 1700001 LatSieveTime: 78 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 86 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 Mon Dec 26 18:03:56 2022 Mon Dec 26 18:03:56 2022 Mon Dec 26 18:03:56 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:03:56 2022 random seeds: 3835b1b0 35654ac4 Mon Dec 26 18:03:56 2022 factoring 117123355538668458791048810073046152550823025105665321563405290513914298222815892743837748307826268091227258671 (111 digits) Mon Dec 26 18:03:56 2022 searching for 15-digit factors Mon Dec 26 18:03:57 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:03:57 2022 R0: -1693841869347213705100 Mon Dec 26 18:03:57 2022 R1: 47514345017 Mon Dec 26 18:03:57 2022 A0: 684730174273490591310741003 Mon Dec 26 18:03:57 2022 A1: -75594291977483211611799 Mon Dec 26 18:03:57 2022 A2: 20312320992707607 Mon Dec 26 18:03:57 2022 A3: 39255047477659 Mon Dec 26 18:03:57 2022 A4: -68130550 Mon Dec 26 18:03:57 2022 A5: 8400 Mon Dec 26 18:03:57 2022 skew 43410.54, size 1.279e-010, alpha -6.324, combined = 8.777e-010 rroots = 3 Mon Dec 26 18:03:57 2022 Mon Dec 26 18:03:57 2022 commencing relation filtering Mon Dec 26 18:03:57 2022 estimated available RAM is 65413.5 MB Mon Dec 26 18:03:57 2022 commencing duplicate removal, pass 1 Mon Dec 26 18:04:11 2022 found 665203 hash collisions in 7404522 relations Mon Dec 26 18:04:19 2022 added 57761 free relations Mon Dec 26 18:04:19 2022 commencing duplicate removal, pass 2 Mon Dec 26 18:04:22 2022 found 357476 duplicates and 7104807 unique relations Mon Dec 26 18:04:22 2022 memory use: 24.6 MB Mon Dec 26 18:04:22 2022 reading ideals above 100000 Mon Dec 26 18:04:22 2022 commencing singleton removal, initial pass Mon Dec 26 18:04:47 2022 memory use: 188.3 MB Mon Dec 26 18:04:47 2022 reading all ideals from disk Mon Dec 26 18:04:48 2022 memory use: 238.3 MB Mon Dec 26 18:04:48 2022 keeping 7873366 ideals with weight <= 200, target excess is 40078 Mon Dec 26 18:04:48 2022 commencing in-memory singleton removal Mon Dec 26 18:04:48 2022 begin with 7104807 relations and 7873366 unique ideals Mon Dec 26 18:04:50 2022 reduce to 2285926 relations and 2121717 ideals in 17 passes Mon Dec 26 18:04:50 2022 max relations containing the same ideal: 93 Mon Dec 26 18:04:51 2022 removing 417423 relations and 358564 ideals in 58859 cliques Mon Dec 26 18:04:51 2022 commencing in-memory singleton removal Mon Dec 26 18:04:51 2022 begin with 1868503 relations and 2121717 unique ideals Mon Dec 26 18:04:51 2022 reduce to 1805748 relations and 1698345 ideals in 9 passes Mon Dec 26 18:04:51 2022 max relations containing the same ideal: 80 Mon Dec 26 18:04:52 2022 removing 321358 relations and 262499 ideals in 58859 cliques Mon Dec 26 18:04:52 2022 commencing in-memory singleton removal Mon Dec 26 18:04:52 2022 begin with 1484390 relations and 1698345 unique ideals Mon Dec 26 18:04:52 2022 reduce to 1435363 relations and 1385138 ideals in 9 passes Mon Dec 26 18:04:52 2022 max relations containing the same ideal: 72 Mon Dec 26 18:04:52 2022 relations with 0 large ideals: 122 Mon Dec 26 18:04:52 2022 relations with 1 large ideals: 769 Mon Dec 26 18:04:52 2022 relations with 2 large ideals: 8788 Mon Dec 26 18:04:52 2022 relations with 3 large ideals: 54394 Mon Dec 26 18:04:52 2022 relations with 4 large ideals: 185783 Mon Dec 26 18:04:52 2022 relations with 5 large ideals: 367092 Mon Dec 26 18:04:52 2022 relations with 6 large ideals: 418596 Mon Dec 26 18:04:52 2022 relations with 7+ large ideals: 399819 Mon Dec 26 18:04:52 2022 commencing 2-way merge Mon Dec 26 18:04:53 2022 reduce to 806889 relation sets and 756663 unique ideals Mon Dec 26 18:04:53 2022 commencing full merge Mon Dec 26 18:05:01 2022 memory use: 85.2 MB Mon Dec 26 18:05:01 2022 found 395761 cycles, need 386863 Mon Dec 26 18:05:01 2022 weight of 386863 cycles is about 27415264 (70.87/cycle) Mon Dec 26 18:05:01 2022 distribution of cycle lengths: Mon Dec 26 18:05:01 2022 1 relations: 40174 Mon Dec 26 18:05:01 2022 2 relations: 40185 Mon Dec 26 18:05:01 2022 3 relations: 41826 Mon Dec 26 18:05:01 2022 4 relations: 38836 Mon Dec 26 18:05:01 2022 5 relations: 36595 Mon Dec 26 18:05:01 2022 6 relations: 32041 Mon Dec 26 18:05:01 2022 7 relations: 28329 Mon Dec 26 18:05:01 2022 8 relations: 25024 Mon Dec 26 18:05:01 2022 9 relations: 21307 Mon Dec 26 18:05:01 2022 10+ relations: 82546 Mon Dec 26 18:05:01 2022 heaviest cycle: 21 relations Mon Dec 26 18:05:01 2022 commencing cycle optimization Mon Dec 26 18:05:01 2022 start with 2412538 relations Mon Dec 26 18:05:04 2022 pruned 51106 relations Mon Dec 26 18:05:04 2022 memory use: 81.1 MB Mon Dec 26 18:05:04 2022 distribution of cycle lengths: Mon Dec 26 18:05:04 2022 1 relations: 40174 Mon Dec 26 18:05:04 2022 2 relations: 41082 Mon Dec 26 18:05:04 2022 3 relations: 42980 Mon Dec 26 18:05:04 2022 4 relations: 39824 Mon Dec 26 18:05:04 2022 5 relations: 37373 Mon Dec 26 18:05:04 2022 6 relations: 32435 Mon Dec 26 18:05:04 2022 7 relations: 28649 Mon Dec 26 18:05:04 2022 8 relations: 25225 Mon Dec 26 18:05:04 2022 9 relations: 21251 Mon Dec 26 18:05:04 2022 10+ relations: 77870 Mon Dec 26 18:05:04 2022 heaviest cycle: 21 relations Mon Dec 26 18:05:04 2022 RelProcTime: 67 Mon Dec 26 18:05:04 2022 elapsed time 00:01:08 Mon Dec 26 18:05:04 2022 Mon Dec 26 18:05:04 2022 Mon Dec 26 18:05:04 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:05:04 2022 random seeds: 043428a0 05564061 Mon Dec 26 18:05:04 2022 factoring 117123355538668458791048810073046152550823025105665321563405290513914298222815892743837748307826268091227258671 (111 digits) Mon Dec 26 18:05:04 2022 searching for 15-digit factors Mon Dec 26 18:05:05 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:05:05 2022 R0: -1693841869347213705100 Mon Dec 26 18:05:05 2022 R1: 47514345017 Mon Dec 26 18:05:05 2022 A0: 684730174273490591310741003 Mon Dec 26 18:05:05 2022 A1: -75594291977483211611799 Mon Dec 26 18:05:05 2022 A2: 20312320992707607 Mon Dec 26 18:05:05 2022 A3: 39255047477659 Mon Dec 26 18:05:05 2022 A4: -68130550 Mon Dec 26 18:05:05 2022 A5: 8400 Mon Dec 26 18:05:05 2022 skew 43410.54, size 1.279e-010, alpha -6.324, combined = 8.777e-010 rroots = 3 Mon Dec 26 18:05:05 2022 Mon Dec 26 18:05:05 2022 commencing linear algebra Mon Dec 26 18:05:05 2022 read 386863 cycles Mon Dec 26 18:05:05 2022 cycles contain 1362768 unique relations Mon Dec 26 18:05:09 2022 read 1362768 relations Mon Dec 26 18:05:10 2022 using 20 quadratic characters above 134217132 Mon Dec 26 18:05:13 2022 building initial matrix Mon Dec 26 18:05:20 2022 memory use: 171.6 MB Mon Dec 26 18:05:20 2022 read 386863 cycles Mon Dec 26 18:05:20 2022 matrix is 386681 x 386863 (116.6 MB) with weight 37082479 (95.85/col) Mon Dec 26 18:05:20 2022 sparse part has weight 26321330 (68.04/col) Mon Dec 26 18:05:22 2022 filtering completed in 2 passes Mon Dec 26 18:05:22 2022 matrix is 385733 x 385915 (116.5 MB) with weight 37040147 (95.98/col) Mon Dec 26 18:05:22 2022 sparse part has weight 26306415 (68.17/col) Mon Dec 26 18:05:23 2022 matrix starts at (0, 0) Mon Dec 26 18:05:23 2022 matrix is 385733 x 385915 (116.5 MB) with weight 37040147 (95.98/col) Mon Dec 26 18:05:23 2022 sparse part has weight 26306415 (68.17/col) Mon Dec 26 18:05:23 2022 saving the first 48 matrix rows for later Mon Dec 26 18:05:23 2022 matrix includes 64 packed rows Mon Dec 26 18:05:23 2022 matrix is 385685 x 385915 (112.2 MB) with weight 29269941 (75.85/col) Mon Dec 26 18:05:23 2022 sparse part has weight 25560425 (66.23/col) Mon Dec 26 18:05:23 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Mon Dec 26 18:05:24 2022 commencing Lanczos iteration (32 threads) Mon Dec 26 18:05:24 2022 memory use: 87.1 MB Mon Dec 26 18:05:29 2022 linear algebra at 3.1%, ETA 0h 2m Mon Dec 26 18:08:11 2022 lanczos halted after 6102 iterations (dim = 385683) Mon Dec 26 18:08:12 2022 recovered 29 nontrivial dependencies Mon Dec 26 18:08:12 2022 BLanczosTime: 187 Mon Dec 26 18:08:12 2022 elapsed time 00:03:08 Mon Dec 26 18:08:12 2022 Mon Dec 26 18:08:12 2022 Mon Dec 26 18:08:12 2022 Msieve v. 1.52 (SVN 927) Mon Dec 26 18:08:12 2022 random seeds: 40ae3d60 bd13d07d Mon Dec 26 18:08:12 2022 factoring 117123355538668458791048810073046152550823025105665321563405290513914298222815892743837748307826268091227258671 (111 digits) Mon Dec 26 18:08:12 2022 searching for 15-digit factors Mon Dec 26 18:08:12 2022 commencing number field sieve (111-digit input) Mon Dec 26 18:08:12 2022 R0: -1693841869347213705100 Mon Dec 26 18:08:12 2022 R1: 47514345017 Mon Dec 26 18:08:12 2022 A0: 684730174273490591310741003 Mon Dec 26 18:08:12 2022 A1: -75594291977483211611799 Mon Dec 26 18:08:12 2022 A2: 20312320992707607 Mon Dec 26 18:08:12 2022 A3: 39255047477659 Mon Dec 26 18:08:12 2022 A4: -68130550 Mon Dec 26 18:08:12 2022 A5: 8400 Mon Dec 26 18:08:12 2022 skew 43410.54, size 1.279e-010, alpha -6.324, combined = 8.777e-010 rroots = 3 Mon Dec 26 18:08:12 2022 Mon Dec 26 18:08:12 2022 commencing square root phase Mon Dec 26 18:08:12 2022 reading relations for dependency 1 Mon Dec 26 18:08:12 2022 read 193013 cycles Mon Dec 26 18:08:12 2022 cycles contain 680438 unique relations Mon Dec 26 18:08:14 2022 read 680438 relations Mon Dec 26 18:08:16 2022 multiplying 680438 relations Mon Dec 26 18:08:29 2022 multiply complete, coefficients have about 28.84 million bits Mon Dec 26 18:08:29 2022 initial square root is modulo 191132171 Mon Dec 26 18:08:45 2022 GCD is N, no factor found Mon Dec 26 18:08:45 2022 reading relations for dependency 2 Mon Dec 26 18:08:46 2022 read 192951 cycles Mon Dec 26 18:08:46 2022 cycles contain 681092 unique relations Mon Dec 26 18:08:48 2022 read 681092 relations Mon Dec 26 18:08:49 2022 multiplying 681092 relations Mon Dec 26 18:09:02 2022 multiply complete, coefficients have about 28.86 million bits Mon Dec 26 18:09:02 2022 initial square root is modulo 194805739 Mon Dec 26 18:09:19 2022 Newton iteration failed to converge Mon Dec 26 18:09:19 2022 algebraic square root failed Mon Dec 26 18:09:19 2022 reading relations for dependency 3 Mon Dec 26 18:09:19 2022 read 192957 cycles Mon Dec 26 18:09:19 2022 cycles contain 679670 unique relations Mon Dec 26 18:09:21 2022 read 679670 relations Mon Dec 26 18:09:22 2022 multiplying 679670 relations Mon Dec 26 18:09:35 2022 multiply complete, coefficients have about 28.80 million bits Mon Dec 26 18:09:35 2022 initial square root is modulo 187051367 Mon Dec 26 18:09:52 2022 GCD is 1, no factor found Mon Dec 26 18:09:52 2022 reading relations for dependency 4 Mon Dec 26 18:09:52 2022 read 193131 cycles Mon Dec 26 18:09:52 2022 cycles contain 681312 unique relations Mon Dec 26 18:09:54 2022 read 681312 relations Mon Dec 26 18:09:56 2022 multiplying 681312 relations Mon Dec 26 18:10:09 2022 multiply complete, coefficients have about 28.87 million bits Mon Dec 26 18:10:09 2022 initial square root is modulo 195874759 Mon Dec 26 18:10:26 2022 GCD is 1, no factor found Mon Dec 26 18:10:26 2022 reading relations for dependency 5 Mon Dec 26 18:10:26 2022 read 192777 cycles Mon Dec 26 18:10:26 2022 cycles contain 680680 unique relations Mon Dec 26 18:10:28 2022 read 680680 relations Mon Dec 26 18:10:29 2022 multiplying 680680 relations Mon Dec 26 18:10:42 2022 multiply complete, coefficients have about 28.85 million bits Mon Dec 26 18:10:42 2022 initial square root is modulo 192379049 Mon Dec 26 18:10:59 2022 GCD is 1, no factor found Mon Dec 26 18:10:59 2022 reading relations for dependency 6 Mon Dec 26 18:10:59 2022 read 193044 cycles Mon Dec 26 18:10:59 2022 cycles contain 681682 unique relations Mon Dec 26 18:11:01 2022 read 681682 relations Mon Dec 26 18:11:02 2022 multiplying 681682 relations Mon Dec 26 18:11:15 2022 multiply complete, coefficients have about 28.89 million bits Mon Dec 26 18:11:15 2022 initial square root is modulo 197709761 Mon Dec 26 18:11:32 2022 sqrtTime: 200 Mon Dec 26 18:11:32 2022 prp46 factor: 5687834269581437451884086040324553380912352497 Mon Dec 26 18:11:32 2022 prp65 factor: 20591907215905476786317243042059830450804849865457720313425382943 Mon Dec 26 18:11:32 2022 elapsed time 00:03:20 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:45:18 UTC 2022 年 12 月 24 日 (土) 20 時 45 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 26, 2022 21:21:22 UTC 2022 年 12 月 27 日 (火) 6 時 21 分 22 秒 (日本時間) |
composite number 合成数 | 275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133031<180> |
prime factors 素因数 | 29300783964980973876657581369158577<35> 37648991996395962080421288921117346565865338139721<50> 250092361191250833157484491232684715891998258632573021832094173476594232618709099874967074278943<96> |
factorization results 素因数分解の結果 | Number: n N=275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133031 ( 180 digits) SNFS difficulty: 182 digits. Divisors found: Tue Dec 27 08:14:12 2022 found factor: 1103144980985695829151314981441296268739929913003646722780689942118536876184231537017 Tue Dec 27 08:14:54 2022 p35 factor: 29300783964980973876657581369158577 Tue Dec 27 08:14:54 2022 p50 factor: 37648991996395962080421288921117346565865338139721 Tue Dec 27 08:14:54 2022 p96 factor: 250092361191250833157484491232684715891998258632573021832094173476594232618709099874967074278943 Tue Dec 27 08:14:54 2022 elapsed time 00:15:08 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.329). Factorization parameters were as follows: # # N = 73x10^181+26 = 81(180)4 # n: 275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133030990173847316704459561602418745275888133031 m: 1000000000000000000000000000000000000 deg: 5 c5: 365 c0: 13 skew: 0.51 # Murphy_E = 8.53e-11 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 16650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1800239 hash collisions in 16217207 relations (15055460 unique) Msieve: matrix is 759523 x 759751 (261.1 MB) Sieving start time : 2022/12/27 04:44:55 Sieving end time : 2022/12/27 07:59:22 Total sieving time: 3hrs 14min 27secs. Total relation processing time: 0hrs 8min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 7sec. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 11:24:21 UTC 2023 年 1 月 10 日 (火) 20 時 24 分 21 秒 (日本時間) |
composite number 合成数 | 664641052489190524094215087695277094833092658402268363219173639195487414862874785525801729966545580996664753467671484591307674157584339249269237485373<150> |
prime factors 素因数 | 18370555747262005118763782829955882029776749<44> 36179692200561234308006911389293457673033859721335650258913040113450833984325902096155356762776761511599377<107> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 664641052489190524094215087695277094833092658402268363219173639195487414862874785525801729966545580996664753467671484591307674157584339249269237485373 (150 digits) Using B1=28670000, B2=144287903776, polynomial Dickson(12), sigma=1:1957525935 Step 1 took 57721ms ********** Factor found in step 1: 18370555747262005118763782829955882029776749 Found prime factor of 44 digits: 18370555747262005118763782829955882029776749 Prime cofactor 36179692200561234308006911389293457673033859721335650258913040113450833984325902096155356762776761511599377 has 107 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 10, 2023 09:57:32 UTC 2023 年 1 月 10 日 (火) 18 時 57 分 32 秒 (日本時間) |
composite number 合成数 | 327225791185219515203473072163732033276517460049950973827222090151562271634905435760822600363214131966000811321437515805995373488228942975680972337727552327<156> |
prime factors 素因数 | 9829883922452644703055863784665889167996606081616857976592337676211<67> 33288876426892101973506819283110455308817051719432068708836043980923635975480223556195357<89> |
factorization results 素因数分解の結果 | Number: n N=327225791185219515203473072163732033276517460049950973827222090151562271634905435760822600363214131966000811321437515805995373488228942975680972337727552327 ( 156 digits) SNFS difficulty: 184 digits. Divisors found: Tue Jan 10 20:42:59 2023 prp67 factor: 9829883922452644703055863784665889167996606081616857976592337676211 Tue Jan 10 20:42:59 2023 prp89 factor: 33288876426892101973506819283110455308817051719432068708836043980923635975480223556195357 Tue Jan 10 20:42:59 2023 elapsed time 01:20:15 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 73x10^183+26 = 81(182)4 # n: 327225791185219515203473072163732033276517460049950973827222090151562271634905435760822600363214131966000811321437515805995373488228942975680972337727552327 m: 1000000000000000000000000000000000000 deg: 5 c5: 36500 c0: 13 skew: 0.20 # Murphy_E = 5.565e-11 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 22380343) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1012647 hash collisions in 11886237 relations (11640103 unique) Msieve: matrix is 1586018 x 1586246 (453.4 MB) Sieving start time: 2023/01/10 09:44:46 Sieving end time : 2023/01/10 19:22:33 Total sieving time: 9hrs 37min 47secs. Total relation processing time: 1hrs 11min 38sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 31sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7800000,7800000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 12, 2023 08:42:20 UTC 2023 年 1 月 12 日 (木) 17 時 42 分 20 秒 (日本時間) |
composite number 合成数 | 894787344841000894323025222548995383908333463034076900754025409881113057820201701194124054834005882394741175053193539162703809230010733760713934454017539<153> |
prime factors 素因数 | 379152510549372221453644351491217899724927103<45> 2359966820592855048057137456898668390101202820792159734649635529319532221817063760198866750016373627844108413<109> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 894787344841000894323025222548995383908333463034076900754025409881113057820201701194124054834005882394741175053193539162703809230010733760713934454017539 (153 digits) Using B1=30460000, B2=144289975846, polynomial Dickson(12), sigma=1:3956128822 Step 1 took 63170ms Step 2 took 23513ms ********** Factor found in step 2: 379152510549372221453644351491217899724927103 Found prime factor of 45 digits: 379152510549372221453644351491217899724927103 Prime cofactor 2359966820592855048057137456898668390101202820792159734649635529319532221817063760198866750016373627844108413 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 13, 2023 15:43:38 UTC 2023 年 1 月 14 日 (土) 0 時 43 分 38 秒 (日本時間) |
composite number 合成数 | 2855160448283657452711893972638958312310747840833800719187538671779359458442552998426923928356593113040104444115905433957009888241979932524345131794988528512883813743412597280792123199<184> |
prime factors 素因数 | 1678029156398205357372924794309643253860710032667948740872553068565942281103<76> 1701496328235498489311205954042429250949304460680399329469651130383088633804953518955789919738543885347895633<109> |
factorization results 素因数分解の結果 | Number: n N=2855160448283657452711893972638958312310747840833800719187538671779359458442552998426923928356593113040104444115905433957009888241979932524345131794988528512883813743412597280792123199 ( 184 digits) SNFS difficulty: 189 digits. Divisors found: Sat Jan 14 02:35:46 2023 prp76 factor: 1678029156398205357372924794309643253860710032667948740872553068565942281103 Sat Jan 14 02:35:46 2023 prp109 factor: 1701496328235498489311205954042429250949304460680399329469651130383088633804953518955789919738543885347895633 Sat Jan 14 02:35:46 2023 elapsed time 02:00:14 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 73x10^188+26 = 81(187)4 # n: 2855160448283657452711893972638958312310747840833800719187538671779359458442552998426923928356593113040104444115905433957009888241979932524345131794988528512883813743412597280792123199 m: 10000000000000000000000000000000000000 deg: 5 c5: 36500 c0: 13 skew: 0.20 # Murphy_E = 3.479e-11 type: snfs lss: 1 rlim: 9700000 alim: 9700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9700000/9700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 37653899) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1135745 hash collisions in 12231306 relations (11864503 unique) Msieve: matrix is 1885965 x 1886191 (539.1 MB) Sieving start time: 2023/01/13 10:02:14 Sieving end time : 2023/01/14 00:35:21 Total sieving time: 14hrs 33min 7secs. Total relation processing time: 1hrs 43min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 12min 51sec. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,9700000,9700000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 20, 2023 05:42:18 UTC 2023 年 1 月 20 日 (金) 14 時 42 分 18 秒 (日本時間) |
composite number 合成数 | 222892798488103835676080875127371521253528582369904350753605253556146860736855617792867577075910458266186928187606729744126980878236029<135> |
prime factors 素因数 | 15112165108518919534229451895970763757838455046527<50> 14749229967217360032250474046543817793068566848971111623730842614436877350154395847427<86> |
factorization results 素因数分解の結果 | 222892798488103835676080875127371521253528582369904350753605253556146860736855617792867577075910458266186928187606729744126980878236029=15112165108518919534229451895970763757838455046527*14749229967217360032250474046543817793068566848971111623730842614436877350154395847427 cado polynomial n: 222892798488103835676080875127371521253528582369904350753605253556146860736855617792867577075910458266186928187606729744126980878236029 skew: 171983.492 c0: -592819809686363697149526588906 c1: 179931785230982602135615939 c2: -3563244780464192058434 c3: -14956497680828031 c4: 19353291312 c5: 138240 Y0: -79641352900986723904981948 Y1: 3821770806177770617 # MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.263e-07 # f(x) = 138240*x^5+19353291312*x^4-14956497680828031*x^3-3563244780464192058434*x^2+179931785230982602135615939*x-592819809686363697149526588906 # g(x) = 3821770806177770617*x-79641352900986723904981948 cado parameters (extracts) tasks.lim0 = 3341873 tasks.lim1 = 16407032 tasks.lpb0 = 27 tasks.lpb1 = 28 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 62 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 14749229967217360032250474046543817793068566848971111623730842614436877350154395847427 15112165108518919534229451895970763757838455046527 Info:Square Root: Total cpu/real time for sqrt: 540.32/167.267 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 53395.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54354/39.970/48.279/53.040/0.966 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44307/38.120/43.124/49.040/1.064 Info:Polynomial Selection (size optimized): Total time: 11121.7 Info:Quadratic Characters: Total cpu/real time for characters: 50.67/23.0523 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 202.3/184.437 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 172.6s Info:Square Root: Total cpu/real time for sqrt: 540.32/167.267 Info:Generate Free Relations: Total cpu/real time for freerel: 249.17/63.2773 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 78.28/78.959 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 78.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 83.71/88.3634 Info:Filtering - Merging: Merged matrix has 1463984 rows and total weight 248881290 (170.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 387.1/106.661 Info:Filtering - Merging: Total cpu/real time for replay: 54.78/47.8523 Info:Generate Factor Base: Total cpu/real time for makefb: 15.16/4.18452 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 17023467 Info:Lattice Sieving: Average J: 3781.7 for 701947 special-q, max bucket fill -bkmult 1.0,1s:1.282830 Info:Lattice Sieving: Total time: 230333s Info:Linear Algebra: Total cpu/real time for bwc: 34070.1/8792.51 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 21770.41, WCT time 5587.05, iteration CPU time 0.11, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (45824 iterations) Info:Linear Algebra: Lingen CPU time 287.05, WCT time 72.95 Info:Linear Algebra: Mksol: CPU time 11754.17, WCT time 3036.09, iteration CPU time 0.12, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (23040 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6917.41 Info:Polynomial Selection (root optimized): Rootsieve time: 6914.87 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 487151/130211 Info:root: Cleaning up computation data in /tmp/cado.l1wcxxdk 14749229967217360032250474046543817793068566848971111623730842614436877350154395847427 15112165108518919534229451895970763757838455046527 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 14, 2023 09:02:38 UTC 2023 年 1 月 14 日 (土) 18 時 2 分 38 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 17, 2023 17:36:10 UTC 2023 年 2 月 18 日 (土) 2 時 36 分 10 秒 (日本時間) |
composite number 合成数 | 9655786509198632333782834978762273488749973782588839448748388317948956509328155616097008534182092475515787839772825063814070198196350624823307903400583<151> |
prime factors 素因数 | 1668471361927869659105858892414132966446017348777<49> 5787205420200712700974926004376400870858751124693791338296945472247122194967218728332569506403579253679<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 9655786509198632333782834978762273488749973782588839448748388317948956509328155616097008534182092475515787839772825063814070198196350624823307903400583 (151 digits) Using B1=47320000, B2=240494804566, polynomial Dickson(12), sigma=1:1128547649 Step 1 took 98221ms Step 2 took 33116ms ********** Factor found in step 2: 1668471361927869659105858892414132966446017348777 Found prime factor of 49 digits: 1668471361927869659105858892414132966446017348777 Prime cofactor 5787205420200712700974926004376400870858751124693791338296945472247122194967218728332569506403579253679 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 8, 2023 13:40:14 UTC 2023 年 1 月 8 日 (日) 22 時 40 分 14 秒 (日本時間) |
2350 | Ignacio Santos | January 24, 2023 17:04:18 UTC 2023 年 1 月 25 日 (水) 2 時 4 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 4, 2023 17:13:43 UTC 2023 年 2 月 5 日 (日) 2 時 13 分 43 秒 (日本時間) |
composite number 合成数 | 17748590487486408760067840796635646843526204206969687682467055652757109825208285023213427412752590023040823990075954626351918789013272131013283516451591755207459165985581949331182409<182> |
prime factors 素因数 | 47641150511753799746835253900624731568018881504200344453<56> 421271206106700393671091696590117350377445768806727411560209<60> 884341186677467321275713572013814326032725722638545432504455191717<66> |
factorization results 素因数分解の結果 | Number: n N=17748590487486408760067840796635646843526204206969687682467055652757109825208285023213427412752590023040823990075954626351918789013272131013283516451591755207459165985581949331182409 ( 182 digits) SNFS difficulty: 196 digits. Divisors found: Sun Feb 5 04:06:41 2023 prp56 factor: 47641150511753799746835253900624731568018881504200344453 Sun Feb 5 04:06:41 2023 prp60 factor: 421271206106700393671091696590117350377445768806727411560209 Sun Feb 5 04:06:41 2023 prp66 factor: 884341186677467321275713572013814326032725722638545432504455191717 Sun Feb 5 04:06:41 2023 elapsed time 03:13:41 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 73x10^194+26 = 81(193)4 # n: 17748590487486408760067840796635646843526204206969687682467055652757109825208285023213427412752590023040823990075954626351918789013272131013283516451591755207459165985581949331182409 m: 500000000000000000000000000000000000000 deg: 5 c5: 584 c0: 65 skew: 0.64 # Murphy_E = 1.973e-11 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 60800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1352002 hash collisions in 13115836 relations (12563932 unique) Msieve: matrix is 2382370 x 2382595 (680.1 MB) Sieving start time: 2023/02/04 00:41:16 Sieving end time : 2023/02/05 00:52:50 Total sieving time: 24hrs 11min 34secs. Total relation processing time: 2hrs 52min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 17min 15sec. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,12800000,12800000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 8, 2023 13:40:39 UTC 2023 年 1 月 8 日 (日) 22 時 40 分 39 秒 (日本時間) |
2350 | Ignacio Santos | January 28, 2023 11:28:06 UTC 2023 年 1 月 28 日 (土) 20 時 28 分 6 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 4, 2023 09:05:06 UTC 2023 年 7 月 4 日 (火) 18 時 5 分 6 秒 (日本時間) |
composite number 合成数 | 69726692604232679134170833731419596950106996558781385873720882088262712961847870910604508671505614131637324188703577238918062358635965638174116071833559303249095435518622825838286083832307<188> |
prime factors 素因数 | 8318332550511148785210841038045394976719437297034446277695186867315089565657998291856503587<91> 8382292025575255553832783684170157887873058645731065902996839380483269951673052397867040762360561<97> |
factorization results 素因数分解の結果 | Number: n N=69726692604232679134170833731419596950106996558781385873720882088262712961847870910604508671505614131637324188703577238918062358635965638174116071833559303249095435518622825838286083832307 ( 188 digits) SNFS difficulty: 202 digits. Divisors found: Tue Jul 4 18:19:48 2023 prp91 factor: 8318332550511148785210841038045394976719437297034446277695186867315089565657998291856503587 Tue Jul 4 18:19:48 2023 prp97 factor: 8382292025575255553832783684170157887873058645731065902996839380483269951673052397867040762360561 Tue Jul 4 18:19:48 2023 elapsed time 02:28:22 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 73x10^201+26 = 81(200)4 # n: 69726692604232679134170833731419596950106996558781385873720882088262712961847870910604508671505614131637324188703577238918062358635965638174116071833559303249095435518622825838286083832307 m: 10000000000000000000000000000000000000000 deg: 5 c5: 365 c0: 13 skew: 0.51 # Murphy_E = 1.274e-11 type: snfs lss: 1 rlim: 16600000 alim: 16600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16600000/16600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 26700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2570654 hash collisions in 16235903 relations (14425627 unique) Msieve: matrix is 2172156 x 2172381 (617.1 MB) Sieving start time: 2023/07/04 06:08:56 Sieving end time : 2023/07/04 15:51:06 Total sieving time: 9hrs 42min 10secs. Total relation processing time: 2hrs 21min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 49sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16600000,16600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 19, 2023 10:19:38 UTC 2023 年 1 月 19 日 (木) 19 時 19 分 38 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | September 19, 2024 06:12:04 UTC 2024 年 9 月 19 日 (木) 15 時 12 分 4 秒 (日本時間) |
composite number 合成数 | 578568826881252568987713518775632109588612111367781751255762578823055182392644459764907903461341147391288268821126254461531824998400015839859821320507<150> |
prime factors 素因数 | 24329147248269463186040746725292642431981887094946826066230430489714224781<74> 23780892152823246952355424959743767080146521949769273458845160137122151151847<77> |
factorization results 素因数分解の結果 | FACTORS 24329147248269463186040746725292642431981887094946826066230430489714224781 23780892152823246952355424959743767080146521949769273458845160137122151151847 POLYNOMIAL n: 578568826881252568987713518775632109588612111367781751255762578823055182392644459764907903461341147391288268821126254461531824998400015839859821320507 skew: 973969.715 c0: 36428456079712704900771005154713040 c1: -185895135067251881679507612422 c2: -787595930031515833942955 c3: 438987968464208632 c4: 429853649160 c5: -79800 Y0: -133340546073542810799193557685 Y1: 3381375646668848897939 # MurphyE (Bf=2.147e+09,Bg=2.147e+09,area=4.027e+14) = 6.157e-07 # f(x) = -79800*x^5+429853649160*x^4+438987968464208632*x^3-787595930031515833942955*x^2-185895135067251881679507612422*x+36428456079712704900771005154713040 # g(x) = 3381375646668848897939*x-133340546073542810799193557685 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 18, 2023 20:35:45 UTC 2023 年 1 月 19 日 (木) 5 時 35 分 45 秒 (日本時間) |
2350 | Ignacio Santos | July 19, 2023 08:08:40 UTC 2023 年 7 月 19 日 (水) 17 時 8 分 40 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | October 20, 2023 13:52:51 UTC 2023 年 10 月 20 日 (金) 22 時 52 分 51 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 26, 2024 02:52:35 UTC 2024 年 7 月 26 日 (金) 11 時 52 分 35 秒 (日本時間) |
composite number 合成数 | 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759<163> |
prime factors 素因数 | 25579140979781804644406876551650539187979831535410873691<56> 219989405258695932403571471313143507704579192097958748921935953875429463022379898022843143204603133566761949<108> |
factorization results 素因数分解の結果 | 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, **************************** 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, Starting factorization of 7300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000026 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, using pretesting plan: normal 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, **************************** 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 2 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 3 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 3 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 11 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 29 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 37 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, div: found prime factor = 71 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C201 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C201 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C201 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C201 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, prp12 = 285187214821 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 58.46 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C190 input, B1=2K, B2=gmp-ecm default 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 07/24/24 18:58:23 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 58.46 07/24/24 18:58:25 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C190 input, B1=11K, B2=gmp-ecm default 07/24/24 18:58:25 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 07/24/24 18:58:25 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 58.46 07/24/24 18:58:30 v1.34.5 @ TRIGKEY, prp27 = 301565618563412579466332251 (curve 37 stg2 B1=50000 sigma=2337021172 thread=0) 07/24/24 18:58:30 v1.34.5 @ TRIGKEY, Finished 37 curves using Lenstra ECM method on C190 input, B1=50K, B2=gmp-ecm default 07/24/24 18:58:30 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 21.11 07/24/24 18:58:30 v1.34.5 @ TRIGKEY, scheduled 177 curves at B1=50000 toward target pretesting depth of 50.15 07/24/24 18:59:06 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c208: 7300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000026 07/24/24 18:59:06 v1.34.5 @ TRIGKEY, nfs: input divides 73*10^206 + 26 07/24/24 18:59:06 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 07/24/24 18:59:06 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c163: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 07/24/24 18:59:06 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 # 73*10^206+26, difficulty: 208.86, anorm: 1.38e+032, rnorm: 1.40e+047 # scaled difficulty: 211.36, suggest sieving rational side # size = 2.303e-014, alpha = -0.399, combined = 7.839e-012, rroots = 1 type: snfs size: 208 skew: 0.5133 c5: 365 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 # 73*10^206+26, difficulty: 209.07, anorm: 7.79e+032, rnorm: 1.97e+047 # scaled difficulty: 211.47, suggest sieving rational side # size = 1.567e-014, alpha = -1.323, combined = 6.267e-012, rroots = 1 type: snfs size: 209 skew: 1.0265 c5: 365 c0: 416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 # 73*10^206+26, difficulty: 209.86, anorm: 4.36e+038, rnorm: 1.60e+040 # scaled difficulty: 209.86, suggest sieving algebraic side # size = 1.750e-010, alpha = -0.685, combined = 4.990e-012, rroots = 0 type: snfs size: 209 skew: 0.3908 c6: 3650 c0: 13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 07/24/24 18:59:08 v1.34.5 @ TRIGKEY, test: fb generation took 1.5003 seconds 07/24/24 18:59:08 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 20200000-20202000 skew: 0.5133 c5: 365 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 20200000 alim: 20200000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/24/24 19:02:21 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 07/24/24 19:02:22 v1.34.5 @ TRIGKEY, test: fb generation took 1.5963 seconds 07/24/24 19:02:22 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 1.0265 c5: 365 c0: 416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/24/24 19:05:24 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 07/24/24 19:05:26 v1.34.5 @ TRIGKEY, test: fb generation took 2.3071 seconds 07/24/24 19:05:26 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the algebraic side over range 21400000-21402000 skew: 0.3908 c6: 3650 c0: 13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 07/24/24 19:08:31 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 07/24/24 19:08:31 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 5627140011170535959396364019769685490487784644710165987940726472932008035566452619491884349681000379152727838761113835403993789590571899516042706147003191903983759 # 73*10^206+26, difficulty: 208.86, anorm: 1.38e+032, rnorm: 1.40e+047 # scaled difficulty: 211.36, suggest sieving rational side # size = 2.303e-014, alpha = -0.399, combined = 7.839e-012, rroots = 1 type: snfs size: 208 skew: 0.5133 c5: 365 c0: 13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 07/25/24 23:10:05 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 07/25/24 23:50:44 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22141064 07/26/24 01:30:46 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 07/26/24 02:12:44 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23358372 07/26/24 03:53:03 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 07/26/24 04:32:38 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24570564 07/26/24 06:27:03 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 07/26/24 07:06:34 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25939935 07/26/24 09:02:03 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 07/26/24 09:43:14 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 07/26/24 11:46:03 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 07/26/24 11:51:58 v1.34.5 @ TRIGKEY, prp56 = 25579140979781804644406876551650539187979831535410873691 07/26/24 11:51:58 v1.34.5 @ TRIGKEY, prp108 = 219989405258695932403571471313143507704579192097958748921935953875429463022379898022843143204603133566761949 07/26/24 11:51:58 v1.34.5 @ TRIGKEY, NFS elapsed time = 147172.1516 seconds. 07/26/24 11:51:58 v1.34.5 @ TRIGKEY, 07/26/24 11:51:58 v1.34.5 @ TRIGKEY, 07/24/24 19:08:31 v1.34.5 @ TRIGKEY, test: test sieving took 565.13 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 18, 2023 20:35:54 UTC 2023 年 1 月 19 日 (木) 5 時 35 分 54 秒 (日本時間) |
2350 | Ignacio Santos | July 19, 2024 07:23:42 UTC 2024 年 7 月 19 日 (金) 16 時 23 分 42 秒 (日本時間) | |||
45 | 11e6 | 4100 | Thomas Kozlowski | July 20, 2024 22:27:20 UTC 2024 年 7 月 21 日 (日) 7 時 27 分 20 秒 (日本時間) | |
50 | 43e6 | 7000 | Thomas Kozlowski | July 21, 2024 15:33:07 UTC 2024 年 7 月 22 日 (月) 0 時 33 分 7 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 6, 2023 08:15:02 UTC 2023 年 1 月 6 日 (金) 17 時 15 分 2 秒 (日本時間) |
composite number 合成数 | 645333460519926473758176232378198649267983946854139994051655440871115649864259955521731960622255698500123434355189210745038306284449856466719<141> |
prime factors 素因数 | 7960030686202053142583937853930291666034612700680755303909<58> 81071730243270280263314828598526904053504196226999672348848702960955653951735079091<83> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:305359552 Step 1 took 81859ms Step 2 took 28047ms ********** Factor found in step 2: 7960030686202053142583937853930291666034612700680755303909 Found prime factor of 58 digits: 7960030686202053142583937853930291666034612700680755303909 Prime cofactor 81071730243270280263314828598526904053504196226999672348848702960955653951735079091 has 83 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 17:18:39 UTC 2022 年 12 月 24 日 (土) 2 時 18 分 39 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 24, 2022 15:38:01 UTC 2022 年 12 月 25 日 (日) 0 時 38 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 18, 2023 22:46:41 UTC 2023 年 1 月 19 日 (木) 7 時 46 分 41 秒 (日本時間) |
composite number 合成数 | 59493417550061795114342799931886024417639766084025073260498916608434417941072992847096227689550304620416974007268711705892115179946350339188463430976529<152> |
prime factors 素因数 | 4846687865352619385255106095165821<34> |
composite cofactor 合成数の残り | 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349<119> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4024396128 Step 1 took 7312ms Step 2 took 3736ms ********** Factor found in step 2: 4846687865352619385255106095165821 Found prime factor of 34 digits: 4846687865352619385255106095165821 Composite cofactor 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 has 119 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 25, 2023 13:17:24 UTC 2023 年 1 月 25 日 (水) 22 時 17 分 24 秒 (日本時間) |
composite number 合成数 | 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349<119> |
prime factors 素因数 | 4594180134905366704268384094281980295487171126426615227<55> 2671873215658966264674294142481408581642065223887436491177737887<64> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2000000, q1=2100000. -> client 1 q0: 2000000 LatSieveTime: 93 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 91 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 95 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 86 LatSieveTime: 93 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 140 Wed Jan 25 13:46:17 2023 Wed Jan 25 13:46:17 2023 Wed Jan 25 13:46:17 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 13:46:17 2023 random seeds: 2a7786b0 337d2963 Wed Jan 25 13:46:17 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 13:46:17 2023 searching for 15-digit factors Wed Jan 25 13:46:18 2023 commencing number field sieve (119-digit input) Wed Jan 25 13:46:18 2023 R0: -68874877614380752671099 Wed Jan 25 13:46:18 2023 R1: 5335894233011 Wed Jan 25 13:46:18 2023 A0: -31850410482886534162459930736 Wed Jan 25 13:46:18 2023 A1: -958110119398420705661508 Wed Jan 25 13:46:18 2023 A2: 35451269824667333620 Wed Jan 25 13:46:18 2023 A3: -1527833136283839 Wed Jan 25 13:46:18 2023 A4: -1298389442 Wed Jan 25 13:46:18 2023 A5: 7920 Wed Jan 25 13:46:18 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 13:46:18 2023 Wed Jan 25 13:46:18 2023 commencing relation filtering Wed Jan 25 13:46:18 2023 estimated available RAM is 65413.5 MB Wed Jan 25 13:46:18 2023 commencing duplicate removal, pass 1 Wed Jan 25 13:46:35 2023 found 734465 hash collisions in 8443087 relations Wed Jan 25 13:46:44 2023 added 62117 free relations Wed Jan 25 13:46:44 2023 commencing duplicate removal, pass 2 Wed Jan 25 13:46:47 2023 found 555004 duplicates and 7950200 unique relations Wed Jan 25 13:46:47 2023 memory use: 32.6 MB Wed Jan 25 13:46:47 2023 reading ideals above 100000 Wed Jan 25 13:46:47 2023 commencing singleton removal, initial pass Wed Jan 25 13:47:17 2023 memory use: 188.3 MB Wed Jan 25 13:47:17 2023 reading all ideals from disk Wed Jan 25 13:47:17 2023 memory use: 279.5 MB Wed Jan 25 13:47:17 2023 keeping 9742206 ideals with weight <= 200, target excess is 41913 Wed Jan 25 13:47:18 2023 commencing in-memory singleton removal Wed Jan 25 13:47:18 2023 begin with 7950200 relations and 9742206 unique ideals Wed Jan 25 13:47:24 2023 reduce to 118 relations and 0 ideals in 129 passes Wed Jan 25 13:47:24 2023 max relations containing the same ideal: 0 Wed Jan 25 13:47:24 2023 filtering wants 1000000 more relations Wed Jan 25 13:47:24 2023 elapsed time 00:01:07 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 99 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 Wed Jan 25 13:49:50 2023 Wed Jan 25 13:49:50 2023 Wed Jan 25 13:49:50 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 13:49:50 2023 random seeds: e9fc5380 303463e4 Wed Jan 25 13:49:50 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 13:49:50 2023 searching for 15-digit factors Wed Jan 25 13:49:51 2023 commencing number field sieve (119-digit input) Wed Jan 25 13:49:51 2023 R0: -68874877614380752671099 Wed Jan 25 13:49:51 2023 R1: 5335894233011 Wed Jan 25 13:49:51 2023 A0: -31850410482886534162459930736 Wed Jan 25 13:49:51 2023 A1: -958110119398420705661508 Wed Jan 25 13:49:51 2023 A2: 35451269824667333620 Wed Jan 25 13:49:51 2023 A3: -1527833136283839 Wed Jan 25 13:49:51 2023 A4: -1298389442 Wed Jan 25 13:49:51 2023 A5: 7920 Wed Jan 25 13:49:51 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 13:49:51 2023 Wed Jan 25 13:49:51 2023 commencing relation filtering Wed Jan 25 13:49:51 2023 estimated available RAM is 65413.5 MB Wed Jan 25 13:49:51 2023 commencing duplicate removal, pass 1 Wed Jan 25 13:50:09 2023 found 824882 hash collisions in 9078263 relations Wed Jan 25 13:50:19 2023 added 269 free relations Wed Jan 25 13:50:19 2023 commencing duplicate removal, pass 2 Wed Jan 25 13:50:22 2023 found 621099 duplicates and 8457433 unique relations Wed Jan 25 13:50:22 2023 memory use: 32.6 MB Wed Jan 25 13:50:22 2023 reading ideals above 100000 Wed Jan 25 13:50:22 2023 commencing singleton removal, initial pass Wed Jan 25 13:50:53 2023 memory use: 188.3 MB Wed Jan 25 13:50:53 2023 reading all ideals from disk Wed Jan 25 13:50:53 2023 memory use: 297.5 MB Wed Jan 25 13:50:54 2023 keeping 10009466 ideals with weight <= 200, target excess is 44680 Wed Jan 25 13:50:54 2023 commencing in-memory singleton removal Wed Jan 25 13:50:54 2023 begin with 8457433 relations and 10009466 unique ideals Wed Jan 25 13:50:59 2023 reduce to 1877234 relations and 2041145 ideals in 37 passes Wed Jan 25 13:50:59 2023 max relations containing the same ideal: 73 Wed Jan 25 13:50:59 2023 filtering wants 1000000 more relations Wed Jan 25 13:50:59 2023 elapsed time 00:01:09 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 145 Wed Jan 25 13:53:29 2023 Wed Jan 25 13:53:29 2023 Wed Jan 25 13:53:29 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 13:53:29 2023 random seeds: c3d31cc8 4ea7607c Wed Jan 25 13:53:29 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 13:53:29 2023 searching for 15-digit factors Wed Jan 25 13:53:29 2023 commencing number field sieve (119-digit input) Wed Jan 25 13:53:29 2023 R0: -68874877614380752671099 Wed Jan 25 13:53:29 2023 R1: 5335894233011 Wed Jan 25 13:53:29 2023 A0: -31850410482886534162459930736 Wed Jan 25 13:53:29 2023 A1: -958110119398420705661508 Wed Jan 25 13:53:29 2023 A2: 35451269824667333620 Wed Jan 25 13:53:29 2023 A3: -1527833136283839 Wed Jan 25 13:53:29 2023 A4: -1298389442 Wed Jan 25 13:53:29 2023 A5: 7920 Wed Jan 25 13:53:29 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 13:53:29 2023 Wed Jan 25 13:53:29 2023 commencing relation filtering Wed Jan 25 13:53:29 2023 estimated available RAM is 65413.5 MB Wed Jan 25 13:53:29 2023 commencing duplicate removal, pass 1 Wed Jan 25 13:53:50 2023 found 916466 hash collisions in 9651465 relations Wed Jan 25 13:53:59 2023 added 195 free relations Wed Jan 25 13:53:59 2023 commencing duplicate removal, pass 2 Wed Jan 25 13:54:03 2023 found 690391 duplicates and 8961269 unique relations Wed Jan 25 13:54:03 2023 memory use: 34.6 MB Wed Jan 25 13:54:03 2023 reading ideals above 100000 Wed Jan 25 13:54:03 2023 commencing singleton removal, initial pass Wed Jan 25 13:54:36 2023 memory use: 344.5 MB Wed Jan 25 13:54:36 2023 reading all ideals from disk Wed Jan 25 13:54:36 2023 memory use: 315.4 MB Wed Jan 25 13:54:37 2023 keeping 10257505 ideals with weight <= 200, target excess is 47462 Wed Jan 25 13:54:37 2023 commencing in-memory singleton removal Wed Jan 25 13:54:38 2023 begin with 8961269 relations and 10257505 unique ideals Wed Jan 25 13:54:42 2023 reduce to 2592195 relations and 2630904 ideals in 26 passes Wed Jan 25 13:54:42 2023 max relations containing the same ideal: 88 Wed Jan 25 13:54:42 2023 filtering wants 1000000 more relations Wed Jan 25 13:54:42 2023 elapsed time 00:01:13 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 Wed Jan 25 13:57:03 2023 Wed Jan 25 13:57:03 2023 Wed Jan 25 13:57:03 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 13:57:03 2023 random seeds: b96d8b60 fca32d40 Wed Jan 25 13:57:03 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 13:57:03 2023 searching for 15-digit factors Wed Jan 25 13:57:03 2023 commencing number field sieve (119-digit input) Wed Jan 25 13:57:03 2023 R0: -68874877614380752671099 Wed Jan 25 13:57:03 2023 R1: 5335894233011 Wed Jan 25 13:57:03 2023 A0: -31850410482886534162459930736 Wed Jan 25 13:57:03 2023 A1: -958110119398420705661508 Wed Jan 25 13:57:03 2023 A2: 35451269824667333620 Wed Jan 25 13:57:03 2023 A3: -1527833136283839 Wed Jan 25 13:57:03 2023 A4: -1298389442 Wed Jan 25 13:57:03 2023 A5: 7920 Wed Jan 25 13:57:03 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 13:57:03 2023 Wed Jan 25 13:57:03 2023 commencing relation filtering Wed Jan 25 13:57:03 2023 estimated available RAM is 65413.5 MB Wed Jan 25 13:57:03 2023 commencing duplicate removal, pass 1 Wed Jan 25 13:57:24 2023 found 1011227 hash collisions in 10224372 relations Wed Jan 25 13:57:34 2023 added 186 free relations Wed Jan 25 13:57:34 2023 commencing duplicate removal, pass 2 Wed Jan 25 13:57:38 2023 found 762171 duplicates and 9462387 unique relations Wed Jan 25 13:57:38 2023 memory use: 49.3 MB Wed Jan 25 13:57:38 2023 reading ideals above 100000 Wed Jan 25 13:57:38 2023 commencing singleton removal, initial pass Wed Jan 25 13:58:14 2023 memory use: 344.5 MB Wed Jan 25 13:58:14 2023 reading all ideals from disk Wed Jan 25 13:58:14 2023 memory use: 333.2 MB Wed Jan 25 13:58:15 2023 keeping 10488968 ideals with weight <= 200, target excess is 50231 Wed Jan 25 13:58:15 2023 commencing in-memory singleton removal Wed Jan 25 13:58:16 2023 begin with 9462387 relations and 10488968 unique ideals Wed Jan 25 13:58:20 2023 reduce to 3260363 relations and 3144431 ideals in 21 passes Wed Jan 25 13:58:20 2023 max relations containing the same ideal: 100 Wed Jan 25 13:58:20 2023 removing 347301 relations and 318469 ideals in 28832 cliques Wed Jan 25 13:58:21 2023 commencing in-memory singleton removal Wed Jan 25 13:58:21 2023 begin with 2913062 relations and 3144431 unique ideals Wed Jan 25 13:58:21 2023 reduce to 2880947 relations and 2793394 ideals in 11 passes Wed Jan 25 13:58:21 2023 max relations containing the same ideal: 94 Wed Jan 25 13:58:22 2023 removing 254782 relations and 225950 ideals in 28832 cliques Wed Jan 25 13:58:22 2023 commencing in-memory singleton removal Wed Jan 25 13:58:22 2023 begin with 2626165 relations and 2793394 unique ideals Wed Jan 25 13:58:23 2023 reduce to 2606461 relations and 2547548 ideals in 10 passes Wed Jan 25 13:58:23 2023 max relations containing the same ideal: 89 Wed Jan 25 13:58:23 2023 relations with 0 large ideals: 143 Wed Jan 25 13:58:23 2023 relations with 1 large ideals: 499 Wed Jan 25 13:58:23 2023 relations with 2 large ideals: 7305 Wed Jan 25 13:58:23 2023 relations with 3 large ideals: 60131 Wed Jan 25 13:58:23 2023 relations with 4 large ideals: 250021 Wed Jan 25 13:58:23 2023 relations with 5 large ideals: 585195 Wed Jan 25 13:58:23 2023 relations with 6 large ideals: 781418 Wed Jan 25 13:58:23 2023 relations with 7+ large ideals: 921749 Wed Jan 25 13:58:23 2023 commencing 2-way merge Wed Jan 25 13:58:24 2023 reduce to 1437356 relation sets and 1378447 unique ideals Wed Jan 25 13:58:24 2023 ignored 4 oversize relation sets Wed Jan 25 13:58:24 2023 commencing full merge Wed Jan 25 13:58:40 2023 memory use: 155.3 MB Wed Jan 25 13:58:40 2023 found 717357 cycles, need 710647 Wed Jan 25 13:58:40 2023 weight of 710647 cycles is about 49912136 (70.23/cycle) Wed Jan 25 13:58:40 2023 distribution of cycle lengths: Wed Jan 25 13:58:40 2023 1 relations: 88247 Wed Jan 25 13:58:40 2023 2 relations: 86070 Wed Jan 25 13:58:40 2023 3 relations: 84156 Wed Jan 25 13:58:40 2023 4 relations: 74424 Wed Jan 25 13:58:40 2023 5 relations: 64693 Wed Jan 25 13:58:40 2023 6 relations: 54761 Wed Jan 25 13:58:40 2023 7 relations: 47431 Wed Jan 25 13:58:40 2023 8 relations: 39281 Wed Jan 25 13:58:40 2023 9 relations: 32336 Wed Jan 25 13:58:40 2023 10+ relations: 139248 Wed Jan 25 13:58:40 2023 heaviest cycle: 23 relations Wed Jan 25 13:58:41 2023 commencing cycle optimization Wed Jan 25 13:58:41 2023 start with 4247964 relations Wed Jan 25 13:58:46 2023 pruned 74732 relations Wed Jan 25 13:58:46 2023 memory use: 147.5 MB Wed Jan 25 13:58:46 2023 distribution of cycle lengths: Wed Jan 25 13:58:46 2023 1 relations: 88247 Wed Jan 25 13:58:46 2023 2 relations: 87751 Wed Jan 25 13:58:46 2023 3 relations: 86535 Wed Jan 25 13:58:46 2023 4 relations: 75614 Wed Jan 25 13:58:46 2023 5 relations: 65358 Wed Jan 25 13:58:46 2023 6 relations: 55140 Wed Jan 25 13:58:46 2023 7 relations: 47302 Wed Jan 25 13:58:46 2023 8 relations: 39233 Wed Jan 25 13:58:46 2023 9 relations: 31997 Wed Jan 25 13:58:46 2023 10+ relations: 133470 Wed Jan 25 13:58:46 2023 heaviest cycle: 23 relations Wed Jan 25 13:58:47 2023 RelProcTime: 104 Wed Jan 25 13:58:47 2023 elapsed time 00:01:44 Wed Jan 25 13:58:47 2023 Wed Jan 25 13:58:47 2023 Wed Jan 25 13:58:47 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 13:58:47 2023 random seeds: f8451148 f02eb5bd Wed Jan 25 13:58:47 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 13:58:47 2023 searching for 15-digit factors Wed Jan 25 13:58:47 2023 commencing number field sieve (119-digit input) Wed Jan 25 13:58:47 2023 R0: -68874877614380752671099 Wed Jan 25 13:58:47 2023 R1: 5335894233011 Wed Jan 25 13:58:47 2023 A0: -31850410482886534162459930736 Wed Jan 25 13:58:47 2023 A1: -958110119398420705661508 Wed Jan 25 13:58:47 2023 A2: 35451269824667333620 Wed Jan 25 13:58:47 2023 A3: -1527833136283839 Wed Jan 25 13:58:47 2023 A4: -1298389442 Wed Jan 25 13:58:47 2023 A5: 7920 Wed Jan 25 13:58:47 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 13:58:47 2023 Wed Jan 25 13:58:47 2023 commencing linear algebra Wed Jan 25 13:58:47 2023 read 710647 cycles Wed Jan 25 13:58:48 2023 cycles contain 2526514 unique relations Wed Jan 25 13:58:53 2023 read 2526514 relations Wed Jan 25 13:58:56 2023 using 20 quadratic characters above 134217510 Wed Jan 25 13:59:02 2023 building initial matrix Wed Jan 25 13:59:15 2023 memory use: 320.6 MB Wed Jan 25 13:59:15 2023 read 710647 cycles Wed Jan 25 13:59:15 2023 matrix is 710468 x 710647 (213.8 MB) with weight 67283731 (94.68/col) Wed Jan 25 13:59:15 2023 sparse part has weight 48237401 (67.88/col) Wed Jan 25 13:59:19 2023 filtering completed in 2 passes Wed Jan 25 13:59:19 2023 matrix is 708745 x 708924 (213.7 MB) with weight 67214291 (94.81/col) Wed Jan 25 13:59:19 2023 sparse part has weight 48217543 (68.02/col) Wed Jan 25 13:59:20 2023 matrix starts at (0, 0) Wed Jan 25 13:59:20 2023 matrix is 708745 x 708924 (213.7 MB) with weight 67214291 (94.81/col) Wed Jan 25 13:59:20 2023 sparse part has weight 48217543 (68.02/col) Wed Jan 25 13:59:20 2023 saving the first 48 matrix rows for later Wed Jan 25 13:59:20 2023 matrix includes 64 packed rows Wed Jan 25 13:59:20 2023 matrix is 708697 x 708924 (205.4 MB) with weight 53213949 (75.06/col) Wed Jan 25 13:59:20 2023 sparse part has weight 46742961 (65.94/col) Wed Jan 25 13:59:20 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Jan 25 13:59:22 2023 commencing Lanczos iteration (32 threads) Wed Jan 25 13:59:22 2023 memory use: 160.4 MB Wed Jan 25 13:59:24 2023 linear algebra at 0.4%, ETA 0h 7m Wed Jan 25 14:05:26 2023 lanczos halted after 11208 iterations (dim = 708696) Wed Jan 25 14:05:26 2023 recovered 30 nontrivial dependencies Wed Jan 25 14:05:26 2023 BLanczosTime: 399 Wed Jan 25 14:05:26 2023 elapsed time 00:06:39 Wed Jan 25 14:05:26 2023 Wed Jan 25 14:05:26 2023 Wed Jan 25 14:05:26 2023 Msieve v. 1.52 (SVN 927) Wed Jan 25 14:05:26 2023 random seeds: eaa3fa04 2c03b319 Wed Jan 25 14:05:26 2023 factoring 12275066850366145579626955877976923964198940468523481000271890186047586753281515321771695025707028838674524908009005349 (119 digits) Wed Jan 25 14:05:26 2023 searching for 15-digit factors Wed Jan 25 14:05:27 2023 commencing number field sieve (119-digit input) Wed Jan 25 14:05:27 2023 R0: -68874877614380752671099 Wed Jan 25 14:05:27 2023 R1: 5335894233011 Wed Jan 25 14:05:27 2023 A0: -31850410482886534162459930736 Wed Jan 25 14:05:27 2023 A1: -958110119398420705661508 Wed Jan 25 14:05:27 2023 A2: 35451269824667333620 Wed Jan 25 14:05:27 2023 A3: -1527833136283839 Wed Jan 25 14:05:27 2023 A4: -1298389442 Wed Jan 25 14:05:27 2023 A5: 7920 Wed Jan 25 14:05:27 2023 skew 152838.19, size 1.730e-011, alpha -6.345, combined = 2.889e-010 rroots = 3 Wed Jan 25 14:05:27 2023 Wed Jan 25 14:05:27 2023 commencing square root phase Wed Jan 25 14:05:27 2023 reading relations for dependency 1 Wed Jan 25 14:05:27 2023 read 353728 cycles Wed Jan 25 14:05:27 2023 cycles contain 1260942 unique relations Wed Jan 25 14:05:30 2023 read 1260942 relations Wed Jan 25 14:05:33 2023 multiplying 1260942 relations Wed Jan 25 14:06:01 2023 multiply complete, coefficients have about 55.18 million bits Wed Jan 25 14:06:01 2023 initial square root is modulo 83532283 Wed Jan 25 14:06:39 2023 GCD is 1, no factor found Wed Jan 25 14:06:39 2023 reading relations for dependency 2 Wed Jan 25 14:06:39 2023 read 354108 cycles Wed Jan 25 14:06:39 2023 cycles contain 1260010 unique relations Wed Jan 25 14:06:43 2023 read 1260010 relations Wed Jan 25 14:06:45 2023 multiplying 1260010 relations Wed Jan 25 14:07:13 2023 multiply complete, coefficients have about 55.14 million bits Wed Jan 25 14:07:13 2023 initial square root is modulo 82477643 Wed Jan 25 14:07:52 2023 sqrtTime: 145 Wed Jan 25 14:07:52 2023 prp55 factor: 4594180134905366704268384094281980295487171126426615227 Wed Jan 25 14:07:52 2023 prp64 factor: 2671873215658966264674294142481408581642065223887436491177737887 Wed Jan 25 14:07:52 2023 elapsed time 00:02:26 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 18, 2023 20:36:01 UTC 2023 年 1 月 19 日 (木) 5 時 36 分 1 秒 (日本時間) |
2350 | Ignacio Santos | January 19, 2023 16:46:11 UTC 2023 年 1 月 20 日 (金) 1 時 46 分 11 秒 (日本時間) |
composite cofactor 合成数の残り | 1844793728125506320478952515157566565909865532417488650944426951875052670807122864244636807241826612253322920476808258646272228432673050524649024718010443997863<160> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 18, 2023 20:36:08 UTC 2023 年 1 月 19 日 (木) 5 時 36 分 8 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:14:14 UTC 2024 年 9 月 16 日 (月) 0 時 14 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 24, 2023 21:08:27 UTC 2023 年 1 月 25 日 (水) 6 時 8 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:14:29 UTC 2024 年 9 月 16 日 (月) 0 時 14 分 29 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 15, 2024 15:14:55 UTC 2024 年 9 月 16 日 (月) 0 時 14 分 55 秒 (日本時間) |
composite number 合成数 | 838066762717346475072993141646717908144908832987310712573643334650447191822905086104437235026439810169387028029280014812183726183559361317704073854428866581629390085697167<171> |
prime factors 素因数 | 19425322110036769366248979506307001077<38> 43143004680696135655112037073655973645485844219709746859391020193175207752792702164704828365764769916500478210586898003735586284669171<134> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1307126093 Step 1 took 6438ms Step 2 took 3265ms ********** Factor found in step 2: 19425322110036769366248979506307001077 Found prime factor of 38 digits: 19425322110036769366248979506307001077 Prime cofactor 43143004680696135655112037073655973645485844219709746859391020193175207752792702164704828365764769916500478210586898003735586284669171 has 134 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 18, 2023 20:36:15 UTC 2023 年 1 月 19 日 (木) 5 時 36 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 24, 2023 21:08:35 UTC 2023 年 1 月 25 日 (水) 6 時 8 分 35 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:25:19 UTC 2024 年 9 月 16 日 (月) 0 時 25 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:19:43 UTC 2023 年 1 月 19 日 (木) 19 時 19 分 43 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:37:42 UTC 2024 年 9 月 16 日 (月) 0 時 37 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:14:21 UTC 2023 年 1 月 27 日 (金) 0 時 14 分 21 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:49:12 UTC 2024 年 9 月 16 日 (月) 0 時 49 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:19:47 UTC 2023 年 1 月 19 日 (木) 19 時 19 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 15:56:44 UTC 2024 年 9 月 16 日 (月) 0 時 56 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:14:33 UTC 2023 年 1 月 27 日 (金) 0 時 14 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 16:09:45 UTC 2024 年 9 月 16 日 (月) 1 時 9 分 45 秒 (日本時間) |
composite cofactor 合成数の残り | 52564898937387987357990884006378633604064962664591804739492321149116557332636417910455509947281861287655729372161971757696969534738428537252908799465538257175859613<164> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 18, 2023 20:36:23 UTC 2023 年 1 月 19 日 (木) 5 時 36 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 16:38:32 UTC 2024 年 9 月 16 日 (月) 1 時 38 分 32 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 26, 2023 08:49:28 UTC 2023 年 7 月 26 日 (水) 17 時 49 分 28 秒 (日本時間) |
composite number 合成数 | 2066922410426912760295697809357853721183386448816109124080402053024367293224328567346872178703201896467690670307760536593050393514303351967<139> |
prime factors 素因数 | 4336792466207924216389390895457940912708255469774919545612222779<64> 476601642004378020276712153089083627254911295093635069541354506162239572973<75> |
factorization results 素因数分解の結果 | 2066922410426912760295697809357853721183386448816109124080402053024367293224328567346872178703201896467690670307760536593050393514303351967=4336792466207924216389390895457940912708255469774919545612222779*476601642004378020276712153089083627254911295093635069541354506162239572973 cado polynomial n: 2066922410426912760295697809357853721183386448816109124080402053024367293224328567346872178703201896467690670307760536593050393514303351967 skew: 93461.906 c0: 5305959325276257848577014064570 c1: 2969413081460520463029001 c2: -1707384672237451631469 c3: -23387751151034974 c4: 189456499332 c5: 824400 Y0: -496203666407112053668946787 Y1: 336103075048087699 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.811e-07 # f(x) = 824400*x^5+189456499332*x^4-23387751151034974*x^3-1707384672237451631469*x^2+2969413081460520463029001*x+5305959325276257848577014064570 # g(x) = 336103075048087699*x-496203666407112053668946787 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 4336792466207924216389390895457940912708255469774919545612222779 476601642004378020276712153089083627254911295093635069541354506162239572973 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2965.33/457.044 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Factor Base: Total cpu/real time for makefb: 14.28/2.13725 Info:Filtering - Merging: Merged matrix has 1737811 rows and total weight 295985574 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 879.46/123.714 Info:Filtering - Merging: Total cpu/real time for replay: 64.04/55.3683 Info:Linear Algebra: Total cpu/real time for bwc: 44221.3/11571.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 28583.18, WCT time 7469.11, iteration CPU time 0.12, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (54528 iterations) Info:Linear Algebra: Lingen CPU time 310.69, WCT time 80.21 Info:Linear Algebra: Mksol: CPU time 14999.54, WCT time 3897.03, iteration CPU time 0.13, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (27392 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 283.18/235.671 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 235.4s Info:Filtering - Singleton removal: Total cpu/real time for purge: 256.2/214.572 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 9672.21 Info:Polynomial Selection (root optimized): Rootsieve time: 9667.73 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 32837460 Info:Lattice Sieving: Average J: 3805.68 for 754350 special-q, max bucket fill -bkmult 1.0,1s:1.140170 Info:Lattice Sieving: Total time: 472754s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 606.63/445.777 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 387.0s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48558/40.640/49.770/54.690/0.951 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39961/40.190/44.289/50.420/0.921 Info:Polynomial Selection (size optimized): Total time: 37603.2 Info:Quadratic Characters: Total cpu/real time for characters: 89.23/22.0928 Info:Generate Free Relations: Total cpu/real time for freerel: 787.73/99.4415 Info:Square Root: Total cpu/real time for sqrt: 2965.33/457.044 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 977505/138330 4336792466207924216389390895457940912708255469774919545612222779 476601642004378020276712153089083627254911295093635069541354506162239572973 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 17:00:34 UTC 2022 年 12 月 24 日 (土) 2 時 0 分 34 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 28, 2022 17:41:01 UTC 2022 年 12 月 29 日 (木) 2 時 41 分 1 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 13, 2023 09:15:38 UTC 2023 年 1 月 13 日 (金) 18 時 15 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:14:41 UTC 2023 年 1 月 27 日 (金) 0 時 14 分 41 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 16:38:48 UTC 2024 年 9 月 16 日 (月) 1 時 38 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:20:24 UTC 2023 年 1 月 19 日 (木) 19 時 20 分 24 秒 (日本時間) |
2350 | Ignacio Santos | September 15, 2024 16:49:41 UTC 2024 年 9 月 16 日 (月) 1 時 49 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:20:19 UTC 2023 年 1 月 19 日 (木) 19 時 20 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 06:38:16 UTC 2024 年 9 月 18 日 (水) 15 時 38 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 24, 2023 21:08:42 UTC 2023 年 1 月 25 日 (水) 6 時 8 分 42 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 06:38:30 UTC 2024 年 9 月 18 日 (水) 15 時 38 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:14:53 UTC 2023 年 1 月 27 日 (金) 0 時 14 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 06:47:38 UTC 2024 年 9 月 18 日 (水) 15 時 47 分 38 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 24, 2023 21:44:27 UTC 2023 年 1 月 25 日 (水) 6 時 44 分 27 秒 (日本時間) |
composite number 合成数 | 437492686719111341799701294757546346037077216243810862484397345558554892187009897381760340162888702735729068235953040523519154088318084362881767301351348245674366498315508797770183498740889566008726883189<204> |
prime factors 素因数 | 14492230350086459168013213778323613<35> 30188085349920021458700821862651167028425131907696942255087392648076231161553737992020712156713770058182348225504624787681025643248482448401180453395288935360960932960953<170> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:528204574 Step 1 took 10982ms Step 2 took 5190ms ********** Factor found in step 2: 14492230350086459168013213778323613 Found prime factor of 35 digits: 14492230350086459168013213778323613 Prime cofactor 30188085349920021458700821862651167028425131907696942255087392648076231161553737992020712156713770058182348225504624787681025643248482448401180453395288935360960932960953 has 170 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 24, 2023 21:08:48 UTC 2023 年 1 月 25 日 (水) 6 時 8 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 24, 2023 21:08:55 UTC 2023 年 1 月 25 日 (水) 6 時 8 分 55 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 06:55:36 UTC 2024 年 9 月 18 日 (水) 15 時 55 分 36 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 27, 2023 05:52:32 UTC 2023 年 1 月 27 日 (金) 14 時 52 分 32 秒 (日本時間) |
composite number 合成数 | 1228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956229<238> |
prime factors 素因数 | 998160240519300075840247630498341215189<39> |
composite cofactor 合成数の残り | 1231221380163224694397824627449135447406027291458019142948172915764619488644928996149383515900969313653274318956593469941571010033092891697170403298263608906762991204606077822571138340077726710557361<199> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @22b69890767c with GMP-ECM 7.0.5-dev on Thu Jan 26 15:33:22 2023 Input number is 1228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956228956229 (238 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1947890221 Step 1 took 0ms Step 2 took 6302ms ********** Factor found in step 2: 998160240519300075840247630498341215189 Found prime factor of 39 digits: 998160240519300075840247630498341215189 Composite cofactor 1231221380163224694397824627449135447406027291458019142948172915764619488644928996149383515900969313653274318956593469941571010033092891697170403298263608906762991204606077822571138340077726710557361 has 199 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:15:19 UTC 2023 年 1 月 27 日 (金) 0 時 15 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 07:47:33 UTC 2024 年 9 月 18 日 (水) 16 時 47 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:21:17 UTC 2023 年 1 月 19 日 (木) 19 時 21 分 17 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 07:47:44 UTC 2024 年 9 月 18 日 (水) 16 時 47 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:15:28 UTC 2023 年 1 月 27 日 (金) 0 時 15 分 28 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 07:47:54 UTC 2024 年 9 月 18 日 (水) 16 時 47 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:15:37 UTC 2023 年 1 月 27 日 (金) 0 時 15 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 07:48:05 UTC 2024 年 9 月 18 日 (水) 16 時 48 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:15:46 UTC 2023 年 1 月 27 日 (金) 0 時 15 分 46 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 08:40:41 UTC 2024 年 9 月 18 日 (水) 17 時 40 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:15:53 UTC 2023 年 1 月 27 日 (金) 0 時 15 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 08:40:52 UTC 2024 年 9 月 18 日 (水) 17 時 40 分 52 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 26, 2023 23:55:30 UTC 2023 年 1 月 27 日 (金) 8 時 55 分 30 秒 (日本時間) |
composite number 合成数 | 1415017055773553121924258876241362554245162122105853532049938894428385899778361449888386942181015271580213463846138174806017144973240803866030065276043699424506825023540414508832145197451057498382589783371294213819785510226419548259<232> |
prime factors 素因数 | 92417568289203543937937661154106759041<38> |
composite cofactor 合成数の残り | 15311126249778842360437711959824305376579859997135779360621732487977971236715355749778776293666491676393462393357822445980369302982464492011360099672089201772821312771390570896968137647221795299<194> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @22b69890767c with GMP-ECM 7.0.5-dev on Thu Jan 26 15:54:11 2023 Input number is 1415017055773553121924258876241362554245162122105853532049938894428385899778361449888386942181015271580213463846138174806017144973240803866030065276043699424506825023540414508832145197451057498382589783371294213819785510226419548259 (232 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1275774624 Step 1 took 0ms Step 2 took 5814ms ********** Factor found in step 2: 92417568289203543937937661154106759041 Found prime factor of 38 digits: 92417568289203543937937661154106759041 Composite cofactor 15311126249778842360437711959824305376579859997135779360621732487977971236715355749778776293666491676393462393357822445980369302982464492011360099672089201772821312771390570896968137647221795299 has 194 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:16:03 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 3 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 08:41:19 UTC 2024 年 9 月 18 日 (水) 17 時 41 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 27, 2023 05:44:41 UTC 2023 年 1 月 27 日 (金) 14 時 44 分 41 秒 (日本時間) |
composite number 合成数 | 28411874696225875654940656987702625977835268778833277900986753053556686780530523009306903938869373067011615410554816754033611834449944543614503567477293454159295348573792249662967037977440416393037653885055903985609<215> |
prime factors 素因数 | 4042567439826959814079838694823752752351<40> 7028175811321043169538621431064085573917888288996719938476239164160308265722044662486979303554025687630080327845148513295658950710434234709705518319922532477172463877431631959<175> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @22b69890767c with GMP-ECM 7.0.5-dev on Thu Jan 26 15:57:06 2023 Input number is 28411874696225875654940656987702625977835268778833277900986753053556686780530523009306903938869373067011615410554816754033611834449944543614503567477293454159295348573792249662967037977440416393037653885055903985609 (215 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:188584418 Step 1 took 0ms Step 2 took 5686ms ********** Factor found in step 2: 4042567439826959814079838694823752752351 Found prime factor of 40 digits: 4042567439826959814079838694823752752351 Prime cofactor 7028175811321043169538621431064085573917888288996719938476239164160308265722044662486979303554025687630080327845148513295658950710434234709705518319922532477172463877431631959 has 175 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 26, 2023 15:16:10 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:16:19 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 08:41:30 UTC 2024 年 9 月 18 日 (水) 17 時 41 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 26, 2023 15:16:26 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 26 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 08:55:29 UTC 2024 年 9 月 18 日 (水) 17 時 55 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 26, 2023 15:16:32 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 32 秒 (日本時間) |
400 | Thomas Kozlowski | October 2, 2024 23:35:44 UTC 2024 年 10 月 3 日 (木) 8 時 35 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 26, 2023 15:16:40 UTC 2023 年 1 月 27 日 (金) 0 時 16 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 2, 2024 23:38:30 UTC 2024 年 10 月 3 日 (木) 8 時 38 分 30 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 2, 2024 23:54:23 UTC 2024 年 10 月 3 日 (木) 8 時 54 分 23 秒 (日本時間) |
composite number 合成数 | 7077023718352815557633201390344625228997850703800167533209836949927609224439035863324182618588827981810800556873291156239921817896455322148012837131859684220914600004527614029934963361545496268058316387179477474330825859675991451209967941<238> |
prime factors 素因数 | 794865331123007789563830450804449<33> |
composite cofactor 合成数の残り | 8903424820848835022184208283953021711337412323023473306061826527013144224660947958962663052136674234572575372445199116161766740484841104831098171182472680784350276557827635685500189816758300761716135867109<205> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 7077023718352815557633201390344625228997850703800167533209836949927609224439035863324182618588827981810800556873291156239921817896455322148012837131859684220914600004527614029934963361545496268058316387179477474330825859675991451209967941 (238 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1751594765 Step 1 took 12876ms Step 2 took 4807ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3621066124 Step 1 took 11759ms Step 2 took 4781ms Run 3 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:279750981 Step 1 took 11864ms Step 2 took 4806ms Run 4 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4040927078 Step 1 took 11753ms Step 2 took 4795ms Run 5 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2859964244 Step 1 took 11766ms Step 2 took 4793ms Run 6 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3336490684 Step 1 took 11762ms Step 2 took 4789ms ** Factor found in step 2: 794865331123007789563830450804449 Found prime factor of 33 digits: 794865331123007789563830450804449 Composite cofactor 8903424820848835022184208283953021711337412323023473306061826527013144224660947958962663052136674234572575372445199116161766740484841104831098171182472680784350276557827635685500189816758300761716135867109 has 205 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | October 6, 2024 16:15:00 UTC 2024 年 10 月 7 日 (月) 1 時 15 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | January 19, 2023 10:21:49 UTC 2023 年 1 月 19 日 (木) 19 時 21 分 49 秒 (日本時間) |
1200 | Thomas Kozlowski | October 2, 2024 23:46:11 UTC 2024 年 10 月 3 日 (木) 8 時 46 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 3, 2024 00:00:04 UTC 2024 年 10 月 3 日 (木) 9 時 0 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2208 | Thomas Kozlowski | October 3, 2024 00:13:56 UTC 2024 年 10 月 3 日 (木) 9 時 13 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:56:30 UTC 2023 年 1 月 19 日 (木) 19 時 56 分 30 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:34 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 34 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 3, 2023 09:26:06 UTC 2023 年 1 月 3 日 (火) 18 時 26 分 6 秒 (日本時間) |
composite number 合成数 | 30739350769216331884685193507264841204917589809590038880718059779330604103475279180714706760682558543207582112142607894483374528516185486061567477732583711106863760368656279997<176> |
prime factors 素因数 | 2207970219438992279521091706723736356302507<43> |
composite cofactor 合成数の残り | 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071<134> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3597699620 Step 1 took 26937ms Step 2 took 11438ms ********** Factor found in step 2: 2207970219438992279521091706723736356302507 Found prime factor of 43 digits: 2207970219438992279521091706723736356302507 Composite cofactor 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 has 134 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 26, 2023 16:33:44 UTC 2023 年 1 月 27 日 (金) 1 時 33 分 44 秒 (日本時間) |
composite number 合成数 | 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071<134> |
prime factors 素因数 | 1744849584195400724066706863114835886967637371056783<52> 7978908505135967377801058350609572452335622671115625057322231461581455922852139737<82> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=4450000, q1=4550000. -> client 1 q0: 4450000 LatSieveTime: 89 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 100 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=5150001, q1=5250000. -> client 1 q0: 5150001 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=5250001, q1=5350000. -> client 1 q0: 5250001 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=5350001, q1=5450000. -> client 1 q0: 5350001 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=5450001, q1=5550000. -> client 1 q0: 5450001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=5550001, q1=5650000. -> client 1 q0: 5550001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=5650001, q1=5750000. -> client 1 q0: 5650001 LatSieveTime: 96 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=5750001, q1=5850000. -> client 1 q0: 5750001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=5850001, q1=5950000. -> client 1 q0: 5850001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=5950001, q1=6050000. -> client 1 q0: 5950001 LatSieveTime: 90 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=6050001, q1=6150000. -> client 1 q0: 6050001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=6150001, q1=6250000. -> client 1 q0: 6150001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6250001, q1=6350000. -> client 1 q0: 6250001 LatSieveTime: 100 LatSieveTime: 109 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=6350001, q1=6450000. -> client 1 q0: 6350001 LatSieveTime: 96 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=6450001, q1=6550000. -> client 1 q0: 6450001 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=6550001, q1=6650000. -> client 1 q0: 6550001 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6650001, q1=6750000. -> client 1 q0: 6650001 LatSieveTime: 108 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 158 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 153 LatSieveTime: 159 LatSieveTime: 163 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 99 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 149 LatSieveTime: 157 LatSieveTime: 168 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 109 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 105 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 165 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 113 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 156 LatSieveTime: 159 LatSieveTime: 168 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=8350001, q1=8450000. -> client 1 q0: 8350001 LatSieveTime: 104 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8450001, q1=8550000. -> client 1 q0: 8450001 LatSieveTime: 112 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 157 LatSieveTime: 164 -> makeJobFile(): Adjusted to q0=8550001, q1=8650000. -> client 1 q0: 8550001 LatSieveTime: 113 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8650001, q1=8750000. -> client 1 q0: 8650001 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=8750001, q1=8850000. -> client 1 q0: 8750001 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=8850001, q1=8950000. -> client 1 q0: 8850001 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 156 LatSieveTime: 156 LatSieveTime: 164 -> makeJobFile(): Adjusted to q0=8950001, q1=9050000. -> client 1 q0: 8950001 LatSieveTime: 99 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 158 LatSieveTime: 159 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=9050001, q1=9150000. -> client 1 q0: 9050001 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 152 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=9150001, q1=9250000. -> client 1 q0: 9150001 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=9250001, q1=9350000. -> client 1 q0: 9250001 LatSieveTime: 109 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 155 LatSieveTime: 173 -> makeJobFile(): Adjusted to q0=9350001, q1=9450000. -> client 1 q0: 9350001 LatSieveTime: 98 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=9450001, q1=9550000. -> client 1 q0: 9450001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=9550001, q1=9650000. -> client 1 q0: 9550001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=9650001, q1=9750000. -> client 1 q0: 9650001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=9750001, q1=9850000. -> client 1 q0: 9750001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9850001, q1=9950000. -> client 1 q0: 9850001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9950001, q1=10050000. -> client 1 q0: 9950001 LatSieveTime: 91 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 152 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=10050001, q1=10150000. -> client 1 q0: 10050001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=10150001, q1=10250000. -> client 1 q0: 10150001 LatSieveTime: 103 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 163 -> makeJobFile(): Adjusted to q0=10250001, q1=10350000. -> client 1 q0: 10250001 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=10350001, q1=10450000. -> client 1 q0: 10350001 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=10450001, q1=10550000. -> client 1 q0: 10450001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 151 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=10550001, q1=10650000. -> client 1 q0: 10550001 LatSieveTime: 100 LatSieveTime: 106 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=10650001, q1=10750000. -> client 1 q0: 10650001 LatSieveTime: 103 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=10750001, q1=10850000. -> client 1 q0: 10750001 LatSieveTime: 100 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=10850001, q1=10950000. -> client 1 q0: 10850001 LatSieveTime: 98 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=10950001, q1=11050000. -> client 1 q0: 10950001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=11050001, q1=11150000. -> client 1 q0: 11050001 LatSieveTime: 91 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=11150001, q1=11250000. -> client 1 q0: 11150001 LatSieveTime: 93 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 154 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=11250001, q1=11350000. -> client 1 q0: 11250001 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=11350001, q1=11450000. -> client 1 q0: 11350001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 147 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=11450001, q1=11550000. -> client 1 q0: 11450001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=11550001, q1=11650000. -> client 1 q0: 11550001 LatSieveTime: 96 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=11650001, q1=11750000. -> client 1 q0: 11650001 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 151 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=11750001, q1=11850000. -> client 1 q0: 11750001 LatSieveTime: 93 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=11850001, q1=11950000. -> client 1 q0: 11850001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 105 LatSieveTime: 114 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=11950001, q1=12050000. -> client 1 q0: 11950001 LatSieveTime: 92 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=12050001, q1=12150000. -> client 1 q0: 12050001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=12150001, q1=12250000. -> client 1 q0: 12150001 LatSieveTime: 84 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 149 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=12250001, q1=12350000. -> client 1 q0: 12250001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=12350001, q1=12450000. -> client 1 q0: 12350001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=12450001, q1=12550000. -> client 1 q0: 12450001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=12550001, q1=12650000. -> client 1 q0: 12550001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=12650001, q1=12750000. -> client 1 q0: 12650001 LatSieveTime: 97 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=12750001, q1=12850000. -> client 1 q0: 12750001 LatSieveTime: 87 LatSieveTime: 104 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=12850001, q1=12950000. -> client 1 q0: 12850001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=12950001, q1=13050000. -> client 1 q0: 12950001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=13050001, q1=13150000. -> client 1 q0: 13050001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 146 Thu Jan 26 16:23:37 2023 Thu Jan 26 16:23:37 2023 Thu Jan 26 16:23:37 2023 Msieve v. 1.52 (SVN 927) Thu Jan 26 16:23:37 2023 random seeds: 04c6d600 3ff11e52 Thu Jan 26 16:23:37 2023 factoring 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 (134 digits) Thu Jan 26 16:23:38 2023 searching for 15-digit factors Thu Jan 26 16:23:38 2023 commencing number field sieve (134-digit input) Thu Jan 26 16:23:38 2023 R0: -56444351280514016912701798 Thu Jan 26 16:23:38 2023 R1: 300137870664137 Thu Jan 26 16:23:38 2023 A0: 1080948453631386584960827974525 Thu Jan 26 16:23:38 2023 A1: -92628153108025458897358705 Thu Jan 26 16:23:38 2023 A2: 4879017912280706611178 Thu Jan 26 16:23:38 2023 A3: -4336376672207038 Thu Jan 26 16:23:38 2023 A4: -76018690578 Thu Jan 26 16:23:38 2023 A5: 24300 Thu Jan 26 16:23:38 2023 skew 253133.61, size 5.122e-013, alpha -5.303, combined = 4.129e-011 rroots = 3 Thu Jan 26 16:23:38 2023 Thu Jan 26 16:23:38 2023 commencing relation filtering Thu Jan 26 16:23:38 2023 estimated available RAM is 65413.5 MB Thu Jan 26 16:23:38 2023 commencing duplicate removal, pass 1 Thu Jan 26 16:24:20 2023 found 2997255 hash collisions in 21146857 relations Thu Jan 26 16:24:42 2023 added 120744 free relations Thu Jan 26 16:24:42 2023 commencing duplicate removal, pass 2 Thu Jan 26 16:24:50 2023 found 2679546 duplicates and 18588055 unique relations Thu Jan 26 16:24:50 2023 memory use: 98.6 MB Thu Jan 26 16:24:50 2023 reading ideals above 720000 Thu Jan 26 16:24:50 2023 commencing singleton removal, initial pass Thu Jan 26 16:25:56 2023 memory use: 689.0 MB Thu Jan 26 16:25:56 2023 reading all ideals from disk Thu Jan 26 16:25:56 2023 memory use: 581.9 MB Thu Jan 26 16:25:57 2023 keeping 20707641 ideals with weight <= 200, target excess is 119675 Thu Jan 26 16:25:58 2023 commencing in-memory singleton removal Thu Jan 26 16:25:59 2023 begin with 18588055 relations and 20707641 unique ideals Thu Jan 26 16:26:10 2023 reduce to 6488696 relations and 6458204 ideals in 22 passes Thu Jan 26 16:26:10 2023 max relations containing the same ideal: 95 Thu Jan 26 16:26:11 2023 filtering wants 1000000 more relations Thu Jan 26 16:26:11 2023 elapsed time 00:02:34 -> makeJobFile(): Adjusted to q0=13150001, q1=13250000. -> client 1 q0: 13150001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 148 LatSieveTime: 148 Thu Jan 26 16:28:45 2023 Thu Jan 26 16:28:45 2023 Thu Jan 26 16:28:45 2023 Msieve v. 1.52 (SVN 927) Thu Jan 26 16:28:45 2023 random seeds: 10ee3a84 2ec36cdd Thu Jan 26 16:28:45 2023 factoring 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 (134 digits) Thu Jan 26 16:28:46 2023 searching for 15-digit factors Thu Jan 26 16:28:46 2023 commencing number field sieve (134-digit input) Thu Jan 26 16:28:46 2023 R0: -56444351280514016912701798 Thu Jan 26 16:28:46 2023 R1: 300137870664137 Thu Jan 26 16:28:46 2023 A0: 1080948453631386584960827974525 Thu Jan 26 16:28:46 2023 A1: -92628153108025458897358705 Thu Jan 26 16:28:46 2023 A2: 4879017912280706611178 Thu Jan 26 16:28:46 2023 A3: -4336376672207038 Thu Jan 26 16:28:46 2023 A4: -76018690578 Thu Jan 26 16:28:46 2023 A5: 24300 Thu Jan 26 16:28:46 2023 skew 253133.61, size 5.122e-013, alpha -5.303, combined = 4.129e-011 rroots = 3 Thu Jan 26 16:28:46 2023 Thu Jan 26 16:28:46 2023 commencing relation filtering Thu Jan 26 16:28:46 2023 estimated available RAM is 65413.5 MB Thu Jan 26 16:28:46 2023 commencing duplicate removal, pass 1 Thu Jan 26 16:29:33 2023 found 3054457 hash collisions in 21484272 relations Thu Jan 26 16:29:54 2023 added 42 free relations Thu Jan 26 16:29:54 2023 commencing duplicate removal, pass 2 Thu Jan 26 16:30:02 2023 found 2725975 duplicates and 18758339 unique relations Thu Jan 26 16:30:02 2023 memory use: 98.6 MB Thu Jan 26 16:30:02 2023 reading ideals above 720000 Thu Jan 26 16:30:03 2023 commencing singleton removal, initial pass Thu Jan 26 16:31:09 2023 memory use: 689.0 MB Thu Jan 26 16:31:09 2023 reading all ideals from disk Thu Jan 26 16:31:09 2023 memory use: 587.3 MB Thu Jan 26 16:31:10 2023 keeping 20781288 ideals with weight <= 200, target excess is 120161 Thu Jan 26 16:31:11 2023 commencing in-memory singleton removal Thu Jan 26 16:31:12 2023 begin with 18758339 relations and 20781288 unique ideals Thu Jan 26 16:31:23 2023 reduce to 6726070 relations and 6637217 ideals in 21 passes Thu Jan 26 16:31:23 2023 max relations containing the same ideal: 98 Thu Jan 26 16:31:23 2023 filtering wants 1000000 more relations Thu Jan 26 16:31:23 2023 elapsed time 00:02:38 -> makeJobFile(): Adjusted to q0=13250001, q1=13350000. -> client 1 q0: 13250001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 150 Thu Jan 26 16:34:00 2023 Thu Jan 26 16:34:00 2023 Thu Jan 26 16:34:00 2023 Msieve v. 1.52 (SVN 927) Thu Jan 26 16:34:00 2023 random seeds: 15bee864 041fc1d6 Thu Jan 26 16:34:00 2023 factoring 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 (134 digits) Thu Jan 26 16:34:00 2023 searching for 15-digit factors Thu Jan 26 16:34:00 2023 commencing number field sieve (134-digit input) Thu Jan 26 16:34:00 2023 R0: -56444351280514016912701798 Thu Jan 26 16:34:00 2023 R1: 300137870664137 Thu Jan 26 16:34:00 2023 A0: 1080948453631386584960827974525 Thu Jan 26 16:34:00 2023 A1: -92628153108025458897358705 Thu Jan 26 16:34:00 2023 A2: 4879017912280706611178 Thu Jan 26 16:34:00 2023 A3: -4336376672207038 Thu Jan 26 16:34:00 2023 A4: -76018690578 Thu Jan 26 16:34:00 2023 A5: 24300 Thu Jan 26 16:34:00 2023 skew 253133.61, size 5.122e-013, alpha -5.303, combined = 4.129e-011 rroots = 3 Thu Jan 26 16:34:00 2023 Thu Jan 26 16:34:00 2023 commencing relation filtering Thu Jan 26 16:34:00 2023 estimated available RAM is 65413.5 MB Thu Jan 26 16:34:00 2023 commencing duplicate removal, pass 1 Thu Jan 26 16:34:45 2023 found 3105129 hash collisions in 21701925 relations Thu Jan 26 16:35:06 2023 added 39 free relations Thu Jan 26 16:35:06 2023 commencing duplicate removal, pass 2 Thu Jan 26 16:35:15 2023 found 2772922 duplicates and 18929042 unique relations Thu Jan 26 16:35:15 2023 memory use: 98.6 MB Thu Jan 26 16:35:15 2023 reading ideals above 720000 Thu Jan 26 16:35:15 2023 commencing singleton removal, initial pass Thu Jan 26 16:36:22 2023 memory use: 689.0 MB Thu Jan 26 16:36:22 2023 reading all ideals from disk Thu Jan 26 16:36:22 2023 memory use: 592.7 MB Thu Jan 26 16:36:23 2023 keeping 20854399 ideals with weight <= 200, target excess is 120650 Thu Jan 26 16:36:24 2023 commencing in-memory singleton removal Thu Jan 26 16:36:25 2023 begin with 18929042 relations and 20854399 unique ideals Thu Jan 26 16:36:37 2023 reduce to 6967141 relations and 6818485 ideals in 21 passes Thu Jan 26 16:36:37 2023 max relations containing the same ideal: 99 Thu Jan 26 16:36:39 2023 relations with 0 large ideals: 443 Thu Jan 26 16:36:39 2023 relations with 1 large ideals: 1388 Thu Jan 26 16:36:39 2023 relations with 2 large ideals: 24130 Thu Jan 26 16:36:39 2023 relations with 3 large ideals: 177081 Thu Jan 26 16:36:39 2023 relations with 4 large ideals: 692312 Thu Jan 26 16:36:39 2023 relations with 5 large ideals: 1555868 Thu Jan 26 16:36:39 2023 relations with 6 large ideals: 2054505 Thu Jan 26 16:36:39 2023 relations with 7+ large ideals: 2461414 Thu Jan 26 16:36:39 2023 commencing 2-way merge Thu Jan 26 16:36:43 2023 reduce to 3841501 relation sets and 3693999 unique ideals Thu Jan 26 16:36:43 2023 ignored 1155 oversize relation sets Thu Jan 26 16:36:43 2023 commencing full merge Thu Jan 26 16:37:32 2023 memory use: 408.4 MB Thu Jan 26 16:37:32 2023 found 1894976 cycles, need 1892199 Thu Jan 26 16:37:32 2023 weight of 1892199 cycles is about 132769437 (70.17/cycle) Thu Jan 26 16:37:32 2023 distribution of cycle lengths: Thu Jan 26 16:37:32 2023 1 relations: 289346 Thu Jan 26 16:37:32 2023 2 relations: 252031 Thu Jan 26 16:37:32 2023 3 relations: 236872 Thu Jan 26 16:37:32 2023 4 relations: 203342 Thu Jan 26 16:37:32 2023 5 relations: 166917 Thu Jan 26 16:37:32 2023 6 relations: 139859 Thu Jan 26 16:37:32 2023 7 relations: 114144 Thu Jan 26 16:37:32 2023 8 relations: 91001 Thu Jan 26 16:37:32 2023 9 relations: 73125 Thu Jan 26 16:37:32 2023 10+ relations: 325562 Thu Jan 26 16:37:32 2023 heaviest cycle: 28 relations Thu Jan 26 16:37:33 2023 commencing cycle optimization Thu Jan 26 16:37:35 2023 start with 10832802 relations Thu Jan 26 16:37:48 2023 pruned 205677 relations Thu Jan 26 16:37:48 2023 memory use: 377.4 MB Thu Jan 26 16:37:48 2023 distribution of cycle lengths: Thu Jan 26 16:37:48 2023 1 relations: 289346 Thu Jan 26 16:37:48 2023 2 relations: 257452 Thu Jan 26 16:37:48 2023 3 relations: 244177 Thu Jan 26 16:37:48 2023 4 relations: 206272 Thu Jan 26 16:37:48 2023 5 relations: 169147 Thu Jan 26 16:37:48 2023 6 relations: 139549 Thu Jan 26 16:37:48 2023 7 relations: 113580 Thu Jan 26 16:37:48 2023 8 relations: 89268 Thu Jan 26 16:37:48 2023 9 relations: 71805 Thu Jan 26 16:37:48 2023 10+ relations: 311603 Thu Jan 26 16:37:48 2023 heaviest cycle: 28 relations Thu Jan 26 16:37:51 2023 RelProcTime: 231 Thu Jan 26 16:37:51 2023 elapsed time 00:03:51 Thu Jan 26 16:37:51 2023 Thu Jan 26 16:37:51 2023 Thu Jan 26 16:37:51 2023 Msieve v. 1.52 (SVN 927) Thu Jan 26 16:37:51 2023 random seeds: bc56e980 3a35d2bb Thu Jan 26 16:37:51 2023 factoring 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 (134 digits) Thu Jan 26 16:37:51 2023 searching for 15-digit factors Thu Jan 26 16:37:51 2023 commencing number field sieve (134-digit input) Thu Jan 26 16:37:51 2023 R0: -56444351280514016912701798 Thu Jan 26 16:37:51 2023 R1: 300137870664137 Thu Jan 26 16:37:51 2023 A0: 1080948453631386584960827974525 Thu Jan 26 16:37:51 2023 A1: -92628153108025458897358705 Thu Jan 26 16:37:51 2023 A2: 4879017912280706611178 Thu Jan 26 16:37:51 2023 A3: -4336376672207038 Thu Jan 26 16:37:51 2023 A4: -76018690578 Thu Jan 26 16:37:51 2023 A5: 24300 Thu Jan 26 16:37:51 2023 skew 253133.61, size 5.122e-013, alpha -5.303, combined = 4.129e-011 rroots = 3 Thu Jan 26 16:37:51 2023 Thu Jan 26 16:37:51 2023 commencing linear algebra Thu Jan 26 16:37:51 2023 read 1892199 cycles Thu Jan 26 16:37:54 2023 cycles contain 6522337 unique relations Thu Jan 26 16:38:07 2023 read 6522337 relations Thu Jan 26 16:38:14 2023 using 20 quadratic characters above 268435332 Thu Jan 26 16:38:31 2023 building initial matrix Thu Jan 26 16:39:11 2023 memory use: 817.7 MB Thu Jan 26 16:39:12 2023 read 1892199 cycles Thu Jan 26 16:39:12 2023 matrix is 1892006 x 1892199 (569.7 MB) with weight 174755874 (92.36/col) Thu Jan 26 16:39:12 2023 sparse part has weight 128536572 (67.93/col) Thu Jan 26 16:39:23 2023 filtering completed in 2 passes Thu Jan 26 16:39:23 2023 matrix is 1888287 x 1888479 (569.3 MB) with weight 174583338 (92.45/col) Thu Jan 26 16:39:23 2023 sparse part has weight 128476162 (68.03/col) Thu Jan 26 16:39:26 2023 matrix starts at (0, 0) Thu Jan 26 16:39:26 2023 matrix is 1888287 x 1888479 (569.3 MB) with weight 174583338 (92.45/col) Thu Jan 26 16:39:26 2023 sparse part has weight 128476162 (68.03/col) Thu Jan 26 16:39:26 2023 saving the first 48 matrix rows for later Thu Jan 26 16:39:27 2023 matrix includes 64 packed rows Thu Jan 26 16:39:27 2023 matrix is 1888239 x 1888479 (547.0 MB) with weight 139009507 (73.61/col) Thu Jan 26 16:39:27 2023 sparse part has weight 124501750 (65.93/col) Thu Jan 26 16:39:27 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Thu Jan 26 16:39:33 2023 commencing Lanczos iteration (32 threads) Thu Jan 26 16:39:33 2023 memory use: 434.7 MB Thu Jan 26 16:39:35 2023 linear algebra at 0.1%, ETA 0h41m Thu Jan 26 16:39:35 2023 checkpointing every 3640000 dimensions Thu Jan 26 17:16:44 2023 lanczos halted after 29862 iterations (dim = 1888239) Thu Jan 26 17:16:45 2023 recovered 29 nontrivial dependencies Thu Jan 26 17:16:45 2023 BLanczosTime: 2334 Thu Jan 26 17:16:45 2023 elapsed time 00:38:54 Thu Jan 26 17:16:45 2023 Thu Jan 26 17:16:45 2023 Thu Jan 26 17:16:45 2023 Msieve v. 1.52 (SVN 927) Thu Jan 26 17:16:45 2023 random seeds: b97cf550 840db5f0 Thu Jan 26 17:16:45 2023 factoring 13921995187519639041759321199341451777015386199352277174236269546807499366183625522464413568155954183731683925318205110502624477686071 (134 digits) Thu Jan 26 17:16:46 2023 searching for 15-digit factors Thu Jan 26 17:16:46 2023 commencing number field sieve (134-digit input) Thu Jan 26 17:16:46 2023 R0: -56444351280514016912701798 Thu Jan 26 17:16:46 2023 R1: 300137870664137 Thu Jan 26 17:16:46 2023 A0: 1080948453631386584960827974525 Thu Jan 26 17:16:46 2023 A1: -92628153108025458897358705 Thu Jan 26 17:16:46 2023 A2: 4879017912280706611178 Thu Jan 26 17:16:46 2023 A3: -4336376672207038 Thu Jan 26 17:16:46 2023 A4: -76018690578 Thu Jan 26 17:16:46 2023 A5: 24300 Thu Jan 26 17:16:46 2023 skew 253133.61, size 5.122e-013, alpha -5.303, combined = 4.129e-011 rroots = 3 Thu Jan 26 17:16:46 2023 Thu Jan 26 17:16:46 2023 commencing square root phase Thu Jan 26 17:16:46 2023 reading relations for dependency 1 Thu Jan 26 17:16:46 2023 read 945481 cycles Thu Jan 26 17:16:47 2023 cycles contain 3261406 unique relations Thu Jan 26 17:16:55 2023 read 3261406 relations Thu Jan 26 17:17:05 2023 multiplying 3261406 relations Thu Jan 26 17:18:50 2023 multiply complete, coefficients have about 157.94 million bits Thu Jan 26 17:18:51 2023 initial square root is modulo 465739 Thu Jan 26 17:20:55 2023 GCD is 1, no factor found Thu Jan 26 17:20:55 2023 reading relations for dependency 2 Thu Jan 26 17:20:55 2023 read 944147 cycles Thu Jan 26 17:20:56 2023 cycles contain 3259572 unique relations Thu Jan 26 17:21:04 2023 read 3259572 relations Thu Jan 26 17:21:13 2023 multiplying 3259572 relations Thu Jan 26 17:22:59 2023 multiply complete, coefficients have about 157.85 million bits Thu Jan 26 17:23:00 2023 initial square root is modulo 462307 Thu Jan 26 17:25:04 2023 GCD is 1, no factor found Thu Jan 26 17:25:04 2023 reading relations for dependency 3 Thu Jan 26 17:25:04 2023 read 944579 cycles Thu Jan 26 17:25:05 2023 cycles contain 3261818 unique relations Thu Jan 26 17:25:13 2023 read 3261818 relations Thu Jan 26 17:25:22 2023 multiplying 3261818 relations Thu Jan 26 17:27:07 2023 multiply complete, coefficients have about 157.96 million bits Thu Jan 26 17:27:08 2023 initial square root is modulo 466673 Thu Jan 26 17:29:10 2023 GCD is 1, no factor found Thu Jan 26 17:29:10 2023 reading relations for dependency 4 Thu Jan 26 17:29:10 2023 read 943316 cycles Thu Jan 26 17:29:11 2023 cycles contain 3258846 unique relations Thu Jan 26 17:29:19 2023 read 3258846 relations Thu Jan 26 17:29:29 2023 multiplying 3258846 relations Thu Jan 26 17:31:15 2023 multiply complete, coefficients have about 157.82 million bits Thu Jan 26 17:31:16 2023 initial square root is modulo 461051 Thu Jan 26 17:33:20 2023 sqrtTime: 994 Thu Jan 26 17:33:20 2023 prp52 factor: 1744849584195400724066706863114835886967637371056783 Thu Jan 26 17:33:20 2023 prp82 factor: 7978908505135967377801058350609572452335622671115625057322231461581455922852139737 Thu Jan 26 17:33:20 2023 elapsed time 00:16:35 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 14:23:05 UTC 2022 年 12 月 26 日 (月) 23 時 23 分 5 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 4, 2023 21:02:47 UTC 2023 年 1 月 5 日 (木) 6 時 2 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 3, 2024 00:27:50 UTC 2024 年 10 月 3 日 (木) 9 時 27 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2214 | Thomas Kozlowski | October 3, 2024 00:43:46 UTC 2024 年 10 月 3 日 (木) 9 時 43 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:56:21 UTC 2023 年 1 月 19 日 (木) 19 時 56 分 21 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:29 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 3, 2024 00:57:39 UTC 2024 年 10 月 3 日 (木) 9 時 57 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:56:14 UTC 2023 年 1 月 19 日 (木) 19 時 56 分 14 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:24 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 24 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 25, 2023 09:18:27 UTC 2023 年 1 月 25 日 (水) 18 時 18 分 27 秒 (日本時間) |
composite number 合成数 | 9457268140047588708755657409398099310216865857342644654217624119743535860907014558548734956474364611746213963622917697303961227095756817508779094316186402984044764835553679884584597157424944678869391951713873<208> |
prime factors 素因数 | 2461449898430353786015180614936134774413<40> |
composite cofactor 合成数の残り | 3842153417820289689660597602086318035199856115894410947116404841739184666023782817738160390683800448922874347216626083475330310633150128780112679028783284604202284222421<169> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:391445867 Step 1 took 11073ms Step 2 took 5460ms ********** Factor found in step 2: 2461449898430353786015180614936134774413 Found prime factor of 40 digits: 2461449898430353786015180614936134774413 Composite cofactor 3842153417820289689660597602086318035199856115894410947116404841739184666023782817738160390683800448922874347216626083475330310633150128780112679028783284604202284222421 has 169 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 28, 2023 11:39:39 UTC 2023 年 1 月 28 日 (土) 20 時 39 分 39 秒 (日本時間) |
composite number 合成数 | 3842153417820289689660597602086318035199856115894410947116404841739184666023782817738160390683800448922874347216626083475330310633150128780112679028783284604202284222421<169> |
prime factors 素因数 | 2357048964765021848652526093773151056246001<43> 1630069411054140059597007557229653828703251716671158267257882933179360568898162380896583123747587450087619905405178622228656421<127> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:479263420 Step 1 took 6391ms Step 2 took 3125ms ********** Factor found in step 2: 2357048964765021848652526093773151056246001 Found prime factor of 43 digits: 2357048964765021848652526093773151056246001 Prime cofactor 1630069411054140059597007557229653828703251716671158267257882933179360568898162380896583123747587450087619905405178622228656421 has 127 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 24, 2023 21:09:03 UTC 2023 年 1 月 25 日 (水) 6 時 9 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:56:07 UTC 2023 年 1 月 19 日 (木) 19 時 56 分 7 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:19 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:59 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 59 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:13 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:51 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 51 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:50:08 UTC 2023 年 1 月 21 日 (土) 16 時 50 分 8 秒 (日本時間) |
composite cofactor 合成数の残り | 6746778437798875680401971753888164546666237428804712470608719928642240087361399573282841470314116204309010007244965751147400757432131949771738021827765694842885263271<166> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 13:12:26 UTC 2022 年 12 月 26 日 (月) 22 時 12 分 26 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 1, 2023 12:23:36 UTC 2023 年 1 月 1 日 (日) 21 時 23 分 36 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | September 9, 2024 09:31:34 UTC 2024 年 9 月 9 日 (月) 18 時 31 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 3, 2024 01:13:27 UTC 2024 年 10 月 3 日 (木) 10 時 13 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:43 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 43 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:48:10 UTC 2023 年 1 月 21 日 (土) 16 時 48 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:35 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 35 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:47:58 UTC 2023 年 1 月 21 日 (土) 16 時 47 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 3, 2024 01:29:16 UTC 2024 年 10 月 3 日 (木) 10 時 29 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:33:28 UTC 2023 年 1 月 13 日 (金) 21 時 33 分 28 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 01:33:07 UTC 2024 年 10 月 3 日 (木) 10 時 33 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:33:39 UTC 2023 年 1 月 13 日 (金) 21 時 33 分 39 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 01:36:56 UTC 2024 年 10 月 3 日 (木) 10 時 36 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:33:48 UTC 2023 年 1 月 13 日 (金) 21 時 33 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 01:40:47 UTC 2024 年 10 月 3 日 (木) 10 時 40 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:33:57 UTC 2023 年 1 月 13 日 (金) 21 時 33 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 01:44:40 UTC 2024 年 10 月 3 日 (木) 10 時 44 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 19, 2023 10:22:06 UTC 2023 年 1 月 19 日 (木) 19 時 22 分 6 秒 (日本時間) |
2350 | Ignacio Santos | July 19, 2024 07:57:36 UTC 2024 年 7 月 19 日 (金) 16 時 57 分 36 秒 (日本時間) | |||
45 | 11e6 | 3720 | Thomas Kozlowski | July 21, 2024 15:37:18 UTC 2024 年 7 月 22 日 (月) 0 時 37 分 18 秒 (日本時間) | |
50 | 43e6 | 1792 / 6586 | Dmitry Domanov | July 23, 2024 17:31:20 UTC 2024 年 7 月 24 日 (水) 2 時 31 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2212 | Thomas Kozlowski | October 3, 2024 02:00:36 UTC 2024 年 10 月 3 日 (木) 11 時 0 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 3, 2024 02:14:44 UTC 2024 年 10 月 3 日 (木) 11 時 14 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:34:06 UTC 2023 年 1 月 13 日 (金) 21 時 34 分 6 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:18:36 UTC 2024 年 10 月 3 日 (木) 11 時 18 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:34:15 UTC 2023 年 1 月 13 日 (金) 21 時 34 分 15 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:22:09 UTC 2024 年 10 月 3 日 (木) 11 時 22 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:27 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 27 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:46:52 UTC 2023 年 1 月 21 日 (土) 16 時 46 分 52 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 21, 2023 07:41:22 UTC 2023 年 1 月 21 日 (土) 16 時 41 分 22 秒 (日本時間) |
composite number 合成数 | 31496636727299128501962766699784713596109077979832399329545138652756328119001551226279817693977049739671907386886661161357635269448423223301875833232930331310149130408508734795015847479136082565241961491788903946411853524518632494057927968305157490735467122594021<263> |
prime factors 素因数 | 70217435449433109905343361696327855344567199<44> |
composite cofactor 合成数の残り | 448558631139146964485560542188819805148680057139610630453835382143630955708837190761940122601308637210280294837340687588680610194659552303575013326496817149304829613444561483661454548517163396132505167601875105724054779<219> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @6ccbae144bdd with GMP-ECM 7.0.5-dev on Fri Jan 20 02:20:26 2023 Input number is 31496636727299128501962766699784713596109077979832399329545138652756328119001551226279817693977049739671907386886661161357635269448423223301875833232930331310149130408508734795015847479136082565241961491788903946411853524518632494057927968305157490735467122594021 (263 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:4230266413 Step 1 took 0ms Step 2 took 16665ms ********** Factor found in step 2: 70217435449433109905343361696327855344567199 Found prime factor of 44 digits: 70217435449433109905343361696327855344567199 Composite cofactor 448558631139146964485560542188819805148680057139610630453835382143630955708837190761940122601308637210280294837340687588680610194659552303575013326496817149304829613444561483661454548517163396132505167601875105724054779 has 219 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 19, 2023 10:55:20 UTC 2023 年 1 月 19 日 (木) 19 時 55 分 20 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 21, 2023 07:41:16 UTC 2023 年 1 月 21 日 (土) 16 時 41 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 3, 2024 02:37:53 UTC 2024 年 10 月 3 日 (木) 11 時 37 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:34:25 UTC 2023 年 1 月 13 日 (金) 21 時 34 分 25 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 02:41:51 UTC 2024 年 10 月 3 日 (木) 11 時 41 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:38:25 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 25 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:38:25 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 25 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:38:25 UTC 2022 年 12 月 30 日 (金) 19 時 38 分 25 秒 (日本時間) |