Table of contents 目次

4×10134+1

c98

name 名前Shaopu Lin
date 日付March 23, 2007 17:36:06 UTC 2007 年 3 月 24 日 (土) 2 時 36 分 6 秒 (日本時間)
composite number 合成数
49060932983944003138619507865794328431537398530751722286000745421350817401943951719152669975767973<98>
prime factors 素因数
339732985011027186094197732510445277293910533<45>
144410272621457596142773322790127495868916847945915681<54>
factorization results 素因数分解の結果
Fri Mar 23 14:54:47 2007  
Fri Mar 23 14:54:47 2007  
Fri Mar 23 14:54:47 2007  Msieve v. 1.17
Fri Mar 23 14:54:47 2007  random seeds: 43e71c9a 60c79983
Fri Mar 23 14:54:47 2007  factoring 49060932983944003138619507865794328431537398530751722286000745421350817401943951719152669975767973 (98 digits)
Fri Mar 23 14:54:48 2007  commencing quadratic sieve (98-digit input)
Fri Mar 23 14:54:48 2007  using multiplier of 13
Fri Mar 23 14:54:48 2007  sieve interval: 9 blocks of size 65536
Fri Mar 23 14:54:48 2007  processing polynomials in batches of 6
Fri Mar 23 14:54:48 2007  using a sieve bound of 2500601 (91765 primes)
Fri Mar 23 14:54:48 2007  using large prime bound of 375090150 (28 bits)
Fri Mar 23 14:54:48 2007  using double large prime bound of 2712964789985100 (43-52 bits)
Fri Mar 23 14:54:48 2007  using trial factoring cutoff of 57 bits
Fri Mar 23 14:54:48 2007  polynomial 'A' values have 13 factors
Sat Mar 24 01:26:18 2007  92124 relations (23135 full + 68989 combined from 1351734 partial), need 91861
Sat Mar 24 01:26:19 2007  begin with 1374869 relations
Sat Mar 24 01:26:22 2007  reduce to 237829 relations in 11 passes
Sat Mar 24 01:26:22 2007  attempting to read 237829 relations
Sat Mar 24 01:26:26 2007  recovered 237829 relations
Sat Mar 24 01:26:26 2007  recovered 225415 polynomials
Sat Mar 24 01:26:27 2007  attempting to build 92124 cycles
Sat Mar 24 01:26:27 2007  found 92124 cycles in 5 passes
Sat Mar 24 01:26:27 2007  distribution of cycle lengths:
Sat Mar 24 01:26:27 2007     length 1 : 23135
Sat Mar 24 01:26:27 2007     length 2 : 16209
Sat Mar 24 01:26:27 2007     length 3 : 15558
Sat Mar 24 01:26:27 2007     length 4 : 12658
Sat Mar 24 01:26:27 2007     length 5 : 9124
Sat Mar 24 01:26:27 2007     length 6 : 6091
Sat Mar 24 01:26:27 2007     length 7 : 4022
Sat Mar 24 01:26:27 2007     length 9+: 5327
Sat Mar 24 01:26:27 2007  largest cycle: 19 relations
Sat Mar 24 01:26:28 2007  matrix is 91765 x 92124 with weight 5948053 (avg 64.57/col)
Sat Mar 24 01:26:29 2007  filtering completed in 3 passes
Sat Mar 24 01:26:29 2007  matrix is 90084 x 90148 with weight 5741377 (avg 63.69/col)
Sat Mar 24 01:26:30 2007  saving the first 48 matrix rows for later
Sat Mar 24 01:26:30 2007  matrix is 90036 x 90148 with weight 4391751 (avg 48.72/col)
Sat Mar 24 01:26:30 2007  matrix includes 32 packed rows
Sat Mar 24 01:31:47 2007  lanczos halted after 1425 iterations
Sat Mar 24 01:31:48 2007  recovered 14 nontrivial dependencies
Sat Mar 24 01:31:50 2007  prp45 factor: 339732985011027186094197732510445277293910533
Sat Mar 24 01:31:50 2007  prp54 factor: 144410272621457596142773322790127495868916847945915681
Sat Mar 24 01:31:50 2007  elapsed time 10:37:03

4×10137+1

c116

name 名前Robert Backstrom
date 日付March 25, 2007 20:40:31 UTC 2007 年 3 月 26 日 (月) 5 時 40 分 31 秒 (日本時間)
composite number 合成数
42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691<116>
prime factors 素因数
23055346723785830899288317321960983887657807<44>
1824138707895749513832021600956777695371243638120294559951871173502726613<73>
factorization results 素因数分解の結果
Number: n
N=42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691
  ( 116 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=23055346723785830899288317321960983887657807 (pp44)
 r2=1824138707895749513832021600956777695371243638120294559951871173502726613 (pp73)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 7.70 hours.
Scaled time: 9.21 units (timescale=1.195).
Factorization parameters were as follows:
name: KA_4_0_136_1
n: 42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691
type: snfs
skew: 1
deg: 5
c5: 25
c0: 2
m: 2000000000000000000000000000
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 600001)
Primes: RFBsize:230209, AFBsize:229762, largePrimes:5695614 encountered
Relations: rels:5305013, finalFF:609531
Max relations in full relation-set: 28
Initial matrix: 460035 x 609531 with sparse part having weight 16764403.
Pruned matrix : 274172 x 276536 with weight 5369499.
Total sieving time: 6.73 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.71 hours.
Total square root time: 0.11 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,137,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,75000
total time: 7.70 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

4×10139+1

c133

name 名前Jo Yeong Uk
date 日付March 24, 2007 08:11:49 UTC 2007 年 3 月 24 日 (土) 17 時 11 分 49 秒 (日本時間)
composite number 合成数
2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611<133>
prime factors 素因数
7102095496029555951338486428062736055043334947960741098720689<61>
315482054875753501037036269251586513863489506091455405288439226913423699<72>
factorization results 素因数分解の結果
Number: 30001_139
N=2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611
  ( 133 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=7102095496029555951338486428062736055043334947960741098720689 (pp61)
 r2=315482054875753501037036269251586513863489506091455405288439226913423699 (pp72)
Version: GGNFS-0.77.1-20050930-k8
Total time: 8.58 hours.
Scaled time: 7.77 units (timescale=0.905).
Factorization parameters were as follows:
n: 2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611
m: 10000000000000000000000000000
c5: 2
c0: 5
skew: 1.2
type: snfs
Factor base limits: 1300000/1300000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved algebraic special-q in [650000, 1150001)
Primes: RFBsize:100021, AFBsize:99363, largePrimes:1578992 encountered
Relations: rels:1629798, finalFF:241123
Max relations in full relation-set: 28
Initial matrix: 199449 x 241123 with sparse part having weight 10143150.
Pruned matrix : 172207 x 173268 with weight 6295764.
Total sieving time: 8.46 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000
total time: 8.58 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813)
Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235)
Total of 2 processors activated (9340.09 BogoMIPS).
execution environment 実行環境
Core 2 Duo E6300@2.33GHz

4×10141+1

c137

name 名前Jo Yeong Uk
date 日付March 25, 2007 12:26:14 UTC 2007 年 3 月 25 日 (日) 21 時 26 分 14 秒 (日本時間)
composite number 合成数
30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183<137>
prime factors 素因数
1385099246529648770253437136267455844731<40>
41102459480233672086378912659093765960173<41>
541102285545511773447658741193840771596059733459284964441<57>
factorization results 素因数分解の結果
Number: 40001_141
N=30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183
  ( 137 digits)
SNFS difficulty: 142 digits.
Divisors found:
 r1=1385099246529648770253437136267455844731 (pp40)
 r2=41102459480233672086378912659093765960173 (pp41)
 r3=541102285545511773447658741193840771596059733459284964441 (pp57)
Version: GGNFS-0.77.1-20050930-k8
Total time: 7.40 hours.
Scaled time: 6.62 units (timescale=0.895).
Factorization parameters were as follows:
n: 30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183
m: 20000000000000000000000000000
c5: 5
c0: 4
skew: 1
type: snfs
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [750000, 1150001)
Primes: RFBsize:114155, AFBsize:114197, largePrimes:2653362 encountered
Relations: rels:2673267, finalFF:324511
Max relations in full relation-set: 28
Initial matrix: 228418 x 324511 with sparse part having weight 19927266.
Pruned matrix : 177819 x 179025 with weight 9374541.
Total sieving time: 7.21 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000
total time: 7.40 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813)
Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235)
Total of 2 processors activated (9340.09 BogoMIPS).
execution environment 実行環境
Core 2 Duo E6300@2.33GHz

4×10146+1

c142

name 名前Jo Yeong Uk
date 日付March 25, 2007 23:55:38 UTC 2007 年 3 月 26 日 (月) 8 時 55 分 38 秒 (日本時間)
composite number 合成数
3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009<142>
prime factors 素因数
2184156109565083400994331504190413<34>
185296227258331476479382730913150879294782961<45>
8833287103024449941246276528945173645345205610821578498935895813<64>
factorization results 素因数分解の結果
Number: 40001_146
N=3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009
  ( 142 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=2184156109565083400994331504190413 (pp34)
 r2=185296227258331476479382730913150879294782961 (pp45)
 r3=8833287103024449941246276528945173645345205610821578498935895813 (pp64)
Version: GGNFS-0.77.1-20050930-k8
Total time: 11.10 hours.
Scaled time: 10.07 units (timescale=0.907).
Factorization parameters were as follows:
n: 3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009
m: 200000000000000000000000000000
c5: 5
c0: 4
skew: 1
type: snfs
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 45/45
Sieved algebraic special-q in [900000, 1500001)
Primes: RFBsize:135072, AFBsize:135393, largePrimes:2641367 encountered
Relations: rels:2616307, finalFF:305586
Max relations in full relation-set: 28
Initial matrix: 270531 x 305586 with sparse part having weight 16440611.
Pruned matrix : 246464 x 247880 with weight 11245106.
Total sieving time: 10.77 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.26 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000
total time: 11.10 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 06
Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init)
Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813)
Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235)
Total of 2 processors activated (9340.09 BogoMIPS).
execution environment 実行環境
Core 2 Duo E6300@2.33GHz

4×10147+1

c138

name 名前Robert Backstrom
date 日付March 27, 2007 11:49:29 UTC 2007 年 3 月 27 日 (火) 20 時 49 分 29 秒 (日本時間)
composite number 合成数
536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527<138>
prime factors 素因数
6442862514461602713781483216855754068454488467466706327<55>
83194530963377483428159654973172315536690121265505564170886744203220844329565112601<83>
factorization results 素因数分解の結果
Number: n
N=536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527
  ( 138 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=6442862514461602713781483216855754068454488467466706327 (pp55)
 r2=83194530963377483428159654973172315536690121265505564170886744203220844329565112601 (pp83)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 12.48 hours.
Scaled time: 14.92 units (timescale=1.196).
Factorization parameters were as follows:
name: KA_4_0_146_1
n: 536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527
type: snfs
skew: 1
deg: 5
c5: 25
c0: 2
m: 200000000000000000000000000000
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1200001)
Primes: RFBsize:230209, AFBsize:229762, largePrimes:6131938 encountered
Relations: rels:5626042, finalFF:530810
Max relations in full relation-set: 28
Initial matrix: 460035 x 530810 with sparse part having weight 20240880.
Pruned matrix : 379958 x 382322 with weight 10978773.
Total sieving time: 10.35 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 1.87 hours.
Total square root time: 0.06 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,147,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000
total time: 12.48 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

4×10153+1

c111

name 名前Robert Backstrom
date 日付March 28, 2007 18:00:10 UTC 2007 年 3 月 29 日 (木) 3 時 0 分 10 秒 (日本時間)
composite number 合成数
128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729<111>
prime factors 素因数
3183635597702264953513076409369407360357<40>
40455156645999949292666657280615001667447267467607551015375410772491397<71>
factorization results 素因数分解の結果
Number: n
N=128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729
  ( 111 digits)
Divisors found:
 r1=3183635597702264953513076409369407360357 (pp40)
 r2=40455156645999949292666657280615001667447267467607551015375410772491397 (pp71)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 26.67 hours.
Scaled time: 27.47 units (timescale=1.030).
Factorization parameters were as follows:
name: KA_4_0_152_1
n: 128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729
skew: 14591.00
# norm 2.53e+15
c5: 36480
c4: -8024516008
c3: -131143870906614
c2: 1592694215541131949
c1: 3060500624120386397906
c0: -21438494886951988228976328
# alpha -5.87
Y1: 296695470809
Y0: -1286983226642882909381
# Murphy_E 9.13e-10
# M 81130056266918107766482766309667539814896027352219876292127076829404897674136589364351342555408655652570877199
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [800000, 1600001)
Primes: RFBsize:230209, AFBsize:230219, largePrimes:7117685 encountered
Relations: rels:6769651, finalFF:521875
Max relations in full relation-set: 48
Initial matrix: 460509 x 521875 with sparse part having weight 43506096.
Pruned matrix : 404830 x 407196 with weight 25473744.
Total sieving time: 22.50 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 3.57 hours.
Time per square root: 0.35 hours.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 26.67 hours.
 --------- CPU info (if available) ----------
CPU: AMD Athlon(tm) XP 3000+ stepping 00
Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem)
Calibrating delay loop... 4292.60 BogoMIPS
x86info v1.12b.  Dave Jones 2001-2003
Feedback to <davej@redhat.com>.

Found 1 CPU
--------------------------------------------------------------------------
Family: 6 Model: 10 Stepping: 0
CPU Model : Athlon XP (Barton)
2.2Ghz processor (estimate).

4×10155+1

c149

name 名前Robert Backstrom
date 日付April 3, 2007 05:32:17 UTC 2007 年 4 月 3 日 (火) 14 時 32 分 17 秒 (日本時間)
composite number 合成数
33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889<149>
prime factors 素因数
63329687397592132145980877526417873030946686466430656344663544587463<68>
526652909060236900579923203193911048657743442112564846958614597680814721066334503<81>
factorization results 素因数分解の結果
Number: n
N=33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889
  ( 149 digits)
SNFS difficulty: 155 digits.
Divisors found:
 r1=63329687397592132145980877526417873030946686466430656344663544587463 (pp68)
 r2=526652909060236900579923203193911048657743442112564846958614597680814721066334503 (pp81)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 25.81 hours.
Scaled time: 30.85 units (timescale=1.195).
Factorization parameters were as follows:
name: KA_4_0_154_1
n: 33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889
type: snfs
skew: 1
deg: 5
c5: 4
c0: 1
m: 10000000000000000000000000000000
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1100001)
Primes: RFBsize:216816, AFBsize:216491, largePrimes:6134762 encountered
Relations: rels:5639317, finalFF:512645
Max relations in full relation-set: 28
Initial matrix: 433371 x 512645 with sparse part having weight 23754018.
Pruned matrix : 355721 x 357951 with weight 13043634.
Total sieving time: 23.48 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 2.02 hours.
Total square root time: 0.13 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000
total time: 25.81 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

4×10157+1

c152

name 名前Robert Backstrom
date 日付April 16, 2007 19:25:04 UTC 2007 年 4 月 17 日 (火) 4 時 25 分 4 秒 (日本時間)
composite number 合成数
30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893<152>
prime factors 素因数
46712194341161070054665870112933244096080435997557581817007450649<65>
647855429982898406721265781990638069224565341233236221727068040304877394852504476748157<87>
factorization results 素因数分解の結果
Number: n
N=30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893
  ( 152 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=46712194341161070054665870112933244096080435997557581817007450649 (pp65)
 r2=647855429982898406721265781990638069224565341233236221727068040304877394852504476748157 (pp87)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 28.48 hours.
Scaled time: 37.71 units (timescale=1.324).
Factorization parameters were as follows:
name: KA_4_0_156_1
n: 30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893
skew: 0.60
deg: 5
c5: 25
c0: 2
m: 20000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1200001)
Primes: RFBsize:216816, AFBsize:216361, largePrimes:6961579 encountered
Relations: rels:6487180, finalFF:542616
Max relations in full relation-set: 48
Initial matrix: 433241 x 542616 with sparse part having weight 39514323.
Pruned matrix : 341666 x 343896 with weight 20499298.
Total sieving time: 25.18 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 2.92 hours.
Total square root time: 0.19 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 28.48 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

4×10161+1

c108

name 名前Robert Backstrom
date 日付March 28, 2007 04:50:24 UTC 2007 年 3 月 28 日 (水) 13 時 50 分 24 秒 (日本時間)
composite number 合成数
521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081<108>
prime factors 素因数
365498852272237776807460331845037<33>
1425813087563283653143535013962362288561660254770001654328238688640363615813<76>
factorization results 素因数分解の結果
Number: n
N=521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081
  ( 108 digits)
Divisors found:
 r1=365498852272237776807460331845037 (pp33)
 r2=1425813087563283653143535013962362288561660254770001654328238688640363615813 (pp76)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 20.75 hours.
Scaled time: 12.43 units (timescale=0.599).
Factorization parameters were as follows:
name: n
n: 521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081
skew: 40447.48
# norm 6.43e+14
c5: 9420
c4: -213953527
c3: -44488420510166
c2: 182961566955378338
c1: 36117031924044341100564
c0: 205146067720706725943643840
# alpha -5.48
Y1: 186574095169
Y0: -560505913690756339519
# Murphy_E 1.20e-09
# M 494134786016776996625202565666137705191913286564593986533208980979121777485925174812435415313414375388025445
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [100000, 1750001)
Primes: RFBsize:183072, AFBsize:182852, largePrimes:4389613 encountered
Relations: rels:4471974, finalFF:474620
Max relations in full relation-set: 28
Initial matrix: 366004 x 474620 with sparse part having weight 34411549.
Pruned matrix : 274273 x 276167 with weight 17131889.
Total sieving time: 16.62 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 3.50 hours.
Total square root time: 0.40 hours, sqrts: 1.
Prototype def-par.txt line would be:
gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 20.75 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

4×10162+1

c119

name 名前Wataru Sakai
date 日付April 3, 2007 13:35:20 UTC 2007 年 4 月 3 日 (火) 22 時 35 分 20 秒 (日本時間)
composite number 合成数
56459101597299173131540124311712558691254614107274775151671437879863918487008698407760289530410585197259135090208799841<119>
prime factors 素因数
7033585355523255976857977544415093<34>
8027072786280128866004929270459039253458495879153981797095597384581952824282996219837<85>
factorization results 素因数分解の結果
Input number is 56459101597299173131540124311712558691254614107274775151671437879863918487008698407760289530410585197259135090208799841 (119 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1124441233
Step 1 took 254401ms
Step 2 took 83480ms
********** Factor found in step 2: 7033585355523255976857977544415093
Found probable prime factor of 34 digits: 7033585355523255976857977544415093
Probable prime cofactor 8027072786280128866004929270459039253458495879153981797095597384581952824282996219837 has 85 digits
software ソフトウェア
GMP-ECM 6.1.1

4×10165+1

c134

name 名前Kenji Ibusuki
date 日付March 1, 2008 23:56:40 UTC 2008 年 3 月 2 日 (日) 8 時 56 分 40 秒 (日本時間)
composite number 合成数
66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939<134>
prime factors 素因数
7779120398579544883895822513251508700047607501669183213883240931<64>
8521353913589854424771282379603548481995888227244581651836279018886769<70>
factorization results 素因数分解の結果
Number: 40001_165
N=66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939
  ( 134 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=7779120398579544883895822513251508700047607501669183213883240931 (pp64)
 r2=8521353913589854424771282379603548481995888227244581651836279018886769 (pp70)
Version: GGNFS-0.77.1
Total time: 51.86 hours.
Scaled time: 150.19 units (timescale=2.896).
Factorization parameters were as follows:
n: 66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939
m: 1000000000000000000000000000000000
c5: 4
c0: 1
skew: 0.76
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Sieved special-q in [2500000, 5000001)
Relations: rels:6616882, finalFF:1050519
Initial matrix: 696753 x 1050519 with sparse part having weight 62728387.
Pruned matrix : 562745 x 566292 with weight 26430629.
Total sieving time: 50.22 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.47 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000
total time: 51.86 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS-0.77.1
execution environment 実行環境
Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin

4×10166+1

c126

name 名前Serge Batalov
date 日付August 22, 2008 02:55:27 UTC 2008 年 8 月 22 日 (金) 11 時 55 分 27 秒 (日本時間)
composite number 合成数
115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413<126>
prime factors 素因数
338717486802811900673981008844119653096357974239957<51>
341928753479598700237304527485927308118819144008567869244980664981674968409<75>
factorization results 素因数分解の結果
Number: 40001_166
N=115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413
  ( 126 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=338717486802811900673981008844119653096357974239957
 r2=341928753479598700237304527485927308118819144008567869244980664981674968409
Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.694).
Factorization parameters were as follows:
n: 115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413
Y1: 1
Y0: -1000000000000000000000000000000000
c5: 40
c0: 1
skew: 0.48
type: snfs
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2500000, 3900001)
Primes: rational ideals filtering, algebraic ideals filtering, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 741740 x 741988
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 2.20 hours.
Time per square root: 0.40 hours. * 2
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000
total time: 23.50 hours.
software ソフトウェア
Msieve 1.36
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)
351e6904Jo Yeong UkJuly 24, 2008 07:46:50 UTC 2008 年 7 月 24 日 (木) 16 時 46 分 50 秒 (日本時間)
403e6147 / 2089Jo Yeong UkJuly 24, 2008 07:46:55 UTC 2008 年 7 月 24 日 (木) 16 時 46 分 55 秒 (日本時間)

4×10170+1

c157

name 名前Kenji Ibusuki
date 日付March 20, 2008 13:54:06 UTC 2008 年 3 月 20 日 (木) 22 時 54 分 6 秒 (日本時間)
composite number 合成数
1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681<157>
prime factors 素因数
50122020190096192578898087923762046470485403737718517<53>
23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893<104>
factorization results 素因数分解の結果
Number: 40001_170
N=1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681
  ( 157 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=50122020190096192578898087923762046470485403737718517 (pp53)
 r2=23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893 (pp104)
Version: GGNFS-0.77.1
Total time: 78.39 hours.
Scaled time: 228.11 units (timescale=2.910).
Factorization parameters were as follows:
n: 1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681
m: 10000000000000000000000000000000000
c5: 4
c0: 1
skew: 0.76
type: snfs
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 27/27
Sieved special-q in [3000000, 6700001)
Relations: rels:6317037, finalFF:948920
Initial matrix: 825604 x 948920 with sparse part having weight 54336203.
Pruned matrix : 777410 x 781602 with weight 36172201.
Total sieving time: 75.20 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 2.98 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000
total time: 78.39 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS-0.77.1 snfs
execution environment 実行環境
Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin

4×10171+1

c105

name 名前Robert Backstrom
date 日付March 26, 2007 08:01:41 UTC 2007 年 3 月 26 日 (月) 17 時 1 分 41 秒 (日本時間)
composite number 合成数
212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527<105>
prime factors 素因数
3392183977152881040429986688657533088590419<43>
62705813661270651499429351472678860702534232323580249870005333<62>
factorization results 素因数分解の結果
Number: n
N=212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527
  ( 105 digits)
Divisors found:
 r1=3392183977152881040429986688657533088590419 (pp43)
 r2=62705813661270651499429351472678860702534232323580249870005333 (pp62)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 10.75 hours.
Scaled time: 10.64 units (timescale=0.990).
Factorization parameters were as follows:
name: KA_4_0_170_1
n: 212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527
skew: 14380.93
# norm 3.19e+14
c5: 48600
c4: -227361600
c3: -38191978082154
c2: 33010484434394054
c1: 3025096088669510617169
c0: -3257925683541972899940235
# alpha -6.19
Y1: 130154725151
Y0: -84767780379198762372
# Murphy_E 1.99e-09
# M 125472220538461468590658822163936950389663905049084161686308835154986406703146680462682841295132032235112
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [100000, 1150001)
Primes: RFBsize:183072, AFBsize:182819, largePrimes:4056153 encountered
Relations: rels:4064115, finalFF:467875
Max relations in full relation-set: 28
Initial matrix: 365969 x 467875 with sparse part having weight 24168525.
Pruned matrix : 265860 x 267753 with weight 9755268.
Total sieving time: 9.31 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 1.10 hours.
Total square root time: 0.14 hours, sqrts: 1.
Prototype def-par.txt line would be:
gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 10.75 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

4×10173+1

c153

name 名前Jo Yeong Uk
date 日付October 16, 2008 12:22:36 UTC 2008 年 10 月 16 日 (木) 21 時 22 分 36 秒 (日本時間)
composite number 合成数
114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407<153>
prime factors 素因数
1031387844700915926546275570854626898299232457527<49>
4950984722498265333902822196208270860948138231881<49>
22352008973784616122462526641600512964655392476154917761<56>
factorization results 素因数分解の結果
Number: 40001_173
N=114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407
  ( 153 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=1031387844700915926546275570854626898299232457527 (pp49)
 r2=4950984722498265333902822196208270860948138231881 (pp49)
 r3=22352008973784616122462526641600512964655392476154917761 (pp56)
Version: GGNFS-0.77.1-20050930-nocona
Total time: 92.56 hours.
Scaled time: 220.01 units (timescale=2.377).
Factorization parameters were as follows:
n: 114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407
m: 100000000000000000000000000000000000
c5: 1
c0: 25
skew: 1.9
type: snfs
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 50/50
Sieved algebraic special-q in [4000000, 5700001)
Primes: RFBsize:539777, AFBsize:538970, largePrimes:10773912 encountered
Relations: rels:10964419, finalFF:1364486
Max relations in full relation-set: 28
Initial matrix: 1078811 x 1364486 with sparse part having weight 86737254.
Pruned matrix : 813086 x 818544 with weight 49578617.
Total sieving time: 87.82 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 4.52 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,50,50,2.6,2.6,100000
total time: 92.56 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10174+1

c165

name 名前matsui
date 日付July 14, 2008 03:02:11 UTC 2008 年 7 月 14 日 (月) 12 時 2 分 11 秒 (日本時間)
composite number 合成数
184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969<165>
prime factors 素因数
90895849637269554525310385291775885388075787009<47>
2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441<118>
factorization results 素因数分解の結果
N=184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969
  ( 165 digits)

SNFS difficulty: 175 digits.

Divisors found:

 r1=90895849637269554525310385291775885388075787009 (pp47)

 r2=2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441 (pp118)

Version: GGNFS-0.77.1-20060513-pentium-m

Total time: 105.95 hours.

Scaled time: 151.40 units (timescale=1.429).

Factorization parameters were as follows:

n: 184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969
m: 100000000000000000000000000000000000
c5: 2
c0: 5
skew: 1.2
type: snfs


Factor base limits: 7400000/7400000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [3700000, 10400001)

Primes: RFBsize:501962, AFBsize:501861, largePrimes:6413242 encountered

Relations: rels:6884769, finalFF:1153553

Max relations in full relation-set: 28

Initial matrix: 1003888 x 1153553 with sparse part having weight 68214227.

Pruned matrix : 873507 x 878590 with weight 50441029.

Total sieving time: 101.00 hours.

Total relation processing time: 0.12 hours.

Matrix solve time: 4.44 hours.

Time per square root: 0.39 hours.

Prototype def-par.txt line would be:

snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000

total time: 105.95 hours.

4×10175+1

c172

name 名前matsui
date 日付February 8, 2008 08:14:16 UTC 2008 年 2 月 8 日 (金) 17 時 14 分 16 秒 (日本時間)
composite number 合成数
2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291<172>
prime factors 素因数
33374333358396914109100082498630504183786129383<47>
105371111708302205780401868932937382113312422601077<51>
676600448832315856534571187702619060715236193076202145589311912099919790801<75>
factorization results 素因数分解の結果
N=2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291
  ( 172 digits)
SNFS difficulty: 175 digits.

Divisors found:

 r1=33374333358396914109100082498630504183786129383 (pp47)

 r2=105371111708302205780401868932937382113312422601077 (pp51)

 r3=676600448832315856534571187702619060715236193076202145589311912099919790801 (pp75)
Version: GGNFS-0.77.1-20060513-prescott

Total time: 193.78 hours.

Scaled time: 329.61 units (timescale=1.701).

Factorization parameters were as follows:

n: 2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291

m: 100000000000000000000000000000000000

c5: 4
c0: 1

skew: 0.76

type: snfs



Factor base limits: 7400000/7400000

Large primes per side: 3

Large prime bits: 27/27

Max factor residue bits: 48/48

Sieved algebraic special-q in [3700000, 10400001)

Primes: RFBsize:501962, AFBsize:501936, large
Primes:6393125 encountered

Relations: rels:6843406, finalFF:1132531

Max relations in full relation-set: 28
Initial matrix: 1003962 x 1132531 with sparse part having weight 66657298.

Pruned matrix : 892499 x 897582 with weight 50296953.

Total sieving time: 176.54 hours.

Total relation processing time: 0.16 hours.

Matrix solve time: 16.83 hours.

Time per square root: 0.25 hours.

Prototype def-par.txt line would be:

snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000

total time: 193.78 hours.

4×10178+1

c178

name 名前Wataru Sakai
date 日付March 26, 2007 13:08:51 UTC 2007 年 3 月 26 日 (月) 22 時 8 分 51 秒 (日本時間)
composite number 合成数
3076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923077<178>
prime factors 素因数
566167021042476149422414249581680453<36>
composite cofactor 合成数の残り
5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009<142>
factorization results 素因数分解の結果
Input number is 3076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923076923077 (178 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=531751960
Step 1 took 482539ms
Step 2 took 133516ms
********** Factor found in step 2: 566167021042476149422414249581680453
Found probable prime factor of 36 digits: 566167021042476149422414249581680453
Composite cofactor 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009 has 142 digits
software ソフトウェア
GMP-ECM 6.1.1

c142

name 名前Jo Yeong Uk
date 日付March 8, 2009 11:08:54 UTC 2009 年 3 月 8 日 (日) 20 時 8 分 54 秒 (日本時間)
composite number 合成数
5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009<142>
prime factors 素因数
6061095723787709816177996585617442722607441719998843595973408858077<67>
896645819043518706309661143084647289327440781070529452934200366627156144117<75>
factorization results 素因数分解の結果
Number: 40001_178
N=5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009
  ( 142 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=6061095723787709816177996585617442722607441719998843595973408858077
 r2=896645819043518706309661143084647289327440781070529452934200366627156144117
Version: 
Total time: 59.57 hours.
Scaled time: 142.08 units (timescale=2.385).
Factorization parameters were as follows:
n: 5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009
m: 1000000000000000000000000000000000000
deg: 5
c5: 1
c0: 25
skew: 1.90
type: snfs
lss: 1
rlim: 5200000
alim: 5200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 5200000/5200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [2600000, 4200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 17171844
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1152624 x 1152872
Total sieving time: 54.31 hours.
Total relation processing time: 1.46 hours.
Matrix solve time: 3.25 hours.
Time per square root: 0.55 hours.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,53,53,2.5,2.5,100000
total time: 59.57 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10179+1

c160

name 名前Wataru Sakai
date 日付March 26, 2007 13:15:20 UTC 2007 年 3 月 26 日 (月) 22 時 15 分 20 秒 (日本時間)
composite number 合成数
3095942130473149734381998565501622240205635762208798355396850000423768216336368818695478677410319850404184072856004085474624813287629584665417985571693596969023<160>
prime factors 素因数
6004231495142581556980974994915411<34>
515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893<126>
factorization results 素因数分解の結果
Input number is 3095942130473149734381998565501622240205635762208798355396850000423768216336368818695478677410319850404184072856004085474624813287629584665417985571693596969023 (160 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2723994585
Step 1 took 413045ms
Step 2 took 120690ms
********** Factor found in step 2: 6004231495142581556980974994915411
Found probable prime factor of 34 digits: 6004231495142581556980974994915411
Probable prime cofactor 515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893 has 126 digits
software ソフトウェア
GMP-ECM 6.1.1

4×10182+1

c159

name 名前Jo Yeong Uk
date 日付March 12, 2009 02:38:16 UTC 2009 年 3 月 12 日 (木) 11 時 38 分 16 秒 (日本時間)
composite number 合成数
833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613<159>
prime factors 素因数
30385872315370452048023578488339493475461704437<47>
27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649<113>
factorization results 素因数分解の結果
Number: 40001_182
N=833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613
  ( 159 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=30385872315370452048023578488339493475461704437
 r2=27420685405397558932205897020211411740511536898793314180500096877831147046352018738909437880962687052207823325649
Version: 
Total time: 87.22 hours.
Scaled time: 208.02 units (timescale=2.385).
Factorization parameters were as follows:
n: 833201445528352286593335902417911384428222650575473822308179231186649593623908068306499385466741863296259737804523328217318371498449825845169438315839239204613
m: 2000000000000000000000000000000000000
deg: 5
c5: 25
c0: 2
skew: 0.60
type: snfs
lss: 1
rlim: 6600000
alim: 6600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6600000/6600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3300000, 5600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18344751
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1254004 x 1254252
Total sieving time: 80.75 hours.
Total relation processing time: 2.24 hours.
Matrix solve time: 3.90 hours.
Time per square root: 0.34 hours.
Prototype def-par.txt line would be:
snfs,182,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000
total time: 87.22 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10187+1

c180

name 名前Jo Yeong Uk
date 日付March 16, 2009 23:16:13 UTC 2009 年 3 月 17 日 (火) 8 時 16 分 13 秒 (日本時間)
composite number 合成数
495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841<180>
prime factors 素因数
17220341786228465534537012038573242088381604649445961<53>
28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081<128>
factorization results 素因数分解の結果
Number: 40001_187
N=495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841
  ( 180 digits)
SNFS difficulty: 187 digits.
Divisors found:
 r1=17220341786228465534537012038573242088381604649445961
 r2=28790792619619581217940562985478392520067468106423516010341011616813295711690892727971687568687842629056533596007927442531799081
Version: 
Total time: 123.18 hours.
Scaled time: 294.16 units (timescale=2.388).
Factorization parameters were as follows:
n: 495787289206273181696708298379812999198150822484464226412371251322868941071850721025313895017611665954240989880969032617734204740641212360557191040761759321523027317842451218961841
m: 20000000000000000000000000000000000000
deg: 5
c5: 25
c0: 2
skew: 0.60
type: snfs
lss: 1
rlim: 9000000
alim: 9000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9000000/9000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4500000, 7600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20253983
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1689001 x 1689249
Total sieving time: 112.04 hours.
Total relation processing time: 3.38 hours.
Matrix solve time: 7.54 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000
total time: 123.18 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10189+1

c151

name 名前Jo Yeong Uk
date 日付March 22, 2009 22:18:06 UTC 2009 年 3 月 23 日 (月) 7 時 18 分 6 秒 (日本時間)
composite number 合成数
4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437<151>
prime factors 素因数
13506270059310058545933600271041349759458769588496747569910410889<65>
331054716915185039351115638053193982176316954185352183355312068630530447500029226468933<87>
factorization results 素因数分解の結果
Number: 40001_189
N=4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437
  ( 151 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=13506270059310058545933600271041349759458769588496747569910410889
 r2=331054716915185039351115638053193982176316954185352183355312068630530447500029226468933
Version: 
Total time: 141.02 hours.
Scaled time: 336.91 units (timescale=2.389).
Factorization parameters were as follows:
n: 4471314411064930883583891865633043659313970480829502358467553263209442083755243393829592046821388226901398045864511661002729970137066357369440623411437
m: 100000000000000000000000000000000000000
deg: 5
c5: 2
c0: 5
skew: 1.20
type: snfs
lss: 1
rlim: 10000000
alim: 10000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5000000, 8500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20345343
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1869145 x 1869393
Total sieving time: 127.54 hours.
Total relation processing time: 3.81 hours.
Matrix solve time: 9.25 hours.
Time per square root: 0.42 hours.
Prototype def-par.txt line would be:
snfs,190,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,54,54,2.5,2.5,100000
total time: 141.02 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8047004k/8912896k available (2460k kernel code, 339224k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673797)
Calibrating delay using timer specific routine.. 5148.57 BogoMIPS (lpj=2574285)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672337)
Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10191+1

c153

name 名前Wataru Sakai
date 日付April 14, 2007 09:25:28 UTC 2007 年 4 月 14 日 (土) 18 時 25 分 28 秒 (日本時間)
composite number 合成数
580418541275952388203744927304623646480235494870534070995978934395568187241734706286424191061478693683513773330665061162096384334802278739443442701219961<153>
prime factors 素因数
765226605021062082766257793518013247<36>
758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263<117>
factorization results 素因数分解の結果
Input number is 580418541275952388203744927304623646480235494870534070995978934395568187241734706286424191061478693683513773330665061162096384334802278739443442701219961 (153 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3120847556
Step 1 took 377348ms
Step 2 took 114194ms
********** Factor found in step 2: 765226605021062082766257793518013247
Found probable prime factor of 36 digits: 765226605021062082766257793518013247
Probable prime cofactor 758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263 has 117 digits
software ソフトウェア
GMP-ECM 6.1.1

4×10194+1

c195

name 名前Wataru Sakai
date 日付March 26, 2007 13:10:08 UTC 2007 年 3 月 26 日 (月) 22 時 10 分 8 秒 (日本時間)
composite number 合成数
400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<195>
prime factors 素因数
721324202162977116296517293557<30>
composite cofactor 合成数の残り
554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693<165>
factorization results 素因数分解の結果
Input number is 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (195 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2362285868
Step 1 took 552977ms
Step 2 took 152940ms
********** Factor found in step 2: 721324202162977116296517293557
Found probable prime factor of 30 digits: 721324202162977116296517293557
Composite cofactor 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693 has 165 digits
software ソフトウェア
GMP-ECM 6.1.1

c165

name 名前Wataru Sakai
date 日付April 21, 2007 10:35:10 UTC 2007 年 4 月 21 日 (土) 19 時 35 分 10 秒 (日本時間)
composite number 合成数
554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693<165>
prime factors 素因数
230366834312643340988031253121778481<36>
composite cofactor 合成数の残り
2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253<130>
factorization results 素因数分解の結果
Input number is 554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693 (165 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2436293813
Step 1 took 449641ms
Step 2 took 125895ms
********** Factor found in step 2: 230366834312643340988031253121778481
Found probable prime factor of 36 digits: 230366834312643340988031253121778481
Composite cofactor 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253 has 130 digits
software ソフトウェア
GMP-ECM 6.1.1

c130

name 名前Wataru Sakai
date 日付July 26, 2007 15:21:12 UTC 2007 年 7 月 27 日 (金) 0 時 21 分 12 秒 (日本時間)
composite number 合成数
2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253<130>
prime factors 素因数
4539551603725680577678687090612374940158174209<46>
530269411486144259272416902466941069870793165414892485082648513501276740375531374317<84>
factorization results 素因数分解の結果
Input number is 2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253 (130 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=632711195
Step 1 took 306575ms
Step 2 took 94268ms
********** Factor found in step 2: 4539551603725680577678687090612374940158174209
Found probable prime factor of 46 digits: 4539551603725680577678687090612374940158174209
Probable prime cofactor 530269411486144259272416902466941069870793165414892485082648513501276740375531374317 has 84 digits
software ソフトウェア
GMP-ECM 6.1.1

4×10198+1

c196

name 名前Wataru Sakai
date 日付March 3, 2009 13:09:21 UTC 2009 年 3 月 3 日 (火) 22 時 9 分 21 秒 (日本時間)
composite number 合成数
6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401<196>
prime factors 素因数
929931633094791878075356891588302829966299262696914473414281<60>
7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521<136>
factorization results 素因数分解の結果
Number: 40001_198
N=6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401
  ( 196 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=929931633094791878075356891588302829966299262696914473414281
 r2=7157057364649085307661377430067986943422261055343880321564902746003515911775225750122658781467332419066410898034428685018858357725799521
Version: 
Total time: 598.43 hours.
Scaled time: 1065.20 units (timescale=1.780).
Factorization parameters were as follows:
n: 6655574043261231281198003327787021630615640599001663893510815307820299500831946755407653910149750415973377703826955074875207986688851913477537437603993344425956738768718801996672212978369384359401
m: 10000000000000000000000000000000000000000
deg: 5
c5: 1
c0: 25
skew: 1.90
type: snfs
lss: 1
rlim: 15100000
alim: 15100000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15100000/15100000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7550000, 13250001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2568959 x 2569207
Total sieving time: 598.43 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15100000,15100000,29,29,56,56,2.6,2.6,100000
total time: 598.43 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaMarch 23, 2007 09:00:00 UTC 2007 年 3 月 23 日 (金) 18 時 0 分 0 秒 (日本時間)

4×10201+1

c109

name 名前Robert Backstrom
date 日付November 4, 2008 01:48:09 UTC 2008 年 11 月 4 日 (火) 10 時 48 分 9 秒 (日本時間)
composite number 合成数
4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569<109>
prime factors 素因数
1684776046154235009517333610464790582051<40>
2636510377862930365366650606354695539107142487471106263373162893880619<70>
factorization results 素因数分解の結果
Number: n
N=4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569
  ( 109 digits)
Divisors found:

 r1=1684776046154235009517333610464790582051 (pp40)
 r2=2636510377862930365366650606354695539107142487471106263373162893880619 (pp70)

Ggnfs  : 0.77.1-20051202-athlon
Msieve : 1.38
Total time:  13.15 hours.
Scaled time: 17.22 units (timescale=1.310).
Factorization parameters were as follows:
name: KA_4_0_200_1
n: 4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569
skew: 31421.32
# norm 1.12e+15
c5: 33300
c4: 67891188
c3: -92107347697813
c2: -71140811831309675
c1: 45923596748289206796281
c0: 99335048402119309697832255
# alpha -6.17
Y1: 260512343659
Y0: -668383033680763864204
# Murphy_E 1.16e-09
# M 59806822586170241890647397341851243665361596419283843288752444232521072743104971604544561288048719651220781
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2800000)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7320359
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 422921 x 423169
Total sieving time: 13.15 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 1.
Prototype def-par.txt line would be:
gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 13.15 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)

4×10202+1

c187

name 名前Jo Yeong Uk
date 日付August 24, 2018 01:19:56 UTC 2018 年 8 月 24 日 (金) 10 時 19 分 56 秒 (日本時間)
composite number 合成数
2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121<187>
prime factors 素因数
4352160109233622287476004876885802806219798409446401497170469759529369422418203133<82>
583123015262945556349244647056353780728267122790222566698427071203798962005200699046348941121122402068437<105>
factorization results 素因数分解の結果
Number: 40001_202
N=2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121
  ( 187 digits)
SNFS difficulty: 202 digits.
Divisors found:
 r1=4352160109233622287476004876885802806219798409446401497170469759529369422418203133
 r2=583123015262945556349244647056353780728267122790222566698427071203798962005200699046348941121122402068437
Version: 
Total time: 218.32 hours.
Scaled time: 1134.63 units (timescale=5.197).
Factorization parameters were as follows:
n: 2537844725803420328887628871520761614880751052460146328527456957132886335150680835789893810531480123336261822484061148938746550767856006587355156604026683746870394258989020154920033813121
m: 20000000000000000000000000000000000000000
deg: 5
c5: 25
c0: 2
skew: 0.60
# Murphy_E = 1.565e-11
type: snfs
lss: 1
rlim: 18000000
alim: 18000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 200000
Factor base limits: 18000000/18000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [9000000, 16800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 38063263
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3256719 x 3256967
Total sieving time: 196.40 hours.
Total relation processing time: 2.10 hours.
Matrix solve time: 19.15 hours.
Time per square root: 0.68 hours.
Prototype def-par.txt line would be:
snfs,202,5,0,0,0,0,0,0,0,0,18000000,18000000,29,29,56,56,2.6,2.6,100000
total time: 218.32 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7-4930K

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:10:06 UTC 2011 年 3 月 13 日 (日) 7 時 10 分 6 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:11:26 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 26 秒 (日本時間)
4511e6139 / 3962KTakahashiFebruary 3, 2014 18:15:28 UTC 2014 年 2 月 4 日 (火) 3 時 15 分 28 秒 (日本時間)

4×10203+1

c200

name 名前Wataru Sakai
date 日付May 8, 2009 12:31:12 UTC 2009 年 5 月 8 日 (金) 21 時 31 分 12 秒 (日本時間)
composite number 合成数
89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423<200>
prime factors 素因数
3996493212534098134156111341457064136963014957402517508990780184800320983<73>
22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681<128>
factorization results 素因数分解の結果
Number: 40001_203
N=89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423
  ( 200 digits)
SNFS difficulty: 205 digits.
Divisors found:
 r1=3996493212534098134156111341457064136963014957402517508990780184800320983
 r2=22306161491827264164393810143013170259394176192731199083359389215809287265225238597639960484443643575958988629141966737446379681
Version: 
Total time: 858.79 hours.
Scaled time: 1670.35 units (timescale=1.945).
Factorization parameters were as follows:
n: 89146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146422999777133942500557165143748607087140628482282148428794294628928014263427679964341430800089146423
m: 100000000000000000000000000000000000000000
deg: 5
c5: 1
c0: 25
skew: 1.90
type: snfs
lss: 1
rlim: 18300000
alim: 18300000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6Factor base limits: 18300000/18300000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [9150000, 17650001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2921104 x 2921352
Total sieving time: 858.79 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,205,5,0,0,0,0,0,0,0,0,18300000,18300000,29,29,56,56,2.6,2.6,100000
total time: 858.79 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6360 / 2336Serge BatalovNovember 13, 2008 23:02:26 UTC 2008 年 11 月 14 日 (金) 8 時 2 分 26 秒 (日本時間)

4×10206+1

c184

name 名前Dmitry Domanov
date 日付March 13, 2011 15:53:42 UTC 2011 年 3 月 14 日 (月) 0 時 53 分 42 秒 (日本時間)
composite number 合成数
7114174660887854407099735279552768567975447775889485639308197414413047384214596937261624900165811916454247301130285700502809428934070044673805784027735425317950885687310291320100698853<184>
prime factors 素因数
8620981820393556165598209791935039169<37>
composite cofactor 合成数の残り
825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437<147>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2709458539
Step 1 took 72671ms
Step 2 took 30614ms
********** Factor found in step 2: 8620981820393556165598209791935039169
Found probable prime factor of 37 digits: 8620981820393556165598209791935039169
Composite cofactor 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437 has 147 digits

c147

name 名前Jo Yeong Uk
date 日付April 27, 2013 11:38:07 UTC 2013 年 4 月 27 日 (土) 20 時 38 分 7 秒 (日本時間)
composite number 合成数
825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437<147>
prime factors 素因数
9614845316674752971125223167274964585506988001<46>
85827308286463291545643661160043563366431087143222524276657149458595022132599515717888654971338922437<101>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.5 and --enable-asm-redc] [ECM]
Input number is 825216293120901796193545948144913970909493510567609272655830341611829383185274954027572641455765859841969272133313280922711340805734726224828678437 (147 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=5407201763
Step 1 took 32243ms
Step 2 took 13018ms
********** Factor found in step 2: 9614845316674752971125223167274964585506988001
Found probable prime factor of 46 digits: 9614845316674752971125223167274964585506988001
Probable prime cofactor 85827308286463291545643661160043563366431087143222524276657149458595022132599515717888654971338922437 has 101 digits
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:10:39 UTC 2011 年 3 月 13 日 (日) 7 時 10 分 39 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:11:36 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 36 秒 (日本時間)

4×10207+1

c208

name 名前Robert Backstrom
date 日付January 6, 2009 01:26:22 UTC 2009 年 1 月 6 日 (火) 10 時 26 分 22 秒 (日本時間)
composite number 合成数
4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<208>
prime factors 素因数
2137537151086140780378598137246884887064851<43>
2812726946992196303955780250469663669810710081<46>
4510386964277796118081223118223701478503227449062032837<55>
147504388817832250629782059406052001349839987803889705588283463583<66>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (208 digits)
Using B1=3628000, B2=8561127130, polynomial Dickson(6), sigma=3845259699
Step 1 took 70828ms
Step 2 took 27344ms
********** Factor found in step 2: 2137537151086140780378598137246884887064851
Found probable prime factor of 43 digits: 2137537151086140780378598137246884887064851
Composite cofactor 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651 has 166 digits


Number: n
N=1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651
  ( 166 digits)
SNFS difficulty: 207 digits.
Divisors found:

Tue Jan  6 12:17:23 2009  prp46 factor: 2812726946992196303955780250469663669810710081
Tue Jan  6 12:17:23 2009  prp55 factor: 4510386964277796118081223118223701478503227449062032837
Tue Jan  6 12:17:23 2009  prp66 factor: 147504388817832250629782059406052001349839987803889705588283463583
Tue Jan  6 12:17:23 2009  elapsed time 17:15:12 (Msieve 1.39 - dependency 4)

Version: GGNFS-0.77.1-20050930-k8
Total time: 101.97 hours.
Scaled time: 204.97 units (timescale=2.010).
Factorization parameters were as follows:
name: KA_4_0_206_1
n: 1871312504658686833048859441299535119697043458364557065452864462272856482238047511640262600039514668896561348370461632396040769157857079230807910497093290327153082651

# n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001

deg: 5
c5: 25
c0: 2
m: 200000000000000000000000000000000000000000
skew: 0.60
type: snfs
rlim: 10000000
alim: 10000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 30599990)
Primes: RFBsize:664579, AFBsize:664295, largePrimes:36509320 encountered
Relations: rels:31588687, finalFF:75919
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 7840833 hash collisions in 43268992 relations
Msieve: matrix is 3150865 x 3151113 (859.6 MB)

Total sieving time: 100.96 hours.
Total relation processing time: 1.01 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,207,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000
total time: 101.97 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.96 BogoMIPS (lpj=2830481)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830459)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456)
Total of 4 processors activated (22643.69 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)

4×10209+1

c208

name 名前Serge Batalov
date 日付February 17, 2009 01:30:54 UTC 2009 年 2 月 17 日 (火) 10 時 30 分 54 秒 (日本時間)
composite number 合成数
3007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518797<208>
prime factors 素因数
3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797<100>
777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001<108>
factorization results 素因数分解の結果
# well, can't have a p102, but I have more than one p100   :-)
#                                                                      (rest in peace, St. George Carlin!)
SNFS difficulty: 210 digits.
Divisors found:
 r1=3868312352905881234614717303045694938316220300630823137841921435236696906862947702213074172986063797 (pp100)
 r2=777475685161057172420107889087596154100076593781412039785204592057085537200948941303744478811373723078515001 (pp108)
Version: Msieve-1.39
Total time: 1000.01 hours.
Scaled time: 2735.04 units (timescale=2.735).
Factorization parameters were as follows:
n: 3007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518796992481203007518797
m: 1000000000000000000000000000000000000000000
c5: 2
c0: 5
skew: 1.20
type: snfs
lss: 1
rlim: 24000000
alim: 24000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
Factor base limits: 24000000/24000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 57/57
Sieved rational special-q in [12000000, 28800001)
Primes: rational ideals reading, algebraic ideals reading,
Relations: 50191195 relations (45865473 unique relations and about 35456933 large ideals)
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 3128545 x 3128793
Total sieving time: 900.01 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 29.10 hours. * 4 cpu
Time per square root: 0.40 hours.
Prototype def-par.txt line would be:
snfs,210,5,0,0,0,0,0,0,0,0,24000000,24000000,29,29,57,57,2.6,2.6,200000
total time: 1000.01 hours.

# quintic was faster than sextic; tested both; sieved on one side to minimize redundant relations
software ソフトウェア
Msieve-1.39
execution environment 実行環境
Opteron-2.6GHz; Linux x86_64

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6630300Serge BatalovNovember 14, 2008 01:18:33 UTC 2008 年 11 月 14 日 (金) 10 時 18 分 33 秒 (日本時間)
330Serge BatalovNovember 14, 2008 01:37:40 UTC 2008 年 11 月 14 日 (金) 10 時 37 分 40 秒 (日本時間)
4511e646631263Serge BatalovFebruary 5, 2009 06:55:00 UTC 2009 年 2 月 5 日 (木) 15 時 55 分 0 秒 (日本時間)
3400Serge BatalovFebruary 6, 2009 07:30:42 UTC 2009 年 2 月 6 日 (金) 16 時 30 分 42 秒 (日本時間)
5043e6544767Serge BatalovFebruary 5, 2009 06:55:00 UTC 2009 年 2 月 5 日 (木) 15 時 55 分 0 秒 (日本時間)
1000Serge BatalovFebruary 6, 2009 07:31:18 UTC 2009 年 2 月 6 日 (金) 16 時 31 分 18 秒 (日本時間)
4380Serge BatalovFebruary 6, 2009 17:16:13 UTC 2009 年 2 月 7 日 (土) 2 時 16 分 13 秒 (日本時間)
5511e71172 / 15529Serge BatalovFebruary 6, 2009 17:16:13 UTC 2009 年 2 月 7 日 (土) 2 時 16 分 13 秒 (日本時間)

4×10210+1

c174

name 名前Dmitry Domanov
date 日付March 13, 2011 12:54:49 UTC 2011 年 3 月 13 日 (日) 21 時 54 分 49 秒 (日本時間)
composite number 合成数
795352357177694333348671452569428652790641294899464065463949087349711232762547917336659587218667945501839660428739324761179862903173227426390843548562501440425962047482540921<174>
prime factors 素因数
911781382426316231653996553754721<33>
872305985302314642837664533768067528978848533430533241529384958629887457539688700015453948305990321439785340542663401455101411284361180402201<141>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2914364967
Step 1 took 74082ms
Step 2 took 29543ms
********** Factor found in step 2: 911781382426316231653996553754721
Found probable prime factor of 33 digits: 911781382426316231653996553754721
Probable prime cofactor 872305985302314642837664533768067528978848533430533241529384958629887457539688700015453948305990321439785340542663401455101411284361180402201 has 141 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Dmitry DomanovMarch 12, 2011 22:11:06 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 6 秒 (日本時間)

4×10211+1

c204

name 名前Serge Batalov
date 日付February 17, 2009 05:07:29 UTC 2009 年 2 月 17 日 (火) 14 時 7 分 29 秒 (日本時間)
composite number 合成数
111186440233220340762033891189152570836610055636610624911184618999329320612852209074014892517499751963899297229148573795270111598580570554830260153560315317962128558659960341631345074152585805084572033899<204>
prime factors 素因数
1332356352410729241381459477648619855405009<43>
composite cofactor 合成数の残り
83450977684793282694551706981476556088621921512009377560353348583288515960273808416054497177857020031325682869956011963367750061419815803842510520381026012953211<161>
factorization results 素因数分解の結果
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1854358772
Step 1 took 267563ms
Step 2 took 91155ms
********** Factor found in step 2: 1332356352410729241381459477648619855405009
Found probable prime factor of 43 digits: 1332356352410729241381459477648619855405009
Composite cofactor has 161 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:11:26 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 26 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:11:46 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 46 秒 (日本時間)
4511e63966139KTakahashiFebruary 3, 2014 14:26:18 UTC 2014 年 2 月 3 日 (月) 23 時 26 分 18 秒 (日本時間)
1323KTakahashiJuly 9, 2014 13:24:39 UTC 2014 年 7 月 9 日 (水) 22 時 24 分 39 秒 (日本時間)
2504ebinaJune 16, 2024 13:13:28 UTC 2024 年 6 月 16 日 (日) 22 時 13 分 28 秒 (日本時間)

4×10213+1

c175

composite cofactor 合成数の残り
8810291618252846318741362925342329396537080601641446794149478971401796137928306301441229305771806124478694771112148333660490759809147040407405323752228466732260965957031088877<175>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:11:58 UTC 2011 年 3 月 13 日 (日) 7 時 11 分 58 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:11:57 UTC 2011 年 8 月 1 日 (月) 17 時 11 分 57 秒 (日本時間)
4511e64139139KTakahashiFebruary 3, 2014 15:04:14 UTC 2014 年 2 月 4 日 (火) 0 時 4 分 14 秒 (日本時間)
4000ebinaJune 16, 2024 20:41:13 UTC 2024 年 6 月 17 日 (月) 5 時 41 分 13 秒 (日本時間)

4×10215+1

c206

name 名前Ignacio Santos
date 日付June 22, 2010 06:34:40 UTC 2010 年 6 月 22 日 (火) 15 時 34 分 40 秒 (日本時間)
composite number 合成数
36136906405573128456836083283356074588169542782615077068476073202232453553512225240515872685646938518198652624549390924625188636898700958827123610264233047893056133465118692496172550297971455671380039174797<206>
prime factors 素因数
280709138925610745225627616235368407<36>
composite cofactor 合成数の残り
128734342401119972983581009935100049656649334653400039391667634128613012584259319294236788779710630652264467617853270939946120791315424107847649862903165446035555727219771<171>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2323201769
Step 1 took 8096ms
********** Factor found in step 1: 280709138925610745225627616235368407
Found probable prime factor of 36 digits: 280709138925610745225627616235368407
Composite cofactor 128734342401119972983581009935100049656649334653400039391667634128613012584259319294236788779710630652264467617853270939946120791315424107847649862903165446035555727219771 has 171 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:12:14 UTC 2011 年 3 月 13 日 (日) 7 時 12 分 14 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:12:06 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 6 秒 (日本時間)
4511e63966139KTakahashiFebruary 3, 2014 14:26:43 UTC 2014 年 2 月 3 日 (月) 23 時 26 分 43 秒 (日本時間)
1323KTakahashiAugust 9, 2014 18:51:06 UTC 2014 年 8 月 10 日 (日) 3 時 51 分 6 秒 (日本時間)
2504ebinaJune 17, 2024 01:07:35 UTC 2024 年 6 月 17 日 (月) 10 時 7 分 35 秒 (日本時間)

4×10217+1

c211

name 名前Robert Backstrom
date 日付April 17, 2009 14:58:31 UTC 2009 年 4 月 17 日 (金) 23 時 58 分 31 秒 (日本時間)
composite number 合成数
2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943<211>
prime factors 素因数
578022421484392833484314349887736849483921909178334750733<57>
3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371<154>
factorization results 素因数分解の結果
Number: n
N=2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943
  ( 211 digits)
SNFS difficulty: 218 digits.
Divisors found:

Sat Apr 18 00:43:41 2009  prp57 factor: 578022421484392833484314349887736849483921909178334750733
Sat Apr 18 00:43:41 2009  prp154 factor: 3703225908027418809075172754492065279505406206615636647652312656725745127646139680370212557167658670799266733808441570447351849092965953387204337084674371
Sat Apr 18 00:43:41 2009  elapsed time 56:50:02 (Msieve 1.39 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: 174.05 hours.
Scaled time: 350.71 units (timescale=2.015).
Factorization parameters were as follows:
name: KA_4_0_216_1
n: 2140547606661748045024492413283874553849675870254345753129467222516934005900526505143441573512264561837664401414324020149616785789032872229054433965096337753153869465232877933613805718654877743426150866758563943
m: 2000000000000000000000000000000000000
deg: 6
c6: 5
c0: 8
skew: 1.08
type: snfs
lss: 1
rlim: 31000000
alim: 31000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 31000000/31000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [15500000, 45599990)
Primes: RFBsize:1915979, AFBsize:1916784, largePrimes:34927111 encountered
Relations: rels:29018997, finalFF:841025
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 8207149 hash collisions in 48938562 relations
Msieve: matrix is 5272052 x 5272300 (1428.4 MB)

Total sieving time: 173.00 hours.
Total relation processing time: 1.05 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,218,6,0,0,0,0,0,0,0,0,31000000,31000000,29,29,58,58,2.6,2.6,100000
total time: 174.05 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU1: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU2: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
CPU3: Intel(R) Core(TM)2 Quad  CPU   Q9550  @ 2.83GHz stepping 07
Memory: 3368968k/3407296k available (2747k kernel code, 36968k reserved, 1425k data, 416k init, 2489792k highmem)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.97 BogoMIPS (lpj=2830489)
Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830447)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830455)
Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830456)
Total of 4 processors activated (22643.69 BogoMIPS).

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Serge BatalovNovember 14, 2008 00:41:49 UTC 2008 年 11 月 14 日 (金) 9 時 41 分 49 秒 (日本時間)

4×10219+1

c198

name 名前Erik Branger
date 日付January 4, 2021 09:56:51 UTC 2021 年 1 月 4 日 (月) 18 時 56 分 51 秒 (日本時間)
composite number 合成数
116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533<198>
prime factors 素因数
33124455314005419719484291502626516313409725827657409<53>
73254080393331932260764267211845352077103045721318111077525237<62>
47918754047887215225543872174584546174623050261093695745230498173472499321834339201<83>
factorization results 素因数分解の結果
Number: 40001_219
N = 116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533 (198 digits)
SNFS difficulty: 221 digits.
Divisors found:
r1=33124455314005419719484291502626516313409725827657409 (pp53)
r2=73254080393331932260764267211845352077103045721318111077525237 (pp62)
r3=47918754047887215225543872174584546174623050261093695745230498173472499321834339201 (pp83)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 54.68 hours.
Factorization parameters were as follows:
n: 116274929177068394034445168029117678023767598280205360680402098732576928860666573423761231407315435416561191203122321241025448557314927842681535803476850418852033848061983277157659261544982402004533
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 2
c0: 5
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 44739242
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Factor base limits: 536870912/44739242
Large primes per side: 3
Large prime bits: 29/28
Relations: 6787290 relations
Pruned matrix : 5961006 x 5961231
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G relations.
Total batch smoothness checking time: 28.73 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 25.12 hours.
time per square root: 0.49 hours.
Prototype def-par.txt line would be: snfs,221,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000
total time: 54.68 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-10-10.0.18362-SP0
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:12:42 UTC 2011 年 3 月 13 日 (日) 7 時 12 分 42 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:12:15 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 15 秒 (日本時間)
4511e6139 / 3962KTakahashiFebruary 4, 2014 21:19:52 UTC 2014 年 2 月 5 日 (水) 6 時 19 分 52 秒 (日本時間)

4×10222+1

c223

name 名前Serge Batalov
date 日付November 6, 2008 17:14:19 UTC 2008 年 11 月 7 日 (金) 2 時 14 分 19 秒 (日本時間)
composite number 合成数
4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<223>
prime factors 素因数
6097015972179447612468707229921763686040066157<46>
composite cofactor 合成数の残り
656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293<177>
factorization results 素因数分解の結果
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2238052366
Step 1 took 107815ms
Step 2 took 45211ms
********** Factor found in step 2: 6097015972179447612468707229921763686040066157
Found probable prime factor of 46 digits: 6097015972179447612468707229921763686040066157
Composite cofactor 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 has 177 digits
software ソフトウェア
GMP-ECM 6.2.1

c177

name 名前Erik Branger
date 日付January 29, 2022 16:43:06 UTC 2022 年 1 月 30 日 (日) 1 時 43 分 6 秒 (日本時間)
composite number 合成数
656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293<177>
prime factors 素因数
54079250430474920707905115940587495415224848381713477685218303490930060483526146809<83>
12131429960066882484520570273300008089105747987528088615070148488973402528246761247280695376077<95>
factorization results 素因数分解の結果
Number: 40001_222
N = 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 (177 digits)
SNFS difficulty: 223 digits.
Divisors found:
r1=54079250430474920707905115940587495415224848381713477685218303490930060483526146809 (pp83)
r2=12131429960066882484520570273300008089105747987528088615070148488973402528246761247280695376077 (pp95)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 39.59 hours.
Factorization parameters were as follows:
n: 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293
m: 10000000000000000000000000000000000000000000000000000000
deg: 4
c4: 400
c0: 1
skew: 1.00
type: snfs
lss: 1
rlim: 536870912
alim: 60000000
lpbr: 29
lpba: 28
mfbr: 58
mfba: 56
rlambda: 2.8
alambda: 2.8
side: 1
Number of cores used: 6
Number of threads per core: 1
Factor base limits: 536870912/60000000
Large primes per side: 3
Large prime bits: 29/28
Total raw relations: 33239711
Relations: 8950730 relations
Total pre-computation time approximately 1000 CPU-days.
Pre-computation saved approximately 18 G rational relations.
Total batch smoothness checking time: 18.18 hours.
Total relation processing time: 0.30 hours.
Pruned matrix : 7597551 x 7597776
Matrix solve time: 20.76 hours.
time per square root: 0.35 hours.
Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000
total time: 39.59 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.22000-SP0
processors: 12, speed: 3.19GHz
software ソフトウェア
GGNFS, NFS_factory, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336824Serge BatalovNovember 3, 2008 19:16:37 UTC 2008 年 11 月 4 日 (火) 4 時 16 分 37 秒 (日本時間)
600Serge BatalovNovember 5, 2008 22:25:49 UTC 2008 年 11 月 6 日 (木) 7 時 25 分 49 秒 (日本時間)
912Serge BatalovNovember 6, 2008 01:50:22 UTC 2008 年 11 月 6 日 (木) 10 時 50 分 22 秒 (日本時間)
4511e60--
5043e61140yoyo@homeJanuary 24, 2010 21:10:14 UTC 2010 年 1 月 25 日 (月) 6 時 10 分 14 秒 (日本時間)
5511e72636 / 173442635yoyo@homeAugust 15, 2010 03:55:36 UTC 2010 年 8 月 15 日 (日) 12 時 55 分 36 秒 (日本時間)
1KTakahashiJanuary 30, 2014 21:42:55 UTC 2014 年 1 月 31 日 (金) 6 時 42 分 55 秒 (日本時間)

4×10225+1

c209

composite cofactor 合成数の残り
53706768769429363793482678416871438245556988417973753812346805832702342873602425939717837859237868760949667888190502096723565700869017553283380850238323411769596938288424660294475642510961192383548068546243249<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:13:39 UTC 2011 年 3 月 13 日 (日) 7 時 13 分 39 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:12:32 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 32 秒 (日本時間)
4511e64139139KTakahashiFebruary 3, 2014 21:55:22 UTC 2014 年 2 月 4 日 (火) 6 時 55 分 22 秒 (日本時間)
4000ebinaJune 17, 2024 10:53:54 UTC 2024 年 6 月 17 日 (月) 19 時 53 分 54 秒 (日本時間)

4×10226+1

c195

composite cofactor 合成数の残り
944051236095625745605914377984667843452266499332174506062342859837045027395377946743564230504319254831003037392991414235483922896812610601139178907120628322515230507074953238453161918168433330957<195>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:13:54 UTC 2011 年 3 月 13 日 (日) 7 時 13 分 54 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:12:41 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 41 秒 (日本時間)
4511e6139 / 3962KTakahashiFebruary 3, 2014 21:59:11 UTC 2014 年 2 月 4 日 (火) 6 時 59 分 11 秒 (日本時間)

4×10227+1

c224

name 名前RSALS + Jeff Gilchrist
date 日付February 24, 2011 13:25:25 UTC 2011 年 2 月 24 日 (木) 22 時 25 分 25 秒 (日本時間)
composite number 合成数
61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853<224>
prime factors 素因数
2274638262341070593950100717451021126508724154034353396727<58>
26983602469312680130580985847029543470319676934990817496724014747605720259827010445557677689524276607304620925751442325052907279775178255048557619638932527039814094539<167>
factorization results 素因数分解の結果
<sieving on the RSALS grid>
Tue Feb 22 14:28:06 2011
Tue Feb 22 14:28:06 2011
Tue Feb 22 14:28:06 2011  Msieve v. 1.48
Tue Feb 22 14:28:06 2011  random seeds: 5f8e55e1 f87607ec
Tue Feb 22 14:28:06 2011  factoring
61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853
(224 digits)
Tue Feb 22 14:28:09 2011  no P-1/P+1/ECM available, skipping
Tue Feb 22 14:28:09 2011  commencing number field sieve (224-digit input)
Tue Feb 22 14:28:09 2011  R0: -20000000000000000000000000000000000000
Tue Feb 22 14:28:09 2011  R1:  1
Tue Feb 22 14:28:09 2011  A0:  1
Tue Feb 22 14:28:09 2011  A1:  0
Tue Feb 22 14:28:09 2011  A2:  0
Tue Feb 22 14:28:09 2011  A3:  0
Tue Feb 22 14:28:09 2011  A4:  0
Tue Feb 22 14:28:09 2011  A5:  0
Tue Feb 22 14:28:09 2011  A6:  6250
Tue Feb 22 14:28:09 2011  skew 0.23, size 3.143e-11, alpha -0.950,
combined = 1.477e-12 rroots = 0
Tue Feb 22 14:28:09 2011
Tue Feb 22 14:28:10 2011  commencing relation filtering
Tue Feb 22 14:28:10 2011  estimated available RAM is 32159.2 MB
Tue Feb 22 14:28:10 2011  commencing duplicate removal, pass 1
Tue Feb 22 14:28:47 2011  error -9 reading relation 3415445
<... errors cut...>
Tue Feb 22 14:50:21 2011  skipped 99 relations with b > 2^32
Tue Feb 22 14:50:21 2011  found 21558331 hash collisions in 119966099 relations
Tue Feb 22 14:50:54 2011  added 1219020 free relations
Tue Feb 22 14:50:54 2011  commencing duplicate removal, pass 2
Tue Feb 22 14:55:54 2011  found 20108089 duplicates and 101077030
unique relations
Tue Feb 22 14:55:54 2011  memory use: 660.8 MB
Tue Feb 22 14:55:54 2011  reading ideals above 720000
Tue Feb 22 14:55:54 2011  commencing singleton removal, initial pass
Tue Feb 22 15:25:26 2011  memory use: 2756.0 MB
Tue Feb 22 15:25:26 2011  reading all ideals from disk
Tue Feb 22 15:25:45 2011  memory use: 3750.5 MB
Tue Feb 22 15:26:29 2011  keeping 89875711 ideals with weight <= 200,
target excess is 534254
Tue Feb 22 15:27:19 2011  commencing in-memory singleton removal
Tue Feb 22 15:27:54 2011  begin with 101077030 relations and 89875711
unique ideals
Tue Feb 22 15:33:36 2011  reduce to 66296349 relations and 51568127
ideals in 13 passes
Tue Feb 22 15:33:36 2011  max relations containing the same ideal: 159
Tue Feb 22 15:35:23 2011  removing 9325312 relations and 7325312
ideals in 2000000 cliques
Tue Feb 22 15:35:32 2011  commencing in-memory singleton removal
Tue Feb 22 15:35:53 2011  begin with 56971037 relations and 51568127
unique ideals
Tue Feb 22 15:38:09 2011  reduce to 56223473 relations and 43469504
ideals in 7 passes
Tue Feb 22 15:38:09 2011  max relations containing the same ideal: 143
Tue Feb 22 15:39:38 2011  removing 7106853 relations and 5106853
ideals in 2000000 cliques
Tue Feb 22 15:39:47 2011  commencing in-memory singleton removal
Tue Feb 22 15:40:04 2011  begin with 49116620 relations and 43469504
unique ideals
Tue Feb 22 15:42:08 2011  reduce to 48562303 relations and 37789581
ideals in 7 passes
Tue Feb 22 15:42:08 2011  max relations containing the same ideal: 129
Tue Feb 22 15:43:26 2011  removing 6469084 relations and 4469084
ideals in 2000000 cliques
Tue Feb 22 15:43:34 2011  commencing in-memory singleton removal
Tue Feb 22 15:43:49 2011  begin with 42093219 relations and 37789581
unique ideals
Tue Feb 22 15:45:30 2011  reduce to 41593501 relations and 32803025
ideals in 7 passes
Tue Feb 22 15:45:30 2011  max relations containing the same ideal: 115
Tue Feb 22 15:46:34 2011  removing 6069803 relations and 4069803
ideals in 2000000 cliques
Tue Feb 22 15:46:41 2011  commencing in-memory singleton removal
Tue Feb 22 15:46:52 2011  begin with 35523698 relations and 32803025
unique ideals
Tue Feb 22 15:48:15 2011  reduce to 34988174 relations and 28175546
ideals in 7 passes
Tue Feb 22 15:48:15 2011  max relations containing the same ideal: 103
Tue Feb 22 15:49:10 2011  removing 5775938 relations and 3775938
ideals in 2000000 cliques
Tue Feb 22 15:49:17 2011  commencing in-memory singleton removal
Tue Feb 22 15:49:26 2011  begin with 29212236 relations and 28175546
unique ideals
Tue Feb 22 15:50:38 2011  reduce to 28608387 relations and 23765785
ideals in 7 passes
Tue Feb 22 15:50:38 2011  max relations containing the same ideal: 93
Tue Feb 22 15:51:25 2011  removing 5611296 relations and 3611296
ideals in 2000000 cliques
Tue Feb 22 15:51:31 2011  commencing in-memory singleton removal
Tue Feb 22 15:51:39 2011  begin with 22997091 relations and 23765785
unique ideals
Tue Feb 22 15:52:35 2011  reduce to 22307910 relations and 19422026
ideals in 7 passes
Tue Feb 22 15:52:35 2011  max relations containing the same ideal: 74
Tue Feb 22 15:53:13 2011  removing 5388889 relations and 3388889
ideals in 2000000 cliques
Tue Feb 22 15:53:18 2011  commencing in-memory singleton removal
Tue Feb 22 15:53:23 2011  begin with 16919021 relations and 19422026
unique ideals
Tue Feb 22 15:54:09 2011  reduce to 16055818 relations and 15092750
ideals in 8 passes
Tue Feb 22 15:54:09 2011  max relations containing the same ideal: 61
Tue Feb 22 15:54:36 2011  removing 1382445 relations and 1039112
ideals in 343333 cliques
Tue Feb 22 15:54:39 2011  commencing in-memory singleton removal
Tue Feb 22 15:54:44 2011  begin with 14673373 relations and 15092750
unique ideals
Tue Feb 22 15:55:14 2011  reduce to 14609505 relations and 13988470
ideals in 6 passes
Tue Feb 22 15:55:14 2011  max relations containing the same ideal: 56
Tue Feb 22 15:55:45 2011  relations with 0 large ideals: 18051
Tue Feb 22 15:55:45 2011  relations with 1 large ideals: 12088
Tue Feb 22 15:55:45 2011  relations with 2 large ideals: 144404
Tue Feb 22 15:55:45 2011  relations with 3 large ideals: 748332
Tue Feb 22 15:55:45 2011  relations with 4 large ideals: 2104653
Tue Feb 22 15:55:45 2011  relations with 5 large ideals: 3554606
Tue Feb 22 15:55:45 2011  relations with 6 large ideals: 3766235
Tue Feb 22 15:55:45 2011  relations with 7+ large ideals: 4261136
Tue Feb 22 15:55:45 2011  commencing 2-way merge
Tue Feb 22 15:56:17 2011  reduce to 10380301 relation sets and 9759266
unique ideals
Tue Feb 22 15:56:17 2011  commencing full merge
Tue Feb 22 16:04:03 2011  memory use: 1221.3 MB
Tue Feb 22 16:04:06 2011  found 5253992 cycles, need 5169466
Tue Feb 22 16:04:10 2011  weight of 5169466 cycles is about 413679844
(80.02/cycle)
Tue Feb 22 16:04:11 2011  distribution of cycle lengths:
Tue Feb 22 16:04:11 2011  1 relations: 340205
Tue Feb 22 16:04:11 2011  2 relations: 488115
Tue Feb 22 16:04:11 2011  3 relations: 572803
Tue Feb 22 16:04:11 2011  4 relations: 571107
Tue Feb 22 16:04:11 2011  5 relations: 557986
Tue Feb 22 16:04:11 2011  6 relations: 504832
Tue Feb 22 16:04:11 2011  7 relations: 446506
Tue Feb 22 16:04:11 2011  8 relations: 381805
Tue Feb 22 16:04:11 2011  9 relations: 318430
Tue Feb 22 16:04:11 2011  10+ relations: 987677
Tue Feb 22 16:04:11 2011  heaviest cycle: 21 relations
Tue Feb 22 16:04:16 2011  commencing cycle optimization
Tue Feb 22 16:04:38 2011  start with 32236559 relations
Tue Feb 22 16:06:51 2011  pruned 1205749 relations
Tue Feb 22 16:06:52 2011  memory use: 941.8 MB
Tue Feb 22 16:06:52 2011  distribution of cycle lengths:
Tue Feb 22 16:06:52 2011  1 relations: 340205
Tue Feb 22 16:06:52 2011  2 relations: 499947
Tue Feb 22 16:06:52 2011  3 relations: 598152
Tue Feb 22 16:06:52 2011  4 relations: 595075
Tue Feb 22 16:06:52 2011  5 relations: 584870
Tue Feb 22 16:06:52 2011  6 relations: 524404
Tue Feb 22 16:06:52 2011  7 relations: 462011
Tue Feb 22 16:06:52 2011  8 relations: 386953
Tue Feb 22 16:06:52 2011  9 relations: 317222
Tue Feb 22 16:06:52 2011  10+ relations: 860627
Tue Feb 22 16:06:52 2011  heaviest cycle: 21 relations
Tue Feb 22 16:07:10 2011  RelProcTime: 5941
Tue Feb 22 16:07:12 2011  elapsed time 01:39:06
Wed Feb 23 15:27:21 2011
Wed Feb 23 15:27:21 2011
Wed Feb 23 15:27:21 2011  Msieve v. 1.48
Wed Feb 23 15:27:21 2011  random seeds: 571437af af23924f
Wed Feb 23 15:27:21 2011  MPI process 0 of 25
Wed Feb 23 15:27:21 2011  factoring
61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853
(224 digits)
Wed Feb 23 15:27:24 2011  no P-1/P+1/ECM available, skipping
Wed Feb 23 15:27:24 2011  commencing number field sieve (224-digit input)
Wed Feb 23 15:27:24 2011  R0: -20000000000000000000000000000000000000
Wed Feb 23 15:27:24 2011  R1:  1
Wed Feb 23 15:27:24 2011  A0:  1
Wed Feb 23 15:27:24 2011  A1:  0
Wed Feb 23 15:27:24 2011  A2:  0
Wed Feb 23 15:27:24 2011  A3:  0
Wed Feb 23 15:27:24 2011  A4:  0
Wed Feb 23 15:27:24 2011  A5:  0
Wed Feb 23 15:27:24 2011  A6:  6250
Wed Feb 23 15:27:24 2011  skew 0.23, size 3.143e-11, alpha -0.950,
combined = 1.477e-12 rroots = 0
Wed Feb 23 15:27:24 2011
Wed Feb 23 15:27:24 2011  commencing linear algebra
Wed Feb 23 15:27:24 2011  initialized process (0,0) of 5 x 5 grid
Wed Feb 23 15:29:03 2011  matrix starts at (0, 0)
Wed Feb 23 15:29:03 2011  matrix is 1033799 x 931324 (107.5 MB) with
weight 39580603 (42.50/col)
Wed Feb 23 15:29:03 2011  sparse part has weight 17932857 (19.26/col)
Wed Feb 23 15:29:03 2011  saving the first 48 matrix rows for later
Wed Feb 23 15:29:03 2011  matrix includes 64 packed rows
Wed Feb 23 15:29:14 2011  matrix is 1033751 x 931324 (93.9 MB) with
weight 21993174 (23.61/col)
Wed Feb 23 15:29:14 2011  sparse part has weight 15289801 (16.42/col)
Wed Feb 23 15:29:14 2011  using block size 43690 for processor cache
size 1024 kB
Wed Feb 23 15:29:15 2011  commencing Lanczos iteration
Wed Feb 23 15:29:15 2011  memory use: 115.8 MB
Wed Feb 23 15:29:21 2011  restarting at iteration 52186 (dim = 3300049)
Wed Feb 23 15:29:39 2011  linear algebra at 63.9%, ETA 6h 9m
Wed Feb 23 15:29:44 2011  checkpointing every 310000 dimensions
Wed Feb 23 22:01:24 2011  lanczos halted after 81733 iterations (dim = 5168494)
Wed Feb 23 22:01:41 2011  recovered 36 nontrivial dependencies
Wed Feb 23 22:01:43 2011  BLanczosTime: 23659
Wed Feb 23 22:01:43 2011  elapsed time 06:34:22
Thu Feb 24 06:18:16 2011
Thu Feb 24 06:18:16 2011
Thu Feb 24 06:18:16 2011  Msieve v. 1.48
Thu Feb 24 06:18:16 2011  random seeds: c7314c58 9c755bad
Thu Feb 24 06:18:16 2011  factoring
61377934632499616387908546877397575571582016265152677612398342795764922510357526469234310265459567285560840877704465244744514347092220346785330673622832591683289857296301979438391898112628510050636796071812183520024551173853
(224 digits)
Thu Feb 24 06:18:19 2011  no P-1/P+1/ECM available, skipping
Thu Feb 24 06:18:19 2011  commencing number field sieve (224-digit input)
Thu Feb 24 06:18:19 2011  R0: -20000000000000000000000000000000000000
Thu Feb 24 06:18:19 2011  R1:  1
Thu Feb 24 06:18:19 2011  A0:  1
Thu Feb 24 06:18:19 2011  A1:  0
Thu Feb 24 06:18:19 2011  A2:  0
Thu Feb 24 06:18:19 2011  A3:  0
Thu Feb 24 06:18:19 2011  A4:  0
Thu Feb 24 06:18:19 2011  A5:  0
Thu Feb 24 06:18:19 2011  A6:  6250
Thu Feb 24 06:18:19 2011  skew 0.23, size 3.143e-11, alpha -0.950,
combined = 1.477e-12 rroots = 0
Thu Feb 24 06:18:19 2011
Thu Feb 24 06:18:19 2011  commencing square root phase
Thu Feb 24 06:18:19 2011  reading relations for dependency 1
Thu Feb 24 06:18:22 2011  read 2582762 cycles
Thu Feb 24 06:18:32 2011  cycles contain 7159766 unique relations
Thu Feb 24 06:23:39 2011  read 7159766 relations
Thu Feb 24 06:24:53 2011  multiplying 7159766 relations
Thu Feb 24 06:39:14 2011  multiply complete, coefficients have about
258.14 million bits
Thu Feb 24 06:39:16 2011  initial square root is modulo 1836147433
Thu Feb 24 06:56:39 2011  reading relations for dependency 2
Thu Feb 24 06:56:40 2011  read 2584372 cycles
Thu Feb 24 06:56:48 2011  cycles contain 7160898 unique relations
Thu Feb 24 07:01:34 2011  read 7160898 relations
Thu Feb 24 07:02:35 2011  multiplying 7160898 relations
Thu Feb 24 07:16:12 2011  multiply complete, coefficients have about
258.19 million bits
Thu Feb 24 07:16:14 2011  initial square root is modulo 1843630123
Thu Feb 24 07:33:37 2011  sqrtTime: 4518
Thu Feb 24 07:33:37 2011  prp58 factor:
2274638262341070593950100717451021126508724154034353396727
Thu Feb 24 07:33:37 2011  prp167 factor:
26983602469312680130580985847029543470319676934990817496724014747605720259827010445557677689524276607304620925751442325052907279775178255048557619638932527039814094539
Thu Feb 24 07:33:37 2011  elapsed time 01:15:21
software ソフトウェア
ggnfs-lasieve4I14e on the RSALS grid + msieve 1.48

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e61184324Serge BatalovNovember 3, 2008 23:25:17 UTC 2008 年 11 月 4 日 (火) 8 時 25 分 17 秒 (日本時間)
860Serge BatalovDecember 2, 2008 05:43:19 UTC 2008 年 12 月 2 日 (火) 14 時 43 分 19 秒 (日本時間)
4511e6400200Serge BatalovNovember 7, 2008 02:14:12 UTC 2008 年 11 月 7 日 (金) 11 時 14 分 12 秒 (日本時間)
150Serge BatalovDecember 2, 2008 05:43:19 UTC 2008 年 12 月 2 日 (火) 14 時 43 分 19 秒 (日本時間)
50Serge BatalovDecember 2, 2008 19:58:36 UTC 2008 年 12 月 3 日 (水) 4 時 58 分 36 秒 (日本時間)
5043e61100yoyo@homeJanuary 24, 2010 22:00:12 UTC 2010 年 1 月 25 日 (月) 7 時 0 分 12 秒 (日本時間)
5511e72635 / 17343yoyo@homeAugust 15, 2010 09:45:34 UTC 2010 年 8 月 15 日 (日) 18 時 45 分 34 秒 (日本時間)

4×10231+1

c214

name 名前Jo Yeong Uk
date 日付June 22, 2011 09:40:14 UTC 2011 年 6 月 22 日 (水) 18 時 40 分 14 秒 (日本時間)
composite number 合成数
2717010347467939343347130234552659774894045641045205638624758005184592850265052348675393115465434200166542524093776876996697657382544681945003759096318128059998758106250775400698635118800260427085131045068090883099<214>
prime factors 素因数
151665385898395010920361713151614617130219<42>
composite cofactor 合成数の残り
17914505220645022132194954402500979428459361638158467906590559309010783910561177699484997168919844042329407282181531626843571647207113173504748854176220229117272439835781521<173>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.0 and --enable-asm-redc] [ECM]
Input number is 2717010347467939343347130234552659774894045641045205638624758005184592850265052348675393115465434200166542524093776876996697657382544681945003759096318128059998758106250775400698635118800260427085131045068090883099 (214 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=6134707835
Step 1 took 23853ms
********** Factor found in step 1: 151665385898395010920361713151614617130219
Found probable prime factor of 42 digits: 151665385898395010920361713151614617130219
Composite cofactor 17914505220645022132194954402500979428459361638158467906590559309010783910561177699484997168919844042329407282181531626843571647207113173504748854176220229117272439835781521 has 173 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:14:22 UTC 2011 年 3 月 13 日 (日) 7 時 14 分 22 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:12:51 UTC 2011 年 8 月 1 日 (月) 17 時 12 分 51 秒 (日本時間)
4511e61462 / 3962139KTakahashiFebruary 3, 2014 14:27:19 UTC 2014 年 2 月 3 日 (月) 23 時 27 分 19 秒 (日本時間)
1323KTakahashiAugust 10, 2014 21:11:37 UTC 2014 年 8 月 11 日 (月) 6 時 11 分 37 秒 (日本時間)

4×10233+1

c216

composite cofactor 合成数の残り
348811271163252370210612734963523254646594918249087302660630940511337621609010871181668602767014545497037982893129583986945293766246967995915927305014200045819794612475555563990563745183513376198670997494006657169197<216>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:14:47 UTC 2011 年 3 月 13 日 (日) 7 時 14 分 47 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:13:00 UTC 2011 年 8 月 1 日 (月) 17 時 13 分 0 秒 (日本時間)
4511e6139 / 3962KTakahashiFebruary 20, 2014 14:03:32 UTC 2014 年 2 月 20 日 (木) 23 時 3 分 32 秒 (日本時間)

4×10234+1

c152

name 名前Serge Batalov
date 日付November 21, 2008 03:45:39 UTC 2008 年 11 月 21 日 (金) 12 時 45 分 39 秒 (日本時間)
composite number 合成数
55523158948362089645591748658805860969960015417431757791132753268593699986400035897896187464929550379449095784684597351876480046195096464604838023815373<152>
prime factors 素因数
59520510316289955705069974366831129<35>
932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437<117>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3553856087
Step 1 took 14589ms
Step 2 took 10980ms
********** Factor found in step 2: 59520510316289955705069974366831129
Found probable prime factor of 35 digits: 59520510316289955705069974366831129
Probable prime cofactor 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437 has 117 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6300 / 2336Serge BatalovNovember 21, 2008 03:35:20 UTC 2008 年 11 月 21 日 (金) 12 時 35 分 20 秒 (日本時間)

4×10235+1

c214

name 名前Jo Yeong Uk
date 日付October 10, 2013 11:58:10 UTC 2013 年 10 月 10 日 (木) 20 時 58 分 10 秒 (日本時間)
composite number 合成数
1531420938188728041214984401352764501050633556642489973449593447222970594261678986679807241176397024478176940208080798998544701073339370228454551033485760402630490577887063288585986334172111919571072864381860838453<214>
prime factors 素因数
2525595417360720847349418399085176183355724297940127<52>
606360356715044363553197719386419019822429801044602418979358571249578646327872607361512864562827095184920847571890230832148464068658949833446599287566868039930539<162>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
Input number is 1531420938188728041214984401352764501050633556642489973449593447222970594261678986679807241176397024478176940208080798998544701073339370228454551033485760402630490577887063288585986334172111919571072864381860838453 (214 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4030962254
Step 1 took 67753ms
Step 2 took 19838ms
********** Factor found in step 2: 2525595417360720847349418399085176183355724297940127
Found probable prime factor of 52 digits: 2525595417360720847349418399085176183355724297940127
Probable prime cofactor 606360356715044363553197719386419019822429801044602418979358571249578646327872607361512864562827095184920847571890230832148464068658949833446599287566868039930539 has 162 digits
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e62336300Dmitry DomanovMarch 12, 2011 22:15:10 UTC 2011 年 3 月 13 日 (日) 7 時 15 分 10 秒 (日本時間)
2036Jo Yeong UkAugust 1, 2011 08:13:10 UTC 2011 年 8 月 1 日 (月) 17 時 13 分 10 秒 (日本時間)

4×10237+1

c165

composite cofactor 合成数の残り
676230413605955129605354486014521738526895649311989696184845947638518215716542400947488253388711090435926834770951019457366341947049456598366448537219021549936677729<165>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e60--
403e6300Serge BatalovNovember 13, 2008 23:15:02 UTC 2008 年 11 月 14 日 (金) 8 時 15 分 2 秒 (日本時間)
4511e62000500Serge BatalovJanuary 6, 2009 04:33:02 UTC 2009 年 1 月 6 日 (火) 13 時 33 分 2 秒 (日本時間)
500Serge BatalovJanuary 10, 2009 02:09:39 UTC 2009 年 1 月 10 日 (土) 11 時 9 分 39 秒 (日本時間)
1000Serge BatalovJanuary 10, 2009 05:39:47 UTC 2009 年 1 月 10 日 (土) 14 時 39 分 47 秒 (日本時間)
5043e61010yoyo@homeJanuary 24, 2010 23:20:13 UTC 2010 年 1 月 25 日 (月) 8 時 20 分 13 秒 (日本時間)
5511e72574 / 172822535yoyo@homeAugust 15, 2010 20:15:36 UTC 2010 年 8 月 16 日 (月) 5 時 15 分 36 秒 (日本時間)
39KTakahashiFebruary 11, 2014 21:19:38 UTC 2014 年 2 月 12 日 (水) 6 時 19 分 38 秒 (日本時間)

4×10238+1

c172

name 名前rkillian
date 日付August 31, 2010 04:14:45 UTC 2010 年 8 月 31 日 (火) 13 時 14 分 45 秒 (日本時間)
composite number 合成数
1718184254006969767666540868613748026520442882758556781049489102062120376384121873812419920846762265878301044798578878546675808793908808686310443814823773914206183656088533<172>
prime factors 素因数
422911528517671635279241199954086672512819330893<48>
composite cofactor 合成数の残り
4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481<124>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 1718184254006969767666540868613748026520442882758556781049489102062120376384121873812419920846762265878301044798578878546675808793908808686310443814823773914206183656088533 (172 digits)
[Mon Aug 30 21:35:14 2010]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3131248890
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
20       25      30      35      40      45      50      55      60      65
2       4       10      34      135     613     3133    17769   111196  751771
Step 1 took 303687ms
Using 21 small primes for NTT
Estimated memory usage: 478M
Initializing tables of differences for F took 203ms
Computing roots of F took 16707ms
Building F from its roots took 11076ms
Computing 1/F took 5023ms
Initializing table of differences for G took 187ms
Computing roots of G took 14383ms
Building G from its roots took 10312ms
Computing roots of G took 14586ms
Building G from its roots took 10249ms
Computing G * H took 2823ms
Reducing  G * H mod F took 2761ms
Computing roots of G took 14415ms
Building G from its roots took 10265ms
Computing G * H took 2776ms
Reducing  G * H mod F took 2777ms
Computing roots of G took 14399ms
Building G from its roots took 10140ms
Computing G * H took 2823ms
Reducing  G * H mod F took 2761ms
Computing polyeval(F,G) took 18955ms
Computing product of all F(g_i) took 93ms
Step 2 took 168340ms
********** Factor found in step 2: 422911528517671635279241199954086672512819330893
Found probable prime factor of 48 digits: 422911528517671635279241199954086672512819330893
Composite cofactor 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481 has 124 digits
software ソフトウェア
GMP-ECM

c124

name 名前Erik Branger
date 日付September 11, 2010 20:37:18 UTC 2010 年 9 月 12 日 (日) 5 時 37 分 18 秒 (日本時間)
composite number 合成数
4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481<124>
prime factors 素因数
4749360430317354949216389905325606214784731753082957<52>
855431189865208976114047930253021465132317651100002178476508620983478733<72>
factorization results 素因数分解の結果
Number: 40001_238
N = 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481 (124 digits)
Divisors found:
r1=4749360430317354949216389905325606214784731753082957 (pp52)
r2=855431189865208976114047930253021465132317651100002178476508620983478733 (pp72)
Version: Msieve v. 1.44
Total time: 104.60 hours.
Factorization parameters were as follows:
# Murphy_E = 1.912149e-10, selected by Erik Branger
n: 4062751044005115866654663792743619178416333333576843064128894225841890787717288712089112609822174191985500437856235394253481
Y0: -924982764641111326633605
Y1: 23307828561283
c0: -226582626012824688162800028128
c1: 4299064751899127882997552
c2: 29326322136669373060
c3: -399676594422033
c4: 415347238
c5: 6000
skew: 163880.45
type: gnfs
# selected mechanically
rlim: 6600000
alim: 6600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 6600000/6600000
Large primes per side: 3
Large prime bits: 27/27
Sieved algebraic special-q in [3300000, 6300000)
Relations: 10435169
Relations in full relation-set: 1632762 relations
Pruned matrix : 957981 x 958205
Polynomial selection time: 0.00 hours.
Total sieving time: 103.17 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 1.04 hours.
time per square root: 0.15 hours.
Prototype def-par.txt line would be: gnfs,123,5,65,2000,1e-05,0.28,250,20,50000,3600,6600000,6600000,27,27,52,52,2.5,2.5,100000
total time: 104.60 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:57:00 UTC 2009 年 2 月 21 日 (土) 16 時 57 分 0 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:57:39 UTC 2009 年 2 月 21 日 (土) 16 時 57 分 39 秒 (日本時間)
4511e60--
5043e61145 / 1815yoyo@homeJanuary 25, 2010 00:30:06 UTC 2010 年 1 月 25 日 (月) 9 時 30 分 6 秒 (日本時間)
5511e72345 / 17343yoyo@homeAugust 30, 2010 01:10:18 UTC 2010 年 8 月 30 日 (月) 10 時 10 分 18 秒 (日本時間)

4×10239+1

c218

composite cofactor 合成数の残り
50751290197039174977112551431903899323929494349499256480302322628695135287849225834912975184531171005394421043505550569260012632282440159555947336687305498898507812826687595415993327189298091583773830362544443830680533<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:53:55 UTC 2009 年 2 月 21 日 (土) 16 時 53 分 55 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:54:54 UTC 2009 年 2 月 21 日 (土) 16 時 54 分 54 秒 (日本時間)
4511e60--
5043e61145yoyo@homeJanuary 28, 2010 11:31:39 UTC 2010 年 1 月 28 日 (木) 20 時 31 分 39 秒 (日本時間)
5511e72635 / 17343yoyo@homeAugust 30, 2010 11:20:30 UTC 2010 年 8 月 30 日 (月) 20 時 20 分 30 秒 (日本時間)

4×10243+1

c215

composite cofactor 合成数の残り
37506091803232300246153964037751360052070199287344009701430144095005843908692475793239852205548785338336670134733234023324341872177909170724055033663717297751021566608537985327024606478204000425747591569480230901853<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:53:24 UTC 2009 年 2 月 21 日 (土) 16 時 53 分 24 秒 (日本時間)
403e60--
4511e6600 / 4423Dmitry DomanovJuly 10, 2011 21:43:49 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 49 秒 (日本時間)
5043e63 / 74111Dmitry DomanovJuly 10, 2011 21:43:26 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 26 秒 (日本時間)
2Dmitry DomanovJuly 10, 2011 21:43:43 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 43 秒 (日本時間)
5511e71 / 17730Dmitry DomanovJuly 10, 2011 21:43:26 UTC 2011 年 7 月 11 日 (月) 6 時 43 分 26 秒 (日本時間)

4×10245+1

c226

name 名前yoyo@home
date 日付January 30, 2010 11:51:05 UTC 2010 年 1 月 30 日 (土) 20 時 51 分 5 秒 (日本時間)
composite number 合成数
8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013<226>
prime factors 素因数
947255853369650441723806278949229684129<39>
252848348718738248054735889573081237056927<42>
composite cofactor 合成数の残り
34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211<146>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013 (226 digits)
[Thu Jan 28 05:46:51 2010]
Using MODMULN
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1774910016
dF=65536, k=5, d=690690, d2=17, i0=46
Expected number of curves to find a factor of n digits:
20    25      30      35      40      45      50      55      60      65
2       5       14      55      246     1277    7553    49797   358989  2841353
Step 1 took 563031ms
Using 27 small primes for NTT
Estimated memory usage: 298M
Initializing tables of differences for F took 125ms
Computing roots of F took 11156ms
Building F from its roots took 12922ms
Computing 1/F took 6094ms
Initializing table of differences for G took 187ms
Computing roots of G took 8938ms
Building G from its roots took 12500ms
Computing roots of G took 8969ms
Building G from its roots took 12469ms
Computing G * H took 3407ms
Reducing  G * H mod F took 3406ms
Computing roots of G took 8719ms
Building G from its roots took 12453ms
Computing G * H took 3375ms
Reducing  G * H mod F took 3375ms
Computing roots of G took 8969ms
Building G from its roots took 12500ms
Computing G * H took 3422ms
Reducing  G * H mod F took 3359ms
Computing roots of G took 8234ms
Building G from its roots took 12422ms
Computing G * H took 3390ms
Reducing  G * H mod F took 3407ms
Computing polyeval(F,G) took 23047ms
Computing product of all F(g_i) took 125ms
Step 2 took 187547ms
********** Factor found in step 2: 947255853369650441723806278949229684129
Found probable prime factor of 39 digits: 947255853369650441723806278949229684129
Composite cofactor 8630348703389527551688580582854849693429632312287293032192542688414499000607315125408554505008617434425373262264600307243301643288904838684176439315377629554552765130809210729144123270597 has 187 digits

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 8175148325906903122680185625669425023660537155932173967065765979014371672879372506633237742369517012811587639114220441728682304334212857047154742376051912609932907164545250372048695079876661938736569839930275314631428703255013 (226 digits)
[Thu Jan 28 05:34:04 2010]
Using MODMULN
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=3965627531
dF=65536, k=5, d=690690, d2=17, i0=46
Expected number of curves to find a factor of n digits:
20 25      30      35      40      45      50      55      60      65
2       5       14      55      246     1277    7553    49797   358989  2841353
Step 1 took 567703ms
Using 27 small primes for NTT
Estimated memory usage: 298M
Initializing tables of differences for F took 125ms
Computing roots of F took 10422ms
Building F from its roots took 12859ms
Computing 1/F took 6156ms
Initializing table of differences for G took 203ms
Computing roots of G took 8922ms
Building G from its roots took 12547ms
Computing roots of G took 8828ms
Building G from its roots took 12500ms
Computing G * H took 3344ms
Reducing  G * H mod F took 3422ms
Computing roots of G took 8921ms
Building G from its roots took 12469ms
Computing G * H took 3375ms
Reducing  G * H mod F took 3422ms
Computing roots of G took 8890ms
Building G from its roots took 12047ms
Computing G * H took 3390ms
Reducing  G * H mod F took 3391ms
Computing roots of G took 8969ms
Building G from its roots took 12375ms
Computing G * H took 3375ms
Reducing  G * H mod F took 3406ms
Computing polyeval(F,G) took 23187ms
Computing product of all F(g_i) took 141ms
Step 2 took 187282ms
********** Factor found in step 2: 252848348718738248054735889573081237056927
Found probable prime factor of 42 digits: 252848348718738248054735889573081237056927
Composite cofactor 32332219559008154093684644264418956323611913638122865936223578581874744960162844748683505535670206422537062878846914423513668987655401786361270705455271003183129900530585361573229044219 has 185 digits
software ソフトウェア
GMP-ECM

c146

name 名前Youcef Lemsafer
date 日付December 19, 2013 14:01:39 UTC 2013 年 12 月 19 日 (木) 23 時 1 分 39 秒 (日本時間)
composite number 合成数
34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211<146>
prime factors 素因数
60020541527437240963374051468568365819621167111923661277994930871623<68>
568680468126153435753728167358980072501665559484793347884252370988739251938957<78>
factorization results 素因数分解の結果
<Polynomial selection using msieve 1.52 win64 CUDA>

Sat Dec 14 21:42:38 2013  Msieve v. 1.52 (SVN unknown)
Sat Dec 14 21:42:38 2013  random seeds: 4774ff10 8ded1469
Sat Dec 14 21:42:38 2013  factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits)
Sat Dec 14 21:42:40 2013  searching for 15-digit factors
Sat Dec 14 21:42:43 2013  commencing number field sieve (146-digit input)
Sat Dec 14 21:42:43 2013  commencing number field sieve polynomial selection
Sat Dec 14 21:42:43 2013  polynomial degree: 5
Sat Dec 14 21:42:43 2013  max stage 1 norm: 1.92e+022
Sat Dec 14 21:42:43 2013  max stage 2 norm: 3.03e+020
Sat Dec 14 21:42:43 2013  min E-value: 7.79e-012
Sat Dec 14 21:42:43 2013  poly select deadline: 396752
Sat Dec 14 21:42:43 2013  time limit set to 110.21 CPU-hours
Sat Dec 14 21:42:43 2013  expecting poly E from 9.48e-012 to > 1.09e-011
Sat Dec 14 21:42:43 2013  searching leading coefficients from 1 to 6302852
Sat Dec 14 21:42:43 2013  using GPU 0 (GeForce GTX 660)
Sat Dec 14 21:42:43 2013  selected card has CUDA arch 3.0
Sat Dec 14 21:42:46 2013  polynomial selection complete

Sun Dec 15 22:40:32 2013  Msieve v. 1.52 (SVN unknown)
Sun Dec 15 22:40:32 2013  random seeds: 916f921c 9cab0a25
Sun Dec 15 22:40:32 2013  factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits)
Sun Dec 15 22:40:33 2013  searching for 15-digit factors
Sun Dec 15 22:40:34 2013  commencing number field sieve (146-digit input)
Sun Dec 15 22:40:34 2013  commencing number field sieve polynomial selection
Sun Dec 15 22:40:34 2013  polynomial degree: 5
Sun Dec 15 22:40:34 2013  max stage 1 norm: 1.92e+022
Sun Dec 15 22:40:34 2013  max stage 2 norm: 3.03e+020
Sun Dec 15 22:40:34 2013  min E-value: 8.70e-012
Sun Dec 15 22:40:34 2013  poly select deadline: 396752
Mon Dec 16 07:17:12 2013  polynomial selection complete
Mon Dec 16 07:17:12 2013  R0: -11227082565783304062262676676
Mon Dec 16 07:17:12 2013  R1: 10692036547129421
Mon Dec 16 07:17:12 2013  A0: 71541935245573498052622426086494975
Mon Dec 16 07:17:12 2013  A1: 106313089141346645669772563882
Mon Dec 16 07:17:12 2013  A2: -303367004911534998241563
Mon Dec 16 07:17:12 2013  A3: -592535656038116738
Mon Dec 16 07:17:12 2013  A4: 292984179908
Mon Dec 16 07:17:12 2013  A5: 191352
Mon Dec 16 07:17:12 2013  skew 1101878.65, size 4.235e-014, alpha -6.889, combined = 1.026e-011 rroots = 3
Mon Dec 16 07:17:12 2013  elapsed time 08:36:40


<Sieving + post-processing using GGNFS (SVN 440) + msieve 1.51 (SVN 845)>

Mon Dec 16 12:17:00 2013 -> factmsieve.py (v0.76)
Mon Dec 16 12:17:00 2013 -> This is client 1 of 1
Mon Dec 16 12:17:00 2013 -> Running on 12 Cores with 2 hyper-threads per Core
Mon Dec 16 12:17:00 2013 -> Working with NAME = 40001_245
Mon Dec 16 12:17:00 2013 -> Selected lattice siever: gnfs-lasieve4I14e
Mon Dec 16 12:17:00 2013 -> Creating param file to detect parameter changes...
Mon Dec 16 12:17:00 2013 -> Running setup ...
Mon Dec 16 12:17:00 2013 -> Estimated minimum relations needed: 3.63895e+07
Mon Dec 16 12:17:00 2013 -> cleaning up before a restart
Mon Dec 16 12:17:00 2013 -> Running lattice siever ...
Mon Dec 16 12:17:00 2013 -> entering sieving loop
<...snipped...>
Mon Dec 16 12:17:07 2013 -> Lattice sieving algebraic q from 10000000 to 10100000.
<...snipped...>
Mon Dec 16 12:45:26 2013 Found 381814 relations, 1.0% of the estimated minimum (36389459).
<...snipped...>
Tue Dec 17 00:20:50 2013 Found 9073639 relations, 24.9% of the estimated minimum (36389459).
<...snipped...>
Tue Dec 17 13:41:48 2013 -> Lattice sieving algebraic q from 14700000 to 14800000.
<...snipped...>
Tue Dec 17 14:14:36 2013 Found 18191418 relations, 50.0% of the estimated minimum (36389459).
<...snipped...>
Wed Dec 18 04:53:47 2013 -> Lattice sieving algebraic q from 17100000 to 17200000.
<...snipped...>
Wed Dec 18 06:08:20 2013 Found 27289844 relations, 75.0% of the estimated minimum (36389459).
<...snipped...>
Wed Dec 18 19:13:46 2013 -> Lattice sieving algebraic q from 19500000 to 19600000.
<...snipped...>
Wed Dec 18 19:44:16 2013 Found 36345648 relations, 99.9% of the estimated minimum (36389459).
<...snipped...>
Thu Dec 19 02:33:21 2013 -> Lattice sieving algebraic q from 20500000 to 20600000.
<...snipped...>
Thu Dec 19 03:05:27 2013 Found 40249745 relations, 110.6% of the estimated minimum (36389459).
Thu Dec 19 03:05:27 2013  
Thu Dec 19 03:05:27 2013  
Thu Dec 19 03:05:27 2013  Msieve v. 1.51 (SVN 845)
Thu Dec 19 03:05:27 2013  random seeds: a251f6b8 5b6efb32
Thu Dec 19 03:05:27 2013  factoring 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits)
Thu Dec 19 03:05:28 2013  searching for 15-digit factors
Thu Dec 19 03:05:29 2013  commencing number field sieve (146-digit input)
Thu Dec 19 03:05:29 2013  R0: -11227082565783304062262676676
Thu Dec 19 03:05:29 2013  R1: 10692036547129421
Thu Dec 19 03:05:29 2013  A0: 71541935245573498052622426086494975
Thu Dec 19 03:05:29 2013  A1: 106313089141346645669772563882
Thu Dec 19 03:05:29 2013  A2: -303367004911534998241563
Thu Dec 19 03:05:29 2013  A3: -592535656038116738
Thu Dec 19 03:05:29 2013  A4: 292984179908
Thu Dec 19 03:05:29 2013  A5: 191352
Thu Dec 19 03:05:29 2013  skew 1101878.65, size 4.235e-014, alpha -6.889, combined = 1.026e-011 rroots = 3
Thu Dec 19 03:05:29 2013  
Thu Dec 19 03:05:29 2013  commencing relation filtering
Thu Dec 19 03:05:29 2013  estimated available RAM is 4096.0 MB
Thu Dec 19 03:05:29 2013  commencing duplicate removal, pass 1
Thu Dec 19 03:10:00 2013  found 4387349 hash collisions in 40249744 relations
Thu Dec 19 03:10:56 2013  added 3 free relations
Thu Dec 19 03:10:56 2013  commencing duplicate removal, pass 2
Thu Dec 19 03:11:31 2013  found 3513761 duplicates and 36735986 unique relations
Thu Dec 19 03:11:31 2013  memory use: 197.2 MB
Thu Dec 19 03:11:31 2013  reading ideals above 20512768
Thu Dec 19 03:11:31 2013  commencing singleton removal, initial pass
Thu Dec 19 03:16:42 2013  memory use: 753.0 MB
Thu Dec 19 03:16:42 2013  reading all ideals from disk
Thu Dec 19 03:16:43 2013  memory use: 660.6 MB
Thu Dec 19 03:16:45 2013  commencing in-memory singleton removal
Thu Dec 19 03:16:47 2013  begin with 36735986 relations and 37803452 unique ideals
Thu Dec 19 03:17:07 2013  reduce to 13793306 relations and 11080548 ideals in 21 passes
Thu Dec 19 03:17:07 2013  max relations containing the same ideal: 46
Thu Dec 19 03:17:09 2013  reading ideals above 720000
Thu Dec 19 03:17:09 2013  commencing singleton removal, initial pass
Thu Dec 19 03:19:41 2013  memory use: 376.5 MB
Thu Dec 19 03:19:41 2013  reading all ideals from disk
Thu Dec 19 03:19:42 2013  memory use: 467.7 MB
Thu Dec 19 03:19:43 2013  keeping 13564662 ideals with weight <= 200, target excess is 115771
Thu Dec 19 03:19:44 2013  commencing in-memory singleton removal
Thu Dec 19 03:19:46 2013  begin with 13793311 relations and 13564662 unique ideals
Thu Dec 19 03:20:07 2013  reduce to 13772583 relations and 13543914 ideals in 18 passes
Thu Dec 19 03:20:07 2013  max relations containing the same ideal: 199
Thu Dec 19 03:20:14 2013  removing 762300 relations and 715113 ideals in 47187 cliques
Thu Dec 19 03:20:14 2013  commencing in-memory singleton removal
Thu Dec 19 03:20:16 2013  begin with 13010283 relations and 13543914 unique ideals
Thu Dec 19 03:20:35 2013  reduce to 12971542 relations and 12789838 ideals in 13 passes
Thu Dec 19 03:20:35 2013  max relations containing the same ideal: 192
Thu Dec 19 03:20:44 2013  removing 548898 relations and 501711 ideals in 47187 cliques
Thu Dec 19 03:20:44 2013  commencing in-memory singleton removal
Thu Dec 19 03:20:45 2013  begin with 12422644 relations and 12789838 unique ideals
Thu Dec 19 03:21:00 2013  reduce to 12401265 relations and 12266645 ideals in 10 passes
Thu Dec 19 03:21:00 2013  max relations containing the same ideal: 181
Thu Dec 19 03:21:11 2013  relations with 0 large ideals: 479
Thu Dec 19 03:21:11 2013  relations with 1 large ideals: 253
Thu Dec 19 03:21:11 2013  relations with 2 large ideals: 6728
Thu Dec 19 03:21:11 2013  relations with 3 large ideals: 75060
Thu Dec 19 03:21:11 2013  relations with 4 large ideals: 427852
Thu Dec 19 03:21:11 2013  relations with 5 large ideals: 1430225
Thu Dec 19 03:21:11 2013  relations with 6 large ideals: 2910248
Thu Dec 19 03:21:11 2013  relations with 7+ large ideals: 7550420
Thu Dec 19 03:21:11 2013  commencing 2-way merge
Thu Dec 19 03:21:24 2013  reduce to 6928250 relation sets and 6793640 unique ideals
Thu Dec 19 03:21:24 2013  ignored 10 oversize relation sets
Thu Dec 19 03:21:24 2013  commencing full merge
Thu Dec 19 03:24:07 2013  memory use: 678.9 MB
Thu Dec 19 03:24:09 2013  found 3596016 cycles, need 3583840
Thu Dec 19 03:24:09 2013  weight of 3583840 cycles is about 250915426 (70.01/cycle)
Thu Dec 19 03:24:09 2013  distribution of cycle lengths:
Thu Dec 19 03:24:09 2013  1 relations: 533573
Thu Dec 19 03:24:09 2013  2 relations: 495181
Thu Dec 19 03:24:09 2013  3 relations: 461335
Thu Dec 19 03:24:09 2013  4 relations: 392945
Thu Dec 19 03:24:09 2013  5 relations: 325469
Thu Dec 19 03:24:09 2013  6 relations: 271130
Thu Dec 19 03:24:09 2013  7 relations: 218714
Thu Dec 19 03:24:09 2013  8 relations: 173897
Thu Dec 19 03:24:09 2013  9 relations: 139874
Thu Dec 19 03:24:09 2013  10+ relations: 571722
Thu Dec 19 03:24:09 2013  heaviest cycle: 27 relations
Thu Dec 19 03:24:10 2013  commencing cycle optimization
Thu Dec 19 03:24:16 2013  start with 19725943 relations
Thu Dec 19 03:25:00 2013  pruned 311368 relations
Thu Dec 19 03:25:00 2013  memory use: 554.5 MB
Thu Dec 19 03:25:00 2013  distribution of cycle lengths:
Thu Dec 19 03:25:00 2013  1 relations: 533573
Thu Dec 19 03:25:00 2013  2 relations: 504443
Thu Dec 19 03:25:00 2013  3 relations: 473842
Thu Dec 19 03:25:00 2013  4 relations: 397170
Thu Dec 19 03:25:00 2013  5 relations: 328463
Thu Dec 19 03:25:00 2013  6 relations: 270416
Thu Dec 19 03:25:00 2013  7 relations: 217275
Thu Dec 19 03:25:00 2013  8 relations: 171207
Thu Dec 19 03:25:00 2013  9 relations: 137220
Thu Dec 19 03:25:00 2013  10+ relations: 550231
Thu Dec 19 03:25:00 2013  heaviest cycle: 27 relations
Thu Dec 19 03:25:04 2013  RelProcTime: 1175
Thu Dec 19 03:25:04 2013  elapsed time 00:19:37
Thu Dec 19 03:25:04 2013 LatSieveTime: 3102.77
Thu Dec 19 03:25:04 2013 -> Running matrix solving step ...
<...snipped...>
Thu Dec 19 03:25:06 2013  
Thu Dec 19 03:25:06 2013  commencing linear algebra
Thu Dec 19 03:25:07 2013  read 3583840 cycles
Thu Dec 19 03:25:15 2013  cycles contain 12193763 unique relations
Thu Dec 19 03:26:39 2013  read 12193763 relations
Thu Dec 19 03:27:02 2013  using 20 quadratic characters above 536870718
Thu Dec 19 03:28:09 2013  building initial matrix
Thu Dec 19 03:31:10 2013  memory use: 1453.2 MB
Thu Dec 19 03:31:14 2013  read 3583840 cycles
Thu Dec 19 03:31:15 2013  matrix is 3583660 x 3583840 (1027.2 MB) with weight 340841722 (95.11/col)
Thu Dec 19 03:31:15 2013  sparse part has weight 244177102 (68.13/col)
Thu Dec 19 03:31:55 2013  filtering completed in 2 passes
Thu Dec 19 03:31:56 2013  matrix is 3578936 x 3579116 (1026.9 MB) with weight 340657476 (95.18/col)
Thu Dec 19 03:31:56 2013  sparse part has weight 244132895 (68.21/col)
Thu Dec 19 03:32:18 2013  matrix starts at (0, 0)
Thu Dec 19 03:32:20 2013  matrix is 3578936 x 3579116 (1026.9 MB) with weight 340657476 (95.18/col)
Thu Dec 19 03:32:20 2013  sparse part has weight 244132895 (68.21/col)
Thu Dec 19 03:32:20 2013  saving the first 48 matrix rows for later
Thu Dec 19 03:32:21 2013  matrix includes 64 packed rows
Thu Dec 19 03:32:22 2013  matrix is 3578888 x 3579116 (994.0 MB) with weight 271603917 (75.89/col)
Thu Dec 19 03:32:22 2013  sparse part has weight 239087446 (66.80/col)
Thu Dec 19 03:32:22 2013  using block size 65536 for processor cache size 15360 kB
Thu Dec 19 03:32:46 2013  commencing Lanczos iteration (24 threads)
Thu Dec 19 03:32:46 2013  memory use: 1465.6 MB
Thu Dec 19 03:33:02 2013  linear algebra at 0.0%, ETA 9h47m
Thu Dec 19 03:33:07 2013  checkpointing every 370000 dimensions
Thu Dec 19 13:42:04 2013  lanczos halted after 56599 iterations (dim = 3578888)
Thu Dec 19 13:42:11 2013  recovered 30 nontrivial dependencies
Thu Dec 19 13:42:14 2013  BLanczosTime: 37028
Thu Dec 19 13:42:14 2013  elapsed time 10:17:10
Thu Dec 19 13:42:14 2013 -> Running square root step ...
<...snipped...>
Thu Dec 19 13:42:16 2013  commencing square root phase
Thu Dec 19 13:42:16 2013  reading relations for dependency 1
Thu Dec 19 13:42:17 2013  read 1788935 cycles
Thu Dec 19 13:42:21 2013  cycles contain 6091172 unique relations
Thu Dec 19 13:43:09 2013  read 6091172 relations
Thu Dec 19 13:43:45 2013  multiplying 6091172 relations
Thu Dec 19 14:03:57 2013  multiply complete, coefficients have about 314.24 million bits
Thu Dec 19 14:04:04 2013  initial square root is modulo 435041
Thu Dec 19 14:27:53 2013  sqrtTime: 2737
Thu Dec 19 14:27:53 2013  prp68 factor: 60020541527437240963374051468568365819621167111923661277994930871623
Thu Dec 19 14:27:53 2013  prp78 factor: 568680468126153435753728167358980072501665559484793347884252370988739251938957
Thu Dec 19 14:27:53 2013  elapsed time 00:45:39
Thu Dec 19 14:27:53 2013 -> Computing 1.38746e+09 scale for this machine...
Thu Dec 19 14:27:53 2013 -> procrels -speedtest> PIPE
Thu Dec 19 14:27:56 2013 -> Factorization summary written to g146-40001_245.txt




Number: 40001_245
N = 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211 (146 digits)
Divisors found:
r1=60020541527437240963374051468568365819621167111923661277994930871623 (pp68)
r2=568680468126153435753728167358980072501665559484793347884252370988739251938957 (pp78)
Version: Msieve v. 1.51 (SVN 845)
Total time: 74.49 hours.
Factorization parameters were as follows:
# Murphy_E = 1.026e-11, selected by Youcef Lemsafer
# msieve 1.52 GPU, expecting poly E from 9.48e-012 to > 1.09e-011
# norm 5.121445e-014 alpha -6.889252 e 1.026e-011 rroots 3
#
# 40001_245 (146 digits)
#
n: 34132509653008242561165853912022721534893950007619892142469567927036813315109428869887916909700578879631903201572254192492719450917588480799517211
Y0: -11227082565783304062262676676
Y1: 10692036547129421
c0: 71541935245573498052622426086494975
c1: 106313089141346645669772563882
c2: -303367004911534998241563
c3: -592535656038116738
c4: 292984179908
c5: 191352
skew: 1101878.65
type: gnfs
# selected mechanically
rlim: 26000000
alim: 26000000
lpbr: 29
lpba: 29
mfbr: 57
mfba: 57
rlambda: 2.6
alambda: 2.6
q0: 10000000
Factor base limits: 26000000/26000000
Large primes per side: 3
Large prime bits: 29/29
Sieved algebraic special-q in [10000000, 20600001)
Total raw relations: 40249745
Relations: 6091172 relations
Pruned matrix : 3578888 x 3579116
Polynomial selection time: 0.00 hours.
Total sieving time: 63.11 hours.
Total relation processing time: 0.33 hours.
Matrix solve time: 10.29 hours.
time per square root: 0.76 hours.
Prototype def-par.txt line would be: gnfs,145,5,67,2000,5e-06,0.28,250,20,50000,3600,26000000,26000000,29,29,57,57,2.6,2.6,100000
total time: 74.49 hours.
Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 24, speed: 2.00GHz
software ソフトウェア
msieve 1.52 (SVN 942) GPU for polynomial selection, GGNFS (SVN 440), msieve 1.51 (SVN 845)
execution environment 実行環境
Windows 7 Pro 64bits, 2x Intel Xeon E5-2620 @ 2.0GHz, 2x NVIDIA GeForce GTX660, 32 GB RAM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:51:28 UTC 2009 年 2 月 21 日 (土) 16 時 51 分 28 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:51:34 UTC 2009 年 2 月 21 日 (土) 16 時 51 分 34 秒 (日本時間)
4511e635532466Wataru SakaiMay 31, 2010 01:56:16 UTC 2010 年 5 月 31 日 (月) 10 時 56 分 16 秒 (日本時間)
1087Wataru SakaiJuly 8, 2010 13:24:25 UTC 2010 年 7 月 8 日 (木) 22 時 24 分 25 秒 (日本時間)
5043e6786 / 6671120yoyo@homeJanuary 28, 2010 12:20:11 UTC 2010 年 1 月 28 日 (木) 21 時 20 分 11 秒 (日本時間)
666Youcef LemsaferDecember 15, 2013 03:14:45 UTC 2013 年 12 月 15 日 (日) 12 時 14 分 45 秒 (日本時間)

4×10246+1

c210

composite cofactor 合成数の残り
336277270197571194694599167999489364048869681650509232785741533248676206882399428414702744553461554191510107698912625436480348696350938968554576404701771244631046341141003347894755534981647251532984417755325653<210>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:47:45 UTC 2009 年 2 月 21 日 (土) 16 時 47 分 45 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:50:36 UTC 2009 年 2 月 21 日 (土) 16 時 50 分 36 秒 (日本時間)
4511e60--
5043e61145yoyo@homeJanuary 28, 2010 13:05:20 UTC 2010 年 1 月 28 日 (木) 22 時 5 分 20 秒 (日本時間)
5511e72635 / 17343yoyo@homeSeptember 1, 2010 07:35:54 UTC 2010 年 9 月 1 日 (水) 16 時 35 分 54 秒 (日本時間)

4×10247+1

c211

composite cofactor 合成数の残り
5440280160228364168388954886554154956082230667821654009825515137353304533015851832287889842237427177754937406635211474521081167104083163271414973599848661004051886455901155247175357847137327435058370081960353081<211>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:46:55 UTC 2009 年 2 月 21 日 (土) 16 時 46 分 55 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:47:24 UTC 2009 年 2 月 21 日 (土) 16 時 47 分 24 秒 (日本時間)
4511e60--
5043e61145yoyo@homeJanuary 28, 2010 14:10:59 UTC 2010 年 1 月 28 日 (木) 23 時 10 分 59 秒 (日本時間)
5511e72635 / 17343yoyo@homeSeptember 1, 2010 08:30:36 UTC 2010 年 9 月 1 日 (水) 17 時 30 分 36 秒 (日本時間)

4×10248+1

c109

name 名前Sinkiti Sibata
date 日付November 3, 2008 12:09:49 UTC 2008 年 11 月 3 日 (月) 21 時 9 分 49 秒 (日本時間)
composite number 合成数
4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837<109>
prime factors 素因数
234046722213975127327184686613228150778995773714719821<54>
17613153769512112517578753541630628864236833323216296297<56>
factorization results 素因数分解の結果
Number: 40001_248
N=4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837
  ( 109 digits)
SNFS difficulty: 124 digits.
Divisors found:
 r1=234046722213975127327184686613228150778995773714719821
 r2=17613153769512112517578753541630628864236833323216296297
Version: 
Total time: 6.26 hours.
Scaled time: 6.52 units (timescale=1.041).
Factorization parameters were as follows:
name: 40001_248
n: 4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837
m: 10000000000000000000000000000000
deg: 4
c4: 2
c2: -2
c0: 1
skew: 0.84
type: snfs
lss: 1
rlim: 610000
alim: 610000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 610000/610000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [305000, 680001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 85089 x 85326
Total sieving time: 6.26 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,124,4,0,0,0,0,0,0,0,0,610000,610000,25,25,46,46,2.3,2.3,75000
total time: 6.26 hours.
 --------- CPU info (if available) ----------
execution environment 実行環境
Core 2 Duo E6300 1.86GHz, Windows Vista)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)

4×10250+1

c217

name 名前Wataru Sakai
date 日付February 17, 2009 13:07:38 UTC 2009 年 2 月 17 日 (火) 22 時 7 分 38 秒 (日本時間)
composite number 合成数
5049375628147792185426799611882543488766554237245274964857184299482535756164282638428011735474908120541478940465274800628100169483850922515673096929842099427492928708169332522067008587917794833202238324621097197694481<217>
prime factors 素因数
3646063837616479765543282237<28>
composite cofactor 合成数の残り
1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213<190>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1542610798
Step 1 took 31294ms
Step 2 took 11523ms
********** Factor found in step 2: 3646063837616479765543282237
Found probable prime factor of 28 digits: 3646063837616479765543282237
Composite cofactor 1384884042910420165347409678795465963363534296954212246796684476356217728885736635043375826182325427543165724023466279092585820420520465533750358339478640272158255317032759385731025755994213 has 190 digits
software ソフトウェア
GMP-ECM 6.2.1 [powered by GMP 4.2.4]

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaNovember 3, 2008 06:00:00 UTC 2008 年 11 月 3 日 (月) 15 時 0 分 0 秒 (日本時間)
351e6825Wataru SakaiFebruary 21, 2009 07:45:06 UTC 2009 年 2 月 21 日 (土) 16 時 45 分 6 秒 (日本時間)
403e62111Wataru SakaiFebruary 21, 2009 07:46:11 UTC 2009 年 2 月 21 日 (土) 16 時 46 分 11 秒 (日本時間)
4511e60--
5043e61145yoyo@homeJanuary 28, 2010 14:50:16 UTC 2010 年 1 月 28 日 (木) 23 時 50 分 16 秒 (日本時間)
5511e72635 / 17343yoyo@homeSeptember 1, 2010 09:40:26 UTC 2010 年 9 月 1 日 (水) 18 時 40 分 26 秒 (日本時間)

4×10251+1

c231

composite cofactor 合成数の残り
748082434748235860636239907642765083824788407055672659789624670604847770974862363513254565669203926168070605695617394268245916336696424334921604552572906070388233659037980699576334071346025098331432910350184701172971776967267525329<231>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e64000ebinaOctober 2, 2024 08:17:09 UTC 2024 年 10 月 2 日 (水) 17 時 17 分 9 秒 (日本時間)

4×10253+1

c254

name 名前NFS@home + Dmitry Domanov
date 日付July 23, 2022 22:43:05 UTC 2022 年 7 月 24 日 (日) 7 時 43 分 5 秒 (日本時間)
composite number 合成数
40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<254>
prime factors 素因数
3461508126208175522569203302199346213088686293934196840625676973<64>
11555656824014745965103174251426168741775970940225354060255626124188570583251500739239916948855700054108076590550861508217304724337729965415252719798975549997145212012347662797114164696224037<191>
factorization results 素因数分解の結果
Sieving by NFS@home, postprocessing by Dmitry Domanov

Fri Jul 22 12:41:18 2022  
Fri Jul 22 12:41:18 2022  
Fri Jul 22 12:41:18 2022  Msieve v. 1.54 (SVN 1043M)
Fri Jul 22 12:41:18 2022  random seeds: f9d0a242 c7e8c874
Fri Jul 22 12:41:18 2022  factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits)
Fri Jul 22 12:41:19 2022  searching for 15-digit factors
Fri Jul 22 12:41:20 2022  commencing number field sieve (254-digit input)
Fri Jul 22 12:41:20 2022  R0: -1000000000000000000000000000000000000000000
Fri Jul 22 12:41:20 2022  R1: 1
Fri Jul 22 12:41:20 2022  A0: 1
Fri Jul 22 12:41:20 2022  A1: 0
Fri Jul 22 12:41:20 2022  A2: 0
Fri Jul 22 12:41:20 2022  A3: 0
Fri Jul 22 12:41:20 2022  A4: 0
Fri Jul 22 12:41:20 2022  A5: 0
Fri Jul 22 12:41:20 2022  A6: 40
Fri Jul 22 12:41:20 2022  skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0
Fri Jul 22 12:41:20 2022  
Fri Jul 22 12:41:20 2022  commencing relation filtering
Fri Jul 22 12:41:20 2022  setting target matrix density to 120.0
Fri Jul 22 12:41:20 2022  estimated available RAM is 63624.2 MB
Fri Jul 22 12:41:20 2022  commencing duplicate removal, pass 1
Fri Jul 22 13:04:50 2022  error -15 reading relation 105021642
Fri Jul 22 13:04:56 2022  error -15 reading relation 105507172
Fri Jul 22 13:14:46 2022  error -15 reading relation 145413764
Fri Jul 22 13:24:16 2022  error -15 reading relation 172180273
Fri Jul 22 13:26:20 2022  error -15 reading relation 178033686
Fri Jul 22 13:28:32 2022  error -15 reading relation 184683287
Fri Jul 22 13:30:28 2022  error -15 reading relation 189849894
Fri Jul 22 13:30:46 2022  error -15 reading relation 190692087
Fri Jul 22 13:34:41 2022  skipped 936 relations with b > 2^32
Fri Jul 22 13:34:41 2022  skipped 2 relations with composite factors
Fri Jul 22 13:34:41 2022  found 8893373 hash collisions in 201433235 relations
Fri Jul 22 13:35:04 2022  added 1218210 free relations
Fri Jul 22 13:35:04 2022  commencing duplicate removal, pass 2
Fri Jul 22 13:37:56 2022  found 0 duplicates and 202651445 unique relations
Fri Jul 22 13:37:56 2022  memory use: 522.4 MB
Fri Jul 22 13:37:56 2022  reading ideals above 720000
Fri Jul 22 13:37:56 2022  commencing singleton removal, initial pass
Fri Jul 22 14:20:01 2022  memory use: 5512.0 MB
Fri Jul 22 14:20:01 2022  reading all ideals from disk
Fri Jul 22 14:25:33 2022  memory use: 8199.4 MB
Fri Jul 22 14:26:04 2022  keeping 177561653 ideals with weight <= 200, target excess is 1098985
Fri Jul 22 14:26:43 2022  commencing in-memory singleton removal
Fri Jul 22 14:27:05 2022  begin with 202651445 relations and 177561653 unique ideals
Fri Jul 22 14:32:34 2022  reduce to 138442416 relations and 107383583 ideals in 13 passes
Fri Jul 22 14:32:34 2022  max relations containing the same ideal: 165
Fri Jul 22 14:34:12 2022  removing 10288002 relations and 8288002 ideals in 2000000 cliques
Fri Jul 22 14:34:19 2022  commencing in-memory singleton removal
Fri Jul 22 14:34:34 2022  begin with 128154414 relations and 107383583 unique ideals
Fri Jul 22 14:38:04 2022  reduce to 127593715 relations and 98524910 ideals in 9 passes
Fri Jul 22 14:38:04 2022  max relations containing the same ideal: 155
Fri Jul 22 14:39:26 2022  removing 7843490 relations and 5843490 ideals in 2000000 cliques
Fri Jul 22 14:39:33 2022  commencing in-memory singleton removal
Fri Jul 22 14:39:46 2022  begin with 119750225 relations and 98524910 unique ideals
Fri Jul 22 14:42:11 2022  reduce to 119372773 relations and 92297983 ideals in 7 passes
Fri Jul 22 14:42:11 2022  max relations containing the same ideal: 151
Fri Jul 22 14:43:22 2022  removing 7130025 relations and 5130025 ideals in 2000000 cliques
Fri Jul 22 14:43:28 2022  commencing in-memory singleton removal
Fri Jul 22 14:43:42 2022  begin with 112242748 relations and 92297983 unique ideals
Fri Jul 22 14:46:00 2022  reduce to 111911486 relations and 86831399 ideals in 7 passes
Fri Jul 22 14:46:00 2022  max relations containing the same ideal: 150
Fri Jul 22 14:47:22 2022  removing 6759702 relations and 4759702 ideals in 2000000 cliques
Fri Jul 22 14:47:30 2022  commencing in-memory singleton removal
Fri Jul 22 14:47:44 2022  begin with 105151784 relations and 86831399 unique ideals
Fri Jul 22 14:50:00 2022  reduce to 104841888 relations and 81756689 ideals in 7 passes
Fri Jul 22 14:50:00 2022  max relations containing the same ideal: 139
Fri Jul 22 14:51:14 2022  removing 6531404 relations and 4531404 ideals in 2000000 cliques
Fri Jul 22 14:51:20 2022  commencing in-memory singleton removal
Fri Jul 22 14:51:31 2022  begin with 98310484 relations and 81756689 unique ideals
Fri Jul 22 14:53:17 2022  reduce to 98009856 relations and 76919453 ideals in 6 passes
Fri Jul 22 14:53:17 2022  max relations containing the same ideal: 131
Fri Jul 22 14:54:18 2022  removing 6380235 relations and 4380235 ideals in 2000000 cliques
Fri Jul 22 14:54:24 2022  commencing in-memory singleton removal
Fri Jul 22 14:54:35 2022  begin with 91629621 relations and 76919453 unique ideals
Fri Jul 22 14:56:21 2022  reduce to 91332513 relations and 72236711 ideals in 7 passes
Fri Jul 22 14:56:21 2022  max relations containing the same ideal: 126
Fri Jul 22 14:57:22 2022  removing 6272116 relations and 4272116 ideals in 2000000 cliques
Fri Jul 22 14:57:29 2022  commencing in-memory singleton removal
Fri Jul 22 14:57:39 2022  begin with 85060397 relations and 72236711 unique ideals
Fri Jul 22 14:59:03 2022  reduce to 84758893 relations and 67657344 ideals in 6 passes
Fri Jul 22 14:59:03 2022  max relations containing the same ideal: 118
Fri Jul 22 14:59:59 2022  removing 6194510 relations and 4194510 ideals in 2000000 cliques
Fri Jul 22 15:00:05 2022  commencing in-memory singleton removal
Fri Jul 22 15:00:18 2022  begin with 78564383 relations and 67657344 unique ideals
Fri Jul 22 15:01:35 2022  reduce to 78252738 relations and 63144668 ideals in 6 passes
Fri Jul 22 15:01:35 2022  max relations containing the same ideal: 112
Fri Jul 22 15:02:29 2022  removing 6145442 relations and 4145442 ideals in 2000000 cliques
Fri Jul 22 15:02:35 2022  commencing in-memory singleton removal
Fri Jul 22 15:02:44 2022  begin with 72107296 relations and 63144668 unique ideals
Fri Jul 22 15:04:15 2022  reduce to 71781329 relations and 58666137 ideals in 7 passes
Fri Jul 22 15:04:15 2022  max relations containing the same ideal: 105
Fri Jul 22 15:05:03 2022  removing 6117512 relations and 4117512 ideals in 2000000 cliques
Fri Jul 22 15:05:08 2022  commencing in-memory singleton removal
Fri Jul 22 15:05:15 2022  begin with 65663817 relations and 58666137 unique ideals
Fri Jul 22 15:06:40 2022  reduce to 65317608 relations and 54194224 ideals in 7 passes
Fri Jul 22 15:06:40 2022  max relations containing the same ideal: 98
Fri Jul 22 15:07:24 2022  removing 6107989 relations and 4107989 ideals in 2000000 cliques
Fri Jul 22 15:07:29 2022  commencing in-memory singleton removal
Fri Jul 22 15:07:35 2022  begin with 59209619 relations and 54194224 unique ideals
Fri Jul 22 15:08:25 2022  reduce to 58835103 relations and 49702103 ideals in 6 passes
Fri Jul 22 15:08:25 2022  max relations containing the same ideal: 92
Fri Jul 22 15:09:07 2022  removing 6114988 relations and 4114988 ideals in 2000000 cliques
Fri Jul 22 15:09:11 2022  commencing in-memory singleton removal
Fri Jul 22 15:09:16 2022  begin with 52720115 relations and 49702103 unique ideals
Fri Jul 22 15:10:11 2022  reduce to 52306075 relations and 45161231 ideals in 7 passes
Fri Jul 22 15:10:11 2022  max relations containing the same ideal: 87
Fri Jul 22 15:10:44 2022  removing 6135982 relations and 4135982 ideals in 2000000 cliques
Fri Jul 22 15:10:47 2022  commencing in-memory singleton removal
Fri Jul 22 15:10:51 2022  begin with 46170093 relations and 45161231 unique ideals
Fri Jul 22 15:11:52 2022  reduce to 45705025 relations and 40545387 ideals in 8 passes
Fri Jul 22 15:11:52 2022  max relations containing the same ideal: 83
Fri Jul 22 15:12:24 2022  removing 6176192 relations and 4176192 ideals in 2000000 cliques
Fri Jul 22 15:12:27 2022  commencing in-memory singleton removal
Fri Jul 22 15:12:31 2022  begin with 39528833 relations and 40545387 unique ideals
Fri Jul 22 15:13:09 2022  reduce to 38987409 relations and 35807972 ideals in 7 passes
Fri Jul 22 15:13:09 2022  max relations containing the same ideal: 71
Fri Jul 22 15:13:34 2022  removing 5992098 relations and 4087484 ideals in 1904614 cliques
Fri Jul 22 15:13:38 2022  commencing in-memory singleton removal
Fri Jul 22 15:13:41 2022  begin with 32995311 relations and 35807972 unique ideals
Fri Jul 22 15:14:31 2022  reduce to 32379055 relations and 31079288 ideals in 10 passes
Fri Jul 22 15:14:31 2022  max relations containing the same ideal: 63
Fri Jul 22 15:14:53 2022  removing 161054 relations and 136110 ideals in 24944 cliques
Fri Jul 22 15:14:55 2022  commencing in-memory singleton removal
Fri Jul 22 15:14:58 2022  begin with 32218001 relations and 31079288 unique ideals
Fri Jul 22 15:15:16 2022  reduce to 32217383 relations and 30942560 ideals in 4 passes
Fri Jul 22 15:15:16 2022  max relations containing the same ideal: 63
Fri Jul 22 15:15:24 2022  relations with 0 large ideals: 42099
Fri Jul 22 15:15:24 2022  relations with 1 large ideals: 23569
Fri Jul 22 15:15:24 2022  relations with 2 large ideals: 290049
Fri Jul 22 15:15:24 2022  relations with 3 large ideals: 1584010
Fri Jul 22 15:15:24 2022  relations with 4 large ideals: 4609405
Fri Jul 22 15:15:24 2022  relations with 5 large ideals: 7900644
Fri Jul 22 15:15:24 2022  relations with 6 large ideals: 8404931
Fri Jul 22 15:15:24 2022  relations with 7+ large ideals: 9362676
Fri Jul 22 15:15:24 2022  commencing 2-way merge
Fri Jul 22 15:15:52 2022  reduce to 21223719 relation sets and 19948896 unique ideals
Fri Jul 22 15:15:52 2022  commencing full merge
Fri Jul 22 15:27:36 2022  memory use: 2654.9 MB
Fri Jul 22 15:27:39 2022  found 9727281 cycles, need 9617096
Fri Jul 22 15:27:43 2022  weight of 9617096 cycles is about 1154726961 (120.07/cycle)
Fri Jul 22 15:27:43 2022  distribution of cycle lengths:
Fri Jul 22 15:27:43 2022  1 relations: 401256
Fri Jul 22 15:27:43 2022  2 relations: 558722
Fri Jul 22 15:27:43 2022  3 relations: 669647
Fri Jul 22 15:27:43 2022  4 relations: 708954
Fri Jul 22 15:27:43 2022  5 relations: 738403
Fri Jul 22 15:27:43 2022  6 relations: 743717
Fri Jul 22 15:27:43 2022  7 relations: 732871
Fri Jul 22 15:27:43 2022  8 relations: 700815
Fri Jul 22 15:27:43 2022  9 relations: 654412
Fri Jul 22 15:27:43 2022  10+ relations: 3708299
Fri Jul 22 15:27:43 2022  heaviest cycle: 28 relations
Fri Jul 22 15:27:47 2022  commencing cycle optimization
Fri Jul 22 15:28:12 2022  start with 83132066 relations
Fri Jul 22 15:32:38 2022  pruned 4080637 relations
Fri Jul 22 15:32:39 2022  memory use: 2184.1 MB
Fri Jul 22 15:32:39 2022  distribution of cycle lengths:
Fri Jul 22 15:32:39 2022  1 relations: 401256
Fri Jul 22 15:32:39 2022  2 relations: 572992
Fri Jul 22 15:32:39 2022  3 relations: 699599
Fri Jul 22 15:32:39 2022  4 relations: 741732
Fri Jul 22 15:32:39 2022  5 relations: 779754
Fri Jul 22 15:32:39 2022  6 relations: 785727
Fri Jul 22 15:32:39 2022  7 relations: 777802
Fri Jul 22 15:32:39 2022  8 relations: 740425
Fri Jul 22 15:32:39 2022  9 relations: 688189
Fri Jul 22 15:32:39 2022  10+ relations: 3429620
Fri Jul 22 15:32:39 2022  heaviest cycle: 28 relations
Fri Jul 22 15:33:05 2022  RelProcTime: 10305
Fri Jul 22 15:33:05 2022  elapsed time 02:51:47
Fri Jul 22 15:38:31 2022  
Fri Jul 22 15:38:31 2022  
Fri Jul 22 15:38:31 2022  Msieve v. 1.54 (SVN 1043M)
Fri Jul 22 15:38:31 2022  random seeds: a4429b51 73006522
Fri Jul 22 15:38:31 2022  factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits)
Fri Jul 22 15:38:33 2022  searching for 15-digit factors
Fri Jul 22 15:38:34 2022  commencing number field sieve (254-digit input)
Fri Jul 22 15:38:34 2022  R0: -1000000000000000000000000000000000000000000
Fri Jul 22 15:38:34 2022  R1: 1
Fri Jul 22 15:38:34 2022  A0: 1
Fri Jul 22 15:38:34 2022  A1: 0
Fri Jul 22 15:38:34 2022  A2: 0
Fri Jul 22 15:38:34 2022  A3: 0
Fri Jul 22 15:38:34 2022  A4: 0
Fri Jul 22 15:38:34 2022  A5: 0
Fri Jul 22 15:38:34 2022  A6: 40
Fri Jul 22 15:38:34 2022  skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0
Fri Jul 22 15:38:34 2022  
Fri Jul 22 15:38:34 2022  commencing linear algebra
Fri Jul 22 15:38:35 2022  read 9617096 cycles
Fri Jul 22 15:39:04 2022  cycles contain 31577303 unique relations
Fri Jul 22 15:55:26 2022  read 31577303 relations
Fri Jul 22 15:56:36 2022  using 20 quadratic characters above 4294917295
Fri Jul 22 15:59:35 2022  building initial matrix
Fri Jul 22 16:10:08 2022  memory use: 4151.3 MB
Fri Jul 22 16:10:15 2022  read 9617096 cycles
Fri Jul 22 16:10:16 2022  matrix is 9616918 x 9617096 (4499.5 MB) with weight 1300881316 (135.27/col)
Fri Jul 22 16:10:16 2022  sparse part has weight 1073726661 (111.65/col)
Fri Jul 22 16:13:23 2022  filtering completed in 2 passes
Fri Jul 22 16:13:25 2022  matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col)
Fri Jul 22 16:13:25 2022  sparse part has weight 1073717035 (111.65/col)
Fri Jul 22 16:14:04 2022  matrix starts at (0, 0)
Fri Jul 22 16:14:06 2022  matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col)
Fri Jul 22 16:14:06 2022  sparse part has weight 1073717035 (111.65/col)
Fri Jul 22 16:14:06 2022  saving the first 48 matrix rows for later
Fri Jul 22 16:14:08 2022  matrix includes 64 packed rows
Fri Jul 22 16:14:10 2022  matrix is 9616400 x 9616626 (4320.5 MB) with weight 1110257647 (115.45/col)
Fri Jul 22 16:14:10 2022  sparse part has weight 1036418020 (107.77/col)
Fri Jul 22 16:14:10 2022  using block size 8192 and superblock size 3244032 for processor cache size 33792 kB
Fri Jul 22 16:14:55 2022  commencing Lanczos iteration
Fri Jul 22 16:14:55 2022  memory use: 4129.2 MB
Fri Jul 22 16:18:50 2022  linear algebra at 0.0%, ETA 395h 5m
Fri Jul 22 16:20:08 2022  checkpointing every 30000 dimensions
Fri Jul 22 16:39:31 2022  lanczos halted after 154 iterations (dim = 9734)
Fri Jul 22 16:39:32 2022  BLanczosTime: 3658
Fri Jul 22 16:39:32 2022  elapsed time 01:01:01

Sat Jul 23 11:41:56 2022  
Sat Jul 23 11:41:56 2022  
Sat Jul 23 11:41:56 2022  Msieve v. 1.54 (SVN unknown)
Sat Jul 23 11:41:56 2022  random seeds: b03c7f87 895802fe
Sat Jul 23 11:41:56 2022  factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits)
Sat Jul 23 11:41:57 2022  no P-1/P+1/ECM available, skipping
Sat Jul 23 11:41:57 2022  commencing number field sieve (254-digit input)
Sat Jul 23 11:41:57 2022  R0: -1000000000000000000000000000000000000000000
Sat Jul 23 11:41:57 2022  R1: 1
Sat Jul 23 11:41:57 2022  A0: 1
Sat Jul 23 11:41:57 2022  A1: 0
Sat Jul 23 11:41:57 2022  A2: 0
Sat Jul 23 11:41:57 2022  A3: 0
Sat Jul 23 11:41:57 2022  A4: 0
Sat Jul 23 11:41:57 2022  A5: 0
Sat Jul 23 11:41:57 2022  A6: 40
Sat Jul 23 11:41:57 2022  skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0
Sat Jul 23 11:41:57 2022  
Sat Jul 23 11:41:57 2022  commencing linear algebra
Sat Jul 23 11:41:57 2022  using VBITS=128
Sat Jul 23 11:41:57 2022  skipping matrix build
Sat Jul 23 11:42:02 2022  matrix starts at (0, 0)
Sat Jul 23 11:42:03 2022  matrix is 9616448 x 9616626 (4499.4 MB) with weight 1300860339 (135.27/col)
Sat Jul 23 11:42:03 2022  sparse part has weight 1073717035 (111.65/col)
Sat Jul 23 11:42:03 2022  saving the first 112 matrix rows for later
Sat Jul 23 11:42:06 2022  matrix includes 128 packed rows
Sat Jul 23 11:42:09 2022  matrix is 9616336 x 9616626 (4181.7 MB) with weight 1036418020 (107.77/col)
Sat Jul 23 11:42:09 2022  sparse part has weight 980820997 (101.99/col)
Sat Jul 23 11:42:09 2022  using GPU 0 (Tesla P100-PCIE-16GB)
Sat Jul 23 11:42:09 2022  selected card has CUDA arch 6.0
Sat Jul 23 11:43:41 2022  commencing Lanczos iteration
Sat Jul 23 11:43:41 2022  memory use: 8950.4 MB
Sat Jul 23 11:43:47 2022  linear algebra at 0.0%, ETA 8h43m
Sat Jul 23 11:43:48 2022  checkpointing every 1230000 dimensions
Sat Jul 23 19:56:34 2022  lanczos halted after 75579 iterations (dim = 9616335)
Sat Jul 23 19:56:53 2022  recovered 36 nontrivial dependencies
Sat Jul 23 19:56:53 2022  BLanczosTime: 29696
Sat Jul 23 19:56:53 2022  elapsed time 08:14:57

Sat Jul 23 20:13:49 2022  
Sat Jul 23 20:13:49 2022  
Sat Jul 23 20:13:49 2022  Msieve v. 1.54 (SVN 1043M)
Sat Jul 23 20:13:49 2022  random seeds: 646f9afd fcec8792
Sat Jul 23 20:13:49 2022  factoring 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (254 digits)
Sat Jul 23 20:13:51 2022  searching for 15-digit factors
Sat Jul 23 20:13:52 2022  commencing number field sieve (254-digit input)
Sat Jul 23 20:13:52 2022  R0: -1000000000000000000000000000000000000000000
Sat Jul 23 20:13:52 2022  R1: 1
Sat Jul 23 20:13:52 2022  A0: 1
Sat Jul 23 20:13:52 2022  A1: 0
Sat Jul 23 20:13:52 2022  A2: 0
Sat Jul 23 20:13:52 2022  A3: 0
Sat Jul 23 20:13:52 2022  A4: 0
Sat Jul 23 20:13:52 2022  A5: 0
Sat Jul 23 20:13:52 2022  A6: 40
Sat Jul 23 20:13:52 2022  skew 0.54, size 1.880e-12, alpha 0.465, combined = 1.855e-13 rroots = 0
Sat Jul 23 20:13:52 2022  
Sat Jul 23 20:13:52 2022  commencing square root phase
Sat Jul 23 20:13:52 2022  reading relations for dependency 1
Sat Jul 23 20:13:53 2022  read 4807673 cycles
Sat Jul 23 20:14:06 2022  cycles contain 15784484 unique relations
Sat Jul 23 20:16:20 2022  read 15784484 relations
Sat Jul 23 20:18:15 2022  multiplying 15784484 relations
Sat Jul 23 20:36:20 2022  multiply complete, coefficients have about 483.61 million bits
Sat Jul 23 20:36:21 2022  initial square root is modulo 475969471
Sat Jul 23 20:55:55 2022  GCD is 1, no factor found
Sat Jul 23 20:55:55 2022  reading relations for dependency 2
Sat Jul 23 20:55:56 2022  read 4806401 cycles
Sat Jul 23 20:56:10 2022  cycles contain 15786944 unique relations
Sat Jul 23 20:58:18 2022  read 15786944 relations
Sat Jul 23 21:00:17 2022  multiplying 15786944 relations
Sat Jul 23 21:18:04 2022  multiply complete, coefficients have about 483.68 million bits
Sat Jul 23 21:18:06 2022  initial square root is modulo 477297781
Sat Jul 23 21:37:33 2022  GCD is N, no factor found
Sat Jul 23 21:37:33 2022  reading relations for dependency 3
Sat Jul 23 21:37:34 2022  read 4809063 cycles
Sat Jul 23 21:37:49 2022  cycles contain 15787044 unique relations
Sat Jul 23 21:39:59 2022  read 15787044 relations
Sat Jul 23 21:41:54 2022  multiplying 15787044 relations
Sat Jul 23 21:59:11 2022  multiply complete, coefficients have about 483.69 million bits
Sat Jul 23 21:59:13 2022  initial square root is modulo 477390799
Sat Jul 23 22:18:40 2022  sqrtTime: 7488
Sat Jul 23 22:18:40 2022  p64 factor: 3461508126208175522569203302199346213088686293934196840625676973
Sat Jul 23 22:18:40 2022  p191 factor: 11555656824014745965103174251426168741775970940225354060255626124188570583251500739239916948855700054108076590550861508217304724337729965415252719798975549997145212012347662797114164696224037
Sat Jul 23 22:18:40 2022  elapsed time 02:04:51

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e62000Dmitry DomanovMarch 12, 2019 23:41:39 UTC 2019 年 3 月 13 日 (水) 8 時 41 分 39 秒 (日本時間)
5043e62000Dmitry DomanovMarch 21, 2019 14:10:02 UTC 2019 年 3 月 21 日 (木) 23 時 10 分 2 秒 (日本時間)
5511e79000 / 16908yoyo@HomeFebruary 19, 2020 20:32:34 UTC 2020 年 2 月 20 日 (木) 5 時 32 分 34 秒 (日本時間)

4×10254+1

c226

composite cofactor 合成数の残り
7466728841485330116984362247807564055023379096637179913082368836295817176172476677041898711213023371963056286003054821025139078482163020837938497429137548907465615316057420651494358127038086352740157428245984413332304773796853<226>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e64000ebinaOctober 2, 2024 20:20:01 UTC 2024 年 10 月 3 日 (木) 5 時 20 分 1 秒 (日本時間)

4×10255+1

c200

name 名前ebina
date 日付October 3, 2024 04:16:49 UTC 2024 年 10 月 3 日 (木) 13 時 16 分 49 秒 (日本時間)
composite number 合成数
20538297635356765652238220182543936034577038799560625017387112066600521600882087601795534974873462854867943848322502036209998347369601234466062167208720013993884935951189052517259867725801951568462813<200>
prime factors 素因数
1010259459145746627539912920221283077402823464041<49>
20329725645650972024774590356021356682512473498087653567759079662474958078834432782959879933634853831470394064812300389830718548206402200900543089227093<152>
factorization results 素因数分解の結果
Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:2761625 11e6      
GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM]
Input number is 20538297635356765652238220182543936034577038799560625017387112066600521600882087601795534974873462854867943848322502036209998347369601234466062167208720013993884935951189052517259867725801951568462813 (200 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2761625
Step 1 took 22656ms
Step 2 took 8782ms
********** Factor found in step 2: 1010259459145746627539912920221283077402823464041
Found prime factor of 49 digits: 1010259459145746627539912920221283077402823464041
Prime cofactor 20329725645650972024774590356021356682512473498087653567759079662474958078834432782959879933634853831470394064812300389830718548206402200900543089227093 has 152 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e63485 / 3844ebinaOctober 3, 2024 04:15:32 UTC 2024 年 10 月 3 日 (木) 13 時 15 分 32 秒 (日本時間)

4×10257+1

c218

composite cofactor 合成数の残り
36264910333774066742885924834337095350499210417844182233379270797957539981698262682595152756504796676576346470134447930646971316977327675074019033861202447253032690208938150379348632163522220810399149402609962232119677<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10258+1

c229

composite cofactor 合成数の残り
1881792610048936211778560849374308188440394585353865981060170928658490962932711290162010901371451294789909399077374198872533427266598503830447227210191574274708627532392161408569868918740101605690938045548988994147766449450025481<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10261+1

c224

composite cofactor 合成数の残り
40183328948972108128642045951367163089457837040801098562482396955496611432071442825034714169444597192873970262777510366317183675706791607969254805304710150153521812300145319159931912433629573383048445714461437097196506949527<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10265+1

c151

name 名前Mehrshad Alipour
date 日付June 23, 2024 03:52:03 UTC 2024 年 6 月 23 日 (日) 12 時 52 分 3 秒 (日本時間)
composite number 合成数
4128109672535034952586344929366336911092207999595657729039803975618608045667873033780843205420508762689611736294110869837975384821029902852304577673047<151>
prime factors 素因数
2226788277197784608398983558507614353204405686240848249<55>
1853840221275951099497815396903928608916529441247451874200114504374083891976840839551378833146703<97>
factorization results 素因数分解の結果
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.89067e+06/254833 [2d 22:47:13]
2226788277197784608398983558507614353204405686240848249 1853840221275951099497815396903928608916529441247451874200114504374083891976840839551378833146703
software ソフトウェア
cado-nfs
execution environment 実行環境
ubuntu

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e650001000Dmitry DomanovApril 28, 2019 22:57:52 UTC 2019 年 4 月 29 日 (月) 7 時 57 分 52 秒 (日本時間)
4000Robert BalfourApril 12, 2020 11:27:45 UTC 2020 年 4 月 12 日 (日) 20 時 27 分 45 秒 (日本時間)
5043e66454Ignacio SantosJanuary 12, 2024 15:20:34 UTC 2024 年 1 月 13 日 (土) 0 時 20 分 34 秒 (日本時間)

4×10266+1

c261

composite cofactor 合成数の残り
422031299951360892680605657118560198017085937178530845740174320028444909616721724166672821289790957346351592165832979002887749169917186908167044208833748154931910525144097311977142784794634294052418397610458779675394625642410769394712158827259423695158351419133<261>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10267+1

c264

composite cofactor 合成数の残り
117740558678950931622170547199246460424454714037618108497924822653283489830159244105613281135018985665086980837724075000735878491743443322638565919995290377652841962735113178112030141583021811438495275660083007093868660406793630235775468754599240573396520766491037<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10269+1

c218

composite cofactor 合成数の残り
16574259028808339503068451099871401604563230231839929782385029261365562321881910022253382052755329137951863469510745887712484397688660811982712641330141031752083545824134455258302540738055502765760561678448729733819983<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10271+1

c198

composite cofactor 合成数の残り
279677017327787744394644704056047045735121471323422340148759796517143739396402030389817713433414433069137467277612893793134280386172641789401522248897574460413210846591946014472058873731698029732449<198>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10274+1

c209

composite cofactor 合成数の残り
13606417465634688667549332261596475546978742902713155780329346404934902645990546406812687107259324943527716622610970572684449567201278860646559719550283852521557938579469839008246155610400020288919531230000853<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10275+1

c214

composite cofactor 合成数の残り
2462738249623729529748167328626922839102801659363945760480812120380760632389672140446215177796223813370146637311704472051633807172510779591705589996803280506932170652032930969419742054936783902516708521393449577997<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10278+1

c203

composite cofactor 合成数の残り
17763419274212574169838493142338316955144535174758435121926889697125158328538126254507187490217543416269077745788072798632472135676277734189368059913722934154198196182838884045155777049496534067820655561<203>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10279+1

c264

composite cofactor 合成数の残り
164259369535554655124966328110762456538337380334388604378014410089089345077296833936665725122874028348781558534292732492281437836702364831538793045692915277678852184096999759181237622941617837947029929313431651802149847771300146536121344202657752377545922402983237<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10282+1

c150

name 名前Bob Backstrom
date 日付May 12, 2024 06:22:42 UTC 2024 年 5 月 12 日 (日) 15 時 22 分 42 秒 (日本時間)
composite number 合成数
269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677<150>
prime factors 素因数
1840271589106846161743879329820665646440628465178992792290360481<64>
146663019552304909974862057415193108188039856182488527563273360713042623103151059845517<87>
factorization results 素因数分解の結果
CADO:

STA:Fri May 3 01:44:04 PM AEST 2024 (269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 - C150)

/home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 2>&1 | tee -a log-09 

/home/bob/Downloads/Math/cado-nfs/cado-nfs.py:93: DeprecationWarning: 'locale.getdefaultlocale' is deprecated and slated for removal in Python 3.15. Use setlocale(), getencoding() and getlocale() instead.
  loc = locale.getdefaultlocale()[1]
Debug:root: Looking for parameter file for c150 in directory /home/bob/Downloads/Math/cado-nfs/parameters/factor
Info:root: Using default parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c150
Debug:Parameters: Reading parameter file /home/bob/Downloads/Math/cado-nfs/parameters/factor/params.c150
Info:root: No database exists yet
Info:root: Created temporary directory /tmp/cado.dzjjvlr3
Info:Database: Opened connection to database /tmp/cado.dzjjvlr3/c150.db
Info:root: Set tasks.threads=20 based on --server-threads 20
Info:root: tasks.threads = 20 [via tasks.threads]
Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads]
Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads]
Info:root: tasks.linalg.bwc.threads = 20 [via tasks.threads]
Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads]
Info:root: slaves.scriptpath is /home/bob/Downloads/Math/cado-nfs/build/VM9
Info:root: Command line parameters: /home/bob/Downloads/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677
Debug:root: Root parameter dictionary:
N = 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677
name = c150
===
Info:Polynomial Selection (root optimized): Best polynomial is:
n: 269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677
skew: 694874.094
c0: -11976885713462797805140201052874560
c1: -59765730649923220945831089466
c2: 44105933309466877342937
c3: 138698159603608079
c4: 95452118422
c5: -110880
Y0: -86653973746535317833895777603
Y1: 359469680145447602713
# MurphyE (Bf=2.147e+09,Bg=2.147e+09,area=4.027e+14) = 6.763e-07
# f(x) = -110880*x^5+95452118422*x^4+138698159603608079*x^3+44105933309466877342937*x^2-59765730649923220945831089466*x-11976885713462797805140201052874560
# g(x) = 359469680145447602713*x-86653973746535317833895777603
===
Info:Square Root: finished
Info:Square Root: Factors: 146663019552304909974862057415193108188039856182488527563273360713042623103151059845517 1840271589106846161743879329820665646440628465178992792290360481
Debug:Square Root: Exit SqrtTask.run(sqrt)
Info:Complete Factorization / Discrete logarithm: Square Root
Info:Square Root: Total cpu/real time for sqrt: 4016.22/442.727
Info:HTTP server: Got notification to stop serving Workunits
Info:Filtering - Merging: Total cpu/real time for merge: 423.97/58.7959
Info:Filtering - Merging: Total cpu/real time for replay: 63.99/57.5796
Info:Generate Free Relations: Total cpu/real time for freerel: 917.58/105.19
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 161982
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 112322/45.290/56.105/67.930/2.522
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 95623/42.810/48.670/60.300/1.429
Info:Polynomial Selection (size optimized): Total time: 78949.3
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 2269.68/1486.69
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 1289.1s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 1052.78/814.054
Info:Generate Factor Base: Total cpu/real time for makefb: 10.24/1.59598
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 163080062
Info:Lattice Sieving: Average J: 7825.58 for 743918 special-q, max bucket fill -bkmult 1.0,1s:1.130300
Info:Lattice Sieving: Total time: 1.65289e+06s
Info:Linear Algebra: Total cpu/real time for bwc: 134453/15826.3
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 83261.06, WCT time 9737.77, iteration CPU time 0.06, COMM 0.01, cpu-wait 0.02, comm-wait 0.0 (100000 iterations)
Info:Linear Algebra: Lingen CPU time 134.3, WCT time 135.91
Info:Linear Algebra: Mksol: CPU time 43884.9,  WCT time 5158.05, iteration CPU time 0.07, COMM 0.01, cpu-wait 0.02, comm-wait 0.0 (52000 iterations)
Info:Quadratic Characters: Total cpu/real time for characters: 99.32/25.2008
Info:Square Root: Total cpu/real time for sqrt: 4016.22/442.727
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 756.82/668.7
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 668.5s
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 6310.77
Info:Polynomial Selection (root optimized): Rootsieve time: 6310.17
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.79966e+06/196203 [2d 06:30:03]
Info:root: Cleaning up computation data in /tmp/cado.dzjjvlr3
146663019552304909974862057415193108188039856182488527563273360713042623103151059845517 1840271589106846161743879329820665646440628465178992792290360481

END:Sun May 5 08:14:08 PM AEST 2024 (269899788054728606000872655481575029871760618690743422264687864265038524440282868429951990577681503059457743412818278047197564058645830865868101813677 - C150)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
4511e650001000Dmitry DomanovApril 29, 2019 04:44:33 UTC 2019 年 4 月 29 日 (月) 13 時 44 分 33 秒 (日本時間)
4000Robert BalfourApril 12, 2020 11:27:34 UTC 2020 年 4 月 12 日 (日) 20 時 27 分 34 秒 (日本時間)
5043e66454Ignacio SantosDecember 7, 2023 08:34:20 UTC 2023 年 12 月 7 日 (木) 17 時 34 分 20 秒 (日本時間)

4×10283+1

c281

composite cofactor 合成数の残り
51746442432082794307891332470892626131953428201811125485122897800776196636481241914618369987063389391979301423027166882276843467011642949547218628719275549805950840879689521345407503234152652005174644243208279430789133247089262613195342820181112548512289780077619663648124191461837<281>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10284+1

c136

name 名前Erik Branger
date 日付March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
composite number 合成数
3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333<136>
prime factors 素因数
4132595417977996777449857169255008317144899432636201910123386508141<67>
774208286515906125959068168479724621487305659143982683250058150798513<69>
factorization results 素因数分解の結果
Number: 40001_284
N = 3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333 (136 digits)
SNFS difficulty: 143 digits.
Divisors found:
r1=4132595417977996777449857169255008317144899432636201910123386508141 (pp67)
r2=774208286515906125959068168479724621487305659143982683250058150798513 (pp69)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 6.36 hours.
Factorization parameters were as follows:
n: 3199489617416229763028201741258234486434723932838233644968954552369806000546792775616433666501519677581032273731694320122054129925194333
m: 100000000000000000000000000000000000
deg: 4
c4: 200
c2: 20
c0: 1
skew: 1.00
type: snfs
lss: 1
rlim: 1830000
alim: 1830000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1830000/1830000
Large primes per side: 3
Large prime bits: 26/26
Sieved rational special-q in [0, 0)
Total raw relations: 5289059
Relations: 308402 relations
Pruned matrix : 218028 x 218253
Polynomial selection time: 0.00 hours.
Total sieving time: 6.30 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.01 hours.
time per square root: 0.02 hours.
Prototype def-par.txt line would be: snfs,143,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000
total time: 6.36 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz

4×10285+1

c246

composite cofactor 合成数の残り
704614379948494812027446383843039780948014414557892751098695471426612268652074620711407471026057218082430931345744692465286573876751870294678130116897853322618827616949896573798301616584098199881960344035605507134097664069602871941750044472168131<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10286+1

c259

composite cofactor 合成数の残り
1425377437382621879305881390086756267584009864371504172063418337715271471432367376756595541546445135577723564668218504397395230982700631791914133299267013106042483046184519626581979926754868805387027518335743066620835703194913852951295297296159865024537312757<259>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10287+1

c265

composite cofactor 合成数の残り
1301761993056211582996867096099088523695235942689119275028543525723482807181421611605045798675333039288340382274545046258365559021396933887963309035894035920263158437022580007471516641032852456854443495500894696042403697194694545705069263880222429522876081138602041<265>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10288+1

c119

name 名前Erik Branger
date 日付March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
composite number 合成数
96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561<119>
prime factors 素因数
10207457384959441989237717990428744617<38>
9407401310817350002993634519379334667282511144625585322436433701410667609178583633<82>
factorization results 素因数分解の結果
Number: 40001_288
N = 96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561 (119 digits)
SNFS difficulty: 145 digits.
Divisors found:
r1=10207457384959441989237717990428744617 (pp38)
r2=9407401310817350002993634519379334667282511144625585322436433701410667609178583633 (pp82)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 6.55 hours.
Factorization parameters were as follows:
n: 96025647983379694190577910817181487775982242960674834702433023529230244697151461825832005351817613533095235194333053561
m: 1000000000000000000000000000000000000
deg: 4
c4: 2
c2: -2
c0: 1
skew: 1.00
type: snfs
lss: 1
rlim: 1830000
alim: 1830000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1830000/1830000
Large primes per side: 3
Large prime bits: 26/26
Sieved rational special-q in [0, 0)
Total raw relations: 5078940
Relations: 303200 relations
Pruned matrix : 209039 x 209265
Polynomial selection time: 0.00 hours.
Total sieving time: 6.49 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.02 hours.
time per square root: 0.01 hours.
Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000
total time: 6.55 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz

4×10289+1

c281

composite cofactor 合成数の残り
26298483358772393213642444225251114832321668920899243581259640009042233831730070731039895240412316063911991746741707819788083283949000300597581949524178220406207044570924034273948141385556463603468722354767199286847721700486574341865381628445863400737264437244254275961960897996139<281>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10290+1

c260

composite cofactor 合成数の残り
45492477510506455539754565259717139989257193597263860980416707653912565470148907541858180539760335453591566221728892352199856638664830790858574074624226113596782665550153140364805106121096602444427298876862593240165337011653729152221982499328774962273965236401<260>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10291+1

c264

composite cofactor 合成数の残り
366612892628810219783149043538657886788360105866128804663771988384986986299805157269985584632436691436396971709590063055738175508390657269556418407425935113107414348158332279497437057010638715964264478577387852136711386318193095172379474417957872690837379758188899<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10293+1

c276

composite cofactor 合成数の残り
281093716696348505238023724718722466640598795377087970236962313417790593371243467181354449864550894581311254266586444130889236064647917418779959091378658051665500627917706140019154475617767355729413071690839318990001269841190120027627305387553158575962554014782093208226730211<276>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10294+1

c253

composite cofactor 合成数の残り
1649408503008445059736945534726388599840251956186358805152902050048600066984901299056970106704782038236283617077735287829377270118390244493120488742982162579391234550102842435980261250113589514802948363337564759003618144443289066633304536818982756421689<253>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10295+1

c255

composite cofactor 合成数の残り
144972896794635063476587324438000561472413049324255211909049170559537467408378462401566128538063833151652194485466528237194192093803401046529206817021615969499989960780450865822910891095505283090127794731988461728685192138264679238736194607128583824727903<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10296+1

c147

name 名前Erik Branger
date 日付March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
composite number 合成数
487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561<147>
prime factors 素因数
1695502704314699670140875957239256050263283775495561<52>
287705160721607300148523107064786015650118069448204602830522292834862744860460363438654328682001<96>
factorization results 素因数分解の結果
Number: 40001_296_part2
N = 487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561 (147 digits)
SNFS difficulty: 149 digits.
Divisors found:
r1=1695502704314699670140875957239256050263283775495561 (pp52)
r2=287705160721607300148523107064786015650118069448204602830522292834862744860460363438654328682001 (pp96)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 9.05 hours.
Factorization parameters were as follows:
n: 487804878048780487804878048780487804878048780487804878048780487804878048775609756097560975609756097560975609756097560975609756097560975609756097561
m: 10000000000000000000000000000000000000
deg: 4
c4: 2
c2: -2
c0: 1
skew: 1.00
type: snfs
lss: 1
rlim: 1830000
alim: 1830000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1830000/1830000
Large primes per side: 3
Large prime bits: 26/26
Sieved rational special-q in [0, 0)
Total raw relations: 5170295
Relations: 358940 relations
Pruned matrix : 243487 x 243712
Polynomial selection time: 0.00 hours.
Total sieving time: 8.99 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.02 hours.
time per square root: 0.00 hours.
Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000
total time: 9.05 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz

c129

name 名前Erik Branger
date 日付March 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)
composite number 合成数
205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657<129>
prime factors 素因数
1938182199627468010237847883805414752917615172119009<52>
106212692004607024538255608482366521391196698270737751314649713434169857095073<78>
factorization results 素因数分解の結果
Number: 40001_296_part1
N = 205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657 (129 digits)
SNFS difficulty: 149 digits.
Divisors found:
r1=1938182199627468010237847883805414752917615172119009 (pp52)
r2=106212692004607024538255608482366521391196698270737751314649713434169857095073 (pp78)
Version: Msieve v. 1.52 (SVN unknown)
Total time: 11.80 hours.
Factorization parameters were as follows:
n: 205859549017844027464539359418048688800698273335250157216113776408300109822270736411737121503646378517414292558493951770583542657
m: 10000000000000000000000000000000000000
deg: 4
c4: 2
c2: 2
c0: 1
skew: 1.00
type: snfs
lss: 1
rlim: 1830000
alim: 1830000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1830000/1830000
Large primes per side: 3
Large prime bits: 26/26
Sieved rational special-q in [0, 0)
Total raw relations: 5086700
Relations: 382144 relations
Pruned matrix : 256808 x 257033
Polynomial selection time: 0.00 hours.
Total sieving time: 11.72 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.03 hours.
time per square root: 0.01 hours.
Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000
total time: 11.80 hours.
Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
Windows-10-10.0.17134-SP0
processors: 12, speed: 3.19GHz

4×10297+1

c290

composite cofactor 合成数の残り
67995268141294779155023822737151898862206280202754410117845489014573986781685875698224284873791347986302285237668025444441295885778012822309682646874921327349908392525055788842598654717019587889859156811418336586538606191856502514133538932892121104400223684033604417434986281869658408601687<290>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)

4×10299+1

c240

composite cofactor 合成数の残り
968274197454224509976186833586434206705553758604611371080659121145842739685506803350889153564264928339855058793395096193675077025512908201717498909233237741011238368159142021039273036303189781058779808196209956812989201250100637772973814899<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
403e62880Erik BrangerMarch 6, 2019 00:00:00 UTC 2019 年 3 月 6 日 (水) 9 時 0 分 0 秒 (日本時間)