name 名前 | Shaopu Lin |
---|---|
date 日付 | March 23, 2007 17:36:06 UTC 2007 年 3 月 24 日 (土) 2 時 36 分 6 秒 (日本時間) |
composite number 合成数 | 49060932983944003138619507865794328431537398530751722286000745421350817401943951719152669975767973<98> |
prime factors 素因数 | 339732985011027186094197732510445277293910533<45> 144410272621457596142773322790127495868916847945915681<54> |
factorization results 素因数分解の結果 | Fri Mar 23 14:54:47 2007 Fri Mar 23 14:54:47 2007 Fri Mar 23 14:54:47 2007 Msieve v. 1.17 Fri Mar 23 14:54:47 2007 random seeds: 43e71c9a 60c79983 Fri Mar 23 14:54:47 2007 factoring 49060932983944003138619507865794328431537398530751722286000745421350817401943951719152669975767973 (98 digits) Fri Mar 23 14:54:48 2007 commencing quadratic sieve (98-digit input) Fri Mar 23 14:54:48 2007 using multiplier of 13 Fri Mar 23 14:54:48 2007 sieve interval: 9 blocks of size 65536 Fri Mar 23 14:54:48 2007 processing polynomials in batches of 6 Fri Mar 23 14:54:48 2007 using a sieve bound of 2500601 (91765 primes) Fri Mar 23 14:54:48 2007 using large prime bound of 375090150 (28 bits) Fri Mar 23 14:54:48 2007 using double large prime bound of 2712964789985100 (43-52 bits) Fri Mar 23 14:54:48 2007 using trial factoring cutoff of 57 bits Fri Mar 23 14:54:48 2007 polynomial 'A' values have 13 factors Sat Mar 24 01:26:18 2007 92124 relations (23135 full + 68989 combined from 1351734 partial), need 91861 Sat Mar 24 01:26:19 2007 begin with 1374869 relations Sat Mar 24 01:26:22 2007 reduce to 237829 relations in 11 passes Sat Mar 24 01:26:22 2007 attempting to read 237829 relations Sat Mar 24 01:26:26 2007 recovered 237829 relations Sat Mar 24 01:26:26 2007 recovered 225415 polynomials Sat Mar 24 01:26:27 2007 attempting to build 92124 cycles Sat Mar 24 01:26:27 2007 found 92124 cycles in 5 passes Sat Mar 24 01:26:27 2007 distribution of cycle lengths: Sat Mar 24 01:26:27 2007 length 1 : 23135 Sat Mar 24 01:26:27 2007 length 2 : 16209 Sat Mar 24 01:26:27 2007 length 3 : 15558 Sat Mar 24 01:26:27 2007 length 4 : 12658 Sat Mar 24 01:26:27 2007 length 5 : 9124 Sat Mar 24 01:26:27 2007 length 6 : 6091 Sat Mar 24 01:26:27 2007 length 7 : 4022 Sat Mar 24 01:26:27 2007 length 9+: 5327 Sat Mar 24 01:26:27 2007 largest cycle: 19 relations Sat Mar 24 01:26:28 2007 matrix is 91765 x 92124 with weight 5948053 (avg 64.57/col) Sat Mar 24 01:26:29 2007 filtering completed in 3 passes Sat Mar 24 01:26:29 2007 matrix is 90084 x 90148 with weight 5741377 (avg 63.69/col) Sat Mar 24 01:26:30 2007 saving the first 48 matrix rows for later Sat Mar 24 01:26:30 2007 matrix is 90036 x 90148 with weight 4391751 (avg 48.72/col) Sat Mar 24 01:26:30 2007 matrix includes 32 packed rows Sat Mar 24 01:31:47 2007 lanczos halted after 1425 iterations Sat Mar 24 01:31:48 2007 recovered 14 nontrivial dependencies Sat Mar 24 01:31:50 2007 prp45 factor: 339732985011027186094197732510445277293910533 Sat Mar 24 01:31:50 2007 prp54 factor: 144410272621457596142773322790127495868916847945915681 Sat Mar 24 01:31:50 2007 elapsed time 10:37:03 |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 25, 2007 20:40:31 UTC 2007 年 3 月 26 日 (月) 5 時 40 分 31 秒 (日本時間) |
composite number 合成数 | 42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691<116> |
prime factors 素因数 | 23055346723785830899288317321960983887657807<44> 1824138707895749513832021600956777695371243638120294559951871173502726613<73> |
factorization results 素因数分解の結果 | Number: n N=42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691 ( 116 digits) SNFS difficulty: 137 digits. Divisors found: r1=23055346723785830899288317321960983887657807 (pp44) r2=1824138707895749513832021600956777695371243638120294559951871173502726613 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.70 hours. Scaled time: 9.21 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_0_136_1 n: 42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691 type: snfs skew: 1 deg: 5 c5: 25 c0: 2 m: 2000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:230209, AFBsize:229762, largePrimes:5695614 encountered Relations: rels:5305013, finalFF:609531 Max relations in full relation-set: 28 Initial matrix: 460035 x 609531 with sparse part having weight 16764403. Pruned matrix : 274172 x 276536 with weight 5369499. Total sieving time: 6.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.71 hours. Total square root time: 0.11 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,75000 total time: 7.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 24, 2007 08:11:49 UTC 2007 年 3 月 24 日 (土) 17 時 11 分 49 秒 (日本時間) |
composite number 合成数 | 2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611<133> |
prime factors 素因数 | 7102095496029555951338486428062736055043334947960741098720689<61> 315482054875753501037036269251586513863489506091455405288439226913423699<72> |
factorization results 素因数分解の結果 | Number: 30001_139 N=2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611 ( 133 digits) SNFS difficulty: 140 digits. Divisors found: r1=7102095496029555951338486428062736055043334947960741098720689 (pp61) r2=315482054875753501037036269251586513863489506091455405288439226913423699 (pp72) Version: GGNFS-0.77.1-20050930-k8 Total time: 8.58 hours. Scaled time: 7.77 units (timescale=0.905). Factorization parameters were as follows: n: 2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611 m: 10000000000000000000000000000 c5: 2 c0: 5 skew: 1.2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1150001) Primes: RFBsize:100021, AFBsize:99363, largePrimes:1578992 encountered Relations: rels:1629798, finalFF:241123 Max relations in full relation-set: 28 Initial matrix: 199449 x 241123 with sparse part having weight 10143150. Pruned matrix : 172207 x 173268 with weight 6295764. Total sieving time: 8.46 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 8.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS). |
execution environment 実行環境 | Core 2 Duo E6300@2.33GHz |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 25, 2007 12:26:14 UTC 2007 年 3 月 25 日 (日) 21 時 26 分 14 秒 (日本時間) |
composite number 合成数 | 30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183<137> |
prime factors 素因数 | 1385099246529648770253437136267455844731<40> 41102459480233672086378912659093765960173<41> 541102285545511773447658741193840771596059733459284964441<57> |
factorization results 素因数分解の結果 | Number: 40001_141 N=30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183 ( 137 digits) SNFS difficulty: 142 digits. Divisors found: r1=1385099246529648770253437136267455844731 (pp40) r2=41102459480233672086378912659093765960173 (pp41) r3=541102285545511773447658741193840771596059733459284964441 (pp57) Version: GGNFS-0.77.1-20050930-k8 Total time: 7.40 hours. Scaled time: 6.62 units (timescale=0.895). Factorization parameters were as follows: n: 30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183 m: 20000000000000000000000000000 c5: 5 c0: 4 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114197, largePrimes:2653362 encountered Relations: rels:2673267, finalFF:324511 Max relations in full relation-set: 28 Initial matrix: 228418 x 324511 with sparse part having weight 19927266. Pruned matrix : 177819 x 179025 with weight 9374541. Total sieving time: 7.21 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 7.40 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS). |
execution environment 実行環境 | Core 2 Duo E6300@2.33GHz |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 25, 2007 23:55:38 UTC 2007 年 3 月 26 日 (月) 8 時 55 分 38 秒 (日本時間) |
composite number 合成数 | 3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009<142> |
prime factors 素因数 | 2184156109565083400994331504190413<34> 185296227258331476479382730913150879294782961<45> 8833287103024449941246276528945173645345205610821578498935895813<64> |
factorization results 素因数分解の結果 | Number: 40001_146 N=3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009 ( 142 digits) SNFS difficulty: 147 digits. Divisors found: r1=2184156109565083400994331504190413 (pp34) r2=185296227258331476479382730913150879294782961 (pp45) r3=8833287103024449941246276528945173645345205610821578498935895813 (pp64) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.10 hours. Scaled time: 10.07 units (timescale=0.907). Factorization parameters were as follows: n: 3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009 m: 200000000000000000000000000000 c5: 5 c0: 4 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135393, largePrimes:2641367 encountered Relations: rels:2616307, finalFF:305586 Max relations in full relation-set: 28 Initial matrix: 270531 x 305586 with sparse part having weight 16440611. Pruned matrix : 246464 x 247880 with weight 11245106. Total sieving time: 10.77 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.26 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 11.10 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS). |
execution environment 実行環境 | Core 2 Duo E6300@2.33GHz |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 27, 2007 11:49:29 UTC 2007 年 3 月 27 日 (火) 20 時 49 分 29 秒 (日本時間) |
composite number 合成数 | 536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527<138> |
prime factors 素因数 | 6442862514461602713781483216855754068454488467466706327<55> 83194530963377483428159654973172315536690121265505564170886744203220844329565112601<83> |
factorization results 素因数分解の結果 | Number: n N=536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527 ( 138 digits) SNFS difficulty: 147 digits. Divisors found: r1=6442862514461602713781483216855754068454488467466706327 (pp55) r2=83194530963377483428159654973172315536690121265505564170886744203220844329565112601 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.48 hours. Scaled time: 14.92 units (timescale=1.196). Factorization parameters were as follows: name: KA_4_0_146_1 n: 536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527 type: snfs skew: 1 deg: 5 c5: 25 c0: 2 m: 200000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:230209, AFBsize:229762, largePrimes:6131938 encountered Relations: rels:5626042, finalFF:530810 Max relations in full relation-set: 28 Initial matrix: 460035 x 530810 with sparse part having weight 20240880. Pruned matrix : 379958 x 382322 with weight 10978773. Total sieving time: 10.35 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.87 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 12.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 28, 2007 18:00:10 UTC 2007 年 3 月 29 日 (木) 3 時 0 分 10 秒 (日本時間) |
composite number 合成数 | 128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729<111> |
prime factors 素因数 | 3183635597702264953513076409369407360357<40> 40455156645999949292666657280615001667447267467607551015375410772491397<71> |
factorization results 素因数分解の結果 | Number: n N=128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729 ( 111 digits) Divisors found: r1=3183635597702264953513076409369407360357 (pp40) r2=40455156645999949292666657280615001667447267467607551015375410772491397 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.67 hours. Scaled time: 27.47 units (timescale=1.030). Factorization parameters were as follows: name: KA_4_0_152_1 n: 128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729 skew: 14591.00 # norm 2.53e+15 c5: 36480 c4: -8024516008 c3: -131143870906614 c2: 1592694215541131949 c1: 3060500624120386397906 c0: -21438494886951988228976328 # alpha -5.87 Y1: 296695470809 Y0: -1286983226642882909381 # Murphy_E 9.13e-10 # M 81130056266918107766482766309667539814896027352219876292127076829404897674136589364351342555408655652570877199 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [800000, 1600001) Primes: RFBsize:230209, AFBsize:230219, largePrimes:7117685 encountered Relations: rels:6769651, finalFF:521875 Max relations in full relation-set: 48 Initial matrix: 460509 x 521875 with sparse part having weight 43506096. Pruned matrix : 404830 x 407196 with weight 25473744. Total sieving time: 22.50 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.57 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 26.67 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate). |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 3, 2007 05:32:17 UTC 2007 年 4 月 3 日 (火) 14 時 32 分 17 秒 (日本時間) |
composite number 合成数 | 33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889<149> |
prime factors 素因数 | 63329687397592132145980877526417873030946686466430656344663544587463<68> 526652909060236900579923203193911048657743442112564846958614597680814721066334503<81> |
factorization results 素因数分解の結果 | Number: n N=33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889 ( 149 digits) SNFS difficulty: 155 digits. Divisors found: r1=63329687397592132145980877526417873030946686466430656344663544587463 (pp68) r2=526652909060236900579923203193911048657743442112564846958614597680814721066334503 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.81 hours. Scaled time: 30.85 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_0_154_1 n: 33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889 type: snfs skew: 1 deg: 5 c5: 4 c0: 1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216491, largePrimes:6134762 encountered Relations: rels:5639317, finalFF:512645 Max relations in full relation-set: 28 Initial matrix: 433371 x 512645 with sparse part having weight 23754018. Pruned matrix : 355721 x 357951 with weight 13043634. Total sieving time: 23.48 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.02 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 25.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 16, 2007 19:25:04 UTC 2007 年 4 月 17 日 (火) 4 時 25 分 4 秒 (日本時間) |
composite number 合成数 | 30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893<152> |
prime factors 素因数 | 46712194341161070054665870112933244096080435997557581817007450649<65> 647855429982898406721265781990638069224565341233236221727068040304877394852504476748157<87> |
factorization results 素因数分解の結果 | Number: n N=30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893 ( 152 digits) SNFS difficulty: 157 digits. Divisors found: r1=46712194341161070054665870112933244096080435997557581817007450649 (pp65) r2=647855429982898406721265781990638069224565341233236221727068040304877394852504476748157 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.48 hours. Scaled time: 37.71 units (timescale=1.324). Factorization parameters were as follows: name: KA_4_0_156_1 n: 30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893 skew: 0.60 deg: 5 c5: 25 c0: 2 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216361, largePrimes:6961579 encountered Relations: rels:6487180, finalFF:542616 Max relations in full relation-set: 48 Initial matrix: 433241 x 542616 with sparse part having weight 39514323. Pruned matrix : 341666 x 343896 with weight 20499298. Total sieving time: 25.18 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.92 hours. Total square root time: 0.19 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+ |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 28, 2007 04:50:24 UTC 2007 年 3 月 28 日 (水) 13 時 50 分 24 秒 (日本時間) |
composite number 合成数 | 521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081<108> |
prime factors 素因数 | 365498852272237776807460331845037<33> 1425813087563283653143535013962362288561660254770001654328238688640363615813<76> |
factorization results 素因数分解の結果 | Number: n N=521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081 ( 108 digits) Divisors found: r1=365498852272237776807460331845037 (pp33) r2=1425813087563283653143535013962362288561660254770001654328238688640363615813 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.75 hours. Scaled time: 12.43 units (timescale=0.599). Factorization parameters were as follows: name: n n: 521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081 skew: 40447.48 # norm 6.43e+14 c5: 9420 c4: -213953527 c3: -44488420510166 c2: 182961566955378338 c1: 36117031924044341100564 c0: 205146067720706725943643840 # alpha -5.48 Y1: 186574095169 Y0: -560505913690756339519 # Murphy_E 1.20e-09 # M 494134786016776996625202565666137705191913286564593986533208980979121777485925174812435415313414375388025445 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1750001) Primes: RFBsize:183072, AFBsize:182852, largePrimes:4389613 encountered Relations: rels:4471974, finalFF:474620 Max relations in full relation-set: 28 Initial matrix: 366004 x 474620 with sparse part having weight 34411549. Pruned matrix : 274273 x 276167 with weight 17131889. Total sieving time: 16.62 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.50 hours. Total square root time: 0.40 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 20.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 3, 2007 13:35:20 UTC 2007 年 4 月 3 日 (火) 22 時 35 分 20 秒 (日本時間) |
composite number 合成数 | 56459101597299173131540124311712558691254614107274775151671437879863918487008698407760289530410585197259135090208799841<119> |
prime factors 素因数 | 7033585355523255976857977544415093<34> 8027072786280128866004929270459039253458495879153981797095597384581952824282996219837<85> |
factorization results 素因数分解の結果 | Input number is 56459101597299173131540124311712558691254614107274775151671437879863918487008698407760289530410585197259135090208799841 (119 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1124441233 Step 1 took 254401ms Step 2 took 83480ms ********** Factor found in step 2: 7033585355523255976857977544415093 Found probable prime factor of 34 digits: 7033585355523255976857977544415093 Probable prime cofactor 8027072786280128866004929270459039253458495879153981797095597384581952824282996219837 has 85 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Kenji Ibusuki |
---|---|
date 日付 | March 1, 2008 23:56:40 UTC 2008 年 3 月 2 日 (日) 8 時 56 分 40 秒 (日本時間) |
composite number 合成数 | 66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939<134> |
prime factors 素因数 | 7779120398579544883895822513251508700047607501669183213883240931<64> 8521353913589854424771282379603548481995888227244581651836279018886769<70> |
factorization results 素因数分解の結果 | Number: 40001_165 N=66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939 ( 134 digits) SNFS difficulty: 165 digits. Divisors found: r1=7779120398579544883895822513251508700047607501669183213883240931 (pp64) r2=8521353913589854424771282379603548481995888227244581651836279018886769 (pp70) Version: GGNFS-0.77.1 Total time: 51.86 hours. Scaled time: 150.19 units (timescale=2.896). Factorization parameters were as follows: n: 66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939 m: 1000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 5000001) Relations: rels:6616882, finalFF:1050519 Initial matrix: 696753 x 1050519 with sparse part having weight 62728387. Pruned matrix : 562745 x 566292 with weight 26430629. Total sieving time: 50.22 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.47 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 51.86 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS-0.77.1 |
execution environment 実行環境 | Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin |
name 名前 | Serge Batalov |
---|---|
date 日付 | August 22, 2008 02:55:27 UTC 2008 年 8 月 22 日 (金) 11 時 55 分 27 秒 (日本時間) |
composite number 合成数 | 115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413<126> |
prime factors 素因数 | 338717486802811900673981008844119653096357974239957<51> 341928753479598700237304527485927308118819144008567869244980664981674968409<75> |
factorization results 素因数分解の結果 | Number: 40001_166 N=115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413 ( 126 digits) SNFS difficulty: 166 digits. Divisors found: r1=338717486802811900673981008844119653096357974239957 r2=341928753479598700237304527485927308118819144008567869244980664981674968409 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.694). Factorization parameters were as follows: n: 115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 40 c0: 1 skew: 0.48 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 3900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 741740 x 741988 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.20 hours. Time per square root: 0.40 hours. * 2 Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 23.50 hours. |
software ソフトウェア | Msieve 1.36 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 904 | Jo Yeong Uk | July 24, 2008 07:46:50 UTC 2008 年 7 月 24 日 (木) 16 時 46 分 50 秒 (日本時間) | |
40 | 3e6 | 147 / 2089 | Jo Yeong Uk | July 24, 2008 07:46:55 UTC 2008 年 7 月 24 日 (木) 16 時 46 分 55 秒 (日本時間) |
name 名前 | Kenji Ibusuki |
---|---|
date 日付 | March 20, 2008 13:54:06 UTC 2008 年 3 月 20 日 (木) 22 時 54 分 6 秒 (日本時間) |
composite number 合成数 | 1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681<157> |
prime factors 素因数 | 50122020190096192578898087923762046470485403737718517<53> 23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893<104> |
factorization results 素因数分解の結果 | Number: 40001_170 N=1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: r1=50122020190096192578898087923762046470485403737718517 (pp53) r2=23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893 (pp104) Version: GGNFS-0.77.1 Total time: 78.39 hours. Scaled time: 228.11 units (timescale=2.910). Factorization parameters were as follows: n: 1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681 m: 10000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 6700001) Relations: rels:6317037, finalFF:948920 Initial matrix: 825604 x 948920 with sparse part having weight 54336203. Pruned matrix : 777410 x 781602 with weight 36172201. Total sieving time: 75.20 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.98 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 78.39 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS-0.77.1 snfs |
execution environment 実行環境 | Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin |
name 名前 | Robert Backstrom |
---|---|
date 日付 | March 26, 2007 08:01:41 UTC 2007 年 3 月 26 日 (月) 17 時 1 分 41 秒 (日本時間) |
composite number 合成数 | 212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527<105> |
prime factors 素因数 | 3392183977152881040429986688657533088590419<43> 62705813661270651499429351472678860702534232323580249870005333<62> |
factorization results 素因数分解の結果 | Number: n N=212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527 ( 105 digits) Divisors found: r1=3392183977152881040429986688657533088590419 (pp43) r2=62705813661270651499429351472678860702534232323580249870005333 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.75 hours. Scaled time: 10.64 units (timescale=0.990). Factorization parameters were as follows: name: KA_4_0_170_1 n: 212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527 skew: 14380.93 # norm 3.19e+14 c5: 48600 c4: -227361600 c3: -38191978082154 c2: 33010484434394054 c1: 3025096088669510617169 c0: -3257925683541972899940235 # alpha -6.19 Y1: 130154725151 Y0: -84767780379198762372 # Murphy_E 1.99e-09 # M 125472220538461468590658822163936950389663905049084161686308835154986406703146680462682841295132032235112 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:183072, AFBsize:182819, largePrimes:4056153 encountered Relations: rels:4064115, finalFF:467875 Max relations in full relation-set: 28 Initial matrix: 365969 x 467875 with sparse part having weight 24168525. Pruned matrix : 265860 x 267753 with weight 9755268. Total sieving time: 9.31 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.10 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 10.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 16, 2008 12:22:36 UTC 2008 年 10 月 16 日 (木) 21 時 22 分 36 秒 (日本時間) |
composite number 合成数 | 114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407<153> |
prime factors 素因数 | 1031387844700915926546275570854626898299232457527<49> 4950984722498265333902822196208270860948138231881<49> 22352008973784616122462526641600512964655392476154917761<56> |
factorization results 素因数分解の結果 | Number: 40001_173 N=114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407 ( 153 digits) SNFS difficulty: 175 digits. Divisors found: r1=1031387844700915926546275570854626898299232457527 (pp49) r2=4950984722498265333902822196208270860948138231881 (pp49) r3=22352008973784616122462526641600512964655392476154917761 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 92.56 hours. Scaled time: 220.01 units (timescale=2.377). Factorization parameters were as follows: n: 114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407 m: 100000000000000000000000000000000000 c5: 1 c0: 25 skew: 1.9 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4000000, 5700001) Primes: RFBsize:539777, AFBsize:538970, largePrimes:10773912 encountered Relations: rels:10964419, finalFF:1364486 Max relations in full relation-set: 28 Initial matrix: 1078811 x 1364486 with sparse part having weight 86737254. Pruned matrix : 813086 x 818544 with weight 49578617. Total sieving time: 87.82 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.52 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,50,50,2.6,2.6,100000 total time: 92.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344) |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | matsui |
---|---|
date 日付 | July 14, 2008 03:02:11 UTC 2008 年 7 月 14 日 (月) 12 時 2 分 11 秒 (日本時間) |
composite number 合成数 | 184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969<165> |
prime factors 素因数 | 90895849637269554525310385291775885388075787009<47> 2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441<118> |
factorization results 素因数分解の結果 | N=184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969 ( 165 digits) SNFS difficulty: 175 digits. Divisors found: r1=90895849637269554525310385291775885388075787009 (pp47) r2=2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441 (pp118) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 105.95 hours. Scaled time: 151.40 units (timescale=1.429). Factorization parameters were as follows: n: 184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969 m: 100000000000000000000000000000000000 c5: 2 c0: 5 skew: 1.2 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10400001) Primes: RFBsize:501962, AFBsize:501861, largePrimes:6413242 encountered Relations: rels:6884769, finalFF:1153553 Max relations in full relation-set: 28 Initial matrix: 1003888 x 1153553 with sparse part having weight 68214227. Pruned matrix : 873507 x 878590 with weight 50441029. Total sieving time: 101.00 hours. Total relation processing time: 0.12 hours. Matrix solve time: 4.44 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 105.95 hours. |
name 名前 | matsui |
---|---|
date 日付 | February 8, 2008 08:14:16 UTC 2008 年 2 月 8 日 (金) 17 時 14 分 16 秒 (日本時間) |
composite number 合成数 | 2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291<172> |
prime factors 素因数 | 33374333358396914109100082498630504183786129383<47> 105371111708302205780401868932937382113312422601077<51> 676600448832315856534571187702619060715236193076202145589311912099919790801<75> |
factorization results 素因数分解の結果 | N=2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291 ( 172 digits) SNFS difficulty: 175 digits. Divisors found: r1=33374333358396914109100082498630504183786129383 (pp47) r2=105371111708302205780401868932937382113312422601077 (pp51) r3=676600448832315856534571187702619060715236193076202145589311912099919790801 (pp75) Version: GGNFS-0.77.1-20060513-prescott Total time: 193.78 hours. Scaled time: 329.61 units (timescale=1.701). Factorization parameters were as follows: n: 2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291 m: 100000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10400001) Primes: RFBsize:501962, AFBsize:501936, large Primes:6393125 encountered Relations: rels:6843406, finalFF:1132531 Max relations in full relation-set: 28 Initial matrix: 1003962 x 1132531 with sparse part having weight 66657298. Pruned matrix : 892499 x 897582 with weight 50296953. Total sieving time: 176.54 hours. Total relation processing time: 0.16 hours. Matrix solve time: 16.83 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 193.78 hours. |
name 名前 | Wataru Sakai |
---|---|
date 日付 | March 26, 2007 13:08:51 UTC 2007 年 3 月 26 日 (月) 22 時 8 分 51 秒 (日本時間) |
composite number 合成数 | 3076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923077<178> |
prime factors 素因数 | 566167021042476149422414249581680453<36> |
composite cofactor 合成数の残り | 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009<142> |
factorization results 素因数分解の結果 | Input number is 3076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923077 (178 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=531751960 Step 1 took 482539ms Step 2 took 133516ms ********** Factor found in step 2: 566167021042476149422414249581680453 Found probable prime factor of 36 digits: 566167021042476149422414249581680453 Composite cofactor 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 has 142 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 8, 2009 11:08:54 UTC 2009 年 3 月 8 日 (日) 20 時 8 分 54 秒 (日本時間) |
composite number 合成数 | 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009<142> |
prime factors 素因数 | 6061095723787709816177996585617442722607441719998843595973408858077<67> 896645819043518706309661143084647289327440781070529452934200366627156144117<75> |
factorization results 素因数分解の結果 | Number: 40001_178 N=5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 ( 142 digits) SNFS difficulty: 180 digits. Divisors found: r1=6061095723787709816177996585617442722607441719998843595973408858077 r2=896645819043518706309661143084647289327440781070529452934200366627156144117 Version: Total time: 59.57 hours. Scaled time: 142.08 units (timescale=2.385). Factorization parameters were as follows: n: 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 m: 1000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [2600000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17171844 Max relations in full relation-set: Initial matrix: Pruned matrix : 1152624 x 1152872 Total sieving time: 54.31 hours. Total relation processing time: 1.46 hours. Matrix solve time: 3.25 hours. Time per square root: 0.55 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,53,53,2.5,2.5,100000 total time: 59.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | March 26, 2007 13:15:20 UTC 2007 年 3 月 26 日 (月) 22 時 15 分 20 秒 (日本時間) |
composite number 合成数 | 3095942130473149734381998565501622240205635762208798355396850000423768216336368818695478677410319850404184072856004085474624813287629584665417985571693596969023<160> |
prime factors 素因数 | 6004231495142581556980974994915411<34> 515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893<126> |
factorization results 素因数分解の結果 | Input number is 3095942130473149734381998565501622240205635762208798355396850000423768216336368818695478677410319850404184072856004085474624813287629584665417985571693596969023 (160 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2723994585 Step 1 took 413045ms Step 2 took 120690ms ********** Factor found in step 2: 6004231495142581556980974994915411 Found probable prime factor of 34 digits: 6004231495142581556980974994915411 Probable prime cofactor 515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893 has 126 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 12, 2009 02:38:16 UTC 2009 年 3 月 12 日 (木) 11 時 38 分 16 秒 (日本時間) |
composite number 合成数 | 833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613<159> |
prime factors 素因数 | 30385872315370452048023578488339493475461704437<47> 27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649<113> |
factorization results 素因数分解の結果 | Number: 40001_182 N=833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613 ( 159 digits) SNFS difficulty: 182 digits. Divisors found: r1=30385872315370452048023578488339493475461704437 r2=27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649 Version: Total time: 87.22 hours. Scaled time: 208.02 units (timescale=2.385). Factorization parameters were as follows: n: 833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613 m: 2000000000000000000000000000000000000 deg: 5 c5: 25 c0: 2 skew: 0.60 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18344751 Max relations in full relation-set: Initial matrix: Pruned matrix : 1254004 x 1254252 Total sieving time: 80.75 hours. Total relation processing time: 2.24 hours. Matrix solve time: 3.90 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 87.22 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 16, 2009 23:16:13 UTC 2009 年 3 月 17 日 (火) 8 時 16 分 13 秒 (日本時間) |
composite number 合成数 | 495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841<180> |
prime factors 素因数 | 17220341786228465534537012038573242088381604649445961<53> 28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081<128> |
factorization results 素因数分解の結果 | Number: 40001_187 N=495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841 ( 180 digits) SNFS difficulty: 187 digits. Divisors found: r1=17220341786228465534537012038573242088381604649445961 r2=28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081 Version: Total time: 123.18 hours. Scaled time: 294.16 units (timescale=2.388). Factorization parameters were as follows: n: 495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841 m: 20000000000000000000000000000000000000 deg: 5 c5: 25 c0: 2 skew: 0.60 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20253983 Max relations in full relation-set: Initial matrix: Pruned matrix : 1689001 x 1689249 Total sieving time: 112.04 hours. Total relation processing time: 3.38 hours. Matrix solve time: 7.54 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 123.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 22, 2009 22:18:06 UTC 2009 年 3 月 23 日 (月) 7 時 18 分 6 秒 (日本時間) |
composite number 合成数 | 4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437<151> |
prime factors 素因数 | 13506270059310058545933600271041349759458769588496747569910410889<65> 331054716915185039351115638053193982176316954185352183355312068630530447500029226468933<87> |
factorization results 素因数分解の結果 | Number: 40001_189 N=4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437 ( 151 digits) SNFS difficulty: 190 digits. Divisors found: r1=13506270059310058545933600271041349759458769588496747569910410889 r2=331054716915185039351115638053193982176316954185352183355312068630530447500029226468933 Version: Total time: 141.02 hours. Scaled time: 336.91 units (timescale=2.389). Factorization parameters were as follows: n: 4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437 m: 100000000000000000000000000000000000000 deg: 5 c5: 2 c0: 5 skew: 1.20 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20345343 Max relations in full relation-set: Initial matrix: Pruned matrix : 1869145 x 1869393 Total sieving time: 127.54 hours. Total relation processing time: 3.81 hours. Matrix solve time: 9.25 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,54,54,2.5,2.5,100000 total time: 141.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797) Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389) |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 14, 2007 09:25:28 UTC 2007 年 4 月 14 日 (土) 18 時 25 分 28 秒 (日本時間) |
composite number 合成数 | 580418541275952388203744927304623646480235494870534070995978934395568187241734706286424191061478693683513773330665061162096384334802278739443442701219961<153> |
prime factors 素因数 | 765226605021062082766257793518013247<36> 758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263<117> |
factorization results 素因数分解の結果 | Input number is 580418541275952388203744927304623646480235494870534070995978934395568187241734706286424191061478693683513773330665061162096384334802278739443442701219961 (153 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3120847556 Step 1 took 377348ms Step 2 took 114194ms ********** Factor found in step 2: 765226605021062082766257793518013247 Found probable prime factor of 36 digits: 765226605021062082766257793518013247 Probable prime cofactor 758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263 has 117 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Wataru Sakai |
---|---|
date 日付 | March 26, 2007 13:10:08 UTC 2007 年 3 月 26 日 (月) 22 時 10 分 8 秒 (日本時間) |
composite number 合成数 | 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<195> |
prime factors 素因数 | 721324202162977116296517293557<30> |
composite cofactor 合成数の残り | 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693<165> |
factorization results 素因数分解の結果 | Input number is 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (195 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2362285868 Step 1 took 552977ms Step 2 took 152940ms ********** Factor found in step 2: 721324202162977116296517293557 Found probable prime factor of 30 digits: 721324202162977116296517293557 Composite cofactor 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693 has 165 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Wataru Sakai |
---|---|
date 日付 | April 21, 2007 10:35:10 UTC 2007 年 4 月 21 日 (土) 19 時 35 分 10 秒 (日本時間) |
composite number 合成数 | 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693<165> |
prime factors 素因数 | 230366834312643340988031253121778481<36> |
composite cofactor 合成数の残り | 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253<130> |
factorization results 素因数分解の結果 | Input number is 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693 (165 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2436293813 Step 1 took 449641ms Step 2 took 125895ms ********** Factor found in step 2: 230366834312643340988031253121778481 Found probable prime factor of 36 digits: 230366834312643340988031253121778481 Composite cofactor 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253 has 130 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Wataru Sakai |
---|---|
date 日付 | July 26, 2007 15:21:12 UTC 2007 年 7 月 27 日 (金) 0 時 21 分 12 秒 (日本時間) |
composite number 合成数 | 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253<130> |
prime factors 素因数 | 4539551603725680577678687090612374940158174209<46> 530269411486144259272416902466941069870793165414892485082648513501276740375531374317<84> |
factorization results 素因数分解の結果 | Input number is 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253 (130 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=632711195 Step 1 took 306575ms Step 2 took 94268ms ********** Factor found in step 2: 4539551603725680577678687090612374940158174209 Found probable prime factor of 46 digits: 4539551603725680577678687090612374940158174209 Probable prime cofactor 530269411486144259272416902466941069870793165414892485082648513501276740375531374317 has 84 digits |
software ソフトウェア | GMP-ECM 6.1.1 |
name 名前 | Wataru Sakai |
---|---|
date 日付 | March 3, 2009 13:09:21 UTC 2009 年 3 月 3 日 (火) 22 時 9 分 21 秒 (日本時間) |
composite number 合成数 | 6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401<196> |
prime factors 素因数 | 929931633094791878075356891588302829966299262696914473414281<60> 7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521<136> |
factorization results 素因数分解の結果 | Number: 40001_198 N=6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401 ( 196 digits) SNFS difficulty: 200 digits. Divisors found: r1=929931633094791878075356891588302829966299262696914473414281 r2=7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521 Version: Total time: 598.43 hours. Scaled time: 1065.20 units (timescale=1.780). Factorization parameters were as follows: n: 6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 15100000 alim: 15100000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15100000/15100000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7550000, 13250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2568959 x 2569207 Total sieving time: 598.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15100000,15100000,29,29,56,56,2.6,2.6,100000 total time: 598.43 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | March 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | November 4, 2008 01:48:09 UTC 2008 年 11 月 4 日 (火) 10 時 48 分 9 秒 (日本時間) |
composite number 合成数 | 4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569<109> |
prime factors 素因数 | 1684776046154235009517333610464790582051<40> 2636510377862930365366650606354695539107142487471106263373162893880619<70> |
factorization results 素因数分解の結果 | Number: n N=4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569 ( 109 digits) Divisors found: r1=1684776046154235009517333610464790582051 (pp40) r2=2636510377862930365366650606354695539107142487471106263373162893880619 (pp70) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 13.15 hours. Scaled time: 17.22 units (timescale=1.310). Factorization parameters were as follows: name: KA_4_0_200_1 n: 4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569 skew: 31421.32 # norm 1.12e+15 c5: 33300 c4: 67891188 c3: -92107347697813 c2: -71140811831309675 c1: 45923596748289206796281 c0: 99335048402119309697832255 # alpha -6.17 Y1: 260512343659 Y0: -668383033680763864204 # Murphy_E 1.16e-09 # M 59806822586170241890647397341851243665361596419283843288752444232521072743104971604544561288048719651220781 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800000) Primes: rational ideals reading, algebraic ideals reading, Relations: 7320359 Max relations in full relation-set: Initial matrix: Pruned matrix : 422921 x 423169 Total sieving time: 13.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 13.15 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 24, 2018 01:19:56 UTC 2018 年 8 月 24 日 (金) 10 時 19 分 56 秒 (日本時間) |
composite number 合成数 | 2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121<187> |
prime factors 素因数 | 4352160109233622287476004876885802806219798409446401497170469759529369422418203133<82> 583123015262945556349244647056353780728267122790222566698427071203798962005200699046348941121122402068437<105> |
factorization results 素因数分解の結果 | Number: 40001_202 N=2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121 ( 187 digits) SNFS difficulty: 202 digits. Divisors found: r1=4352160109233622287476004876885802806219798409446401497170469759529369422418203133 r2=583123015262945556349244647056353780728267122790222566698427071203798962005200699046348941121122402068437 Version: Total time: 218.32 hours. Scaled time: 1134.63 units (timescale=5.197). Factorization parameters were as follows: n: 2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121 m: 20000000000000000000000000000000000000000 deg: 5 c5: 25 c0: 2 skew: 0.60 # Murphy_E = 1.565e-11 type: snfs lss: 1 rlim: 18000000 alim: 18000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 200000 Factor base limits: 18000000/18000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9000000, 16800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 38063263 Max relations in full relation-set: Initial matrix: Pruned matrix : 3256719 x 3256967 Total sieving time: 196.40 hours. Total relation processing time: 2.10 hours. Matrix solve time: 19.15 hours. Time per square root: 0.68 hours. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,18000000,18000000,29,29,56,56,2.6,2.6,100000 total time: 218.32 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:10:06 UTC 2011 年 3 月 13 日 (日) 7 時 10 分 6 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:11:26 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 26 秒 (日本時間) | |||
45 | 11e6 | 139 / 3962 | KTakahashi | February 3, 2014 18:15:28 UTC 2014 年 2 月 4 日 (火) 3 時 15 分 28 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | May 8, 2009 12:31:12 UTC 2009 年 5 月 8 日 (金) 21 時 31 分 12 秒 (日本時間) |
composite number 合成数 | 89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423<200> |
prime factors 素因数 | 3996493212534098134156111341457064136963014957402517508990780184800320983<73> 22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681<128> |
factorization results 素因数分解の結果 | Number: 40001_203 N=89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423 ( 200 digits) SNFS difficulty: 205 digits. Divisors found: r1=3996493212534098134156111341457064136963014957402517508990780184800320983 r2=22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681 Version: Total time: 858.79 hours. Scaled time: 1670.35 units (timescale=1.945). Factorization parameters were as follows: n: 89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423 m: 100000000000000000000000000000000000000000 deg: 5 c5: 1 c0: 25 skew: 1.90 type: snfs lss: 1 rlim: 18300000 alim: 18300000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 18300000/18300000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [9150000, 17650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2921104 x 2921352 Total sieving time: 858.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,18300000,18300000,29,29,56,56,2.6,2.6,100000 total time: 858.79 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 360 / 2336 | Serge Batalov | November 13, 2008 23:02:26 UTC 2008 年 11 月 14 日 (金) 8 時 2 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 13, 2011 15:53:42 UTC 2011 年 3 月 14 日 (月) 0 時 53 分 42 秒 (日本時間) |
composite number 合成数 | 7114174660887854407099735279552768567975447775889485639308197414413047384214596937261624900165811916454247301130285700502809428934070044673805784027735425317950885687310291320100698853<184> |
prime factors 素因数 | 8620981820393556165598209791935039169<37> |
composite cofactor 合成数の残り | 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437<147> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2709458539 Step 1 took 72671ms Step 2 took 30614ms ********** Factor found in step 2: 8620981820393556165598209791935039169 Found probable prime factor of 37 digits: 8620981820393556165598209791935039169 Composite cofactor 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437 has 147 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 27, 2013 11:38:07 UTC 2013 年 4 月 27 日 (土) 20 時 38 分 7 秒 (日本時間) |
composite number 合成数 | 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437<147> |
prime factors 素因数 | 9614845316674752971125223167274964585506988001<46> 85827308286463291545643661160043563366431087143222524276657149458595022132599515717888654971338922437<101> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.5 and --enable-asm-redc] [ECM] Input number is 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437 (147 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5407201763 Step 1 took 32243ms Step 2 took 13018ms ********** Factor found in step 2: 9614845316674752971125223167274964585506988001 Found probable prime factor of 46 digits: 9614845316674752971125223167274964585506988001 Probable prime cofactor 85827308286463291545643661160043563366431087143222524276657149458595022132599515717888654971338922437 has 101 digits |
execution environment 実行環境 | Core i7 980 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:10:39 UTC 2011 年 3 月 13 日 (日) 7 時 10 分 39 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:11:36 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 36 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | January 6, 2009 01:26:22 UTC 2009 年 1 月 6 日 (火) 10 時 26 分 22 秒 (日本時間) |
composite number 合成数 | 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<208> |
prime factors 素因数 | 2137537151086140780378598137246884887064851<43> 2812726946992196303955780250469663669810710081<46> 4510386964277796118081223118223701478503227449062032837<55> 147504388817832250629782059406052001349839987803889705588283463583<66> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (208 digits) Using B1=3628000, B2=8561127130, polynomial Dickson(6), sigma=3845259699 Step 1 took 70828ms Step 2 took 27344ms ********** Factor found in step 2: 2137537151086140780378598137246884887064851 Found probable prime factor of 43 digits: 2137537151086140780378598137246884887064851 Composite cofactor 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 has 166 digits Number: n N=1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 ( 166 digits) SNFS difficulty: 207 digits. Divisors found: Tue Jan 6 12:17:23 2009 prp46 factor: 2812726946992196303955780250469663669810710081 Tue Jan 6 12:17:23 2009 prp55 factor: 4510386964277796118081223118223701478503227449062032837 Tue Jan 6 12:17:23 2009 prp66 factor: 147504388817832250629782059406052001349839987803889705588283463583 Tue Jan 6 12:17:23 2009 elapsed time 17:15:12 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 101.97 hours. Scaled time: 204.97 units (timescale=2.010). Factorization parameters were as follows: name: KA_4_0_206_1 n: 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 # n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 deg: 5 c5: 25 c0: 2 m: 200000000000000000000000000000000000000000 skew: 0.60 type: snfs rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 30599990) Primes: RFBsize:664579, AFBsize:664295, largePrimes:36509320 encountered Relations: rels:31588687, finalFF:75919 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7840833 hash collisions in 43268992 relations Msieve: matrix is 3150865 x 3151113 (859.6 MB) Total sieving time: 100.96 hours. Total relation processing time: 1.01 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 101.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830481) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.69 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 17, 2009 01:30:54 UTC 2009 年 2 月 17 日 (火) 10 時 30 分 54 秒 (日本時間) |
composite number 合成数 | 3007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518797<208> |
prime factors 素因数 | 3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797<100> 777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001<108> |
factorization results 素因数分解の結果 | # well, can't have a p102, but I have more than one p100 :-) # (rest in peace, St. George Carlin!) SNFS difficulty: 210 digits. Divisors found: r1=3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797 (pp100) r2=777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001 (pp108) Version: Msieve-1.39 Total time: 1000.01 hours. Scaled time: 2735.04 units (timescale=2.735). Factorization parameters were as follows: n: 3007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518797 m: 1000000000000000000000000000000000000000000 c5: 2 c0: 5 skew: 1.20 type: snfs lss: 1 rlim: 24000000 alim: 24000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 24000000/24000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [12000000, 28800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 50191195 relations (45865473 unique relations and about 35456933 large ideals) Max relations in full relation-set: Initial matrix: Pruned matrix : 3128545 x 3128793 Total sieving time: 900.01 hours. Total relation processing time: 0.00 hours. Matrix solve time: 29.10 hours. * 4 cpu Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,24000000,24000000,29,29,57,57,2.6,2.6,200000 total time: 1000.01 hours. # quintic was faster than sextic; tested both; sieved on one side to minimize redundant relations |
software ソフトウェア | Msieve-1.39 |
execution environment 実行環境 | Opteron-2.6GHz; Linux x86_64 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 630 | 300 | Serge Batalov | November 14, 2008 01:18:33 UTC 2008 年 11 月 14 日 (金) 10 時 18 分 33 秒 (日本時間) |
330 | Serge Batalov | November 14, 2008 01:37:40 UTC 2008 年 11 月 14 日 (金) 10 時 37 分 40 秒 (日本時間) | |||
45 | 11e6 | 4663 | 1263 | Serge Batalov | February 5, 2009 06:55:00 UTC 2009 年 2 月 5 日 (木) 15 時 55 分 0 秒 (日本時間) |
3400 | Serge Batalov | February 6, 2009 07:30:42 UTC 2009 年 2 月 6 日 (金) 16 時 30 分 42 秒 (日本時間) | |||
50 | 43e6 | 5447 | 67 | Serge Batalov | February 5, 2009 06:55:00 UTC 2009 年 2 月 5 日 (木) 15 時 55 分 0 秒 (日本時間) |
1000 | Serge Batalov | February 6, 2009 07:31:18 UTC 2009 年 2 月 6 日 (金) 16 時 31 分 18 秒 (日本時間) | |||
4380 | Serge Batalov | February 6, 2009 17:16:13 UTC 2009 年 2 月 7 日 (土) 2 時 16 分 13 秒 (日本時間) | |||
55 | 11e7 | 1172 / 15529 | Serge Batalov | February 6, 2009 17:16:13 UTC 2009 年 2 月 7 日 (土) 2 時 16 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 13, 2011 12:54:49 UTC 2011 年 3 月 13 日 (日) 21 時 54 分 49 秒 (日本時間) |
composite number 合成数 | 795352357177694333348671452569428652790641294899464065463949087349711232762547917336659587218667945501839660428739324761179862903173227426390843548562501440425962047482540921<174> |
prime factors 素因数 | 911781382426316231653996553754721<33> 872305985302314642837664533768067528978848533430533241529384958629887457539688700015453948305990321439785340542663401455101411284361180402201<141> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2914364967 Step 1 took 74082ms Step 2 took 29543ms ********** Factor found in step 2: 911781382426316231653996553754721 Found probable prime factor of 33 digits: 911781382426316231653996553754721 Probable prime cofactor 872305985302314642837664533768067528978848533430533241529384958629887457539688700015453948305990321439785340542663401455101411284361180402201 has 141 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 / 2336 | Dmitry Domanov | March 12, 2011 22:11:06 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 6 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | February 17, 2009 05:07:29 UTC 2009 年 2 月 17 日 (火) 14 時 7 分 29 秒 (日本時間) |
composite number 合成数 | 111186440233220340762033891189152570836610055636610624911184618999329320612852209074014892517499751963899297229148573795270111598580570554830260153560315317962128558659960341631345074152585805084572033899<204> |
prime factors 素因数 | 1332356352410729241381459477648619855405009<43> |
composite cofactor 合成数の残り | 83450977684793282694551706981476556088621921512009377560353348583288515960273808416054497177857020031325682869956011963367750061419815803842510520381026012953211<161> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1854358772 Step 1 took 267563ms Step 2 took 91155ms ********** Factor found in step 2: 1332356352410729241381459477648619855405009 Found probable prime factor of 43 digits: 1332356352410729241381459477648619855405009 Composite cofactor has 161 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:11:26 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 26 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:11:46 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 46 秒 (日本時間) | |||
45 | 11e6 | 3966 | 139 | KTakahashi | February 3, 2014 14:26:18 UTC 2014 年 2 月 3 日 (月) 23 時 26 分 18 秒 (日本時間) |
1323 | KTakahashi | July 9, 2014 13:24:39 UTC 2014 年 7 月 9 日 (水) 22 時 24 分 39 秒 (日本時間) | |||
2504 | ebina | June 16, 2024 13:13:28 UTC 2024 年 6 月 16 日 (日) 22 時 13 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:11:58 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 58 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:11:57 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 57 秒 (日本時間) | |||
45 | 11e6 | 4139 | 139 | KTakahashi | February 3, 2014 15:04:14 UTC 2014 年 2 月 4 日 (火) 0 時 4 分 14 秒 (日本時間) |
4000 | ebina | June 16, 2024 20:41:13 UTC 2024 年 6 月 17 日 (月) 5 時 41 分 13 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | June 22, 2010 06:34:40 UTC 2010 年 6 月 22 日 (火) 15 時 34 分 40 秒 (日本時間) |
composite number 合成数 | 36136906405573128456836083283356074588169542782615077068476073202232453553512225240515872685646938518198652624549390924625188636898700958827123610264233047893056133465118692496172550297971455671380039174797<206> |
prime factors 素因数 | 280709138925610745225627616235368407<36> |
composite cofactor 合成数の残り | 128734342401119972983581009935100049656649334653400039391667634128613012584259319294236788779710630652264467617853270939946120791315424107847649862903165446035555727219771<171> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2323201769 Step 1 took 8096ms ********** Factor found in step 1: 280709138925610745225627616235368407 Found probable prime factor of 36 digits: 280709138925610745225627616235368407 Composite cofactor 128734342401119972983581009935100049656649334653400039391667634128613012584259319294236788779710630652264467617853270939946120791315424107847649862903165446035555727219771 has 171 digits |
software ソフトウェア | GMP-ECM 6.2.3 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:12:14 UTC 2011 年 3 月 13 日 (日) 7 時 12 分 14 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:12:06 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 6 秒 (日本時間) | |||
45 | 11e6 | 3966 | 139 | KTakahashi | February 3, 2014 14:26:43 UTC 2014 年 2 月 3 日 (月) 23 時 26 分 43 秒 (日本時間) |
1323 | KTakahashi | August 9, 2014 18:51:06 UTC 2014 年 8 月 10 日 (日) 3 時 51 分 6 秒 (日本時間) | |||
2504 | ebina | June 17, 2024 01:07:35 UTC 2024 年 6 月 17 日 (月) 10 時 7 分 35 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | April 17, 2009 14:58:31 UTC 2009 年 4 月 17 日 (金) 23 時 58 分 31 秒 (日本時間) |
composite number 合成数 | 2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943<211> |
prime factors 素因数 | 578022421484392833484314349887736849483921909178334750733<57> 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371<154> |
factorization results 素因数分解の結果 | Number: n N=2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943 ( 211 digits) SNFS difficulty: 218 digits. Divisors found: Sat Apr 18 00:43:41 2009 prp57 factor: 578022421484392833484314349887736849483921909178334750733 Sat Apr 18 00:43:41 2009 prp154 factor: 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371 Sat Apr 18 00:43:41 2009 elapsed time 56:50:02 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 174.05 hours. Scaled time: 350.71 units (timescale=2.015). Factorization parameters were as follows: name: KA_4_0_216_1 n: 2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943 m: 2000000000000000000000000000000000000 deg: 6 c6: 5 c0: 8 skew: 1.08 type: snfs lss: 1 rlim: 31000000 alim: 31000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 31000000/31000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [15500000, 45599990) Primes: RFBsize:1915979, AFBsize:1916784, largePrimes:34927111 encountered Relations: rels:29018997, finalFF:841025 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8207149 hash collisions in 48938562 relations Msieve: matrix is 5272052 x 5272300 (1428.4 MB) Total sieving time: 173.00 hours. Total relation processing time: 1.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,218,6,0,0,0,0,0,0,0,0,31000000,31000000,29,29,58,58,2.6,2.6,100000 total time: 174.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830489) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456) Total of 4 processors activated (22643.69 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 / 2336 | Serge Batalov | November 14, 2008 00:41:49 UTC 2008 年 11 月 14 日 (金) 9 時 41 分 49 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 4, 2021 09:56:51 UTC 2021 年 1 月 4 日 (月) 18 時 56 分 51 秒 (日本時間) |
composite number 合成数 | 116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533<198> |
prime factors 素因数 | 33124455314005419719484291502626516313409725827657409<53> 73254080393331932260764267211845352077103045721318111077525237<62> 47918754047887215225543872174584546174623050261093695745230498173472499321834339201<83> |
factorization results 素因数分解の結果 | Number: 40001_219 N = 116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533 (198 digits) SNFS difficulty: 221 digits. Divisors found: r1=33124455314005419719484291502626516313409725827657409 (pp53) r2=73254080393331932260764267211845352077103045721318111077525237 (pp62) r3=47918754047887215225543872174584546174623050261093695745230498173472499321834339201 (pp83) Version: Msieve v. 1.52 (SVN unknown) Total time: 54.68 hours. Factorization parameters were as follows: n: 116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 2 c0: 5 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 6787290 relations Pruned matrix : 5961006 x 5961231 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 28.73 hours. Total relation processing time: 0.35 hours. Matrix solve time: 25.12 hours. time per square root: 0.49 hours. Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 54.68 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.18362-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:12:42 UTC 2011 年 3 月 13 日 (日) 7 時 12 分 42 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:12:15 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 15 秒 (日本時間) | |||
45 | 11e6 | 139 / 3962 | KTakahashi | February 4, 2014 21:19:52 UTC 2014 年 2 月 5 日 (水) 6 時 19 分 52 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 6, 2008 17:14:19 UTC 2008 年 11 月 7 日 (金) 2 時 14 分 19 秒 (日本時間) |
composite number 合成数 | 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<223> |
prime factors 素因数 | 6097015972179447612468707229921763686040066157<46> |
composite cofactor 合成数の残り | 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293<177> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2238052366 Step 1 took 107815ms Step 2 took 45211ms ********** Factor found in step 2: 6097015972179447612468707229921763686040066157 Found probable prime factor of 46 digits: 6097015972179447612468707229921763686040066157 Composite cofactor 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 has 177 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
name 名前 | Erik Branger |
---|---|
date 日付 | January 29, 2022 16:43:06 UTC 2022 年 1 月 30 日 (日) 1 時 43 分 6 秒 (日本時間) |
composite number 合成数 | 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293<177> |
prime factors 素因数 | 54079250430474920707905115940587495415224848381713477685218303490930060483526146809<83> 12131429960066882484520570273300008089105747987528088615070148488973402528246761247280695376077<95> |
factorization results 素因数分解の結果 | Number: 40001_222 N = 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 (177 digits) SNFS difficulty: 223 digits. Divisors found: r1=54079250430474920707905115940587495415224848381713477685218303490930060483526146809 (pp83) r2=12131429960066882484520570273300008089105747987528088615070148488973402528246761247280695376077 (pp95) Version: Msieve v. 1.52 (SVN unknown) Total time: 39.59 hours. Factorization parameters were as follows: n: 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 400 c0: 1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 60000000 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/60000000 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33239711 Relations: 8950730 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 18.18 hours. Total relation processing time: 0.30 hours. Pruned matrix : 7597551 x 7597776 Matrix solve time: 20.76 hours. time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000 total time: 39.59 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22000-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 824 | Serge Batalov | November 3, 2008 19:16:37 UTC 2008 年 11 月 4 日 (火) 4 時 16 分 37 秒 (日本時間) |
600 | Serge Batalov | November 5, 2008 22:25:49 UTC 2008 年 11 月 6 日 (木) 7 時 25 分 49 秒 (日本時間) | |||
912 | Serge Batalov | November 6, 2008 01:50:22 UTC 2008 年 11 月 6 日 (木) 10 時 50 分 22 秒 (日本時間) | |||
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1140 | yoyo@home | January 24, 2010 21:10:14 UTC 2010 年 1 月 25 日 (月) 6 時 10 分 14 秒 (日本時間) | |
55 | 11e7 | 2636 / 17344 | 2635 | yoyo@home | August 15, 2010 03:55:36 UTC 2010 年 8 月 15 日 (日) 12 時 55 分 36 秒 (日本時間) |
1 | KTakahashi | January 30, 2014 21:42:55 UTC 2014 年 1 月 31 日 (金) 6 時 42 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:13:39 UTC 2011 年 3 月 13 日 (日) 7 時 13 分 39 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:12:32 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 32 秒 (日本時間) | |||
45 | 11e6 | 4139 | 139 | KTakahashi | February 3, 2014 21:55:22 UTC 2014 年 2 月 4 日 (火) 6 時 55 分 22 秒 (日本時間) |
4000 | ebina | June 17, 2024 10:53:54 UTC 2024 年 6 月 17 日 (月) 19 時 53 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:13:54 UTC 2011 年 3 月 13 日 (日) 7 時 13 分 54 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:12:41 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 41 秒 (日本時間) | |||
45 | 11e6 | 139 / 3962 | KTakahashi | February 3, 2014 21:59:11 UTC 2014 年 2 月 4 日 (火) 6 時 59 分 11 秒 (日本時間) |
name 名前 | RSALS + Jeff Gilchrist |
---|---|
date 日付 | February 24, 2011 13:25:25 UTC 2011 年 2 月 24 日 (木) 22 時 25 分 25 秒 (日本時間) |
composite number 合成数 | 61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853<224> |
prime factors 素因数 | 2274638262341070593950100717451021126508724154034353396727<58> 26983602469312680130580985847029543470319676934990817496724014747605720259827010445557677689524276607304620925751442325052907279775178255048557619638932527039814094539<167> |
factorization results 素因数分解の結果 | <sieving on the RSALS grid> Tue Feb 22 14:28:06 2011 Tue Feb 22 14:28:06 2011 Tue Feb 22 14:28:06 2011 Msieve v. 1.48 Tue Feb 22 14:28:06 2011 random seeds: 5f8e55e1 f87607ec Tue Feb 22 14:28:06 2011 factoring 61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853 (224 digits) Tue Feb 22 14:28:09 2011 no P-1/P+1/ECM available, skipping Tue Feb 22 14:28:09 2011 commencing number field sieve (224-digit input) Tue Feb 22 14:28:09 2011 R0: -20000000000000000000000000000000000000 Tue Feb 22 14:28:09 2011 R1: 1 Tue Feb 22 14:28:09 2011 A0: 1 Tue Feb 22 14:28:09 2011 A1: 0 Tue Feb 22 14:28:09 2011 A2: 0 Tue Feb 22 14:28:09 2011 A3: 0 Tue Feb 22 14:28:09 2011 A4: 0 Tue Feb 22 14:28:09 2011 A5: 0 Tue Feb 22 14:28:09 2011 A6: 6250 Tue Feb 22 14:28:09 2011 skew 0.23, size 3.143e-11, alpha -0.950, combined = 1.477e-12 rroots = 0 Tue Feb 22 14:28:09 2011 Tue Feb 22 14:28:10 2011 commencing relation filtering Tue Feb 22 14:28:10 2011 estimated available RAM is 32159.2 MB Tue Feb 22 14:28:10 2011 commencing duplicate removal, pass 1 Tue Feb 22 14:28:47 2011 error -9 reading relation 3415445 <... errors cut...> Tue Feb 22 14:50:21 2011 skipped 99 relations with b > 2^32 Tue Feb 22 14:50:21 2011 found 21558331 hash collisions in 119966099 relations Tue Feb 22 14:50:54 2011 added 1219020 free relations Tue Feb 22 14:50:54 2011 commencing duplicate removal, pass 2 Tue Feb 22 14:55:54 2011 found 20108089 duplicates and 101077030 unique relations Tue Feb 22 14:55:54 2011 memory use: 660.8 MB Tue Feb 22 14:55:54 2011 reading ideals above 720000 Tue Feb 22 14:55:54 2011 commencing singleton removal, initial pass Tue Feb 22 15:25:26 2011 memory use: 2756.0 MB Tue Feb 22 15:25:26 2011 reading all ideals from disk Tue Feb 22 15:25:45 2011 memory use: 3750.5 MB Tue Feb 22 15:26:29 2011 keeping 89875711 ideals with weight <= 200, target excess is 534254 Tue Feb 22 15:27:19 2011 commencing in-memory singleton removal Tue Feb 22 15:27:54 2011 begin with 101077030 relations and 89875711 unique ideals Tue Feb 22 15:33:36 2011 reduce to 66296349 relations and 51568127 ideals in 13 passes Tue Feb 22 15:33:36 2011 max relations containing the same ideal: 159 Tue Feb 22 15:35:23 2011 removing 9325312 relations and 7325312 ideals in 2000000 cliques Tue Feb 22 15:35:32 2011 commencing in-memory singleton removal Tue Feb 22 15:35:53 2011 begin with 56971037 relations and 51568127 unique ideals Tue Feb 22 15:38:09 2011 reduce to 56223473 relations and 43469504 ideals in 7 passes Tue Feb 22 15:38:09 2011 max relations containing the same ideal: 143 Tue Feb 22 15:39:38 2011 removing 7106853 relations and 5106853 ideals in 2000000 cliques Tue Feb 22 15:39:47 2011 commencing in-memory singleton removal Tue Feb 22 15:40:04 2011 begin with 49116620 relations and 43469504 unique ideals Tue Feb 22 15:42:08 2011 reduce to 48562303 relations and 37789581 ideals in 7 passes Tue Feb 22 15:42:08 2011 max relations containing the same ideal: 129 Tue Feb 22 15:43:26 2011 removing 6469084 relations and 4469084 ideals in 2000000 cliques Tue Feb 22 15:43:34 2011 commencing in-memory singleton removal Tue Feb 22 15:43:49 2011 begin with 42093219 relations and 37789581 unique ideals Tue Feb 22 15:45:30 2011 reduce to 41593501 relations and 32803025 ideals in 7 passes Tue Feb 22 15:45:30 2011 max relations containing the same ideal: 115 Tue Feb 22 15:46:34 2011 removing 6069803 relations and 4069803 ideals in 2000000 cliques Tue Feb 22 15:46:41 2011 commencing in-memory singleton removal Tue Feb 22 15:46:52 2011 begin with 35523698 relations and 32803025 unique ideals Tue Feb 22 15:48:15 2011 reduce to 34988174 relations and 28175546 ideals in 7 passes Tue Feb 22 15:48:15 2011 max relations containing the same ideal: 103 Tue Feb 22 15:49:10 2011 removing 5775938 relations and 3775938 ideals in 2000000 cliques Tue Feb 22 15:49:17 2011 commencing in-memory singleton removal Tue Feb 22 15:49:26 2011 begin with 29212236 relations and 28175546 unique ideals Tue Feb 22 15:50:38 2011 reduce to 28608387 relations and 23765785 ideals in 7 passes Tue Feb 22 15:50:38 2011 max relations containing the same ideal: 93 Tue Feb 22 15:51:25 2011 removing 5611296 relations and 3611296 ideals in 2000000 cliques Tue Feb 22 15:51:31 2011 commencing in-memory singleton removal Tue Feb 22 15:51:39 2011 begin with 22997091 relations and 23765785 unique ideals Tue Feb 22 15:52:35 2011 reduce to 22307910 relations and 19422026 ideals in 7 passes Tue Feb 22 15:52:35 2011 max relations containing the same ideal: 74 Tue Feb 22 15:53:13 2011 removing 5388889 relations and 3388889 ideals in 2000000 cliques Tue Feb 22 15:53:18 2011 commencing in-memory singleton removal Tue Feb 22 15:53:23 2011 begin with 16919021 relations and 19422026 unique ideals Tue Feb 22 15:54:09 2011 reduce to 16055818 relations and 15092750 ideals in 8 passes Tue Feb 22 15:54:09 2011 max relations containing the same ideal: 61 Tue Feb 22 15:54:36 2011 removing 1382445 relations and 1039112 ideals in 343333 cliques Tue Feb 22 15:54:39 2011 commencing in-memory singleton removal Tue Feb 22 15:54:44 2011 begin with 14673373 relations and 15092750 unique ideals Tue Feb 22 15:55:14 2011 reduce to 14609505 relations and 13988470 ideals in 6 passes Tue Feb 22 15:55:14 2011 max relations containing the same ideal: 56 Tue Feb 22 15:55:45 2011 relations with 0 large ideals: 18051 Tue Feb 22 15:55:45 2011 relations with 1 large ideals: 12088 Tue Feb 22 15:55:45 2011 relations with 2 large ideals: 144404 Tue Feb 22 15:55:45 2011 relations with 3 large ideals: 748332 Tue Feb 22 15:55:45 2011 relations with 4 large ideals: 2104653 Tue Feb 22 15:55:45 2011 relations with 5 large ideals: 3554606 Tue Feb 22 15:55:45 2011 relations with 6 large ideals: 3766235 Tue Feb 22 15:55:45 2011 relations with 7+ large ideals: 4261136 Tue Feb 22 15:55:45 2011 commencing 2-way merge Tue Feb 22 15:56:17 2011 reduce to 10380301 relation sets and 9759266 unique ideals Tue Feb 22 15:56:17 2011 commencing full merge Tue Feb 22 16:04:03 2011 memory use: 1221.3 MB Tue Feb 22 16:04:06 2011 found 5253992 cycles, need 5169466 Tue Feb 22 16:04:10 2011 weight of 5169466 cycles is about 413679844 (80.02/cycle) Tue Feb 22 16:04:11 2011 distribution of cycle lengths: Tue Feb 22 16:04:11 2011 1 relations: 340205 Tue Feb 22 16:04:11 2011 2 relations: 488115 Tue Feb 22 16:04:11 2011 3 relations: 572803 Tue Feb 22 16:04:11 2011 4 relations: 571107 Tue Feb 22 16:04:11 2011 5 relations: 557986 Tue Feb 22 16:04:11 2011 6 relations: 504832 Tue Feb 22 16:04:11 2011 7 relations: 446506 Tue Feb 22 16:04:11 2011 8 relations: 381805 Tue Feb 22 16:04:11 2011 9 relations: 318430 Tue Feb 22 16:04:11 2011 10+ relations: 987677 Tue Feb 22 16:04:11 2011 heaviest cycle: 21 relations Tue Feb 22 16:04:16 2011 commencing cycle optimization Tue Feb 22 16:04:38 2011 start with 32236559 relations Tue Feb 22 16:06:51 2011 pruned 1205749 relations Tue Feb 22 16:06:52 2011 memory use: 941.8 MB Tue Feb 22 16:06:52 2011 distribution of cycle lengths: Tue Feb 22 16:06:52 2011 1 relations: 340205 Tue Feb 22 16:06:52 2011 2 relations: 499947 Tue Feb 22 16:06:52 2011 3 relations: 598152 Tue Feb 22 16:06:52 2011 4 relations: 595075 Tue Feb 22 16:06:52 2011 5 relations: 584870 Tue Feb 22 16:06:52 2011 6 relations: 524404 Tue Feb 22 16:06:52 2011 7 relations: 462011 Tue Feb 22 16:06:52 2011 8 relations: 386953 Tue Feb 22 16:06:52 2011 9 relations: 317222 Tue Feb 22 16:06:52 2011 10+ relations: 860627 Tue Feb 22 16:06:52 2011 heaviest cycle: 21 relations Tue Feb 22 16:07:10 2011 RelProcTime: 5941 Tue Feb 22 16:07:12 2011 elapsed time 01:39:06 Wed Feb 23 15:27:21 2011 Wed Feb 23 15:27:21 2011 Wed Feb 23 15:27:21 2011 Msieve v. 1.48 Wed Feb 23 15:27:21 2011 random seeds: 571437af af23924f Wed Feb 23 15:27:21 2011 MPI process 0 of 25 Wed Feb 23 15:27:21 2011 factoring 61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853 (224 digits) Wed Feb 23 15:27:24 2011 no P-1/P+1/ECM available, skipping Wed Feb 23 15:27:24 2011 commencing number field sieve (224-digit input) Wed Feb 23 15:27:24 2011 R0: -20000000000000000000000000000000000000 Wed Feb 23 15:27:24 2011 R1: 1 Wed Feb 23 15:27:24 2011 A0: 1 Wed Feb 23 15:27:24 2011 A1: 0 Wed Feb 23 15:27:24 2011 A2: 0 Wed Feb 23 15:27:24 2011 A3: 0 Wed Feb 23 15:27:24 2011 A4: 0 Wed Feb 23 15:27:24 2011 A5: 0 Wed Feb 23 15:27:24 2011 A6: 6250 Wed Feb 23 15:27:24 2011 skew 0.23, size 3.143e-11, alpha -0.950, combined = 1.477e-12 rroots = 0 Wed Feb 23 15:27:24 2011 Wed Feb 23 15:27:24 2011 commencing linear algebra Wed Feb 23 15:27:24 2011 initialized process (0,0) of 5 x 5 grid Wed Feb 23 15:29:03 2011 matrix starts at (0, 0) Wed Feb 23 15:29:03 2011 matrix is 1033799 x 931324 (107.5 MB) with weight 39580603 (42.50/col) Wed Feb 23 15:29:03 2011 sparse part has weight 17932857 (19.26/col) Wed Feb 23 15:29:03 2011 saving the first 48 matrix rows for later Wed Feb 23 15:29:03 2011 matrix includes 64 packed rows Wed Feb 23 15:29:14 2011 matrix is 1033751 x 931324 (93.9 MB) with weight 21993174 (23.61/col) Wed Feb 23 15:29:14 2011 sparse part has weight 15289801 (16.42/col) Wed Feb 23 15:29:14 2011 using block size 43690 for processor cache size 1024 kB Wed Feb 23 15:29:15 2011 commencing Lanczos iteration Wed Feb 23 15:29:15 2011 memory use: 115.8 MB Wed Feb 23 15:29:21 2011 restarting at iteration 52186 (dim = 3300049) Wed Feb 23 15:29:39 2011 linear algebra at 63.9%, ETA 6h 9m Wed Feb 23 15:29:44 2011 checkpointing every 310000 dimensions Wed Feb 23 22:01:24 2011 lanczos halted after 81733 iterations (dim = 5168494) Wed Feb 23 22:01:41 2011 recovered 36 nontrivial dependencies Wed Feb 23 22:01:43 2011 BLanczosTime: 23659 Wed Feb 23 22:01:43 2011 elapsed time 06:34:22 Thu Feb 24 06:18:16 2011 Thu Feb 24 06:18:16 2011 Thu Feb 24 06:18:16 2011 Msieve v. 1.48 Thu Feb 24 06:18:16 2011 random seeds: c7314c58 9c755bad Thu Feb 24 06:18:16 2011 factoring 61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853 (224 digits) Thu Feb 24 06:18:19 2011 no P-1/P+1/ECM available, skipping Thu Feb 24 06:18:19 2011 commencing number field sieve (224-digit input) Thu Feb 24 06:18:19 2011 R0: -20000000000000000000000000000000000000 Thu Feb 24 06:18:19 2011 R1: 1 Thu Feb 24 06:18:19 2011 A0: 1 Thu Feb 24 06:18:19 2011 A1: 0 Thu Feb 24 06:18:19 2011 A2: 0 Thu Feb 24 06:18:19 2011 A3: 0 Thu Feb 24 06:18:19 2011 A4: 0 Thu Feb 24 06:18:19 2011 A5: 0 Thu Feb 24 06:18:19 2011 A6: 6250 Thu Feb 24 06:18:19 2011 skew 0.23, size 3.143e-11, alpha -0.950, combined = 1.477e-12 rroots = 0 Thu Feb 24 06:18:19 2011 Thu Feb 24 06:18:19 2011 commencing square root phase Thu Feb 24 06:18:19 2011 reading relations for dependency 1 Thu Feb 24 06:18:22 2011 read 2582762 cycles Thu Feb 24 06:18:32 2011 cycles contain 7159766 unique relations Thu Feb 24 06:23:39 2011 read 7159766 relations Thu Feb 24 06:24:53 2011 multiplying 7159766 relations Thu Feb 24 06:39:14 2011 multiply complete, coefficients have about 258.14 million bits Thu Feb 24 06:39:16 2011 initial square root is modulo 1836147433 Thu Feb 24 06:56:39 2011 reading relations for dependency 2 Thu Feb 24 06:56:40 2011 read 2584372 cycles Thu Feb 24 06:56:48 2011 cycles contain 7160898 unique relations Thu Feb 24 07:01:34 2011 read 7160898 relations Thu Feb 24 07:02:35 2011 multiplying 7160898 relations Thu Feb 24 07:16:12 2011 multiply complete, coefficients have about 258.19 million bits Thu Feb 24 07:16:14 2011 initial square root is modulo 1843630123 Thu Feb 24 07:33:37 2011 sqrtTime: 4518 Thu Feb 24 07:33:37 2011 prp58 factor: 2274638262341070593950100717451021126508724154034353396727 Thu Feb 24 07:33:37 2011 prp167 factor: 26983602469312680130580985847029543470319676934990817496724014747605720259827010445557677689524276607304620925751442325052907279775178255048557619638932527039814094539 Thu Feb 24 07:33:37 2011 elapsed time 01:15:21 |
software ソフトウェア | ggnfs-lasieve4I14e on the RSALS grid + msieve 1.48 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 1184 | 324 | Serge Batalov | November 3, 2008 23:25:17 UTC 2008 年 11 月 4 日 (火) 8 時 25 分 17 秒 (日本時間) |
860 | Serge Batalov | December 2, 2008 05:43:19 UTC 2008 年 12 月 2 日 (火) 14 時 43 分 19 秒 (日本時間) | |||
45 | 11e6 | 400 | 200 | Serge Batalov | November 7, 2008 02:14:12 UTC 2008 年 11 月 7 日 (金) 11 時 14 分 12 秒 (日本時間) |
150 | Serge Batalov | December 2, 2008 05:43:19 UTC 2008 年 12 月 2 日 (火) 14 時 43 分 19 秒 (日本時間) | |||
50 | Serge Batalov | December 2, 2008 19:58:36 UTC 2008 年 12 月 3 日 (水) 4 時 58 分 36 秒 (日本時間) | |||
50 | 43e6 | 1100 | yoyo@home | January 24, 2010 22:00:12 UTC 2010 年 1 月 25 日 (月) 7 時 0 分 12 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | August 15, 2010 09:45:34 UTC 2010 年 8 月 15 日 (日) 18 時 45 分 34 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | June 22, 2011 09:40:14 UTC 2011 年 6 月 22 日 (水) 18 時 40 分 14 秒 (日本時間) |
composite number 合成数 | 2717010347467939343347130234552659774894045641045205638624758005184592850265052348675393115465434200166542524093776876996697657382544681945003759096318128059998758106250775400698635118800260427085131045068090883099<214> |
prime factors 素因数 | 151665385898395010920361713151614617130219<42> |
composite cofactor 合成数の残り | 17914505220645022132194954402500979428459361638158467906590559309010783910561177699484997168919844042329407282181531626843571647207113173504748854176220229117272439835781521<173> |
factorization results 素因数分解の結果 | GMP-ECM 6.3 [configured with GMP 5.0.0 and --enable-asm-redc] [ECM] Input number is 2717010347467939343347130234552659774894045641045205638624758005184592850265052348675393115465434200166542524093776876996697657382544681945003759096318128059998758106250775400698635118800260427085131045068090883099 (214 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=6134707835 Step 1 took 23853ms ********** Factor found in step 1: 151665385898395010920361713151614617130219 Found probable prime factor of 42 digits: 151665385898395010920361713151614617130219 Composite cofactor 17914505220645022132194954402500979428459361638158467906590559309010783910561177699484997168919844042329407282181531626843571647207113173504748854176220229117272439835781521 has 173 digits |
execution environment 実行環境 | Core 2 Quad Q6700 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:14:22 UTC 2011 年 3 月 13 日 (日) 7 時 14 分 22 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:12:51 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 51 秒 (日本時間) | |||
45 | 11e6 | 1462 / 3962 | 139 | KTakahashi | February 3, 2014 14:27:19 UTC 2014 年 2 月 3 日 (月) 23 時 27 分 19 秒 (日本時間) |
1323 | KTakahashi | August 10, 2014 21:11:37 UTC 2014 年 8 月 11 日 (月) 6 時 11 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:14:47 UTC 2011 年 3 月 13 日 (日) 7 時 14 分 47 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:13:00 UTC 2011 年 8 月 1 日 (月) 17 時 13 分 0 秒 (日本時間) | |||
45 | 11e6 | 139 / 3962 | KTakahashi | February 20, 2014 14:03:32 UTC 2014 年 2 月 20 日 (木) 23 時 3 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 21, 2008 03:45:39 UTC 2008 年 11 月 21 日 (金) 12 時 45 分 39 秒 (日本時間) |
composite number 合成数 | 55523158948362089645591748658805860969960015417431757791132753268593699986400035897896187464929550379449095784684597351876480046195096464604838023815373<152> |
prime factors 素因数 | 59520510316289955705069974366831129<35> 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437<117> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3553856087 Step 1 took 14589ms Step 2 took 10980ms ********** Factor found in step 2: 59520510316289955705069974366831129 Found probable prime factor of 35 digits: 59520510316289955705069974366831129 Probable prime cofactor 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437 has 117 digits |
software ソフトウェア | GMP-ECM 6.2.1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 / 2336 | Serge Batalov | November 21, 2008 03:35:20 UTC 2008 年 11 月 21 日 (金) 12 時 35 分 20 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 10, 2013 11:58:10 UTC 2013 年 10 月 10 日 (木) 20 時 58 分 10 秒 (日本時間) |
composite number 合成数 | 1531420938188728041214984401352764501050633556642489973449593447222970594261678986679807241176397024478176940208080798998544701073339370228454551033485760402630490577887063288585986334172111919571072864381860838453<214> |
prime factors 素因数 | 2525595417360720847349418399085176183355724297940127<52> 606360356715044363553197719386419019822429801044602418979358571249578646327872607361512864562827095184920847571890230832148464068658949833446599287566868039930539<162> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] Input number is 1531420938188728041214984401352764501050633556642489973449593447222970594261678986679807241176397024478176940208080798998544701073339370228454551033485760402630490577887063288585986334172111919571072864381860838453 (214 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4030962254 Step 1 took 67753ms Step 2 took 19838ms ********** Factor found in step 2: 2525595417360720847349418399085176183355724297940127 Found probable prime factor of 52 digits: 2525595417360720847349418399085176183355724297940127 Probable prime cofactor 606360356715044363553197719386419019822429801044602418979358571249578646327872607361512864562827095184920847571890230832148464068658949833446599287566868039930539 has 162 digits |
execution environment 実行環境 | Core i7 980 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 2336 | 300 | Dmitry Domanov | March 12, 2011 22:15:10 UTC 2011 年 3 月 13 日 (日) 7 時 15 分 10 秒 (日本時間) |
2036 | Jo Yeong Uk | August 1, 2011 08:13:10 UTC 2011 年 8 月 1 日 (月) 17 時 13 分 10 秒 (日本時間) |
composite cofactor 合成数の残り | 676230413605955129605354486014521738526895649311989696184845947638518215716542400947488253388711090435926834770951019457366341947049456598366448537219021549936677729<165> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 0 | - | - | |
40 | 3e6 | 300 | Serge Batalov | November 13, 2008 23:15:02 UTC 2008 年 11 月 14 日 (金) 8 時 15 分 2 秒 (日本時間) | |
45 | 11e6 | 2000 | 500 | Serge Batalov | January 6, 2009 04:33:02 UTC 2009 年 1 月 6 日 (火) 13 時 33 分 2 秒 (日本時間) |
500 | Serge Batalov | January 10, 2009 02:09:39 UTC 2009 年 1 月 10 日 (土) 11 時 9 分 39 秒 (日本時間) | |||
1000 | Serge Batalov | January 10, 2009 05:39:47 UTC 2009 年 1 月 10 日 (土) 14 時 39 分 47 秒 (日本時間) | |||
50 | 43e6 | 1010 | yoyo@home | January 24, 2010 23:20:13 UTC 2010 年 1 月 25 日 (月) 8 時 20 分 13 秒 (日本時間) | |
55 | 11e7 | 2574 / 17282 | 2535 | yoyo@home | August 15, 2010 20:15:36 UTC 2010 年 8 月 16 日 (月) 5 時 15 分 36 秒 (日本時間) |
39 | KTakahashi | February 11, 2014 21:19:38 UTC 2014 年 2 月 12 日 (水) 6 時 19 分 38 秒 (日本時間) |
name 名前 | rkillian |
---|---|
date 日付 | August 31, 2010 04:14:45 UTC 2010 年 8 月 31 日 (火) 13 時 14 分 45 秒 (日本時間) |
composite number 合成数 | 1718184254006969767666540868613748026520442882758556781049489102062120376384121873812419920846762265878301044798578878546675808793908808686310443814823773914206183656088533<172> |
prime factors 素因数 | 422911528517671635279241199954086672512819330893<48> |
composite cofactor 合成数の残り | 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481<124> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 1718184254006969767666540868613748026520442882758556781049489102062120376384121873812419920846762265878301044798578878546675808793908808686310443814823773914206183656088533 (172 digits) [Mon Aug 30 21:35:14 2010] Using MODMULN Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3131248890 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 4 10 34 135 613 3133 17769 111196 751771 Step 1 took 303687ms Using 21 small primes for NTT Estimated memory usage: 478M Initializing tables of differences for F took 203ms Computing roots of F took 16707ms Building F from its roots took 11076ms Computing 1/F took 5023ms Initializing table of differences for G took 187ms Computing roots of G took 14383ms Building G from its roots took 10312ms Computing roots of G took 14586ms Building G from its roots took 10249ms Computing G * H took 2823ms Reducing G * H mod F took 2761ms Computing roots of G took 14415ms Building G from its roots took 10265ms Computing G * H took 2776ms Reducing G * H mod F took 2777ms Computing roots of G took 14399ms Building G from its roots took 10140ms Computing G * H took 2823ms Reducing G * H mod F took 2761ms Computing polyeval(F,G) took 18955ms Computing product of all F(g_i) took 93ms Step 2 took 168340ms ********** Factor found in step 2: 422911528517671635279241199954086672512819330893 Found probable prime factor of 48 digits: 422911528517671635279241199954086672512819330893 Composite cofactor 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481 has 124 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Erik Branger |
---|---|
date 日付 | September 11, 2010 20:37:18 UTC 2010 年 9 月 12 日 (日) 5 時 37 分 18 秒 (日本時間) |
composite number 合成数 | 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481<124> |
prime factors 素因数 | 4749360430317354949216389905325606214784731753082957<52> 855431189865208976114047930253021465132317651100002178476508620983478733<72> |
factorization results 素因数分解の結果 | Number: 40001_238 N = 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481 (124 digits) Divisors found: r1=4749360430317354949216389905325606214784731753082957 (pp52) r2=855431189865208976114047930253021465132317651100002178476508620983478733 (pp72) Version: Msieve v. 1.44 Total time: 104.60 hours. Factorization parameters were as follows: # Murphy_E = 1.912149e-10, selected by Erik Branger n: 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481 Y0: -924982764641111326633605 Y1: 23307828561283 c0: -226582626012824688162800028128 c1: 4299064751899127882997552 c2: 29326322136669373060 c3: -399676594422033 c4: 415347238 c5: 6000 skew: 163880.45 type: gnfs # selected mechanically rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [3300000, 6300000) Relations: 10435169 Relations in full relation-set: 1632762 relations Pruned matrix : 957981 x 958205 Polynomial selection time: 0.00 hours. Total sieving time: 103.17 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.04 hours. time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,123,5,65,2000,1e-05,0.28,250,20,50000,3600,6600000,6600000,27,27,52,52,2.5,2.5,100000 total time: 104.60 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:57:00 UTC 2009 年 2 月 21 日 (土) 16 時 57 分 0 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:57:39 UTC 2009 年 2 月 21 日 (土) 16 時 57 分 39 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 / 1815 | yoyo@home | January 25, 2010 00:30:06 UTC 2010 年 1 月 25 日 (月) 9 時 30 分 6 秒 (日本時間) | |
55 | 11e7 | 2345 / 17343 | yoyo@home | August 30, 2010 01:10:18 UTC 2010 年 8 月 30 日 (月) 10 時 10 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:53:55 UTC 2009 年 2 月 21 日 (土) 16 時 53 分 55 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:54:54 UTC 2009 年 2 月 21 日 (土) 16 時 54 分 54 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | January 28, 2010 11:31:39 UTC 2010 年 1 月 28 日 (木) 20 時 31 分 39 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | August 30, 2010 11:20:30 UTC 2010 年 8 月 30 日 (月) 20 時 20 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:53:24 UTC 2009 年 2 月 21 日 (土) 16 時 53 分 24 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 600 / 4423 | Dmitry Domanov | July 10, 2011 21:43:49 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 49 秒 (日本時間) | |
50 | 43e6 | 3 / 7411 | 1 | Dmitry Domanov | July 10, 2011 21:43:26 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 26 秒 (日本時間) |
2 | Dmitry Domanov | July 10, 2011 21:43:43 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 43 秒 (日本時間) | |||
55 | 11e7 | 1 / 17730 | Dmitry Domanov | July 10, 2011 21:43:26 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 26 秒 (日本時間) |
name 名前 | yoyo@home |
---|---|
date 日付 | January 30, 2010 11:51:05 UTC 2010 年 1 月 30 日 (土) 20 時 51 分 5 秒 (日本時間) |
composite number 合成数 | 8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013<226> |
prime factors 素因数 | 947255853369650441723806278949229684129<39> 252848348718738248054735889573081237056927<42> |
composite cofactor 合成数の残り | 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211<146> |
factorization results 素因数分解の結果 | GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013 (226 digits) [Thu Jan 28 05:46:51 2010] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1774910016 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 563031ms Using 27 small primes for NTT Estimated memory usage: 298M Initializing tables of differences for F took 125ms Computing roots of F took 11156ms Building F from its roots took 12922ms Computing 1/F took 6094ms Initializing table of differences for G took 187ms Computing roots of G took 8938ms Building G from its roots took 12500ms Computing roots of G took 8969ms Building G from its roots took 12469ms Computing G * H took 3407ms Reducing G * H mod F took 3406ms Computing roots of G took 8719ms Building G from its roots took 12453ms Computing G * H took 3375ms Reducing G * H mod F took 3375ms Computing roots of G took 8969ms Building G from its roots took 12500ms Computing G * H took 3422ms Reducing G * H mod F took 3359ms Computing roots of G took 8234ms Building G from its roots took 12422ms Computing G * H took 3390ms Reducing G * H mod F took 3407ms Computing polyeval(F,G) took 23047ms Computing product of all F(g_i) took 125ms Step 2 took 187547ms ********** Factor found in step 2: 947255853369650441723806278949229684129 Found probable prime factor of 39 digits: 947255853369650441723806278949229684129 Composite cofactor 8630348703389527551688580582854849693429632312287293032192542688414499000607315125408554505008617434425373262264600307243301643288904838684176439315377629554552765130809210729144123270597 has 187 digits GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM] Input number is 8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013 (226 digits) [Thu Jan 28 05:34:04 2010] Using MODMULN Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3965627531 dF=65536, k=5, d=690690, d2=17, i0=46 Expected number of curves to find a factor of n digits: 20 25 30 35 40 45 50 55 60 65 2 5 14 55 246 1277 7553 49797 358989 2841353 Step 1 took 567703ms Using 27 small primes for NTT Estimated memory usage: 298M Initializing tables of differences for F took 125ms Computing roots of F took 10422ms Building F from its roots took 12859ms Computing 1/F took 6156ms Initializing table of differences for G took 203ms Computing roots of G took 8922ms Building G from its roots took 12547ms Computing roots of G took 8828ms Building G from its roots took 12500ms Computing G * H took 3344ms Reducing G * H mod F took 3422ms Computing roots of G took 8921ms Building G from its roots took 12469ms Computing G * H took 3375ms Reducing G * H mod F took 3422ms Computing roots of G took 8890ms Building G from its roots took 12047ms Computing G * H took 3390ms Reducing G * H mod F took 3391ms Computing roots of G took 8969ms Building G from its roots took 12375ms Computing G * H took 3375ms Reducing G * H mod F took 3406ms Computing polyeval(F,G) took 23187ms Computing product of all F(g_i) took 141ms Step 2 took 187282ms ********** Factor found in step 2: 252848348718738248054735889573081237056927 Found probable prime factor of 42 digits: 252848348718738248054735889573081237056927 Composite cofactor 32332219559008154093684644264418956323611913638122865936223578581874744960162844748683505535670206422537062878846914423513668987655401786361270705455271003183129900530585361573229044219 has 185 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Youcef Lemsafer |
---|---|
date 日付 | December 19, 2013 14:01:39 UTC 2013 年 12 月 19 日 (木) 23 時 1 分 39 秒 (日本時間) |
composite number 合成数 | 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211<146> |
prime factors 素因数 | 60020541527437240963374051468568365819621167111923661277994930871623<68> 568680468126153435753728167358980072501665559484793347884252370988739251938957<78> |
factorization results 素因数分解の結果 | <Polynomial selection using msieve 1.52 win64 CUDA> Sat Dec 14 21:42:38 2013 Msieve v. 1.52 (SVN unknown) Sat Dec 14 21:42:38 2013 random seeds: 4774ff10 8ded1469 Sat Dec 14 21:42:38 2013 factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits) Sat Dec 14 21:42:40 2013 searching for 15-digit factors Sat Dec 14 21:42:43 2013 commencing number field sieve (146-digit input) Sat Dec 14 21:42:43 2013 commencing number field sieve polynomial selection Sat Dec 14 21:42:43 2013 polynomial degree: 5 Sat Dec 14 21:42:43 2013 max stage 1 norm: 1.92e+022 Sat Dec 14 21:42:43 2013 max stage 2 norm: 3.03e+020 Sat Dec 14 21:42:43 2013 min E-value: 7.79e-012 Sat Dec 14 21:42:43 2013 poly select deadline: 396752 Sat Dec 14 21:42:43 2013 time limit set to 110.21 CPU-hours Sat Dec 14 21:42:43 2013 expecting poly E from 9.48e-012 to > 1.09e-011 Sat Dec 14 21:42:43 2013 searching leading coefficients from 1 to 6302852 Sat Dec 14 21:42:43 2013 using GPU 0 (GeForce GTX 660) Sat Dec 14 21:42:43 2013 selected card has CUDA arch 3.0 Sat Dec 14 21:42:46 2013 polynomial selection complete Sun Dec 15 22:40:32 2013 Msieve v. 1.52 (SVN unknown) Sun Dec 15 22:40:32 2013 random seeds: 916f921c 9cab0a25 Sun Dec 15 22:40:32 2013 factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits) Sun Dec 15 22:40:33 2013 searching for 15-digit factors Sun Dec 15 22:40:34 2013 commencing number field sieve (146-digit input) Sun Dec 15 22:40:34 2013 commencing number field sieve polynomial selection Sun Dec 15 22:40:34 2013 polynomial degree: 5 Sun Dec 15 22:40:34 2013 max stage 1 norm: 1.92e+022 Sun Dec 15 22:40:34 2013 max stage 2 norm: 3.03e+020 Sun Dec 15 22:40:34 2013 min E-value: 8.70e-012 Sun Dec 15 22:40:34 2013 poly select deadline: 396752 Mon Dec 16 07:17:12 2013 polynomial selection complete Mon Dec 16 07:17:12 2013 R0: -11227082565783304062262676676 Mon Dec 16 07:17:12 2013 R1: 10692036547129421 Mon Dec 16 07:17:12 2013 A0: 71541935245573498052622426086494975 Mon Dec 16 07:17:12 2013 A1: 106313089141346645669772563882 Mon Dec 16 07:17:12 2013 A2: -303367004911534998241563 Mon Dec 16 07:17:12 2013 A3: -592535656038116738 Mon Dec 16 07:17:12 2013 A4: 292984179908 Mon Dec 16 07:17:12 2013 A5: 191352 Mon Dec 16 07:17:12 2013 skew 1101878.65, size 4.235e-014, alpha -6.889, combined = 1.026e-011 rroots = 3 Mon Dec 16 07:17:12 2013 elapsed time 08:36:40 <Sieving + post-processing using GGNFS (SVN 440) + msieve 1.51 (SVN 845)> Mon Dec 16 12:17:00 2013 -> factmsieve.py (v0.76) Mon Dec 16 12:17:00 2013 -> This is client 1 of 1 Mon Dec 16 12:17:00 2013 -> Running on 12 Cores with 2 hyper-threads per Core Mon Dec 16 12:17:00 2013 -> Working with NAME = 40001_245 Mon Dec 16 12:17:00 2013 -> Selected lattice siever: gnfs-lasieve4I14e Mon Dec 16 12:17:00 2013 -> Creating param file to detect parameter changes... Mon Dec 16 12:17:00 2013 -> Running setup ... Mon Dec 16 12:17:00 2013 -> Estimated minimum relations needed: 3.63895e+07 Mon Dec 16 12:17:00 2013 -> cleaning up before a restart Mon Dec 16 12:17:00 2013 -> Running lattice siever ... Mon Dec 16 12:17:00 2013 -> entering sieving loop <...snipped...> Mon Dec 16 12:17:07 2013 -> Lattice sieving algebraic q from 10000000 to 10100000. <...snipped...> Mon Dec 16 12:45:26 2013 Found 381814 relations, 1.0% of the estimated minimum (36389459). <...snipped...> Tue Dec 17 00:20:50 2013 Found 9073639 relations, 24.9% of the estimated minimum (36389459). <...snipped...> Tue Dec 17 13:41:48 2013 -> Lattice sieving algebraic q from 14700000 to 14800000. <...snipped...> Tue Dec 17 14:14:36 2013 Found 18191418 relations, 50.0% of the estimated minimum (36389459). <...snipped...> Wed Dec 18 04:53:47 2013 -> Lattice sieving algebraic q from 17100000 to 17200000. <...snipped...> Wed Dec 18 06:08:20 2013 Found 27289844 relations, 75.0% of the estimated minimum (36389459). <...snipped...> Wed Dec 18 19:13:46 2013 -> Lattice sieving algebraic q from 19500000 to 19600000. <...snipped...> Wed Dec 18 19:44:16 2013 Found 36345648 relations, 99.9% of the estimated minimum (36389459). <...snipped...> Thu Dec 19 02:33:21 2013 -> Lattice sieving algebraic q from 20500000 to 20600000. <...snipped...> Thu Dec 19 03:05:27 2013 Found 40249745 relations, 110.6% of the estimated minimum (36389459). Thu Dec 19 03:05:27 2013 Thu Dec 19 03:05:27 2013 Thu Dec 19 03:05:27 2013 Msieve v. 1.51 (SVN 845) Thu Dec 19 03:05:27 2013 random seeds: a251f6b8 5b6efb32 Thu Dec 19 03:05:27 2013 factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits) Thu Dec 19 03:05:28 2013 searching for 15-digit factors Thu Dec 19 03:05:29 2013 commencing number field sieve (146-digit input) Thu Dec 19 03:05:29 2013 R0: -11227082565783304062262676676 Thu Dec 19 03:05:29 2013 R1: 10692036547129421 Thu Dec 19 03:05:29 2013 A0: 71541935245573498052622426086494975 Thu Dec 19 03:05:29 2013 A1: 106313089141346645669772563882 Thu Dec 19 03:05:29 2013 A2: -303367004911534998241563 Thu Dec 19 03:05:29 2013 A3: -592535656038116738 Thu Dec 19 03:05:29 2013 A4: 292984179908 Thu Dec 19 03:05:29 2013 A5: 191352 Thu Dec 19 03:05:29 2013 skew 1101878.65, size 4.235e-014, alpha -6.889, combined = 1.026e-011 rroots = 3 Thu Dec 19 03:05:29 2013 Thu Dec 19 03:05:29 2013 commencing relation filtering Thu Dec 19 03:05:29 2013 estimated available RAM is 4096.0 MB Thu Dec 19 03:05:29 2013 commencing duplicate removal, pass 1 Thu Dec 19 03:10:00 2013 found 4387349 hash collisions in 40249744 relations Thu Dec 19 03:10:56 2013 added 3 free relations Thu Dec 19 03:10:56 2013 commencing duplicate removal, pass 2 Thu Dec 19 03:11:31 2013 found 3513761 duplicates and 36735986 unique relations Thu Dec 19 03:11:31 2013 memory use: 197.2 MB Thu Dec 19 03:11:31 2013 reading ideals above 20512768 Thu Dec 19 03:11:31 2013 commencing singleton removal, initial pass Thu Dec 19 03:16:42 2013 memory use: 753.0 MB Thu Dec 19 03:16:42 2013 reading all ideals from disk Thu Dec 19 03:16:43 2013 memory use: 660.6 MB Thu Dec 19 03:16:45 2013 commencing in-memory singleton removal Thu Dec 19 03:16:47 2013 begin with 36735986 relations and 37803452 unique ideals Thu Dec 19 03:17:07 2013 reduce to 13793306 relations and 11080548 ideals in 21 passes Thu Dec 19 03:17:07 2013 max relations containing the same ideal: 46 Thu Dec 19 03:17:09 2013 reading ideals above 720000 Thu Dec 19 03:17:09 2013 commencing singleton removal, initial pass Thu Dec 19 03:19:41 2013 memory use: 376.5 MB Thu Dec 19 03:19:41 2013 reading all ideals from disk Thu Dec 19 03:19:42 2013 memory use: 467.7 MB Thu Dec 19 03:19:43 2013 keeping 13564662 ideals with weight <= 200, target excess is 115771 Thu Dec 19 03:19:44 2013 commencing in-memory singleton removal Thu Dec 19 03:19:46 2013 begin with 13793311 relations and 13564662 unique ideals Thu Dec 19 03:20:07 2013 reduce to 13772583 relations and 13543914 ideals in 18 passes Thu Dec 19 03:20:07 2013 max relations containing the same ideal: 199 Thu Dec 19 03:20:14 2013 removing 762300 relations and 715113 ideals in 47187 cliques Thu Dec 19 03:20:14 2013 commencing in-memory singleton removal Thu Dec 19 03:20:16 2013 begin with 13010283 relations and 13543914 unique ideals Thu Dec 19 03:20:35 2013 reduce to 12971542 relations and 12789838 ideals in 13 passes Thu Dec 19 03:20:35 2013 max relations containing the same ideal: 192 Thu Dec 19 03:20:44 2013 removing 548898 relations and 501711 ideals in 47187 cliques Thu Dec 19 03:20:44 2013 commencing in-memory singleton removal Thu Dec 19 03:20:45 2013 begin with 12422644 relations and 12789838 unique ideals Thu Dec 19 03:21:00 2013 reduce to 12401265 relations and 12266645 ideals in 10 passes Thu Dec 19 03:21:00 2013 max relations containing the same ideal: 181 Thu Dec 19 03:21:11 2013 relations with 0 large ideals: 479 Thu Dec 19 03:21:11 2013 relations with 1 large ideals: 253 Thu Dec 19 03:21:11 2013 relations with 2 large ideals: 6728 Thu Dec 19 03:21:11 2013 relations with 3 large ideals: 75060 Thu Dec 19 03:21:11 2013 relations with 4 large ideals: 427852 Thu Dec 19 03:21:11 2013 relations with 5 large ideals: 1430225 Thu Dec 19 03:21:11 2013 relations with 6 large ideals: 2910248 Thu Dec 19 03:21:11 2013 relations with 7+ large ideals: 7550420 Thu Dec 19 03:21:11 2013 commencing 2-way merge Thu Dec 19 03:21:24 2013 reduce to 6928250 relation sets and 6793640 unique ideals Thu Dec 19 03:21:24 2013 ignored 10 oversize relation sets Thu Dec 19 03:21:24 2013 commencing full merge Thu Dec 19 03:24:07 2013 memory use: 678.9 MB Thu Dec 19 03:24:09 2013 found 3596016 cycles, need 3583840 Thu Dec 19 03:24:09 2013 weight of 3583840 cycles is about 250915426 (70.01/cycle) Thu Dec 19 03:24:09 2013 distribution of cycle lengths: Thu Dec 19 03:24:09 2013 1 relations: 533573 Thu Dec 19 03:24:09 2013 2 relations: 495181 Thu Dec 19 03:24:09 2013 3 relations: 461335 Thu Dec 19 03:24:09 2013 4 relations: 392945 Thu Dec 19 03:24:09 2013 5 relations: 325469 Thu Dec 19 03:24:09 2013 6 relations: 271130 Thu Dec 19 03:24:09 2013 7 relations: 218714 Thu Dec 19 03:24:09 2013 8 relations: 173897 Thu Dec 19 03:24:09 2013 9 relations: 139874 Thu Dec 19 03:24:09 2013 10+ relations: 571722 Thu Dec 19 03:24:09 2013 heaviest cycle: 27 relations Thu Dec 19 03:24:10 2013 commencing cycle optimization Thu Dec 19 03:24:16 2013 start with 19725943 relations Thu Dec 19 03:25:00 2013 pruned 311368 relations Thu Dec 19 03:25:00 2013 memory use: 554.5 MB Thu Dec 19 03:25:00 2013 distribution of cycle lengths: Thu Dec 19 03:25:00 2013 1 relations: 533573 Thu Dec 19 03:25:00 2013 2 relations: 504443 Thu Dec 19 03:25:00 2013 3 relations: 473842 Thu Dec 19 03:25:00 2013 4 relations: 397170 Thu Dec 19 03:25:00 2013 5 relations: 328463 Thu Dec 19 03:25:00 2013 6 relations: 270416 Thu Dec 19 03:25:00 2013 7 relations: 217275 Thu Dec 19 03:25:00 2013 8 relations: 171207 Thu Dec 19 03:25:00 2013 9 relations: 137220 Thu Dec 19 03:25:00 2013 10+ relations: 550231 Thu Dec 19 03:25:00 2013 heaviest cycle: 27 relations Thu Dec 19 03:25:04 2013 RelProcTime: 1175 Thu Dec 19 03:25:04 2013 elapsed time 00:19:37 Thu Dec 19 03:25:04 2013 LatSieveTime: 3102.77 Thu Dec 19 03:25:04 2013 -> Running matrix solving step ... <...snipped...> Thu Dec 19 03:25:06 2013 Thu Dec 19 03:25:06 2013 commencing linear algebra Thu Dec 19 03:25:07 2013 read 3583840 cycles Thu Dec 19 03:25:15 2013 cycles contain 12193763 unique relations Thu Dec 19 03:26:39 2013 read 12193763 relations Thu Dec 19 03:27:02 2013 using 20 quadratic characters above 536870718 Thu Dec 19 03:28:09 2013 building initial matrix Thu Dec 19 03:31:10 2013 memory use: 1453.2 MB Thu Dec 19 03:31:14 2013 read 3583840 cycles Thu Dec 19 03:31:15 2013 matrix is 3583660 x 3583840 (1027.2 MB) with weight 340841722 (95.11/col) Thu Dec 19 03:31:15 2013 sparse part has weight 244177102 (68.13/col) Thu Dec 19 03:31:55 2013 filtering completed in 2 passes Thu Dec 19 03:31:56 2013 matrix is 3578936 x 3579116 (1026.9 MB) with weight 340657476 (95.18/col) Thu Dec 19 03:31:56 2013 sparse part has weight 244132895 (68.21/col) Thu Dec 19 03:32:18 2013 matrix starts at (0, 0) Thu Dec 19 03:32:20 2013 matrix is 3578936 x 3579116 (1026.9 MB) with weight 340657476 (95.18/col) Thu Dec 19 03:32:20 2013 sparse part has weight 244132895 (68.21/col) Thu Dec 19 03:32:20 2013 saving the first 48 matrix rows for later Thu Dec 19 03:32:21 2013 matrix includes 64 packed rows Thu Dec 19 03:32:22 2013 matrix is 3578888 x 3579116 (994.0 MB) with weight 271603917 (75.89/col) Thu Dec 19 03:32:22 2013 sparse part has weight 239087446 (66.80/col) Thu Dec 19 03:32:22 2013 using block size 65536 for processor cache size 15360 kB Thu Dec 19 03:32:46 2013 commencing Lanczos iteration (24 threads) Thu Dec 19 03:32:46 2013 memory use: 1465.6 MB Thu Dec 19 03:33:02 2013 linear algebra at 0.0%, ETA 9h47m Thu Dec 19 03:33:07 2013 checkpointing every 370000 dimensions Thu Dec 19 13:42:04 2013 lanczos halted after 56599 iterations (dim = 3578888) Thu Dec 19 13:42:11 2013 recovered 30 nontrivial dependencies Thu Dec 19 13:42:14 2013 BLanczosTime: 37028 Thu Dec 19 13:42:14 2013 elapsed time 10:17:10 Thu Dec 19 13:42:14 2013 -> Running square root step ... <...snipped...> Thu Dec 19 13:42:16 2013 commencing square root phase Thu Dec 19 13:42:16 2013 reading relations for dependency 1 Thu Dec 19 13:42:17 2013 read 1788935 cycles Thu Dec 19 13:42:21 2013 cycles contain 6091172 unique relations Thu Dec 19 13:43:09 2013 read 6091172 relations Thu Dec 19 13:43:45 2013 multiplying 6091172 relations Thu Dec 19 14:03:57 2013 multiply complete, coefficients have about 314.24 million bits Thu Dec 19 14:04:04 2013 initial square root is modulo 435041 Thu Dec 19 14:27:53 2013 sqrtTime: 2737 Thu Dec 19 14:27:53 2013 prp68 factor: 60020541527437240963374051468568365819621167111923661277994930871623 Thu Dec 19 14:27:53 2013 prp78 factor: 568680468126153435753728167358980072501665559484793347884252370988739251938957 Thu Dec 19 14:27:53 2013 elapsed time 00:45:39 Thu Dec 19 14:27:53 2013 -> Computing 1.38746e+09 scale for this machine... Thu Dec 19 14:27:53 2013 -> procrels -speedtest> PIPE Thu Dec 19 14:27:56 2013 -> Factorization summary written to g146-40001_245.txt Number: 40001_245 N = 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits) Divisors found: r1=60020541527437240963374051468568365819621167111923661277994930871623 (pp68) r2=568680468126153435753728167358980072501665559484793347884252370988739251938957 (pp78) Version: Msieve v. 1.51 (SVN 845) Total time: 74.49 hours. Factorization parameters were as follows: # Murphy_E = 1.026e-11, selected by Youcef Lemsafer # msieve 1.52 GPU, expecting poly E from 9.48e-012 to > 1.09e-011 # norm 5.121445e-014 alpha -6.889252 e 1.026e-011 rroots 3 # # 40001_245 (146 digits) # n: 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 Y0: -11227082565783304062262676676 Y1: 10692036547129421 c0: 71541935245573498052622426086494975 c1: 106313089141346645669772563882 c2: -303367004911534998241563 c3: -592535656038116738 c4: 292984179908 c5: 191352 skew: 1101878.65 type: gnfs # selected mechanically rlim: 26000000 alim: 26000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 q0: 10000000 Factor base limits: 26000000/26000000 Large primes per side: 3 Large prime bits: 29/29 Sieved algebraic special-q in [10000000, 20600001) Total raw relations: 40249745 Relations: 6091172 relations Pruned matrix : 3578888 x 3579116 Polynomial selection time: 0.00 hours. Total sieving time: 63.11 hours. Total relation processing time: 0.33 hours. Matrix solve time: 10.29 hours. time per square root: 0.76 hours. Prototype def-par.txt line would be: gnfs,145,5,67,2000,5e-06,0.28,250,20,50000,3600,26000000,26000000,29,29,57,57,2.6,2.6,100000 total time: 74.49 hours. Intel64 Family 6 Model 45 Stepping 7, GenuineIntel Windows-7-6.1.7601-SP1 processors: 24, speed: 2.00GHz |
software ソフトウェア | msieve 1.52 (SVN 942) GPU for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845) |
execution environment 実行環境 | Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32 GB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:51:28 UTC 2009 年 2 月 21 日 (土) 16 時 51 分 28 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:51:34 UTC 2009 年 2 月 21 日 (土) 16 時 51 分 34 秒 (日本時間) | |
45 | 11e6 | 3553 | 2466 | Wataru Sakai | May 31, 2010 01:56:16 UTC 2010 年 5 月 31 日 (月) 10 時 56 分 16 秒 (日本時間) |
1087 | Wataru Sakai | July 8, 2010 13:24:25 UTC 2010 年 7 月 8 日 (木) 22 時 24 分 25 秒 (日本時間) | |||
50 | 43e6 | 786 / 6671 | 120 | yoyo@home | January 28, 2010 12:20:11 UTC 2010 年 1 月 28 日 (木) 21 時 20 分 11 秒 (日本時間) |
666 | Youcef Lemsafer | December 15, 2013 03:14:45 UTC 2013 年 12 月 15 日 (日) 12 時 14 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:47:45 UTC 2009 年 2 月 21 日 (土) 16 時 47 分 45 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:50:36 UTC 2009 年 2 月 21 日 (土) 16 時 50 分 36 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | January 28, 2010 13:05:20 UTC 2010 年 1 月 28 日 (木) 22 時 5 分 20 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | September 1, 2010 07:35:54 UTC 2010 年 9 月 1 日 (水) 16 時 35 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:46:55 UTC 2009 年 2 月 21 日 (土) 16 時 46 分 55 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:47:24 UTC 2009 年 2 月 21 日 (土) 16 時 47 分 24 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | January 28, 2010 14:10:59 UTC 2010 年 1 月 28 日 (木) 23 時 10 分 59 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | September 1, 2010 08:30:36 UTC 2010 年 9 月 1 日 (水) 17 時 30 分 36 秒 (日本時間) |
name 名前 | Sinkiti Sibata |
---|---|
date 日付 | November 3, 2008 12:09:49 UTC 2008 年 11 月 3 日 (月) 21 時 9 分 49 秒 (日本時間) |
composite number 合成数 | 4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837<109> |
prime factors 素因数 | 234046722213975127327184686613228150778995773714719821<54> 17613153769512112517578753541630628864236833323216296297<56> |
factorization results 素因数分解の結果 | Number: 40001_248 N=4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837 ( 109 digits) SNFS difficulty: 124 digits. Divisors found: r1=234046722213975127327184686613228150778995773714719821 r2=17613153769512112517578753541630628864236833323216296297 Version: Total time: 6.26 hours. Scaled time: 6.52 units (timescale=1.041). Factorization parameters were as follows: name: 40001_248 n: 4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837 m: 10000000000000000000000000000000 deg: 4 c4: 2 c2: -2 c0: 1 skew: 0.84 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [305000, 680001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85089 x 85326 Total sieving time: 6.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,610000,610000,25,25,46,46,2.3,2.3,75000 total time: 6.26 hours. --------- CPU info (if available) ---------- |
execution environment 実行環境 | Core 2 Duo E6300 1.86GHz, Windows Vista) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) |
name 名前 | Wataru Sakai |
---|---|
date 日付 | February 17, 2009 13:07:38 UTC 2009 年 2 月 17 日 (火) 22 時 7 分 38 秒 (日本時間) |
composite number 合成数 | 5049375628147792185426799611882543488766554237245274964857184299482535756164282638428011735474908120541478940465274800628100169483850922515673096929842099427492928708169332522067008587917794833202238324621097197694481<217> |
prime factors 素因数 | 3646063837616479765543282237<28> |
composite cofactor 合成数の残り | 1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213<190> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1542610798 Step 1 took 31294ms Step 2 took 11523ms ********** Factor found in step 2: 3646063837616479765543282237 Found probable prime factor of 28 digits: 3646063837616479765543282237 Composite cofactor 1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213 has 190 digits |
software ソフトウェア | GMP-ECM 6.2.1 [powered by GMP 4.2.4] |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
30 | 25e4 | 430 | Makoto Kamada | November 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間) | |
35 | 1e6 | 825 | Wataru Sakai | February 21, 2009 07:45:06 UTC 2009 年 2 月 21 日 (土) 16 時 45 分 6 秒 (日本時間) | |
40 | 3e6 | 2111 | Wataru Sakai | February 21, 2009 07:46:11 UTC 2009 年 2 月 21 日 (土) 16 時 46 分 11 秒 (日本時間) | |
45 | 11e6 | 0 | - | - | |
50 | 43e6 | 1145 | yoyo@home | January 28, 2010 14:50:16 UTC 2010 年 1 月 28 日 (木) 23 時 50 分 16 秒 (日本時間) | |
55 | 11e7 | 2635 / 17343 | yoyo@home | September 1, 2010 09:40:26 UTC 2010 年 9 月 1 日 (水) 18 時 40 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 4000 | ebina | October 2, 2024 08:17:09 UTC 2024 年 10 月 2 日 (水) 17 時 17 分 9 秒 (日本時間) |
name 名前 | NFS@home + Dmitry Domanov |
---|---|
date 日付 | July 23, 2022 22:43:05 UTC 2022 年 7 月 24 日 (日) 7 時 43 分 5 秒 (日本時間) |
composite number 合成数 | 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<254> |
prime factors 素因数 | 3461508126208175522569203302199346213088686293934196840625676973<64> 11555656824014745965103174251426168741775970940225354060255626124188570583251500739239916948855700054108076590550861508217304724337729965415252719798975549997145212012347662797114164696224037<191> |
factorization results 素因数分解の結果 | Sieving by NFS@home, postprocessing by Dmitry Domanov Fri Jul 22 12:41:18 2022 Fri Jul 22 12:41:18 2022 Fri Jul 22 12:41:18 2022 Msieve v. 1.54 (SVN 1043M) Fri Jul 22 12:41:18 2022 random seeds: f9d0a242 c7e8c874 Fri Jul 22 12:41:18 2022 factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits) Fri Jul 22 12:41:19 2022 searching for 15-digit factors Fri Jul 22 12:41:20 2022 commencing number field sieve (254-digit input) Fri Jul 22 12:41:20 2022 R0: -1000000000000000000000000000000000000000000 Fri Jul 22 12:41:20 2022 R1: 1 Fri Jul 22 12:41:20 2022 A0: 1 Fri Jul 22 12:41:20 2022 A1: 0 Fri Jul 22 12:41:20 2022 A2: 0 Fri Jul 22 12:41:20 2022 A3: 0 Fri Jul 22 12:41:20 2022 A4: 0 Fri Jul 22 12:41:20 2022 A5: 0 Fri Jul 22 12:41:20 2022 A6: 40 Fri Jul 22 12:41:20 2022 skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0 Fri Jul 22 12:41:20 2022 Fri Jul 22 12:41:20 2022 commencing relation filtering Fri Jul 22 12:41:20 2022 setting target matrix density to 120.0 Fri Jul 22 12:41:20 2022 estimated available RAM is 63624.2 MB Fri Jul 22 12:41:20 2022 commencing duplicate removal, pass 1 Fri Jul 22 13:04:50 2022 error -15 reading relation 105021642 Fri Jul 22 13:04:56 2022 error -15 reading relation 105507172 Fri Jul 22 13:14:46 2022 error -15 reading relation 145413764 Fri Jul 22 13:24:16 2022 error -15 reading relation 172180273 Fri Jul 22 13:26:20 2022 error -15 reading relation 178033686 Fri Jul 22 13:28:32 2022 error -15 reading relation 184683287 Fri Jul 22 13:30:28 2022 error -15 reading relation 189849894 Fri Jul 22 13:30:46 2022 error -15 reading relation 190692087 Fri Jul 22 13:34:41 2022 skipped 936 relations with b > 2^32 Fri Jul 22 13:34:41 2022 skipped 2 relations with composite factors Fri Jul 22 13:34:41 2022 found 8893373 hash collisions in 201433235 relations Fri Jul 22 13:35:04 2022 added 1218210 free relations Fri Jul 22 13:35:04 2022 commencing duplicate removal, pass 2 Fri Jul 22 13:37:56 2022 found 0 duplicates and 202651445 unique relations Fri Jul 22 13:37:56 2022 memory use: 522.4 MB Fri Jul 22 13:37:56 2022 reading ideals above 720000 Fri Jul 22 13:37:56 2022 commencing singleton removal, initial pass Fri Jul 22 14:20:01 2022 memory use: 5512.0 MB Fri Jul 22 14:20:01 2022 reading all ideals from disk Fri Jul 22 14:25:33 2022 memory use: 8199.4 MB Fri Jul 22 14:26:04 2022 keeping 177561653 ideals with weight <= 200, target excess is 1098985 Fri Jul 22 14:26:43 2022 commencing in-memory singleton removal Fri Jul 22 14:27:05 2022 begin with 202651445 relations and 177561653 unique ideals Fri Jul 22 14:32:34 2022 reduce to 138442416 relations and 107383583 ideals in 13 passes Fri Jul 22 14:32:34 2022 max relations containing the same ideal: 165 Fri Jul 22 14:34:12 2022 removing 10288002 relations and 8288002 ideals in 2000000 cliques Fri Jul 22 14:34:19 2022 commencing in-memory singleton removal Fri Jul 22 14:34:34 2022 begin with 128154414 relations and 107383583 unique ideals Fri Jul 22 14:38:04 2022 reduce to 127593715 relations and 98524910 ideals in 9 passes Fri Jul 22 14:38:04 2022 max relations containing the same ideal: 155 Fri Jul 22 14:39:26 2022 removing 7843490 relations and 5843490 ideals in 2000000 cliques Fri Jul 22 14:39:33 2022 commencing in-memory singleton removal Fri Jul 22 14:39:46 2022 begin with 119750225 relations and 98524910 unique ideals Fri Jul 22 14:42:11 2022 reduce to 119372773 relations and 92297983 ideals in 7 passes Fri Jul 22 14:42:11 2022 max relations containing the same ideal: 151 Fri Jul 22 14:43:22 2022 removing 7130025 relations and 5130025 ideals in 2000000 cliques Fri Jul 22 14:43:28 2022 commencing in-memory singleton removal Fri Jul 22 14:43:42 2022 begin with 112242748 relations and 92297983 unique ideals Fri Jul 22 14:46:00 2022 reduce to 111911486 relations and 86831399 ideals in 7 passes Fri Jul 22 14:46:00 2022 max relations containing the same ideal: 150 Fri Jul 22 14:47:22 2022 removing 6759702 relations and 4759702 ideals in 2000000 cliques Fri Jul 22 14:47:30 2022 commencing in-memory singleton removal Fri Jul 22 14:47:44 2022 begin with 105151784 relations and 86831399 unique ideals Fri Jul 22 14:50:00 2022 reduce to 104841888 relations and 81756689 ideals in 7 passes Fri Jul 22 14:50:00 2022 max relations containing the same ideal: 139 Fri Jul 22 14:51:14 2022 removing 6531404 relations and 4531404 ideals in 2000000 cliques Fri Jul 22 14:51:20 2022 commencing in-memory singleton removal Fri Jul 22 14:51:31 2022 begin with 98310484 relations and 81756689 unique ideals Fri Jul 22 14:53:17 2022 reduce to 98009856 relations and 76919453 ideals in 6 passes Fri Jul 22 14:53:17 2022 max relations containing the same ideal: 131 Fri Jul 22 14:54:18 2022 removing 6380235 relations and 4380235 ideals in 2000000 cliques Fri Jul 22 14:54:24 2022 commencing in-memory singleton removal Fri Jul 22 14:54:35 2022 begin with 91629621 relations and 76919453 unique ideals Fri Jul 22 14:56:21 2022 reduce to 91332513 relations and 72236711 ideals in 7 passes Fri Jul 22 14:56:21 2022 max relations containing the same ideal: 126 Fri Jul 22 14:57:22 2022 removing 6272116 relations and 4272116 ideals in 2000000 cliques Fri Jul 22 14:57:29 2022 commencing in-memory singleton removal Fri Jul 22 14:57:39 2022 begin with 85060397 relations and 72236711 unique ideals Fri Jul 22 14:59:03 2022 reduce to 84758893 relations and 67657344 ideals in 6 passes Fri Jul 22 14:59:03 2022 max relations containing the same ideal: 118 Fri Jul 22 14:59:59 2022 removing 6194510 relations and 4194510 ideals in 2000000 cliques Fri Jul 22 15:00:05 2022 commencing in-memory singleton removal Fri Jul 22 15:00:18 2022 begin with 78564383 relations and 67657344 unique ideals Fri Jul 22 15:01:35 2022 reduce to 78252738 relations and 63144668 ideals in 6 passes Fri Jul 22 15:01:35 2022 max relations containing the same ideal: 112 Fri Jul 22 15:02:29 2022 removing 6145442 relations and 4145442 ideals in 2000000 cliques Fri Jul 22 15:02:35 2022 commencing in-memory singleton removal Fri Jul 22 15:02:44 2022 begin with 72107296 relations and 63144668 unique ideals Fri Jul 22 15:04:15 2022 reduce to 71781329 relations and 58666137 ideals in 7 passes Fri Jul 22 15:04:15 2022 max relations containing the same ideal: 105 Fri Jul 22 15:05:03 2022 removing 6117512 relations and 4117512 ideals in 2000000 cliques Fri Jul 22 15:05:08 2022 commencing in-memory singleton removal Fri Jul 22 15:05:15 2022 begin with 65663817 relations and 58666137 unique ideals Fri Jul 22 15:06:40 2022 reduce to 65317608 relations and 54194224 ideals in 7 passes Fri Jul 22 15:06:40 2022 max relations containing the same ideal: 98 Fri Jul 22 15:07:24 2022 removing 6107989 relations and 4107989 ideals in 2000000 cliques Fri Jul 22 15:07:29 2022 commencing in-memory singleton removal Fri Jul 22 15:07:35 2022 begin with 59209619 relations and 54194224 unique ideals Fri Jul 22 15:08:25 2022 reduce to 58835103 relations and 49702103 ideals in 6 passes Fri Jul 22 15:08:25 2022 max relations containing the same ideal: 92 Fri Jul 22 15:09:07 2022 removing 6114988 relations and 4114988 ideals in 2000000 cliques Fri Jul 22 15:09:11 2022 commencing in-memory singleton removal Fri Jul 22 15:09:16 2022 begin with 52720115 relations and 49702103 unique ideals Fri Jul 22 15:10:11 2022 reduce to 52306075 relations and 45161231 ideals in 7 passes Fri Jul 22 15:10:11 2022 max relations containing the same ideal: 87 Fri Jul 22 15:10:44 2022 removing 6135982 relations and 4135982 ideals in 2000000 cliques Fri Jul 22 15:10:47 2022 commencing in-memory singleton removal Fri Jul 22 15:10:51 2022 begin with 46170093 relations and 45161231 unique ideals Fri Jul 22 15:11:52 2022 reduce to 45705025 relations and 40545387 ideals in 8 passes Fri Jul 22 15:11:52 2022 max relations containing the same ideal: 83 Fri Jul 22 15:12:24 2022 removing 6176192 relations and 4176192 ideals in 2000000 cliques Fri Jul 22 15:12:27 2022 commencing in-memory singleton removal Fri Jul 22 15:12:31 2022 begin with 39528833 relations and 40545387 unique ideals Fri Jul 22 15:13:09 2022 reduce to 38987409 relations and 35807972 ideals in 7 passes Fri Jul 22 15:13:09 2022 max relations containing the same ideal: 71 Fri Jul 22 15:13:34 2022 removing 5992098 relations and 4087484 ideals in 1904614 cliques Fri Jul 22 15:13:38 2022 commencing in-memory singleton removal Fri Jul 22 15:13:41 2022 begin with 32995311 relations and 35807972 unique ideals Fri Jul 22 15:14:31 2022 reduce to 32379055 relations and 31079288 ideals in 10 passes Fri Jul 22 15:14:31 2022 max relations containing the same ideal: 63 Fri Jul 22 15:14:53 2022 removing 161054 relations and 136110 ideals in 24944 cliques Fri Jul 22 15:14:55 2022 commencing in-memory singleton removal Fri Jul 22 15:14:58 2022 begin with 32218001 relations and 31079288 unique ideals Fri Jul 22 15:15:16 2022 reduce to 32217383 relations and 30942560 ideals in 4 passes Fri Jul 22 15:15:16 2022 max relations containing the same ideal: 63 Fri Jul 22 15:15:24 2022 relations with 0 large ideals: 42099 Fri Jul 22 15:15:24 2022 relations with 1 large ideals: 23569 Fri Jul 22 15:15:24 2022 relations with 2 large ideals: 290049 Fri Jul 22 15:15:24 2022 relations with 3 large ideals: 1584010 Fri Jul 22 15:15:24 2022 relations with 4 large ideals: 4609405 Fri Jul 22 15:15:24 2022 relations with 5 large ideals: 7900644 Fri Jul 22 15:15:24 2022 relations with 6 large ideals: 8404931 Fri Jul 22 15:15:24 2022 relations with 7+ large ideals: 9362676 Fri Jul 22 15:15:24 2022 commencing 2-way merge Fri Jul 22 15:15:52 2022 reduce to 21223719 relation sets and 19948896 unique ideals Fri Jul 22 15:15:52 2022 commencing full merge Fri Jul 22 15:27:36 2022 memory use: 2654.9 MB Fri Jul 22 15:27:39 2022 found 9727281 cycles, need 9617096 Fri Jul 22 15:27:43 2022 weight of 9617096 cycles is about 1154726961 (120.07/cycle) Fri Jul 22 15:27:43 2022 distribution of cycle lengths: Fri Jul 22 15:27:43 2022 1 relations: 401256 Fri Jul 22 15:27:43 2022 2 relations: 558722 Fri Jul 22 15:27:43 2022 3 relations: 669647 Fri Jul 22 15:27:43 2022 4 relations: 708954 Fri Jul 22 15:27:43 2022 5 relations: 738403 Fri Jul 22 15:27:43 2022 6 relations: 743717 Fri Jul 22 15:27:43 2022 7 relations: 732871 Fri Jul 22 15:27:43 2022 8 relations: 700815 Fri Jul 22 15:27:43 2022 9 relations: 654412 Fri Jul 22 15:27:43 2022 10+ relations: 3708299 Fri Jul 22 15:27:43 2022 heaviest cycle: 28 relations Fri Jul 22 15:27:47 2022 commencing cycle optimization Fri Jul 22 15:28:12 2022 start with 83132066 relations Fri Jul 22 15:32:38 2022 pruned 4080637 relations Fri Jul 22 15:32:39 2022 memory use: 2184.1 MB Fri Jul 22 15:32:39 2022 distribution of cycle lengths: Fri Jul 22 15:32:39 2022 1 relations: 401256 Fri Jul 22 15:32:39 2022 2 relations: 572992 Fri Jul 22 15:32:39 2022 3 relations: 699599 Fri Jul 22 15:32:39 2022 4 relations: 741732 Fri Jul 22 15:32:39 2022 5 relations: 779754 Fri Jul 22 15:32:39 2022 6 relations: 785727 Fri Jul 22 15:32:39 2022 7 relations: 777802 Fri Jul 22 15:32:39 2022 8 relations: 740425 Fri Jul 22 15:32:39 2022 9 relations: 688189 Fri Jul 22 15:32:39 2022 10+ relations: 3429620 Fri Jul 22 15:32:39 2022 heaviest cycle: 28 relations Fri Jul 22 15:33:05 2022 RelProcTime: 10305 Fri Jul 22 15:33:05 2022 elapsed time 02:51:47 Fri Jul 22 15:38:31 2022 Fri Jul 22 15:38:31 2022 Fri Jul 22 15:38:31 2022 Msieve v. 1.54 (SVN 1043M) Fri Jul 22 15:38:31 2022 random seeds: a4429b51 73006522 Fri Jul 22 15:38:31 2022 factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits) Fri Jul 22 15:38:33 2022 searching for 15-digit factors Fri Jul 22 15:38:34 2022 commencing number field sieve (254-digit input) Fri Jul 22 15:38:34 2022 R0: -1000000000000000000000000000000000000000000 Fri Jul 22 15:38:34 2022 R1: 1 Fri Jul 22 15:38:34 2022 A0: 1 Fri Jul 22 15:38:34 2022 A1: 0 Fri Jul 22 15:38:34 2022 A2: 0 Fri Jul 22 15:38:34 2022 A3: 0 Fri Jul 22 15:38:34 2022 A4: 0 Fri Jul 22 15:38:34 2022 A5: 0 Fri Jul 22 15:38:34 2022 A6: 40 Fri Jul 22 15:38:34 2022 skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0 Fri Jul 22 15:38:34 2022 Fri Jul 22 15:38:34 2022 commencing linear algebra Fri Jul 22 15:38:35 2022 read 9617096 cycles Fri Jul 22 15:39:04 2022 cycles contain 31577303 unique relations Fri Jul 22 15:55:26 2022 read 31577303 relations Fri Jul 22 15:56:36 2022 using 20 quadratic characters above 4294917295 Fri Jul 22 15:59:35 2022 building initial matrix Fri Jul 22 16:10:08 2022 memory use: 4151.3 MB Fri Jul 22 16:10:15 2022 read 9617096 cycles Fri Jul 22 16:10:16 2022 matrix is 9616918 x 9617096 (4499.5 MB) with weight 1300881316 (135.27/col) Fri Jul 22 16:10:16 2022 sparse part has weight 1073726661 (111.65/col) Fri Jul 22 16:13:23 2022 filtering completed in 2 passes Fri Jul 22 16:13:25 2022 matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col) Fri Jul 22 16:13:25 2022 sparse part has weight 1073717035 (111.65/col) Fri Jul 22 16:14:04 2022 matrix starts at (0, 0) Fri Jul 22 16:14:06 2022 matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col) Fri Jul 22 16:14:06 2022 sparse part has weight 1073717035 (111.65/col) Fri Jul 22 16:14:06 2022 saving the first 48 matrix rows for later Fri Jul 22 16:14:08 2022 matrix includes 64 packed rows Fri Jul 22 16:14:10 2022 matrix is 9616400 x 9616626 (4320.5 MB) with weight 1110257647 (115.45/col) Fri Jul 22 16:14:10 2022 sparse part has weight 1036418020 (107.77/col) Fri Jul 22 16:14:10 2022 using block size 8192 and superblock size 3244032 for processor cache size 33792 kB Fri Jul 22 16:14:55 2022 commencing Lanczos iteration Fri Jul 22 16:14:55 2022 memory use: 4129.2 MB Fri Jul 22 16:18:50 2022 linear algebra at 0.0%, ETA 395h 5m Fri Jul 22 16:20:08 2022 checkpointing every 30000 dimensions Fri Jul 22 16:39:31 2022 lanczos halted after 154 iterations (dim = 9734) Fri Jul 22 16:39:32 2022 BLanczosTime: 3658 Fri Jul 22 16:39:32 2022 elapsed time 01:01:01 Sat Jul 23 11:41:56 2022 Sat Jul 23 11:41:56 2022 Sat Jul 23 11:41:56 2022 Msieve v. 1.54 (SVN unknown) Sat Jul 23 11:41:56 2022 random seeds: b03c7f87 895802fe Sat Jul 23 11:41:56 2022 factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits) Sat Jul 23 11:41:57 2022 no P-1/P+1/ECM available, skipping Sat Jul 23 11:41:57 2022 commencing number field sieve (254-digit input) Sat Jul 23 11:41:57 2022 R0: -1000000000000000000000000000000000000000000 Sat Jul 23 11:41:57 2022 R1: 1 Sat Jul 23 11:41:57 2022 A0: 1 Sat Jul 23 11:41:57 2022 A1: 0 Sat Jul 23 11:41:57 2022 A2: 0 Sat Jul 23 11:41:57 2022 A3: 0 Sat Jul 23 11:41:57 2022 A4: 0 Sat Jul 23 11:41:57 2022 A5: 0 Sat Jul 23 11:41:57 2022 A6: 40 Sat Jul 23 11:41:57 2022 skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0 Sat Jul 23 11:41:57 2022 Sat Jul 23 11:41:57 2022 commencing linear algebra Sat Jul 23 11:41:57 2022 using VBITS=128 Sat Jul 23 11:41:57 2022 skipping matrix build Sat Jul 23 11:42:02 2022 matrix starts at (0, 0) Sat Jul 23 11:42:03 2022 matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col) Sat Jul 23 11:42:03 2022 sparse part has weight 1073717035 (111.65/col) Sat Jul 23 11:42:03 2022 saving the first 112 matrix rows for later Sat Jul 23 11:42:06 2022 matrix includes 128 packed rows Sat Jul 23 11:42:09 2022 matrix is 9616336 x 9616626 (4181.7 MB) with weight 1036418020 (107.77/col) Sat Jul 23 11:42:09 2022 sparse part has weight 980820997 (101.99/col) Sat Jul 23 11:42:09 2022 using GPU 0 (Tesla P100-PCIE-16GB) Sat Jul 23 11:42:09 2022 selected card has CUDA arch 6.0 Sat Jul 23 11:43:41 2022 commencing Lanczos iteration Sat Jul 23 11:43:41 2022 memory use: 8950.4 MB Sat Jul 23 11:43:47 2022 linear algebra at 0.0%, ETA 8h43m Sat Jul 23 11:43:48 2022 checkpointing every 1230000 dimensions Sat Jul 23 19:56:34 2022 lanczos halted after 75579 iterations (dim = 9616335) Sat Jul 23 19:56:53 2022 recovered 36 nontrivial dependencies Sat Jul 23 19:56:53 2022 BLanczosTime: 29696 Sat Jul 23 19:56:53 2022 elapsed time 08:14:57 Sat Jul 23 20:13:49 2022 Sat Jul 23 20:13:49 2022 Sat Jul 23 20:13:49 2022 Msieve v. 1.54 (SVN 1043M) Sat Jul 23 20:13:49 2022 random seeds: 646f9afd fcec8792 Sat Jul 23 20:13:49 2022 factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits) Sat Jul 23 20:13:51 2022 searching for 15-digit factors Sat Jul 23 20:13:52 2022 commencing number field sieve (254-digit input) Sat Jul 23 20:13:52 2022 R0: -1000000000000000000000000000000000000000000 Sat Jul 23 20:13:52 2022 R1: 1 Sat Jul 23 20:13:52 2022 A0: 1 Sat Jul 23 20:13:52 2022 A1: 0 Sat Jul 23 20:13:52 2022 A2: 0 Sat Jul 23 20:13:52 2022 A3: 0 Sat Jul 23 20:13:52 2022 A4: 0 Sat Jul 23 20:13:52 2022 A5: 0 Sat Jul 23 20:13:52 2022 A6: 40 Sat Jul 23 20:13:52 2022 skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0 Sat Jul 23 20:13:52 2022 Sat Jul 23 20:13:52 2022 commencing square root phase Sat Jul 23 20:13:52 2022 reading relations for dependency 1 Sat Jul 23 20:13:53 2022 read 4807673 cycles Sat Jul 23 20:14:06 2022 cycles contain 15784484 unique relations Sat Jul 23 20:16:20 2022 read 15784484 relations Sat Jul 23 20:18:15 2022 multiplying 15784484 relations Sat Jul 23 20:36:20 2022 multiply complete, coefficients have about 483.61 million bits Sat Jul 23 20:36:21 2022 initial square root is modulo 475969471 Sat Jul 23 20:55:55 2022 GCD is 1, no factor found Sat Jul 23 20:55:55 2022 reading relations for dependency 2 Sat Jul 23 20:55:56 2022 read 4806401 cycles Sat Jul 23 20:56:10 2022 cycles contain 15786944 unique relations Sat Jul 23 20:58:18 2022 read 15786944 relations Sat Jul 23 21:00:17 2022 multiplying 15786944 relations Sat Jul 23 21:18:04 2022 multiply complete, coefficients have about 483.68 million bits Sat Jul 23 21:18:06 2022 initial square root is modulo 477297781 Sat Jul 23 21:37:33 2022 GCD is N, no factor found Sat Jul 23 21:37:33 2022 reading relations for dependency 3 Sat Jul 23 21:37:34 2022 read 4809063 cycles Sat Jul 23 21:37:49 2022 cycles contain 15787044 unique relations Sat Jul 23 21:39:59 2022 read 15787044 relations Sat Jul 23 21:41:54 2022 multiplying 15787044 relations Sat Jul 23 21:59:11 2022 multiply complete, coefficients have about 483.69 million bits Sat Jul 23 21:59:13 2022 initial square root is modulo 477390799 Sat Jul 23 22:18:40 2022 sqrtTime: 7488 Sat Jul 23 22:18:40 2022 p64 factor: 3461508126208175522569203302199346213088686293934196840625676973 Sat Jul 23 22:18:40 2022 p191 factor: 11555656824014745965103174251426168741775970940225354060255626124188570583251500739239916948855700054108076590550861508217304724337729965415252719798975549997145212012347662797114164696224037 Sat Jul 23 22:18:40 2022 elapsed time 02:04:51 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | March 12, 2019 23:41:39 UTC 2019 年 3 月 13 日 (水) 8 時 41 分 39 秒 (日本時間) | |
50 | 43e6 | 2000 | Dmitry Domanov | March 21, 2019 14:10:02 UTC 2019 年 3 月 21 日 (木) 23 時 10 分 2 秒 (日本時間) | |
55 | 11e7 | 9000 / 16908 | yoyo@Home | February 19, 2020 20:32:34 UTC 2020 年 2 月 20 日 (木) 5 時 32 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 4000 | ebina | October 2, 2024 20:20:01 UTC 2024 年 10 月 3 日 (木) 5 時 20 分 1 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | October 3, 2024 04:16:49 UTC 2024 年 10 月 3 日 (木) 13 時 16 分 49 秒 (日本時間) |
composite number 合成数 | 20538297635356765652238220182543936034577038799560625017387112066600521600882087601795534974873462854867943848322502036209998347369601234466062167208720013993884935951189052517259867725801951568462813<200> |
prime factors 素因数 | 1010259459145746627539912920221283077402823464041<49> 20329725645650972024774590356021356682512473498087653567759079662474958078834432782959879933634853831470394064812300389830718548206402200900543089227093<152> |
factorization results 素因数分解の結果 | Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:2761625 11e6 GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 20538297635356765652238220182543936034577038799560625017387112066600521600882087601795534974873462854867943848322502036209998347369601234466062167208720013993884935951189052517259867725801951568462813 (200 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2761625 Step 1 took 22656ms Step 2 took 8782ms ********** Factor found in step 2: 1010259459145746627539912920221283077402823464041 Found prime factor of 49 digits: 1010259459145746627539912920221283077402823464041 Prime cofactor 20329725645650972024774590356021356682512473498087653567759079662474958078834432782959879933634853831470394064812300389830718548206402200900543089227093 has 152 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 3485 / 3844 | ebina | October 3, 2024 04:15:32 UTC 2024 年 10 月 3 日 (木) 13 時 15 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Mehrshad Alipour |
---|---|
date 日付 | June 23, 2024 03:52:03 UTC 2024 年 6 月 23 日 (日) 12 時 52 分 3 秒 (日本時間) |
composite number 合成数 | 4128109672535034952586344929366336911092207999595657729039803975618608045667873033780843205420508762689611736294110869837975384821029902852304577673047<151> |
prime factors 素因数 | 2226788277197784608398983558507614353204405686240848249<55> 1853840221275951099497815396903928608916529441247451874200114504374083891976840839551378833146703<97> |
factorization results 素因数分解の結果 | Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.89067e+06/254833 [2d 22:47:13] 2226788277197784608398983558507614353204405686240848249 1853840221275951099497815396903928608916529441247451874200114504374083891976840839551378833146703 |
software ソフトウェア | cado-nfs |
execution environment 実行環境 | ubuntu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 5000 | 1000 | Dmitry Domanov | April 28, 2019 22:57:52 UTC 2019 年 4 月 29 日 (月) 7 時 57 分 52 秒 (日本時間) |
4000 | Robert Balfour | April 12, 2020 11:27:45 UTC 2020 年 4 月 12 日 (日) 20 時 27 分 45 秒 (日本時間) | |||
50 | 43e6 | 6454 | Ignacio Santos | January 12, 2024 15:20:34 UTC 2024 年 1 月 13 日 (土) 0 時 20 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 12, 2024 06:22:42 UTC 2024 年 5 月 12 日 (日) 15 時 22 分 42 秒 (日本時間) |
composite number 合成数 | 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677<150> |
prime factors 素因数 | 1840271589106846161743879329820665646440628465178992792290360481<64> 146663019552304909974862057415193108188039856182488527563273360713042623103151059845517<87> |
factorization results 素因数分解の結果 | CADO: STA:Fri May 3 01:44:04 PM AEST 2024 (269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 - C150) /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 2>&1 | tee -a log-09 /home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead. loc = locale.getdefaultlocale()[1] Debug:root: Looking for parameter file for c150 in directory /home/bob/Downloads/Math/cado-nfs/parameters/factor Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c150 Debug:Parameters: Reading parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c150 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.dzjjvlr3 Info:Database: Opened connection to database /tmp/cado.dzjjvlr3/c150.db Info:root: Set tasks.threads=20 based on --server-threads 20 Info:root: tasks.threads = 20 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 20 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9 Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 Debug:root: Root parameter dictionary: N = 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 name = c150 === Info:Polynomial Selection (root optimized): Best polynomial is: n: 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 skew: 694874.094 c0: -11976885713462797805140201052874560 c1: -59765730649923220945831089466 c2: 44105933309466877342937 c3: 138698159603608079 c4: 95452118422 c5: -110880 Y0: -86653973746535317833895777603 Y1: 359469680145447602713 # MurphyE (Bf=2.147e+09,Bg=2.147e+09,area=4.027e+14) = 6.763e-07 # f(x) = -110880*x^5+95452118422*x^4+138698159603608079*x^3+44105933309466877342937*x^2-59765730649923220945831089466*x-11976885713462797805140201052874560 # g(x) = 359469680145447602713*x-86653973746535317833895777603 === Info:Square Root: finished Info:Square Root: Factors: 146663019552304909974862057415193108188039856182488527563273360713042623103151059845517 1840271589106846161743879329820665646440628465178992792290360481 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 4016.22/442.727 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Merging: Total cpu/real time for merge: 423.97/58.7959 Info:Filtering - Merging: Total cpu/real time for replay: 63.99/57.5796 Info:Generate Free Relations: Total cpu/real time for freerel: 917.58/105.19 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 161982 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 112322/45.290/56.105/67.930/2.522 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 95623/42.810/48.670/60.300/1.429 Info:Polynomial Selection (size optimized): Total time: 78949.3 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 2269.68/1486.69 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 1289.1s Info:Filtering - Singleton removal: Total cpu/real time for purge: 1052.78/814.054 Info:Generate Factor Base: Total cpu/real time for makefb: 10.24/1.59598 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 163080062 Info:Lattice Sieving: Average J: 7825.58 for 743918 special-q, max bucket fill -bkmult 1.0,1s:1.130300 Info:Lattice Sieving: Total time: 1.65289e+06s Info:Linear Algebra: Total cpu/real time for bwc: 134453/15826.3 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 83261.06, WCT time 9737.77, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.02, comm-wait 0.0 (100000 iterations) Info:Linear Algebra: Lingen CPU time 134.3, WCT time 135.91 Info:Linear Algebra: Mksol: CPU time 43884.9, WCT time 5158.05, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.02, comm-wait 0.0 (52000 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 99.32/25.2008 Info:Square Root: Total cpu/real time for sqrt: 4016.22/442.727 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 756.82/668.7 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 668.5s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6310.77 Info:Polynomial Selection (root optimized): Rootsieve time: 6310.17 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.79966e+06/196203 [2d 06:30:03] Info:root: Cleaning up computation data in /tmp/cado.dzjjvlr3 146663019552304909974862057415193108188039856182488527563273360713042623103151059845517 1840271589106846161743879329820665646440628465178992792290360481 END:Sun May 5 08:14:08 PM AEST 2024 (269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 - C150) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 5000 | 1000 | Dmitry Domanov | April 29, 2019 04:44:33 UTC 2019 年 4 月 29 日 (月) 13 時 44 分 33 秒 (日本時間) |
4000 | Robert Balfour | April 12, 2020 11:27:34 UTC 2020 年 4 月 12 日 (日) 20 時 27 分 34 秒 (日本時間) | |||
50 | 43e6 | 6454 | Ignacio Santos | December 7, 2023 08:34:20 UTC 2023 年 12 月 7 日 (木) 17 時 34 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
composite number 合成数 | 3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333<136> |
prime factors 素因数 | 4132595417977996777449857169255008317144899432636201910123386508141<67> 774208286515906125959068168479724621487305659143982683250058150798513<69> |
factorization results 素因数分解の結果 | Number: 40001_284 N = 3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333 (136 digits) SNFS difficulty: 143 digits. Divisors found: r1=4132595417977996777449857169255008317144899432636201910123386508141 (pp67) r2=774208286515906125959068168479724621487305659143982683250058150798513 (pp69) Version: Msieve v. 1.52 (SVN unknown) Total time: 6.36 hours. Factorization parameters were as follows: n: 3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333 m: 100000000000000000000000000000000000 deg: 4 c4: 200 c2: 20 c0: 1 skew: 1.00 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Sieved rational special-q in [0, 0) Total raw relations: 5289059 Relations: 308402 relations Pruned matrix : 218028 x 218253 Polynomial selection time: 0.00 hours. Total sieving time: 6.30 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,143,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000 total time: 6.36 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
composite number 合成数 | 96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561<119> |
prime factors 素因数 | 10207457384959441989237717990428744617<38> 9407401310817350002993634519379334667282511144625585322436433701410667609178583633<82> |
factorization results 素因数分解の結果 | Number: 40001_288 N = 96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561 (119 digits) SNFS difficulty: 145 digits. Divisors found: r1=10207457384959441989237717990428744617 (pp38) r2=9407401310817350002993634519379334667282511144625585322436433701410667609178583633 (pp82) Version: Msieve v. 1.52 (SVN unknown) Total time: 6.55 hours. Factorization parameters were as follows: n: 96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561 m: 1000000000000000000000000000000000000 deg: 4 c4: 2 c2: -2 c0: 1 skew: 1.00 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Sieved rational special-q in [0, 0) Total raw relations: 5078940 Relations: 303200 relations Pruned matrix : 209039 x 209265 Polynomial selection time: 0.00 hours. Total sieving time: 6.49 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000 total time: 6.55 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
composite number 合成数 | 487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561<147> |
prime factors 素因数 | 1695502704314699670140875957239256050263283775495561<52> 287705160721607300148523107064786015650118069448204602830522292834862744860460363438654328682001<96> |
factorization results 素因数分解の結果 | Number: 40001_296_part2 N = 487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561 (147 digits) SNFS difficulty: 149 digits. Divisors found: r1=1695502704314699670140875957239256050263283775495561 (pp52) r2=287705160721607300148523107064786015650118069448204602830522292834862744860460363438654328682001 (pp96) Version: Msieve v. 1.52 (SVN unknown) Total time: 9.05 hours. Factorization parameters were as follows: n: 487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561 m: 10000000000000000000000000000000000000 deg: 4 c4: 2 c2: -2 c0: 1 skew: 1.00 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Sieved rational special-q in [0, 0) Total raw relations: 5170295 Relations: 358940 relations Pruned matrix : 243487 x 243712 Polynomial selection time: 0.00 hours. Total sieving time: 8.99 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000 total time: 9.05 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
name 名前 | Erik Branger |
---|---|
date 日付 | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
composite number 合成数 | 205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657<129> |
prime factors 素因数 | 1938182199627468010237847883805414752917615172119009<52> 106212692004607024538255608482366521391196698270737751314649713434169857095073<78> |
factorization results 素因数分解の結果 | Number: 40001_296_part1 N = 205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657 (129 digits) SNFS difficulty: 149 digits. Divisors found: r1=1938182199627468010237847883805414752917615172119009 (pp52) r2=106212692004607024538255608482366521391196698270737751314649713434169857095073 (pp78) Version: Msieve v. 1.52 (SVN unknown) Total time: 11.80 hours. Factorization parameters were as follows: n: 205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657 m: 10000000000000000000000000000000000000 deg: 4 c4: 2 c2: 2 c0: 1 skew: 1.00 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Sieved rational special-q in [0, 0) Total raw relations: 5086700 Relations: 382144 relations Pruned matrix : 256808 x 257033 Polynomial selection time: 0.00 hours. Total sieving time: 11.72 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000 total time: 11.80 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.17134-SP0 processors: 12, speed: 3.19GHz |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間) |