Table of contents 目次

  1. About 11...1151 11...1151 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 11...1151 11...1151 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 11...1151 11...1151 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 11...1151 11...1151 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

1w51 = { 51, 151, 1151, 11151, 111151, 1111151, 11111151, 111111151, 1111111151, 11111111151, … }

1.3. General term 一般項

10n+3599 (2≤n)

2. Prime numbers of the form 11...1151 11...1151 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 103+3599 = 151 is prime. は素数です。
  2. 104+3599 = 1151 is prime. は素数です。
  3. 107+3599 = 1111151 is prime. は素数です。
  4. 1060+3599 = (1)5851<60> is prime. は素数です。
  5. 10394+3599 = (1)39251<394> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 16, 2004 2004 年 8 月 16 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / April 10, 2010 2010 年 4 月 10 日)
  6. 10552+3599 = (1)55051<552> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / April 10, 2010 2010 年 4 月 10 日)
  7. 101164+3599 = (1)116251<1164> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / September 4, 2010 2010 年 9 月 4 日)
  8. 101494+3599 = (1)149251<1494> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / September 4, 2010 2010 年 9 月 4 日)
  9. 105398+3599 = (1)539651<5398> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 20, 2004 2004 年 12 月 20 日)
  10. 107899+3599 = (1)789751<7899> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / June 4, 2005 2005 年 6 月 4 日)
  11. 1011254+3599 = (1)1125251<11254> is PRP. はおそらく素数です。 (Paul Bourdelais / August 2007 2007 年 8 月)
  12. 1013224+3599 = (1)1322251<13224> is PRP. はおそらく素数です。 (Paul Bourdelais / August 2007 2007 年 8 月)
  13. 1077637+3599 = (1)7763551<77637> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  14. 10118324+3599 = (1)11832251<118324> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  15. 10120574+3599 = (1)12057251<120574> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  16. 10142425+3599 = (1)14242351<142425> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  17. 10142699+3599 = (1)14269751<142699> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  18. 10157792+3599 = (1)15779051<157792> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  19. 10188164+3599 = (1)18816251<188164> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤30000 / Completed 終了 / Ray Chandler / July 11, 2011 2011 年 7 月 11 日
  4. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  5. n≤250000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 103k+2+3599 = 3×(102+3599×3+102×103-19×3×k-1Σm=0103m)
  2. 105k+1+3599 = 41×(101+3599×41+10×105-19×41×k-1Σm=0105m)
  3. 106k+5+3599 = 7×(105+3599×7+105×106-19×7×k-1Σm=0106m)
  4. 1016k+2+3599 = 17×(102+3599×17+102×1016-19×17×k-1Σm=01016m)
  5. 1018k+17+3599 = 19×(1017+3599×19+1017×1018-19×19×k-1Σm=01018m)
  6. 1022k+18+3599 = 23×(1018+3599×23+1018×1022-19×23×k-1Σm=01022m)
  7. 1028k+9+3599 = 29×(109+3599×29+109×1028-19×29×k-1Σm=01028m)
  8. 1032k+19+3599 = 641×(1019+3599×641+1019×1032-19×641×k-1Σm=01032m)
  9. 1032k+29+3599 = 353×(1029+3599×353+1029×1032-19×353×k-1Σm=01032m)
  10. 1043k+14+3599 = 173×(1014+3599×173+1014×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 20.01%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 20.01% です。

3. Factor table of 11...1151 11...1151 の素因数分解表

3.1. Last updated 最終更新日

June 30, 2020 2020 年 6 月 30 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=201, 203, 204, 205, 207, 213, 215, 216, 217, 223, 226, 230, 231, 234, 236, 237, 238, 241, 242, 246, 249, 250, 251, 252, 254, 256, 257, 260, 263, 264, 266, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 281, 282, 285, 287, 289, 294, 295, 297, 298, 300 (52/300)

3.4. Factor table 素因数分解表

102+3599 = 51 = 3 × 17
103+3599 = 151 = definitely prime number 素数
104+3599 = 1151 = definitely prime number 素数
105+3599 = 11151 = 33 × 7 × 59
106+3599 = 111151 = 41 × 2711
107+3599 = 1111151 = definitely prime number 素数
108+3599 = 11111151 = 3 × 947 × 3911
109+3599 = 111111151 = 29 × 1153 × 3323
1010+3599 = 1111111151<10> = 467 × 2379253
1011+3599 = 11111111151<11> = 3 × 7 × 41 × 1499 × 8609
1012+3599 = 111111111151<12> = 131 × 433 × 1958837
1013+3599 = 1111111111151<13> = 439 × 23321 × 108529
1014+3599 = 11111111111151<14> = 32 × 173 × 7136230643<10>
1015+3599 = 111111111111151<15> = 18503 × 6005032217<10>
1016+3599 = 1111111111111151<16> = 41 × 107 × 541 × 12611 × 37123
1017+3599 = 11111111111111151<17> = 3 × 7 × 19 × 27847396268449<14>
1018+3599 = 111111111111111151<18> = 17 × 23 × 769 × 369533991769<12>
1019+3599 = 1111111111111111151<19> = 641 × 1733402669440111<16>
1020+3599 = 11111111111111111151<20> = 3 × 34878047 × 106190111611<12>
1021+3599 = 111111111111111111151<21> = 41 × 2710027100271002711<19>
1022+3599 = 1111111111111111111151<22> = 39541 × 91807 × 306079360973<12>
1023+3599 = 11111111111111111111151<23> = 32 × 7 × 61 × 421 × 4241 × 33829 × 47868253
1024+3599 = 111111111111111111111151<24> = 283 × 994471 × 394801625363707<15>
1025+3599 = 1111111111111111111111151<25> = 751 × 4177 × 354203687593339313<18>
1026+3599 = 11111111111111111111111151<26> = 3 × 41 × 29415767 × 3070946158762411<16>
1027+3599 = 111111111111111111111111151<27> = 1049 × 105920982946721745577799<24>
1028+3599 = 1111111111111111111111111151<28> = 5107 × 11475370327<11> × 18959414566259<14>
1029+3599 = 11111111111111111111111111151<29> = 3 × 72 × 353 × 787 × 1999 × 136106204708129497<18>
1030+3599 = 111111111111111111111111111151<30> = 509 × 631 × 67231187 × 5145642028519087<16>
1031+3599 = 1111111111111111111111111111151<31> = 41 × 202068203 × 134114475213648666437<21>
1032+3599 = 11111111111111111111111111111151<32> = 35 × 3631 × 12592877191617123139575547<26>
1033+3599 = 111111111111111111111111111111151<33> = 23357 × 1494106311857<13> × 3183896410949899<16>
1034+3599 = 1111111111111111111111111111111151<34> = 17 × 10333 × 6325314731847769915411566091<28>
1035+3599 = 11111111111111111111111111111111151<35> = 3 × 7 × 19 × 307187 × 2974561 × 30476064406884301307<20>
1036+3599 = 111111111111111111111111111111111151<36> = 41 × 233 × 809 × 6821959 × 2107463619336411271457<22>
1037+3599 = 1111111111111111111111111111111111151<37> = 29 × 673 × 376857991 × 151065989541953535405133<24>
1038+3599 = 11111111111111111111111111111111111151<38> = 3 × 13523 × 58663933 × 190927685371<12> × 24452490802153<14>
1039+3599 = 111111111111111111111111111111111111151<39> = 329483529492328531<18> × 337228119664470652021<21>
1040+3599 = 1111111111111111111111111111111111111151<40> = 23 × 3098749 × 2541655453<10> × 24267919447<11> × 252751669543<12>
1041+3599 = 11111111111111111111111111111111111111151<41> = 32 × 7 × 41 × 4301630317890480492106508366670968297<37>
1042+3599 = 111111111111111111111111111111111111111151<42> = 47 × 345221 × 15381935712958937<17> × 445196185357039829<18>
1043+3599 = 1111111111111111111111111111111111111111151<43> = 691 × 1823 × 154544282281<12> × 5707419997160616414908947<25>
1044+3599 = 11111111111111111111111111111111111111111151<44> = 3 × 121711 × 27861637 × 5292234469<10> × 206376716493866053699<21>
1045+3599 = 111111111111111111111111111111111111111111151<45> = 269 × 413052457662123089632383312680710450227179<42>
1046+3599 = 1111111111111111111111111111111111111111111151<46> = 41 × 27100271002710027100271002710027100271002711<44>
1047+3599 = 11111111111111111111111111111111111111111111151<47> = 3 × 7 × 97 × 5454644629902361861124747722685867015763923<43>
1048+3599 = 111111111111111111111111111111111111111111111151<48> = 199679 × 262501 × 25709642587753<14> × 82451411754097307253173<23>
1049+3599 = 1111111111111111111111111111111111111111111111151<49> = 224201 × 857550905050978704263<21> × 5779097686649210664977<22>
1050+3599 = 11111111111111111111111111111111111111111111111151<50> = 32 × 17 × 4003 × 11731 × 2028273867611<13> × 762463116019069766082457229<27>
1051+3599 = 111111111111111111111111111111111111111111111111151<51> = 412 × 641 × 883 × 4255916521<10> × 382895169689<12> × 71663506697116840453<20>
1052+3599 = (1)5051<52> = 839 × 17423039 × 5927860327<10> × 35825516034029<14> × 357916074885573157<18>
1053+3599 = (1)5151<53> = 3 × 7 × 19 × 53171 × 84799411 × 1630367933<10> × 797164358659<12> × 4752076604728207<16>
1054+3599 = (1)5251<54> = 1901692757<10> × 58427477678567564271956214381854066824481843<44>
1055+3599 = (1)5351<55> = 1997 × 584203 × 938393 × 335600320093<12> × 3024186128372097683746786589<28>
1056+3599 = (1)5451<56> = 3 × 41 × 191 × 2269 × 208441656553963367708718409752411478721109467903<48>
1057+3599 = (1)5551<57> = 173 × 857 × 3319 × 10369443961181<14> × 6195935519561009<16> × 3514479016977612841<19>
1058+3599 = (1)5651<58> = 4433855711389854623<19> × 250597038657989539858570326198782498737<39>
1059+3599 = (1)5751<59> = 33 × 7 × 349 × 4789 × 1635119 × 131699008619982691<18> × 163340376223446851806614311<27>
1060+3599 = (1)5851<60> = definitely prime number 素数
1061+3599 = (1)5951<61> = 41 × 353 × 6322490858997427<16> × 12142572867058196883859647942854559897581<41>
1062+3599 = (1)6051<62> = 3 × 23 × 851505209 × 189112872253967043972226328126018530460395967987131<51>
1063+3599 = (1)6151<63> = 59 × 13679 × 293989 × 14518196570329898793859<23> × 32255767207289679901442902141<29>
1064+3599 = (1)6251<64> = 523 × 1123 × 786697004764809349<18> × 2404742333100180163083065669260471773731<40>
1065+3599 = (1)6351<65> = 3 × 7 × 29 × 1733 × 3491 × 337853267 × 8926139370933447428242411556289174137327047739<46>
1066+3599 = (1)6451<66> = 17 × 41 × 479 × 1931 × 25118749 × 6026303335226639<16> × 1138565266251264487612515737031497<34>
1067+3599 = (1)6551<67> = 811 × 2089 × 5640957794543<13> × 42172366082969809<17> × 2756876923878137546258699488987<31>
1068+3599 = (1)6651<68> = 32 × 181 × 1187 × 183047 × 584847751 × 251821088139487<15> × 213151381290868721426688009005383<33>
1069+3599 = (1)6751<69> = 107 × 199379 × 16105905667801752857<20> × 242190381708246261443<21> × 1335218240571733462717<22>
1070+3599 = (1)6851<70> = 229 × 225749 × 1225663007<10> × 17535780256099968851093066026252362027460485216451433<53>
1071+3599 = (1)6951<71> = 3 × 72 × 19 × 41 × 967 × 100340491510612945053840846428477384445760249445819716238113481<63>
1072+3599 = (1)7051<72> = 2345549317<10> × 7575783343<10> × 6252956045372720980612524031795932374940440864615821<52>
1073+3599 = (1)7151<73> = 41351 × 995009 × 27005017614268065988862859481275921309177325018043464427976089<62>
1074+3599 = (1)7251<74> = 3 × 379 × 2383 × 3413 × 36953935131843703109<20> × 32514419383127617126996538194061266103643593<44>
1075+3599 = (1)7351<75> = 14804591221589857317823<23> × 7505179268244526844147411847618389301655382410857937<52>
1076+3599 = (1)7451<76> = 41 × 11579 × 249383 × 1089611 × 539375826551<12> × 15968818226080247284581249431167466336725636543<47>
1077+3599 = (1)7551<77> = 32 × 7 × 3079 × 189439 × 16536497 × 928280546719484008703<21> × 19697680729786906416693042288621137687<38>
1078+3599 = (1)7651<78> = 151 × 517261 × 8827909 × 42210141899921<14> × 95535172979192239<17> × 39960678541679157820973241961271<32>
1079+3599 = (1)7751<79> = 167 × 983 × 27320784977939<14> × 1099462436525678009<19> × 225327361936646386518719886629451016346141<42>
1080+3599 = (1)7851<80> = 3 × 149 × 659 × 683 × 1877 × 58537 × 35505632537365822379<20> × 14156368569647836339442332382812493468079359<44>
1081+3599 = (1)7951<81> = 41 × 3931 × 665573 × 1030031 × 367654169 × 129807472567<12> × 21071012740025319449938726203462913123239169<44>
1082+3599 = (1)8051<82> = 17 × 9365533 × 6978724769234490608911175948907622619531770570886393703073192204494495691<73>
1083+3599 = (1)8151<83> = 3 × 7 × 61 × 499 × 641 × 2876443 × 18666642523375823<17> × 505042356471599961515029865758848162936302892080321<51>
1084+3599 = (1)8251<84> = 23 × 193 × 110243527 × 305826924088551109<18> × 742409515638439169191925061463129804857897405747479363<54>
1085+3599 = (1)8351<85> = 2137 × 2364149 × 706968161818727<15> × 311084425157407101497808865796500643104613845521825903379901<60>
1086+3599 = (1)8451<86> = 33 × 41 × 5333 × 81749 × 1861816993<10> × 314311732496965655511581<24> × 39342164943468970767250078732078803922913<41>
1087+3599 = (1)8551<87> = 109 × 231197 × 6317831123<10> × 172168719376243229<18> × 29289741718943783598511<23> × 138392002698629578073930080751<30>
1088+3599 = (1)8651<88> = 472 × 4899217 × 152990535287010974408249<24> × 671074187964140248045497730259420497143440620806652183<54>
1089+3599 = (1)8751<89> = 3 × 7 × 19 × 179 × 1483 × 2273 × 9043 × 176433401 × 118287487908183083782720017803<30> × 244545024863863926852931263017658121<36> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=366716844 for P30 x P36 / November 29, 2014 2014 年 11 月 29 日)
1090+3599 = (1)8851<90> = 3632191799<10> × 3674871341<10> × 85824123553106217500655600583<29> × 96992287314449604895019062429716692775883<41> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P29 x P41 / November 30, 2014 2014 年 11 月 30 日)
1091+3599 = (1)8951<91> = 41 × 1252176503<10> × 1804870403189917076722063189<28> × 11991183817914112109519089260253973822795653757349533<53>
1092+3599 = (1)9051<92> = 3 × 3408761533<10> × 39647280350267<14> × 1812248012881058297747<22> × 8703229758661949205869<22> × 1737513280758418220906029<25>
1093+3599 = (1)9151<93> = 29 × 353 × 3044361804778665198761<22> × 3565237966588231946358989886691406355437103386532644288195585145443<67>
1094+3599 = (1)9251<94> = 25693 × 2670373 × 16194619385165667460887888613044966843660903604104574958366047247298782512049777759<83>
1095+3599 = (1)9351<95> = 32 × 7 × 1237 × 751588225807871070173994293074489<33> × 189699974951973377972590660470088721724127997266643903989<57> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=992242919 for P33 x P57 / November 29, 2014 2014 年 11 月 29 日)
1096+3599 = (1)9451<96> = 41 × 18832939 × 178712479884869828827<21> × 805194227645598084065877966810320637769404305379552044417135520287<66>
1097+3599 = (1)9551<97> = 26796661 × 1421217383615521<16> × 29175364967779879758004188852504799885548957982712387326588189272194141171<74>
1098+3599 = (1)9651<98> = 3 × 17 × 106781 × 172603 × 11181537793<11> × 4843280914955047<16> × 24342324651384419<17> × 8966888000592360835592365848465582739920143<43>
1099+3599 = (1)9751<99> = 104505211 × 1063211203038584469353505358800826794284077481180446696683011444387314916871572185152672541<91>
10100+3599 = (1)9851<100> = 173 × 1609 × 819799 × 78694367 × 4087938391372618039<19> × 15135611465145671800317320361090539306640277308651780132176189<62>
10101+3599 = (1)9951<101> = 3 × 7 × 41 × 1873 × 138518041 × 19606354903<11> × 492417161429756043938851<24> × 5152051324901572451501068122115191917232801995902279<52>
10102+3599 = (1)10051<102> = 4528831 × 393254584667203817<18> × 62387499797931169266661898334145970666979035929463862852596395547126278630313<77>
10103+3599 = (1)10151<103> = 8524078940940457<16> × 59884721201097629<17> × 38642303426069169191<20> × 56328863533476853156787962549154398494451874365637<50>
10104+3599 = (1)10251<104> = 32 × 47219919823<11> × 65820496092202880413823242973134865615677<41> × 397217692797263738933400347524783857005701526845709<51> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P51 / November 30, 2014 2014 年 11 月 30 日)
10105+3599 = (1)10351<105> = 8741701375859<13> × 462101115465481872034891<24> × 1074301849074602239264190473<28> × 25603431995343111851808449165246253464423<41>
10106+3599 = (1)10451<106> = 23 × 41 × 5231 × 3637027068946831475701622920613903713<37> × 61931920046490479169618220523217685860449327932454808030313519<62> (Dmitry Domanov / Msieve 1.50 snfs for P37 x P62 / December 6, 2014 2014 年 12 月 6 日)
10107+3599 = (1)10551<107> = 3 × 7 × 19 × 315203403548980496299469901697<30> × 88347384434640475864908113681205286847469721515203463449792395888321206817<74> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1633617108 for P30 x P74 / November 29, 2014 2014 年 11 月 29 日)
10108+3599 = (1)10651<108> = 773 × 2848684243<10> × 539454404803<12> × 933581541926424197<18> × 100190532104140375703779697303723188732560057988726907748884297599<66>
10109+3599 = (1)10751<109> = 113 × 409 × 7516853 × 1743285259<10> × 1834641545930692492737150312351549606999141109607977241773495240475683784850743157747089<88>
10110+3599 = (1)10851<110> = 3 × 3703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703703717<109>
10111+3599 = (1)10951<111> = 41 × 2641864103<10> × 5197886303<10> × 4192527057139983781198691711<28> × 47071767970523933626877206534580370947497479249780022801472689<62>
10112+3599 = (1)11051<112> = 3637 × 302999 × 285111416506857616937<21> × 3536375609210211527890200852746234633240921341236619058655859755406594887797539421<82>
10113+3599 = (1)11151<113> = 34 × 72 × 31963 × 209398733 × 95866637107<11> × 4179836567403186743<19> × 177838342300824009689<21> × 4283768201771572261997<22> × 1370176923480429216133897<25>
10114+3599 = (1)11251<114> = 172 × 58280694163<11> × 38240594479741<14> × 6523823757849457<16> × 7741200286348549277123879731190861<34> × 3415857720110008643745390731577307949<37> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 x P37 / November 30, 2014 2014 年 11 月 30 日)
10115+3599 = (1)11351<115> = 641 × 31469 × 5892621541<10> × 20287893323<11> × 40882588276989543860192557303<29> × 11270226228753066094385842654417860915226569944781185111611<59>
10116+3599 = (1)11451<116> = 3 × 41 × 6130626137901890203623107897<28> × 14734912004700314927383563543558417857551491934083297189396151740075313130337172937221<86> (KTakahashi / GMP-ECM 6.4.4 B1=500000, x0=2270268000 for P28 x P86 / December 6, 2014 2014 年 12 月 6 日)
10117+3599 = (1)11551<117> = 22073 × 4559668215131<13> × 6448041931392989941613110835702260360507<40> × 171212327790750419222512325252591335671945177550807502057311<60> (KTakahashi / Msieve 1.51 snfs for P40 x P60 / December 6, 2014 2014 年 12 月 6 日)
10118+3599 = (1)11651<118> = 15157630753<11> × 865897478923192765597<21> × 84656379708746483516687528180956518181633856010792758042717792707547325687057858733211<86>
10119+3599 = (1)11751<119> = 3 × 7 × 1718395375999<13> × 80277189890449<14> × 3835508405817378860176291038700191562013442061518508023445011994911074286263348443213937981<91>
10120+3599 = (1)11851<120> = 431 × 1650695791959209<16> × 156175597530256701204627068364842687416033100053875659708207701660907825039645232239814870191336449369<102>
10121+3599 = (1)11951<121> = 29 × 41 × 59 × 4988381 × 640388707087427083<18> × 4958157782736937919092477036128380776663246216940339045403443120419246130183344869569963687<91>
10122+3599 = (1)12051<122> = 32 × 107 × 6827 × 9151 × 471616979 × 391600568130040789348394780180422277553758692098176414633301760895714020375414319976041491743342235019<102>
10123+3599 = (1)12151<123> = 2617 × 14218878756457<14> × 322757537309853099308344139003<30> × 7785928200185699343418164791235571<34> × 1188233054148856769693464511854930289687183<43> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=215221181 for P30 / November 29, 2014 2014 年 11 月 29 日) (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 x P43 / November 30, 2014 2014 年 11 月 30 日)
10124+3599 = (1)12251<124> = 2086969 × 51162665859651539890430320690850731<35> × 10406107952511678331522174436829642355367740458664218859111274935767555233507033909<83> (Dmitry Domanov / Msieve 1.50 snfs for P35 x P83 / December 6, 2014 2014 年 12 月 6 日)
10125+3599 = (1)12351<125> = 3 × 7 × 19 × 353 × 209169357511<12> × 5916363470111<13> × 6205499231343029<16> × 5871304743513079358047023086233343003<37> × 1749627642255416316344750053002298220823679<43> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P37 x P43 / November 30, 2014 2014 年 11 月 30 日)
10126+3599 = (1)12451<126> = 41 × 1709 × 1862915399<10> × 851213373971662105424692695655320232940615974593162605325732275989312509553983861226069710958619888614960328021<111>
10127+3599 = (1)12551<127> = 23063 × 48177215067905784638213203447561510259337948710536838707501674158223609726016177908819802762481511993717691155145085683177<122>
10128+3599 = (1)12651<128> = 3 × 23 × 9733 × 1547543 × 29374145476702828573<20> × 363960044860345535142918097532139246678120823425270743140631927793298151709498610396440514326917<96>
10129+3599 = (1)12751<129> = 64153 × 1731970618850421821444221020234612740029478139932834179400980641764393108835301717941656837733404690522829970712376835239367<124>
10130+3599 = (1)12851<130> = 17 × 307 × 18523 × 27793 × 128509 × 2843726491208527393054773658127<31> × 1131623797003550483650498085017502928517010025311206158663583941401395792341517877<82> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3881297992 for P31 x P82 / November 29, 2014 2014 年 11 月 29 日)
10131+3599 = (1)12951<131> = 32 × 7 × 41 × 1069 × 586277 × 731270336278391560658713421<27> × 115891912729657305901697618377<30> × 4301786616715040635317088197221<31> × 18826629272376875371885295300417<32> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=462097588 for P30, B1=1e6, sigma=1716207371 for P31 x P32 / November 29, 2014 2014 年 11 月 29 日)
10132+3599 = (1)13051<132> = 389 × 285632676378177663524707226506712367894887175092830619822907740645529848614681519565838331905169951442445015709797200799771493859<129>
10133+3599 = (1)13151<133> = 67111067369<11> × 16556302181901467994682150129924140725837411932030615877286138996903831394210992452962413724818001279181996005114247181079<122>
10134+3599 = (1)13251<134> = 3 × 47 × 8747 × 1258787 × 1898784103<10> × 34670201128590570824640949<26> × 46753653080648101324039690697963<32> × 2325302744052583229101234190797369989246821637052083259<55> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=136574012 for P32 x P55 / November 29, 2014 2014 年 11 月 29 日)
10135+3599 = (1)13351<135> = 223 × 311821 × 1434774453574114703<19> × 1113688235916257346223767428284268470725862163874937062052622062163320287727831662943943710067451759713485499<109>
10136+3599 = (1)13451<136> = 41 × 653 × 53200940630217359257933453<26> × 87645619513057438931683939<26> × 3572201970691619307204719332743763<34> × 2491580485285417148264908015699054356111743447<46> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2627070771 for P26(5320...), B1=1000000, sigma=4166288116 for P34 x P46 / December 6, 2014 2014 年 12 月 6 日)
10137+3599 = (1)13551<137> = 3 × 7 × 4003 × 7829 × 23417900620947886076864693<26> × 720938724783418361046012495325018594407756201315301411935835533869964055564136373873663660678744692441<102>
10138+3599 = (1)13651<138> = 1093 × 2767 × 43207 × 1025093 × 59130173 × 654940681 × 5434251785051<13> × 38361116215942549<17> × 4234201367640697974787945875038964041<37> × 24265942915045101678819308464562066413<38> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P37 x P38 / November 30, 2014 2014 年 11 月 30 日)
10139+3599 = (1)13751<139> = 1671066577010461<16> × 90297838904873344126712280291165612343592291738141<50> × 7363535435292254723752754938624327437986811157044043516185020474103468151<73> (Youcef Lemsafer / Msieve 1.50 snfs for P50 x P73 / December 10, 2014 2014 年 12 月 10 日)
10140+3599 = (1)13851<140> = 33 × 271811 × 1514002868702355559849267691195435923288078727785811834000546827556117916781106358504705967546773188274901679518204317503176718669183<133>
10141+3599 = (1)13951<141> = 41 × 205545509753<12> × 2119044447539216219349580095457<31> × 6221936489865949712421041143732554891591228467629801109032815910350953424630827508445611013535791<97> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=4250256197 for P31 x P97 / December 6, 2014 2014 年 12 月 6 日)
10142+3599 = (1)14051<142> = 131 × 27407 × 309474375413399739106912038995751938091012885801201150514317011871406093420472652167235124673144769977445198045496013614149143685950603<135>
10143+3599 = (1)14151<143> = 3 × 7 × 19 × 61 × 97 × 173 × 853 × 4120615241<10> × 2811853511298229<16> × 8012899583515627417630458962723<31> × 67122472075503675543694700404193<32> × 5117707873267516138394609562753333206231203<43> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3222028938 for P31 / November 29, 2014 2014 年 11 月 29 日) (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P43 / November 30, 2014 2014 年 11 月 30 日)
10144+3599 = (1)14251<144> = 503 × 304129024605292217<18> × 79979260088960326109087<23> × 9081430306294018005274641580772164068124490449856178191382010685963515407459538936674646504939491023<100>
10145+3599 = (1)14351<145> = 313 × 514088412952480077471937480112270899668106261387<48> × 6905185304529965490177682846991358766554102086293221391289380307840302527026418458523448102421<94> (Erik Branger / GGNFS, Msieve snfs for P48 x P94 / December 8, 2014 2014 年 12 月 8 日)
10146+3599 = (1)14451<146> = 3 × 17 × 41 × 383 × 2358304688252143<16> × 1158694896204966531912078570137967409559<40> × 5077333322727883938971695324746141810851693577322052692707511410372812200050119172491<85> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=1313261601 for P40 x P85 / December 10, 2014 2014 年 12 月 10 日)
10147+3599 = (1)14551<147> = 641 × 310099981 × 558981868960550158102345761543280240970635338771393768141401788790609525043476572730613748960533387908420878010610961902692635127034731<135>
10148+3599 = (1)14651<148> = 100823 × 1142450597<10> × 70148246543<11> × 200266565687816498119<21> × 686649607050477904913765451825154232964037897187989133354612900396091122565269523392801713902781389613<102>
10149+3599 = (1)14751<149> = 32 × 7 × 29 × 731251 × 3824617 × 166084337 × 5511457892332900553937097<25> × 2375578292967390354913179958497666040601989885547962371398416405561126680856196805629922658121482951<100>
10150+3599 = (1)14851<150> = 23 × 557 × 751 × 12653 × 22847677651<11> × 1272625491869344531<19> × 49916647808728546606101653842870757<35> × 628858478919768355591393440667806952191758614978854291766896808310301402091<75> (Youcef Lemsafer / for P35 x P75 / December 10, 2014 2014 年 12 月 10 日)
10151+3599 = (1)14951<151> = 41 × 191 × 1373 × 69929 × 6105188099<10> × 242054612390805833679894515310017115691114821040561434579869414760799682421017603424794540365733337095346871932329285218014115687<129>
10152+3599 = (1)15051<152> = 3 × 4831 × 31333 × 129185951 × 66526112905791971<17> × 38692783190088110353503962040285769076855269<44> × 73580005279955560287524930518320774127524633611253347696955093406738759471<74> (Youcef Lemsafer / Msieve 1.50 snfs for P44 x P74 / December 10, 2014 2014 年 12 月 10 日)
10153+3599 = (1)15151<153> = 151 × 6197 × 203773 × 826725209 × 10090201861<11> × 126817497276061<15> × 2822757934807743614623<22> × 195136520814899414360004704273019655898818852637396711120339837313231885001806883406143<87>
10154+3599 = (1)15251<154> = 185792153816439853482647621<27> × 581587793160202275300132527<27> × 128029516173200570321772733201<30> × 80316492526344463310094229306678198382336399726472014998399629729539453<71> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3840118982 for P30 x P71 / November 29, 2014 2014 年 11 月 29 日)
10155+3599 = (1)15351<155> = 3 × 72 × 75585789871504157218442932728647014361300075585789871504157218442932728647014361300075585789871504157218442932728647014361300075585789871504157218442933<152>
10156+3599 = (1)15451<156> = 41 × 2710027100271002710027100271002710027100271002710027100271002710027100271002710027100271002710027100271002710027100271002710027100271002710027100271002711<154>
10157+3599 = (1)15551<157> = 353 × 1446833 × 2175526508051800585381143980473234627794252855103500879207819423744663243389120292137983906138443861609145094223587897674913898170332191374015596799<148>
10158+3599 = (1)15651<158> = 32 × 22165913574524761<17> × 56004257212647245933<20> × 398372514685032609379390549303302967643<39> × 2496427378870310275156852210422174898869335873564785580396034136756774103644454321<82> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=1167307399 for P39 x P82 / December 10, 2014 2014 年 12 月 10 日)
10159+3599 = (1)15751<159> = 16535773 × 46473580906846146221688072271484015281<38> × 144586202586515971080073177885962848474799302241291681129405114513175855017018951673582936818718715981192473382827<114> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=3212446802 for P38 x P114 / December 10, 2014 2014 年 12 月 10 日)
10160+3599 = (1)15851<160> = 719 × 707887 × 15168149 × 3065507260199<13> × 46949365589663461737756758673083476560333230549257392175651670960973275090074459803546255476850852102694203914565595716674489768917<131>
10161+3599 = (1)15951<161> = 3 × 7 × 19 × 41 × 75833 × 21269420169199496929<20> × 2976205955446077221040143<25> × 141489388242414356170332182102933451775096683688261740552833777316982230967070077225776413712857766720751439<108>
10162+3599 = (1)16051<162> = 17 × 797 × 40042993 × 96954471280339778498509814305078803707<38> × 2112301338306985660767434632543048985794858420465300312269858757975766815881454649055518511453503571061817822849<112> (Youcef Lemsafer / Prime95 v28.5 win64, GMP-ECM 6.4.4 B1=1000000, sigma=15248575625245 for P38 x P112 / December 11, 2014 2014 年 12 月 11 日)
10163+3599 = (1)16151<163> = 421 × 3547 × 74213744503441<14> × 84907905075535696421<20> × 118081465848357026132054895519266122596246740832010590140567061161212848413125657291505076439777126702648117266608457842293<123>
10164+3599 = (1)16251<164> = 3 × 1291 × 52347601 × 182769522899<12> × 92494279928969652919<20> × 33546533655320107597853<23> × 217880846414237020763072546214365083908859<42> × 443534953717137343829653692679681173288875745835257393101<57> (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P57 / December 7, 2014 2014 年 12 月 7 日)
10165+3599 = (1)16351<165> = 283 × 87280314946109<14> × 859621402969597<15> × 139078731811130654637774393157333<33> × 37625892325330796012832727714789093032345082961196445581636880102403704959037158058094531858232735233<101> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=12466614 for P33 x P101 / November 29, 2014 2014 年 11 月 29 日)
10166+3599 = (1)16451<166> = 41 × 911 × 39779 × 13617367 × 383668867345634230468721<24> × 389186214993327156283845080530635814165001<42> × 367785196123532951386871732047495714618553476619258577480648273050634020810743051117<84> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=3421601127 for P42 x P84 / December 10, 2014 2014 年 12 月 10 日)
10167+3599 = (1)16551<167> = 33 × 7 × 234203 × 2480287095667632220396255459238496494387979760971197773<55> × 101204839114957734082477040194457907729429596027915971398582326921081676505658866865576676183910739925061<105> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) snfs for P55 x P105 / December 11, 2014 2014 年 12 月 11 日)
10168+3599 = (1)16651<168> = 2884993 × 38513476847642649778044907253193027196638297254485924614413661007534892150903350930526039789736443419831906389759389749337731880497148905079184286100906002583407<161>
10169+3599 = (1)16751<169> = 2029 × 2447 × 31081 × 42831419 × 175829519 × 38925492149<11> × 591303483148051<15> × 1610070779999894449<19> × 7673769837541790023<19> × 65047754161939942530476236389127<32> × 51684657938465539734971786837374701939170080007<47> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1082175124 for P32 x P47 / November 29, 2014 2014 年 11 月 29 日)
10170+3599 = (1)16851<170> = 3 × 179743 × 537569 × 41849131162381<14> × 1186967489657678863<19> × 64331288252598977658779<23> × 378207068104052574976012115801235768110431<42> × 31715595796875575573262429626608666788746758158825439646377333<62> (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P62 / December 8, 2014 2014 年 12 月 8 日)
10171+3599 = (1)16951<171> = 41 × 2774360229005194967235193<25> × 53678786756007895342559299<26> × 163991994395996894031518896127888009860279941943<48> × 110964853654217060634972517647312775484235831632803381517075445311055011<72> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) gnfs for P48 x P72 / December 12, 2014 2014 年 12 月 12 日)
10172+3599 = (1)17051<172> = 23 × 28108211 × 226009524229<12> × 304944162949<12> × 383554791232024627923301155289446036047638091<45> × 65016258209754306101480642848720255249824821835264203153334627290447773272660076098431014233697<95> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) snfs for P45 x P95 / December 13, 2014 2014 年 12 月 13 日)
10173+3599 = (1)17151<173> = 3 × 7 × 14673173 × 6128461211157552190242928179844396228867697951428886723<55> × 5883865223397362511040198485923053388283654156761710833711973454158878991695043143420350467348925742701464589<109> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) snfs for P55 x P109 / December 14, 2014 2014 年 12 月 14 日)
10174+3599 = (1)17251<174> = 2716843263353129725189845819744877526879110100355481025597920651423987<70> × 40897136986098235717824978485976807500242104458966742170879120600059122579591567666654971889693476772373<104> (Serge Batalov / Msieve 1.51 snfs for P70 x P104 / December 10, 2014 2014 年 12 月 10 日)
10175+3599 = (1)17351<175> = 107 × 349 × 7046084058197501<16> × 4497451074175630021109739551<28> × 4496422917187146658298782019526702992641091<43> × 208817487409378338251564607914441583101789058934499875475674909952704235727639603977<84> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) snfs for P43 x P84 / December 16, 2014 2014 年 12 月 16 日)
10176+3599 = (1)17451<176> = 32 × 41 × 6203 × 91127 × 13681690229<11> × 3893520959835125451011751597190944253570985134305537230266244300976765973962550155812843519922583188585365406295780363585981136750375052190412870189220271<154>
10177+3599 = (1)17551<177> = 29 × 11728280423040523898671<23> × 1210070667553454300629508923750044633555218872469<49> × 269969323096908442021522672800798640127953308271870974861091544929851900557885104007066378228944217693281<105> (Youcef Lemsafer / GGNFS-SVN440, msieve 1.53 (SVN 965) snfs for P49 x P105 / December 30, 2014 2014 年 12 月 30 日)
10178+3599 = (1)17651<178> = 17 × 487 × 93234907 × 173308802299819<15> × 554325158473844357<18> × 17512200294083076975073<23> × 283862223748648229403337601331473<33> × 3014168582599746158518194488126488251975925001819946728873250047781565367488381<79> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3712063625 for P33 x P79 / November 30, 2014 2014 年 11 月 30 日)
10179+3599 = (1)17751<179> = 3 × 7 × 19 × 59 × 641 × 33839537059<11> × 11392862821470842271829418465217393597405977694242257776691266443<65> × 1909929217519168548534525388408598619065934711884640779726742725888789226042770792979327218947283<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P97 / December 7, 2015 2015 年 12 月 7 日)
10180+3599 = (1)17851<180> = 47 × 13167059 × 1139851093<10> × 93945962975270437<17> × 45496330445293894914047<23> × 1829100701803355980641483316726877596092053<43> × 20147938782562673410843078750526417377594831445251847743914650750010095325943177<80> (Erik Branger / GGNFS, Msieve gnfs for P43 x P80 / December 14, 2014 2014 年 12 月 14 日)
10181+3599 = (1)17951<181> = 41 × 23676889 × 38698220326241969<17> × 303412146108041301037277<24> × 97482136828072823982062514850731939399546536298236398367683026008545099091587560600810142266523618572860108194181827942922274953323<131>
10182+3599 = (1)18051<182> = 3 × 93612048281733967668441052901190412811440128494851454611561138795343736661<74> × 39564391247556839896751033570984666770682208749891024563199891385555843104508069925484233185837781397191697<107> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P74 x P107 / December 23, 2014 2014 年 12 月 23 日)
10183+3599 = (1)18151<183> = 442994561 × 2904158074313274803522593439237<31> × 3188198050800833242038161785573<31> × 4182663026389672754371422195697677777695003521<46> × 6476504561817473122171880331614291065526029077622434332857669282471<67> (Serge Batalov / GMP-ECM B1=3000000, sigma=2464305220 for P31(2904...), B1=3000000, sigma=848378410 for P31(3188...) / December 10, 2014 2014 年 12 月 10 日) (Cyp / yafu v1.34.3 for P46 x P67 / December 12, 2014 2014 年 12 月 12 日)
10184+3599 = (1)18251<184> = 862394279717305532100390815528587644022329180680096528687611052177296469<72> × 1288402691487396489250328739909028007508902040073714883911365741794993713939790616400942298263400639975730972979<112> (Serge Batalov / for P72 x P112 / December 9, 2014 2014 年 12 月 9 日)
10185+3599 = (1)18351<185> = 32 × 7 × 8329 × 14969 × 329957 × 74775619 × 1081893685323543107557<22> × 2072671469451478033822512193<28> × 25568124489373983104777860752194797857392932672665702635807160802664590128402734009382046120066917592119333745619<113>
10186+3599 = (1)18451<186> = 41 × 173 × 2659 × 3299 × 3819997 × 8973524785380219697<19> × 2322804520258577205859<22> × 10070645830073692496435149019030949096487<41> × 2227054289365476892290245844542552699720088157016464381052473646327900762818344170158091<88> (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=1240247172 for P41 x P88 / January 7, 2015 2015 年 1 月 7 日)
10187+3599 = (1)18551<187> = 807561562099<12> × 780345269005157<15> × 1763173497978460712789153726444957234757110037609510115079238453425642562678675545597008013837585160664965868973160770419795266735805504503364126456906778985457<160>
10188+3599 = (1)18651<188> = 3 × 18539 × 50698155103<11> × 1400170294433<13> × 1067968051130789078309773052893789126097<40> × 2635230785420548946475403349640411411698238506814709044172523060848539930437857807459379336903189747405561961884800849601<121> (LegionMammal978 / Msieve 1.53 snfs for P40 x P121 / July 17, 2017 2017 年 7 月 17 日)
10189+3599 = (1)18751<189> = 353 × 125219 × 1527058231739107156989320921660011968713694923420870487232071944001461131078654257523097<88> × 1646102807195065048677603751585161354030839288437455543324916639353841161023045686127410586669<94> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / March 28, 2018 2018 年 3 月 28 日)
10190+3599 = (1)18851<190> = 7127 × 72617 × 340979 × 1229197 × 22241834851<11> × 112104739381576257572726591049212657<36> × 4501377720656587197842402587431127358755314163<46> × 456376488123813691318520439712448596787820537076764121981563802414520147557583<78> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=1842753616 for P36 x P46 x P78 / December 9, 2014 2014 年 12 月 9 日)
10191+3599 = (1)18951<191> = 3 × 7 × 41 × 3952099 × 4494752477734433<16> × 108318293866175459655368361943370837<36> × 64699552752191888508334933902142448845270355348670152887<56> × 103661539459690289822257425129027635414501565862693375265465458783826575267<75> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=481819052 for P36 / January 29, 2015 2015 年 1 月 29 日) (Erik Branger / GGNFS, Msieve gnfs for P56 x P75 / February 21, 2015 2015 年 2 月 21 日)
10192+3599 = (1)19051<192> = 1591193771<10> × 2575364786370050088890748385039448046676429937859156040937228745531739<70> × 27114129589026849877587450960434868009222718199257461756026435961516989562836974425204715423435794339668266354679<113> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P70 x P113 / September 19, 2018 2018 年 9 月 19 日)
10193+3599 = (1)19151<193> = 30677 × 92467 × 48429106373<11> × 1865741456575833883<19> × 191330375933503834309943<24> × 35823868155200574445301189447<29> × 471802848435547085254721583245921<33> × 1340549819017911734254562316628719190654790652264720424465804340945431<70> (Dmitry Domanov / Msieve 1.50 gnfs for P33 x P70 / December 7, 2014 2014 年 12 月 7 日)
10194+3599 = (1)19251<194> = 34 × 17 × 23 × 8707 × 34141 × 760220386084342089241698399197856407275778668753373850344259855190133834021113473917<84> × 1552427834092664746741263762871455605869764589222006557615042628062554429927247223266557213827339<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P84 x P97 / December 3, 2018 2018 年 12 月 3 日)
10195+3599 = (1)19351<195> = 109 × 203812155388569499<18> × 905099737965182042588167067<27> × 5525918452500527881315598045635157722773459137403240474722093324649467110115920371080205138715989050452988521067588998214648860932642703379279756483<148>
10196+3599 = (1)19451<196> = 41 × 893494925652298581046909689995816240769648817267436291034906102342890215952325895001904599<90> × 30330637840976427565444061740074323012750214154933965283254677692152562798103724982496805592595824866689<104> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P90 x P104 / January 2, 2015 2015 年 1 月 2 日)
10197+3599 = (1)19551<197> = 3 × 72 × 19 × 1847 × 8501 × 29669 × 8539781023215745685290785712323320197796874919486785100762721153778272928453508182242827228633315668957626990063830215463998387163214830894134624069109191000259363647296445134067449<181>
10198+3599 = (1)19651<198> = 20565877 × 389277532843<12> × 268202173796693672151130307242118555169677<42> × 51747410712212481163341058102789298759646439043081775845914497350189425525981745321820304969123654173609706544488696204958400940528322333<137> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P42 x P137 / May 14, 2019 2019 年 5 月 14 日)
10199+3599 = (1)19751<199> = 50387353 × 1041558641<10> × 42585430560137203561765441902678858132028715834274392787981201880493<68> × 497154274264096411474632286318872402343497028891899008717234003901844299333454992708416302804469078786946774252659<114> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P68 x P114 / July 13, 2019 2019 年 7 月 13 日)
10200+3599 = (1)19851<200> = 3 × 3583 × 1757226950357<13> × 39943709851321<14> × 14726962262241847945126861163696918794898196292568216668663361471075458895872376369222018567218387513115074814936858418832933970203588691465653966127153838339265034091367<170>
10201+3599 = (1)19951<201> = 41 × 18059 × 7367197 × [20369372613666416386800469272777956065578534938533588448265257892529442686433834538549194175333741536276413178197644685068049096633941571054324735395538068704230377255609260034889407876457<188>] Free to factor
10202+3599 = (1)20051<202> = 3408511 × 56944597 × 10709917157<11> × 31528744889<11> × 419915271904473784129<21> × 2807856074967349524035289160710214966681<40> × 14378413204309476041226967300904303710026842594856351848568251985459147920781383998282950801025063800583289<107> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3180281717 for P40 x P107 / November 12, 2015 2015 年 11 月 12 日)
10203+3599 = (1)20151<203> = 32 × 7 × 61 × 601 × 490266599713529<15> × 2896868768888566802762212286009951<34> × [3387283177486238581512044425252468100456049379567411759705374513352455513600658676754330266907877576910415040357374557662453352238594283484358827083<148>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=1041831319 for P34 / December 8, 2014 2014 年 12 月 8 日) Free to factor
10204+3599 = (1)20251<204> = 4703 × 304729 × 73734179 × [1051477239778421273099545622286716090847631551605929869780659098616161721915373671792687784888302010018151837143768837747683298209791286594553831703055754266942796450715090095837577080787<187>] Free to factor
10205+3599 = (1)20351<205> = 29 × 18941698822597<14> × [2022742342387094617850616541545948119247217844383920003565873481309610108600197304689464055999950303007588298360089995707331564146631003913913061816808038854745289930877741420331363723972927<190>] Free to factor
10206+3599 = (1)20451<206> = 3 × 41 × 563 × 743 × 9854880143<10> × 80364072743<11> × 918475834652983519218232649<27> × 296875358460987571556116291783879550928822860736801785298419636643766579467522608725374428114948118185220856066461870229104160006892151184704346386793<150>
10207+3599 = (1)20551<207> = 290363816211439<15> × [382661698557514150557274934806034702928197980283727426828899602662045907344911001266116691049426985324890890540581358477879796344551019579573193383798670958485074883848424704354636391908663809<192>] Free to factor
10208+3599 = (1)20651<208> = 3407 × 28793 × 98955660019<11> × 337605592691<12> × 25993751906851<14> × 13043051165220948669785893730013755160447770543284897272558807717657916355835602405436978883913101922013975160648195063222751183227606624908335390829123644586209419<164>
10209+3599 = (1)20751<209> = 3 × 7 × 64362131 × 33993338471<11> × 65086793197<11> × 441736180367<12> × 8411203031882497967664504131827674553329011669574755063943517551958615298252854804450778258870462365525606361516623373145206315094309130987164760697673916222751459869<166>
10210+3599 = (1)20851<210> = 17 × 769 × 81414036961<11> × 16240183395185407812701671954926586322477<41> × 6428238922377245621651660005649479623300732672516740312945793638486201627109290009818346236803406476085681423471061494382396971789134797363320172024976571<154> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4112108540 for P41 x P154 / May 27, 2015 2015 年 5 月 27 日)
10211+3599 = (1)20951<211> = 41 × 641 × 1761547537<10> × 4396302034671857611607<22> × 683245469530479236818715552493964256983<39> × 7990187201495928936960605877803129368340774595245167460145967549831352309082865709907348937187048647295615557374647969283910744964925943<136> (Serge Batalov / GMP-ECM B1=3000000, sigma=678842780 for P39 x P136 / June 20, 2015 2015 年 6 月 20 日)
10212+3599 = (1)21051<212> = 32 × 4733 × 260842573681506000683407543045545721790527762779329791091182738481844052658898774822431417966314790034770315071744749891098225487971244714677350778484661152454659039629812219431206683830108014909761511634883<207>
10213+3599 = (1)21151<213> = 294885324621904829898251<24> × 51454296660452295494850457<26> × [7322892936380227124395324880724819304266052149809100284003579784670412664215343406528294424036277310269591454325812157699174320842156770751641547558168139700922293<163>] Free to factor
10214+3599 = (1)21251<214> = 3032047 × 7799095432545101055032288544983947205756571530474130395763576348131330937329935515635137739677<94> × 46986957766742777097080851860203295197478842818470293269133427735251755467155164410378555467787835660502204136629<113> (Bob Backstrom / Msieve 1.54 snfs for P94 x P113 / November 19, 2019 2019 年 11 月 19 日)
10215+3599 = (1)21351<215> = 3 × 7 × 19 × 140939 × 97121016104785765030517161482595673437<38> × [2034418009248126595263656838685810235133698097232228693036065638997862957591824797994333938636539222809736092745782220074405440960609542561677433547266290149508979678943<169>] (Serge Batalov / GMP-ECM B1=11000000, sigma=797355457 for P38 / June 18, 2015 2015 年 6 月 18 日) Free to factor
10216+3599 = (1)21451<216> = 23 × 41 × 6089 × 77154071410976409753533879<26> × [250807763260821959774070908743224038478730959401985650680613412824565707907263638351540017946827078547109136652206492050851652755695997980969463341333228936624716239875874831812188047<183>] Free to factor
10217+3599 = (1)21551<217> = 5147 × 3044893 × 61025761 × 121662695765094269<18> × [9549060556866776510753308059524356038374023081768804077023055853814386179793012032359960333840723108614531180124934410193850746222952112913613488959999276464968681140767411018393109<181>] Free to factor
10218+3599 = (1)21651<218> = 3 × 38735153772149113<17> × 1054206760999183186193<22> × 21039665078818042391585523839172136218161<41> × 4310883953870696210673816192766628819806659009061219801106768024686080931626101525665385223968318039777829307366520882711195176435948563533<139> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=1000000, sigma=1239129569 for P41 x P139 / December 10, 2014 2014 年 12 月 10 日)
10219+3599 = (1)21751<219> = 12520079548320829687219<23> × 8874632999118055234725466262452741897131152394215250142199336881004731822877164995622794149750716468845535301513425005780317595564944612594687308887000887430766168913300180304983002583619615702229<196>
10220+3599 = (1)21851<220> = 5441483928193<13> × 171518312875600560467985301<27> × 1190500668568741863264083709717351655667788286224268340758269815438441700932035499316522133465194505088147658160115134736230761195666211991843805825255309701881547492330959454539507<181>
10221+3599 = (1)21951<221> = 33 × 7 × 41 × 113 × 353 × 22553421257<11> × 200014679414608857192236392520452310732579872535361338741263596896405639888396743799<84> × 7968643145595704654384030932959322113660146285236001328627128103172870093246533087164696186961636517975924790493837437<118> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P84 x P118 / August 24, 2019 2019 年 8 月 24 日)
10222+3599 = (1)22051<222> = 11287 × 1927990372201<13> × 1314233692972131190350280449223463882777827<43> × 39541865898174713389052561065907720893709987931196313539501980942287168367149<77> × 98252667214105704761250365968511734703108630691715557959412199576475358122426387396951<86> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P43 x P77 x P86 / August 29, 2019 2019 年 8 月 29 日)
10223+3599 = (1)22151<223> = 10343 × 57991 × 1219951 × 32582861 × [46603524774157240844968234771175659815377116692056853748102515444273022964154810677011410910658914196983965222090862394876492360645285898577806230401414427068429234941904160035472995825440833017178357<200>] Free to factor
10224+3599 = (1)22251<224> = 3 × 4003 × 104513 × 14118037 × 139976324227178687<18> × 64030653355044167219960514722841564929<38> × 175330280494999211790683695788171205988376528058303<51> × 399030939015905879166599520877531778585914833008468945734058169447917295351695054447166884733009259451<102> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4273270464 for P38 / May 19, 2015 2015 年 5 月 19 日) (Lionel Debroux / GMP-ECM 7.0.4 B1=11000000, sigma=1:656895890 for P51 x P102 / January 5, 2018 2018 年 1 月 5 日)
10225+3599 = (1)22351<225> = 1499 × 9181 × 457202739107461<15> × 1595706542473835117377<22> × 1010111574487958697932367299<28> × 10955562316115527239700743818785611300986628195628191372077023510565738517016897901436872488552504421508359897066590371925308869166931547322153155507393743<155>
10226+3599 = (1)22451<226> = 17 × 41 × 47 × 6640740098371<13> × 300323767166089<15> × 4948735145073143<16> × 8124419893709837<16> × [422993891900711465731922775154068970696641111841419905306151779752191333598598433842005672643593317513105577227220779262947001480188449591748534886687007117487841<162>] Free to factor
10227+3599 = (1)22551<227> = 3 × 7 × 262819 × 189174911 × 76628233159410407483808068704598092449589651<44> × 138876603672923940571769316738118880963724866614296629399704367463532209842252245779622867019055651053843382161270744174254471111791981441987174127198211639545261689109<168> (Bob Backstrom / GMP-ECM 6.2.3 B1=700030000, sigma=2012944633 for P44 x P168 / May 8, 2020 2020 年 5 月 8 日)
10228+3599 = (1)22651<228> = 107 × 149 × 151 × 9343 × 1061227 × 4654958970989563017699128591087935221867733466458655136675509983847660962201323687992150320701343476875954824487133670575996781002147222020603003709478888414531585845016599553580404423265538971248351729358875987<211>
10229+3599 = (1)22751<229> = 173 × 6422607578676942838792549775208734746307000642260757867694283879254977520873474630700064226075786769428387925497752087347463070006422607578676942838792549775208734746307000642260757867694283879254977520873474630700064226075787<226>
10230+3599 = (1)22851<230> = 32 × 10781 × 779983 × 292917487595017<15> × 1233454206004564531843831<25> × [406352061349652791287739750450168764665897793482366834846577408326765334328475942368519944053451584601484202541110167435725711028317966337487936382713166754340165265751807928389859<180>] Free to factor
10231+3599 = (1)22951<231> = 41 × 2099 × 166609 × 727376441431<12> × 49744849825397096597148048830458981<35> × [214168395267162864227097813334962523437909796551624183165575382598238089366614212716824971164355470094959785020649970600860082637818240677447558580262570209431512822183713711<174>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2100397341 for P35 / December 1, 2014 2014 年 12 月 1 日) Free to factor
10232+3599 = (1)23051<232> = 439 × 1223 × 1567 × 9011 × 54539 × 6069443840635496084482479033283<31> × 442760081911133994901448060147920661423563372949390513033431638072077151711105119174867433617106355107684781459058561542564771753963228406445964231005192219999613723068634324759121707<183> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2679785662 for P31 x P183 / December 1, 2014 2014 年 12 月 1 日)
10233+3599 = (1)23151<233> = 3 × 7 × 19 × 29 × 9734579773<10> × 116829933781998091661<21> × 3757109637941021063274217<25> × 169555449353538949930712961371705958571<39> × 1325408151505318090493946668313682865633847970576465547083543790244388927010469145294288449069149924467424042052028609752378229173326911<136> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4077953874 for P39 x P136 / June 5, 2015 2015 年 6 月 5 日)
10234+3599 = (1)23251<234> = 367 × 6199 × 4365989459220531652187<22> × [11186316608740593993263876754409738458437297787899477862632849411245445820551133432928031698328884398550454005455044956690979028755904649072791168608018165611828642518022854576493050688518613078929127709381<206>] Free to factor
10235+3599 = (1)23351<235> = 263 × 35192909 × 870027885097526747<18> × 157500079705157174398943<24> × 876057526815104111894889075617640615896695776174620594850833244956390328982983709547132311645215273595553517958291061253799996640588125579236871698033791029746087760094631734010160793<183>
10236+3599 = (1)23451<236> = 3 × 41 × 2357 × 496291 × 42606372298429143927173259877<29> × [1812515958676459755543853835825225148740107039732979171873786064266163427900841788719795590812318137095594512332673413066697219959776642443338603034045483381205228228861953247909022509519625919463<196>] Free to factor
10237+3599 = (1)23551<237> = 59 × 6121 × 12093055420163<14> × 50005287816391<14> × 2034587982301807<16> × 327883849859149043328547192637<30> × [762666418888492508179766374797640064141330306019334578048854710148294174845687813430134046260141307733874624646319520887672144207502147709884091653756896607547<159>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3758076482 for P30 / December 1, 2014 2014 年 12 月 1 日) Free to factor
10238+3599 = (1)23651<238> = 23 × 809 × 1109 × 1171 × 1571 × 13531695475570033<17> × 44716612536908846858706923234388593579<38> × [48372150393413931108617804260050452977626068269433597044117538339513197361843834175316221579625709949551324143885789005990899272297324906130962171860089582453024190231871<170>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1125159407 for P38 / December 1, 2014 2014 年 12 月 1 日) Free to factor
10239+3599 = (1)23751<239> = 32 × 72 × 97 × 257 × 3343 × 302327509804799093253508556297679864344702363170032352461936034114860992923619746947721341311974343588952233207514834259564588200999522946710815335126723414877209741315252900408349278836804063405376472149740841117443556137776713<228>
10240+3599 = (1)23851<240> = 1277 × 185167 × 263429 × 1783772317029744973882017747302167346909310271051279261088907772009970470383959624446185377926638744879114637222898562020657362675226718623510971521400376084319471081053592266970136421349567797298514534391041313850125204630641<226>
10241+3599 = (1)23951<241> = 41 × 23142886371427<14> × 6243582808689555691<19> × 17584667565867627664291<23> × [10665668277610182873060865349922026361978081617812756051114568115326435224492861698218640886147264955442021995490613707926485646544783129061648357817769121419556748488069888932647541853<185>] Free to factor
10242+3599 = (1)24051<242> = 3 × 17 × 37501257792514121<17> × [5809536441488801884939304413409916804591109493384874015265102494694774457385734913463698241459115373804861244201558861978323180073693702074520347279040652605672495994151439181213659557766369873985866119220676644393634206381<223>] Free to factor
10243+3599 = (1)24151<243> = 467 × 641 × 3391 × 2068741 × 11054287 × 2531689932593807308167640627099469<34> × 7952581016329141372509330106585459801<37> × 67702445338508972571888875006943118487549706179<47> × 3511518502614269313432878097905033632397064429108160740495844439852573196046169624468475842723383323439<103> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2882292499 for P34 / December 1, 2014 2014 年 12 月 1 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2187173672 for P37 / January 11, 2017 2017 年 1 月 11 日) (Lionel Debroux / GMP-ECM 7.0.4 for P47 x P103 / December 29, 2017 2017 年 12 月 29 日)
10244+3599 = (1)24251<244> = 30517 × 1813737389<10> × 4930137613530901959646686209<28> × 5315750728008264492101992618083239671<37> × 765980295886847230938612195867520623670534731427584163506540229359311407047082288580031423706523114274708488072976031339466124875041236146430235815702061101698889593<165> (Serge Batalov / GMP-ECM B1=3000000, sigma=2636622322 for P28 / December 11, 2014 2014 年 12 月 11 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=112806685 for P37 x P165 / May 29, 2015 2015 年 5 月 29 日)
10245+3599 = (1)24351<245> = 3 × 7 × 167 × 16673 × 310698413164611419826725395292094319<36> × 12766050843293052552222947099821835231<38> × 47908477509201856887418862620110513198985529315280113576384345176682703389304363793084900070843800675569820963012577809554916647984373350110855440106299881083440069<164> (Serge Batalov / GMP-ECM B1=3000000, sigma=1892268553 for P38, B1=3000000, sigma=3816793224 for P36 x P164 / December 10, 2014 2014 年 12 月 10 日)
10246+3599 = (1)24451<246> = 41 × 191 × 2240261562295790486351<22> × 73888819951241039590540529647<29> × 1065156104015147323664106155161<31> × [80472880674820152894286270274018005446831548926606699591941558255226458677126169967606094679868685762126221975146475879345875392276928143963710675792687547796113<161>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3302096362 for P31 / December 1, 2014 2014 年 12 月 1 日) Free to factor
10247+3599 = (1)24551<247> = 2957 × 176807 × 2125233782437119920148608094360352737215709259463221487416053719862454759088512912037746236405377064109056961510658813246915657615708495144143971730245637617039703331254499780068163052401329799497150177429254654131972360652034314336635549<238>
10248+3599 = (1)24651<248> = 33 × 181 × 11278199 × 10651826284339<14> × 39975603775992678426571<23> × 473430563240410030801454250579023840329983726498255741840417291209441305576045265470843351181711776794708166574532543434288172648104904966979185555518789973418259479301832509303173859489272303566727183<201>
10249+3599 = (1)24751<249> = 9216618064552267<16> × 116650199398918511<18> × 2237036807155898064479<22> × [46198437196891131535712279922171983772488880450062823684885269150034658415299782652368014632026720180836298577262601904854926148922050724558537009640797229472292943877024803913902048460118013437<194>] Free to factor
10250+3599 = (1)24851<250> = 40591 × 745451753 × [36720467310547846493684737046644218258603070974234318233880037570781385217420149932904255379912854056541967445004192413240348039598409171596686046841630724311029554392373874197896846328925041052070413614450568963799104925240460626982137<236>] Free to factor
10251+3599 = (1)24951<251> = 3 × 7 × 192 × 41 × 73858457725328366706422899<26> × [484001717220017557165395080450179587283535740676834976876771513214046402512864969388005380072836892863719877983193962801434087970334229366273138552505360080803329233794916701392518187792351193850639891427636254557768369<219>] Free to factor
10252+3599 = (1)25051<252> = 187492223761<12> × 31531849660357345797577<23> × [18794240640831324270706869861724111207497687133771501368344260281161238968178854359254908153224552339542057337983989563859606459869660134087472628968234225368629187704117380864462104560489306981770235611969876071989383<218>] Free to factor
10253+3599 = (1)25151<253> = 353 × 3147623544224110796348756688700031476235442241107963487566887000314762354422411079634875668870003147623544224110796348756688700031476235442241107963487566887000314762354422411079634875668870003147623544224110796348756688700031476235442241107963487567<250>
10254+3599 = (1)25251<254> = 3 × 24631 × 17302193 × 3687211337<10> × [2356975179092634359259584226793360936603718332914364352583676614187058107382810281064276727463198282601980221989599038176674384255978844709733677769903331865911155518779526793686060921485864171668285109291323077415606288907997339227<232>] Free to factor
10255+3599 = (1)25351<255> = 6101 × 5428758195793<13> × 1610893998609816474891761<25> × 531373695504495857031562368463<30> × 3919123526533769577283167910600472042286773330078207859637108733117777505355259354163302178812370584216197555280653262188406732458022691968274434796095179776499016671347566327223873949<184> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=928675107 for P30 x P184 / October 23, 2015 2015 年 10 月 23 日)
10256+3599 = (1)25451<256> = 412 × 8663 × [76299459722762708520033342558701008412572420490564782105872260497464694847521137754348350081789587347114099211592341722512339472899069006963371002300299001559766965274521221462485611924757104675694220362468671155714859671521517359420362770817016217<248>] Free to factor
10257+3599 = (1)25551<257> = 32 × 7 × 228441844258751350904890909<27> × [772042633457916868386692434395655213065243607710647648252959252885403921844303719933059177914046786962779776165485055683202582589513224214289990486569629410069774329602422062652219957771813600245137869308108262274919161344698053<228>] Free to factor
10258+3599 = (1)25651<258> = 17 × 41879 × 569654752567<12> × 2315647327059343<16> × 118311817004410628577039093528424329555868248620220689099622498154935136432745952325619135265729995397811371300285847458810975794525424745120857468351292831976539902385932590286619986387632604448491074365409515209505606219297<225>
10259+3599 = (1)25751<259> = 6815988680254839149487797588388513462963846007<46> × 163015398533433069844158934440713745405959362524061346469341016492871109932713584187498248902931912198023936347137934242924557081821544259393110293258678829906773795346662153567821781131905612184854106972998347593<213> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=477669723 for P46 x P213 / February 6, 2017 2017 年 2 月 6 日)
10260+3599 = (1)25851<260> = 3 × 23 × 2774199347923<13> × 2212853749602950284549633191837456451<37> × [26231191784915654139749436717314449595207137415239579297627296043823769248020654990239907110794592073827631263310571038498999871801689811012002575175253708667898892537652001994767489077172080577202854948865723<209>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=806578317 for P37 / October 24, 2015 2015 年 10 月 24 日) Free to factor
10261+3599 = (1)25951<261> = 29 × 41 × 673 × 67501409 × 436822807 × 3938516197422725448161<22> × 2086589482145402864026381460021955457<37> × 13636398615527500843959363444447283722119<41> × 1518759118725741916311058537199901508419825474439721577105408631<64> × 27668409327215245886361583369940872116815593709927040123115965472731217011797<77> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1591250179 for P37 / November 12, 2015 2015 年 11 月 12 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=648779705 for P41 / November 19, 2015 2015 年 11 月 19 日) (Erik Branger / GNFS, Msieve for P64 x P77 / August 25, 2016 2016 年 8 月 25 日)
10262+3599 = (1)26051<262> = 11631637 × 113777879 × 371063197 × 1250243971350161223587<22> × 109324197505624573292629<24> × 16553882472762049928728603192070040250295663381049075600996953522257464488044130725611747874217020075349966110612716939182931331556532368690219525256582305331873792744968896010008640480561339927<194>
10263+3599 = (1)26151<263> = 3 × 7 × 61 × 709 × 2683 × 14177052054397229089489<23> × [321629235908086854113762074633197991011320882508780052502147074833472486210108650352093934319447548840055584690360362319393452278534017095732180949815761956420599060155217763018291638852254372430640275851803729274185162626033380137<231>] Free to factor
10264+3599 = (1)26251<264> = 599 × 3527 × 44701 × 77103754337425873438951709<26> × [15259223863747019430352963012813355666189076059943007588022482886315624277190739852509687063361537190634054406562601948289997692051214394839814651732080524802530534923142584145953318628287135927946387803364112163291269398805143<227>] Free to factor
10265+3599 = (1)26351<265> = 604146225773<12> × 8752670718368153<16> × 619251809316976228087<21> × 305986427568205757142247<24> × 4835820606695912838855154841<28> × 38090459653074395864334100393153<32> × 1148243156113045677167931101227178742579851<43> × 2256133981401611693726709101139383908938071689<46> × 2323914997586402425373626925170366307110519913<46> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=965926176 for P32 / October 28, 2015 2015 年 10 月 28 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3220879314 for P43, YAFU SIQS for P46(2256...) x P46(2323...) / October 29, 2015 2015 年 10 月 29 日)
10266+3599 = (1)26451<266> = 32 × 41 × 35267 × 467063 × 7313501216211809<16> × [249954985887016297006688573475340202400118903131185967819311284300643256628127208062573563839462469250379638400289171737527622794204171241973863667334028629627913260967405465617087403010092239623716509738021863786365587285962216315269011<237>] Free to factor
10267+3599 = (1)26551<267> = 179 × 120937 × 223150933 × 235597897559<12> × 174170886203401063534903<24> × 372153848963292969627209<24> × 1506180686098438675300203668284824004968897548780092307647353662718640204601457247062001317084253589328820036553370322193085261770977137360821224434092778368602152389087663072300594088186127073<193>
10268+3599 = (1)26651<268> = 233 × 1426132503249687572035967<25> × [3343810763868578913273968754854633083875011022245078229741612111069426031429254547070041028674482231601482298575048212707632444472487232553829520149003922527797840975027015915883446304246188770636501739464765376769357734035620822032016654441<241>] Free to factor
10269+3599 = (1)26751<269> = 3 × 7 × 19 × 571 × 15563087 × [3133666258515631088604197377039889820994308848310037348914694753830638317724893402469049933854953720774587747990888997812310430212543784233782136765867420117415633287917650181775373400917532869184398059168568129553879925061746224461924911306482276689522237<256>] Free to factor
10270+3599 = (1)26851<270> = 51473 × 944369293086887435321<21> × [2285789073558518356472886761101289195477230858201983515297113662959800673625460564443097978974540299284703071820831494640180386479517149822419847651341721004196231095164933298591191309839338158115697807584388447325394333352759266176900507341047<244>] Free to factor
10271+3599 = (1)26951<271> = 41 × 748789 × 1827428263<10> × [19804954117025518462279557760152391013945619230501812444060312545251841057158674311296331909230445111784280668511398495629386476542955790074968877544024769009043881600893755695228721819587694674265579245830081026329241986843911314167760362346459717448173<254>] Free to factor
10272+3599 = (1)27051<272> = 3 × 47 × 131 × 173 × 1074067 × 660516377630419<15> × 998844250754957<15> × [4906911678898559308004097654416570797630466695515002110606823692532206062390051636990881138209739995425686038660306047260796299564973021064700852813504892231235080440272100059757076740815807667273763921425202487945351103779563977<229>] Free to factor
10273+3599 = (1)27151<273> = 691 × 1367 × 24517950473<11> × 49265851007<11> × 4149418035251<13> × 3528113253399348273606581<25> × 4494717972437344959011333<25> × 1479955379655246024302280819265896126944589758074382388313581522642996682036322614805601115631216399097824860903592107898499182003966793417295266023264769159278803483266811427808258511<184>
10274+3599 = (1)27251<274> = 17 × 3892129231<10> × 189979298672644395362130971<27> × [88392422678058530769425832036372588938395854182513287246468946465037121515305848068545934833574879599874347753900739000597221544259107475856897545214746011753391041934187793486442403955080278929578868654585867658267046167934893667158403<236>] Free to factor
10275+3599 = (1)27351<275> = 35 × 7 × 641 × 751 × 2251 × 2911350293<10> × 45449975886793<14> × 216235851431294145205187<24> × [210680283854584986160180958556453197264738516633446367633654107529553710320058541906923610075038745218870039563094248182333198810693369982814187345356862510902692977478123313613992325307084809850098218930358920290897<216>] Free to factor
10276+3599 = (1)27451<276> = 41 × 193 × 5897 × [2381141460592505287247226148188733910630127203267514702101975721410201789618775180407242290327677900918270298173129457239353308743333092623743082036973845511242012934222307733774355020272097844607655976034420771350345965210204108374329505388891011676501007107352469791<268>] Free to factor
10277+3599 = (1)27551<277> = 153192499 × 10707506311079240683<20> × [677378878561754675203323248364854909208555918732676935957408455989500842394149536409687324238864888163178616324811266735614365288953942813055176411759782486289444508793124039969347787568742427793167968402558717753707724495060998592629903489128007103<249>] Free to factor
10278+3599 = (1)27651<278> = 3 × 33751 × 14241553240292629679717<23> × [7705347563328928317118873290701135006242753951355014320119487501050094778792248771535415730462839426867833530715171700053964347454152461170725327944381035784861704603413169367880304336106677099327393916840749814971346153187967188965808147311316675751<250>] Free to factor
10279+3599 = (1)27751<279> = 28697 × 1958531 × 521247851 × 4327909268481054218819<22> × [876330884530055233910617034926361749794368386521710228598124855580067968247137845182086022776403188806032567123049288660903125202299528462508241039394973069379460843790204542745542297687182760181829121153550798751059126481263693178268397<237>] Free to factor
10280+3599 = (1)27851<280> = 54504797 × 879376873 × 26692746659<11> × 60113271872690343782633<23> × 14447213576577089913258867090496490104985302510851551869378201691506471240181475321196075539200721522524435877485625180009781528066605036018996824334175999103547574182820595981601998457846568821043055919425549442785526749351542393<230>
10281+3599 = (1)27951<281> = 3 × 73 × 41 × 107 × 709211 × [3470555696025066866648111295680290160355416349064678271081847695912328978506485244366216346934772155734652835447813349142992839895252102204499530649837453299134577968960390684608473608566296927958506534100299834773526106707605770864765949680897266122413039734519637267<268>] Free to factor
10282+3599 = (1)28051<282> = 23 × 12251 × [394328452730073893208757088546848388990822793919612990283352596278249197443016581117108846877135535026816306427908675107661525806628424693320904100503281404219393309902336672112342598868987131879602059498642918629929450696522062479766021269288083354725651893939842039908405387<276>] Free to factor
10283+3599 = (1)28151<283> = 307 × 4091 × 31663 × 98559497 × 55614514480118472662719996703<29> × 5097426191678739670945249337366987078409963388393950406614760480311571180380959393960774095029193181781977825408842802250533804705624423882758472854892068702914735691543450903994173975796121620904419611367867016693599076057977422816231<235>
10284+3599 = (1)28251<284> = 32 × 16867706859633268351123<23> × 73191211556388728641443065554485337598645101861536561175535441244874254059431312049153583467911743906840009128391735381442165633306698761510502668364855711115343219507635042585256190883669314033842626181110895654231683924507561288986746530978395223534647151693<260>
10285+3599 = (1)28351<285> = 353 × 76961 × 132421 × 12953489 × 280580281 × 26770511407528712303547913<26> × 266623385824097654315196150487519<33> × [1190574033777068502818987902831292037466654963540070699896544253547959669044097621054437270134893384916420274223511856511846368756529859047769334413993743009341787643729843185317438845585070645948909<199>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3920252059 for P33 / October 24, 2015 2015 年 10 月 24 日) Free to factor
10286+3599 = (1)28451<286> = 41 × 21953567889916119576452383<26> × 1234435839249524925458920969693274996958555424986138802936795092324407096521541060064863723652630248156756687821665458220628170764163752456188615840369378426545956544579760250187688869208606184818906055662332950225452575090536492783253366528389401276120873417<259>
10287+3599 = (1)28551<287> = 3 × 7 × 19 × 1619 × 4789 × 24533 × 27663299 × 818428777 × 7589842121<10> × [851970673948104629951736503230431765829741747179948237414999167945282865786474310788848245538723460448024935160772117973470965822480192358010267629010017920729206432431944900050545411209799998230415578906426474601576416321645362543984653779348001<246>] Free to factor
10288+3599 = (1)28651<288> = 801421 × 9379106193182787307774446203579056727<37> × 342059731494676795670065842379190655361901<42> × 43214885704852371248583903226869375581607812018504380224863968704573216149752505391314079427768471398990884553799420607736247550181222226415101402890091148617411079933806650247044266247664218089929861153<203> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=575563491 for P37 / October 29, 2015 2015 年 10 月 29 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=11000000, sigma=1:2788509281 for P42 x P203 / June 26, 2020 2020 年 6 月 26 日)
10289+3599 = (1)28751<289> = 29 × 4231 × 288181 × 30605261634742247806293957983<29> × [1026727103798414186276324436201337668236297816351443814523340672686329940218849943811134780665581189903805093622217100204956352044487439882262669665960826692430839384979251385375181418049072421279023469058844371500703578420860108216657132755876293063<250>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2808752776 for P29 / November 12, 2015 2015 年 11 月 12 日) Free to factor
10290+3599 = (1)28851<290> = 3 × 17 × 5738167541<10> × 1501828667491<13> × 3721740215521<13> × 1977995934409669932281366516122955119323707<43> × 3434173637659042892517066018390754222235342123218577598048843398768334555672378028283593798736927758279763985117988131665023186680565732167190378300594427762640247760802045227002699705128143830756108474946617393<211> (Eric Jeancolas / GMP-ECM 7.0.4 B1=11000000, sigma=1:2122932247 for P43 x P211 / June 24, 2020 2020 年 6 月 24 日)
10291+3599 = (1)28951<291> = 41 × 349 × 606501437 × 6825631331<10> × 3759683443207734641629<22> × 46309148991150764274576430472217923<35> × 39265429359959340374970974924664634177<38> × 274375364571217525004697813702588898436080757978763203957738182762183449301885002370463176726057018606409315518808950158325602129292748962594445971455016766515740210495335443<174> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4294246232 for P35 / November 11, 2015 2015 年 11 月 11 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=11000000, sigma=1:1337150610 for P38 x P174 / June 22, 2020 2020 年 6 月 22 日)
10292+3599 = (1)29051<292> = 7340833 × 4836051263<10> × 8184008902300829523511188943999<31> × 3824328213173809529037473342960444178140972681949535553918429528786527188781163871800525648703394775282579036221324676297473316037673232027836955423330573627090225232054666463544395041736388348393568289841882800281742129568998126093381659447631<244> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1013757573 for P31 x P244 / November 12, 2015 2015 年 11 月 12 日)
10293+3599 = (1)29151<293> = 32 × 7 × 176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700176366843033509700177<291>
10294+3599 = (1)29251<294> = 55337 × 131943701 × 1487928142847817517841<22> × [10227541718825241956752189879422223859570082723146449190273136337195412521931519289886216444170709166385485714128887776133253796149130793068597942806741878924037820725489176034464844829264656355037851510487895732454617715646064104976128560864852948667409550603<260>] Free to factor
10295+3599 = (1)29351<295> = 59 × 109391 × 134909 × 220511 × 112437197 × 1112956183<10> × 38854745357<11> × 639659115149935867805432543461619<33> × 58557791908528693831001088353639820517<38> × [31775125581791405864702816752459290392824324429022764270128186444118144496049441793628866019094583843417358549978701570680032804067846111382758098744171611040853487893197458337761<179>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3936904113 for P33 / November 11, 2015 2015 年 11 月 11 日) (Eric Jeancolas / GMP-ECM 7.0.4 B1=11000000, sigma=1:2442879054 for P38 / June 30, 2020 2020 年 6 月 30 日) Free to factor
10296+3599 = (1)29451<296> = 3 × 41 × 10891 × 4082394792237698767627<22> × 5566826422286560991501<22> × 16009172008098681814169<23> × 22797806805389676311981681154887419507941015242232738689048285170459855109061557570303737980175593593656144619632747836148383464263024432551370434829774192855868431069900069345553365952223543922210717133648549870789054850689<224>
10297+3599 = (1)29551<297> = 2917 × 44927 × 5430757 × 1335234580865847200012989<25> × [116921855751163034136447704235302018338660209672412461148626365457617155497297818509647114320543339267822324690684888981277611208159123057227405418021789691724757952247300336732511204842393578776010270814951079922560254309621395203776043934241633538994125293<258>] Free to factor
10298+3599 = (1)29651<298> = 229 × 1039 × 814013 × 1376664413<10> × 934963498757<12> × [4457099996394515376944940519745482140127126363771651021639224178741455295715350999493330109978655536723379901815630266707057575746382598634398541743510659929331713823847174711684126568708381491984654546326086145452995077931510338349939898430121768527419028303971137<265>] Free to factor
10299+3599 = (1)29751<299> = 3 × 7 × 321679 × 4151422411<10> × 24101931463<11> × 5017019123489413<16> × 3276581363463142045557013413405614501480669046925652349363129742083677955635454662653628166524868549850861036202127149744867486441544585205566090435831467801237096458859549892981118601572653975172520461176687733562520515594703206138610211345543916254560221<256>
10300+3599 = (1)29851<300> = 1117 × 36341424126961<14> × 4013833984340411171999459<25> × [681934982018810200417270565095926145246859462136508353979575690954948227690015582045439613969173217509987139327242937523345134395853591190518383036101247235175034145536564034026530773734107896751985821751909282523912251939811450232181703833923863642626254297<258>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク