Table of contents 目次
- Repunit レピュニット
- Definition of repunit レピュニットの定義
- Factorization of repunit レピュニットの因数分解
- List of repunit レピュニットの一覧
- Links related to repunit レピュニットの関連リンク
- Möbius function メビウス関数
- Definition of Möbius function メビウス関数の定義
- List of Möbius function メビウス関数の一覧
- Links related to Möbius function メビウス関数の関連リンク
- Euler's totient function オイラーのトーシェント関数
- Definition of Euler's totient function オイラーのトーシェント関数の定義
- Calculation of Euler's totient function オイラーのトーシェント関数の計算
- List of Euler's totient function オイラーのトーシェント関数の一覧
- Links related to Euler's totient function オイラーのトーシェント関数の関連リンク
- Radical function ラジカル関数
- Definition of radical function ラジカル関数の定義
- Calculation of radical function ラジカル関数の計算
- List of radical function ラジカル関数の一覧
- Links related to radical function ラジカル関数の関連リンク
-
Squarefree part
無平方核
-
Definition of squarefree part
無平方核の定義
-
Calculation of squarefree part
無平方核の計算
-
List of squarefree part
無平方核の一覧
-
Links related to squarefree core
無平方核の関連リンク
- Cyclotomic polynomial 円分多項式
- Definition of cyclotomic polynomial 円分多項式の定義
- Calculation of cyclotomic polynomials 円分多項式の計算
- List of cyclotomic polynomials 円分多項式の一覧
- Links related to cyclotomic polynomials 円分多項式の関連リンク
-
Aurifeuillean factorization of cyclotomic numbers
円分数のオーラフィーユ因数分解
-
List of Aurifeuillean factorization of cyclotomic numbers
円分数のオーラフィーユ因数分解の一覧
-
Aurifeuillean factorization of repunit
レピュニットのオーラフィーユ因数分解
- Links related to Aurifeuillean factorization オーラフィーユ因数分解の関連リンク
$$\begin{eqnarray}
\mathrm{R}_{n} & = & \frac{10^{n}-1}{10-1} & \hspace{2em} & \text{(base-$10$-repunit)} \\
\mathrm{M}_{n}^{(x)} & = & \frac{x^{n}-1}{x-1} & & \text{(base-$x$-repunit)}
\end{eqnarray}$$
$$\begin{eqnarray}
\mathrm{M}_{n}^{(x)} & = & \frac{x^{n}-1}{x-1} & = & \prod_{d\mid n;1\lt d}{{\large\Phi}_{d}(x)} \\
x^{n}+1 & = & \frac{x^{2n}-1}{x^{n}-1} & = & \prod_{d\mid 2n;d\nmid n}{{\large\Phi}_{d}(x)}
\end{eqnarray}$$
See Factorization of 11...11 (Repunit). 11...11 (レピュニット) の素因数分解 を参照。
$$\begin{eqnarray}
\mu(n) & = & 0 & \hspace{2em} & \text{if $n$ has one or more repeated prime factors (squareful)} \\
\mu(n) & = & 1 & & \text{if $n$ is $1$} \\
\mu(n) & = & (-1)^k & & \text{if $n$ is a product of $k$ distinct prime numbers (squarefree)}
\end{eqnarray}$$
$\mu(1)\cdots\mu(20)$$\mu(1)\cdots\mu(20)$
$$\begin{eqnarray}\mu(1)&=&1&\hspace{2em}&\\\mu(2)&=&-1&&2\\\mu(3)&=&-1&&3\\\mu(4)&=&0&&2^2\\\mu(5)&=&-1&&5\\\mu(6)&=&1&&2\cdot 3\\\mu(7)&=&-1&&7\\\mu(8)&=&0&&2^3\\\mu(9)&=&0&&3^2\\\mu(10)&=&1&&2\cdot 5\\\mu(11)&=&-1&&11\\\mu(12)&=&0&&2^2\cdot 3\\\mu(13)&=&-1&&13\\\mu(14)&=&1&&2\cdot 7\\\mu(15)&=&1&&3\cdot 5\\\mu(16)&=&0&&2^4\\\mu(17)&=&-1&&17\\\mu(18)&=&0&&2\cdot 3^2\\\mu(19)&=&-1&&19\\\mu(20)&=&0&&2^2\cdot 5\end{eqnarray}$$
$\mu(21)\cdots\mu(40)$$\mu(21)\cdots\mu(40)$
%%\begin{eqnarray}\mu(21)|=|1|\hspace{2em}|3\cdot 7\\\mu(22)|=|1||2\cdot 11\\\mu(23)|=|-1||23\\\mu(24)|=|0||2^3\cdot 3\\\mu(25)|=|0||5^2\\\mu(26)|=|1||2\cdot 13\\\mu(27)|=|0||3^3\\\mu(28)|=|0||2^2\cdot 7\\\mu(29)|=|-1||29\\\mu(30)|=|-1||2\cdot 3\cdot 5\\\mu(31)|=|-1||31\\\mu(32)|=|0||2^5\\\mu(33)|=|1||3\cdot 11\\\mu(34)|=|1||2\cdot 17\\\mu(35)|=|1||5\cdot 7\\\mu(36)|=|0||2^2\cdot 3^2\\\mu(37)|=|-1||37\\\mu(38)|=|1||2\cdot 19\\\mu(39)|=|1||3\cdot 13\\\mu(40)|=|0||2^3\cdot 5\end{eqnarray}%%
$\mu(41)\cdots\mu(60)$$\mu(41)\cdots\mu(60)$
%%\begin{eqnarray}\mu(41)|=|-1|\hspace{2em}|41\\\mu(42)|=|-1||2\cdot 3\cdot 7\\\mu(43)|=|-1||43\\\mu(44)|=|0||2^2\cdot 11\\\mu(45)|=|0||3^2\cdot 5\\\mu(46)|=|1||2\cdot 23\\\mu(47)|=|-1||47\\\mu(48)|=|0||2^4\cdot 3\\\mu(49)|=|0||7^2\\\mu(50)|=|0||2\cdot 5^2\\\mu(51)|=|1||3\cdot 17\\\mu(52)|=|0||2^2\cdot 13\\\mu(53)|=|-1||53\\\mu(54)|=|0||2\cdot 3^3\\\mu(55)|=|1||5\cdot 11\\\mu(56)|=|0||2^3\cdot 7\\\mu(57)|=|1||3\cdot 19\\\mu(58)|=|1||2\cdot 29\\\mu(59)|=|-1||59\\\mu(60)|=|0||2^2\cdot 3\cdot 5\end{eqnarray}%%
$\mu(61)\cdots\mu(80)$$\mu(61)\cdots\mu(80)$
%%\begin{eqnarray}\mu(61)|=|-1|\hspace{2em}|61\\\mu(62)|=|1||2\cdot 31\\\mu(63)|=|0||3^2\cdot 7\\\mu(64)|=|0||2^6\\\mu(65)|=|1||5\cdot 13\\\mu(66)|=|-1||2\cdot 3\cdot 11\\\mu(67)|=|-1||67\\\mu(68)|=|0||2^2\cdot 17\\\mu(69)|=|1||3\cdot 23\\\mu(70)|=|-1||2\cdot 5\cdot 7\\\mu(71)|=|-1||71\\\mu(72)|=|0||2^3\cdot 3^2\\\mu(73)|=|-1||73\\\mu(74)|=|1||2\cdot 37\\\mu(75)|=|0||3\cdot 5^2\\\mu(76)|=|0||2^2\cdot 19\\\mu(77)|=|1||7\cdot 11\\\mu(78)|=|-1||2\cdot 3\cdot 13\\\mu(79)|=|-1||79\\\mu(80)|=|0||2^4\cdot 5\end{eqnarray}%%
$\mu(81)\cdots\mu(100)$$\mu(81)\cdots\mu(100)$
%%\begin{eqnarray}\mu(81)|=|0|\hspace{2em}|3^4\\\mu(82)|=|1||2\cdot 41\\\mu(83)|=|-1||83\\\mu(84)|=|0||2^2\cdot 3\cdot 7\\\mu(85)|=|1||5\cdot 17\\\mu(86)|=|1||2\cdot 43\\\mu(87)|=|1||3\cdot 29\\\mu(88)|=|0||2^3\cdot 11\\\mu(89)|=|-1||89\\\mu(90)|=|0||2\cdot 3^2\cdot 5\\\mu(91)|=|1||7\cdot 13\\\mu(92)|=|0||2^2\cdot 23\\\mu(93)|=|1||3\cdot 31\\\mu(94)|=|1||2\cdot 47\\\mu(95)|=|1||5\cdot 19\\\mu(96)|=|0||2^5\cdot 3\\\mu(97)|=|-1||97\\\mu(98)|=|0||2\cdot 7^2\\\mu(99)|=|0||3^2\cdot 11\\\mu(100)|=|0||2^2\cdot 5^2\end{eqnarray}%%
$\mu(101)\cdots\mu(120)$$\mu(101)\cdots\mu(120)$
%%\begin{eqnarray}\mu(101)|=|-1|\hspace{2em}|101\\\mu(102)|=|-1||2\cdot 3\cdot 17\\\mu(103)|=|-1||103\\\mu(104)|=|0||2^3\cdot 13\\\mu(105)|=|-1||3\cdot 5\cdot 7\\\mu(106)|=|1||2\cdot 53\\\mu(107)|=|-1||107\\\mu(108)|=|0||2^2\cdot 3^3\\\mu(109)|=|-1||109\\\mu(110)|=|-1||2\cdot 5\cdot 11\\\mu(111)|=|1||3\cdot 37\\\mu(112)|=|0||2^4\cdot 7\\\mu(113)|=|-1||113\\\mu(114)|=|-1||2\cdot 3\cdot 19\\\mu(115)|=|1||5\cdot 23\\\mu(116)|=|0||2^2\cdot 29\\\mu(117)|=|0||3^2\cdot 13\\\mu(118)|=|1||2\cdot 59\\\mu(119)|=|1||7\cdot 17\\\mu(120)|=|0||2^3\cdot 3\cdot 5\end{eqnarray}%%
$\mu(121)\cdots\mu(140)$$\mu(121)\cdots\mu(140)$
%%\begin{eqnarray}\mu(121)|=|0|\hspace{2em}|11^2\\\mu(122)|=|1||2\cdot 61\\\mu(123)|=|1||3\cdot 41\\\mu(124)|=|0||2^2\cdot 31\\\mu(125)|=|0||5^3\\\mu(126)|=|0||2\cdot 3^2\cdot 7\\\mu(127)|=|-1||127\\\mu(128)|=|0||2^7\\\mu(129)|=|1||3\cdot 43\\\mu(130)|=|-1||2\cdot 5\cdot 13\\\mu(131)|=|-1||131\\\mu(132)|=|0||2^2\cdot 3\cdot 11\\\mu(133)|=|1||7\cdot 19\\\mu(134)|=|1||2\cdot 67\\\mu(135)|=|0||3^3\cdot 5\\\mu(136)|=|0||2^3\cdot 17\\\mu(137)|=|-1||137\\\mu(138)|=|-1||2\cdot 3\cdot 23\\\mu(139)|=|-1||139\\\mu(140)|=|0||2^2\cdot 5\cdot 7\end{eqnarray}%%
$\mu(141)\cdots\mu(160)$$\mu(141)\cdots\mu(160)$
%%\begin{eqnarray}\mu(141)|=|1|\hspace{2em}|3\cdot 47\\\mu(142)|=|1||2\cdot 71\\\mu(143)|=|1||11\cdot 13\\\mu(144)|=|0||2^4\cdot 3^2\\\mu(145)|=|1||5\cdot 29\\\mu(146)|=|1||2\cdot 73\\\mu(147)|=|0||3\cdot 7^2\\\mu(148)|=|0||2^2\cdot 37\\\mu(149)|=|-1||149\\\mu(150)|=|0||2\cdot 3\cdot 5^2\\\mu(151)|=|-1||151\\\mu(152)|=|0||2^3\cdot 19\\\mu(153)|=|0||3^2\cdot 17\\\mu(154)|=|-1||2\cdot 7\cdot 11\\\mu(155)|=|1||5\cdot 31\\\mu(156)|=|0||2^2\cdot 3\cdot 13\\\mu(157)|=|-1||157\\\mu(158)|=|1||2\cdot 79\\\mu(159)|=|1||3\cdot 53\\\mu(160)|=|0||2^5\cdot 5\end{eqnarray}%%
$\mu(161)\cdots\mu(180)$$\mu(161)\cdots\mu(180)$
%%\begin{eqnarray}\mu(161)|=|1|\hspace{2em}|7\cdot 23\\\mu(162)|=|0||2\cdot 3^4\\\mu(163)|=|-1||163\\\mu(164)|=|0||2^2\cdot 41\\\mu(165)|=|-1||3\cdot 5\cdot 11\\\mu(166)|=|1||2\cdot 83\\\mu(167)|=|-1||167\\\mu(168)|=|0||2^3\cdot 3\cdot 7\\\mu(169)|=|0||13^2\\\mu(170)|=|-1||2\cdot 5\cdot 17\\\mu(171)|=|0||3^2\cdot 19\\\mu(172)|=|0||2^2\cdot 43\\\mu(173)|=|-1||173\\\mu(174)|=|-1||2\cdot 3\cdot 29\\\mu(175)|=|0||5^2\cdot 7\\\mu(176)|=|0||2^4\cdot 11\\\mu(177)|=|1||3\cdot 59\\\mu(178)|=|1||2\cdot 89\\\mu(179)|=|-1||179\\\mu(180)|=|0||2^2\cdot 3^2\cdot 5\end{eqnarray}%%
$\mu(181)\cdots\mu(200)$$\mu(181)\cdots\mu(200)$
%%\begin{eqnarray}\mu(181)|=|-1|\hspace{2em}|181\\\mu(182)|=|-1||2\cdot 7\cdot 13\\\mu(183)|=|1||3\cdot 61\\\mu(184)|=|0||2^3\cdot 23\\\mu(185)|=|1||5\cdot 37\\\mu(186)|=|-1||2\cdot 3\cdot 31\\\mu(187)|=|1||11\cdot 17\\\mu(188)|=|0||2^2\cdot 47\\\mu(189)|=|0||3^3\cdot 7\\\mu(190)|=|-1||2\cdot 5\cdot 19\\\mu(191)|=|-1||191\\\mu(192)|=|0||2^6\cdot 3\\\mu(193)|=|-1||193\\\mu(194)|=|1||2\cdot 97\\\mu(195)|=|-1||3\cdot 5\cdot 13\\\mu(196)|=|0||2^2\cdot 7^2\\\mu(197)|=|-1||197\\\mu(198)|=|0||2\cdot 3^2\cdot 11\\\mu(199)|=|-1||199\\\mu(200)|=|0||2^3\cdot 5^2\end{eqnarray}%%
トーシェント is also written as トーティエント. トーシェントはトーティエントとも書く。
Euler's totient function $\phi(n)$ is the number of positive integers that are less than or equal to the positive integer $n$ and that are relatively prime to $n$. オイラーのトーシェント関数 $\phi(n)$ は正の整数 $n$ 以下で $n$ と互いに素である正の整数の個数です。
$$\begin{eqnarray}
n & = & \prod{p_{i}^{e_{i}}} \\
\phi(n) & = & \prod{(p_{i}-1)p_{i}^{e_{i}-1}}
\end{eqnarray}$$
$\phi(1)\cdots\phi(20)$$\phi(1)\cdots\phi(20)$
$$\begin{eqnarray}\phi(1)&=&1&\hspace{2em}&\\\phi(2)&=&1&&(2-1)2^{1-1}\\\phi(3)&=&2&&(3-1)3^{1-1}\\\phi(4)&=&2&&(2-1)2^{2-1}\\\phi(5)&=&4&&(5-1)5^{1-1}\\\phi(6)&=&2&&(2-1)2^{1-1} \cdot (3-1)3^{1-1}\\\phi(7)&=&6&&(7-1)7^{1-1}\\\phi(8)&=&4&&(2-1)2^{3-1}\\\phi(9)&=&6&&(3-1)3^{2-1}\\\phi(10)&=&4&&(2-1)2^{1-1} \cdot (5-1)5^{1-1}\\\phi(11)&=&10&&(11-1)11^{1-1}\\\phi(12)&=&4&&(2-1)2^{2-1} \cdot (3-1)3^{1-1}\\\phi(13)&=&12&&(13-1)13^{1-1}\\\phi(14)&=&6&&(2-1)2^{1-1} \cdot (7-1)7^{1-1}\\\phi(15)&=&8&&(3-1)3^{1-1} \cdot (5-1)5^{1-1}\\\phi(16)&=&8&&(2-1)2^{4-1}\\\phi(17)&=&16&&(17-1)17^{1-1}\\\phi(18)&=&6&&(2-1)2^{1-1} \cdot (3-1)3^{2-1}\\\phi(19)&=&18&&(19-1)19^{1-1}\\\phi(20)&=&8&&(2-1)2^{2-1} \cdot (5-1)5^{1-1}\end{eqnarray}$$
$\phi(21)\cdots\phi(40)$$\phi(21)\cdots\phi(40)$
%%\begin{eqnarray}\phi(21)|=|12|\hspace{2em}|(3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(22)|=|10||(2-1)2^{1-1} \cdot (11-1)11^{1-1}\\\phi(23)|=|22||(23-1)23^{1-1}\\\phi(24)|=|8||(2-1)2^{3-1} \cdot (3-1)3^{1-1}\\\phi(25)|=|20||(5-1)5^{2-1}\\\phi(26)|=|12||(2-1)2^{1-1} \cdot (13-1)13^{1-1}\\\phi(27)|=|18||(3-1)3^{3-1}\\\phi(28)|=|12||(2-1)2^{2-1} \cdot (7-1)7^{1-1}\\\phi(29)|=|28||(29-1)29^{1-1}\\\phi(30)|=|8||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\\\phi(31)|=|30||(31-1)31^{1-1}\\\phi(32)|=|16||(2-1)2^{5-1}\\\phi(33)|=|20||(3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(34)|=|16||(2-1)2^{1-1} \cdot (17-1)17^{1-1}\\\phi(35)|=|24||(5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(36)|=|12||(2-1)2^{2-1} \cdot (3-1)3^{2-1}\\\phi(37)|=|36||(37-1)37^{1-1}\\\phi(38)|=|18||(2-1)2^{1-1} \cdot (19-1)19^{1-1}\\\phi(39)|=|24||(3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(40)|=|16||(2-1)2^{3-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(41)\cdots\phi(60)$$\phi(41)\cdots\phi(60)$
%%\begin{eqnarray}\phi(41)|=|40|\hspace{2em}|(41-1)41^{1-1}\\\phi(42)|=|12||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(43)|=|42||(43-1)43^{1-1}\\\phi(44)|=|20||(2-1)2^{2-1} \cdot (11-1)11^{1-1}\\\phi(45)|=|24||(3-1)3^{2-1} \cdot (5-1)5^{1-1}\\\phi(46)|=|22||(2-1)2^{1-1} \cdot (23-1)23^{1-1}\\\phi(47)|=|46||(47-1)47^{1-1}\\\phi(48)|=|16||(2-1)2^{4-1} \cdot (3-1)3^{1-1}\\\phi(49)|=|42||(7-1)7^{2-1}\\\phi(50)|=|20||(2-1)2^{1-1} \cdot (5-1)5^{2-1}\\\phi(51)|=|32||(3-1)3^{1-1} \cdot (17-1)17^{1-1}\\\phi(52)|=|24||(2-1)2^{2-1} \cdot (13-1)13^{1-1}\\\phi(53)|=|52||(53-1)53^{1-1}\\\phi(54)|=|18||(2-1)2^{1-1} \cdot (3-1)3^{3-1}\\\phi(55)|=|40||(5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(56)|=|24||(2-1)2^{3-1} \cdot (7-1)7^{1-1}\\\phi(57)|=|36||(3-1)3^{1-1} \cdot (19-1)19^{1-1}\\\phi(58)|=|28||(2-1)2^{1-1} \cdot (29-1)29^{1-1}\\\phi(59)|=|58||(59-1)59^{1-1}\\\phi(60)|=|16||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(61)\cdots\phi(80)$$\phi(61)\cdots\phi(80)$
%%\begin{eqnarray}\phi(61)|=|60|\hspace{2em}|(61-1)61^{1-1}\\\phi(62)|=|30||(2-1)2^{1-1} \cdot (31-1)31^{1-1}\\\phi(63)|=|36||(3-1)3^{2-1} \cdot (7-1)7^{1-1}\\\phi(64)|=|32||(2-1)2^{6-1}\\\phi(65)|=|48||(5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(66)|=|20||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(67)|=|66||(67-1)67^{1-1}\\\phi(68)|=|32||(2-1)2^{2-1} \cdot (17-1)17^{1-1}\\\phi(69)|=|44||(3-1)3^{1-1} \cdot (23-1)23^{1-1}\\\phi(70)|=|24||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(71)|=|70||(71-1)71^{1-1}\\\phi(72)|=|24||(2-1)2^{3-1} \cdot (3-1)3^{2-1}\\\phi(73)|=|72||(73-1)73^{1-1}\\\phi(74)|=|36||(2-1)2^{1-1} \cdot (37-1)37^{1-1}\\\phi(75)|=|40||(3-1)3^{1-1} \cdot (5-1)5^{2-1}\\\phi(76)|=|36||(2-1)2^{2-1} \cdot (19-1)19^{1-1}\\\phi(77)|=|60||(7-1)7^{1-1} \cdot (11-1)11^{1-1}\\\phi(78)|=|24||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(79)|=|78||(79-1)79^{1-1}\\\phi(80)|=|32||(2-1)2^{4-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(81)\cdots\phi(100)$$\phi(81)\cdots\phi(100)$
%%\begin{eqnarray}\phi(81)|=|54|\hspace{2em}|(3-1)3^{4-1}\\\phi(82)|=|40||(2-1)2^{1-1} \cdot (41-1)41^{1-1}\\\phi(83)|=|82||(83-1)83^{1-1}\\\phi(84)|=|24||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(85)|=|64||(5-1)5^{1-1} \cdot (17-1)17^{1-1}\\\phi(86)|=|42||(2-1)2^{1-1} \cdot (43-1)43^{1-1}\\\phi(87)|=|56||(3-1)3^{1-1} \cdot (29-1)29^{1-1}\\\phi(88)|=|40||(2-1)2^{3-1} \cdot (11-1)11^{1-1}\\\phi(89)|=|88||(89-1)89^{1-1}\\\phi(90)|=|24||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (5-1)5^{1-1}\\\phi(91)|=|72||(7-1)7^{1-1} \cdot (13-1)13^{1-1}\\\phi(92)|=|44||(2-1)2^{2-1} \cdot (23-1)23^{1-1}\\\phi(93)|=|60||(3-1)3^{1-1} \cdot (31-1)31^{1-1}\\\phi(94)|=|46||(2-1)2^{1-1} \cdot (47-1)47^{1-1}\\\phi(95)|=|72||(5-1)5^{1-1} \cdot (19-1)19^{1-1}\\\phi(96)|=|32||(2-1)2^{5-1} \cdot (3-1)3^{1-1}\\\phi(97)|=|96||(97-1)97^{1-1}\\\phi(98)|=|42||(2-1)2^{1-1} \cdot (7-1)7^{2-1}\\\phi(99)|=|60||(3-1)3^{2-1} \cdot (11-1)11^{1-1}\\\phi(100)|=|40||(2-1)2^{2-1} \cdot (5-1)5^{2-1}\end{eqnarray}%%
$\phi(101)\cdots\phi(120)$$\phi(101)\cdots\phi(120)$
%%\begin{eqnarray}\phi(101)|=|100|\hspace{2em}|(101-1)101^{1-1}\\\phi(102)|=|32||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (17-1)17^{1-1}\\\phi(103)|=|102||(103-1)103^{1-1}\\\phi(104)|=|48||(2-1)2^{3-1} \cdot (13-1)13^{1-1}\\\phi(105)|=|48||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(106)|=|52||(2-1)2^{1-1} \cdot (53-1)53^{1-1}\\\phi(107)|=|106||(107-1)107^{1-1}\\\phi(108)|=|36||(2-1)2^{2-1} \cdot (3-1)3^{3-1}\\\phi(109)|=|108||(109-1)109^{1-1}\\\phi(110)|=|40||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(111)|=|72||(3-1)3^{1-1} \cdot (37-1)37^{1-1}\\\phi(112)|=|48||(2-1)2^{4-1} \cdot (7-1)7^{1-1}\\\phi(113)|=|112||(113-1)113^{1-1}\\\phi(114)|=|36||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (19-1)19^{1-1}\\\phi(115)|=|88||(5-1)5^{1-1} \cdot (23-1)23^{1-1}\\\phi(116)|=|56||(2-1)2^{2-1} \cdot (29-1)29^{1-1}\\\phi(117)|=|72||(3-1)3^{2-1} \cdot (13-1)13^{1-1}\\\phi(118)|=|58||(2-1)2^{1-1} \cdot (59-1)59^{1-1}\\\phi(119)|=|96||(7-1)7^{1-1} \cdot (17-1)17^{1-1}\\\phi(120)|=|32||(2-1)2^{3-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(121)\cdots\phi(140)$$\phi(121)\cdots\phi(140)$
%%\begin{eqnarray}\phi(121)|=|110|\hspace{2em}|(11-1)11^{2-1}\\\phi(122)|=|60||(2-1)2^{1-1} \cdot (61-1)61^{1-1}\\\phi(123)|=|80||(3-1)3^{1-1} \cdot (41-1)41^{1-1}\\\phi(124)|=|60||(2-1)2^{2-1} \cdot (31-1)31^{1-1}\\\phi(125)|=|100||(5-1)5^{3-1}\\\phi(126)|=|36||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (7-1)7^{1-1}\\\phi(127)|=|126||(127-1)127^{1-1}\\\phi(128)|=|64||(2-1)2^{7-1}\\\phi(129)|=|84||(3-1)3^{1-1} \cdot (43-1)43^{1-1}\\\phi(130)|=|48||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(131)|=|130||(131-1)131^{1-1}\\\phi(132)|=|40||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(133)|=|108||(7-1)7^{1-1} \cdot (19-1)19^{1-1}\\\phi(134)|=|66||(2-1)2^{1-1} \cdot (67-1)67^{1-1}\\\phi(135)|=|72||(3-1)3^{3-1} \cdot (5-1)5^{1-1}\\\phi(136)|=|64||(2-1)2^{3-1} \cdot (17-1)17^{1-1}\\\phi(137)|=|136||(137-1)137^{1-1}\\\phi(138)|=|44||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (23-1)23^{1-1}\\\phi(139)|=|138||(139-1)139^{1-1}\\\phi(140)|=|48||(2-1)2^{2-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\end{eqnarray}%%
$\phi(141)\cdots\phi(160)$$\phi(141)\cdots\phi(160)$
%%\begin{eqnarray}\phi(141)|=|92|\hspace{2em}|(3-1)3^{1-1} \cdot (47-1)47^{1-1}\\\phi(142)|=|70||(2-1)2^{1-1} \cdot (71-1)71^{1-1}\\\phi(143)|=|120||(11-1)11^{1-1} \cdot (13-1)13^{1-1}\\\phi(144)|=|48||(2-1)2^{4-1} \cdot (3-1)3^{2-1}\\\phi(145)|=|112||(5-1)5^{1-1} \cdot (29-1)29^{1-1}\\\phi(146)|=|72||(2-1)2^{1-1} \cdot (73-1)73^{1-1}\\\phi(147)|=|84||(3-1)3^{1-1} \cdot (7-1)7^{2-1}\\\phi(148)|=|72||(2-1)2^{2-1} \cdot (37-1)37^{1-1}\\\phi(149)|=|148||(149-1)149^{1-1}\\\phi(150)|=|40||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{2-1}\\\phi(151)|=|150||(151-1)151^{1-1}\\\phi(152)|=|72||(2-1)2^{3-1} \cdot (19-1)19^{1-1}\\\phi(153)|=|96||(3-1)3^{2-1} \cdot (17-1)17^{1-1}\\\phi(154)|=|60||(2-1)2^{1-1} \cdot (7-1)7^{1-1} \cdot (11-1)11^{1-1}\\\phi(155)|=|120||(5-1)5^{1-1} \cdot (31-1)31^{1-1}\\\phi(156)|=|48||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(157)|=|156||(157-1)157^{1-1}\\\phi(158)|=|78||(2-1)2^{1-1} \cdot (79-1)79^{1-1}\\\phi(159)|=|104||(3-1)3^{1-1} \cdot (53-1)53^{1-1}\\\phi(160)|=|64||(2-1)2^{5-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(161)\cdots\phi(180)$$\phi(161)\cdots\phi(180)$
%%\begin{eqnarray}\phi(161)|=|132|\hspace{2em}|(7-1)7^{1-1} \cdot (23-1)23^{1-1}\\\phi(162)|=|54||(2-1)2^{1-1} \cdot (3-1)3^{4-1}\\\phi(163)|=|162||(163-1)163^{1-1}\\\phi(164)|=|80||(2-1)2^{2-1} \cdot (41-1)41^{1-1}\\\phi(165)|=|80||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(166)|=|82||(2-1)2^{1-1} \cdot (83-1)83^{1-1}\\\phi(167)|=|166||(167-1)167^{1-1}\\\phi(168)|=|48||(2-1)2^{3-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(169)|=|156||(13-1)13^{2-1}\\\phi(170)|=|64||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (17-1)17^{1-1}\\\phi(171)|=|108||(3-1)3^{2-1} \cdot (19-1)19^{1-1}\\\phi(172)|=|84||(2-1)2^{2-1} \cdot (43-1)43^{1-1}\\\phi(173)|=|172||(173-1)173^{1-1}\\\phi(174)|=|56||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (29-1)29^{1-1}\\\phi(175)|=|120||(5-1)5^{2-1} \cdot (7-1)7^{1-1}\\\phi(176)|=|80||(2-1)2^{4-1} \cdot (11-1)11^{1-1}\\\phi(177)|=|116||(3-1)3^{1-1} \cdot (59-1)59^{1-1}\\\phi(178)|=|88||(2-1)2^{1-1} \cdot (89-1)89^{1-1}\\\phi(179)|=|178||(179-1)179^{1-1}\\\phi(180)|=|48||(2-1)2^{2-1} \cdot (3-1)3^{2-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(181)\cdots\phi(200)$$\phi(181)\cdots\phi(200)$
%%\begin{eqnarray}\phi(181)|=|180|\hspace{2em}|(181-1)181^{1-1}\\\phi(182)|=|72||(2-1)2^{1-1} \cdot (7-1)7^{1-1} \cdot (13-1)13^{1-1}\\\phi(183)|=|120||(3-1)3^{1-1} \cdot (61-1)61^{1-1}\\\phi(184)|=|88||(2-1)2^{3-1} \cdot (23-1)23^{1-1}\\\phi(185)|=|144||(5-1)5^{1-1} \cdot (37-1)37^{1-1}\\\phi(186)|=|60||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (31-1)31^{1-1}\\\phi(187)|=|160||(11-1)11^{1-1} \cdot (17-1)17^{1-1}\\\phi(188)|=|92||(2-1)2^{2-1} \cdot (47-1)47^{1-1}\\\phi(189)|=|108||(3-1)3^{3-1} \cdot (7-1)7^{1-1}\\\phi(190)|=|72||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (19-1)19^{1-1}\\\phi(191)|=|190||(191-1)191^{1-1}\\\phi(192)|=|64||(2-1)2^{6-1} \cdot (3-1)3^{1-1}\\\phi(193)|=|192||(193-1)193^{1-1}\\\phi(194)|=|96||(2-1)2^{1-1} \cdot (97-1)97^{1-1}\\\phi(195)|=|96||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(196)|=|84||(2-1)2^{2-1} \cdot (7-1)7^{2-1}\\\phi(197)|=|196||(197-1)197^{1-1}\\\phi(198)|=|60||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (11-1)11^{1-1}\\\phi(199)|=|198||(199-1)199^{1-1}\\\phi(200)|=|80||(2-1)2^{3-1} \cdot (5-1)5^{2-1}\end{eqnarray}%%
Radical function $\mathrm{rad}(n)$ is the largest squarefree divisor of $n$. It is also written as squarefree kernel of $n$. ラジカル関数 $\mathrm{rad}(n)$ は $n$ の無平方の最大の約数です。$n$ の squarefree kernel とも書きます。
$$\begin{eqnarray}
n & = & \prod{p_{i}^{e_{i}}} \\
\mathrm{rad}(n) & = & \prod{p_{i}}
\end{eqnarray}$$
$\mathrm{rad}(1)\cdots\mathrm{rad}(20)$$\mathrm{rad}(1)\cdots\mathrm{rad}(20)$
$$\begin{eqnarray}\mathrm{rad}(1)&=&1&\hspace{2em}&\\\mathrm{rad}(2)&=&2&&2\\\mathrm{rad}(3)&=&3&&3\\\mathrm{rad}(4)&=&2&&2\\\mathrm{rad}(5)&=&5&&5\\\mathrm{rad}(6)&=&6&&2 \cdot 3\\\mathrm{rad}(7)&=&7&&7\\\mathrm{rad}(8)&=&2&&2\\\mathrm{rad}(9)&=&3&&3\\\mathrm{rad}(10)&=&10&&2 \cdot 5\\\mathrm{rad}(11)&=&11&&11\\\mathrm{rad}(12)&=&6&&2 \cdot 3\\\mathrm{rad}(13)&=&13&&13\\\mathrm{rad}(14)&=&14&&2 \cdot 7\\\mathrm{rad}(15)&=&15&&3 \cdot 5\\\mathrm{rad}(16)&=&2&&2\\\mathrm{rad}(17)&=&17&&17\\\mathrm{rad}(18)&=&6&&2 \cdot 3\\\mathrm{rad}(19)&=&19&&19\\\mathrm{rad}(20)&=&10&&2 \cdot 5\end{eqnarray}$$
$\mathrm{rad}(21)\cdots\mathrm{rad}(40)$$\mathrm{rad}(21)\cdots\mathrm{rad}(40)$
%%\begin{eqnarray}\mathrm{rad}(21)|=|21|\hspace{2em}|3 \cdot 7\\\mathrm{rad}(22)|=|22||2 \cdot 11\\\mathrm{rad}(23)|=|23||23\\\mathrm{rad}(24)|=|6||2 \cdot 3\\\mathrm{rad}(25)|=|5||5\\\mathrm{rad}(26)|=|26||2 \cdot 13\\\mathrm{rad}(27)|=|3||3\\\mathrm{rad}(28)|=|14||2 \cdot 7\\\mathrm{rad}(29)|=|29||29\\\mathrm{rad}(30)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(31)|=|31||31\\\mathrm{rad}(32)|=|2||2\\\mathrm{rad}(33)|=|33||3 \cdot 11\\\mathrm{rad}(34)|=|34||2 \cdot 17\\\mathrm{rad}(35)|=|35||5 \cdot 7\\\mathrm{rad}(36)|=|6||2 \cdot 3\\\mathrm{rad}(37)|=|37||37\\\mathrm{rad}(38)|=|38||2 \cdot 19\\\mathrm{rad}(39)|=|39||3 \cdot 13\\\mathrm{rad}(40)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(41)\cdots\mathrm{rad}(60)$$\mathrm{rad}(41)\cdots\mathrm{rad}(60)$
%%\begin{eqnarray}\mathrm{rad}(41)|=|41|\hspace{2em}|41\\\mathrm{rad}(42)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(43)|=|43||43\\\mathrm{rad}(44)|=|22||2 \cdot 11\\\mathrm{rad}(45)|=|15||3 \cdot 5\\\mathrm{rad}(46)|=|46||2 \cdot 23\\\mathrm{rad}(47)|=|47||47\\\mathrm{rad}(48)|=|6||2 \cdot 3\\\mathrm{rad}(49)|=|7||7\\\mathrm{rad}(50)|=|10||2 \cdot 5\\\mathrm{rad}(51)|=|51||3 \cdot 17\\\mathrm{rad}(52)|=|26||2 \cdot 13\\\mathrm{rad}(53)|=|53||53\\\mathrm{rad}(54)|=|6||2 \cdot 3\\\mathrm{rad}(55)|=|55||5 \cdot 11\\\mathrm{rad}(56)|=|14||2 \cdot 7\\\mathrm{rad}(57)|=|57||3 \cdot 19\\\mathrm{rad}(58)|=|58||2 \cdot 29\\\mathrm{rad}(59)|=|59||59\\\mathrm{rad}(60)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(61)\cdots\mathrm{rad}(80)$$\mathrm{rad}(61)\cdots\mathrm{rad}(80)$
%%\begin{eqnarray}\mathrm{rad}(61)|=|61|\hspace{2em}|61\\\mathrm{rad}(62)|=|62||2 \cdot 31\\\mathrm{rad}(63)|=|21||3 \cdot 7\\\mathrm{rad}(64)|=|2||2\\\mathrm{rad}(65)|=|65||5 \cdot 13\\\mathrm{rad}(66)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(67)|=|67||67\\\mathrm{rad}(68)|=|34||2 \cdot 17\\\mathrm{rad}(69)|=|69||3 \cdot 23\\\mathrm{rad}(70)|=|70||2 \cdot 5 \cdot 7\\\mathrm{rad}(71)|=|71||71\\\mathrm{rad}(72)|=|6||2 \cdot 3\\\mathrm{rad}(73)|=|73||73\\\mathrm{rad}(74)|=|74||2 \cdot 37\\\mathrm{rad}(75)|=|15||3 \cdot 5\\\mathrm{rad}(76)|=|38||2 \cdot 19\\\mathrm{rad}(77)|=|77||7 \cdot 11\\\mathrm{rad}(78)|=|78||2 \cdot 3 \cdot 13\\\mathrm{rad}(79)|=|79||79\\\mathrm{rad}(80)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(81)\cdots\mathrm{rad}(100)$$\mathrm{rad}(81)\cdots\mathrm{rad}(100)$
%%\begin{eqnarray}\mathrm{rad}(81)|=|3|\hspace{2em}|3\\\mathrm{rad}(82)|=|82||2 \cdot 41\\\mathrm{rad}(83)|=|83||83\\\mathrm{rad}(84)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(85)|=|85||5 \cdot 17\\\mathrm{rad}(86)|=|86||2 \cdot 43\\\mathrm{rad}(87)|=|87||3 \cdot 29\\\mathrm{rad}(88)|=|22||2 \cdot 11\\\mathrm{rad}(89)|=|89||89\\\mathrm{rad}(90)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(91)|=|91||7 \cdot 13\\\mathrm{rad}(92)|=|46||2 \cdot 23\\\mathrm{rad}(93)|=|93||3 \cdot 31\\\mathrm{rad}(94)|=|94||2 \cdot 47\\\mathrm{rad}(95)|=|95||5 \cdot 19\\\mathrm{rad}(96)|=|6||2 \cdot 3\\\mathrm{rad}(97)|=|97||97\\\mathrm{rad}(98)|=|14||2 \cdot 7\\\mathrm{rad}(99)|=|33||3 \cdot 11\\\mathrm{rad}(100)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(101)\cdots\mathrm{rad}(120)$$\mathrm{rad}(101)\cdots\mathrm{rad}(120)$
%%\begin{eqnarray}\mathrm{rad}(101)|=|101|\hspace{2em}|101\\\mathrm{rad}(102)|=|102||2 \cdot 3 \cdot 17\\\mathrm{rad}(103)|=|103||103\\\mathrm{rad}(104)|=|26||2 \cdot 13\\\mathrm{rad}(105)|=|105||3 \cdot 5 \cdot 7\\\mathrm{rad}(106)|=|106||2 \cdot 53\\\mathrm{rad}(107)|=|107||107\\\mathrm{rad}(108)|=|6||2 \cdot 3\\\mathrm{rad}(109)|=|109||109\\\mathrm{rad}(110)|=|110||2 \cdot 5 \cdot 11\\\mathrm{rad}(111)|=|111||3 \cdot 37\\\mathrm{rad}(112)|=|14||2 \cdot 7\\\mathrm{rad}(113)|=|113||113\\\mathrm{rad}(114)|=|114||2 \cdot 3 \cdot 19\\\mathrm{rad}(115)|=|115||5 \cdot 23\\\mathrm{rad}(116)|=|58||2 \cdot 29\\\mathrm{rad}(117)|=|39||3 \cdot 13\\\mathrm{rad}(118)|=|118||2 \cdot 59\\\mathrm{rad}(119)|=|119||7 \cdot 17\\\mathrm{rad}(120)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(121)\cdots\mathrm{rad}(140)$$\mathrm{rad}(121)\cdots\mathrm{rad}(140)$
%%\begin{eqnarray}\mathrm{rad}(121)|=|11|\hspace{2em}|11\\\mathrm{rad}(122)|=|122||2 \cdot 61\\\mathrm{rad}(123)|=|123||3 \cdot 41\\\mathrm{rad}(124)|=|62||2 \cdot 31\\\mathrm{rad}(125)|=|5||5\\\mathrm{rad}(126)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(127)|=|127||127\\\mathrm{rad}(128)|=|2||2\\\mathrm{rad}(129)|=|129||3 \cdot 43\\\mathrm{rad}(130)|=|130||2 \cdot 5 \cdot 13\\\mathrm{rad}(131)|=|131||131\\\mathrm{rad}(132)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(133)|=|133||7 \cdot 19\\\mathrm{rad}(134)|=|134||2 \cdot 67\\\mathrm{rad}(135)|=|15||3 \cdot 5\\\mathrm{rad}(136)|=|34||2 \cdot 17\\\mathrm{rad}(137)|=|137||137\\\mathrm{rad}(138)|=|138||2 \cdot 3 \cdot 23\\\mathrm{rad}(139)|=|139||139\\\mathrm{rad}(140)|=|70||2 \cdot 5 \cdot 7\end{eqnarray}%%
$\mathrm{rad}(141)\cdots\mathrm{rad}(160)$$\mathrm{rad}(141)\cdots\mathrm{rad}(160)$
%%\begin{eqnarray}\mathrm{rad}(141)|=|141|\hspace{2em}|3 \cdot 47\\\mathrm{rad}(142)|=|142||2 \cdot 71\\\mathrm{rad}(143)|=|143||11 \cdot 13\\\mathrm{rad}(144)|=|6||2 \cdot 3\\\mathrm{rad}(145)|=|145||5 \cdot 29\\\mathrm{rad}(146)|=|146||2 \cdot 73\\\mathrm{rad}(147)|=|21||3 \cdot 7\\\mathrm{rad}(148)|=|74||2 \cdot 37\\\mathrm{rad}(149)|=|149||149\\\mathrm{rad}(150)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(151)|=|151||151\\\mathrm{rad}(152)|=|38||2 \cdot 19\\\mathrm{rad}(153)|=|51||3 \cdot 17\\\mathrm{rad}(154)|=|154||2 \cdot 7 \cdot 11\\\mathrm{rad}(155)|=|155||5 \cdot 31\\\mathrm{rad}(156)|=|78||2 \cdot 3 \cdot 13\\\mathrm{rad}(157)|=|157||157\\\mathrm{rad}(158)|=|158||2 \cdot 79\\\mathrm{rad}(159)|=|159||3 \cdot 53\\\mathrm{rad}(160)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(161)\cdots\mathrm{rad}(180)$$\mathrm{rad}(161)\cdots\mathrm{rad}(180)$
%%\begin{eqnarray}\mathrm{rad}(161)|=|161|\hspace{2em}|7 \cdot 23\\\mathrm{rad}(162)|=|6||2 \cdot 3\\\mathrm{rad}(163)|=|163||163\\\mathrm{rad}(164)|=|82||2 \cdot 41\\\mathrm{rad}(165)|=|165||3 \cdot 5 \cdot 11\\\mathrm{rad}(166)|=|166||2 \cdot 83\\\mathrm{rad}(167)|=|167||167\\\mathrm{rad}(168)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(169)|=|13||13\\\mathrm{rad}(170)|=|170||2 \cdot 5 \cdot 17\\\mathrm{rad}(171)|=|57||3 \cdot 19\\\mathrm{rad}(172)|=|86||2 \cdot 43\\\mathrm{rad}(173)|=|173||173\\\mathrm{rad}(174)|=|174||2 \cdot 3 \cdot 29\\\mathrm{rad}(175)|=|35||5 \cdot 7\\\mathrm{rad}(176)|=|22||2 \cdot 11\\\mathrm{rad}(177)|=|177||3 \cdot 59\\\mathrm{rad}(178)|=|178||2 \cdot 89\\\mathrm{rad}(179)|=|179||179\\\mathrm{rad}(180)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(181)\cdots\mathrm{rad}(200)$$\mathrm{rad}(181)\cdots\mathrm{rad}(200)$
%%\begin{eqnarray}\mathrm{rad}(181)|=|181|\hspace{2em}|181\\\mathrm{rad}(182)|=|182||2 \cdot 7 \cdot 13\\\mathrm{rad}(183)|=|183||3 \cdot 61\\\mathrm{rad}(184)|=|46||2 \cdot 23\\\mathrm{rad}(185)|=|185||5 \cdot 37\\\mathrm{rad}(186)|=|186||2 \cdot 3 \cdot 31\\\mathrm{rad}(187)|=|187||11 \cdot 17\\\mathrm{rad}(188)|=|94||2 \cdot 47\\\mathrm{rad}(189)|=|21||3 \cdot 7\\\mathrm{rad}(190)|=|190||2 \cdot 5 \cdot 19\\\mathrm{rad}(191)|=|191||191\\\mathrm{rad}(192)|=|6||2 \cdot 3\\\mathrm{rad}(193)|=|193||193\\\mathrm{rad}(194)|=|194||2 \cdot 97\\\mathrm{rad}(195)|=|195||3 \cdot 5 \cdot 13\\\mathrm{rad}(196)|=|14||2 \cdot 7\\\mathrm{rad}(197)|=|197||197\\\mathrm{rad}(198)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(199)|=|199||199\\\mathrm{rad}(200)|=|10||2 \cdot 5\end{eqnarray}%%
Squarefree part $\mathrm{core}(n)$ is the quotient of $n$ divided by the largest square factor.
無平方核 $\mathrm{core}(n)$ は $n$ を最大の平方因子で割った商です。
$$\begin{eqnarray}
n & = & \prod{p_{i}^{e_{i}}} \\
\mathrm{core}(n) & = & \prod{p_{i}^{e_{i}\mathrm{mod}2}}
\end{eqnarray}$$
$\mathrm{core}(1)\cdots\mathrm{core}(20)$$\mathrm{core}(1)\cdots\mathrm{core}(20)$
$$\begin{eqnarray}\mathrm{core}(1)&=&1&\hspace{2em}&\\\mathrm{core}(2)&=&2&&2\\\mathrm{core}(3)&=&3&&3\\\mathrm{core}(4)&=&1&&\\\mathrm{core}(5)&=&5&&5\\\mathrm{core}(6)&=&6&&2 \cdot 3\\\mathrm{core}(7)&=&7&&7\\\mathrm{core}(8)&=&2&&2\\\mathrm{core}(9)&=&1&&\\\mathrm{core}(10)&=&10&&2 \cdot 5\\\mathrm{core}(11)&=&11&&11\\\mathrm{core}(12)&=&3&&3\\\mathrm{core}(13)&=&13&&13\\\mathrm{core}(14)&=&14&&2 \cdot 7\\\mathrm{core}(15)&=&15&&3 \cdot 5\\\mathrm{core}(16)&=&1&&\\\mathrm{core}(17)&=&17&&17\\\mathrm{core}(18)&=&2&&2\\\mathrm{core}(19)&=&19&&19\\\mathrm{core}(20)&=&5&&5\end{eqnarray}$$
$\mathrm{core}(21)\cdots\mathrm{core}(40)$$\mathrm{core}(21)\cdots\mathrm{core}(40)$
%%\begin{eqnarray}\mathrm{core}(21)|=|21|\hspace{2em}|3 \cdot 7\\\mathrm{core}(22)|=|22||2 \cdot 11\\\mathrm{core}(23)|=|23||23\\\mathrm{core}(24)|=|6||2 \cdot 3\\\mathrm{core}(25)|=|1||\\\mathrm{core}(26)|=|26||2 \cdot 13\\\mathrm{core}(27)|=|3||3\\\mathrm{core}(28)|=|7||7\\\mathrm{core}(29)|=|29||29\\\mathrm{core}(30)|=|30||2 \cdot 3 \cdot 5\\\mathrm{core}(31)|=|31||31\\\mathrm{core}(32)|=|2||2\\\mathrm{core}(33)|=|33||3 \cdot 11\\\mathrm{core}(34)|=|34||2 \cdot 17\\\mathrm{core}(35)|=|35||5 \cdot 7\\\mathrm{core}(36)|=|1||\\\mathrm{core}(37)|=|37||37\\\mathrm{core}(38)|=|38||2 \cdot 19\\\mathrm{core}(39)|=|39||3 \cdot 13\\\mathrm{core}(40)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{core}(41)\cdots\mathrm{core}(60)$$\mathrm{core}(41)\cdots\mathrm{core}(60)$
%%\begin{eqnarray}\mathrm{core}(41)|=|41|\hspace{2em}|41\\\mathrm{core}(42)|=|42||2 \cdot 3 \cdot 7\\\mathrm{core}(43)|=|43||43\\\mathrm{core}(44)|=|11||11\\\mathrm{core}(45)|=|5||5\\\mathrm{core}(46)|=|46||2 \cdot 23\\\mathrm{core}(47)|=|47||47\\\mathrm{core}(48)|=|3||3\\\mathrm{core}(49)|=|1||\\\mathrm{core}(50)|=|2||2\\\mathrm{core}(51)|=|51||3 \cdot 17\\\mathrm{core}(52)|=|13||13\\\mathrm{core}(53)|=|53||53\\\mathrm{core}(54)|=|6||2 \cdot 3\\\mathrm{core}(55)|=|55||5 \cdot 11\\\mathrm{core}(56)|=|14||2 \cdot 7\\\mathrm{core}(57)|=|57||3 \cdot 19\\\mathrm{core}(58)|=|58||2 \cdot 29\\\mathrm{core}(59)|=|59||59\\\mathrm{core}(60)|=|15||3 \cdot 5\end{eqnarray}%%
$\mathrm{core}(61)\cdots\mathrm{core}(80)$$\mathrm{core}(61)\cdots\mathrm{core}(80)$
%%\begin{eqnarray}\mathrm{core}(61)|=|61|\hspace{2em}|61\\\mathrm{core}(62)|=|62||2 \cdot 31\\\mathrm{core}(63)|=|7||7\\\mathrm{core}(64)|=|1||\\\mathrm{core}(65)|=|65||5 \cdot 13\\\mathrm{core}(66)|=|66||2 \cdot 3 \cdot 11\\\mathrm{core}(67)|=|67||67\\\mathrm{core}(68)|=|17||17\\\mathrm{core}(69)|=|69||3 \cdot 23\\\mathrm{core}(70)|=|70||2 \cdot 5 \cdot 7\\\mathrm{core}(71)|=|71||71\\\mathrm{core}(72)|=|2||2\\\mathrm{core}(73)|=|73||73\\\mathrm{core}(74)|=|74||2 \cdot 37\\\mathrm{core}(75)|=|3||3\\\mathrm{core}(76)|=|19||19\\\mathrm{core}(77)|=|77||7 \cdot 11\\\mathrm{core}(78)|=|78||2 \cdot 3 \cdot 13\\\mathrm{core}(79)|=|79||79\\\mathrm{core}(80)|=|5||5\end{eqnarray}%%
$\mathrm{core}(81)\cdots\mathrm{core}(100)$$\mathrm{core}(81)\cdots\mathrm{core}(100)$
%%\begin{eqnarray}\mathrm{core}(81)|=|1|\hspace{2em}|\\\mathrm{core}(82)|=|82||2 \cdot 41\\\mathrm{core}(83)|=|83||83\\\mathrm{core}(84)|=|21||3 \cdot 7\\\mathrm{core}(85)|=|85||5 \cdot 17\\\mathrm{core}(86)|=|86||2 \cdot 43\\\mathrm{core}(87)|=|87||3 \cdot 29\\\mathrm{core}(88)|=|22||2 \cdot 11\\\mathrm{core}(89)|=|89||89\\\mathrm{core}(90)|=|10||2 \cdot 5\\\mathrm{core}(91)|=|91||7 \cdot 13\\\mathrm{core}(92)|=|23||23\\\mathrm{core}(93)|=|93||3 \cdot 31\\\mathrm{core}(94)|=|94||2 \cdot 47\\\mathrm{core}(95)|=|95||5 \cdot 19\\\mathrm{core}(96)|=|6||2 \cdot 3\\\mathrm{core}(97)|=|97||97\\\mathrm{core}(98)|=|2||2\\\mathrm{core}(99)|=|11||11\\\mathrm{core}(100)|=|1||\end{eqnarray}%%
$\mathrm{core}(101)\cdots\mathrm{core}(120)$$\mathrm{core}(101)\cdots\mathrm{core}(120)$
%%\begin{eqnarray}\mathrm{core}(101)|=|101|\hspace{2em}|101\\\mathrm{core}(102)|=|102||2 \cdot 3 \cdot 17\\\mathrm{core}(103)|=|103||103\\\mathrm{core}(104)|=|26||2 \cdot 13\\\mathrm{core}(105)|=|105||3 \cdot 5 \cdot 7\\\mathrm{core}(106)|=|106||2 \cdot 53\\\mathrm{core}(107)|=|107||107\\\mathrm{core}(108)|=|3||3\\\mathrm{core}(109)|=|109||109\\\mathrm{core}(110)|=|110||2 \cdot 5 \cdot 11\\\mathrm{core}(111)|=|111||3 \cdot 37\\\mathrm{core}(112)|=|7||7\\\mathrm{core}(113)|=|113||113\\\mathrm{core}(114)|=|114||2 \cdot 3 \cdot 19\\\mathrm{core}(115)|=|115||5 \cdot 23\\\mathrm{core}(116)|=|29||29\\\mathrm{core}(117)|=|13||13\\\mathrm{core}(118)|=|118||2 \cdot 59\\\mathrm{core}(119)|=|119||7 \cdot 17\\\mathrm{core}(120)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{core}(121)\cdots\mathrm{core}(140)$$\mathrm{core}(121)\cdots\mathrm{core}(140)$
%%\begin{eqnarray}\mathrm{core}(121)|=|1|\hspace{2em}|\\\mathrm{core}(122)|=|122||2 \cdot 61\\\mathrm{core}(123)|=|123||3 \cdot 41\\\mathrm{core}(124)|=|31||31\\\mathrm{core}(125)|=|5||5\\\mathrm{core}(126)|=|14||2 \cdot 7\\\mathrm{core}(127)|=|127||127\\\mathrm{core}(128)|=|2||2\\\mathrm{core}(129)|=|129||3 \cdot 43\\\mathrm{core}(130)|=|130||2 \cdot 5 \cdot 13\\\mathrm{core}(131)|=|131||131\\\mathrm{core}(132)|=|33||3 \cdot 11\\\mathrm{core}(133)|=|133||7 \cdot 19\\\mathrm{core}(134)|=|134||2 \cdot 67\\\mathrm{core}(135)|=|15||3 \cdot 5\\\mathrm{core}(136)|=|34||2 \cdot 17\\\mathrm{core}(137)|=|137||137\\\mathrm{core}(138)|=|138||2 \cdot 3 \cdot 23\\\mathrm{core}(139)|=|139||139\\\mathrm{core}(140)|=|35||5 \cdot 7\end{eqnarray}%%
$\mathrm{core}(141)\cdots\mathrm{core}(160)$$\mathrm{core}(141)\cdots\mathrm{core}(160)$
%%\begin{eqnarray}\mathrm{core}(141)|=|141|\hspace{2em}|3 \cdot 47\\\mathrm{core}(142)|=|142||2 \cdot 71\\\mathrm{core}(143)|=|143||11 \cdot 13\\\mathrm{core}(144)|=|1||\\\mathrm{core}(145)|=|145||5 \cdot 29\\\mathrm{core}(146)|=|146||2 \cdot 73\\\mathrm{core}(147)|=|3||3\\\mathrm{core}(148)|=|37||37\\\mathrm{core}(149)|=|149||149\\\mathrm{core}(150)|=|6||2 \cdot 3\\\mathrm{core}(151)|=|151||151\\\mathrm{core}(152)|=|38||2 \cdot 19\\\mathrm{core}(153)|=|17||17\\\mathrm{core}(154)|=|154||2 \cdot 7 \cdot 11\\\mathrm{core}(155)|=|155||5 \cdot 31\\\mathrm{core}(156)|=|39||3 \cdot 13\\\mathrm{core}(157)|=|157||157\\\mathrm{core}(158)|=|158||2 \cdot 79\\\mathrm{core}(159)|=|159||3 \cdot 53\\\mathrm{core}(160)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{core}(161)\cdots\mathrm{core}(180)$$\mathrm{core}(161)\cdots\mathrm{core}(180)$
%%\begin{eqnarray}\mathrm{core}(161)|=|161|\hspace{2em}|7 \cdot 23\\\mathrm{core}(162)|=|2||2\\\mathrm{core}(163)|=|163||163\\\mathrm{core}(164)|=|41||41\\\mathrm{core}(165)|=|165||3 \cdot 5 \cdot 11\\\mathrm{core}(166)|=|166||2 \cdot 83\\\mathrm{core}(167)|=|167||167\\\mathrm{core}(168)|=|42||2 \cdot 3 \cdot 7\\\mathrm{core}(169)|=|1||\\\mathrm{core}(170)|=|170||2 \cdot 5 \cdot 17\\\mathrm{core}(171)|=|19||19\\\mathrm{core}(172)|=|43||43\\\mathrm{core}(173)|=|173||173\\\mathrm{core}(174)|=|174||2 \cdot 3 \cdot 29\\\mathrm{core}(175)|=|7||7\\\mathrm{core}(176)|=|11||11\\\mathrm{core}(177)|=|177||3 \cdot 59\\\mathrm{core}(178)|=|178||2 \cdot 89\\\mathrm{core}(179)|=|179||179\\\mathrm{core}(180)|=|5||5\end{eqnarray}%%
$\mathrm{core}(181)\cdots\mathrm{core}(200)$$\mathrm{core}(181)\cdots\mathrm{core}(200)$
%%\begin{eqnarray}\mathrm{core}(181)|=|181|\hspace{2em}|181\\\mathrm{core}(182)|=|182||2 \cdot 7 \cdot 13\\\mathrm{core}(183)|=|183||3 \cdot 61\\\mathrm{core}(184)|=|46||2 \cdot 23\\\mathrm{core}(185)|=|185||5 \cdot 37\\\mathrm{core}(186)|=|186||2 \cdot 3 \cdot 31\\\mathrm{core}(187)|=|187||11 \cdot 17\\\mathrm{core}(188)|=|47||47\\\mathrm{core}(189)|=|21||3 \cdot 7\\\mathrm{core}(190)|=|190||2 \cdot 5 \cdot 19\\\mathrm{core}(191)|=|191||191\\\mathrm{core}(192)|=|3||3\\\mathrm{core}(193)|=|193||193\\\mathrm{core}(194)|=|194||2 \cdot 97\\\mathrm{core}(195)|=|195||3 \cdot 5 \cdot 13\\\mathrm{core}(196)|=|1||\\\mathrm{core}(197)|=|197||197\\\mathrm{core}(198)|=|22||2 \cdot 11\\\mathrm{core}(199)|=|199||199\\\mathrm{core}(200)|=|2||2\end{eqnarray}%%
$$\begin{eqnarray}
{\large\Phi}_{1}(x) & = & x-1 \\
x^{n}-1 & = & \prod_{d\mid n}{{\large\Phi}_{d}(x)}
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{n}(x)
& = & \prod_{d\mid n}{(x^{d}-1)^{\mu(n/d)}}\hspace{1em}\text{or}\hspace{1em}
\prod_{d\mid n}{(x^{n/d}-1)^{\mu(d)}} \\
& = & \frac{\prod_{d\mid n;\mu(n/d)=1}{x^{d}-1}}{\prod_{d\mid n;\mu(n/d)=-1}{x^{d}-1}} \\
& = & \frac{\left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}}\right)
\left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}-1}\right)
\left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}}\right)}
{\left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}}\right)
\left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}-1}\right)
\left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}}\right)} \\
& = & \frac{x^{\sum_{d\mid n;\mu(n/d)=1}{\,\,\,\,d}}}{x^{\sum_{d\mid n;\mu(n/d)=-1}{\,\,\,\,d}}}
\left(\prod_{d\mid n;\mu(n/d)=1}{\frac{x^{d}-1}{x^{d}}}\right)
\left(\prod_{d\mid n;\mu(n/d)=-1}{\frac{x^d}{x^d-1}}\right) \\
& = & x^{\phi(n)}
\left(\prod_{d\mid n;\mu(n/d)=1}{1-\frac{1}{x^{d}}}\right)
\left(\prod_{d\mid n;\mu(n/d)=-1}{1+\frac{1}{x^{d}}+\frac{1}{x^{2d}}+\frac{1}{x^{3d}}+\cdots}\right)
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{2^{j+1\,}(2k+1)}(x)
& = & \prod_{d\mid 2k+1}{(x^{2^{j}d}+1)^{\mu((2k+1)/d)}}\hspace{1em}\text{or}\hspace{1em}
\prod_{d\mid 2k+1}{(x^{2^{j}(2k+1)/d}+1)^{\mu(d)}} \\
& = & \frac{\prod_{d\mid 2k+1;\mu((2k+1)/d)=1}{x^{2^{j}d}+1}}{\prod_{d\mid 2k+1;\mu((2k+1)/d)=-1}{x^{2^{j}d}+1}} \\
& = & \frac{\prod_{d\mid 2k+1;\mu((2k+1)/d)=1}{(x^{2^{j}})^{d}+1}}{\prod_{d\mid 2k+1;\mu((2k+1)/d)=-1}{(x^{2^{j}})^{d}+1}}
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{n}(x)
& = & {\large\Phi}_{\mathrm{rad}(n)}(x^{n/\mathrm{rad}(n)})
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{n}(x^{s})
& = & \prod_{d\mid r}{{\large\Phi}_{n s/d}(x)}\hspace{2em}
\text{($1\lt x$, $r$ is the greatest divisor of $s$ that satisfies $\mathrm{gcd}(n,r)=1$)}
\end{eqnarray}$$
${\large\Phi}_{1}(x)\cdots{\large\Phi}_{20}(x)$${\large\Phi}_{1}(x)\cdots{\large\Phi}_{20}(x)$
$$\begin{eqnarray}{\large\Phi}_{1}(x)&=&x-1\\{\large\Phi}_{2}(x)&=&x+1\\{\large\Phi}_{3}(x)&=&\frac{x^3-1}{x-1}\\&=&x^2+x+1\\{\large\Phi}_{4}(x)&=&x^2+1\\{\large\Phi}_{5}(x)&=&\frac{x^5-1}{x-1}\\&=&x^4+x^3+x^2+x+1\\{\large\Phi}_{6}(x)&=&\frac{x^3+1}{x+1}\\&=&x^2-x+1\\{\large\Phi}_{7}(x)&=&\frac{x^7-1}{x-1}\\&=&x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{8}(x)&=&x^4+1\\{\large\Phi}_{9}(x)&=&\frac{x^9-1}{x^3-1}\\&=&x^6+x^3+1\\{\large\Phi}_{10}(x)&=&\frac{x^5+1}{x+1}\\&=&x^4-x^3+x^2-x+1\\{\large\Phi}_{11}(x)&=&\frac{x^{11}-1}{x-1}\\&=&x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{12}(x)&=&\frac{x^6+1}{x^2+1}\\&=&x^4-x^2+1\\{\large\Phi}_{13}(x)&=&\frac{x^{13}-1}{x-1}\\&=&x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\&&+x^2+x+1\\{\large\Phi}_{14}(x)&=&\frac{x^7+1}{x+1}\\&=&x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{15}(x)&=&\frac{(x-1)(x^{15}-1)}{(x^3-1)(x^5-1)}\\&=&x^8-x^7+x^5-x^4+x^3-x+1\\{\large\Phi}_{16}(x)&=&x^8+1\\{\large\Phi}_{17}(x)&=&\frac{x^{17}-1}{x-1}\\&=&x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\&&+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{18}(x)&=&\frac{x^9+1}{x^3+1}\\&=&x^6-x^3+1\\{\large\Phi}_{19}(x)&=&\frac{x^{19}-1}{x-1}\\&=&x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\&&+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{20}(x)&=&\frac{x^{10}+1}{x^2+1}\\&=&x^8-x^6+x^4-x^2+1\end{eqnarray}$$
${\large\Phi}_{21}(x)\cdots{\large\Phi}_{40}(x)$${\large\Phi}_{21}(x)\cdots{\large\Phi}_{40}(x)$
%%\begin{eqnarray}{\large\Phi}_{21}(x)|=|\frac{(x-1)(x^{21}-1)}{(x^3-1)(x^7-1)}\\|=|x^{12}-x^{11}+x^9-x^8+x^6-x^4+x^3-x+1\\{\large\Phi}_{22}(x)|=|\frac{x^{11}+1}{x+1}\\|=|x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{23}(x)|=|\frac{x^{23}-1}{x-1}\\|=|x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{24}(x)|=|\frac{x^{12}+1}{x^4+1}\\|=|x^8-x^4+1\\{\large\Phi}_{25}(x)|=|\frac{x^{25}-1}{x^5-1}\\|=|x^{20}+x^{15}+x^{10}+x^5+1\\{\large\Phi}_{26}(x)|=|\frac{x^{13}+1}{x+1}\\|=|x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{27}(x)|=|\frac{x^{27}-1}{x^9-1}\\|=|x^{18}+x^9+1\\{\large\Phi}_{28}(x)|=|\frac{x^{14}+1}{x^2+1}\\|=|x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{29}(x)|=|\frac{x^{29}-1}{x-1}\\|=|x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{30}(x)|=|\frac{(x+1)(x^{15}+1)}{(x^3+1)(x^5+1)}\\|=|x^8+x^7-x^5-x^4-x^3+x+1\\{\large\Phi}_{31}(x)|=|\frac{x^{31}-1}{x-1}\\|=|x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{32}(x)|=|x^{16}+1\\{\large\Phi}_{33}(x)|=|\frac{(x-1)(x^{33}-1)}{(x^3-1)(x^{11}-1)}\\|=|x^{20}-x^{19}+x^{17}-x^{16}+x^{14}-x^{13}+x^{11}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{34}(x)|=|\frac{x^{17}+1}{x+1}\\|=|x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{35}(x)|=|\frac{(x-1)(x^{35}-1)}{(x^5-1)(x^7-1)}\\|=|x^{24}-x^{23}+x^{19}-x^{18}+x^{17}-x^{16}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^8+x^7-x^6+x^5-x+1\\{\large\Phi}_{36}(x)|=|\frac{x^{18}+1}{x^6+1}\\|=|x^{12}-x^6+1\\{\large\Phi}_{37}(x)|=|\frac{x^{37}-1}{x-1}\\|=|x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{38}(x)|=|\frac{x^{19}+1}{x+1}\\|=|x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{39}(x)|=|\frac{(x-1)(x^{39}-1)}{(x^3-1)(x^{13}-1)}\\|=|x^{24}-x^{23}+x^{21}-x^{20}+x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{10}\\||+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{40}(x)|=|\frac{x^{20}+1}{x^4+1}\\|=|x^{16}-x^{12}+x^8-x^4+1\end{eqnarray}%%
${\large\Phi}_{41}(x)\cdots{\large\Phi}_{60}(x)$${\large\Phi}_{41}(x)\cdots{\large\Phi}_{60}(x)$
%%\begin{eqnarray}{\large\Phi}_{41}(x)|=|\frac{x^{41}-1}{x-1}\\|=|x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{42}(x)|=|\frac{(x+1)(x^{21}+1)}{(x^3+1)(x^7+1)}\\|=|x^{12}+x^{11}-x^9-x^8+x^6-x^4-x^3+x+1\\{\large\Phi}_{43}(x)|=|\frac{x^{43}-1}{x-1}\\|=|x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{44}(x)|=|\frac{x^{22}+1}{x^2+1}\\|=|x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{45}(x)|=|\frac{(x^3-1)(x^{45}-1)}{(x^9-1)(x^{15}-1)}\\|=|x^{24}-x^{21}+x^{15}-x^{12}+x^9-x^3+1\\{\large\Phi}_{46}(x)|=|\frac{x^{23}+1}{x+1}\\|=|x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{47}(x)|=|\frac{x^{47}-1}{x-1}\\|=|x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{48}(x)|=|\frac{x^{24}+1}{x^8+1}\\|=|x^{16}-x^8+1\\{\large\Phi}_{49}(x)|=|\frac{x^{49}-1}{x^7-1}\\|=|x^{42}+x^{35}+x^{28}+x^{21}+x^{14}+x^7+1\\{\large\Phi}_{50}(x)|=|\frac{x^{25}+1}{x^5+1}\\|=|x^{20}-x^{15}+x^{10}-x^5+1\\{\large\Phi}_{51}(x)|=|\frac{(x-1)(x^{51}-1)}{(x^3-1)(x^{17}-1)}\\|=|x^{32}-x^{31}+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{20}-x^{19}\\||+x^{17}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4\\||+x^3-x+1\\{\large\Phi}_{52}(x)|=|\frac{x^{26}+1}{x^2+1}\\|=|x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{53}(x)|=|\frac{x^{53}-1}{x-1}\\|=|x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{54}(x)|=|\frac{x^{27}+1}{x^9+1}\\|=|x^{18}-x^9+1\\{\large\Phi}_{55}(x)|=|\frac{(x-1)(x^{55}-1)}{(x^5-1)(x^{11}-1)}\\|=|x^{40}-x^{39}+x^{35}-x^{34}+x^{30}-x^{28}+x^{25}-x^{23}+x^{20}-x^{17}\\||+x^{15}-x^{12}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{56}(x)|=|\frac{x^{28}+1}{x^4+1}\\|=|x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{57}(x)|=|\frac{(x-1)(x^{57}-1)}{(x^3-1)(x^{19}-1)}\\|=|x^{36}-x^{35}+x^{33}-x^{32}+x^{30}-x^{29}+x^{27}-x^{26}+x^{24}-x^{23}\\||+x^{21}-x^{20}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{58}(x)|=|\frac{x^{29}+1}{x+1}\\|=|x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{59}(x)|=|\frac{x^{59}-1}{x-1}\\|=|x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{60}(x)|=|\frac{(x^2+1)(x^{30}+1)}{(x^6+1)(x^{10}+1)}\\|=|x^{16}+x^{14}-x^{10}-x^8-x^6+x^2+1\end{eqnarray}%%
${\large\Phi}_{61}(x)\cdots{\large\Phi}_{80}(x)$${\large\Phi}_{61}(x)\cdots{\large\Phi}_{80}(x)$
%%\begin{eqnarray}{\large\Phi}_{61}(x)|=|\frac{x^{61}-1}{x-1}\\|=|x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{62}(x)|=|\frac{x^{31}+1}{x+1}\\|=|x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{63}(x)|=|\frac{(x^3-1)(x^{63}-1)}{(x^9-1)(x^{21}-1)}\\|=|x^{36}-x^{33}+x^{27}-x^{24}+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{64}(x)|=|x^{32}+1\\{\large\Phi}_{65}(x)|=|\frac{(x-1)(x^{65}-1)}{(x^5-1)(x^{13}-1)}\\|=|x^{48}-x^{47}+x^{43}-x^{42}+x^{38}-x^{37}+x^{35}-x^{34}+x^{33}-x^{32}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{25}-x^{24}+x^{23}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{16}+x^{15}-x^{14}+x^{13}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{66}(x)|=|\frac{(x+1)(x^{33}+1)}{(x^3+1)(x^{11}+1)}\\|=|x^{20}+x^{19}-x^{17}-x^{16}+x^{14}+x^{13}-x^{11}-x^{10}-x^9+x^7\\||+x^6-x^4-x^3+x+1\\{\large\Phi}_{67}(x)|=|\frac{x^{67}-1}{x-1}\\|=|x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{68}(x)|=|\frac{x^{34}+1}{x^2+1}\\|=|x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{69}(x)|=|\frac{(x-1)(x^{69}-1)}{(x^3-1)(x^{23}-1)}\\|=|x^{44}-x^{43}+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}\\||+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{70}(x)|=|\frac{(x+1)(x^{35}+1)}{(x^5+1)(x^7+1)}\\|=|x^{24}+x^{23}-x^{19}-x^{18}-x^{17}-x^{16}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}-x^8-x^7-x^6-x^5+x+1\\{\large\Phi}_{71}(x)|=|\frac{x^{71}-1}{x-1}\\|=|x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{72}(x)|=|\frac{x^{36}+1}{x^{12}+1}\\|=|x^{24}-x^{12}+1\\{\large\Phi}_{73}(x)|=|\frac{x^{73}-1}{x-1}\\|=|x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{74}(x)|=|\frac{x^{37}+1}{x+1}\\|=|x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{75}(x)|=|\frac{(x^5-1)(x^{75}-1)}{(x^{15}-1)(x^{25}-1)}\\|=|x^{40}-x^{35}+x^{25}-x^{20}+x^{15}-x^5+1\\{\large\Phi}_{76}(x)|=|\frac{x^{38}+1}{x^2+1}\\|=|x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}\\||+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{77}(x)|=|\frac{(x-1)(x^{77}-1)}{(x^7-1)(x^{11}-1)}\\|=|x^{60}-x^{59}+x^{53}-x^{52}+x^{49}-x^{48}+x^{46}-x^{45}+x^{42}-x^{41}\\||+x^{39}-x^{37}+x^{35}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{25}-x^{23}\\||+x^{21}-x^{19}+x^{18}-x^{15}+x^{14}-x^{12}+x^{11}-x^8+x^7-x+1\\{\large\Phi}_{78}(x)|=|\frac{(x+1)(x^{39}+1)}{(x^3+1)(x^{13}+1)}\\|=|x^{24}+x^{23}-x^{21}-x^{20}+x^{18}+x^{17}-x^{15}-x^{14}+x^{12}-x^{10}\\||-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{79}(x)|=|\frac{x^{79}-1}{x-1}\\|=|x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{80}(x)|=|\frac{x^{40}+1}{x^8+1}\\|=|x^{32}-x^{24}+x^{16}-x^8+1\end{eqnarray}%%
${\large\Phi}_{81}(x)\cdots{\large\Phi}_{100}(x)$${\large\Phi}_{81}(x)\cdots{\large\Phi}_{100}(x)$
%%\begin{eqnarray}{\large\Phi}_{81}(x)|=|\frac{x^{81}-1}{x^{27}-1}\\|=|x^{54}+x^{27}+1\\{\large\Phi}_{82}(x)|=|\frac{x^{41}+1}{x+1}\\|=|x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{83}(x)|=|\frac{x^{83}-1}{x-1}\\|=|x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{84}(x)|=|\frac{(x^2+1)(x^{42}+1)}{(x^6+1)(x^{14}+1)}\\|=|x^{24}+x^{22}-x^{18}-x^{16}+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{85}(x)|=|\frac{(x-1)(x^{85}-1)}{(x^5-1)(x^{17}-1)}\\|=|x^{64}-x^{63}+x^{59}-x^{58}+x^{54}-x^{53}+x^{49}-x^{48}+x^{47}-x^{46}\\||+x^{44}-x^{43}+x^{42}-x^{41}+x^{39}-x^{38}+x^{37}-x^{36}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{28}+x^{27}-x^{26}+x^{25}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{18}+x^{17}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{86}(x)|=|\frac{x^{43}+1}{x+1}\\|=|x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{87}(x)|=|\frac{(x-1)(x^{87}-1)}{(x^3-1)(x^{29}-1)}\\|=|x^{56}-x^{55}+x^{53}-x^{52}+x^{50}-x^{49}+x^{47}-x^{46}+x^{44}-x^{43}\\||+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}+x^{29}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{88}(x)|=|\frac{x^{44}+1}{x^4+1}\\|=|x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{89}(x)|=|\frac{x^{89}-1}{x-1}\\|=|x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{90}(x)|=|\frac{(x^3+1)(x^{45}+1)}{(x^9+1)(x^{15}+1)}\\|=|x^{24}+x^{21}-x^{15}-x^{12}-x^9+x^3+1\\{\large\Phi}_{91}(x)|=|\frac{(x-1)(x^{91}-1)}{(x^7-1)(x^{13}-1)}\\|=|x^{72}-x^{71}+x^{65}-x^{64}+x^{59}-x^{57}+x^{52}-x^{50}+x^{46}-x^{43}\\||+x^{39}-x^{36}+x^{33}-x^{29}+x^{26}-x^{22}+x^{20}-x^{15}+x^{13}-x^8\\||+x^7-x+1\\{\large\Phi}_{92}(x)|=|\frac{x^{46}+1}{x^2+1}\\|=|x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}\\||+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{93}(x)|=|\frac{(x-1)(x^{93}-1)}{(x^3-1)(x^{31}-1)}\\|=|x^{60}-x^{59}+x^{57}-x^{56}+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}\\||+x^{45}-x^{44}+x^{42}-x^{41}+x^{39}-x^{38}+x^{36}-x^{35}+x^{33}-x^{32}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{94}(x)|=|\frac{x^{47}+1}{x+1}\\|=|x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{95}(x)|=|\frac{(x-1)(x^{95}-1)}{(x^5-1)(x^{19}-1)}\\|=|x^{72}-x^{71}+x^{67}-x^{66}+x^{62}-x^{61}+x^{57}-x^{56}+x^{53}-x^{51}\\||+x^{48}-x^{46}+x^{43}-x^{41}+x^{38}-x^{36}+x^{34}-x^{31}+x^{29}-x^{26}\\||+x^{24}-x^{21}+x^{19}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{96}(x)|=|\frac{x^{48}+1}{x^{16}+1}\\|=|x^{32}-x^{16}+1\\{\large\Phi}_{97}(x)|=|\frac{x^{97}-1}{x-1}\\|=|x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{98}(x)|=|\frac{x^{49}+1}{x^7+1}\\|=|x^{42}-x^{35}+x^{28}-x^{21}+x^{14}-x^7+1\\{\large\Phi}_{99}(x)|=|\frac{(x^3-1)(x^{99}-1)}{(x^9-1)(x^{33}-1)}\\|=|x^{60}-x^{57}+x^{51}-x^{48}+x^{42}-x^{39}+x^{33}-x^{30}+x^{27}-x^{21}\\||+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{100}(x)|=|\frac{x^{50}+1}{x^{10}+1}\\|=|x^{40}-x^{30}+x^{20}-x^{10}+1\end{eqnarray}%%
${\large\Phi}_{101}(x)\cdots{\large\Phi}_{120}(x)$${\large\Phi}_{101}(x)\cdots{\large\Phi}_{120}(x)$
%%\begin{eqnarray}{\large\Phi}_{101}(x)|=|\frac{x^{101}-1}{x-1}\\|=|x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{102}(x)|=|\frac{(x+1)(x^{51}+1)}{(x^3+1)(x^{17}+1)}\\|=|x^{32}+x^{31}-x^{29}-x^{28}+x^{26}+x^{25}-x^{23}-x^{22}+x^{20}+x^{19}\\||-x^{17}-x^{16}-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4\\||-x^3+x+1\\{\large\Phi}_{103}(x)|=|\frac{x^{103}-1}{x-1}\\|=|x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{104}(x)|=|\frac{x^{52}+1}{x^4+1}\\|=|x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}\\||+x^8-x^4+1\\{\large\Phi}_{105}(x)|=|\frac{(x^3-1)(x^5-1)(x^7-1)(x^{105}-1)}{(x-1)(x^{15}-1)(x^{21}-1)(x^{35}-1)}\\|=|x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2x^{41}-x^{40}-x^{39}+x^{36}+x^{35}\\||+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{24}-x^{22}-x^{20}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^9-x^8-2x^7-x^6-x^5\\||+x^2+x+1\\{\large\Phi}_{106}(x)|=|\frac{x^{53}+1}{x+1}\\|=|x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{107}(x)|=|\frac{x^{107}-1}{x-1}\\|=|x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{108}(x)|=|\frac{x^{54}+1}{x^{18}+1}\\|=|x^{36}-x^{18}+1\\{\large\Phi}_{109}(x)|=|\frac{x^{109}-1}{x-1}\\|=|x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{110}(x)|=|\frac{(x+1)(x^{55}+1)}{(x^5+1)(x^{11}+1)}\\|=|x^{40}+x^{39}-x^{35}-x^{34}+x^{30}-x^{28}-x^{25}+x^{23}+x^{20}+x^{17}\\||-x^{15}-x^{12}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{111}(x)|=|\frac{(x-1)(x^{111}-1)}{(x^3-1)(x^{37}-1)}\\|=|x^{72}-x^{71}+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}+x^{60}-x^{59}\\||+x^{57}-x^{56}+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}+x^{45}-x^{44}\\||+x^{42}-x^{41}+x^{39}-x^{38}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{112}(x)|=|\frac{x^{56}+1}{x^8+1}\\|=|x^{48}-x^{40}+x^{32}-x^{24}+x^{16}-x^8+1\\{\large\Phi}_{113}(x)|=|\frac{x^{113}-1}{x-1}\\|=|x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{114}(x)|=|\frac{(x+1)(x^{57}+1)}{(x^3+1)(x^{19}+1)}\\|=|x^{36}+x^{35}-x^{33}-x^{32}+x^{30}+x^{29}-x^{27}-x^{26}+x^{24}+x^{23}\\||-x^{21}-x^{20}+x^{18}-x^{16}-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7\\||+x^6-x^4-x^3+x+1\\{\large\Phi}_{115}(x)|=|\frac{(x-1)(x^{115}-1)}{(x^5-1)(x^{23}-1)}\\|=|x^{88}-x^{87}+x^{83}-x^{82}+x^{78}-x^{77}+x^{73}-x^{72}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{63}-x^{62}+x^{60}-x^{59}+x^{58}-x^{57}+x^{55}-x^{54}\\||+x^{53}-x^{52}+x^{50}-x^{49}+x^{48}-x^{47}+x^{45}-x^{44}+x^{43}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{36}+x^{35}-x^{34}+x^{33}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{26}+x^{25}-x^{24}+x^{23}-x^{21}+x^{20}-x^{16}+x^{15}-x^{11}\\||+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{116}(x)|=|\frac{x^{58}+1}{x^2+1}\\|=|x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}\\||+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}\\||+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{117}(x)|=|\frac{(x^3-1)(x^{117}-1)}{(x^9-1)(x^{39}-1)}\\|=|x^{72}-x^{69}+x^{63}-x^{60}+x^{54}-x^{51}+x^{45}-x^{42}+x^{36}-x^{30}\\||+x^{27}-x^{21}+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{118}(x)|=|\frac{x^{59}+1}{x+1}\\|=|x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{119}(x)|=|\frac{(x-1)(x^{119}-1)}{(x^7-1)(x^{17}-1)}\\|=|x^{96}-x^{95}+x^{89}-x^{88}+x^{82}-x^{81}+x^{79}-x^{78}+x^{75}-x^{74}\\||+x^{72}-x^{71}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{60}+x^{58}-x^{57}\\||+x^{55}-x^{53}+x^{51}-x^{50}+x^{48}-x^{46}+x^{45}-x^{43}+x^{41}-x^{39}\\||+x^{38}-x^{36}+x^{34}-x^{32}+x^{31}-x^{29}+x^{28}-x^{25}+x^{24}-x^{22}\\||+x^{21}-x^{18}+x^{17}-x^{15}+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{120}(x)|=|\frac{(x^4+1)(x^{60}+1)}{(x^{12}+1)(x^{20}+1)}\\|=|x^{32}+x^{28}-x^{20}-x^{16}-x^{12}+x^4+1\end{eqnarray}%%
${\large\Phi}_{121}(x)\cdots{\large\Phi}_{140}(x)$${\large\Phi}_{121}(x)\cdots{\large\Phi}_{140}(x)$
%%\begin{eqnarray}{\large\Phi}_{121}(x)|=|\frac{x^{121}-1}{x^{11}-1}\\|=|x^{110}+x^{99}+x^{88}+x^{77}+x^{66}+x^{55}+x^{44}+x^{33}+x^{22}+x^{11}+1\\{\large\Phi}_{122}(x)|=|\frac{x^{61}+1}{x+1}\\|=|x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}\\||+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{123}(x)|=|\frac{(x-1)(x^{123}-1)}{(x^3-1)(x^{41}-1)}\\|=|x^{80}-x^{79}+x^{77}-x^{76}+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{62}-x^{61}+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}\\||+x^{50}-x^{49}+x^{47}-x^{46}+x^{44}-x^{43}+x^{41}-x^{40}+x^{39}-x^{37}\\||+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}\\||+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{124}(x)|=|\frac{x^{62}+1}{x^2+1}\\|=|x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}\\||+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}\\||+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{125}(x)|=|\frac{x^{125}-1}{x^{25}-1}\\|=|x^{100}+x^{75}+x^{50}+x^{25}+1\\{\large\Phi}_{126}(x)|=|\frac{(x^3+1)(x^{63}+1)}{(x^9+1)(x^{21}+1)}\\|=|x^{36}+x^{33}-x^{27}-x^{24}+x^{18}-x^{12}-x^9+x^3+1\\{\large\Phi}_{127}(x)|=|\frac{x^{127}-1}{x-1}\\|=|x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{128}(x)|=|x^{64}+1\\{\large\Phi}_{129}(x)|=|\frac{(x-1)(x^{129}-1)}{(x^3-1)(x^{43}-1)}\\|=|x^{84}-x^{83}+x^{81}-x^{80}+x^{78}-x^{77}+x^{75}-x^{74}+x^{72}-x^{71}\\||+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}+x^{60}-x^{59}+x^{57}-x^{56}\\||+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}+x^{45}-x^{44}+x^{42}-x^{40}\\||+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}\\||+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}\\||+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{130}(x)|=|\frac{(x+1)(x^{65}+1)}{(x^5+1)(x^{13}+1)}\\|=|x^{48}+x^{47}-x^{43}-x^{42}+x^{38}+x^{37}-x^{35}-x^{34}-x^{33}-x^{32}\\||+x^{30}+x^{29}+x^{28}+x^{27}-x^{25}-x^{24}-x^{23}+x^{21}+x^{20}+x^{19}\\||+x^{18}-x^{16}-x^{15}-x^{14}-x^{13}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{131}(x)|=|\frac{x^{131}-1}{x-1}\\|=|x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{132}(x)|=|\frac{(x^2+1)(x^{66}+1)}{(x^6+1)(x^{22}+1)}\\|=|x^{40}+x^{38}-x^{34}-x^{32}+x^{28}+x^{26}-x^{22}-x^{20}-x^{18}+x^{14}\\||+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{133}(x)|=|\frac{(x-1)(x^{133}-1)}{(x^7-1)(x^{19}-1)}\\|=|x^{108}-x^{107}+x^{101}-x^{100}+x^{94}-x^{93}+x^{89}-x^{88}+x^{87}-x^{86}\\||+x^{82}-x^{81}+x^{80}-x^{79}+x^{75}-x^{74}+x^{73}-x^{72}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{63}-x^{62}+x^{61}-x^{60}+x^{59}-x^{58}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{50}+x^{49}-x^{48}+x^{47}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{36}+x^{35}-x^{34}\\||+x^{33}-x^{29}+x^{28}-x^{27}+x^{26}-x^{22}+x^{21}-x^{20}+x^{19}-x^{15}\\||+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{134}(x)|=|\frac{x^{67}+1}{x+1}\\|=|x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}\\||+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{135}(x)|=|\frac{(x^9-1)(x^{135}-1)}{(x^{27}-1)(x^{45}-1)}\\|=|x^{72}-x^{63}+x^{45}-x^{36}+x^{27}-x^9+1\\{\large\Phi}_{136}(x)|=|\frac{x^{68}+1}{x^4+1}\\|=|x^{64}-x^{60}+x^{56}-x^{52}+x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}\\||+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{137}(x)|=|\frac{x^{137}-1}{x-1}\\|=|x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{138}(x)|=|\frac{(x+1)(x^{69}+1)}{(x^3+1)(x^{23}+1)}\\|=|x^{44}+x^{43}-x^{41}-x^{40}+x^{38}+x^{37}-x^{35}-x^{34}+x^{32}+x^{31}\\||-x^{29}-x^{28}+x^{26}+x^{25}-x^{23}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}\\||-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{139}(x)|=|\frac{x^{139}-1}{x-1}\\|=|x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{140}(x)|=|\frac{(x^2+1)(x^{70}+1)}{(x^{10}+1)(x^{14}+1)}\\|=|x^{48}+x^{46}-x^{38}-x^{36}-x^{34}-x^{32}+x^{28}+x^{26}+x^{24}+x^{22}\\||+x^{20}-x^{16}-x^{14}-x^{12}-x^{10}+x^2+1\end{eqnarray}%%
${\large\Phi}_{141}(x)\cdots{\large\Phi}_{160}(x)$${\large\Phi}_{141}(x)\cdots{\large\Phi}_{160}(x)$
%%\begin{eqnarray}{\large\Phi}_{141}(x)|=|\frac{(x-1)(x^{141}-1)}{(x^3-1)(x^{47}-1)}\\|=|x^{92}-x^{91}+x^{89}-x^{88}+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}\\||+x^{77}-x^{76}+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}\\||+x^{62}-x^{61}+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}+x^{50}-x^{49}\\||+x^{47}-x^{46}+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}\\||+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}\\||+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4\\||+x^3-x+1\\{\large\Phi}_{142}(x)|=|\frac{x^{71}+1}{x+1}\\|=|x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}\\||+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}\\||+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{143}(x)|=|\frac{(x-1)(x^{143}-1)}{(x^{11}-1)(x^{13}-1)}\\|=|x^{120}-x^{119}+x^{109}-x^{108}+x^{107}-x^{106}+x^{98}-x^{97}+x^{96}-x^{95}\\||+x^{94}-x^{93}+x^{87}-x^{86}+x^{85}-x^{84}+x^{83}-x^{82}+x^{81}-x^{80}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{63}-x^{62}+x^{61}-x^{60}+x^{59}-x^{58}+x^{57}-x^{56}\\||+x^{55}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}\\||+x^{44}-x^{40}+x^{39}-x^{38}+x^{37}-x^{36}+x^{35}-x^{34}+x^{33}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{14}+x^{13}-x^{12}+x^{11}-x+1\\{\large\Phi}_{144}(x)|=|\frac{x^{72}+1}{x^{24}+1}\\|=|x^{48}-x^{24}+1\\{\large\Phi}_{145}(x)|=|\frac{(x-1)(x^{145}-1)}{(x^5-1)(x^{29}-1)}\\|=|x^{112}-x^{111}+x^{107}-x^{106}+x^{102}-x^{101}+x^{97}-x^{96}+x^{92}-x^{91}\\||+x^{87}-x^{86}+x^{83}-x^{81}+x^{78}-x^{76}+x^{73}-x^{71}+x^{68}-x^{66}\\||+x^{63}-x^{61}+x^{58}-x^{56}+x^{54}-x^{51}+x^{49}-x^{46}+x^{44}-x^{41}\\||+x^{39}-x^{36}+x^{34}-x^{31}+x^{29}-x^{26}+x^{25}-x^{21}+x^{20}-x^{16}\\||+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{146}(x)|=|\frac{x^{73}+1}{x+1}\\|=|x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}\\||+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{147}(x)|=|\frac{(x^7-1)(x^{147}-1)}{(x^{21}-1)(x^{49}-1)}\\|=|x^{84}-x^{77}+x^{63}-x^{56}+x^{42}-x^{28}+x^{21}-x^7+1\\{\large\Phi}_{148}(x)|=|\frac{x^{74}+1}{x^2+1}\\|=|x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}\\||+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}\\||+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{149}(x)|=|\frac{x^{149}-1}{x-1}\\|=|x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{150}(x)|=|\frac{(x^5+1)(x^{75}+1)}{(x^{15}+1)(x^{25}+1)}\\|=|x^{40}+x^{35}-x^{25}-x^{20}-x^{15}+x^5+1\\{\large\Phi}_{151}(x)|=|\frac{x^{151}-1}{x-1}\\|=|x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{152}(x)|=|\frac{x^{76}+1}{x^4+1}\\|=|x^{72}-x^{68}+x^{64}-x^{60}+x^{56}-x^{52}+x^{48}-x^{44}+x^{40}-x^{36}\\||+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{153}(x)|=|\frac{(x^3-1)(x^{153}-1)}{(x^9-1)(x^{51}-1)}\\|=|x^{96}-x^{93}+x^{87}-x^{84}+x^{78}-x^{75}+x^{69}-x^{66}+x^{60}-x^{57}\\||+x^{51}-x^{48}+x^{45}-x^{39}+x^{36}-x^{30}+x^{27}-x^{21}+x^{18}-x^{12}\\||+x^9-x^3+1\\{\large\Phi}_{154}(x)|=|\frac{(x+1)(x^{77}+1)}{(x^7+1)(x^{11}+1)}\\|=|x^{60}+x^{59}-x^{53}-x^{52}-x^{49}-x^{48}+x^{46}+x^{45}+x^{42}+x^{41}\\||-x^{39}+x^{37}-x^{35}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}-x^{25}+x^{23}\\||-x^{21}+x^{19}+x^{18}+x^{15}+x^{14}-x^{12}-x^{11}-x^8-x^7+x+1\\{\large\Phi}_{155}(x)|=|\frac{(x-1)(x^{155}-1)}{(x^5-1)(x^{31}-1)}\\|=|x^{120}-x^{119}+x^{115}-x^{114}+x^{110}-x^{109}+x^{105}-x^{104}+x^{100}-x^{99}\\||+x^{95}-x^{94}+x^{90}-x^{88}+x^{85}-x^{83}+x^{80}-x^{78}+x^{75}-x^{73}\\||+x^{70}-x^{68}+x^{65}-x^{63}+x^{60}-x^{57}+x^{55}-x^{52}+x^{50}-x^{47}\\||+x^{45}-x^{42}+x^{40}-x^{37}+x^{35}-x^{32}+x^{30}-x^{26}+x^{25}-x^{21}\\||+x^{20}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{156}(x)|=|\frac{(x^2+1)(x^{78}+1)}{(x^6+1)(x^{26}+1)}\\|=|x^{48}+x^{46}-x^{42}-x^{40}+x^{36}+x^{34}-x^{30}-x^{28}+x^{24}-x^{20}\\||-x^{18}+x^{14}+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{157}(x)|=|\frac{x^{157}-1}{x-1}\\|=|x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{158}(x)|=|\frac{x^{79}+1}{x+1}\\|=|x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}\\||+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{159}(x)|=|\frac{(x-1)(x^{159}-1)}{(x^3-1)(x^{53}-1)}\\|=|x^{104}-x^{103}+x^{101}-x^{100}+x^{98}-x^{97}+x^{95}-x^{94}+x^{92}-x^{91}\\||+x^{89}-x^{88}+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}+x^{77}-x^{76}\\||+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{61}\\||+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{160}(x)|=|\frac{x^{80}+1}{x^{16}+1}\\|=|x^{64}-x^{48}+x^{32}-x^{16}+1\end{eqnarray}%%
${\large\Phi}_{161}(x)\cdots{\large\Phi}_{180}(x)$${\large\Phi}_{161}(x)\cdots{\large\Phi}_{180}(x)$
%%\begin{eqnarray}{\large\Phi}_{161}(x)|=|\frac{(x-1)(x^{161}-1)}{(x^7-1)(x^{23}-1)}\\|=|x^{132}-x^{131}+x^{125}-x^{124}+x^{118}-x^{117}+x^{111}-x^{110}+x^{109}-x^{108}\\||+x^{104}-x^{103}+x^{102}-x^{101}+x^{97}-x^{96}+x^{95}-x^{94}+x^{90}-x^{89}\\||+x^{88}-x^{87}+x^{86}-x^{85}+x^{83}-x^{82}+x^{81}-x^{80}+x^{79}-x^{78}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{69}-x^{68}+x^{67}-x^{66}\\||+x^{65}-x^{64}+x^{63}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{54}\\||+x^{53}-x^{52}+x^{51}-x^{50}+x^{49}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{38}+x^{37}-x^{36}+x^{35}-x^{31}+x^{30}-x^{29}+x^{28}-x^{24}\\||+x^{23}-x^{22}+x^{21}-x^{15}+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{162}(x)|=|\frac{x^{81}+1}{x^{27}+1}\\|=|x^{54}-x^{27}+1\\{\large\Phi}_{163}(x)|=|\frac{x^{163}-1}{x-1}\\|=|x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{164}(x)|=|\frac{x^{82}+1}{x^2+1}\\|=|x^{80}-x^{78}+x^{76}-x^{74}+x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}\\||+x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}\\||+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}\\||+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{165}(x)|=|\frac{(x^3-1)(x^5-1)(x^{11}-1)(x^{165}-1)}{(x-1)(x^{15}-1)(x^{33}-1)(x^{55}-1)}\\|=|x^{80}+x^{79}+x^{78}-x^{75}-x^{74}-x^{73}-x^{69}-x^{68}-x^{67}+x^{65}\\||+2x^{64}+2x^{63}+x^{62}-x^{60}-x^{59}-x^{58}-x^{54}-x^{53}-x^{52}+x^{50}\\||+2x^{49}+2x^{48}+2x^{47}+x^{46}-x^{44}-x^{43}-x^{42}-x^{41}-x^{40}-x^{39}\\||-x^{38}-x^{37}-x^{36}+x^{34}+2x^{33}+2x^{32}+2x^{31}+x^{30}-x^{28}-x^{27}\\||-x^{26}-x^{22}-x^{21}-x^{20}+x^{18}+2x^{17}+2x^{16}+x^{15}-x^{13}-x^{12}\\||-x^{11}-x^7-x^6-x^5+x^2+x+1\\{\large\Phi}_{166}(x)|=|\frac{x^{83}+1}{x+1}\\|=|x^{82}-x^{81}+x^{80}-x^{79}+x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}\\||+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}\\||+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{167}(x)|=|\frac{x^{167}-1}{x-1}\\|=|x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}\\||+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{168}(x)|=|\frac{(x^4+1)(x^{84}+1)}{(x^{12}+1)(x^{28}+1)}\\|=|x^{48}+x^{44}-x^{36}-x^{32}+x^{24}-x^{16}-x^{12}+x^4+1\\{\large\Phi}_{169}(x)|=|\frac{x^{169}-1}{x^{13}-1}\\|=|x^{156}+x^{143}+x^{130}+x^{117}+x^{104}+x^{91}+x^{78}+x^{65}+x^{52}+x^{39}\\||+x^{26}+x^{13}+1\\{\large\Phi}_{170}(x)|=|\frac{(x+1)(x^{85}+1)}{(x^5+1)(x^{17}+1)}\\|=|x^{64}+x^{63}-x^{59}-x^{58}+x^{54}+x^{53}-x^{49}-x^{48}-x^{47}-x^{46}\\||+x^{44}+x^{43}+x^{42}+x^{41}-x^{39}-x^{38}-x^{37}-x^{36}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}-x^{28}-x^{27}-x^{26}-x^{25}+x^{23}+x^{22}+x^{21}\\||+x^{20}-x^{18}-x^{17}-x^{16}-x^{15}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{171}(x)|=|\frac{(x^3-1)(x^{171}-1)}{(x^9-1)(x^{57}-1)}\\|=|x^{108}-x^{105}+x^{99}-x^{96}+x^{90}-x^{87}+x^{81}-x^{78}+x^{72}-x^{69}\\||+x^{63}-x^{60}+x^{54}-x^{48}+x^{45}-x^{39}+x^{36}-x^{30}+x^{27}-x^{21}\\||+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{172}(x)|=|\frac{x^{86}+1}{x^2+1}\\|=|x^{84}-x^{82}+x^{80}-x^{78}+x^{76}-x^{74}+x^{72}-x^{70}+x^{68}-x^{66}\\||+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}\\||+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}\\||+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{173}(x)|=|\frac{x^{173}-1}{x-1}\\|=|x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}\\||+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{174}(x)|=|\frac{(x+1)(x^{87}+1)}{(x^3+1)(x^{29}+1)}\\|=|x^{56}+x^{55}-x^{53}-x^{52}+x^{50}+x^{49}-x^{47}-x^{46}+x^{44}+x^{43}\\||-x^{41}-x^{40}+x^{38}+x^{37}-x^{35}-x^{34}+x^{32}+x^{31}-x^{29}-x^{28}\\||-x^{27}+x^{25}+x^{24}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}-x^{15}+x^{13}\\||+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{175}(x)|=|\frac{(x^5-1)(x^{175}-1)}{(x^{25}-1)(x^{35}-1)}\\|=|x^{120}-x^{115}+x^{95}-x^{90}+x^{85}-x^{80}+x^{70}-x^{65}+x^{60}-x^{55}\\||+x^{50}-x^{40}+x^{35}-x^{30}+x^{25}-x^5+1\\{\large\Phi}_{176}(x)|=|\frac{x^{88}+1}{x^8+1}\\|=|x^{80}-x^{72}+x^{64}-x^{56}+x^{48}-x^{40}+x^{32}-x^{24}+x^{16}-x^8+1\\{\large\Phi}_{177}(x)|=|\frac{(x-1)(x^{177}-1)}{(x^3-1)(x^{59}-1)}\\|=|x^{116}-x^{115}+x^{113}-x^{112}+x^{110}-x^{109}+x^{107}-x^{106}+x^{104}-x^{103}\\||+x^{101}-x^{100}+x^{98}-x^{97}+x^{95}-x^{94}+x^{92}-x^{91}+x^{89}-x^{88}\\||+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}+x^{77}-x^{76}+x^{74}-x^{73}\\||+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{61}+x^{59}-x^{58}\\||+x^{57}-x^{55}+x^{54}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}+x^{45}-x^{43}\\||+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{178}(x)|=|\frac{x^{89}+1}{x+1}\\|=|x^{88}-x^{87}+x^{86}-x^{85}+x^{84}-x^{83}+x^{82}-x^{81}+x^{80}-x^{79}\\||+x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}\\||+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{179}(x)|=|\frac{x^{179}-1}{x-1}\\|=|x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}\\||+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}\\||+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}\\||+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{180}(x)|=|\frac{(x^6+1)(x^{90}+1)}{(x^{18}+1)(x^{30}+1)}\\|=|x^{48}+x^{42}-x^{30}-x^{24}-x^{18}+x^6+1\end{eqnarray}%%
${\large\Phi}_{181}(x)\cdots{\large\Phi}_{200}(x)$${\large\Phi}_{181}(x)\cdots{\large\Phi}_{200}(x)$
%%\begin{eqnarray}{\large\Phi}_{181}(x)|=|\frac{x^{181}-1}{x-1}\\|=|x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}\\||+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}\\||+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}\\||+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{182}(x)|=|\frac{(x+1)(x^{91}+1)}{(x^7+1)(x^{13}+1)}\\|=|x^{72}+x^{71}-x^{65}-x^{64}-x^{59}+x^{57}+x^{52}-x^{50}+x^{46}+x^{43}\\||-x^{39}-x^{36}-x^{33}+x^{29}+x^{26}-x^{22}+x^{20}+x^{15}-x^{13}-x^8\\||-x^7+x+1\\{\large\Phi}_{183}(x)|=|\frac{(x-1)(x^{183}-1)}{(x^3-1)(x^{61}-1)}\\|=|x^{120}-x^{119}+x^{117}-x^{116}+x^{114}-x^{113}+x^{111}-x^{110}+x^{108}-x^{107}\\||+x^{105}-x^{104}+x^{102}-x^{101}+x^{99}-x^{98}+x^{96}-x^{95}+x^{93}-x^{92}\\||+x^{90}-x^{89}+x^{87}-x^{86}+x^{84}-x^{83}+x^{81}-x^{80}+x^{78}-x^{77}\\||+x^{75}-x^{74}+x^{72}-x^{71}+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}\\||+x^{60}-x^{58}+x^{57}-x^{55}+x^{54}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{184}(x)|=|\frac{x^{92}+1}{x^4+1}\\|=|x^{88}-x^{84}+x^{80}-x^{76}+x^{72}-x^{68}+x^{64}-x^{60}+x^{56}-x^{52}\\||+x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}\\||+x^8-x^4+1\\{\large\Phi}_{185}(x)|=|\frac{(x-1)(x^{185}-1)}{(x^5-1)(x^{37}-1)}\\|=|x^{144}-x^{143}+x^{139}-x^{138}+x^{134}-x^{133}+x^{129}-x^{128}+x^{124}-x^{123}\\||+x^{119}-x^{118}+x^{114}-x^{113}+x^{109}-x^{108}+x^{107}-x^{106}+x^{104}-x^{103}\\||+x^{102}-x^{101}+x^{99}-x^{98}+x^{97}-x^{96}+x^{94}-x^{93}+x^{92}-x^{91}\\||+x^{89}-x^{88}+x^{87}-x^{86}+x^{84}-x^{83}+x^{82}-x^{81}+x^{79}-x^{78}\\||+x^{77}-x^{76}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{68}+x^{67}-x^{66}\\||+x^{65}-x^{63}+x^{62}-x^{61}+x^{60}-x^{58}+x^{57}-x^{56}+x^{55}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{48}+x^{47}-x^{46}+x^{45}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{38}+x^{37}-x^{36}+x^{35}-x^{31}+x^{30}-x^{26}+x^{25}-x^{21}\\||+x^{20}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{186}(x)|=|\frac{(x+1)(x^{93}+1)}{(x^3+1)(x^{31}+1)}\\|=|x^{60}+x^{59}-x^{57}-x^{56}+x^{54}+x^{53}-x^{51}-x^{50}+x^{48}+x^{47}\\||-x^{45}-x^{44}+x^{42}+x^{41}-x^{39}-x^{38}+x^{36}+x^{35}-x^{33}-x^{32}\\||+x^{30}-x^{28}-x^{27}+x^{25}+x^{24}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}\\||-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{187}(x)|=|\frac{(x-1)(x^{187}-1)}{(x^{11}-1)(x^{17}-1)}\\|=|x^{160}-x^{159}+x^{149}-x^{148}+x^{143}-x^{142}+x^{138}-x^{137}+x^{132}-x^{131}\\||+x^{127}-x^{125}+x^{121}-x^{120}+x^{116}-x^{114}+x^{110}-x^{108}+x^{105}-x^{103}\\||+x^{99}-x^{97}+x^{94}-x^{91}+x^{88}-x^{86}+x^{83}-x^{80}+x^{77}-x^{74}\\||+x^{72}-x^{69}+x^{66}-x^{63}+x^{61}-x^{57}+x^{55}-x^{52}+x^{50}-x^{46}\\||+x^{44}-x^{40}+x^{39}-x^{35}+x^{33}-x^{29}+x^{28}-x^{23}+x^{22}-x^{18}\\||+x^{17}-x^{12}+x^{11}-x+1\\{\large\Phi}_{188}(x)|=|\frac{x^{94}+1}{x^2+1}\\|=|x^{92}-x^{90}+x^{88}-x^{86}+x^{84}-x^{82}+x^{80}-x^{78}+x^{76}-x^{74}\\||+x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}\\||+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}\\||+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{189}(x)|=|\frac{(x^9-1)(x^{189}-1)}{(x^{27}-1)(x^{63}-1)}\\|=|x^{108}-x^{99}+x^{81}-x^{72}+x^{54}-x^{36}+x^{27}-x^9+1\\{\large\Phi}_{190}(x)|=|\frac{(x+1)(x^{95}+1)}{(x^5+1)(x^{19}+1)}\\|=|x^{72}+x^{71}-x^{67}-x^{66}+x^{62}+x^{61}-x^{57}-x^{56}-x^{53}+x^{51}\\||+x^{48}-x^{46}-x^{43}+x^{41}+x^{38}-x^{36}+x^{34}+x^{31}-x^{29}-x^{26}\\||+x^{24}+x^{21}-x^{19}-x^{16}-x^{15}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{191}(x)|=|\frac{x^{191}-1}{x-1}\\|=|x^{190}+x^{189}+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}\\||+x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}\\||+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}\\||+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}\\||+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{192}(x)|=|\frac{x^{96}+1}{x^{32}+1}\\|=|x^{64}-x^{32}+1\\{\large\Phi}_{193}(x)|=|\frac{x^{193}-1}{x-1}\\|=|x^{192}+x^{191}+x^{190}+x^{189}+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}\\||+x^{182}+x^{181}+x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}\\||+x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}\\||+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{194}(x)|=|\frac{x^{97}+1}{x+1}\\|=|x^{96}-x^{95}+x^{94}-x^{93}+x^{92}-x^{91}+x^{90}-x^{89}+x^{88}-x^{87}\\||+x^{86}-x^{85}+x^{84}-x^{83}+x^{82}-x^{81}+x^{80}-x^{79}+x^{78}-x^{77}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}\\||+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}\\||+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{195}(x)|=|\frac{(x^3-1)(x^5-1)(x^{13}-1)(x^{195}-1)}{(x-1)(x^{15}-1)(x^{39}-1)(x^{65}-1)}\\|=|x^{96}+x^{95}+x^{94}-x^{91}-x^{90}-x^{89}-x^{83}-x^{82}+x^{80}+x^{79}\\||+x^{78}+x^{77}-x^{75}-x^{74}-x^{68}-x^{67}+x^{65}+x^{64}+x^{63}+x^{62}\\||-x^{60}-x^{59}+x^{57}+x^{56}+x^{55}-x^{53}-2x^{52}-x^{51}+x^{49}+x^{48}\\||+x^{47}-x^{45}-2x^{44}-x^{43}+x^{41}+x^{40}+x^{39}-x^{37}-x^{36}+x^{34}\\||+x^{33}+x^{32}+x^{31}-x^{29}-x^{28}-x^{22}-x^{21}+x^{19}+x^{18}+x^{17}\\||+x^{16}-x^{14}-x^{13}-x^7-x^6-x^5+x^2+x+1\\{\large\Phi}_{196}(x)|=|\frac{x^{98}+1}{x^{14}+1}\\|=|x^{84}-x^{70}+x^{56}-x^{42}+x^{28}-x^{14}+1\\{\large\Phi}_{197}(x)|=|\frac{x^{197}-1}{x-1}\\|=|x^{196}+x^{195}+x^{194}+x^{193}+x^{192}+x^{191}+x^{190}+x^{189}+x^{188}+x^{187}\\||+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}+x^{180}+x^{179}+x^{178}+x^{177}\\||+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}\\||+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}\\||+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{198}(x)|=|\frac{(x^3+1)(x^{99}+1)}{(x^9+1)(x^{33}+1)}\\|=|x^{60}+x^{57}-x^{51}-x^{48}+x^{42}+x^{39}-x^{33}-x^{30}-x^{27}+x^{21}\\||+x^{18}-x^{12}-x^9+x^3+1\\{\large\Phi}_{199}(x)|=|\frac{x^{199}-1}{x-1}\\|=|x^{198}+x^{197}+x^{196}+x^{195}+x^{194}+x^{193}+x^{192}+x^{191}+x^{190}+x^{189}\\||+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}+x^{180}+x^{179}\\||+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}\\||+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}\\||+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}\\||+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{200}(x)|=|\frac{x^{100}+1}{x^{20}+1}\\|=|x^{80}-x^{60}+x^{40}-x^{20}+1\end{eqnarray}%%
Aurifeuillean is also written as Aurifeuillian.
Aurifeuillean は Aurifeuillian とも書く。
${\large\Phi}_{4}(2^{2k+1})\cdots{\large\Phi}_{20}(10^{2k+1})$${\large\Phi}_{4}(2^{2k+1})\cdots{\large\Phi}_{20}(10^{2k+1})$
$$\begin{eqnarray}{\large\Phi}_{4}(2^{2k+1})&=&2^{4k+2}+1\\&=&(2^{2k+1}-2^{k+1}+1)\\&\times&(2^{2k+1}+2^{k+1}+1)\\{\large\Phi}_{6}(3^{2k+1})&=&3^{4k+2}-3^{2k+1}+1\\&=&(3^{2k+1}-3^{k+1}+1)\\&\times&(3^{2k+1}+3^{k+1}+1)\\{\large\Phi}_{5}(5^{2k+1})&=&5^{8k+4}+5^{6k+3}+5^{4k+2}+5^{2k+1}+1\\&=&(5^{4k+2}-5^{3k+2}+3\cdot 5^{2k+1}-5^{k+1}+1)\\&\times&(5^{4k+2}+5^{3k+2}+3\cdot 5^{2k+1}+5^{k+1}+1)\\{\large\Phi}_{12}(6^{2k+1})&=&6^{8k+4}-6^{4k+2}+1\\&=&(6^{4k+2}-6^{3k+2}+3\cdot 6^{2k+1}-6^{k+1}+1)\\&\times&(6^{4k+2}+6^{3k+2}+3\cdot 6^{2k+1}+6^{k+1}+1)\\{\large\Phi}_{14}(7^{2k+1})&=&7^{12k+6}-7^{10k+5}+7^{8k+4}-7^{6k+3}+7^{4k+2}\\&&-7^{2k+1}+1\\&=&(7^{6k+3}-7^{5k+3}+3\cdot 7^{4k+2}-7^{3k+2}+3\cdot 7^{2k+1}\\&&-7^{k+1}+1)\\&\times&(7^{6k+3}+7^{5k+3}+3\cdot 7^{4k+2}+7^{3k+2}+3\cdot 7^{2k+1}\\&&+7^{k+1}+1)\\{\large\Phi}_{20}(10^{2k+1})&=&10^{16k+8}-10^{12k+6}+10^{8k+4}-10^{4k+2}+1\\&=&(10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}\\&&-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1)\\&\times&(10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}\\&&+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1)\end{eqnarray}$$
${\large\Phi}_{22}(11^{2k+1})\cdots{\large\Phi}_{38}(19^{2k+1})$${\large\Phi}_{22}(11^{2k+1})\cdots{\large\Phi}_{38}(19^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{22}(11^{2k+1})|=|11^{20k+10}-11^{18k+9}+11^{16k+8}-11^{14k+7}+11^{12k+6}\\||-11^{10k+5}+11^{8k+4}-11^{6k+3}+11^{4k+2}-11^{2k+1}+1\\|=|(11^{10k+5}-11^{9k+5}+5\cdot 11^{8k+4}-11^{7k+4}-11^{6k+3}\\||+11^{5k+3}-11^{4k+2}-11^{3k+2}+5\cdot 11^{2k+1}-11^{k+1}+1)\\|\times|(11^{10k+5}+11^{9k+5}+5\cdot 11^{8k+4}+11^{7k+4}-11^{6k+3}\\||-11^{5k+3}-11^{4k+2}+11^{3k+2}+5\cdot 11^{2k+1}+11^{k+1}+1)\\{\large\Phi}_{13}(13^{2k+1})|=|13^{24k+12}+13^{22k+11}+13^{20k+10}+13^{18k+9}+13^{16k+8}\\||+13^{14k+7}+13^{12k+6}+13^{10k+5}+13^{8k+4}+13^{6k+3}\\||+13^{4k+2}+13^{2k+1}+1\\|=|(13^{12k+6}-13^{11k+6}+7\cdot 13^{10k+5}-3\cdot 13^{9k+5}+15\cdot 13^{8k+4}\\||-5\cdot 13^{7k+4}+19\cdot 13^{6k+3}-5\cdot 13^{5k+3}+15\cdot 13^{4k+2}-3\cdot 13^{3k+2}\\||+7\cdot 13^{2k+1}-13^{k+1}+1)\\|\times|(13^{12k+6}+13^{11k+6}+7\cdot 13^{10k+5}+3\cdot 13^{9k+5}+15\cdot 13^{8k+4}\\||+5\cdot 13^{7k+4}+19\cdot 13^{6k+3}+5\cdot 13^{5k+3}+15\cdot 13^{4k+2}+3\cdot 13^{3k+2}\\||+7\cdot 13^{2k+1}+13^{k+1}+1)\\{\large\Phi}_{28}(14^{2k+1})|=|14^{24k+12}-14^{20k+10}+14^{16k+8}-14^{12k+6}+14^{8k+4}\\||-14^{4k+2}+1\\|=|(14^{12k+6}-14^{11k+6}+7\cdot 14^{10k+5}-2\cdot 14^{9k+5}+3\cdot 14^{8k+4}\\||+14^{7k+4}-7\cdot 14^{6k+3}+14^{5k+3}+3\cdot 14^{4k+2}-2\cdot 14^{3k+2}\\||+7\cdot 14^{2k+1}-14^{k+1}+1)\\|\times|(14^{12k+6}+14^{11k+6}+7\cdot 14^{10k+5}+2\cdot 14^{9k+5}+3\cdot 14^{8k+4}\\||-14^{7k+4}-7\cdot 14^{6k+3}-14^{5k+3}+3\cdot 14^{4k+2}+2\cdot 14^{3k+2}\\||+7\cdot 14^{2k+1}+14^{k+1}+1)\\{\large\Phi}_{30}(15^{2k+1})|=|15^{16k+8}+15^{14k+7}-15^{10k+5}-15^{8k+4}-15^{6k+3}\\||+15^{2k+1}+1\\|=|(15^{8k+4}-15^{7k+4}+8\cdot 15^{6k+3}-3\cdot 15^{5k+3}+13\cdot 15^{4k+2}\\||-3\cdot 15^{3k+2}+8\cdot 15^{2k+1}-15^{k+1}+1)\\|\times|(15^{8k+4}+15^{7k+4}+8\cdot 15^{6k+3}+3\cdot 15^{5k+3}+13\cdot 15^{4k+2}\\||+3\cdot 15^{3k+2}+8\cdot 15^{2k+1}+15^{k+1}+1)\\{\large\Phi}_{17}(17^{2k+1})|=|17^{32k+16}+17^{30k+15}+17^{28k+14}+17^{26k+13}+17^{24k+12}\\||+17^{22k+11}+17^{20k+10}+17^{18k+9}+17^{16k+8}+17^{14k+7}\\||+17^{12k+6}+17^{10k+5}+17^{8k+4}+17^{6k+3}+17^{4k+2}\\||+17^{2k+1}+1\\|=|(17^{16k+8}-17^{15k+8}+9\cdot 17^{14k+7}-3\cdot 17^{13k+7}+11\cdot 17^{12k+6}\\||-17^{11k+6}-5\cdot 17^{10k+5}+3\cdot 17^{9k+5}-15\cdot 17^{8k+4}+3\cdot 17^{7k+4}\\||-5\cdot 17^{6k+3}-17^{5k+3}+11\cdot 17^{4k+2}-3\cdot 17^{3k+2}+9\cdot 17^{2k+1}\\||-17^{k+1}+1)\\|\times|(17^{16k+8}+17^{15k+8}+9\cdot 17^{14k+7}+3\cdot 17^{13k+7}+11\cdot 17^{12k+6}\\||+17^{11k+6}-5\cdot 17^{10k+5}-3\cdot 17^{9k+5}-15\cdot 17^{8k+4}-3\cdot 17^{7k+4}\\||-5\cdot 17^{6k+3}+17^{5k+3}+11\cdot 17^{4k+2}+3\cdot 17^{3k+2}+9\cdot 17^{2k+1}\\||+17^{k+1}+1)\\{\large\Phi}_{38}(19^{2k+1})|=|19^{36k+18}-19^{34k+17}+19^{32k+16}-19^{30k+15}+19^{28k+14}\\||-19^{26k+13}+19^{24k+12}-19^{22k+11}+19^{20k+10}-19^{18k+9}\\||+19^{16k+8}-19^{14k+7}+19^{12k+6}-19^{10k+5}+19^{8k+4}\\||-19^{6k+3}+19^{4k+2}-19^{2k+1}+1\\|=|(19^{18k+9}-19^{17k+9}+9\cdot 19^{16k+8}-3\cdot 19^{15k+8}+17\cdot 19^{14k+7}\\||-5\cdot 19^{13k+7}+27\cdot 19^{12k+6}-7\cdot 19^{11k+6}+31\cdot 19^{10k+5}-7\cdot 19^{9k+5}\\||+31\cdot 19^{8k+4}-7\cdot 19^{7k+4}+27\cdot 19^{6k+3}-5\cdot 19^{5k+3}+17\cdot 19^{4k+2}\\||-3\cdot 19^{3k+2}+9\cdot 19^{2k+1}-19^{k+1}+1)\\|\times|(19^{18k+9}+19^{17k+9}+9\cdot 19^{16k+8}+3\cdot 19^{15k+8}+17\cdot 19^{14k+7}\\||+5\cdot 19^{13k+7}+27\cdot 19^{12k+6}+7\cdot 19^{11k+6}+31\cdot 19^{10k+5}+7\cdot 19^{9k+5}\\||+31\cdot 19^{8k+4}+7\cdot 19^{7k+4}+27\cdot 19^{6k+3}+5\cdot 19^{5k+3}+17\cdot 19^{4k+2}\\||+3\cdot 19^{3k+2}+9\cdot 19^{2k+1}+19^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{21}(21^{2k+1})\cdots{\large\Phi}_{60}(30^{2k+1})$${\large\Phi}_{21}(21^{2k+1})\cdots{\large\Phi}_{60}(30^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{21}(21^{2k+1})|=|21^{24k+12}-21^{22k+11}+21^{18k+9}-21^{16k+8}+21^{12k+6}\\||-21^{8k+4}+21^{6k+3}-21^{2k+1}+1\\|=|(21^{12k+6}-21^{11k+6}+10\cdot 21^{10k+5}-3\cdot 21^{9k+5}+13\cdot 21^{8k+4}\\||-2\cdot 21^{7k+4}+7\cdot 21^{6k+3}-2\cdot 21^{5k+3}+13\cdot 21^{4k+2}-3\cdot 21^{3k+2}\\||+10\cdot 21^{2k+1}-21^{k+1}+1)\\|\times|(21^{12k+6}+21^{11k+6}+10\cdot 21^{10k+5}+3\cdot 21^{9k+5}+13\cdot 21^{8k+4}\\||+2\cdot 21^{7k+4}+7\cdot 21^{6k+3}+2\cdot 21^{5k+3}+13\cdot 21^{4k+2}+3\cdot 21^{3k+2}\\||+10\cdot 21^{2k+1}+21^{k+1}+1)\\{\large\Phi}_{44}(22^{2k+1})|=|22^{40k+20}-22^{36k+18}+22^{32k+16}-22^{28k+14}+22^{24k+12}\\||-22^{20k+10}+22^{16k+8}-22^{12k+6}+22^{8k+4}-22^{4k+2}+1\\|=|(22^{20k+10}-22^{19k+10}+11\cdot 22^{18k+9}-4\cdot 22^{17k+9}+27\cdot 22^{16k+8}\\||-7\cdot 22^{15k+8}+33\cdot 22^{14k+7}-6\cdot 22^{13k+7}+21\cdot 22^{12k+6}-3\cdot 22^{11k+6}\\||+11\cdot 22^{10k+5}-3\cdot 22^{9k+5}+21\cdot 22^{8k+4}-6\cdot 22^{7k+4}+33\cdot 22^{6k+3}\\||-7\cdot 22^{5k+3}+27\cdot 22^{4k+2}-4\cdot 22^{3k+2}+11\cdot 22^{2k+1}-22^{k+1}+1)\\|\times|(22^{20k+10}+22^{19k+10}+11\cdot 22^{18k+9}+4\cdot 22^{17k+9}+27\cdot 22^{16k+8}\\||+7\cdot 22^{15k+8}+33\cdot 22^{14k+7}+6\cdot 22^{13k+7}+21\cdot 22^{12k+6}+3\cdot 22^{11k+6}\\||+11\cdot 22^{10k+5}+3\cdot 22^{9k+5}+21\cdot 22^{8k+4}+6\cdot 22^{7k+4}+33\cdot 22^{6k+3}\\||+7\cdot 22^{5k+3}+27\cdot 22^{4k+2}+4\cdot 22^{3k+2}+11\cdot 22^{2k+1}+22^{k+1}+1)\\{\large\Phi}_{46}(23^{2k+1})|=|23^{44k+22}-23^{42k+21}+23^{40k+20}-23^{38k+19}+23^{36k+18}\\||-23^{34k+17}+23^{32k+16}-23^{30k+15}+23^{28k+14}-23^{26k+13}\\||+23^{24k+12}-23^{22k+11}+23^{20k+10}-23^{18k+9}+23^{16k+8}\\||-23^{14k+7}+23^{12k+6}-23^{10k+5}+23^{8k+4}-23^{6k+3}\\||+23^{4k+2}-23^{2k+1}+1\\|=|(23^{22k+11}-23^{21k+11}+11\cdot 23^{20k+10}-3\cdot 23^{19k+10}+9\cdot 23^{18k+9}\\||+23^{17k+9}-19\cdot 23^{16k+8}+5\cdot 23^{15k+8}-15\cdot 23^{14k+7}-23^{13k+7}\\||+25\cdot 23^{12k+6}-7\cdot 23^{11k+6}+25\cdot 23^{10k+5}-23^{9k+5}-15\cdot 23^{8k+4}\\||+5\cdot 23^{7k+4}-19\cdot 23^{6k+3}+23^{5k+3}+9\cdot 23^{4k+2}-3\cdot 23^{3k+2}\\||+11\cdot 23^{2k+1}-23^{k+1}+1)\\|\times|(23^{22k+11}+23^{21k+11}+11\cdot 23^{20k+10}+3\cdot 23^{19k+10}+9\cdot 23^{18k+9}\\||-23^{17k+9}-19\cdot 23^{16k+8}-5\cdot 23^{15k+8}-15\cdot 23^{14k+7}+23^{13k+7}\\||+25\cdot 23^{12k+6}+7\cdot 23^{11k+6}+25\cdot 23^{10k+5}+23^{9k+5}-15\cdot 23^{8k+4}\\||-5\cdot 23^{7k+4}-19\cdot 23^{6k+3}-23^{5k+3}+9\cdot 23^{4k+2}+3\cdot 23^{3k+2}\\||+11\cdot 23^{2k+1}+23^{k+1}+1)\\{\large\Phi}_{52}(26^{2k+1})|=|26^{48k+24}-26^{44k+22}+26^{40k+20}-26^{36k+18}+26^{32k+16}\\||-26^{28k+14}+26^{24k+12}-26^{20k+10}+26^{16k+8}-26^{12k+6}\\||+26^{8k+4}-26^{4k+2}+1\\|=|(26^{24k+12}-26^{23k+12}+13\cdot 26^{22k+11}-4\cdot 26^{21k+11}+19\cdot 26^{20k+10}\\||-26^{19k+10}-13\cdot 26^{18k+9}+4\cdot 26^{17k+9}-11\cdot 26^{16k+8}-26^{15k+8}\\||+13\cdot 26^{14k+7}-2\cdot 26^{13k+7}+7\cdot 26^{12k+6}-2\cdot 26^{11k+6}+13\cdot 26^{10k+5}\\||-26^{9k+5}-11\cdot 26^{8k+4}+4\cdot 26^{7k+4}-13\cdot 26^{6k+3}-26^{5k+3}\\||+19\cdot 26^{4k+2}-4\cdot 26^{3k+2}+13\cdot 26^{2k+1}-26^{k+1}+1)\\|\times|(26^{24k+12}+26^{23k+12}+13\cdot 26^{22k+11}+4\cdot 26^{21k+11}+19\cdot 26^{20k+10}\\||+26^{19k+10}-13\cdot 26^{18k+9}-4\cdot 26^{17k+9}-11\cdot 26^{16k+8}+26^{15k+8}\\||+13\cdot 26^{14k+7}+2\cdot 26^{13k+7}+7\cdot 26^{12k+6}+2\cdot 26^{11k+6}+13\cdot 26^{10k+5}\\||+26^{9k+5}-11\cdot 26^{8k+4}-4\cdot 26^{7k+4}-13\cdot 26^{6k+3}+26^{5k+3}\\||+19\cdot 26^{4k+2}+4\cdot 26^{3k+2}+13\cdot 26^{2k+1}+26^{k+1}+1)\\{\large\Phi}_{29}(29^{2k+1})|=|29^{56k+28}+29^{54k+27}+29^{52k+26}+29^{50k+25}+29^{48k+24}\\||+29^{46k+23}+29^{44k+22}+29^{42k+21}+29^{40k+20}+29^{38k+19}\\||+29^{36k+18}+29^{34k+17}+29^{32k+16}+29^{30k+15}+29^{28k+14}\\||+29^{26k+13}+29^{24k+12}+29^{22k+11}+29^{20k+10}+29^{18k+9}\\||+29^{16k+8}+29^{14k+7}+29^{12k+6}+29^{10k+5}+29^{8k+4}\\||+29^{6k+3}+29^{4k+2}+29^{2k+1}+1\\|=|(29^{28k+14}-29^{27k+14}+15\cdot 29^{26k+13}-5\cdot 29^{25k+13}+33\cdot 29^{24k+12}\\||-5\cdot 29^{23k+12}+13\cdot 29^{22k+11}-29^{21k+11}+15\cdot 29^{20k+10}-7\cdot 29^{19k+10}\\||+57\cdot 29^{18k+9}-11\cdot 29^{17k+9}+45\cdot 29^{16k+8}-5\cdot 29^{15k+8}+19\cdot 29^{14k+7}\\||-5\cdot 29^{13k+7}+45\cdot 29^{12k+6}-11\cdot 29^{11k+6}+57\cdot 29^{10k+5}-7\cdot 29^{9k+5}\\||+15\cdot 29^{8k+4}-29^{7k+4}+13\cdot 29^{6k+3}-5\cdot 29^{5k+3}+33\cdot 29^{4k+2}\\||-5\cdot 29^{3k+2}+15\cdot 29^{2k+1}-29^{k+1}+1)\\|\times|(29^{28k+14}+29^{27k+14}+15\cdot 29^{26k+13}+5\cdot 29^{25k+13}+33\cdot 29^{24k+12}\\||+5\cdot 29^{23k+12}+13\cdot 29^{22k+11}+29^{21k+11}+15\cdot 29^{20k+10}+7\cdot 29^{19k+10}\\||+57\cdot 29^{18k+9}+11\cdot 29^{17k+9}+45\cdot 29^{16k+8}+5\cdot 29^{15k+8}+19\cdot 29^{14k+7}\\||+5\cdot 29^{13k+7}+45\cdot 29^{12k+6}+11\cdot 29^{11k+6}+57\cdot 29^{10k+5}+7\cdot 29^{9k+5}\\||+15\cdot 29^{8k+4}+29^{7k+4}+13\cdot 29^{6k+3}+5\cdot 29^{5k+3}+33\cdot 29^{4k+2}\\||+5\cdot 29^{3k+2}+15\cdot 29^{2k+1}+29^{k+1}+1)\\{\large\Phi}_{60}(30^{2k+1})|=|30^{32k+16}+30^{28k+14}-30^{20k+10}-30^{16k+8}-30^{12k+6}\\||+30^{4k+2}+1\\|=|(30^{16k+8}-30^{15k+8}+15\cdot 30^{14k+7}-5\cdot 30^{13k+7}+38\cdot 30^{12k+6}\\||-8\cdot 30^{11k+6}+45\cdot 30^{10k+5}-8\cdot 30^{9k+5}+43\cdot 30^{8k+4}-8\cdot 30^{7k+4}\\||+45\cdot 30^{6k+3}-8\cdot 30^{5k+3}+38\cdot 30^{4k+2}-5\cdot 30^{3k+2}+15\cdot 30^{2k+1}\\||-30^{k+1}+1)\\|\times|(30^{16k+8}+30^{15k+8}+15\cdot 30^{14k+7}+5\cdot 30^{13k+7}+38\cdot 30^{12k+6}\\||+8\cdot 30^{11k+6}+45\cdot 30^{10k+5}+8\cdot 30^{9k+5}+43\cdot 30^{8k+4}+8\cdot 30^{7k+4}\\||+45\cdot 30^{6k+3}+8\cdot 30^{5k+3}+38\cdot 30^{4k+2}+5\cdot 30^{3k+2}+15\cdot 30^{2k+1}\\||+30^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{62}(31^{2k+1})\cdots{\large\Phi}_{78}(39^{2k+1})$${\large\Phi}_{62}(31^{2k+1})\cdots{\large\Phi}_{78}(39^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{62}(31^{2k+1})|=|31^{60k+30}-31^{58k+29}+31^{56k+28}-31^{54k+27}+31^{52k+26}\\||-31^{50k+25}+31^{48k+24}-31^{46k+23}+31^{44k+22}-31^{42k+21}\\||+31^{40k+20}-31^{38k+19}+31^{36k+18}-31^{34k+17}+31^{32k+16}\\||-31^{30k+15}+31^{28k+14}-31^{26k+13}+31^{24k+12}-31^{22k+11}\\||+31^{20k+10}-31^{18k+9}+31^{16k+8}-31^{14k+7}+31^{12k+6}\\||-31^{10k+5}+31^{8k+4}-31^{6k+3}+31^{4k+2}-31^{2k+1}+1\\|=|(31^{30k+15}-31^{29k+15}+15\cdot 31^{28k+14}-5\cdot 31^{27k+14}+43\cdot 31^{26k+13}\\||-11\cdot 31^{25k+13}+83\cdot 31^{24k+12}-19\cdot 31^{23k+12}+125\cdot 31^{22k+11}-25\cdot 31^{21k+11}\\||+151\cdot 31^{20k+10}-29\cdot 31^{19k+10}+169\cdot 31^{18k+9}-31\cdot 31^{17k+9}+173\cdot 31^{16k+8}\\||-31\cdot 31^{15k+8}+173\cdot 31^{14k+7}-31\cdot 31^{13k+7}+169\cdot 31^{12k+6}-29\cdot 31^{11k+6}\\||+151\cdot 31^{10k+5}-25\cdot 31^{9k+5}+125\cdot 31^{8k+4}-19\cdot 31^{7k+4}+83\cdot 31^{6k+3}\\||-11\cdot 31^{5k+3}+43\cdot 31^{4k+2}-5\cdot 31^{3k+2}+15\cdot 31^{2k+1}-31^{k+1}+1)\\|\times|(31^{30k+15}+31^{29k+15}+15\cdot 31^{28k+14}+5\cdot 31^{27k+14}+43\cdot 31^{26k+13}\\||+11\cdot 31^{25k+13}+83\cdot 31^{24k+12}+19\cdot 31^{23k+12}+125\cdot 31^{22k+11}+25\cdot 31^{21k+11}\\||+151\cdot 31^{20k+10}+29\cdot 31^{19k+10}+169\cdot 31^{18k+9}+31\cdot 31^{17k+9}+173\cdot 31^{16k+8}\\||+31\cdot 31^{15k+8}+173\cdot 31^{14k+7}+31\cdot 31^{13k+7}+169\cdot 31^{12k+6}+29\cdot 31^{11k+6}\\||+151\cdot 31^{10k+5}+25\cdot 31^{9k+5}+125\cdot 31^{8k+4}+19\cdot 31^{7k+4}+83\cdot 31^{6k+3}\\||+11\cdot 31^{5k+3}+43\cdot 31^{4k+2}+5\cdot 31^{3k+2}+15\cdot 31^{2k+1}+31^{k+1}+1)\\{\large\Phi}_{33}(33^{2k+1})|=|33^{40k+20}-33^{38k+19}+33^{34k+17}-33^{32k+16}+33^{28k+14}\\||-33^{26k+13}+33^{22k+11}-33^{20k+10}+33^{18k+9}-33^{14k+7}\\||+33^{12k+6}-33^{8k+4}+33^{6k+3}-33^{2k+1}+1\\|=|(33^{20k+10}-33^{19k+10}+16\cdot 33^{18k+9}-5\cdot 33^{17k+9}+37\cdot 33^{16k+8}\\||-6\cdot 33^{15k+8}+19\cdot 33^{14k+7}+33^{13k+7}-32\cdot 33^{12k+6}+9\cdot 33^{11k+6}\\||-59\cdot 33^{10k+5}+9\cdot 33^{9k+5}-32\cdot 33^{8k+4}+33^{7k+4}+19\cdot 33^{6k+3}\\||-6\cdot 33^{5k+3}+37\cdot 33^{4k+2}-5\cdot 33^{3k+2}+16\cdot 33^{2k+1}-33^{k+1}+1)\\|\times|(33^{20k+10}+33^{19k+10}+16\cdot 33^{18k+9}+5\cdot 33^{17k+9}+37\cdot 33^{16k+8}\\||+6\cdot 33^{15k+8}+19\cdot 33^{14k+7}-33^{13k+7}-32\cdot 33^{12k+6}-9\cdot 33^{11k+6}\\||-59\cdot 33^{10k+5}-9\cdot 33^{9k+5}-32\cdot 33^{8k+4}-33^{7k+4}+19\cdot 33^{6k+3}\\||+6\cdot 33^{5k+3}+37\cdot 33^{4k+2}+5\cdot 33^{3k+2}+16\cdot 33^{2k+1}+33^{k+1}+1)\\{\large\Phi}_{68}(34^{2k+1})|=|34^{64k+32}-34^{60k+30}+34^{56k+28}-34^{52k+26}+34^{48k+24}\\||-34^{44k+22}+34^{40k+20}-34^{36k+18}+34^{32k+16}-34^{28k+14}\\||+34^{24k+12}-34^{20k+10}+34^{16k+8}-34^{12k+6}+34^{8k+4}\\||-34^{4k+2}+1\\|=|(34^{32k+16}-34^{31k+16}+17\cdot 34^{30k+15}-6\cdot 34^{29k+15}+59\cdot 34^{28k+14}\\||-15\cdot 34^{27k+14}+119\cdot 34^{26k+13}-26\cdot 34^{25k+13}+181\cdot 34^{24k+12}-35\cdot 34^{23k+12}\\||+221\cdot 34^{22k+11}-40\cdot 34^{21k+11}+243\cdot 34^{20k+10}-43\cdot 34^{19k+10}+255\cdot 34^{18k+9}\\||-44\cdot 34^{17k+9}+257\cdot 34^{16k+8}-44\cdot 34^{15k+8}+255\cdot 34^{14k+7}-43\cdot 34^{13k+7}\\||+243\cdot 34^{12k+6}-40\cdot 34^{11k+6}+221\cdot 34^{10k+5}-35\cdot 34^{9k+5}+181\cdot 34^{8k+4}\\||-26\cdot 34^{7k+4}+119\cdot 34^{6k+3}-15\cdot 34^{5k+3}+59\cdot 34^{4k+2}-6\cdot 34^{3k+2}\\||+17\cdot 34^{2k+1}-34^{k+1}+1)\\|\times|(34^{32k+16}+34^{31k+16}+17\cdot 34^{30k+15}+6\cdot 34^{29k+15}+59\cdot 34^{28k+14}\\||+15\cdot 34^{27k+14}+119\cdot 34^{26k+13}+26\cdot 34^{25k+13}+181\cdot 34^{24k+12}+35\cdot 34^{23k+12}\\||+221\cdot 34^{22k+11}+40\cdot 34^{21k+11}+243\cdot 34^{20k+10}+43\cdot 34^{19k+10}+255\cdot 34^{18k+9}\\||+44\cdot 34^{17k+9}+257\cdot 34^{16k+8}+44\cdot 34^{15k+8}+255\cdot 34^{14k+7}+43\cdot 34^{13k+7}\\||+243\cdot 34^{12k+6}+40\cdot 34^{11k+6}+221\cdot 34^{10k+5}+35\cdot 34^{9k+5}+181\cdot 34^{8k+4}\\||+26\cdot 34^{7k+4}+119\cdot 34^{6k+3}+15\cdot 34^{5k+3}+59\cdot 34^{4k+2}+6\cdot 34^{3k+2}\\||+17\cdot 34^{2k+1}+34^{k+1}+1)\\{\large\Phi}_{70}(35^{2k+1})|=|35^{48k+24}+35^{46k+23}-35^{38k+19}-35^{36k+18}-35^{34k+17}\\||-35^{32k+16}+35^{28k+14}+35^{26k+13}+35^{24k+12}+35^{22k+11}\\||+35^{20k+10}-35^{16k+8}-35^{14k+7}-35^{12k+6}-35^{10k+5}\\||+35^{2k+1}+1\\|=|(35^{24k+12}-35^{23k+12}+18\cdot 35^{22k+11}-6\cdot 35^{21k+11}+48\cdot 35^{20k+10}\\||-7\cdot 35^{19k+10}+11\cdot 35^{18k+9}+5\cdot 35^{17k+9}-55\cdot 35^{16k+8}+8\cdot 35^{15k+8}\\||-11\cdot 35^{14k+7}-5\cdot 35^{13k+7}+47\cdot 35^{12k+6}-5\cdot 35^{11k+6}-11\cdot 35^{10k+5}\\||+8\cdot 35^{9k+5}-55\cdot 35^{8k+4}+5\cdot 35^{7k+4}+11\cdot 35^{6k+3}-7\cdot 35^{5k+3}\\||+48\cdot 35^{4k+2}-6\cdot 35^{3k+2}+18\cdot 35^{2k+1}-35^{k+1}+1)\\|\times|(35^{24k+12}+35^{23k+12}+18\cdot 35^{22k+11}+6\cdot 35^{21k+11}+48\cdot 35^{20k+10}\\||+7\cdot 35^{19k+10}+11\cdot 35^{18k+9}-5\cdot 35^{17k+9}-55\cdot 35^{16k+8}-8\cdot 35^{15k+8}\\||-11\cdot 35^{14k+7}+5\cdot 35^{13k+7}+47\cdot 35^{12k+6}+5\cdot 35^{11k+6}-11\cdot 35^{10k+5}\\||-8\cdot 35^{9k+5}-55\cdot 35^{8k+4}-5\cdot 35^{7k+4}+11\cdot 35^{6k+3}+7\cdot 35^{5k+3}\\||+48\cdot 35^{4k+2}+6\cdot 35^{3k+2}+18\cdot 35^{2k+1}+35^{k+1}+1)\\{\large\Phi}_{37}(37^{2k+1})|=|37^{72k+36}+37^{70k+35}+37^{68k+34}+37^{66k+33}+37^{64k+32}\\||+37^{62k+31}+37^{60k+30}+37^{58k+29}+37^{56k+28}+37^{54k+27}\\||+37^{52k+26}+37^{50k+25}+37^{48k+24}+37^{46k+23}+37^{44k+22}\\||+37^{42k+21}+37^{40k+20}+37^{38k+19}+37^{36k+18}+37^{34k+17}\\||+37^{32k+16}+37^{30k+15}+37^{28k+14}+37^{26k+13}+37^{24k+12}\\||+37^{22k+11}+37^{20k+10}+37^{18k+9}+37^{16k+8}+37^{14k+7}\\||+37^{12k+6}+37^{10k+5}+37^{8k+4}+37^{6k+3}+37^{4k+2}\\||+37^{2k+1}+1\\|=|(37^{36k+18}-37^{35k+18}+19\cdot 37^{34k+17}-7\cdot 37^{33k+17}+79\cdot 37^{32k+16}\\||-21\cdot 37^{31k+16}+183\cdot 37^{30k+15}-39\cdot 37^{29k+15}+285\cdot 37^{28k+14}-53\cdot 37^{27k+14}\\||+349\cdot 37^{26k+13}-61\cdot 37^{25k+13}+397\cdot 37^{24k+12}-71\cdot 37^{23k+12}+477\cdot 37^{22k+11}\\||-87\cdot 37^{21k+11}+579\cdot 37^{20k+10}-101\cdot 37^{19k+10}+627\cdot 37^{18k+9}-101\cdot 37^{17k+9}\\||+579\cdot 37^{16k+8}-87\cdot 37^{15k+8}+477\cdot 37^{14k+7}-71\cdot 37^{13k+7}+397\cdot 37^{12k+6}\\||-61\cdot 37^{11k+6}+349\cdot 37^{10k+5}-53\cdot 37^{9k+5}+285\cdot 37^{8k+4}-39\cdot 37^{7k+4}\\||+183\cdot 37^{6k+3}-21\cdot 37^{5k+3}+79\cdot 37^{4k+2}-7\cdot 37^{3k+2}+19\cdot 37^{2k+1}\\||-37^{k+1}+1)\\|\times|(37^{36k+18}+37^{35k+18}+19\cdot 37^{34k+17}+7\cdot 37^{33k+17}+79\cdot 37^{32k+16}\\||+21\cdot 37^{31k+16}+183\cdot 37^{30k+15}+39\cdot 37^{29k+15}+285\cdot 37^{28k+14}+53\cdot 37^{27k+14}\\||+349\cdot 37^{26k+13}+61\cdot 37^{25k+13}+397\cdot 37^{24k+12}+71\cdot 37^{23k+12}+477\cdot 37^{22k+11}\\||+87\cdot 37^{21k+11}+579\cdot 37^{20k+10}+101\cdot 37^{19k+10}+627\cdot 37^{18k+9}+101\cdot 37^{17k+9}\\||+579\cdot 37^{16k+8}+87\cdot 37^{15k+8}+477\cdot 37^{14k+7}+71\cdot 37^{13k+7}+397\cdot 37^{12k+6}\\||+61\cdot 37^{11k+6}+349\cdot 37^{10k+5}+53\cdot 37^{9k+5}+285\cdot 37^{8k+4}+39\cdot 37^{7k+4}\\||+183\cdot 37^{6k+3}+21\cdot 37^{5k+3}+79\cdot 37^{4k+2}+7\cdot 37^{3k+2}+19\cdot 37^{2k+1}\\||+37^{k+1}+1)\\{\large\Phi}_{76}(38^{2k+1})|=|38^{72k+36}-38^{68k+34}+38^{64k+32}-38^{60k+30}+38^{56k+28}\\||-38^{52k+26}+38^{48k+24}-38^{44k+22}+38^{40k+20}-38^{36k+18}\\||+38^{32k+16}-38^{28k+14}+38^{24k+12}-38^{20k+10}+38^{16k+8}\\||-38^{12k+6}+38^{8k+4}-38^{4k+2}+1\\|=|(38^{36k+18}-38^{35k+18}+19\cdot 38^{34k+17}-6\cdot 38^{33k+17}+47\cdot 38^{32k+16}\\||-5\cdot 38^{31k+16}-19\cdot 38^{30k+15}+14\cdot 38^{29k+15}-135\cdot 38^{28k+14}+21\cdot 38^{27k+14}\\||-57\cdot 38^{26k+13}-10\cdot 38^{25k+13}+179\cdot 38^{24k+12}-39\cdot 38^{23k+12}+209\cdot 38^{22k+11}\\||-14\cdot 38^{21k+11}-83\cdot 38^{20k+10}+37\cdot 38^{19k+10}-285\cdot 38^{18k+9}+37\cdot 38^{17k+9}\\||-83\cdot 38^{16k+8}-14\cdot 38^{15k+8}+209\cdot 38^{14k+7}-39\cdot 38^{13k+7}+179\cdot 38^{12k+6}\\||-10\cdot 38^{11k+6}-57\cdot 38^{10k+5}+21\cdot 38^{9k+5}-135\cdot 38^{8k+4}+14\cdot 38^{7k+4}\\||-19\cdot 38^{6k+3}-5\cdot 38^{5k+3}+47\cdot 38^{4k+2}-6\cdot 38^{3k+2}+19\cdot 38^{2k+1}\\||-38^{k+1}+1)\\|\times|(38^{36k+18}+38^{35k+18}+19\cdot 38^{34k+17}+6\cdot 38^{33k+17}+47\cdot 38^{32k+16}\\||+5\cdot 38^{31k+16}-19\cdot 38^{30k+15}-14\cdot 38^{29k+15}-135\cdot 38^{28k+14}-21\cdot 38^{27k+14}\\||-57\cdot 38^{26k+13}+10\cdot 38^{25k+13}+179\cdot 38^{24k+12}+39\cdot 38^{23k+12}+209\cdot 38^{22k+11}\\||+14\cdot 38^{21k+11}-83\cdot 38^{20k+10}-37\cdot 38^{19k+10}-285\cdot 38^{18k+9}-37\cdot 38^{17k+9}\\||-83\cdot 38^{16k+8}+14\cdot 38^{15k+8}+209\cdot 38^{14k+7}+39\cdot 38^{13k+7}+179\cdot 38^{12k+6}\\||+10\cdot 38^{11k+6}-57\cdot 38^{10k+5}-21\cdot 38^{9k+5}-135\cdot 38^{8k+4}-14\cdot 38^{7k+4}\\||-19\cdot 38^{6k+3}+5\cdot 38^{5k+3}+47\cdot 38^{4k+2}+6\cdot 38^{3k+2}+19\cdot 38^{2k+1}\\||+38^{k+1}+1)\\{\large\Phi}_{78}(39^{2k+1})|=|39^{48k+24}+39^{46k+23}-39^{42k+21}-39^{40k+20}+39^{36k+18}\\||+39^{34k+17}-39^{30k+15}-39^{28k+14}+39^{24k+12}-39^{20k+10}\\||-39^{18k+9}+39^{14k+7}+39^{12k+6}-39^{8k+4}-39^{6k+3}\\||+39^{2k+1}+1\\|=|(39^{24k+12}-39^{23k+12}+20\cdot 39^{22k+11}-7\cdot 39^{21k+11}+73\cdot 39^{20k+10}\\||-16\cdot 39^{19k+10}+119\cdot 39^{18k+9}-21\cdot 39^{17k+9}+142\cdot 39^{16k+8}-25\cdot 39^{15k+8}\\||+173\cdot 39^{14k+7}-30\cdot 39^{13k+7}+193\cdot 39^{12k+6}-30\cdot 39^{11k+6}+173\cdot 39^{10k+5}\\||-25\cdot 39^{9k+5}+142\cdot 39^{8k+4}-21\cdot 39^{7k+4}+119\cdot 39^{6k+3}-16\cdot 39^{5k+3}\\||+73\cdot 39^{4k+2}-7\cdot 39^{3k+2}+20\cdot 39^{2k+1}-39^{k+1}+1)\\|\times|(39^{24k+12}+39^{23k+12}+20\cdot 39^{22k+11}+7\cdot 39^{21k+11}+73\cdot 39^{20k+10}\\||+16\cdot 39^{19k+10}+119\cdot 39^{18k+9}+21\cdot 39^{17k+9}+142\cdot 39^{16k+8}+25\cdot 39^{15k+8}\\||+173\cdot 39^{14k+7}+30\cdot 39^{13k+7}+193\cdot 39^{12k+6}+30\cdot 39^{11k+6}+173\cdot 39^{10k+5}\\||+25\cdot 39^{9k+5}+142\cdot 39^{8k+4}+21\cdot 39^{7k+4}+119\cdot 39^{6k+3}+16\cdot 39^{5k+3}\\||+73\cdot 39^{4k+2}+7\cdot 39^{3k+2}+20\cdot 39^{2k+1}+39^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{41}(41^{2k+1})\cdots{\large\Phi}_{94}(47^{2k+1})$${\large\Phi}_{41}(41^{2k+1})\cdots{\large\Phi}_{94}(47^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{41}(41^{2k+1})|=|41^{80k+40}+41^{78k+39}+41^{76k+38}+41^{74k+37}+41^{72k+36}\\||+41^{70k+35}+41^{68k+34}+41^{66k+33}+41^{64k+32}+41^{62k+31}\\||+41^{60k+30}+41^{58k+29}+41^{56k+28}+41^{54k+27}+41^{52k+26}\\||+41^{50k+25}+41^{48k+24}+41^{46k+23}+41^{44k+22}+41^{42k+21}\\||+41^{40k+20}+41^{38k+19}+41^{36k+18}+41^{34k+17}+41^{32k+16}\\||+41^{30k+15}+41^{28k+14}+41^{26k+13}+41^{24k+12}+41^{22k+11}\\||+41^{20k+10}+41^{18k+9}+41^{16k+8}+41^{14k+7}+41^{12k+6}\\||+41^{10k+5}+41^{8k+4}+41^{6k+3}+41^{4k+2}+41^{2k+1}+1\\|=|(41^{40k+20}-41^{39k+20}+21\cdot 41^{38k+19}-7\cdot 41^{37k+19}+67\cdot 41^{36k+18}\\||-11\cdot 41^{35k+18}+49\cdot 41^{34k+17}-3\cdot 41^{33k+17}+7\cdot 41^{32k+16}-3\cdot 41^{31k+16}\\||+35\cdot 41^{30k+15}-5\cdot 41^{29k+15}+15\cdot 41^{28k+14}-41^{27k+14}+11\cdot 41^{26k+13}\\||-41^{25k+13}-23\cdot 41^{24k+12}+9\cdot 41^{23k+12}-65\cdot 41^{22k+11}+7\cdot 41^{21k+11}\\||-31\cdot 41^{20k+10}+7\cdot 41^{19k+10}-65\cdot 41^{18k+9}+9\cdot 41^{17k+9}-23\cdot 41^{16k+8}\\||-41^{15k+8}+11\cdot 41^{14k+7}-41^{13k+7}+15\cdot 41^{12k+6}-5\cdot 41^{11k+6}\\||+35\cdot 41^{10k+5}-3\cdot 41^{9k+5}+7\cdot 41^{8k+4}-3\cdot 41^{7k+4}+49\cdot 41^{6k+3}\\||-11\cdot 41^{5k+3}+67\cdot 41^{4k+2}-7\cdot 41^{3k+2}+21\cdot 41^{2k+1}-41^{k+1}+1)\\|\times|(41^{40k+20}+41^{39k+20}+21\cdot 41^{38k+19}+7\cdot 41^{37k+19}+67\cdot 41^{36k+18}\\||+11\cdot 41^{35k+18}+49\cdot 41^{34k+17}+3\cdot 41^{33k+17}+7\cdot 41^{32k+16}+3\cdot 41^{31k+16}\\||+35\cdot 41^{30k+15}+5\cdot 41^{29k+15}+15\cdot 41^{28k+14}+41^{27k+14}+11\cdot 41^{26k+13}\\||+41^{25k+13}-23\cdot 41^{24k+12}-9\cdot 41^{23k+12}-65\cdot 41^{22k+11}-7\cdot 41^{21k+11}\\||-31\cdot 41^{20k+10}-7\cdot 41^{19k+10}-65\cdot 41^{18k+9}-9\cdot 41^{17k+9}-23\cdot 41^{16k+8}\\||+41^{15k+8}+11\cdot 41^{14k+7}+41^{13k+7}+15\cdot 41^{12k+6}+5\cdot 41^{11k+6}\\||+35\cdot 41^{10k+5}+3\cdot 41^{9k+5}+7\cdot 41^{8k+4}+3\cdot 41^{7k+4}+49\cdot 41^{6k+3}\\||+11\cdot 41^{5k+3}+67\cdot 41^{4k+2}+7\cdot 41^{3k+2}+21\cdot 41^{2k+1}+41^{k+1}+1)\\{\large\Phi}_{84}(42^{2k+1})|=|42^{48k+24}+42^{44k+22}-42^{36k+18}-42^{32k+16}+42^{24k+12}\\||-42^{16k+8}-42^{12k+6}+42^{4k+2}+1\\|=|(42^{24k+12}-42^{23k+12}+21\cdot 42^{22k+11}-7\cdot 42^{21k+11}+74\cdot 42^{20k+10}\\||-15\cdot 42^{19k+10}+105\cdot 42^{18k+9}-14\cdot 42^{17k+9}+55\cdot 42^{16k+8}-42^{15k+8}\\||-42\cdot 42^{14k+7}+12\cdot 42^{13k+7}-91\cdot 42^{12k+6}+12\cdot 42^{11k+6}-42\cdot 42^{10k+5}\\||-42^{9k+5}+55\cdot 42^{8k+4}-14\cdot 42^{7k+4}+105\cdot 42^{6k+3}-15\cdot 42^{5k+3}\\||+74\cdot 42^{4k+2}-7\cdot 42^{3k+2}+21\cdot 42^{2k+1}-42^{k+1}+1)\\|\times|(42^{24k+12}+42^{23k+12}+21\cdot 42^{22k+11}+7\cdot 42^{21k+11}+74\cdot 42^{20k+10}\\||+15\cdot 42^{19k+10}+105\cdot 42^{18k+9}+14\cdot 42^{17k+9}+55\cdot 42^{16k+8}+42^{15k+8}\\||-42\cdot 42^{14k+7}-12\cdot 42^{13k+7}-91\cdot 42^{12k+6}-12\cdot 42^{11k+6}-42\cdot 42^{10k+5}\\||+42^{9k+5}+55\cdot 42^{8k+4}+14\cdot 42^{7k+4}+105\cdot 42^{6k+3}+15\cdot 42^{5k+3}\\||+74\cdot 42^{4k+2}+7\cdot 42^{3k+2}+21\cdot 42^{2k+1}+42^{k+1}+1)\\{\large\Phi}_{86}(43^{2k+1})|=|43^{84k+42}-43^{82k+41}+43^{80k+40}-43^{78k+39}+43^{76k+38}\\||-43^{74k+37}+43^{72k+36}-43^{70k+35}+43^{68k+34}-43^{66k+33}\\||+43^{64k+32}-43^{62k+31}+43^{60k+30}-43^{58k+29}+43^{56k+28}\\||-43^{54k+27}+43^{52k+26}-43^{50k+25}+43^{48k+24}-43^{46k+23}\\||+43^{44k+22}-43^{42k+21}+43^{40k+20}-43^{38k+19}+43^{36k+18}\\||-43^{34k+17}+43^{32k+16}-43^{30k+15}+43^{28k+14}-43^{26k+13}\\||+43^{24k+12}-43^{22k+11}+43^{20k+10}-43^{18k+9}+43^{16k+8}\\||-43^{14k+7}+43^{12k+6}-43^{10k+5}+43^{8k+4}-43^{6k+3}\\||+43^{4k+2}-43^{2k+1}+1\\|=|(43^{42k+21}-43^{41k+21}+21\cdot 43^{40k+20}-7\cdot 43^{39k+20}+81\cdot 43^{38k+19}\\||-19\cdot 43^{37k+19}+169\cdot 43^{36k+18}-31\cdot 43^{35k+18}+223\cdot 43^{34k+17}-35\cdot 43^{33k+17}\\||+225\cdot 43^{32k+16}-33\cdot 43^{31k+16}+213\cdot 43^{30k+15}-33\cdot 43^{29k+15}+223\cdot 43^{28k+14}\\||-35\cdot 43^{27k+14}+229\cdot 43^{26k+13}-33\cdot 43^{25k+13}+197\cdot 43^{24k+12}-27\cdot 43^{23k+12}\\||+159\cdot 43^{22k+11}-23\cdot 43^{21k+11}+159\cdot 43^{20k+10}-27\cdot 43^{19k+10}+197\cdot 43^{18k+9}\\||-33\cdot 43^{17k+9}+229\cdot 43^{16k+8}-35\cdot 43^{15k+8}+223\cdot 43^{14k+7}-33\cdot 43^{13k+7}\\||+213\cdot 43^{12k+6}-33\cdot 43^{11k+6}+225\cdot 43^{10k+5}-35\cdot 43^{9k+5}+223\cdot 43^{8k+4}\\||-31\cdot 43^{7k+4}+169\cdot 43^{6k+3}-19\cdot 43^{5k+3}+81\cdot 43^{4k+2}-7\cdot 43^{3k+2}\\||+21\cdot 43^{2k+1}-43^{k+1}+1)\\|\times|(43^{42k+21}+43^{41k+21}+21\cdot 43^{40k+20}+7\cdot 43^{39k+20}+81\cdot 43^{38k+19}\\||+19\cdot 43^{37k+19}+169\cdot 43^{36k+18}+31\cdot 43^{35k+18}+223\cdot 43^{34k+17}+35\cdot 43^{33k+17}\\||+225\cdot 43^{32k+16}+33\cdot 43^{31k+16}+213\cdot 43^{30k+15}+33\cdot 43^{29k+15}+223\cdot 43^{28k+14}\\||+35\cdot 43^{27k+14}+229\cdot 43^{26k+13}+33\cdot 43^{25k+13}+197\cdot 43^{24k+12}+27\cdot 43^{23k+12}\\||+159\cdot 43^{22k+11}+23\cdot 43^{21k+11}+159\cdot 43^{20k+10}+27\cdot 43^{19k+10}+197\cdot 43^{18k+9}\\||+33\cdot 43^{17k+9}+229\cdot 43^{16k+8}+35\cdot 43^{15k+8}+223\cdot 43^{14k+7}+33\cdot 43^{13k+7}\\||+213\cdot 43^{12k+6}+33\cdot 43^{11k+6}+225\cdot 43^{10k+5}+35\cdot 43^{9k+5}+223\cdot 43^{8k+4}\\||+31\cdot 43^{7k+4}+169\cdot 43^{6k+3}+19\cdot 43^{5k+3}+81\cdot 43^{4k+2}+7\cdot 43^{3k+2}\\||+21\cdot 43^{2k+1}+43^{k+1}+1)\\{\large\Phi}_{92}(46^{2k+1})|=|46^{88k+44}-46^{84k+42}+46^{80k+40}-46^{76k+38}+46^{72k+36}\\||-46^{68k+34}+46^{64k+32}-46^{60k+30}+46^{56k+28}-46^{52k+26}\\||+46^{48k+24}-46^{44k+22}+46^{40k+20}-46^{36k+18}+46^{32k+16}\\||-46^{28k+14}+46^{24k+12}-46^{20k+10}+46^{16k+8}-46^{12k+6}\\||+46^{8k+4}-46^{4k+2}+1\\|=|(46^{44k+22}-46^{43k+22}+23\cdot 46^{42k+21}-8\cdot 46^{41k+21}+103\cdot 46^{40k+20}\\||-25\cdot 46^{39k+20}+253\cdot 46^{38k+19}-52\cdot 46^{37k+19}+469\cdot 46^{36k+18}-89\cdot 46^{35k+18}\\||+759\cdot 46^{34k+17}-138\cdot 46^{33k+17}+1131\cdot 46^{32k+16}-197\cdot 46^{31k+16}+1541\cdot 46^{30k+15}\\||-256\cdot 46^{29k+15}+1917\cdot 46^{28k+14}-307\cdot 46^{27k+14}+2231\cdot 46^{26k+13}-348\cdot 46^{25k+13}\\||+2463\cdot 46^{24k+12}-373\cdot 46^{23k+12}+2553\cdot 46^{22k+11}-373\cdot 46^{21k+11}+2463\cdot 46^{20k+10}\\||-348\cdot 46^{19k+10}+2231\cdot 46^{18k+9}-307\cdot 46^{17k+9}+1917\cdot 46^{16k+8}-256\cdot 46^{15k+8}\\||+1541\cdot 46^{14k+7}-197\cdot 46^{13k+7}+1131\cdot 46^{12k+6}-138\cdot 46^{11k+6}+759\cdot 46^{10k+5}\\||-89\cdot 46^{9k+5}+469\cdot 46^{8k+4}-52\cdot 46^{7k+4}+253\cdot 46^{6k+3}-25\cdot 46^{5k+3}\\||+103\cdot 46^{4k+2}-8\cdot 46^{3k+2}+23\cdot 46^{2k+1}-46^{k+1}+1)\\|\times|(46^{44k+22}+46^{43k+22}+23\cdot 46^{42k+21}+8\cdot 46^{41k+21}+103\cdot 46^{40k+20}\\||+25\cdot 46^{39k+20}+253\cdot 46^{38k+19}+52\cdot 46^{37k+19}+469\cdot 46^{36k+18}+89\cdot 46^{35k+18}\\||+759\cdot 46^{34k+17}+138\cdot 46^{33k+17}+1131\cdot 46^{32k+16}+197\cdot 46^{31k+16}+1541\cdot 46^{30k+15}\\||+256\cdot 46^{29k+15}+1917\cdot 46^{28k+14}+307\cdot 46^{27k+14}+2231\cdot 46^{26k+13}+348\cdot 46^{25k+13}\\||+2463\cdot 46^{24k+12}+373\cdot 46^{23k+12}+2553\cdot 46^{22k+11}+373\cdot 46^{21k+11}+2463\cdot 46^{20k+10}\\||+348\cdot 46^{19k+10}+2231\cdot 46^{18k+9}+307\cdot 46^{17k+9}+1917\cdot 46^{16k+8}+256\cdot 46^{15k+8}\\||+1541\cdot 46^{14k+7}+197\cdot 46^{13k+7}+1131\cdot 46^{12k+6}+138\cdot 46^{11k+6}+759\cdot 46^{10k+5}\\||+89\cdot 46^{9k+5}+469\cdot 46^{8k+4}+52\cdot 46^{7k+4}+253\cdot 46^{6k+3}+25\cdot 46^{5k+3}\\||+103\cdot 46^{4k+2}+8\cdot 46^{3k+2}+23\cdot 46^{2k+1}+46^{k+1}+1)\\{\large\Phi}_{94}(47^{2k+1})|=|47^{92k+46}-47^{90k+45}+47^{88k+44}-47^{86k+43}+47^{84k+42}\\||-47^{82k+41}+47^{80k+40}-47^{78k+39}+47^{76k+38}-47^{74k+37}\\||+47^{72k+36}-47^{70k+35}+47^{68k+34}-47^{66k+33}+47^{64k+32}\\||-47^{62k+31}+47^{60k+30}-47^{58k+29}+47^{56k+28}-47^{54k+27}\\||+47^{52k+26}-47^{50k+25}+47^{48k+24}-47^{46k+23}+47^{44k+22}\\||-47^{42k+21}+47^{40k+20}-47^{38k+19}+47^{36k+18}-47^{34k+17}\\||+47^{32k+16}-47^{30k+15}+47^{28k+14}-47^{26k+13}+47^{24k+12}\\||-47^{22k+11}+47^{20k+10}-47^{18k+9}+47^{16k+8}-47^{14k+7}\\||+47^{12k+6}-47^{10k+5}+47^{8k+4}-47^{6k+3}+47^{4k+2}\\||-47^{2k+1}+1\\|=|(47^{46k+23}-47^{45k+23}+23\cdot 47^{44k+22}-7\cdot 47^{43k+22}+65\cdot 47^{42k+21}\\||-7\cdot 47^{41k+21}-15\cdot 47^{40k+20}+15\cdot 47^{39k+20}-169\cdot 47^{38k+19}+25\cdot 47^{37k+19}\\||-97\cdot 47^{36k+18}-5\cdot 47^{35k+18}+179\cdot 47^{34k+17}-41\cdot 47^{33k+17}+287\cdot 47^{32k+16}\\||-25\cdot 47^{31k+16}-37\cdot 47^{30k+15}+37\cdot 47^{29k+15}-375\cdot 47^{28k+14}+49\cdot 47^{27k+14}\\||-149\cdot 47^{26k+13}-15\cdot 47^{25k+13}+311\cdot 47^{24k+12}-57\cdot 47^{23k+12}+311\cdot 47^{22k+11}\\||-15\cdot 47^{21k+11}-149\cdot 47^{20k+10}+49\cdot 47^{19k+10}-375\cdot 47^{18k+9}+37\cdot 47^{17k+9}\\||-37\cdot 47^{16k+8}-25\cdot 47^{15k+8}+287\cdot 47^{14k+7}-41\cdot 47^{13k+7}+179\cdot 47^{12k+6}\\||-5\cdot 47^{11k+6}-97\cdot 47^{10k+5}+25\cdot 47^{9k+5}-169\cdot 47^{8k+4}+15\cdot 47^{7k+4}\\||-15\cdot 47^{6k+3}-7\cdot 47^{5k+3}+65\cdot 47^{4k+2}-7\cdot 47^{3k+2}+23\cdot 47^{2k+1}\\||-47^{k+1}+1)\\|\times|(47^{46k+23}+47^{45k+23}+23\cdot 47^{44k+22}+7\cdot 47^{43k+22}+65\cdot 47^{42k+21}\\||+7\cdot 47^{41k+21}-15\cdot 47^{40k+20}-15\cdot 47^{39k+20}-169\cdot 47^{38k+19}-25\cdot 47^{37k+19}\\||-97\cdot 47^{36k+18}+5\cdot 47^{35k+18}+179\cdot 47^{34k+17}+41\cdot 47^{33k+17}+287\cdot 47^{32k+16}\\||+25\cdot 47^{31k+16}-37\cdot 47^{30k+15}-37\cdot 47^{29k+15}-375\cdot 47^{28k+14}-49\cdot 47^{27k+14}\\||-149\cdot 47^{26k+13}+15\cdot 47^{25k+13}+311\cdot 47^{24k+12}+57\cdot 47^{23k+12}+311\cdot 47^{22k+11}\\||+15\cdot 47^{21k+11}-149\cdot 47^{20k+10}-49\cdot 47^{19k+10}-375\cdot 47^{18k+9}-37\cdot 47^{17k+9}\\||-37\cdot 47^{16k+8}+25\cdot 47^{15k+8}+287\cdot 47^{14k+7}+41\cdot 47^{13k+7}+179\cdot 47^{12k+6}\\||+5\cdot 47^{11k+6}-97\cdot 47^{10k+5}-25\cdot 47^{9k+5}-169\cdot 47^{8k+4}-15\cdot 47^{7k+4}\\||-15\cdot 47^{6k+3}+7\cdot 47^{5k+3}+65\cdot 47^{4k+2}+7\cdot 47^{3k+2}+23\cdot 47^{2k+1}\\||+47^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{102}(51^{2k+1})\cdots{\large\Phi}_{118}(59^{2k+1})$${\large\Phi}_{102}(51^{2k+1})\cdots{\large\Phi}_{118}(59^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{102}(51^{2k+1})|=|51^{64k+32}+51^{62k+31}-51^{58k+29}-51^{56k+28}+51^{52k+26}\\||+51^{50k+25}-51^{46k+23}-51^{44k+22}+51^{40k+20}+51^{38k+19}\\||-51^{34k+17}-51^{32k+16}-51^{30k+15}+51^{26k+13}+51^{24k+12}\\||-51^{20k+10}-51^{18k+9}+51^{14k+7}+51^{12k+6}-51^{8k+4}\\||-51^{6k+3}+51^{2k+1}+1\\|=|(51^{32k+16}-51^{31k+16}+26\cdot 51^{30k+15}-9\cdot 51^{29k+15}+121\cdot 51^{28k+14}\\||-26\cdot 51^{27k+14}+245\cdot 51^{26k+13}-41\cdot 51^{25k+13}+334\cdot 51^{24k+12}-53\cdot 51^{23k+12}\\||+431\cdot 51^{22k+11}-68\cdot 51^{21k+11}+529\cdot 51^{20k+10}-77\cdot 51^{19k+10}+548\cdot 51^{18k+9}\\||-75\cdot 51^{17k+9}+529\cdot 51^{16k+8}-75\cdot 51^{15k+8}+548\cdot 51^{14k+7}-77\cdot 51^{13k+7}\\||+529\cdot 51^{12k+6}-68\cdot 51^{11k+6}+431\cdot 51^{10k+5}-53\cdot 51^{9k+5}+334\cdot 51^{8k+4}\\||-41\cdot 51^{7k+4}+245\cdot 51^{6k+3}-26\cdot 51^{5k+3}+121\cdot 51^{4k+2}-9\cdot 51^{3k+2}\\||+26\cdot 51^{2k+1}-51^{k+1}+1)\\|\times|(51^{32k+16}+51^{31k+16}+26\cdot 51^{30k+15}+9\cdot 51^{29k+15}+121\cdot 51^{28k+14}\\||+26\cdot 51^{27k+14}+245\cdot 51^{26k+13}+41\cdot 51^{25k+13}+334\cdot 51^{24k+12}+53\cdot 51^{23k+12}\\||+431\cdot 51^{22k+11}+68\cdot 51^{21k+11}+529\cdot 51^{20k+10}+77\cdot 51^{19k+10}+548\cdot 51^{18k+9}\\||+75\cdot 51^{17k+9}+529\cdot 51^{16k+8}+75\cdot 51^{15k+8}+548\cdot 51^{14k+7}+77\cdot 51^{13k+7}\\||+529\cdot 51^{12k+6}+68\cdot 51^{11k+6}+431\cdot 51^{10k+5}+53\cdot 51^{9k+5}+334\cdot 51^{8k+4}\\||+41\cdot 51^{7k+4}+245\cdot 51^{6k+3}+26\cdot 51^{5k+3}+121\cdot 51^{4k+2}+9\cdot 51^{3k+2}\\||+26\cdot 51^{2k+1}+51^{k+1}+1)\\{\large\Phi}_{53}(53^{2k+1})|=|53^{104k+52}+53^{102k+51}+53^{100k+50}+53^{98k+49}+53^{96k+48}\\||+53^{94k+47}+53^{92k+46}+53^{90k+45}+53^{88k+44}+53^{86k+43}\\||+53^{84k+42}+53^{82k+41}+53^{80k+40}+53^{78k+39}+53^{76k+38}\\||+53^{74k+37}+53^{72k+36}+53^{70k+35}+53^{68k+34}+53^{66k+33}\\||+53^{64k+32}+53^{62k+31}+53^{60k+30}+53^{58k+29}+53^{56k+28}\\||+53^{54k+27}+53^{52k+26}+53^{50k+25}+53^{48k+24}+53^{46k+23}\\||+53^{44k+22}+53^{42k+21}+53^{40k+20}+53^{38k+19}+53^{36k+18}\\||+53^{34k+17}+53^{32k+16}+53^{30k+15}+53^{28k+14}+53^{26k+13}\\||+53^{24k+12}+53^{22k+11}+53^{20k+10}+53^{18k+9}+53^{16k+8}\\||+53^{14k+7}+53^{12k+6}+53^{10k+5}+53^{8k+4}+53^{6k+3}\\||+53^{4k+2}+53^{2k+1}+1\\|=|(53^{52k+26}-53^{51k+26}+27\cdot 53^{50k+25}-9\cdot 53^{49k+25}+113\cdot 53^{48k+24}\\||-19\cdot 53^{47k+24}+103\cdot 53^{46k+23}+53^{45k+23}-155\cdot 53^{44k+22}+35\cdot 53^{43k+22}\\||-219\cdot 53^{42k+21}+3\cdot 53^{41k+21}+263\cdot 53^{40k+20}-67\cdot 53^{39k+20}+513\cdot 53^{38k+19}\\||-41\cdot 53^{37k+19}-59\cdot 53^{36k+18}+51\cdot 53^{35k+18}-465\cdot 53^{34k+17}+39\cdot 53^{33k+17}\\||+75\cdot 53^{32k+16}-57\cdot 53^{31k+16}+551\cdot 53^{30k+15}-57\cdot 53^{29k+15}+93\cdot 53^{28k+14}\\||+31\cdot 53^{27k+14}-357\cdot 53^{26k+13}+31\cdot 53^{25k+13}+93\cdot 53^{24k+12}-57\cdot 53^{23k+12}\\||+551\cdot 53^{22k+11}-57\cdot 53^{21k+11}+75\cdot 53^{20k+10}+39\cdot 53^{19k+10}-465\cdot 53^{18k+9}\\||+51\cdot 53^{17k+9}-59\cdot 53^{16k+8}-41\cdot 53^{15k+8}+513\cdot 53^{14k+7}-67\cdot 53^{13k+7}\\||+263\cdot 53^{12k+6}+3\cdot 53^{11k+6}-219\cdot 53^{10k+5}+35\cdot 53^{9k+5}-155\cdot 53^{8k+4}\\||+53^{7k+4}+103\cdot 53^{6k+3}-19\cdot 53^{5k+3}+113\cdot 53^{4k+2}-9\cdot 53^{3k+2}\\||+27\cdot 53^{2k+1}-53^{k+1}+1)\\|\times|(53^{52k+26}+53^{51k+26}+27\cdot 53^{50k+25}+9\cdot 53^{49k+25}+113\cdot 53^{48k+24}\\||+19\cdot 53^{47k+24}+103\cdot 53^{46k+23}-53^{45k+23}-155\cdot 53^{44k+22}-35\cdot 53^{43k+22}\\||-219\cdot 53^{42k+21}-3\cdot 53^{41k+21}+263\cdot 53^{40k+20}+67\cdot 53^{39k+20}+513\cdot 53^{38k+19}\\||+41\cdot 53^{37k+19}-59\cdot 53^{36k+18}-51\cdot 53^{35k+18}-465\cdot 53^{34k+17}-39\cdot 53^{33k+17}\\||+75\cdot 53^{32k+16}+57\cdot 53^{31k+16}+551\cdot 53^{30k+15}+57\cdot 53^{29k+15}+93\cdot 53^{28k+14}\\||-31\cdot 53^{27k+14}-357\cdot 53^{26k+13}-31\cdot 53^{25k+13}+93\cdot 53^{24k+12}+57\cdot 53^{23k+12}\\||+551\cdot 53^{22k+11}+57\cdot 53^{21k+11}+75\cdot 53^{20k+10}-39\cdot 53^{19k+10}-465\cdot 53^{18k+9}\\||-51\cdot 53^{17k+9}-59\cdot 53^{16k+8}+41\cdot 53^{15k+8}+513\cdot 53^{14k+7}+67\cdot 53^{13k+7}\\||+263\cdot 53^{12k+6}-3\cdot 53^{11k+6}-219\cdot 53^{10k+5}-35\cdot 53^{9k+5}-155\cdot 53^{8k+4}\\||-53^{7k+4}+103\cdot 53^{6k+3}+19\cdot 53^{5k+3}+113\cdot 53^{4k+2}+9\cdot 53^{3k+2}\\||+27\cdot 53^{2k+1}+53^{k+1}+1)\\{\large\Phi}_{110}(55^{2k+1})|=|55^{80k+40}+55^{78k+39}-55^{70k+35}-55^{68k+34}+55^{60k+30}\\||-55^{56k+28}-55^{50k+25}+55^{46k+23}+55^{40k+20}+55^{34k+17}\\||-55^{30k+15}-55^{24k+12}+55^{20k+10}-55^{12k+6}-55^{10k+5}\\||+55^{2k+1}+1\\|=|(55^{40k+20}-55^{39k+20}+28\cdot 55^{38k+19}-10\cdot 55^{37k+19}+158\cdot 55^{36k+18}\\||-39\cdot 55^{35k+18}+471\cdot 55^{34k+17}-94\cdot 55^{33k+17}+950\cdot 55^{32k+16}-162\cdot 55^{31k+16}\\||+1419\cdot 55^{30k+15}-212\cdot 55^{29k+15}+1637\cdot 55^{28k+14}-216\cdot 55^{27k+14}+1472\cdot 55^{26k+13}\\||-171\cdot 55^{25k+13}+1024\cdot 55^{24k+12}-105\cdot 55^{23k+12}+570\cdot 55^{22k+11}-58\cdot 55^{21k+11}\\||+381\cdot 55^{20k+10}-58\cdot 55^{19k+10}+570\cdot 55^{18k+9}-105\cdot 55^{17k+9}+1024\cdot 55^{16k+8}\\||-171\cdot 55^{15k+8}+1472\cdot 55^{14k+7}-216\cdot 55^{13k+7}+1637\cdot 55^{12k+6}-212\cdot 55^{11k+6}\\||+1419\cdot 55^{10k+5}-162\cdot 55^{9k+5}+950\cdot 55^{8k+4}-94\cdot 55^{7k+4}+471\cdot 55^{6k+3}\\||-39\cdot 55^{5k+3}+158\cdot 55^{4k+2}-10\cdot 55^{3k+2}+28\cdot 55^{2k+1}-55^{k+1}+1)\\|\times|(55^{40k+20}+55^{39k+20}+28\cdot 55^{38k+19}+10\cdot 55^{37k+19}+158\cdot 55^{36k+18}\\||+39\cdot 55^{35k+18}+471\cdot 55^{34k+17}+94\cdot 55^{33k+17}+950\cdot 55^{32k+16}+162\cdot 55^{31k+16}\\||+1419\cdot 55^{30k+15}+212\cdot 55^{29k+15}+1637\cdot 55^{28k+14}+216\cdot 55^{27k+14}+1472\cdot 55^{26k+13}\\||+171\cdot 55^{25k+13}+1024\cdot 55^{24k+12}+105\cdot 55^{23k+12}+570\cdot 55^{22k+11}+58\cdot 55^{21k+11}\\||+381\cdot 55^{20k+10}+58\cdot 55^{19k+10}+570\cdot 55^{18k+9}+105\cdot 55^{17k+9}+1024\cdot 55^{16k+8}\\||+171\cdot 55^{15k+8}+1472\cdot 55^{14k+7}+216\cdot 55^{13k+7}+1637\cdot 55^{12k+6}+212\cdot 55^{11k+6}\\||+1419\cdot 55^{10k+5}+162\cdot 55^{9k+5}+950\cdot 55^{8k+4}+94\cdot 55^{7k+4}+471\cdot 55^{6k+3}\\||+39\cdot 55^{5k+3}+158\cdot 55^{4k+2}+10\cdot 55^{3k+2}+28\cdot 55^{2k+1}+55^{k+1}+1)\\{\large\Phi}_{57}(57^{2k+1})|=|57^{72k+36}-57^{70k+35}+57^{66k+33}-57^{64k+32}+57^{60k+30}\\||-57^{58k+29}+57^{54k+27}-57^{52k+26}+57^{48k+24}-57^{46k+23}\\||+57^{42k+21}-57^{40k+20}+57^{36k+18}-57^{32k+16}+57^{30k+15}\\||-57^{26k+13}+57^{24k+12}-57^{20k+10}+57^{18k+9}-57^{14k+7}\\||+57^{12k+6}-57^{8k+4}+57^{6k+3}-57^{2k+1}+1\\|=|(57^{36k+18}-57^{35k+18}+28\cdot 57^{34k+17}-9\cdot 57^{33k+17}+121\cdot 57^{32k+16}\\||-22\cdot 57^{31k+16}+175\cdot 57^{30k+15}-17\cdot 57^{29k+15}+34\cdot 57^{28k+14}+9\cdot 57^{27k+14}\\||-125\cdot 57^{26k+13}+14\cdot 57^{25k+13}-23\cdot 57^{24k+12}-9\cdot 57^{23k+12}+100\cdot 57^{22k+11}\\||-5\cdot 57^{21k+11}-95\cdot 57^{20k+10}+30\cdot 57^{19k+10}-281\cdot 57^{18k+9}+30\cdot 57^{17k+9}\\||-95\cdot 57^{16k+8}-5\cdot 57^{15k+8}+100\cdot 57^{14k+7}-9\cdot 57^{13k+7}-23\cdot 57^{12k+6}\\||+14\cdot 57^{11k+6}-125\cdot 57^{10k+5}+9\cdot 57^{9k+5}+34\cdot 57^{8k+4}-17\cdot 57^{7k+4}\\||+175\cdot 57^{6k+3}-22\cdot 57^{5k+3}+121\cdot 57^{4k+2}-9\cdot 57^{3k+2}+28\cdot 57^{2k+1}\\||-57^{k+1}+1)\\|\times|(57^{36k+18}+57^{35k+18}+28\cdot 57^{34k+17}+9\cdot 57^{33k+17}+121\cdot 57^{32k+16}\\||+22\cdot 57^{31k+16}+175\cdot 57^{30k+15}+17\cdot 57^{29k+15}+34\cdot 57^{28k+14}-9\cdot 57^{27k+14}\\||-125\cdot 57^{26k+13}-14\cdot 57^{25k+13}-23\cdot 57^{24k+12}+9\cdot 57^{23k+12}+100\cdot 57^{22k+11}\\||+5\cdot 57^{21k+11}-95\cdot 57^{20k+10}-30\cdot 57^{19k+10}-281\cdot 57^{18k+9}-30\cdot 57^{17k+9}\\||-95\cdot 57^{16k+8}+5\cdot 57^{15k+8}+100\cdot 57^{14k+7}+9\cdot 57^{13k+7}-23\cdot 57^{12k+6}\\||-14\cdot 57^{11k+6}-125\cdot 57^{10k+5}-9\cdot 57^{9k+5}+34\cdot 57^{8k+4}+17\cdot 57^{7k+4}\\||+175\cdot 57^{6k+3}+22\cdot 57^{5k+3}+121\cdot 57^{4k+2}+9\cdot 57^{3k+2}+28\cdot 57^{2k+1}\\||+57^{k+1}+1)\\{\large\Phi}_{116}(58^{2k+1})|=|58^{112k+56}-58^{108k+54}+58^{104k+52}-58^{100k+50}+58^{96k+48}\\||-58^{92k+46}+58^{88k+44}-58^{84k+42}+58^{80k+40}-58^{76k+38}\\||+58^{72k+36}-58^{68k+34}+58^{64k+32}-58^{60k+30}+58^{56k+28}\\||-58^{52k+26}+58^{48k+24}-58^{44k+22}+58^{40k+20}-58^{36k+18}\\||+58^{32k+16}-58^{28k+14}+58^{24k+12}-58^{20k+10}+58^{16k+8}\\||-58^{12k+6}+58^{8k+4}-58^{4k+2}+1\\|=|(58^{56k+28}-58^{55k+28}+29\cdot 58^{54k+27}-10\cdot 58^{53k+27}+159\cdot 58^{52k+26}\\||-37\cdot 58^{51k+26}+435\cdot 58^{50k+25}-78\cdot 58^{49k+25}+729\cdot 58^{48k+24}-107\cdot 58^{47k+24}\\||+841\cdot 58^{46k+23}-108\cdot 58^{45k+23}+799\cdot 58^{44k+22}-107\cdot 58^{43k+22}+899\cdot 58^{42k+21}\\||-138\cdot 58^{41k+21}+1233\cdot 58^{40k+20}-181\cdot 58^{39k+20}+1421\cdot 58^{38k+19}-174\cdot 58^{37k+19}\\||+1103\cdot 58^{36k+18}-107\cdot 58^{35k+18}+551\cdot 58^{34k+17}-52\cdot 58^{33k+17}+393\cdot 58^{32k+16}\\||-69\cdot 58^{31k+16}+725\cdot 58^{30k+15}-118\cdot 58^{29k+15}+967\cdot 58^{28k+14}-118\cdot 58^{27k+14}\\||+725\cdot 58^{26k+13}-69\cdot 58^{25k+13}+393\cdot 58^{24k+12}-52\cdot 58^{23k+12}+551\cdot 58^{22k+11}\\||-107\cdot 58^{21k+11}+1103\cdot 58^{20k+10}-174\cdot 58^{19k+10}+1421\cdot 58^{18k+9}-181\cdot 58^{17k+9}\\||+1233\cdot 58^{16k+8}-138\cdot 58^{15k+8}+899\cdot 58^{14k+7}-107\cdot 58^{13k+7}+799\cdot 58^{12k+6}\\||-108\cdot 58^{11k+6}+841\cdot 58^{10k+5}-107\cdot 58^{9k+5}+729\cdot 58^{8k+4}-78\cdot 58^{7k+4}\\||+435\cdot 58^{6k+3}-37\cdot 58^{5k+3}+159\cdot 58^{4k+2}-10\cdot 58^{3k+2}+29\cdot 58^{2k+1}\\||-58^{k+1}+1)\\|\times|(58^{56k+28}+58^{55k+28}+29\cdot 58^{54k+27}+10\cdot 58^{53k+27}+159\cdot 58^{52k+26}\\||+37\cdot 58^{51k+26}+435\cdot 58^{50k+25}+78\cdot 58^{49k+25}+729\cdot 58^{48k+24}+107\cdot 58^{47k+24}\\||+841\cdot 58^{46k+23}+108\cdot 58^{45k+23}+799\cdot 58^{44k+22}+107\cdot 58^{43k+22}+899\cdot 58^{42k+21}\\||+138\cdot 58^{41k+21}+1233\cdot 58^{40k+20}+181\cdot 58^{39k+20}+1421\cdot 58^{38k+19}+174\cdot 58^{37k+19}\\||+1103\cdot 58^{36k+18}+107\cdot 58^{35k+18}+551\cdot 58^{34k+17}+52\cdot 58^{33k+17}+393\cdot 58^{32k+16}\\||+69\cdot 58^{31k+16}+725\cdot 58^{30k+15}+118\cdot 58^{29k+15}+967\cdot 58^{28k+14}+118\cdot 58^{27k+14}\\||+725\cdot 58^{26k+13}+69\cdot 58^{25k+13}+393\cdot 58^{24k+12}+52\cdot 58^{23k+12}+551\cdot 58^{22k+11}\\||+107\cdot 58^{21k+11}+1103\cdot 58^{20k+10}+174\cdot 58^{19k+10}+1421\cdot 58^{18k+9}+181\cdot 58^{17k+9}\\||+1233\cdot 58^{16k+8}+138\cdot 58^{15k+8}+899\cdot 58^{14k+7}+107\cdot 58^{13k+7}+799\cdot 58^{12k+6}\\||+108\cdot 58^{11k+6}+841\cdot 58^{10k+5}+107\cdot 58^{9k+5}+729\cdot 58^{8k+4}+78\cdot 58^{7k+4}\\||+435\cdot 58^{6k+3}+37\cdot 58^{5k+3}+159\cdot 58^{4k+2}+10\cdot 58^{3k+2}+29\cdot 58^{2k+1}\\||+58^{k+1}+1)\\{\large\Phi}_{118}(59^{2k+1})|=|59^{116k+58}-59^{114k+57}+59^{112k+56}-59^{110k+55}+59^{108k+54}\\||-59^{106k+53}+59^{104k+52}-59^{102k+51}+59^{100k+50}-59^{98k+49}\\||+59^{96k+48}-59^{94k+47}+59^{92k+46}-59^{90k+45}+59^{88k+44}\\||-59^{86k+43}+59^{84k+42}-59^{82k+41}+59^{80k+40}-59^{78k+39}\\||+59^{76k+38}-59^{74k+37}+59^{72k+36}-59^{70k+35}+59^{68k+34}\\||-59^{66k+33}+59^{64k+32}-59^{62k+31}+59^{60k+30}-59^{58k+29}\\||+59^{56k+28}-59^{54k+27}+59^{52k+26}-59^{50k+25}+59^{48k+24}\\||-59^{46k+23}+59^{44k+22}-59^{42k+21}+59^{40k+20}-59^{38k+19}\\||+59^{36k+18}-59^{34k+17}+59^{32k+16}-59^{30k+15}+59^{28k+14}\\||-59^{26k+13}+59^{24k+12}-59^{22k+11}+59^{20k+10}-59^{18k+9}\\||+59^{16k+8}-59^{14k+7}+59^{12k+6}-59^{10k+5}+59^{8k+4}\\||-59^{6k+3}+59^{4k+2}-59^{2k+1}+1\\|=|(59^{58k+29}-59^{57k+29}+29\cdot 59^{56k+28}-9\cdot 59^{55k+28}+111\cdot 59^{54k+27}\\||-15\cdot 59^{53k+27}+55\cdot 59^{52k+26}+5\cdot 59^{51k+26}-85\cdot 59^{50k+25}+5\cdot 59^{49k+25}\\||+47\cdot 59^{48k+24}-9\cdot 59^{47k+24}+11\cdot 59^{46k+23}+3\cdot 59^{45k+23}+53\cdot 59^{44k+22}\\||-21\cdot 59^{43k+22}+131\cdot 59^{42k+21}+9\cdot 59^{41k+21}-245\cdot 59^{40k+20}+25\cdot 59^{39k+20}\\||+41\cdot 59^{38k+19}-25\cdot 59^{37k+19}+103\cdot 59^{36k+18}+11\cdot 59^{35k+18}-111\cdot 59^{34k+17}\\||-9\cdot 59^{33k+17}+227\cdot 59^{32k+16}-19\cdot 59^{31k+16}-103\cdot 59^{30k+15}+31\cdot 59^{29k+15}\\||-103\cdot 59^{28k+14}-19\cdot 59^{27k+14}+227\cdot 59^{26k+13}-9\cdot 59^{25k+13}-111\cdot 59^{24k+12}\\||+11\cdot 59^{23k+12}+103\cdot 59^{22k+11}-25\cdot 59^{21k+11}+41\cdot 59^{20k+10}+25\cdot 59^{19k+10}\\||-245\cdot 59^{18k+9}+9\cdot 59^{17k+9}+131\cdot 59^{16k+8}-21\cdot 59^{15k+8}+53\cdot 59^{14k+7}\\||+3\cdot 59^{13k+7}+11\cdot 59^{12k+6}-9\cdot 59^{11k+6}+47\cdot 59^{10k+5}+5\cdot 59^{9k+5}\\||-85\cdot 59^{8k+4}+5\cdot 59^{7k+4}+55\cdot 59^{6k+3}-15\cdot 59^{5k+3}+111\cdot 59^{4k+2}\\||-9\cdot 59^{3k+2}+29\cdot 59^{2k+1}-59^{k+1}+1)\\|\times|(59^{58k+29}+59^{57k+29}+29\cdot 59^{56k+28}+9\cdot 59^{55k+28}+111\cdot 59^{54k+27}\\||+15\cdot 59^{53k+27}+55\cdot 59^{52k+26}-5\cdot 59^{51k+26}-85\cdot 59^{50k+25}-5\cdot 59^{49k+25}\\||+47\cdot 59^{48k+24}+9\cdot 59^{47k+24}+11\cdot 59^{46k+23}-3\cdot 59^{45k+23}+53\cdot 59^{44k+22}\\||+21\cdot 59^{43k+22}+131\cdot 59^{42k+21}-9\cdot 59^{41k+21}-245\cdot 59^{40k+20}-25\cdot 59^{39k+20}\\||+41\cdot 59^{38k+19}+25\cdot 59^{37k+19}+103\cdot 59^{36k+18}-11\cdot 59^{35k+18}-111\cdot 59^{34k+17}\\||+9\cdot 59^{33k+17}+227\cdot 59^{32k+16}+19\cdot 59^{31k+16}-103\cdot 59^{30k+15}-31\cdot 59^{29k+15}\\||-103\cdot 59^{28k+14}+19\cdot 59^{27k+14}+227\cdot 59^{26k+13}+9\cdot 59^{25k+13}-111\cdot 59^{24k+12}\\||-11\cdot 59^{23k+12}+103\cdot 59^{22k+11}+25\cdot 59^{21k+11}+41\cdot 59^{20k+10}-25\cdot 59^{19k+10}\\||-245\cdot 59^{18k+9}-9\cdot 59^{17k+9}+131\cdot 59^{16k+8}+21\cdot 59^{15k+8}+53\cdot 59^{14k+7}\\||-3\cdot 59^{13k+7}+11\cdot 59^{12k+6}+9\cdot 59^{11k+6}+47\cdot 59^{10k+5}-5\cdot 59^{9k+5}\\||-85\cdot 59^{8k+4}-5\cdot 59^{7k+4}+55\cdot 59^{6k+3}+15\cdot 59^{5k+3}+111\cdot 59^{4k+2}\\||+9\cdot 59^{3k+2}+29\cdot 59^{2k+1}+59^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{61}(61^{2k+1})\cdots{\large\Phi}_{140}(70^{2k+1})$${\large\Phi}_{61}(61^{2k+1})\cdots{\large\Phi}_{140}(70^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{61}(61^{2k+1})|=|61^{120k+60}+61^{118k+59}+61^{116k+58}+61^{114k+57}+61^{112k+56}\\||+61^{110k+55}+61^{108k+54}+61^{106k+53}+61^{104k+52}+61^{102k+51}\\||+61^{100k+50}+61^{98k+49}+61^{96k+48}+61^{94k+47}+61^{92k+46}\\||+61^{90k+45}+61^{88k+44}+61^{86k+43}+61^{84k+42}+61^{82k+41}\\||+61^{80k+40}+61^{78k+39}+61^{76k+38}+61^{74k+37}+61^{72k+36}\\||+61^{70k+35}+61^{68k+34}+61^{66k+33}+61^{64k+32}+61^{62k+31}\\||+61^{60k+30}+61^{58k+29}+61^{56k+28}+61^{54k+27}+61^{52k+26}\\||+61^{50k+25}+61^{48k+24}+61^{46k+23}+61^{44k+22}+61^{42k+21}\\||+61^{40k+20}+61^{38k+19}+61^{36k+18}+61^{34k+17}+61^{32k+16}\\||+61^{30k+15}+61^{28k+14}+61^{26k+13}+61^{24k+12}+61^{22k+11}\\||+61^{20k+10}+61^{18k+9}+61^{16k+8}+61^{14k+7}+61^{12k+6}\\||+61^{10k+5}+61^{8k+4}+61^{6k+3}+61^{4k+2}+61^{2k+1}+1\\|=|(61^{60k+30}-61^{59k+30}+31\cdot 61^{58k+29}-11\cdot 61^{57k+29}+191\cdot 61^{56k+28}\\||-47\cdot 61^{55k+28}+637\cdot 61^{54k+27}-131\cdot 61^{53k+27}+1541\cdot 61^{52k+26}-281\cdot 61^{51k+26}\\||+2979\cdot 61^{50k+25}-497\cdot 61^{49k+25}+4881\cdot 61^{48k+24}-761\cdot 61^{47k+24}+7029\cdot 61^{46k+23}\\||-1037\cdot 61^{45k+23}+9125\cdot 61^{44k+22}-1291\cdot 61^{43k+22}+10953\cdot 61^{42k+21}-1501\cdot 61^{41k+21}\\||+12397\cdot 61^{40k+20}-1663\cdot 61^{39k+20}+13511\cdot 61^{38k+19}-1789\cdot 61^{37k+19}+14379\cdot 61^{36k+18}\\||-1887\cdot 61^{35k+18}+15053\cdot 61^{34k+17}-1961\cdot 61^{33k+17}+15511\cdot 61^{32k+16}-2001\cdot 61^{31k+16}\\||+15667\cdot 61^{30k+15}-2001\cdot 61^{29k+15}+15511\cdot 61^{28k+14}-1961\cdot 61^{27k+14}+15053\cdot 61^{26k+13}\\||-1887\cdot 61^{25k+13}+14379\cdot 61^{24k+12}-1789\cdot 61^{23k+12}+13511\cdot 61^{22k+11}-1663\cdot 61^{21k+11}\\||+12397\cdot 61^{20k+10}-1501\cdot 61^{19k+10}+10953\cdot 61^{18k+9}-1291\cdot 61^{17k+9}+9125\cdot 61^{16k+8}\\||-1037\cdot 61^{15k+8}+7029\cdot 61^{14k+7}-761\cdot 61^{13k+7}+4881\cdot 61^{12k+6}-497\cdot 61^{11k+6}\\||+2979\cdot 61^{10k+5}-281\cdot 61^{9k+5}+1541\cdot 61^{8k+4}-131\cdot 61^{7k+4}+637\cdot 61^{6k+3}\\||-47\cdot 61^{5k+3}+191\cdot 61^{4k+2}-11\cdot 61^{3k+2}+31\cdot 61^{2k+1}-61^{k+1}+1)\\|\times|(61^{60k+30}+61^{59k+30}+31\cdot 61^{58k+29}+11\cdot 61^{57k+29}+191\cdot 61^{56k+28}\\||+47\cdot 61^{55k+28}+637\cdot 61^{54k+27}+131\cdot 61^{53k+27}+1541\cdot 61^{52k+26}+281\cdot 61^{51k+26}\\||+2979\cdot 61^{50k+25}+497\cdot 61^{49k+25}+4881\cdot 61^{48k+24}+761\cdot 61^{47k+24}+7029\cdot 61^{46k+23}\\||+1037\cdot 61^{45k+23}+9125\cdot 61^{44k+22}+1291\cdot 61^{43k+22}+10953\cdot 61^{42k+21}+1501\cdot 61^{41k+21}\\||+12397\cdot 61^{40k+20}+1663\cdot 61^{39k+20}+13511\cdot 61^{38k+19}+1789\cdot 61^{37k+19}+14379\cdot 61^{36k+18}\\||+1887\cdot 61^{35k+18}+15053\cdot 61^{34k+17}+1961\cdot 61^{33k+17}+15511\cdot 61^{32k+16}+2001\cdot 61^{31k+16}\\||+15667\cdot 61^{30k+15}+2001\cdot 61^{29k+15}+15511\cdot 61^{28k+14}+1961\cdot 61^{27k+14}+15053\cdot 61^{26k+13}\\||+1887\cdot 61^{25k+13}+14379\cdot 61^{24k+12}+1789\cdot 61^{23k+12}+13511\cdot 61^{22k+11}+1663\cdot 61^{21k+11}\\||+12397\cdot 61^{20k+10}+1501\cdot 61^{19k+10}+10953\cdot 61^{18k+9}+1291\cdot 61^{17k+9}+9125\cdot 61^{16k+8}\\||+1037\cdot 61^{15k+8}+7029\cdot 61^{14k+7}+761\cdot 61^{13k+7}+4881\cdot 61^{12k+6}+497\cdot 61^{11k+6}\\||+2979\cdot 61^{10k+5}+281\cdot 61^{9k+5}+1541\cdot 61^{8k+4}+131\cdot 61^{7k+4}+637\cdot 61^{6k+3}\\||+47\cdot 61^{5k+3}+191\cdot 61^{4k+2}+11\cdot 61^{3k+2}+31\cdot 61^{2k+1}+61^{k+1}+1)\\{\large\Phi}_{124}(62^{2k+1})|=|62^{120k+60}-62^{116k+58}+62^{112k+56}-62^{108k+54}+62^{104k+52}\\||-62^{100k+50}+62^{96k+48}-62^{92k+46}+62^{88k+44}-62^{84k+42}\\||+62^{80k+40}-62^{76k+38}+62^{72k+36}-62^{68k+34}+62^{64k+32}\\||-62^{60k+30}+62^{56k+28}-62^{52k+26}+62^{48k+24}-62^{44k+22}\\||+62^{40k+20}-62^{36k+18}+62^{32k+16}-62^{28k+14}+62^{24k+12}\\||-62^{20k+10}+62^{16k+8}-62^{12k+6}+62^{8k+4}-62^{4k+2}+1\\|=|(62^{60k+30}-62^{59k+30}+31\cdot 62^{58k+29}-10\cdot 62^{57k+29}+139\cdot 62^{56k+28}\\||-21\cdot 62^{55k+28}+93\cdot 62^{54k+27}+14\cdot 62^{53k+27}-391\cdot 62^{52k+26}+77\cdot 62^{51k+26}\\||-589\cdot 62^{50k+25}+32\cdot 62^{49k+25}+331\cdot 62^{48k+24}-117\cdot 62^{47k+24}+1209\cdot 62^{46k+23}\\||-124\cdot 62^{45k+23}+249\cdot 62^{44k+22}+85\cdot 62^{43k+22}-1333\cdot 62^{42k+21}+178\cdot 62^{41k+21}\\||-841\cdot 62^{40k+20}-7\cdot 62^{39k+20}+837\cdot 62^{38k+19}-146\cdot 62^{37k+19}+913\cdot 62^{36k+18}\\||-43\cdot 62^{35k+18}-217\cdot 62^{34k+17}+60\cdot 62^{33k+17}-385\cdot 62^{32k+16}+19\cdot 62^{31k+16}\\||-31\cdot 62^{30k+15}+19\cdot 62^{29k+15}-385\cdot 62^{28k+14}+60\cdot 62^{27k+14}-217\cdot 62^{26k+13}\\||-43\cdot 62^{25k+13}+913\cdot 62^{24k+12}-146\cdot 62^{23k+12}+837\cdot 62^{22k+11}-7\cdot 62^{21k+11}\\||-841\cdot 62^{20k+10}+178\cdot 62^{19k+10}-1333\cdot 62^{18k+9}+85\cdot 62^{17k+9}+249\cdot 62^{16k+8}\\||-124\cdot 62^{15k+8}+1209\cdot 62^{14k+7}-117\cdot 62^{13k+7}+331\cdot 62^{12k+6}+32\cdot 62^{11k+6}\\||-589\cdot 62^{10k+5}+77\cdot 62^{9k+5}-391\cdot 62^{8k+4}+14\cdot 62^{7k+4}+93\cdot 62^{6k+3}\\||-21\cdot 62^{5k+3}+139\cdot 62^{4k+2}-10\cdot 62^{3k+2}+31\cdot 62^{2k+1}-62^{k+1}+1)\\|\times|(62^{60k+30}+62^{59k+30}+31\cdot 62^{58k+29}+10\cdot 62^{57k+29}+139\cdot 62^{56k+28}\\||+21\cdot 62^{55k+28}+93\cdot 62^{54k+27}-14\cdot 62^{53k+27}-391\cdot 62^{52k+26}-77\cdot 62^{51k+26}\\||-589\cdot 62^{50k+25}-32\cdot 62^{49k+25}+331\cdot 62^{48k+24}+117\cdot 62^{47k+24}+1209\cdot 62^{46k+23}\\||+124\cdot 62^{45k+23}+249\cdot 62^{44k+22}-85\cdot 62^{43k+22}-1333\cdot 62^{42k+21}-178\cdot 62^{41k+21}\\||-841\cdot 62^{40k+20}+7\cdot 62^{39k+20}+837\cdot 62^{38k+19}+146\cdot 62^{37k+19}+913\cdot 62^{36k+18}\\||+43\cdot 62^{35k+18}-217\cdot 62^{34k+17}-60\cdot 62^{33k+17}-385\cdot 62^{32k+16}-19\cdot 62^{31k+16}\\||-31\cdot 62^{30k+15}-19\cdot 62^{29k+15}-385\cdot 62^{28k+14}-60\cdot 62^{27k+14}-217\cdot 62^{26k+13}\\||+43\cdot 62^{25k+13}+913\cdot 62^{24k+12}+146\cdot 62^{23k+12}+837\cdot 62^{22k+11}+7\cdot 62^{21k+11}\\||-841\cdot 62^{20k+10}-178\cdot 62^{19k+10}-1333\cdot 62^{18k+9}-85\cdot 62^{17k+9}+249\cdot 62^{16k+8}\\||+124\cdot 62^{15k+8}+1209\cdot 62^{14k+7}+117\cdot 62^{13k+7}+331\cdot 62^{12k+6}-32\cdot 62^{11k+6}\\||-589\cdot 62^{10k+5}-77\cdot 62^{9k+5}-391\cdot 62^{8k+4}-14\cdot 62^{7k+4}+93\cdot 62^{6k+3}\\||+21\cdot 62^{5k+3}+139\cdot 62^{4k+2}+10\cdot 62^{3k+2}+31\cdot 62^{2k+1}+62^{k+1}+1)\\{\large\Phi}_{65}(65^{2k+1})|=|65^{96k+48}-65^{94k+47}+65^{86k+43}-65^{84k+42}+65^{76k+38}\\||-65^{74k+37}+65^{70k+35}-65^{68k+34}+65^{66k+33}-65^{64k+32}\\||+65^{60k+30}-65^{58k+29}+65^{56k+28}-65^{54k+27}+65^{50k+25}\\||-65^{48k+24}+65^{46k+23}-65^{42k+21}+65^{40k+20}-65^{38k+19}\\||+65^{36k+18}-65^{32k+16}+65^{30k+15}-65^{28k+14}+65^{26k+13}\\||-65^{22k+11}+65^{20k+10}-65^{12k+6}+65^{10k+5}-65^{2k+1}+1\\|=|(65^{48k+24}-65^{47k+24}+32\cdot 65^{46k+23}-10\cdot 65^{45k+23}+138\cdot 65^{44k+22}\\||-19\cdot 65^{43k+22}+69\cdot 65^{42k+21}+14\cdot 65^{41k+21}-290\cdot 65^{40k+20}+38\cdot 65^{39k+20}\\||-79\cdot 65^{38k+19}-37\cdot 65^{37k+19}+582\cdot 65^{36k+18}-67\cdot 65^{35k+18}+133\cdot 65^{34k+17}\\||+53\cdot 65^{33k+17}-791\cdot 65^{32k+16}+86\cdot 65^{31k+16}-145\cdot 65^{30k+15}-67\cdot 65^{29k+15}\\||+921\cdot 65^{28k+14}-89\cdot 65^{27k+14}+22\cdot 65^{26k+13}+91\cdot 65^{25k+13}-1057\cdot 65^{24k+12}\\||+91\cdot 65^{23k+12}+22\cdot 65^{22k+11}-89\cdot 65^{21k+11}+921\cdot 65^{20k+10}-67\cdot 65^{19k+10}\\||-145\cdot 65^{18k+9}+86\cdot 65^{17k+9}-791\cdot 65^{16k+8}+53\cdot 65^{15k+8}+133\cdot 65^{14k+7}\\||-67\cdot 65^{13k+7}+582\cdot 65^{12k+6}-37\cdot 65^{11k+6}-79\cdot 65^{10k+5}+38\cdot 65^{9k+5}\\||-290\cdot 65^{8k+4}+14\cdot 65^{7k+4}+69\cdot 65^{6k+3}-19\cdot 65^{5k+3}+138\cdot 65^{4k+2}\\||-10\cdot 65^{3k+2}+32\cdot 65^{2k+1}-65^{k+1}+1)\\|\times|(65^{48k+24}+65^{47k+24}+32\cdot 65^{46k+23}+10\cdot 65^{45k+23}+138\cdot 65^{44k+22}\\||+19\cdot 65^{43k+22}+69\cdot 65^{42k+21}-14\cdot 65^{41k+21}-290\cdot 65^{40k+20}-38\cdot 65^{39k+20}\\||-79\cdot 65^{38k+19}+37\cdot 65^{37k+19}+582\cdot 65^{36k+18}+67\cdot 65^{35k+18}+133\cdot 65^{34k+17}\\||-53\cdot 65^{33k+17}-791\cdot 65^{32k+16}-86\cdot 65^{31k+16}-145\cdot 65^{30k+15}+67\cdot 65^{29k+15}\\||+921\cdot 65^{28k+14}+89\cdot 65^{27k+14}+22\cdot 65^{26k+13}-91\cdot 65^{25k+13}-1057\cdot 65^{24k+12}\\||-91\cdot 65^{23k+12}+22\cdot 65^{22k+11}+89\cdot 65^{21k+11}+921\cdot 65^{20k+10}+67\cdot 65^{19k+10}\\||-145\cdot 65^{18k+9}-86\cdot 65^{17k+9}-791\cdot 65^{16k+8}-53\cdot 65^{15k+8}+133\cdot 65^{14k+7}\\||+67\cdot 65^{13k+7}+582\cdot 65^{12k+6}+37\cdot 65^{11k+6}-79\cdot 65^{10k+5}-38\cdot 65^{9k+5}\\||-290\cdot 65^{8k+4}-14\cdot 65^{7k+4}+69\cdot 65^{6k+3}+19\cdot 65^{5k+3}+138\cdot 65^{4k+2}\\||+10\cdot 65^{3k+2}+32\cdot 65^{2k+1}+65^{k+1}+1)\\{\large\Phi}_{132}(66^{2k+1})|=|66^{80k+40}+66^{76k+38}-66^{68k+34}-66^{64k+32}+66^{56k+28}\\||+66^{52k+26}-66^{44k+22}-66^{40k+20}-66^{36k+18}+66^{28k+14}\\||+66^{24k+12}-66^{16k+8}-66^{12k+6}+66^{4k+2}+1\\|=|(66^{40k+20}-66^{39k+20}+33\cdot 66^{38k+19}-11\cdot 66^{37k+19}+182\cdot 66^{36k+18}\\||-37\cdot 66^{35k+18}+429\cdot 66^{34k+17}-69\cdot 66^{33k+17}+697\cdot 66^{32k+16}-102\cdot 66^{31k+16}\\||+924\cdot 66^{30k+15}-117\cdot 66^{29k+15}+905\cdot 66^{28k+14}-100\cdot 66^{27k+14}+693\cdot 66^{26k+13}\\||-67\cdot 66^{25k+13}+364\cdot 66^{24k+12}-22\cdot 66^{23k+12}+33\cdot 66^{22k+11}+6\cdot 66^{21k+11}\\||-73\cdot 66^{20k+10}+6\cdot 66^{19k+10}+33\cdot 66^{18k+9}-22\cdot 66^{17k+9}+364\cdot 66^{16k+8}\\||-67\cdot 66^{15k+8}+693\cdot 66^{14k+7}-100\cdot 66^{13k+7}+905\cdot 66^{12k+6}-117\cdot 66^{11k+6}\\||+924\cdot 66^{10k+5}-102\cdot 66^{9k+5}+697\cdot 66^{8k+4}-69\cdot 66^{7k+4}+429\cdot 66^{6k+3}\\||-37\cdot 66^{5k+3}+182\cdot 66^{4k+2}-11\cdot 66^{3k+2}+33\cdot 66^{2k+1}-66^{k+1}+1)\\|\times|(66^{40k+20}+66^{39k+20}+33\cdot 66^{38k+19}+11\cdot 66^{37k+19}+182\cdot 66^{36k+18}\\||+37\cdot 66^{35k+18}+429\cdot 66^{34k+17}+69\cdot 66^{33k+17}+697\cdot 66^{32k+16}+102\cdot 66^{31k+16}\\||+924\cdot 66^{30k+15}+117\cdot 66^{29k+15}+905\cdot 66^{28k+14}+100\cdot 66^{27k+14}+693\cdot 66^{26k+13}\\||+67\cdot 66^{25k+13}+364\cdot 66^{24k+12}+22\cdot 66^{23k+12}+33\cdot 66^{22k+11}-6\cdot 66^{21k+11}\\||-73\cdot 66^{20k+10}-6\cdot 66^{19k+10}+33\cdot 66^{18k+9}+22\cdot 66^{17k+9}+364\cdot 66^{16k+8}\\||+67\cdot 66^{15k+8}+693\cdot 66^{14k+7}+100\cdot 66^{13k+7}+905\cdot 66^{12k+6}+117\cdot 66^{11k+6}\\||+924\cdot 66^{10k+5}+102\cdot 66^{9k+5}+697\cdot 66^{8k+4}+69\cdot 66^{7k+4}+429\cdot 66^{6k+3}\\||+37\cdot 66^{5k+3}+182\cdot 66^{4k+2}+11\cdot 66^{3k+2}+33\cdot 66^{2k+1}+66^{k+1}+1)\\{\large\Phi}_{134}(67^{2k+1})|=|67^{132k+66}-67^{130k+65}+67^{128k+64}-67^{126k+63}+67^{124k+62}\\||-67^{122k+61}+67^{120k+60}-67^{118k+59}+67^{116k+58}-67^{114k+57}\\||+67^{112k+56}-67^{110k+55}+67^{108k+54}-67^{106k+53}+67^{104k+52}\\||-67^{102k+51}+67^{100k+50}-67^{98k+49}+67^{96k+48}-67^{94k+47}\\||+67^{92k+46}-67^{90k+45}+67^{88k+44}-67^{86k+43}+67^{84k+42}\\||-67^{82k+41}+67^{80k+40}-67^{78k+39}+67^{76k+38}-67^{74k+37}\\||+67^{72k+36}-67^{70k+35}+67^{68k+34}-67^{66k+33}+67^{64k+32}\\||-67^{62k+31}+67^{60k+30}-67^{58k+29}+67^{56k+28}-67^{54k+27}\\||+67^{52k+26}-67^{50k+25}+67^{48k+24}-67^{46k+23}+67^{44k+22}\\||-67^{42k+21}+67^{40k+20}-67^{38k+19}+67^{36k+18}-67^{34k+17}\\||+67^{32k+16}-67^{30k+15}+67^{28k+14}-67^{26k+13}+67^{24k+12}\\||-67^{22k+11}+67^{20k+10}-67^{18k+9}+67^{16k+8}-67^{14k+7}\\||+67^{12k+6}-67^{10k+5}+67^{8k+4}-67^{6k+3}+67^{4k+2}\\||-67^{2k+1}+1\\|=|(67^{66k+33}-67^{65k+33}+33\cdot 67^{64k+32}-11\cdot 67^{63k+32}+193\cdot 67^{62k+31}\\||-43\cdot 67^{61k+31}+565\cdot 67^{60k+30}-99\cdot 67^{59k+30}+1055\cdot 67^{58k+29}-155\cdot 67^{57k+29}\\||+1429\cdot 67^{56k+28}-187\cdot 67^{55k+28}+1599\cdot 67^{54k+27}-205\cdot 67^{53k+27}+1803\cdot 67^{52k+26}\\||-243\cdot 67^{51k+26}+2225\cdot 67^{50k+25}-301\cdot 67^{49k+25}+2637\cdot 67^{48k+24}-329\cdot 67^{47k+24}\\||+2617\cdot 67^{46k+23}-297\cdot 67^{45k+23}+2195\cdot 67^{44k+22}-243\cdot 67^{43k+22}+1869\cdot 67^{42k+21}\\||-225\cdot 67^{41k+21}+1875\cdot 67^{40k+20}-233\cdot 67^{39k+20}+1865\cdot 67^{38k+19}-209\cdot 67^{37k+19}\\||+1469\cdot 67^{36k+18}-147\cdot 67^{35k+18}+991\cdot 67^{34k+17}-111\cdot 67^{33k+17}+991\cdot 67^{32k+16}\\||-147\cdot 67^{31k+16}+1469\cdot 67^{30k+15}-209\cdot 67^{29k+15}+1865\cdot 67^{28k+14}-233\cdot 67^{27k+14}\\||+1875\cdot 67^{26k+13}-225\cdot 67^{25k+13}+1869\cdot 67^{24k+12}-243\cdot 67^{23k+12}+2195\cdot 67^{22k+11}\\||-297\cdot 67^{21k+11}+2617\cdot 67^{20k+10}-329\cdot 67^{19k+10}+2637\cdot 67^{18k+9}-301\cdot 67^{17k+9}\\||+2225\cdot 67^{16k+8}-243\cdot 67^{15k+8}+1803\cdot 67^{14k+7}-205\cdot 67^{13k+7}+1599\cdot 67^{12k+6}\\||-187\cdot 67^{11k+6}+1429\cdot 67^{10k+5}-155\cdot 67^{9k+5}+1055\cdot 67^{8k+4}-99\cdot 67^{7k+4}\\||+565\cdot 67^{6k+3}-43\cdot 67^{5k+3}+193\cdot 67^{4k+2}-11\cdot 67^{3k+2}+33\cdot 67^{2k+1}\\||-67^{k+1}+1)\\|\times|(67^{66k+33}+67^{65k+33}+33\cdot 67^{64k+32}+11\cdot 67^{63k+32}+193\cdot 67^{62k+31}\\||+43\cdot 67^{61k+31}+565\cdot 67^{60k+30}+99\cdot 67^{59k+30}+1055\cdot 67^{58k+29}+155\cdot 67^{57k+29}\\||+1429\cdot 67^{56k+28}+187\cdot 67^{55k+28}+1599\cdot 67^{54k+27}+205\cdot 67^{53k+27}+1803\cdot 67^{52k+26}\\||+243\cdot 67^{51k+26}+2225\cdot 67^{50k+25}+301\cdot 67^{49k+25}+2637\cdot 67^{48k+24}+329\cdot 67^{47k+24}\\||+2617\cdot 67^{46k+23}+297\cdot 67^{45k+23}+2195\cdot 67^{44k+22}+243\cdot 67^{43k+22}+1869\cdot 67^{42k+21}\\||+225\cdot 67^{41k+21}+1875\cdot 67^{40k+20}+233\cdot 67^{39k+20}+1865\cdot 67^{38k+19}+209\cdot 67^{37k+19}\\||+1469\cdot 67^{36k+18}+147\cdot 67^{35k+18}+991\cdot 67^{34k+17}+111\cdot 67^{33k+17}+991\cdot 67^{32k+16}\\||+147\cdot 67^{31k+16}+1469\cdot 67^{30k+15}+209\cdot 67^{29k+15}+1865\cdot 67^{28k+14}+233\cdot 67^{27k+14}\\||+1875\cdot 67^{26k+13}+225\cdot 67^{25k+13}+1869\cdot 67^{24k+12}+243\cdot 67^{23k+12}+2195\cdot 67^{22k+11}\\||+297\cdot 67^{21k+11}+2617\cdot 67^{20k+10}+329\cdot 67^{19k+10}+2637\cdot 67^{18k+9}+301\cdot 67^{17k+9}\\||+2225\cdot 67^{16k+8}+243\cdot 67^{15k+8}+1803\cdot 67^{14k+7}+205\cdot 67^{13k+7}+1599\cdot 67^{12k+6}\\||+187\cdot 67^{11k+6}+1429\cdot 67^{10k+5}+155\cdot 67^{9k+5}+1055\cdot 67^{8k+4}+99\cdot 67^{7k+4}\\||+565\cdot 67^{6k+3}+43\cdot 67^{5k+3}+193\cdot 67^{4k+2}+11\cdot 67^{3k+2}+33\cdot 67^{2k+1}\\||+67^{k+1}+1)\\{\large\Phi}_{69}(69^{2k+1})|=|69^{88k+44}-69^{86k+43}+69^{82k+41}-69^{80k+40}+69^{76k+38}\\||-69^{74k+37}+69^{70k+35}-69^{68k+34}+69^{64k+32}-69^{62k+31}\\||+69^{58k+29}-69^{56k+28}+69^{52k+26}-69^{50k+25}+69^{46k+23}\\||-69^{44k+22}+69^{42k+21}-69^{38k+19}+69^{36k+18}-69^{32k+16}\\||+69^{30k+15}-69^{26k+13}+69^{24k+12}-69^{20k+10}+69^{18k+9}\\||-69^{14k+7}+69^{12k+6}-69^{8k+4}+69^{6k+3}-69^{2k+1}+1\\|=|(69^{44k+22}-69^{43k+22}+34\cdot 69^{42k+21}-11\cdot 69^{41k+21}+181\cdot 69^{40k+20}\\||-34\cdot 69^{39k+20}+367\cdot 69^{38k+19}-51\cdot 69^{37k+19}+466\cdot 69^{36k+18}-61\cdot 69^{35k+18}\\||+529\cdot 69^{34k+17}-60\cdot 69^{33k+17}+409\cdot 69^{32k+16}-37\cdot 69^{31k+16}+256\cdot 69^{30k+15}\\||-33\cdot 69^{29k+15}+325\cdot 69^{28k+14}-44\cdot 69^{27k+14}+397\cdot 69^{26k+13}-55\cdot 69^{25k+13}\\||+562\cdot 69^{24k+12}-81\cdot 69^{23k+12}+721\cdot 69^{22k+11}-81\cdot 69^{21k+11}+562\cdot 69^{20k+10}\\||-55\cdot 69^{19k+10}+397\cdot 69^{18k+9}-44\cdot 69^{17k+9}+325\cdot 69^{16k+8}-33\cdot 69^{15k+8}\\||+256\cdot 69^{14k+7}-37\cdot 69^{13k+7}+409\cdot 69^{12k+6}-60\cdot 69^{11k+6}+529\cdot 69^{10k+5}\\||-61\cdot 69^{9k+5}+466\cdot 69^{8k+4}-51\cdot 69^{7k+4}+367\cdot 69^{6k+3}-34\cdot 69^{5k+3}\\||+181\cdot 69^{4k+2}-11\cdot 69^{3k+2}+34\cdot 69^{2k+1}-69^{k+1}+1)\\|\times|(69^{44k+22}+69^{43k+22}+34\cdot 69^{42k+21}+11\cdot 69^{41k+21}+181\cdot 69^{40k+20}\\||+34\cdot 69^{39k+20}+367\cdot 69^{38k+19}+51\cdot 69^{37k+19}+466\cdot 69^{36k+18}+61\cdot 69^{35k+18}\\||+529\cdot 69^{34k+17}+60\cdot 69^{33k+17}+409\cdot 69^{32k+16}+37\cdot 69^{31k+16}+256\cdot 69^{30k+15}\\||+33\cdot 69^{29k+15}+325\cdot 69^{28k+14}+44\cdot 69^{27k+14}+397\cdot 69^{26k+13}+55\cdot 69^{25k+13}\\||+562\cdot 69^{24k+12}+81\cdot 69^{23k+12}+721\cdot 69^{22k+11}+81\cdot 69^{21k+11}+562\cdot 69^{20k+10}\\||+55\cdot 69^{19k+10}+397\cdot 69^{18k+9}+44\cdot 69^{17k+9}+325\cdot 69^{16k+8}+33\cdot 69^{15k+8}\\||+256\cdot 69^{14k+7}+37\cdot 69^{13k+7}+409\cdot 69^{12k+6}+60\cdot 69^{11k+6}+529\cdot 69^{10k+5}\\||+61\cdot 69^{9k+5}+466\cdot 69^{8k+4}+51\cdot 69^{7k+4}+367\cdot 69^{6k+3}+34\cdot 69^{5k+3}\\||+181\cdot 69^{4k+2}+11\cdot 69^{3k+2}+34\cdot 69^{2k+1}+69^{k+1}+1)\\{\large\Phi}_{140}(70^{2k+1})|=|70^{96k+48}+70^{92k+46}-70^{76k+38}-70^{72k+36}-70^{68k+34}\\||-70^{64k+32}+70^{56k+28}+70^{52k+26}+70^{48k+24}+70^{44k+22}\\||+70^{40k+20}-70^{32k+16}-70^{28k+14}-70^{24k+12}-70^{20k+10}\\||+70^{4k+2}+1\\|=|(70^{48k+24}-70^{47k+24}+35\cdot 70^{46k+23}-12\cdot 70^{45k+23}+228\cdot 70^{44k+22}\\||-53\cdot 70^{43k+22}+770\cdot 70^{42k+21}-146\cdot 70^{41k+21}+1798\cdot 70^{40k+20}-297\cdot 70^{39k+20}\\||+3255\cdot 70^{38k+19}-487\cdot 70^{37k+19}+4911\cdot 70^{36k+18}-686\cdot 70^{35k+18}+6545\cdot 70^{34k+17}\\||-875\cdot 70^{33k+17}+8065\cdot 70^{32k+16}-1049\cdot 70^{31k+16}+9450\cdot 70^{30k+15}-1204\cdot 70^{29k+15}\\||+10629\cdot 70^{28k+14}-1326\cdot 70^{27k+14}+11445\cdot 70^{26k+13}-1394\cdot 70^{25k+13}+11737\cdot 70^{24k+12}\\||-1394\cdot 70^{23k+12}+11445\cdot 70^{22k+11}-1326\cdot 70^{21k+11}+10629\cdot 70^{20k+10}-1204\cdot 70^{19k+10}\\||+9450\cdot 70^{18k+9}-1049\cdot 70^{17k+9}+8065\cdot 70^{16k+8}-875\cdot 70^{15k+8}+6545\cdot 70^{14k+7}\\||-686\cdot 70^{13k+7}+4911\cdot 70^{12k+6}-487\cdot 70^{11k+6}+3255\cdot 70^{10k+5}-297\cdot 70^{9k+5}\\||+1798\cdot 70^{8k+4}-146\cdot 70^{7k+4}+770\cdot 70^{6k+3}-53\cdot 70^{5k+3}+228\cdot 70^{4k+2}\\||-12\cdot 70^{3k+2}+35\cdot 70^{2k+1}-70^{k+1}+1)\\|\times|(70^{48k+24}+70^{47k+24}+35\cdot 70^{46k+23}+12\cdot 70^{45k+23}+228\cdot 70^{44k+22}\\||+53\cdot 70^{43k+22}+770\cdot 70^{42k+21}+146\cdot 70^{41k+21}+1798\cdot 70^{40k+20}+297\cdot 70^{39k+20}\\||+3255\cdot 70^{38k+19}+487\cdot 70^{37k+19}+4911\cdot 70^{36k+18}+686\cdot 70^{35k+18}+6545\cdot 70^{34k+17}\\||+875\cdot 70^{33k+17}+8065\cdot 70^{32k+16}+1049\cdot 70^{31k+16}+9450\cdot 70^{30k+15}+1204\cdot 70^{29k+15}\\||+10629\cdot 70^{28k+14}+1326\cdot 70^{27k+14}+11445\cdot 70^{26k+13}+1394\cdot 70^{25k+13}+11737\cdot 70^{24k+12}\\||+1394\cdot 70^{23k+12}+11445\cdot 70^{22k+11}+1326\cdot 70^{21k+11}+10629\cdot 70^{20k+10}+1204\cdot 70^{19k+10}\\||+9450\cdot 70^{18k+9}+1049\cdot 70^{17k+9}+8065\cdot 70^{16k+8}+875\cdot 70^{15k+8}+6545\cdot 70^{14k+7}\\||+686\cdot 70^{13k+7}+4911\cdot 70^{12k+6}+487\cdot 70^{11k+6}+3255\cdot 70^{10k+5}+297\cdot 70^{9k+5}\\||+1798\cdot 70^{8k+4}+146\cdot 70^{7k+4}+770\cdot 70^{6k+3}+53\cdot 70^{5k+3}+228\cdot 70^{4k+2}\\||+12\cdot 70^{3k+2}+35\cdot 70^{2k+1}+70^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{142}(71^{2k+1})\cdots{\large\Phi}_{158}(79^{2k+1})$${\large\Phi}_{142}(71^{2k+1})\cdots{\large\Phi}_{158}(79^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{142}(71^{2k+1})|=|71^{140k+70}-71^{138k+69}+71^{136k+68}-71^{134k+67}+71^{132k+66}\\||-71^{130k+65}+71^{128k+64}-71^{126k+63}+71^{124k+62}-71^{122k+61}\\||+71^{120k+60}-71^{118k+59}+71^{116k+58}-71^{114k+57}+71^{112k+56}\\||-71^{110k+55}+71^{108k+54}-71^{106k+53}+71^{104k+52}-71^{102k+51}\\||+71^{100k+50}-71^{98k+49}+71^{96k+48}-71^{94k+47}+71^{92k+46}\\||-71^{90k+45}+71^{88k+44}-71^{86k+43}+71^{84k+42}-71^{82k+41}\\||+71^{80k+40}-71^{78k+39}+71^{76k+38}-71^{74k+37}+71^{72k+36}\\||-71^{70k+35}+71^{68k+34}-71^{66k+33}+71^{64k+32}-71^{62k+31}\\||+71^{60k+30}-71^{58k+29}+71^{56k+28}-71^{54k+27}+71^{52k+26}\\||-71^{50k+25}+71^{48k+24}-71^{46k+23}+71^{44k+22}-71^{42k+21}\\||+71^{40k+20}-71^{38k+19}+71^{36k+18}-71^{34k+17}+71^{32k+16}\\||-71^{30k+15}+71^{28k+14}-71^{26k+13}+71^{24k+12}-71^{22k+11}\\||+71^{20k+10}-71^{18k+9}+71^{16k+8}-71^{14k+7}+71^{12k+6}\\||-71^{10k+5}+71^{8k+4}-71^{6k+3}+71^{4k+2}-71^{2k+1}+1\\|=|(71^{70k+35}-71^{69k+35}+35\cdot 71^{68k+34}-11\cdot 71^{67k+34}+169\cdot 71^{66k+33}\\||-25\cdot 71^{65k+33}+155\cdot 71^{64k+32}-71^{63k+32}-109\cdot 71^{62k+31}+5\cdot 71^{61k+31}\\||+233\cdot 71^{60k+30}-63\cdot 71^{59k+30}+597\cdot 71^{58k+29}-43\cdot 71^{57k+29}+39\cdot 71^{56k+28}\\||+9\cdot 71^{55k+28}+101\cdot 71^{54k+27}-43\cdot 71^{53k+27}+445\cdot 71^{52k+26}-37\cdot 71^{51k+26}\\||+163\cdot 71^{50k+25}-21\cdot 71^{49k+25}+293\cdot 71^{48k+24}-35\cdot 71^{47k+24}+89\cdot 71^{46k+23}\\||+19\cdot 71^{45k+23}-203\cdot 71^{44k+22}-71^{43k+22}+249\cdot 71^{42k+21}-29\cdot 71^{41k+21}\\||-49\cdot 71^{40k+20}+47\cdot 71^{39k+20}-505\cdot 71^{38k+19}+35\cdot 71^{37k+19}+37\cdot 71^{36k+18}\\||-23\cdot 71^{35k+18}+37\cdot 71^{34k+17}+35\cdot 71^{33k+17}-505\cdot 71^{32k+16}+47\cdot 71^{31k+16}\\||-49\cdot 71^{30k+15}-29\cdot 71^{29k+15}+249\cdot 71^{28k+14}-71^{27k+14}-203\cdot 71^{26k+13}\\||+19\cdot 71^{25k+13}+89\cdot 71^{24k+12}-35\cdot 71^{23k+12}+293\cdot 71^{22k+11}-21\cdot 71^{21k+11}\\||+163\cdot 71^{20k+10}-37\cdot 71^{19k+10}+445\cdot 71^{18k+9}-43\cdot 71^{17k+9}+101\cdot 71^{16k+8}\\||+9\cdot 71^{15k+8}+39\cdot 71^{14k+7}-43\cdot 71^{13k+7}+597\cdot 71^{12k+6}-63\cdot 71^{11k+6}\\||+233\cdot 71^{10k+5}+5\cdot 71^{9k+5}-109\cdot 71^{8k+4}-71^{7k+4}+155\cdot 71^{6k+3}\\||-25\cdot 71^{5k+3}+169\cdot 71^{4k+2}-11\cdot 71^{3k+2}+35\cdot 71^{2k+1}-71^{k+1}+1)\\|\times|(71^{70k+35}+71^{69k+35}+35\cdot 71^{68k+34}+11\cdot 71^{67k+34}+169\cdot 71^{66k+33}\\||+25\cdot 71^{65k+33}+155\cdot 71^{64k+32}+71^{63k+32}-109\cdot 71^{62k+31}-5\cdot 71^{61k+31}\\||+233\cdot 71^{60k+30}+63\cdot 71^{59k+30}+597\cdot 71^{58k+29}+43\cdot 71^{57k+29}+39\cdot 71^{56k+28}\\||-9\cdot 71^{55k+28}+101\cdot 71^{54k+27}+43\cdot 71^{53k+27}+445\cdot 71^{52k+26}+37\cdot 71^{51k+26}\\||+163\cdot 71^{50k+25}+21\cdot 71^{49k+25}+293\cdot 71^{48k+24}+35\cdot 71^{47k+24}+89\cdot 71^{46k+23}\\||-19\cdot 71^{45k+23}-203\cdot 71^{44k+22}+71^{43k+22}+249\cdot 71^{42k+21}+29\cdot 71^{41k+21}\\||-49\cdot 71^{40k+20}-47\cdot 71^{39k+20}-505\cdot 71^{38k+19}-35\cdot 71^{37k+19}+37\cdot 71^{36k+18}\\||+23\cdot 71^{35k+18}+37\cdot 71^{34k+17}-35\cdot 71^{33k+17}-505\cdot 71^{32k+16}-47\cdot 71^{31k+16}\\||-49\cdot 71^{30k+15}+29\cdot 71^{29k+15}+249\cdot 71^{28k+14}+71^{27k+14}-203\cdot 71^{26k+13}\\||-19\cdot 71^{25k+13}+89\cdot 71^{24k+12}+35\cdot 71^{23k+12}+293\cdot 71^{22k+11}+21\cdot 71^{21k+11}\\||+163\cdot 71^{20k+10}+37\cdot 71^{19k+10}+445\cdot 71^{18k+9}+43\cdot 71^{17k+9}+101\cdot 71^{16k+8}\\||-9\cdot 71^{15k+8}+39\cdot 71^{14k+7}+43\cdot 71^{13k+7}+597\cdot 71^{12k+6}+63\cdot 71^{11k+6}\\||+233\cdot 71^{10k+5}-5\cdot 71^{9k+5}-109\cdot 71^{8k+4}+71^{7k+4}+155\cdot 71^{6k+3}\\||+25\cdot 71^{5k+3}+169\cdot 71^{4k+2}+11\cdot 71^{3k+2}+35\cdot 71^{2k+1}+71^{k+1}+1)\\{\large\Phi}_{73}(73^{2k+1})|=|73^{144k+72}+73^{142k+71}+73^{140k+70}+73^{138k+69}+73^{136k+68}\\||+73^{134k+67}+73^{132k+66}+73^{130k+65}+73^{128k+64}+73^{126k+63}\\||+73^{124k+62}+73^{122k+61}+73^{120k+60}+73^{118k+59}+73^{116k+58}\\||+73^{114k+57}+73^{112k+56}+73^{110k+55}+73^{108k+54}+73^{106k+53}\\||+73^{104k+52}+73^{102k+51}+73^{100k+50}+73^{98k+49}+73^{96k+48}\\||+73^{94k+47}+73^{92k+46}+73^{90k+45}+73^{88k+44}+73^{86k+43}\\||+73^{84k+42}+73^{82k+41}+73^{80k+40}+73^{78k+39}+73^{76k+38}\\||+73^{74k+37}+73^{72k+36}+73^{70k+35}+73^{68k+34}+73^{66k+33}\\||+73^{64k+32}+73^{62k+31}+73^{60k+30}+73^{58k+29}+73^{56k+28}\\||+73^{54k+27}+73^{52k+26}+73^{50k+25}+73^{48k+24}+73^{46k+23}\\||+73^{44k+22}+73^{42k+21}+73^{40k+20}+73^{38k+19}+73^{36k+18}\\||+73^{34k+17}+73^{32k+16}+73^{30k+15}+73^{28k+14}+73^{26k+13}\\||+73^{24k+12}+73^{22k+11}+73^{20k+10}+73^{18k+9}+73^{16k+8}\\||+73^{14k+7}+73^{12k+6}+73^{10k+5}+73^{8k+4}+73^{6k+3}\\||+73^{4k+2}+73^{2k+1}+1\\|=|(73^{72k+36}-73^{71k+36}+37\cdot 73^{70k+35}-13\cdot 73^{69k+35}+265\cdot 73^{68k+34}\\||-63\cdot 73^{67k+34}+963\cdot 73^{66k+33}-181\cdot 73^{65k+33}+2257\cdot 73^{64k+32}-353\cdot 73^{63k+32}\\||+3703\cdot 73^{62k+31}-489\cdot 73^{61k+31}+4313\cdot 73^{60k+30}-471\cdot 73^{59k+30}+3301\cdot 73^{58k+29}\\||-259\cdot 73^{57k+29}+891\cdot 73^{56k+28}+59\cdot 73^{55k+28}-1823\cdot 73^{54k+27}+347\cdot 73^{53k+27}\\||-3889\cdot 73^{52k+26}+539\cdot 73^{51k+26}-5149\cdot 73^{50k+25}+649\cdot 73^{49k+25}-5777\cdot 73^{48k+24}\\||+677\cdot 73^{47k+24}-5479\cdot 73^{46k+23}+559\cdot 73^{45k+23}-3633\cdot 73^{44k+22}+243\cdot 73^{43k+22}\\||-205\cdot 73^{42k+21}-213\cdot 73^{41k+21}+3805\cdot 73^{40k+20}-651\cdot 73^{39k+20}+6933\cdot 73^{38k+19}\\||-913\cdot 73^{37k+19}+8097\cdot 73^{36k+18}-913\cdot 73^{35k+18}+6933\cdot 73^{34k+17}-651\cdot 73^{33k+17}\\||+3805\cdot 73^{32k+16}-213\cdot 73^{31k+16}-205\cdot 73^{30k+15}+243\cdot 73^{29k+15}-3633\cdot 73^{28k+14}\\||+559\cdot 73^{27k+14}-5479\cdot 73^{26k+13}+677\cdot 73^{25k+13}-5777\cdot 73^{24k+12}+649\cdot 73^{23k+12}\\||-5149\cdot 73^{22k+11}+539\cdot 73^{21k+11}-3889\cdot 73^{20k+10}+347\cdot 73^{19k+10}-1823\cdot 73^{18k+9}\\||+59\cdot 73^{17k+9}+891\cdot 73^{16k+8}-259\cdot 73^{15k+8}+3301\cdot 73^{14k+7}-471\cdot 73^{13k+7}\\||+4313\cdot 73^{12k+6}-489\cdot 73^{11k+6}+3703\cdot 73^{10k+5}-353\cdot 73^{9k+5}+2257\cdot 73^{8k+4}\\||-181\cdot 73^{7k+4}+963\cdot 73^{6k+3}-63\cdot 73^{5k+3}+265\cdot 73^{4k+2}-13\cdot 73^{3k+2}\\||+37\cdot 73^{2k+1}-73^{k+1}+1)\\|\times|(73^{72k+36}+73^{71k+36}+37\cdot 73^{70k+35}+13\cdot 73^{69k+35}+265\cdot 73^{68k+34}\\||+63\cdot 73^{67k+34}+963\cdot 73^{66k+33}+181\cdot 73^{65k+33}+2257\cdot 73^{64k+32}+353\cdot 73^{63k+32}\\||+3703\cdot 73^{62k+31}+489\cdot 73^{61k+31}+4313\cdot 73^{60k+30}+471\cdot 73^{59k+30}+3301\cdot 73^{58k+29}\\||+259\cdot 73^{57k+29}+891\cdot 73^{56k+28}-59\cdot 73^{55k+28}-1823\cdot 73^{54k+27}-347\cdot 73^{53k+27}\\||-3889\cdot 73^{52k+26}-539\cdot 73^{51k+26}-5149\cdot 73^{50k+25}-649\cdot 73^{49k+25}-5777\cdot 73^{48k+24}\\||-677\cdot 73^{47k+24}-5479\cdot 73^{46k+23}-559\cdot 73^{45k+23}-3633\cdot 73^{44k+22}-243\cdot 73^{43k+22}\\||-205\cdot 73^{42k+21}+213\cdot 73^{41k+21}+3805\cdot 73^{40k+20}+651\cdot 73^{39k+20}+6933\cdot 73^{38k+19}\\||+913\cdot 73^{37k+19}+8097\cdot 73^{36k+18}+913\cdot 73^{35k+18}+6933\cdot 73^{34k+17}+651\cdot 73^{33k+17}\\||+3805\cdot 73^{32k+16}+213\cdot 73^{31k+16}-205\cdot 73^{30k+15}-243\cdot 73^{29k+15}-3633\cdot 73^{28k+14}\\||-559\cdot 73^{27k+14}-5479\cdot 73^{26k+13}-677\cdot 73^{25k+13}-5777\cdot 73^{24k+12}-649\cdot 73^{23k+12}\\||-5149\cdot 73^{22k+11}-539\cdot 73^{21k+11}-3889\cdot 73^{20k+10}-347\cdot 73^{19k+10}-1823\cdot 73^{18k+9}\\||-59\cdot 73^{17k+9}+891\cdot 73^{16k+8}+259\cdot 73^{15k+8}+3301\cdot 73^{14k+7}+471\cdot 73^{13k+7}\\||+4313\cdot 73^{12k+6}+489\cdot 73^{11k+6}+3703\cdot 73^{10k+5}+353\cdot 73^{9k+5}+2257\cdot 73^{8k+4}\\||+181\cdot 73^{7k+4}+963\cdot 73^{6k+3}+63\cdot 73^{5k+3}+265\cdot 73^{4k+2}+13\cdot 73^{3k+2}\\||+37\cdot 73^{2k+1}+73^{k+1}+1)\\{\large\Phi}_{148}(74^{2k+1})|=|74^{144k+72}-74^{140k+70}+74^{136k+68}-74^{132k+66}+74^{128k+64}\\||-74^{124k+62}+74^{120k+60}-74^{116k+58}+74^{112k+56}-74^{108k+54}\\||+74^{104k+52}-74^{100k+50}+74^{96k+48}-74^{92k+46}+74^{88k+44}\\||-74^{84k+42}+74^{80k+40}-74^{76k+38}+74^{72k+36}-74^{68k+34}\\||+74^{64k+32}-74^{60k+30}+74^{56k+28}-74^{52k+26}+74^{48k+24}\\||-74^{44k+22}+74^{40k+20}-74^{36k+18}+74^{32k+16}-74^{28k+14}\\||+74^{24k+12}-74^{20k+10}+74^{16k+8}-74^{12k+6}+74^{8k+4}\\||-74^{4k+2}+1\\|=|(74^{72k+36}-74^{71k+36}+37\cdot 74^{70k+35}-12\cdot 74^{69k+35}+203\cdot 74^{68k+34}\\||-33\cdot 74^{67k+34}+259\cdot 74^{66k+33}-10\cdot 74^{65k+33}-143\cdot 74^{64k+32}+25\cdot 74^{63k+32}\\||+37\cdot 74^{62k+31}-62\cdot 74^{61k+31}+927\cdot 74^{60k+30}-99\cdot 74^{59k+30}+259\cdot 74^{58k+29}\\||+54\cdot 74^{57k+29}-751\cdot 74^{56k+28}+35\cdot 74^{55k+28}+629\cdot 74^{54k+27}-158\cdot 74^{53k+27}\\||+1279\cdot 74^{52k+26}-41\cdot 74^{51k+26}-777\cdot 74^{50k+25}+144\cdot 74^{49k+25}-639\cdot 74^{48k+24}\\||-65\cdot 74^{47k+24}+1369\cdot 74^{46k+23}-128\cdot 74^{45k+23}-33\cdot 74^{44k+22}+127\cdot 74^{43k+22}\\||-1221\cdot 74^{42k+21}+44\cdot 74^{41k+21}+653\cdot 74^{40k+20}-113\cdot 74^{39k+20}+333\cdot 74^{38k+19}\\||+78\cdot 74^{37k+19}-1145\cdot 74^{36k+18}+78\cdot 74^{35k+18}+333\cdot 74^{34k+17}-113\cdot 74^{33k+17}\\||+653\cdot 74^{32k+16}+44\cdot 74^{31k+16}-1221\cdot 74^{30k+15}+127\cdot 74^{29k+15}-33\cdot 74^{28k+14}\\||-128\cdot 74^{27k+14}+1369\cdot 74^{26k+13}-65\cdot 74^{25k+13}-639\cdot 74^{24k+12}+144\cdot 74^{23k+12}\\||-777\cdot 74^{22k+11}-41\cdot 74^{21k+11}+1279\cdot 74^{20k+10}-158\cdot 74^{19k+10}+629\cdot 74^{18k+9}\\||+35\cdot 74^{17k+9}-751\cdot 74^{16k+8}+54\cdot 74^{15k+8}+259\cdot 74^{14k+7}-99\cdot 74^{13k+7}\\||+927\cdot 74^{12k+6}-62\cdot 74^{11k+6}+37\cdot 74^{10k+5}+25\cdot 74^{9k+5}-143\cdot 74^{8k+4}\\||-10\cdot 74^{7k+4}+259\cdot 74^{6k+3}-33\cdot 74^{5k+3}+203\cdot 74^{4k+2}-12\cdot 74^{3k+2}\\||+37\cdot 74^{2k+1}-74^{k+1}+1)\\|\times|(74^{72k+36}+74^{71k+36}+37\cdot 74^{70k+35}+12\cdot 74^{69k+35}+203\cdot 74^{68k+34}\\||+33\cdot 74^{67k+34}+259\cdot 74^{66k+33}+10\cdot 74^{65k+33}-143\cdot 74^{64k+32}-25\cdot 74^{63k+32}\\||+37\cdot 74^{62k+31}+62\cdot 74^{61k+31}+927\cdot 74^{60k+30}+99\cdot 74^{59k+30}+259\cdot 74^{58k+29}\\||-54\cdot 74^{57k+29}-751\cdot 74^{56k+28}-35\cdot 74^{55k+28}+629\cdot 74^{54k+27}+158\cdot 74^{53k+27}\\||+1279\cdot 74^{52k+26}+41\cdot 74^{51k+26}-777\cdot 74^{50k+25}-144\cdot 74^{49k+25}-639\cdot 74^{48k+24}\\||+65\cdot 74^{47k+24}+1369\cdot 74^{46k+23}+128\cdot 74^{45k+23}-33\cdot 74^{44k+22}-127\cdot 74^{43k+22}\\||-1221\cdot 74^{42k+21}-44\cdot 74^{41k+21}+653\cdot 74^{40k+20}+113\cdot 74^{39k+20}+333\cdot 74^{38k+19}\\||-78\cdot 74^{37k+19}-1145\cdot 74^{36k+18}-78\cdot 74^{35k+18}+333\cdot 74^{34k+17}+113\cdot 74^{33k+17}\\||+653\cdot 74^{32k+16}-44\cdot 74^{31k+16}-1221\cdot 74^{30k+15}-127\cdot 74^{29k+15}-33\cdot 74^{28k+14}\\||+128\cdot 74^{27k+14}+1369\cdot 74^{26k+13}+65\cdot 74^{25k+13}-639\cdot 74^{24k+12}-144\cdot 74^{23k+12}\\||-777\cdot 74^{22k+11}+41\cdot 74^{21k+11}+1279\cdot 74^{20k+10}+158\cdot 74^{19k+10}+629\cdot 74^{18k+9}\\||-35\cdot 74^{17k+9}-751\cdot 74^{16k+8}-54\cdot 74^{15k+8}+259\cdot 74^{14k+7}+99\cdot 74^{13k+7}\\||+927\cdot 74^{12k+6}+62\cdot 74^{11k+6}+37\cdot 74^{10k+5}-25\cdot 74^{9k+5}-143\cdot 74^{8k+4}\\||+10\cdot 74^{7k+4}+259\cdot 74^{6k+3}+33\cdot 74^{5k+3}+203\cdot 74^{4k+2}+12\cdot 74^{3k+2}\\||+37\cdot 74^{2k+1}+74^{k+1}+1)\\{\large\Phi}_{77}(77^{2k+1})|=|77^{120k+60}-77^{118k+59}+77^{106k+53}-77^{104k+52}+77^{98k+49}\\||-77^{96k+48}+77^{92k+46}-77^{90k+45}+77^{84k+42}-77^{82k+41}\\||+77^{78k+39}-77^{74k+37}+77^{70k+35}-77^{68k+34}+77^{64k+32}\\||-77^{60k+30}+77^{56k+28}-77^{52k+26}+77^{50k+25}-77^{46k+23}\\||+77^{42k+21}-77^{38k+19}+77^{36k+18}-77^{30k+15}+77^{28k+14}\\||-77^{24k+12}+77^{22k+11}-77^{16k+8}+77^{14k+7}-77^{2k+1}+1\\|=|(77^{60k+30}-77^{59k+30}+38\cdot 77^{58k+29}-12\cdot 77^{57k+29}+202\cdot 77^{56k+28}\\||-30\cdot 77^{55k+28}+178\cdot 77^{54k+27}+15\cdot 77^{53k+27}-601\cdot 77^{52k+26}+112\cdot 77^{51k+26}\\||-952\cdot 77^{50k+25}+37\cdot 77^{49k+25}+749\cdot 77^{48k+24}-202\cdot 77^{47k+24}+2129\cdot 77^{46k+23}\\||-165\cdot 77^{45k+23}-102\cdot 77^{44k+22}+206\cdot 77^{43k+22}-2759\cdot 77^{42k+21}+271\cdot 77^{41k+21}\\||-802\cdot 77^{40k+20}-131\cdot 77^{39k+20}+2434\cdot 77^{38k+19}-273\cdot 77^{37k+19}+1146\cdot 77^{36k+18}\\||+59\cdot 77^{35k+18}-1607\cdot 77^{34k+17}+176\cdot 77^{33k+17}-505\cdot 77^{32k+16}-82\cdot 77^{31k+16}\\||+1253\cdot 77^{30k+15}-82\cdot 77^{29k+15}-505\cdot 77^{28k+14}+176\cdot 77^{27k+14}-1607\cdot 77^{26k+13}\\||+59\cdot 77^{25k+13}+1146\cdot 77^{24k+12}-273\cdot 77^{23k+12}+2434\cdot 77^{22k+11}-131\cdot 77^{21k+11}\\||-802\cdot 77^{20k+10}+271\cdot 77^{19k+10}-2759\cdot 77^{18k+9}+206\cdot 77^{17k+9}-102\cdot 77^{16k+8}\\||-165\cdot 77^{15k+8}+2129\cdot 77^{14k+7}-202\cdot 77^{13k+7}+749\cdot 77^{12k+6}+37\cdot 77^{11k+6}\\||-952\cdot 77^{10k+5}+112\cdot 77^{9k+5}-601\cdot 77^{8k+4}+15\cdot 77^{7k+4}+178\cdot 77^{6k+3}\\||-30\cdot 77^{5k+3}+202\cdot 77^{4k+2}-12\cdot 77^{3k+2}+38\cdot 77^{2k+1}-77^{k+1}+1)\\|\times|(77^{60k+30}+77^{59k+30}+38\cdot 77^{58k+29}+12\cdot 77^{57k+29}+202\cdot 77^{56k+28}\\||+30\cdot 77^{55k+28}+178\cdot 77^{54k+27}-15\cdot 77^{53k+27}-601\cdot 77^{52k+26}-112\cdot 77^{51k+26}\\||-952\cdot 77^{50k+25}-37\cdot 77^{49k+25}+749\cdot 77^{48k+24}+202\cdot 77^{47k+24}+2129\cdot 77^{46k+23}\\||+165\cdot 77^{45k+23}-102\cdot 77^{44k+22}-206\cdot 77^{43k+22}-2759\cdot 77^{42k+21}-271\cdot 77^{41k+21}\\||-802\cdot 77^{40k+20}+131\cdot 77^{39k+20}+2434\cdot 77^{38k+19}+273\cdot 77^{37k+19}+1146\cdot 77^{36k+18}\\||-59\cdot 77^{35k+18}-1607\cdot 77^{34k+17}-176\cdot 77^{33k+17}-505\cdot 77^{32k+16}+82\cdot 77^{31k+16}\\||+1253\cdot 77^{30k+15}+82\cdot 77^{29k+15}-505\cdot 77^{28k+14}-176\cdot 77^{27k+14}-1607\cdot 77^{26k+13}\\||-59\cdot 77^{25k+13}+1146\cdot 77^{24k+12}+273\cdot 77^{23k+12}+2434\cdot 77^{22k+11}+131\cdot 77^{21k+11}\\||-802\cdot 77^{20k+10}-271\cdot 77^{19k+10}-2759\cdot 77^{18k+9}-206\cdot 77^{17k+9}-102\cdot 77^{16k+8}\\||+165\cdot 77^{15k+8}+2129\cdot 77^{14k+7}+202\cdot 77^{13k+7}+749\cdot 77^{12k+6}-37\cdot 77^{11k+6}\\||-952\cdot 77^{10k+5}-112\cdot 77^{9k+5}-601\cdot 77^{8k+4}-15\cdot 77^{7k+4}+178\cdot 77^{6k+3}\\||+30\cdot 77^{5k+3}+202\cdot 77^{4k+2}+12\cdot 77^{3k+2}+38\cdot 77^{2k+1}+77^{k+1}+1)\\{\large\Phi}_{156}(78^{2k+1})|=|78^{96k+48}+78^{92k+46}-78^{84k+42}-78^{80k+40}+78^{72k+36}\\||+78^{68k+34}-78^{60k+30}-78^{56k+28}+78^{48k+24}-78^{40k+20}\\||-78^{36k+18}+78^{28k+14}+78^{24k+12}-78^{16k+8}-78^{12k+6}\\||+78^{4k+2}+1\\|=|(78^{48k+24}-78^{47k+24}+39\cdot 78^{46k+23}-13\cdot 78^{45k+23}+254\cdot 78^{44k+22}\\||-51\cdot 78^{43k+22}+663\cdot 78^{42k+21}-93\cdot 78^{41k+21}+853\cdot 78^{40k+20}-82\cdot 78^{39k+20}\\||+468\cdot 78^{38k+19}-20\cdot 78^{37k+19}-37\cdot 78^{36k+18}+10\cdot 78^{35k+18}+39\cdot 78^{34k+17}\\||-32\cdot 78^{33k+17}+532\cdot 78^{32k+16}-77\cdot 78^{31k+16}+663\cdot 78^{30k+15}-54\cdot 78^{29k+15}\\||+173\cdot 78^{28k+14}+19\cdot 78^{27k+14}-468\cdot 78^{26k+13}+76\cdot 78^{25k+13}-743\cdot 78^{24k+12}\\||+76\cdot 78^{23k+12}-468\cdot 78^{22k+11}+19\cdot 78^{21k+11}+173\cdot 78^{20k+10}-54\cdot 78^{19k+10}\\||+663\cdot 78^{18k+9}-77\cdot 78^{17k+9}+532\cdot 78^{16k+8}-32\cdot 78^{15k+8}+39\cdot 78^{14k+7}\\||+10\cdot 78^{13k+7}-37\cdot 78^{12k+6}-20\cdot 78^{11k+6}+468\cdot 78^{10k+5}-82\cdot 78^{9k+5}\\||+853\cdot 78^{8k+4}-93\cdot 78^{7k+4}+663\cdot 78^{6k+3}-51\cdot 78^{5k+3}+254\cdot 78^{4k+2}\\||-13\cdot 78^{3k+2}+39\cdot 78^{2k+1}-78^{k+1}+1)\\|\times|(78^{48k+24}+78^{47k+24}+39\cdot 78^{46k+23}+13\cdot 78^{45k+23}+254\cdot 78^{44k+22}\\||+51\cdot 78^{43k+22}+663\cdot 78^{42k+21}+93\cdot 78^{41k+21}+853\cdot 78^{40k+20}+82\cdot 78^{39k+20}\\||+468\cdot 78^{38k+19}+20\cdot 78^{37k+19}-37\cdot 78^{36k+18}-10\cdot 78^{35k+18}+39\cdot 78^{34k+17}\\||+32\cdot 78^{33k+17}+532\cdot 78^{32k+16}+77\cdot 78^{31k+16}+663\cdot 78^{30k+15}+54\cdot 78^{29k+15}\\||+173\cdot 78^{28k+14}-19\cdot 78^{27k+14}-468\cdot 78^{26k+13}-76\cdot 78^{25k+13}-743\cdot 78^{24k+12}\\||-76\cdot 78^{23k+12}-468\cdot 78^{22k+11}-19\cdot 78^{21k+11}+173\cdot 78^{20k+10}+54\cdot 78^{19k+10}\\||+663\cdot 78^{18k+9}+77\cdot 78^{17k+9}+532\cdot 78^{16k+8}+32\cdot 78^{15k+8}+39\cdot 78^{14k+7}\\||-10\cdot 78^{13k+7}-37\cdot 78^{12k+6}+20\cdot 78^{11k+6}+468\cdot 78^{10k+5}+82\cdot 78^{9k+5}\\||+853\cdot 78^{8k+4}+93\cdot 78^{7k+4}+663\cdot 78^{6k+3}+51\cdot 78^{5k+3}+254\cdot 78^{4k+2}\\||+13\cdot 78^{3k+2}+39\cdot 78^{2k+1}+78^{k+1}+1)\\{\large\Phi}_{158}(79^{2k+1})|=|79^{156k+78}-79^{154k+77}+79^{152k+76}-79^{150k+75}+79^{148k+74}\\||-79^{146k+73}+79^{144k+72}-79^{142k+71}+79^{140k+70}-79^{138k+69}\\||+79^{136k+68}-79^{134k+67}+79^{132k+66}-79^{130k+65}+79^{128k+64}\\||-79^{126k+63}+79^{124k+62}-79^{122k+61}+79^{120k+60}-79^{118k+59}\\||+79^{116k+58}-79^{114k+57}+79^{112k+56}-79^{110k+55}+79^{108k+54}\\||-79^{106k+53}+79^{104k+52}-79^{102k+51}+79^{100k+50}-79^{98k+49}\\||+79^{96k+48}-79^{94k+47}+79^{92k+46}-79^{90k+45}+79^{88k+44}\\||-79^{86k+43}+79^{84k+42}-79^{82k+41}+79^{80k+40}-79^{78k+39}\\||+79^{76k+38}-79^{74k+37}+79^{72k+36}-79^{70k+35}+79^{68k+34}\\||-79^{66k+33}+79^{64k+32}-79^{62k+31}+79^{60k+30}-79^{58k+29}\\||+79^{56k+28}-79^{54k+27}+79^{52k+26}-79^{50k+25}+79^{48k+24}\\||-79^{46k+23}+79^{44k+22}-79^{42k+21}+79^{40k+20}-79^{38k+19}\\||+79^{36k+18}-79^{34k+17}+79^{32k+16}-79^{30k+15}+79^{28k+14}\\||-79^{26k+13}+79^{24k+12}-79^{22k+11}+79^{20k+10}-79^{18k+9}\\||+79^{16k+8}-79^{14k+7}+79^{12k+6}-79^{10k+5}+79^{8k+4}\\||-79^{6k+3}+79^{4k+2}-79^{2k+1}+1\\|=|(79^{78k+39}-79^{77k+39}+39\cdot 79^{76k+38}-13\cdot 79^{75k+38}+267\cdot 79^{74k+37}\\||-59\cdot 79^{73k+37}+923\cdot 79^{72k+36}-169\cdot 79^{71k+36}+2303\cdot 79^{70k+35}-379\cdot 79^{69k+35}\\||+4745\cdot 79^{68k+34}-729\cdot 79^{67k+34}+8613\cdot 79^{66k+33}-1257\cdot 79^{65k+33}+14173\cdot 79^{64k+32}\\||-1983\cdot 79^{63k+32}+21537\cdot 79^{62k+31}-2915\cdot 79^{61k+31}+30733\cdot 79^{60k+30}-4049\cdot 79^{59k+30}\\||+41639\cdot 79^{58k+29}-5359\cdot 79^{57k+29}+53901\cdot 79^{56k+28}-6793\cdot 79^{55k+28}+66993\cdot 79^{54k+27}\\||-8289\cdot 79^{53k+27}+80339\cdot 79^{52k+26}-9777\cdot 79^{51k+26}+93269\cdot 79^{50k+25}-11179\cdot 79^{49k+25}\\||+105099\cdot 79^{48k+24}-12423\cdot 79^{47k+24}+115265\cdot 79^{46k+23}-13455\cdot 79^{45k+23}+123343\cdot 79^{44k+22}\\||-14229\cdot 79^{43k+22}+128931\cdot 79^{42k+21}-14705\cdot 79^{41k+21}+131767\cdot 79^{40k+20}-14865\cdot 79^{39k+20}\\||+131767\cdot 79^{38k+19}-14705\cdot 79^{37k+19}+128931\cdot 79^{36k+18}-14229\cdot 79^{35k+18}+123343\cdot 79^{34k+17}\\||-13455\cdot 79^{33k+17}+115265\cdot 79^{32k+16}-12423\cdot 79^{31k+16}+105099\cdot 79^{30k+15}-11179\cdot 79^{29k+15}\\||+93269\cdot 79^{28k+14}-9777\cdot 79^{27k+14}+80339\cdot 79^{26k+13}-8289\cdot 79^{25k+13}+66993\cdot 79^{24k+12}\\||-6793\cdot 79^{23k+12}+53901\cdot 79^{22k+11}-5359\cdot 79^{21k+11}+41639\cdot 79^{20k+10}-4049\cdot 79^{19k+10}\\||+30733\cdot 79^{18k+9}-2915\cdot 79^{17k+9}+21537\cdot 79^{16k+8}-1983\cdot 79^{15k+8}+14173\cdot 79^{14k+7}\\||-1257\cdot 79^{13k+7}+8613\cdot 79^{12k+6}-729\cdot 79^{11k+6}+4745\cdot 79^{10k+5}-379\cdot 79^{9k+5}\\||+2303\cdot 79^{8k+4}-169\cdot 79^{7k+4}+923\cdot 79^{6k+3}-59\cdot 79^{5k+3}+267\cdot 79^{4k+2}\\||-13\cdot 79^{3k+2}+39\cdot 79^{2k+1}-79^{k+1}+1)\\|\times|(79^{78k+39}+79^{77k+39}+39\cdot 79^{76k+38}+13\cdot 79^{75k+38}+267\cdot 79^{74k+37}\\||+59\cdot 79^{73k+37}+923\cdot 79^{72k+36}+169\cdot 79^{71k+36}+2303\cdot 79^{70k+35}+379\cdot 79^{69k+35}\\||+4745\cdot 79^{68k+34}+729\cdot 79^{67k+34}+8613\cdot 79^{66k+33}+1257\cdot 79^{65k+33}+14173\cdot 79^{64k+32}\\||+1983\cdot 79^{63k+32}+21537\cdot 79^{62k+31}+2915\cdot 79^{61k+31}+30733\cdot 79^{60k+30}+4049\cdot 79^{59k+30}\\||+41639\cdot 79^{58k+29}+5359\cdot 79^{57k+29}+53901\cdot 79^{56k+28}+6793\cdot 79^{55k+28}+66993\cdot 79^{54k+27}\\||+8289\cdot 79^{53k+27}+80339\cdot 79^{52k+26}+9777\cdot 79^{51k+26}+93269\cdot 79^{50k+25}+11179\cdot 79^{49k+25}\\||+105099\cdot 79^{48k+24}+12423\cdot 79^{47k+24}+115265\cdot 79^{46k+23}+13455\cdot 79^{45k+23}+123343\cdot 79^{44k+22}\\||+14229\cdot 79^{43k+22}+128931\cdot 79^{42k+21}+14705\cdot 79^{41k+21}+131767\cdot 79^{40k+20}+14865\cdot 79^{39k+20}\\||+131767\cdot 79^{38k+19}+14705\cdot 79^{37k+19}+128931\cdot 79^{36k+18}+14229\cdot 79^{35k+18}+123343\cdot 79^{34k+17}\\||+13455\cdot 79^{33k+17}+115265\cdot 79^{32k+16}+12423\cdot 79^{31k+16}+105099\cdot 79^{30k+15}+11179\cdot 79^{29k+15}\\||+93269\cdot 79^{28k+14}+9777\cdot 79^{27k+14}+80339\cdot 79^{26k+13}+8289\cdot 79^{25k+13}+66993\cdot 79^{24k+12}\\||+6793\cdot 79^{23k+12}+53901\cdot 79^{22k+11}+5359\cdot 79^{21k+11}+41639\cdot 79^{20k+10}+4049\cdot 79^{19k+10}\\||+30733\cdot 79^{18k+9}+2915\cdot 79^{17k+9}+21537\cdot 79^{16k+8}+1983\cdot 79^{15k+8}+14173\cdot 79^{14k+7}\\||+1257\cdot 79^{13k+7}+8613\cdot 79^{12k+6}+729\cdot 79^{11k+6}+4745\cdot 79^{10k+5}+379\cdot 79^{9k+5}\\||+2303\cdot 79^{8k+4}+169\cdot 79^{7k+4}+923\cdot 79^{6k+3}+59\cdot 79^{5k+3}+267\cdot 79^{4k+2}\\||+13\cdot 79^{3k+2}+39\cdot 79^{2k+1}+79^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{164}(82^{2k+1})\cdots{\large\Phi}_{89}(89^{2k+1})$${\large\Phi}_{164}(82^{2k+1})\cdots{\large\Phi}_{89}(89^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{164}(82^{2k+1})|=|82^{160k+80}-82^{156k+78}+82^{152k+76}-82^{148k+74}+82^{144k+72}\\||-82^{140k+70}+82^{136k+68}-82^{132k+66}+82^{128k+64}-82^{124k+62}\\||+82^{120k+60}-82^{116k+58}+82^{112k+56}-82^{108k+54}+82^{104k+52}\\||-82^{100k+50}+82^{96k+48}-82^{92k+46}+82^{88k+44}-82^{84k+42}\\||+82^{80k+40}-82^{76k+38}+82^{72k+36}-82^{68k+34}+82^{64k+32}\\||-82^{60k+30}+82^{56k+28}-82^{52k+26}+82^{48k+24}-82^{44k+22}\\||+82^{40k+20}-82^{36k+18}+82^{32k+16}-82^{28k+14}+82^{24k+12}\\||-82^{20k+10}+82^{16k+8}-82^{12k+6}+82^{8k+4}-82^{4k+2}+1\\|=|(82^{80k+40}-82^{79k+40}+41\cdot 82^{78k+39}-14\cdot 82^{77k+39}+307\cdot 82^{76k+38}\\||-69\cdot 82^{75k+38}+1107\cdot 82^{74k+37}-192\cdot 82^{73k+37}+2445\cdot 82^{72k+36}-341\cdot 82^{71k+36}\\||+3485\cdot 82^{70k+35}-382\cdot 82^{69k+35}+2903\cdot 82^{68k+34}-203\cdot 82^{67k+34}+451\cdot 82^{66k+33}\\||+102\cdot 82^{65k+33}-1879\cdot 82^{64k+32}+227\cdot 82^{63k+32}-1271\cdot 82^{62k+31}-42\cdot 82^{61k+31}\\||+2507\cdot 82^{60k+30}-497\cdot 82^{59k+30}+5699\cdot 82^{58k+29}-618\cdot 82^{57k+29}+4033\cdot 82^{56k+28}\\||-143\cdot 82^{55k+28}-1927\cdot 82^{54k+27}+520\cdot 82^{53k+27}-6161\cdot 82^{52k+26}+631\cdot 82^{51k+26}\\||-3321\cdot 82^{50k+25}-54\cdot 82^{49k+25}+4733\cdot 82^{48k+24}-911\cdot 82^{47k+24}+10045\cdot 82^{46k+23}\\||-1060\cdot 82^{45k+23}+7035\cdot 82^{44k+22}-343\cdot 82^{43k+22}-1025\cdot 82^{42k+21}+456\cdot 82^{41k+21}\\||-5279\cdot 82^{40k+20}+456\cdot 82^{39k+20}-1025\cdot 82^{38k+19}-343\cdot 82^{37k+19}+7035\cdot 82^{36k+18}\\||-1060\cdot 82^{35k+18}+10045\cdot 82^{34k+17}-911\cdot 82^{33k+17}+4733\cdot 82^{32k+16}-54\cdot 82^{31k+16}\\||-3321\cdot 82^{30k+15}+631\cdot 82^{29k+15}-6161\cdot 82^{28k+14}+520\cdot 82^{27k+14}-1927\cdot 82^{26k+13}\\||-143\cdot 82^{25k+13}+4033\cdot 82^{24k+12}-618\cdot 82^{23k+12}+5699\cdot 82^{22k+11}-497\cdot 82^{21k+11}\\||+2507\cdot 82^{20k+10}-42\cdot 82^{19k+10}-1271\cdot 82^{18k+9}+227\cdot 82^{17k+9}-1879\cdot 82^{16k+8}\\||+102\cdot 82^{15k+8}+451\cdot 82^{14k+7}-203\cdot 82^{13k+7}+2903\cdot 82^{12k+6}-382\cdot 82^{11k+6}\\||+3485\cdot 82^{10k+5}-341\cdot 82^{9k+5}+2445\cdot 82^{8k+4}-192\cdot 82^{7k+4}+1107\cdot 82^{6k+3}\\||-69\cdot 82^{5k+3}+307\cdot 82^{4k+2}-14\cdot 82^{3k+2}+41\cdot 82^{2k+1}-82^{k+1}+1)\\|\times|(82^{80k+40}+82^{79k+40}+41\cdot 82^{78k+39}+14\cdot 82^{77k+39}+307\cdot 82^{76k+38}\\||+69\cdot 82^{75k+38}+1107\cdot 82^{74k+37}+192\cdot 82^{73k+37}+2445\cdot 82^{72k+36}+341\cdot 82^{71k+36}\\||+3485\cdot 82^{70k+35}+382\cdot 82^{69k+35}+2903\cdot 82^{68k+34}+203\cdot 82^{67k+34}+451\cdot 82^{66k+33}\\||-102\cdot 82^{65k+33}-1879\cdot 82^{64k+32}-227\cdot 82^{63k+32}-1271\cdot 82^{62k+31}+42\cdot 82^{61k+31}\\||+2507\cdot 82^{60k+30}+497\cdot 82^{59k+30}+5699\cdot 82^{58k+29}+618\cdot 82^{57k+29}+4033\cdot 82^{56k+28}\\||+143\cdot 82^{55k+28}-1927\cdot 82^{54k+27}-520\cdot 82^{53k+27}-6161\cdot 82^{52k+26}-631\cdot 82^{51k+26}\\||-3321\cdot 82^{50k+25}+54\cdot 82^{49k+25}+4733\cdot 82^{48k+24}+911\cdot 82^{47k+24}+10045\cdot 82^{46k+23}\\||+1060\cdot 82^{45k+23}+7035\cdot 82^{44k+22}+343\cdot 82^{43k+22}-1025\cdot 82^{42k+21}-456\cdot 82^{41k+21}\\||-5279\cdot 82^{40k+20}-456\cdot 82^{39k+20}-1025\cdot 82^{38k+19}+343\cdot 82^{37k+19}+7035\cdot 82^{36k+18}\\||+1060\cdot 82^{35k+18}+10045\cdot 82^{34k+17}+911\cdot 82^{33k+17}+4733\cdot 82^{32k+16}+54\cdot 82^{31k+16}\\||-3321\cdot 82^{30k+15}-631\cdot 82^{29k+15}-6161\cdot 82^{28k+14}-520\cdot 82^{27k+14}-1927\cdot 82^{26k+13}\\||+143\cdot 82^{25k+13}+4033\cdot 82^{24k+12}+618\cdot 82^{23k+12}+5699\cdot 82^{22k+11}+497\cdot 82^{21k+11}\\||+2507\cdot 82^{20k+10}+42\cdot 82^{19k+10}-1271\cdot 82^{18k+9}-227\cdot 82^{17k+9}-1879\cdot 82^{16k+8}\\||-102\cdot 82^{15k+8}+451\cdot 82^{14k+7}+203\cdot 82^{13k+7}+2903\cdot 82^{12k+6}+382\cdot 82^{11k+6}\\||+3485\cdot 82^{10k+5}+341\cdot 82^{9k+5}+2445\cdot 82^{8k+4}+192\cdot 82^{7k+4}+1107\cdot 82^{6k+3}\\||+69\cdot 82^{5k+3}+307\cdot 82^{4k+2}+14\cdot 82^{3k+2}+41\cdot 82^{2k+1}+82^{k+1}+1)\\{\large\Phi}_{166}(83^{2k+1})|=|83^{164k+82}-83^{162k+81}+83^{160k+80}-83^{158k+79}+83^{156k+78}\\||-83^{154k+77}+83^{152k+76}-83^{150k+75}+83^{148k+74}-83^{146k+73}\\||+83^{144k+72}-83^{142k+71}+83^{140k+70}-83^{138k+69}+83^{136k+68}\\||-83^{134k+67}+83^{132k+66}-83^{130k+65}+83^{128k+64}-83^{126k+63}\\||+83^{124k+62}-83^{122k+61}+83^{120k+60}-83^{118k+59}+83^{116k+58}\\||-83^{114k+57}+83^{112k+56}-83^{110k+55}+83^{108k+54}-83^{106k+53}\\||+83^{104k+52}-83^{102k+51}+83^{100k+50}-83^{98k+49}+83^{96k+48}\\||-83^{94k+47}+83^{92k+46}-83^{90k+45}+83^{88k+44}-83^{86k+43}\\||+83^{84k+42}-83^{82k+41}+83^{80k+40}-83^{78k+39}+83^{76k+38}\\||-83^{74k+37}+83^{72k+36}-83^{70k+35}+83^{68k+34}-83^{66k+33}\\||+83^{64k+32}-83^{62k+31}+83^{60k+30}-83^{58k+29}+83^{56k+28}\\||-83^{54k+27}+83^{52k+26}-83^{50k+25}+83^{48k+24}-83^{46k+23}\\||+83^{44k+22}-83^{42k+21}+83^{40k+20}-83^{38k+19}+83^{36k+18}\\||-83^{34k+17}+83^{32k+16}-83^{30k+15}+83^{28k+14}-83^{26k+13}\\||+83^{24k+12}-83^{22k+11}+83^{20k+10}-83^{18k+9}+83^{16k+8}\\||-83^{14k+7}+83^{12k+6}-83^{10k+5}+83^{8k+4}-83^{6k+3}\\||+83^{4k+2}-83^{2k+1}+1\\|=|(83^{82k+41}-83^{81k+41}+41\cdot 83^{80k+40}-13\cdot 83^{79k+40}+239\cdot 83^{78k+39}\\||-37\cdot 83^{77k+39}+285\cdot 83^{76k+38}+3\cdot 83^{75k+38}-571\cdot 83^{74k+37}+123\cdot 83^{73k+37}\\||-1337\cdot 83^{72k+36}+105\cdot 83^{71k+36}+29\cdot 83^{70k+35}-143\cdot 83^{69k+35}+2303\cdot 83^{68k+34}\\||-269\cdot 83^{67k+34}+1467\cdot 83^{66k+33}+41\cdot 83^{65k+33}-2257\cdot 83^{64k+32}+351\cdot 83^{63k+32}\\||-2591\cdot 83^{62k+31}+67\cdot 83^{61k+31}+1813\cdot 83^{60k+30}-377\cdot 83^{59k+30}+3329\cdot 83^{58k+29}\\||-153\cdot 83^{57k+29}-1525\cdot 83^{56k+28}+437\cdot 83^{55k+28}-4627\cdot 83^{54k+27}+323\cdot 83^{53k+27}\\||+403\cdot 83^{52k+26}-419\cdot 83^{51k+26}+5583\cdot 83^{50k+25}-523\cdot 83^{49k+25}+1707\cdot 83^{48k+24}\\||+235\cdot 83^{47k+24}-4945\cdot 83^{46k+23}+589\cdot 83^{45k+23}-3199\cdot 83^{44k+22}-55\cdot 83^{43k+22}\\||+3893\cdot 83^{42k+21}-577\cdot 83^{41k+21}+3893\cdot 83^{40k+20}-55\cdot 83^{39k+20}-3199\cdot 83^{38k+19}\\||+589\cdot 83^{37k+19}-4945\cdot 83^{36k+18}+235\cdot 83^{35k+18}+1707\cdot 83^{34k+17}-523\cdot 83^{33k+17}\\||+5583\cdot 83^{32k+16}-419\cdot 83^{31k+16}+403\cdot 83^{30k+15}+323\cdot 83^{29k+15}-4627\cdot 83^{28k+14}\\||+437\cdot 83^{27k+14}-1525\cdot 83^{26k+13}-153\cdot 83^{25k+13}+3329\cdot 83^{24k+12}-377\cdot 83^{23k+12}\\||+1813\cdot 83^{22k+11}+67\cdot 83^{21k+11}-2591\cdot 83^{20k+10}+351\cdot 83^{19k+10}-2257\cdot 83^{18k+9}\\||+41\cdot 83^{17k+9}+1467\cdot 83^{16k+8}-269\cdot 83^{15k+8}+2303\cdot 83^{14k+7}-143\cdot 83^{13k+7}\\||+29\cdot 83^{12k+6}+105\cdot 83^{11k+6}-1337\cdot 83^{10k+5}+123\cdot 83^{9k+5}-571\cdot 83^{8k+4}\\||+3\cdot 83^{7k+4}+285\cdot 83^{6k+3}-37\cdot 83^{5k+3}+239\cdot 83^{4k+2}-13\cdot 83^{3k+2}\\||+41\cdot 83^{2k+1}-83^{k+1}+1)\\|\times|(83^{82k+41}+83^{81k+41}+41\cdot 83^{80k+40}+13\cdot 83^{79k+40}+239\cdot 83^{78k+39}\\||+37\cdot 83^{77k+39}+285\cdot 83^{76k+38}-3\cdot 83^{75k+38}-571\cdot 83^{74k+37}-123\cdot 83^{73k+37}\\||-1337\cdot 83^{72k+36}-105\cdot 83^{71k+36}+29\cdot 83^{70k+35}+143\cdot 83^{69k+35}+2303\cdot 83^{68k+34}\\||+269\cdot 83^{67k+34}+1467\cdot 83^{66k+33}-41\cdot 83^{65k+33}-2257\cdot 83^{64k+32}-351\cdot 83^{63k+32}\\||-2591\cdot 83^{62k+31}-67\cdot 83^{61k+31}+1813\cdot 83^{60k+30}+377\cdot 83^{59k+30}+3329\cdot 83^{58k+29}\\||+153\cdot 83^{57k+29}-1525\cdot 83^{56k+28}-437\cdot 83^{55k+28}-4627\cdot 83^{54k+27}-323\cdot 83^{53k+27}\\||+403\cdot 83^{52k+26}+419\cdot 83^{51k+26}+5583\cdot 83^{50k+25}+523\cdot 83^{49k+25}+1707\cdot 83^{48k+24}\\||-235\cdot 83^{47k+24}-4945\cdot 83^{46k+23}-589\cdot 83^{45k+23}-3199\cdot 83^{44k+22}+55\cdot 83^{43k+22}\\||+3893\cdot 83^{42k+21}+577\cdot 83^{41k+21}+3893\cdot 83^{40k+20}+55\cdot 83^{39k+20}-3199\cdot 83^{38k+19}\\||-589\cdot 83^{37k+19}-4945\cdot 83^{36k+18}-235\cdot 83^{35k+18}+1707\cdot 83^{34k+17}+523\cdot 83^{33k+17}\\||+5583\cdot 83^{32k+16}+419\cdot 83^{31k+16}+403\cdot 83^{30k+15}-323\cdot 83^{29k+15}-4627\cdot 83^{28k+14}\\||-437\cdot 83^{27k+14}-1525\cdot 83^{26k+13}+153\cdot 83^{25k+13}+3329\cdot 83^{24k+12}+377\cdot 83^{23k+12}\\||+1813\cdot 83^{22k+11}-67\cdot 83^{21k+11}-2591\cdot 83^{20k+10}-351\cdot 83^{19k+10}-2257\cdot 83^{18k+9}\\||-41\cdot 83^{17k+9}+1467\cdot 83^{16k+8}+269\cdot 83^{15k+8}+2303\cdot 83^{14k+7}+143\cdot 83^{13k+7}\\||+29\cdot 83^{12k+6}-105\cdot 83^{11k+6}-1337\cdot 83^{10k+5}-123\cdot 83^{9k+5}-571\cdot 83^{8k+4}\\||-3\cdot 83^{7k+4}+285\cdot 83^{6k+3}+37\cdot 83^{5k+3}+239\cdot 83^{4k+2}+13\cdot 83^{3k+2}\\||+41\cdot 83^{2k+1}+83^{k+1}+1)\\{\large\Phi}_{85}(85^{2k+1})|=|85^{128k+64}-85^{126k+63}+85^{118k+59}-85^{116k+58}+85^{108k+54}\\||-85^{106k+53}+85^{98k+49}-85^{96k+48}+85^{94k+47}-85^{92k+46}\\||+85^{88k+44}-85^{86k+43}+85^{84k+42}-85^{82k+41}+85^{78k+39}\\||-85^{76k+38}+85^{74k+37}-85^{72k+36}+85^{68k+34}-85^{66k+33}\\||+85^{64k+32}-85^{62k+31}+85^{60k+30}-85^{56k+28}+85^{54k+27}\\||-85^{52k+26}+85^{50k+25}-85^{46k+23}+85^{44k+22}-85^{42k+21}\\||+85^{40k+20}-85^{36k+18}+85^{34k+17}-85^{32k+16}+85^{30k+15}\\||-85^{22k+11}+85^{20k+10}-85^{12k+6}+85^{10k+5}-85^{2k+1}+1\\|=|(85^{64k+32}-85^{63k+32}+42\cdot 85^{62k+31}-14\cdot 85^{61k+31}+308\cdot 85^{60k+30}\\||-67\cdot 85^{59k+30}+1089\cdot 85^{58k+29}-188\cdot 85^{57k+29}+2540\cdot 85^{56k+28}-378\cdot 85^{55k+28}\\||+4541\cdot 85^{54k+27}-617\cdot 85^{53k+27}+6922\cdot 85^{52k+26}-894\cdot 85^{51k+26}+9638\cdot 85^{50k+25}\\||-1201\cdot 85^{49k+25}+12479\cdot 85^{48k+24}-1493\cdot 85^{47k+24}+14835\cdot 85^{46k+23}-1694\cdot 85^{45k+23}\\||+16081\cdot 85^{44k+22}-1761\cdot 85^{43k+22}+16127\cdot 85^{42k+21}-1715\cdot 85^{41k+21}+15338\cdot 85^{40k+20}\\||-1599\cdot 85^{39k+20}+14049\cdot 85^{38k+19}-1441\cdot 85^{37k+19}+12495\cdot 85^{36k+18}-1274\cdot 85^{35k+18}\\||+11121\cdot 85^{34k+17}-1161\cdot 85^{33k+17}+10557\cdot 85^{32k+16}-1161\cdot 85^{31k+16}+11121\cdot 85^{30k+15}\\||-1274\cdot 85^{29k+15}+12495\cdot 85^{28k+14}-1441\cdot 85^{27k+14}+14049\cdot 85^{26k+13}-1599\cdot 85^{25k+13}\\||+15338\cdot 85^{24k+12}-1715\cdot 85^{23k+12}+16127\cdot 85^{22k+11}-1761\cdot 85^{21k+11}+16081\cdot 85^{20k+10}\\||-1694\cdot 85^{19k+10}+14835\cdot 85^{18k+9}-1493\cdot 85^{17k+9}+12479\cdot 85^{16k+8}-1201\cdot 85^{15k+8}\\||+9638\cdot 85^{14k+7}-894\cdot 85^{13k+7}+6922\cdot 85^{12k+6}-617\cdot 85^{11k+6}+4541\cdot 85^{10k+5}\\||-378\cdot 85^{9k+5}+2540\cdot 85^{8k+4}-188\cdot 85^{7k+4}+1089\cdot 85^{6k+3}-67\cdot 85^{5k+3}\\||+308\cdot 85^{4k+2}-14\cdot 85^{3k+2}+42\cdot 85^{2k+1}-85^{k+1}+1)\\|\times|(85^{64k+32}+85^{63k+32}+42\cdot 85^{62k+31}+14\cdot 85^{61k+31}+308\cdot 85^{60k+30}\\||+67\cdot 85^{59k+30}+1089\cdot 85^{58k+29}+188\cdot 85^{57k+29}+2540\cdot 85^{56k+28}+378\cdot 85^{55k+28}\\||+4541\cdot 85^{54k+27}+617\cdot 85^{53k+27}+6922\cdot 85^{52k+26}+894\cdot 85^{51k+26}+9638\cdot 85^{50k+25}\\||+1201\cdot 85^{49k+25}+12479\cdot 85^{48k+24}+1493\cdot 85^{47k+24}+14835\cdot 85^{46k+23}+1694\cdot 85^{45k+23}\\||+16081\cdot 85^{44k+22}+1761\cdot 85^{43k+22}+16127\cdot 85^{42k+21}+1715\cdot 85^{41k+21}+15338\cdot 85^{40k+20}\\||+1599\cdot 85^{39k+20}+14049\cdot 85^{38k+19}+1441\cdot 85^{37k+19}+12495\cdot 85^{36k+18}+1274\cdot 85^{35k+18}\\||+11121\cdot 85^{34k+17}+1161\cdot 85^{33k+17}+10557\cdot 85^{32k+16}+1161\cdot 85^{31k+16}+11121\cdot 85^{30k+15}\\||+1274\cdot 85^{29k+15}+12495\cdot 85^{28k+14}+1441\cdot 85^{27k+14}+14049\cdot 85^{26k+13}+1599\cdot 85^{25k+13}\\||+15338\cdot 85^{24k+12}+1715\cdot 85^{23k+12}+16127\cdot 85^{22k+11}+1761\cdot 85^{21k+11}+16081\cdot 85^{20k+10}\\||+1694\cdot 85^{19k+10}+14835\cdot 85^{18k+9}+1493\cdot 85^{17k+9}+12479\cdot 85^{16k+8}+1201\cdot 85^{15k+8}\\||+9638\cdot 85^{14k+7}+894\cdot 85^{13k+7}+6922\cdot 85^{12k+6}+617\cdot 85^{11k+6}+4541\cdot 85^{10k+5}\\||+378\cdot 85^{9k+5}+2540\cdot 85^{8k+4}+188\cdot 85^{7k+4}+1089\cdot 85^{6k+3}+67\cdot 85^{5k+3}\\||+308\cdot 85^{4k+2}+14\cdot 85^{3k+2}+42\cdot 85^{2k+1}+85^{k+1}+1)\\{\large\Phi}_{172}(86^{2k+1})|=|86^{168k+84}-86^{164k+82}+86^{160k+80}-86^{156k+78}+86^{152k+76}\\||-86^{148k+74}+86^{144k+72}-86^{140k+70}+86^{136k+68}-86^{132k+66}\\||+86^{128k+64}-86^{124k+62}+86^{120k+60}-86^{116k+58}+86^{112k+56}\\||-86^{108k+54}+86^{104k+52}-86^{100k+50}+86^{96k+48}-86^{92k+46}\\||+86^{88k+44}-86^{84k+42}+86^{80k+40}-86^{76k+38}+86^{72k+36}\\||-86^{68k+34}+86^{64k+32}-86^{60k+30}+86^{56k+28}-86^{52k+26}\\||+86^{48k+24}-86^{44k+22}+86^{40k+20}-86^{36k+18}+86^{32k+16}\\||-86^{28k+14}+86^{24k+12}-86^{20k+10}+86^{16k+8}-86^{12k+6}\\||+86^{8k+4}-86^{4k+2}+1\\|=|(86^{84k+42}-86^{83k+42}+43\cdot 86^{82k+41}-14\cdot 86^{81k+41}+279\cdot 86^{80k+40}\\||-47\cdot 86^{79k+40}+473\cdot 86^{78k+39}-30\cdot 86^{77k+39}-91\cdot 86^{76k+38}+37\cdot 86^{75k+38}\\||-129\cdot 86^{74k+37}-66\cdot 86^{73k+37}+1459\cdot 86^{72k+36}-189\cdot 86^{71k+36}+1161\cdot 86^{70k+35}\\||-6\cdot 86^{69k+35}-723\cdot 86^{68k+34}+61\cdot 86^{67k+34}+387\cdot 86^{66k+33}-152\cdot 86^{65k+33}\\||+1859\cdot 86^{64k+32}-179\cdot 86^{63k+32}+1161\cdot 86^{62k+31}-68\cdot 86^{61k+31}+41\cdot 86^{60k+30}\\||+67\cdot 86^{59k+30}-989\cdot 86^{58k+29}+54\cdot 86^{57k+29}+911\cdot 86^{56k+28}-259\cdot 86^{55k+28}\\||+2709\cdot 86^{54k+27}-136\cdot 86^{53k+27}-1147\cdot 86^{52k+26}+309\cdot 86^{51k+26}-2709\cdot 86^{50k+25}\\||+98\cdot 86^{49k+25}+1143\cdot 86^{48k+24}-223\cdot 86^{47k+24}+1505\cdot 86^{46k+23}-14\cdot 86^{45k+23}\\||-1131\cdot 86^{44k+22}+197\cdot 86^{43k+22}-2021\cdot 86^{42k+21}+197\cdot 86^{41k+21}-1131\cdot 86^{40k+20}\\||-14\cdot 86^{39k+20}+1505\cdot 86^{38k+19}-223\cdot 86^{37k+19}+1143\cdot 86^{36k+18}+98\cdot 86^{35k+18}\\||-2709\cdot 86^{34k+17}+309\cdot 86^{33k+17}-1147\cdot 86^{32k+16}-136\cdot 86^{31k+16}+2709\cdot 86^{30k+15}\\||-259\cdot 86^{29k+15}+911\cdot 86^{28k+14}+54\cdot 86^{27k+14}-989\cdot 86^{26k+13}+67\cdot 86^{25k+13}\\||+41\cdot 86^{24k+12}-68\cdot 86^{23k+12}+1161\cdot 86^{22k+11}-179\cdot 86^{21k+11}+1859\cdot 86^{20k+10}\\||-152\cdot 86^{19k+10}+387\cdot 86^{18k+9}+61\cdot 86^{17k+9}-723\cdot 86^{16k+8}-6\cdot 86^{15k+8}\\||+1161\cdot 86^{14k+7}-189\cdot 86^{13k+7}+1459\cdot 86^{12k+6}-66\cdot 86^{11k+6}-129\cdot 86^{10k+5}\\||+37\cdot 86^{9k+5}-91\cdot 86^{8k+4}-30\cdot 86^{7k+4}+473\cdot 86^{6k+3}-47\cdot 86^{5k+3}\\||+279\cdot 86^{4k+2}-14\cdot 86^{3k+2}+43\cdot 86^{2k+1}-86^{k+1}+1)\\|\times|(86^{84k+42}+86^{83k+42}+43\cdot 86^{82k+41}+14\cdot 86^{81k+41}+279\cdot 86^{80k+40}\\||+47\cdot 86^{79k+40}+473\cdot 86^{78k+39}+30\cdot 86^{77k+39}-91\cdot 86^{76k+38}-37\cdot 86^{75k+38}\\||-129\cdot 86^{74k+37}+66\cdot 86^{73k+37}+1459\cdot 86^{72k+36}+189\cdot 86^{71k+36}+1161\cdot 86^{70k+35}\\||+6\cdot 86^{69k+35}-723\cdot 86^{68k+34}-61\cdot 86^{67k+34}+387\cdot 86^{66k+33}+152\cdot 86^{65k+33}\\||+1859\cdot 86^{64k+32}+179\cdot 86^{63k+32}+1161\cdot 86^{62k+31}+68\cdot 86^{61k+31}+41\cdot 86^{60k+30}\\||-67\cdot 86^{59k+30}-989\cdot 86^{58k+29}-54\cdot 86^{57k+29}+911\cdot 86^{56k+28}+259\cdot 86^{55k+28}\\||+2709\cdot 86^{54k+27}+136\cdot 86^{53k+27}-1147\cdot 86^{52k+26}-309\cdot 86^{51k+26}-2709\cdot 86^{50k+25}\\||-98\cdot 86^{49k+25}+1143\cdot 86^{48k+24}+223\cdot 86^{47k+24}+1505\cdot 86^{46k+23}+14\cdot 86^{45k+23}\\||-1131\cdot 86^{44k+22}-197\cdot 86^{43k+22}-2021\cdot 86^{42k+21}-197\cdot 86^{41k+21}-1131\cdot 86^{40k+20}\\||+14\cdot 86^{39k+20}+1505\cdot 86^{38k+19}+223\cdot 86^{37k+19}+1143\cdot 86^{36k+18}-98\cdot 86^{35k+18}\\||-2709\cdot 86^{34k+17}-309\cdot 86^{33k+17}-1147\cdot 86^{32k+16}+136\cdot 86^{31k+16}+2709\cdot 86^{30k+15}\\||+259\cdot 86^{29k+15}+911\cdot 86^{28k+14}-54\cdot 86^{27k+14}-989\cdot 86^{26k+13}-67\cdot 86^{25k+13}\\||+41\cdot 86^{24k+12}+68\cdot 86^{23k+12}+1161\cdot 86^{22k+11}+179\cdot 86^{21k+11}+1859\cdot 86^{20k+10}\\||+152\cdot 86^{19k+10}+387\cdot 86^{18k+9}-61\cdot 86^{17k+9}-723\cdot 86^{16k+8}+6\cdot 86^{15k+8}\\||+1161\cdot 86^{14k+7}+189\cdot 86^{13k+7}+1459\cdot 86^{12k+6}+66\cdot 86^{11k+6}-129\cdot 86^{10k+5}\\||-37\cdot 86^{9k+5}-91\cdot 86^{8k+4}+30\cdot 86^{7k+4}+473\cdot 86^{6k+3}+47\cdot 86^{5k+3}\\||+279\cdot 86^{4k+2}+14\cdot 86^{3k+2}+43\cdot 86^{2k+1}+86^{k+1}+1)\\{\large\Phi}_{174}(87^{2k+1})|=|87^{112k+56}+87^{110k+55}-87^{106k+53}-87^{104k+52}+87^{100k+50}\\||+87^{98k+49}-87^{94k+47}-87^{92k+46}+87^{88k+44}+87^{86k+43}\\||-87^{82k+41}-87^{80k+40}+87^{76k+38}+87^{74k+37}-87^{70k+35}\\||-87^{68k+34}+87^{64k+32}+87^{62k+31}-87^{58k+29}-87^{56k+28}\\||-87^{54k+27}+87^{50k+25}+87^{48k+24}-87^{44k+22}-87^{42k+21}\\||+87^{38k+19}+87^{36k+18}-87^{32k+16}-87^{30k+15}+87^{26k+13}\\||+87^{24k+12}-87^{20k+10}-87^{18k+9}+87^{14k+7}+87^{12k+6}\\||-87^{8k+4}-87^{6k+3}+87^{2k+1}+1\\|=|(87^{56k+28}-87^{55k+28}+44\cdot 87^{54k+27}-15\cdot 87^{53k+27}+337\cdot 87^{52k+26}\\||-70\cdot 87^{51k+26}+1049\cdot 87^{50k+25}-151\cdot 87^{49k+25}+1546\cdot 87^{48k+24}-135\cdot 87^{47k+24}\\||+413\cdot 87^{46k+23}+104\cdot 87^{45k+23}-2657\cdot 87^{44k+22}+453\cdot 87^{43k+22}-5164\cdot 87^{42k+21}\\||+539\cdot 87^{41k+21}-3593\cdot 87^{40k+20}+104\cdot 87^{39k+20}+2381\cdot 87^{38k+19}-615\cdot 87^{37k+19}\\||+8284\cdot 87^{36k+18}-1001\cdot 87^{35k+18}+8519\cdot 87^{34k+17}-630\cdot 87^{33k+17}+1879\cdot 87^{32k+16}\\||+287\cdot 87^{31k+16}-6850\cdot 87^{30k+15}+1047\cdot 87^{29k+15}-10811\cdot 87^{28k+14}+1047\cdot 87^{27k+14}\\||-6850\cdot 87^{26k+13}+287\cdot 87^{25k+13}+1879\cdot 87^{24k+12}-630\cdot 87^{23k+12}+8519\cdot 87^{22k+11}\\||-1001\cdot 87^{21k+11}+8284\cdot 87^{20k+10}-615\cdot 87^{19k+10}+2381\cdot 87^{18k+9}+104\cdot 87^{17k+9}\\||-3593\cdot 87^{16k+8}+539\cdot 87^{15k+8}-5164\cdot 87^{14k+7}+453\cdot 87^{13k+7}-2657\cdot 87^{12k+6}\\||+104\cdot 87^{11k+6}+413\cdot 87^{10k+5}-135\cdot 87^{9k+5}+1546\cdot 87^{8k+4}-151\cdot 87^{7k+4}\\||+1049\cdot 87^{6k+3}-70\cdot 87^{5k+3}+337\cdot 87^{4k+2}-15\cdot 87^{3k+2}+44\cdot 87^{2k+1}\\||-87^{k+1}+1)\\|\times|(87^{56k+28}+87^{55k+28}+44\cdot 87^{54k+27}+15\cdot 87^{53k+27}+337\cdot 87^{52k+26}\\||+70\cdot 87^{51k+26}+1049\cdot 87^{50k+25}+151\cdot 87^{49k+25}+1546\cdot 87^{48k+24}+135\cdot 87^{47k+24}\\||+413\cdot 87^{46k+23}-104\cdot 87^{45k+23}-2657\cdot 87^{44k+22}-453\cdot 87^{43k+22}-5164\cdot 87^{42k+21}\\||-539\cdot 87^{41k+21}-3593\cdot 87^{40k+20}-104\cdot 87^{39k+20}+2381\cdot 87^{38k+19}+615\cdot 87^{37k+19}\\||+8284\cdot 87^{36k+18}+1001\cdot 87^{35k+18}+8519\cdot 87^{34k+17}+630\cdot 87^{33k+17}+1879\cdot 87^{32k+16}\\||-287\cdot 87^{31k+16}-6850\cdot 87^{30k+15}-1047\cdot 87^{29k+15}-10811\cdot 87^{28k+14}-1047\cdot 87^{27k+14}\\||-6850\cdot 87^{26k+13}-287\cdot 87^{25k+13}+1879\cdot 87^{24k+12}+630\cdot 87^{23k+12}+8519\cdot 87^{22k+11}\\||+1001\cdot 87^{21k+11}+8284\cdot 87^{20k+10}+615\cdot 87^{19k+10}+2381\cdot 87^{18k+9}-104\cdot 87^{17k+9}\\||-3593\cdot 87^{16k+8}-539\cdot 87^{15k+8}-5164\cdot 87^{14k+7}-453\cdot 87^{13k+7}-2657\cdot 87^{12k+6}\\||-104\cdot 87^{11k+6}+413\cdot 87^{10k+5}+135\cdot 87^{9k+5}+1546\cdot 87^{8k+4}+151\cdot 87^{7k+4}\\||+1049\cdot 87^{6k+3}+70\cdot 87^{5k+3}+337\cdot 87^{4k+2}+15\cdot 87^{3k+2}+44\cdot 87^{2k+1}\\||+87^{k+1}+1)\\{\large\Phi}_{89}(89^{2k+1})|=|89^{176k+88}+89^{174k+87}+89^{172k+86}+89^{170k+85}+89^{168k+84}\\||+89^{166k+83}+89^{164k+82}+89^{162k+81}+89^{160k+80}+89^{158k+79}\\||+89^{156k+78}+89^{154k+77}+89^{152k+76}+89^{150k+75}+89^{148k+74}\\||+89^{146k+73}+89^{144k+72}+89^{142k+71}+89^{140k+70}+89^{138k+69}\\||+89^{136k+68}+89^{134k+67}+89^{132k+66}+89^{130k+65}+89^{128k+64}\\||+89^{126k+63}+89^{124k+62}+89^{122k+61}+89^{120k+60}+89^{118k+59}\\||+89^{116k+58}+89^{114k+57}+89^{112k+56}+89^{110k+55}+89^{108k+54}\\||+89^{106k+53}+89^{104k+52}+89^{102k+51}+89^{100k+50}+89^{98k+49}\\||+89^{96k+48}+89^{94k+47}+89^{92k+46}+89^{90k+45}+89^{88k+44}\\||+89^{86k+43}+89^{84k+42}+89^{82k+41}+89^{80k+40}+89^{78k+39}\\||+89^{76k+38}+89^{74k+37}+89^{72k+36}+89^{70k+35}+89^{68k+34}\\||+89^{66k+33}+89^{64k+32}+89^{62k+31}+89^{60k+30}+89^{58k+29}\\||+89^{56k+28}+89^{54k+27}+89^{52k+26}+89^{50k+25}+89^{48k+24}\\||+89^{46k+23}+89^{44k+22}+89^{42k+21}+89^{40k+20}+89^{38k+19}\\||+89^{36k+18}+89^{34k+17}+89^{32k+16}+89^{30k+15}+89^{28k+14}\\||+89^{26k+13}+89^{24k+12}+89^{22k+11}+89^{20k+10}+89^{18k+9}\\||+89^{16k+8}+89^{14k+7}+89^{12k+6}+89^{10k+5}+89^{8k+4}\\||+89^{6k+3}+89^{4k+2}+89^{2k+1}+1\\|=|(89^{88k+44}-89^{87k+44}+45\cdot 89^{86k+43}-15\cdot 89^{85k+43}+323\cdot 89^{84k+42}\\||-59\cdot 89^{83k+42}+729\cdot 89^{82k+41}-75\cdot 89^{81k+41}+471\cdot 89^{80k+40}-19\cdot 89^{79k+40}\\||+59\cdot 89^{78k+39}-19\cdot 89^{77k+39}+373\cdot 89^{76k+38}-47\cdot 89^{75k+38}+429\cdot 89^{74k+37}\\||-59\cdot 89^{73k+37}+875\cdot 89^{72k+36}-111\cdot 89^{71k+36}+683\cdot 89^{70k+35}+11\cdot 89^{69k+35}\\||-655\cdot 89^{68k+34}+47\cdot 89^{67k+34}+285\cdot 89^{66k+33}-79\cdot 89^{65k+33}+529\cdot 89^{64k+32}\\||-9\cdot 89^{63k+32}+115\cdot 89^{62k+31}-65\cdot 89^{61k+31}+807\cdot 89^{60k+30}-17\cdot 89^{59k+30}\\||-813\cdot 89^{58k+29}+111\cdot 89^{57k+29}-223\cdot 89^{56k+28}-79\cdot 89^{55k+28}+739\cdot 89^{54k+27}\\||+23\cdot 89^{53k+27}-975\cdot 89^{52k+26}+73\cdot 89^{51k+26}+121\cdot 89^{50k+25}-25\cdot 89^{49k+25}\\||-663\cdot 89^{48k+24}+161\cdot 89^{47k+24}-1213\cdot 89^{46k+23}+3\cdot 89^{45k+23}+633\cdot 89^{44k+22}\\||+3\cdot 89^{43k+22}-1213\cdot 89^{42k+21}+161\cdot 89^{41k+21}-663\cdot 89^{40k+20}-25\cdot 89^{39k+20}\\||+121\cdot 89^{38k+19}+73\cdot 89^{37k+19}-975\cdot 89^{36k+18}+23\cdot 89^{35k+18}+739\cdot 89^{34k+17}\\||-79\cdot 89^{33k+17}-223\cdot 89^{32k+16}+111\cdot 89^{31k+16}-813\cdot 89^{30k+15}-17\cdot 89^{29k+15}\\||+807\cdot 89^{28k+14}-65\cdot 89^{27k+14}+115\cdot 89^{26k+13}-9\cdot 89^{25k+13}+529\cdot 89^{24k+12}\\||-79\cdot 89^{23k+12}+285\cdot 89^{22k+11}+47\cdot 89^{21k+11}-655\cdot 89^{20k+10}+11\cdot 89^{19k+10}\\||+683\cdot 89^{18k+9}-111\cdot 89^{17k+9}+875\cdot 89^{16k+8}-59\cdot 89^{15k+8}+429\cdot 89^{14k+7}\\||-47\cdot 89^{13k+7}+373\cdot 89^{12k+6}-19\cdot 89^{11k+6}+59\cdot 89^{10k+5}-19\cdot 89^{9k+5}\\||+471\cdot 89^{8k+4}-75\cdot 89^{7k+4}+729\cdot 89^{6k+3}-59\cdot 89^{5k+3}+323\cdot 89^{4k+2}\\||-15\cdot 89^{3k+2}+45\cdot 89^{2k+1}-89^{k+1}+1)\\|\times|(89^{88k+44}+89^{87k+44}+45\cdot 89^{86k+43}+15\cdot 89^{85k+43}+323\cdot 89^{84k+42}\\||+59\cdot 89^{83k+42}+729\cdot 89^{82k+41}+75\cdot 89^{81k+41}+471\cdot 89^{80k+40}+19\cdot 89^{79k+40}\\||+59\cdot 89^{78k+39}+19\cdot 89^{77k+39}+373\cdot 89^{76k+38}+47\cdot 89^{75k+38}+429\cdot 89^{74k+37}\\||+59\cdot 89^{73k+37}+875\cdot 89^{72k+36}+111\cdot 89^{71k+36}+683\cdot 89^{70k+35}-11\cdot 89^{69k+35}\\||-655\cdot 89^{68k+34}-47\cdot 89^{67k+34}+285\cdot 89^{66k+33}+79\cdot 89^{65k+33}+529\cdot 89^{64k+32}\\||+9\cdot 89^{63k+32}+115\cdot 89^{62k+31}+65\cdot 89^{61k+31}+807\cdot 89^{60k+30}+17\cdot 89^{59k+30}\\||-813\cdot 89^{58k+29}-111\cdot 89^{57k+29}-223\cdot 89^{56k+28}+79\cdot 89^{55k+28}+739\cdot 89^{54k+27}\\||-23\cdot 89^{53k+27}-975\cdot 89^{52k+26}-73\cdot 89^{51k+26}+121\cdot 89^{50k+25}+25\cdot 89^{49k+25}\\||-663\cdot 89^{48k+24}-161\cdot 89^{47k+24}-1213\cdot 89^{46k+23}-3\cdot 89^{45k+23}+633\cdot 89^{44k+22}\\||-3\cdot 89^{43k+22}-1213\cdot 89^{42k+21}-161\cdot 89^{41k+21}-663\cdot 89^{40k+20}+25\cdot 89^{39k+20}\\||+121\cdot 89^{38k+19}-73\cdot 89^{37k+19}-975\cdot 89^{36k+18}-23\cdot 89^{35k+18}+739\cdot 89^{34k+17}\\||+79\cdot 89^{33k+17}-223\cdot 89^{32k+16}-111\cdot 89^{31k+16}-813\cdot 89^{30k+15}+17\cdot 89^{29k+15}\\||+807\cdot 89^{28k+14}+65\cdot 89^{27k+14}+115\cdot 89^{26k+13}+9\cdot 89^{25k+13}+529\cdot 89^{24k+12}\\||+79\cdot 89^{23k+12}+285\cdot 89^{22k+11}-47\cdot 89^{21k+11}-655\cdot 89^{20k+10}-11\cdot 89^{19k+10}\\||+683\cdot 89^{18k+9}+111\cdot 89^{17k+9}+875\cdot 89^{16k+8}+59\cdot 89^{15k+8}+429\cdot 89^{14k+7}\\||+47\cdot 89^{13k+7}+373\cdot 89^{12k+6}+19\cdot 89^{11k+6}+59\cdot 89^{10k+5}+19\cdot 89^{9k+5}\\||+471\cdot 89^{8k+4}+75\cdot 89^{7k+4}+729\cdot 89^{6k+3}+59\cdot 89^{5k+3}+323\cdot 89^{4k+2}\\||+15\cdot 89^{3k+2}+45\cdot 89^{2k+1}+89^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{182}(91^{2k+1})\cdots{\large\Phi}_{97}(97^{2k+1})$${\large\Phi}_{182}(91^{2k+1})\cdots{\large\Phi}_{97}(97^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{182}(91^{2k+1})|=|91^{144k+72}+91^{142k+71}-91^{130k+65}-91^{128k+64}-91^{118k+59}\\||+91^{114k+57}+91^{104k+52}-91^{100k+50}+91^{92k+46}+91^{86k+43}\\||-91^{78k+39}-91^{72k+36}-91^{66k+33}+91^{58k+29}+91^{52k+26}\\||-91^{44k+22}+91^{40k+20}+91^{30k+15}-91^{26k+13}-91^{16k+8}\\||-91^{14k+7}+91^{2k+1}+1\\|=|(91^{72k+36}-91^{71k+36}+46\cdot 91^{70k+35}-16\cdot 91^{69k+35}+398\cdot 91^{68k+34}\\||-92\cdot 91^{67k+34}+1712\cdot 91^{66k+33}-319\cdot 91^{65k+33}+5027\cdot 91^{64k+32}-820\cdot 91^{63k+32}\\||+11578\cdot 91^{62k+31}-1722\cdot 91^{61k+31}+22484\cdot 91^{60k+30}-3129\cdot 91^{59k+30}+38604\cdot 91^{58k+29}\\||-5117\cdot 91^{57k+29}+60518\cdot 91^{56k+28}-7730\cdot 91^{55k+28}+88474\cdot 91^{54k+27}-10974\cdot 91^{53k+27}\\||+122293\cdot 91^{52k+26}-14798\cdot 91^{51k+26}+161111\cdot 91^{50k+25}-19068\cdot 91^{49k+25}+203238\cdot 91^{48k+24}\\||-23566\cdot 91^{47k+24}+246235\cdot 91^{46k+23}-28004\cdot 91^{45k+23}+287132\cdot 91^{44k+22}-32059\cdot 91^{43k+22}\\||+322848\cdot 91^{42k+21}-35418\cdot 91^{41k+21}+350578\cdot 91^{40k+20}-37815\cdot 91^{39k+20}+368130\cdot 91^{38k+19}\\||-39062\cdot 91^{37k+19}+374137\cdot 91^{36k+18}-39062\cdot 91^{35k+18}+368130\cdot 91^{34k+17}-37815\cdot 91^{33k+17}\\||+350578\cdot 91^{32k+16}-35418\cdot 91^{31k+16}+322848\cdot 91^{30k+15}-32059\cdot 91^{29k+15}+287132\cdot 91^{28k+14}\\||-28004\cdot 91^{27k+14}+246235\cdot 91^{26k+13}-23566\cdot 91^{25k+13}+203238\cdot 91^{24k+12}-19068\cdot 91^{23k+12}\\||+161111\cdot 91^{22k+11}-14798\cdot 91^{21k+11}+122293\cdot 91^{20k+10}-10974\cdot 91^{19k+10}+88474\cdot 91^{18k+9}\\||-7730\cdot 91^{17k+9}+60518\cdot 91^{16k+8}-5117\cdot 91^{15k+8}+38604\cdot 91^{14k+7}-3129\cdot 91^{13k+7}\\||+22484\cdot 91^{12k+6}-1722\cdot 91^{11k+6}+11578\cdot 91^{10k+5}-820\cdot 91^{9k+5}+5027\cdot 91^{8k+4}\\||-319\cdot 91^{7k+4}+1712\cdot 91^{6k+3}-92\cdot 91^{5k+3}+398\cdot 91^{4k+2}-16\cdot 91^{3k+2}\\||+46\cdot 91^{2k+1}-91^{k+1}+1)\\|\times|(91^{72k+36}+91^{71k+36}+46\cdot 91^{70k+35}+16\cdot 91^{69k+35}+398\cdot 91^{68k+34}\\||+92\cdot 91^{67k+34}+1712\cdot 91^{66k+33}+319\cdot 91^{65k+33}+5027\cdot 91^{64k+32}+820\cdot 91^{63k+32}\\||+11578\cdot 91^{62k+31}+1722\cdot 91^{61k+31}+22484\cdot 91^{60k+30}+3129\cdot 91^{59k+30}+38604\cdot 91^{58k+29}\\||+5117\cdot 91^{57k+29}+60518\cdot 91^{56k+28}+7730\cdot 91^{55k+28}+88474\cdot 91^{54k+27}+10974\cdot 91^{53k+27}\\||+122293\cdot 91^{52k+26}+14798\cdot 91^{51k+26}+161111\cdot 91^{50k+25}+19068\cdot 91^{49k+25}+203238\cdot 91^{48k+24}\\||+23566\cdot 91^{47k+24}+246235\cdot 91^{46k+23}+28004\cdot 91^{45k+23}+287132\cdot 91^{44k+22}+32059\cdot 91^{43k+22}\\||+322848\cdot 91^{42k+21}+35418\cdot 91^{41k+21}+350578\cdot 91^{40k+20}+37815\cdot 91^{39k+20}+368130\cdot 91^{38k+19}\\||+39062\cdot 91^{37k+19}+374137\cdot 91^{36k+18}+39062\cdot 91^{35k+18}+368130\cdot 91^{34k+17}+37815\cdot 91^{33k+17}\\||+350578\cdot 91^{32k+16}+35418\cdot 91^{31k+16}+322848\cdot 91^{30k+15}+32059\cdot 91^{29k+15}+287132\cdot 91^{28k+14}\\||+28004\cdot 91^{27k+14}+246235\cdot 91^{26k+13}+23566\cdot 91^{25k+13}+203238\cdot 91^{24k+12}+19068\cdot 91^{23k+12}\\||+161111\cdot 91^{22k+11}+14798\cdot 91^{21k+11}+122293\cdot 91^{20k+10}+10974\cdot 91^{19k+10}+88474\cdot 91^{18k+9}\\||+7730\cdot 91^{17k+9}+60518\cdot 91^{16k+8}+5117\cdot 91^{15k+8}+38604\cdot 91^{14k+7}+3129\cdot 91^{13k+7}\\||+22484\cdot 91^{12k+6}+1722\cdot 91^{11k+6}+11578\cdot 91^{10k+5}+820\cdot 91^{9k+5}+5027\cdot 91^{8k+4}\\||+319\cdot 91^{7k+4}+1712\cdot 91^{6k+3}+92\cdot 91^{5k+3}+398\cdot 91^{4k+2}+16\cdot 91^{3k+2}\\||+46\cdot 91^{2k+1}+91^{k+1}+1)\\{\large\Phi}_{93}(93^{2k+1})|=|93^{120k+60}-93^{118k+59}+93^{114k+57}-93^{112k+56}+93^{108k+54}\\||-93^{106k+53}+93^{102k+51}-93^{100k+50}+93^{96k+48}-93^{94k+47}\\||+93^{90k+45}-93^{88k+44}+93^{84k+42}-93^{82k+41}+93^{78k+39}\\||-93^{76k+38}+93^{72k+36}-93^{70k+35}+93^{66k+33}-93^{64k+32}\\||+93^{60k+30}-93^{56k+28}+93^{54k+27}-93^{50k+25}+93^{48k+24}\\||-93^{44k+22}+93^{42k+21}-93^{38k+19}+93^{36k+18}-93^{32k+16}\\||+93^{30k+15}-93^{26k+13}+93^{24k+12}-93^{20k+10}+93^{18k+9}\\||-93^{14k+7}+93^{12k+6}-93^{8k+4}+93^{6k+3}-93^{2k+1}+1\\|=|(93^{60k+30}-93^{59k+30}+46\cdot 93^{58k+29}-15\cdot 93^{57k+29}+337\cdot 93^{56k+28}\\||-64\cdot 93^{55k+28}+913\cdot 93^{54k+27}-113\cdot 93^{53k+27}+1006\cdot 93^{52k+26}-63\cdot 93^{51k+26}\\||+93^{50k+25}+58\cdot 93^{49k+25}-785\cdot 93^{48k+24}+53\cdot 93^{47k+24}+190\cdot 93^{46k+23}\\||-105\cdot 93^{45k+23}+1555\cdot 93^{44k+22}-158\cdot 93^{43k+22}+889\cdot 93^{42k+21}+9\cdot 93^{41k+21}\\||-956\cdot 93^{40k+20}+133\cdot 93^{39k+20}-851\cdot 93^{38k+19}-22\cdot 93^{37k+19}+1471\cdot 93^{36k+18}\\||-245\cdot 93^{35k+18}+2458\cdot 93^{34k+17}-175\cdot 93^{33k+17}+409\cdot 93^{32k+16}+78\cdot 93^{31k+16}\\||-1217\cdot 93^{30k+15}+78\cdot 93^{29k+15}+409\cdot 93^{28k+14}-175\cdot 93^{27k+14}+2458\cdot 93^{26k+13}\\||-245\cdot 93^{25k+13}+1471\cdot 93^{24k+12}-22\cdot 93^{23k+12}-851\cdot 93^{22k+11}+133\cdot 93^{21k+11}\\||-956\cdot 93^{20k+10}+9\cdot 93^{19k+10}+889\cdot 93^{18k+9}-158\cdot 93^{17k+9}+1555\cdot 93^{16k+8}\\||-105\cdot 93^{15k+8}+190\cdot 93^{14k+7}+53\cdot 93^{13k+7}-785\cdot 93^{12k+6}+58\cdot 93^{11k+6}\\||+93^{10k+5}-63\cdot 93^{9k+5}+1006\cdot 93^{8k+4}-113\cdot 93^{7k+4}+913\cdot 93^{6k+3}\\||-64\cdot 93^{5k+3}+337\cdot 93^{4k+2}-15\cdot 93^{3k+2}+46\cdot 93^{2k+1}-93^{k+1}+1)\\|\times|(93^{60k+30}+93^{59k+30}+46\cdot 93^{58k+29}+15\cdot 93^{57k+29}+337\cdot 93^{56k+28}\\||+64\cdot 93^{55k+28}+913\cdot 93^{54k+27}+113\cdot 93^{53k+27}+1006\cdot 93^{52k+26}+63\cdot 93^{51k+26}\\||+93^{50k+25}-58\cdot 93^{49k+25}-785\cdot 93^{48k+24}-53\cdot 93^{47k+24}+190\cdot 93^{46k+23}\\||+105\cdot 93^{45k+23}+1555\cdot 93^{44k+22}+158\cdot 93^{43k+22}+889\cdot 93^{42k+21}-9\cdot 93^{41k+21}\\||-956\cdot 93^{40k+20}-133\cdot 93^{39k+20}-851\cdot 93^{38k+19}+22\cdot 93^{37k+19}+1471\cdot 93^{36k+18}\\||+245\cdot 93^{35k+18}+2458\cdot 93^{34k+17}+175\cdot 93^{33k+17}+409\cdot 93^{32k+16}-78\cdot 93^{31k+16}\\||-1217\cdot 93^{30k+15}-78\cdot 93^{29k+15}+409\cdot 93^{28k+14}+175\cdot 93^{27k+14}+2458\cdot 93^{26k+13}\\||+245\cdot 93^{25k+13}+1471\cdot 93^{24k+12}+22\cdot 93^{23k+12}-851\cdot 93^{22k+11}-133\cdot 93^{21k+11}\\||-956\cdot 93^{20k+10}-9\cdot 93^{19k+10}+889\cdot 93^{18k+9}+158\cdot 93^{17k+9}+1555\cdot 93^{16k+8}\\||+105\cdot 93^{15k+8}+190\cdot 93^{14k+7}-53\cdot 93^{13k+7}-785\cdot 93^{12k+6}-58\cdot 93^{11k+6}\\||+93^{10k+5}+63\cdot 93^{9k+5}+1006\cdot 93^{8k+4}+113\cdot 93^{7k+4}+913\cdot 93^{6k+3}\\||+64\cdot 93^{5k+3}+337\cdot 93^{4k+2}+15\cdot 93^{3k+2}+46\cdot 93^{2k+1}+93^{k+1}+1)\\{\large\Phi}_{188}(94^{2k+1})|=|94^{184k+92}-94^{180k+90}+94^{176k+88}-94^{172k+86}+94^{168k+84}\\||-94^{164k+82}+94^{160k+80}-94^{156k+78}+94^{152k+76}-94^{148k+74}\\||+94^{144k+72}-94^{140k+70}+94^{136k+68}-94^{132k+66}+94^{128k+64}\\||-94^{124k+62}+94^{120k+60}-94^{116k+58}+94^{112k+56}-94^{108k+54}\\||+94^{104k+52}-94^{100k+50}+94^{96k+48}-94^{92k+46}+94^{88k+44}\\||-94^{84k+42}+94^{80k+40}-94^{76k+38}+94^{72k+36}-94^{68k+34}\\||+94^{64k+32}-94^{60k+30}+94^{56k+28}-94^{52k+26}+94^{48k+24}\\||-94^{44k+22}+94^{40k+20}-94^{36k+18}+94^{32k+16}-94^{28k+14}\\||+94^{24k+12}-94^{20k+10}+94^{16k+8}-94^{12k+6}+94^{8k+4}\\||-94^{4k+2}+1\\|=|(94^{92k+46}-94^{91k+46}+47\cdot 94^{90k+45}-16\cdot 94^{89k+45}+399\cdot 94^{88k+44}\\||-89\cdot 94^{87k+44}+1645\cdot 94^{86k+43}-294\cdot 94^{85k+43}+4577\cdot 94^{84k+42}-711\cdot 94^{83k+42}\\||+9823\cdot 94^{82k+41}-1376\cdot 94^{81k+41}+17375\cdot 94^{80k+40}-2249\cdot 94^{79k+40}+26461\cdot 94^{78k+39}\\||-3212\cdot 94^{77k+39}+35645\cdot 94^{76k+38}-4105\cdot 94^{75k+38}+43475\cdot 94^{74k+37}-4806\cdot 94^{73k+37}\\||+49159\cdot 94^{72k+36}-5285\cdot 94^{71k+36}+52969\cdot 94^{70k+35}-5620\cdot 94^{69k+35}+55921\cdot 94^{68k+34}\\||-5917\cdot 94^{67k+34}+58891\cdot 94^{66k+33}-6240\cdot 94^{65k+33}+62139\cdot 94^{64k+32}-6573\cdot 94^{63k+32}\\||+65189\cdot 94^{62k+31}-6856\cdot 94^{61k+31}+67549\cdot 94^{60k+30}-7059\cdot 94^{59k+30}+69231\cdot 94^{58k+29}\\||-7228\cdot 94^{57k+29}+71159\cdot 94^{56k+28}-7491\cdot 94^{55k+28}+74589\cdot 94^{54k+27}-7950\cdot 94^{53k+27}\\||+80033\cdot 94^{52k+26}-8589\cdot 94^{51k+26}+86527\cdot 94^{50k+25}-9230\cdot 94^{49k+25}+91867\cdot 94^{48k+24}\\||-9635\cdot 94^{47k+24}+93953\cdot 94^{46k+23}-9635\cdot 94^{45k+23}+91867\cdot 94^{44k+22}-9230\cdot 94^{43k+22}\\||+86527\cdot 94^{42k+21}-8589\cdot 94^{41k+21}+80033\cdot 94^{40k+20}-7950\cdot 94^{39k+20}+74589\cdot 94^{38k+19}\\||-7491\cdot 94^{37k+19}+71159\cdot 94^{36k+18}-7228\cdot 94^{35k+18}+69231\cdot 94^{34k+17}-7059\cdot 94^{33k+17}\\||+67549\cdot 94^{32k+16}-6856\cdot 94^{31k+16}+65189\cdot 94^{30k+15}-6573\cdot 94^{29k+15}+62139\cdot 94^{28k+14}\\||-6240\cdot 94^{27k+14}+58891\cdot 94^{26k+13}-5917\cdot 94^{25k+13}+55921\cdot 94^{24k+12}-5620\cdot 94^{23k+12}\\||+52969\cdot 94^{22k+11}-5285\cdot 94^{21k+11}+49159\cdot 94^{20k+10}-4806\cdot 94^{19k+10}+43475\cdot 94^{18k+9}\\||-4105\cdot 94^{17k+9}+35645\cdot 94^{16k+8}-3212\cdot 94^{15k+8}+26461\cdot 94^{14k+7}-2249\cdot 94^{13k+7}\\||+17375\cdot 94^{12k+6}-1376\cdot 94^{11k+6}+9823\cdot 94^{10k+5}-711\cdot 94^{9k+5}+4577\cdot 94^{8k+4}\\||-294\cdot 94^{7k+4}+1645\cdot 94^{6k+3}-89\cdot 94^{5k+3}+399\cdot 94^{4k+2}-16\cdot 94^{3k+2}\\||+47\cdot 94^{2k+1}-94^{k+1}+1)\\|\times|(94^{92k+46}+94^{91k+46}+47\cdot 94^{90k+45}+16\cdot 94^{89k+45}+399\cdot 94^{88k+44}\\||+89\cdot 94^{87k+44}+1645\cdot 94^{86k+43}+294\cdot 94^{85k+43}+4577\cdot 94^{84k+42}+711\cdot 94^{83k+42}\\||+9823\cdot 94^{82k+41}+1376\cdot 94^{81k+41}+17375\cdot 94^{80k+40}+2249\cdot 94^{79k+40}+26461\cdot 94^{78k+39}\\||+3212\cdot 94^{77k+39}+35645\cdot 94^{76k+38}+4105\cdot 94^{75k+38}+43475\cdot 94^{74k+37}+4806\cdot 94^{73k+37}\\||+49159\cdot 94^{72k+36}+5285\cdot 94^{71k+36}+52969\cdot 94^{70k+35}+5620\cdot 94^{69k+35}+55921\cdot 94^{68k+34}\\||+5917\cdot 94^{67k+34}+58891\cdot 94^{66k+33}+6240\cdot 94^{65k+33}+62139\cdot 94^{64k+32}+6573\cdot 94^{63k+32}\\||+65189\cdot 94^{62k+31}+6856\cdot 94^{61k+31}+67549\cdot 94^{60k+30}+7059\cdot 94^{59k+30}+69231\cdot 94^{58k+29}\\||+7228\cdot 94^{57k+29}+71159\cdot 94^{56k+28}+7491\cdot 94^{55k+28}+74589\cdot 94^{54k+27}+7950\cdot 94^{53k+27}\\||+80033\cdot 94^{52k+26}+8589\cdot 94^{51k+26}+86527\cdot 94^{50k+25}+9230\cdot 94^{49k+25}+91867\cdot 94^{48k+24}\\||+9635\cdot 94^{47k+24}+93953\cdot 94^{46k+23}+9635\cdot 94^{45k+23}+91867\cdot 94^{44k+22}+9230\cdot 94^{43k+22}\\||+86527\cdot 94^{42k+21}+8589\cdot 94^{41k+21}+80033\cdot 94^{40k+20}+7950\cdot 94^{39k+20}+74589\cdot 94^{38k+19}\\||+7491\cdot 94^{37k+19}+71159\cdot 94^{36k+18}+7228\cdot 94^{35k+18}+69231\cdot 94^{34k+17}+7059\cdot 94^{33k+17}\\||+67549\cdot 94^{32k+16}+6856\cdot 94^{31k+16}+65189\cdot 94^{30k+15}+6573\cdot 94^{29k+15}+62139\cdot 94^{28k+14}\\||+6240\cdot 94^{27k+14}+58891\cdot 94^{26k+13}+5917\cdot 94^{25k+13}+55921\cdot 94^{24k+12}+5620\cdot 94^{23k+12}\\||+52969\cdot 94^{22k+11}+5285\cdot 94^{21k+11}+49159\cdot 94^{20k+10}+4806\cdot 94^{19k+10}+43475\cdot 94^{18k+9}\\||+4105\cdot 94^{17k+9}+35645\cdot 94^{16k+8}+3212\cdot 94^{15k+8}+26461\cdot 94^{14k+7}+2249\cdot 94^{13k+7}\\||+17375\cdot 94^{12k+6}+1376\cdot 94^{11k+6}+9823\cdot 94^{10k+5}+711\cdot 94^{9k+5}+4577\cdot 94^{8k+4}\\||+294\cdot 94^{7k+4}+1645\cdot 94^{6k+3}+89\cdot 94^{5k+3}+399\cdot 94^{4k+2}+16\cdot 94^{3k+2}\\||+47\cdot 94^{2k+1}+94^{k+1}+1)\\{\large\Phi}_{190}(95^{2k+1})|=|95^{144k+72}+95^{142k+71}-95^{134k+67}-95^{132k+66}+95^{124k+62}\\||+95^{122k+61}-95^{114k+57}-95^{112k+56}-95^{106k+53}+95^{102k+51}\\||+95^{96k+48}-95^{92k+46}-95^{86k+43}+95^{82k+41}+95^{76k+38}\\||-95^{72k+36}+95^{68k+34}+95^{62k+31}-95^{58k+29}-95^{52k+26}\\||+95^{48k+24}+95^{42k+21}-95^{38k+19}-95^{32k+16}-95^{30k+15}\\||+95^{22k+11}+95^{20k+10}-95^{12k+6}-95^{10k+5}+95^{2k+1}+1\\|=|(95^{72k+36}-95^{71k+36}+48\cdot 95^{70k+35}-16\cdot 95^{69k+35}+368\cdot 95^{68k+34}\\||-67\cdot 95^{67k+34}+861\cdot 95^{66k+33}-78\cdot 95^{65k+33}+210\cdot 95^{64k+32}+64\cdot 95^{63k+32}\\||-1221\cdot 95^{62k+31}+101\cdot 95^{61k+31}+262\cdot 95^{60k+30}-198\cdot 95^{59k+30}+2862\cdot 95^{58k+29}\\||-215\cdot 95^{57k+29}-281\cdot 95^{56k+28}+296\cdot 95^{55k+28}-3800\cdot 95^{54k+27}+203\cdot 95^{53k+27}\\||+1716\cdot 95^{52k+26}-491\cdot 95^{51k+26}+4758\cdot 95^{50k+25}-118\cdot 95^{49k+25}-3817\cdot 95^{48k+24}\\||+672\cdot 95^{47k+24}-4699\cdot 95^{46k+23}-88\cdot 95^{45k+23}+6320\cdot 95^{44k+22}-777\cdot 95^{43k+22}\\||+3294\cdot 95^{42k+21}+391\cdot 95^{41k+21}-8738\cdot 95^{40k+20}+798\cdot 95^{39k+20}-1343\cdot 95^{38k+19}\\||-632\cdot 95^{37k+19}+9439\cdot 95^{36k+18}-632\cdot 95^{35k+18}-1343\cdot 95^{34k+17}+798\cdot 95^{33k+17}\\||-8738\cdot 95^{32k+16}+391\cdot 95^{31k+16}+3294\cdot 95^{30k+15}-777\cdot 95^{29k+15}+6320\cdot 95^{28k+14}\\||-88\cdot 95^{27k+14}-4699\cdot 95^{26k+13}+672\cdot 95^{25k+13}-3817\cdot 95^{24k+12}-118\cdot 95^{23k+12}\\||+4758\cdot 95^{22k+11}-491\cdot 95^{21k+11}+1716\cdot 95^{20k+10}+203\cdot 95^{19k+10}-3800\cdot 95^{18k+9}\\||+296\cdot 95^{17k+9}-281\cdot 95^{16k+8}-215\cdot 95^{15k+8}+2862\cdot 95^{14k+7}-198\cdot 95^{13k+7}\\||+262\cdot 95^{12k+6}+101\cdot 95^{11k+6}-1221\cdot 95^{10k+5}+64\cdot 95^{9k+5}+210\cdot 95^{8k+4}\\||-78\cdot 95^{7k+4}+861\cdot 95^{6k+3}-67\cdot 95^{5k+3}+368\cdot 95^{4k+2}-16\cdot 95^{3k+2}\\||+48\cdot 95^{2k+1}-95^{k+1}+1)\\|\times|(95^{72k+36}+95^{71k+36}+48\cdot 95^{70k+35}+16\cdot 95^{69k+35}+368\cdot 95^{68k+34}\\||+67\cdot 95^{67k+34}+861\cdot 95^{66k+33}+78\cdot 95^{65k+33}+210\cdot 95^{64k+32}-64\cdot 95^{63k+32}\\||-1221\cdot 95^{62k+31}-101\cdot 95^{61k+31}+262\cdot 95^{60k+30}+198\cdot 95^{59k+30}+2862\cdot 95^{58k+29}\\||+215\cdot 95^{57k+29}-281\cdot 95^{56k+28}-296\cdot 95^{55k+28}-3800\cdot 95^{54k+27}-203\cdot 95^{53k+27}\\||+1716\cdot 95^{52k+26}+491\cdot 95^{51k+26}+4758\cdot 95^{50k+25}+118\cdot 95^{49k+25}-3817\cdot 95^{48k+24}\\||-672\cdot 95^{47k+24}-4699\cdot 95^{46k+23}+88\cdot 95^{45k+23}+6320\cdot 95^{44k+22}+777\cdot 95^{43k+22}\\||+3294\cdot 95^{42k+21}-391\cdot 95^{41k+21}-8738\cdot 95^{40k+20}-798\cdot 95^{39k+20}-1343\cdot 95^{38k+19}\\||+632\cdot 95^{37k+19}+9439\cdot 95^{36k+18}+632\cdot 95^{35k+18}-1343\cdot 95^{34k+17}-798\cdot 95^{33k+17}\\||-8738\cdot 95^{32k+16}-391\cdot 95^{31k+16}+3294\cdot 95^{30k+15}+777\cdot 95^{29k+15}+6320\cdot 95^{28k+14}\\||+88\cdot 95^{27k+14}-4699\cdot 95^{26k+13}-672\cdot 95^{25k+13}-3817\cdot 95^{24k+12}+118\cdot 95^{23k+12}\\||+4758\cdot 95^{22k+11}+491\cdot 95^{21k+11}+1716\cdot 95^{20k+10}-203\cdot 95^{19k+10}-3800\cdot 95^{18k+9}\\||-296\cdot 95^{17k+9}-281\cdot 95^{16k+8}+215\cdot 95^{15k+8}+2862\cdot 95^{14k+7}+198\cdot 95^{13k+7}\\||+262\cdot 95^{12k+6}-101\cdot 95^{11k+6}-1221\cdot 95^{10k+5}-64\cdot 95^{9k+5}+210\cdot 95^{8k+4}\\||+78\cdot 95^{7k+4}+861\cdot 95^{6k+3}+67\cdot 95^{5k+3}+368\cdot 95^{4k+2}+16\cdot 95^{3k+2}\\||+48\cdot 95^{2k+1}+95^{k+1}+1)\\{\large\Phi}_{97}(97^{2k+1})|=|97^{192k+96}+97^{190k+95}+97^{188k+94}+97^{186k+93}+97^{184k+92}\\||+97^{182k+91}+97^{180k+90}+97^{178k+89}+97^{176k+88}+97^{174k+87}\\||+97^{172k+86}+97^{170k+85}+97^{168k+84}+97^{166k+83}+97^{164k+82}\\||+97^{162k+81}+97^{160k+80}+97^{158k+79}+97^{156k+78}+97^{154k+77}\\||+97^{152k+76}+97^{150k+75}+97^{148k+74}+97^{146k+73}+97^{144k+72}\\||+97^{142k+71}+97^{140k+70}+97^{138k+69}+97^{136k+68}+97^{134k+67}\\||+97^{132k+66}+97^{130k+65}+97^{128k+64}+97^{126k+63}+97^{124k+62}\\||+97^{122k+61}+97^{120k+60}+97^{118k+59}+97^{116k+58}+97^{114k+57}\\||+97^{112k+56}+97^{110k+55}+97^{108k+54}+97^{106k+53}+97^{104k+52}\\||+97^{102k+51}+97^{100k+50}+97^{98k+49}+97^{96k+48}+97^{94k+47}\\||+97^{92k+46}+97^{90k+45}+97^{88k+44}+97^{86k+43}+97^{84k+42}\\||+97^{82k+41}+97^{80k+40}+97^{78k+39}+97^{76k+38}+97^{74k+37}\\||+97^{72k+36}+97^{70k+35}+97^{68k+34}+97^{66k+33}+97^{64k+32}\\||+97^{62k+31}+97^{60k+30}+97^{58k+29}+97^{56k+28}+97^{54k+27}\\||+97^{52k+26}+97^{50k+25}+97^{48k+24}+97^{46k+23}+97^{44k+22}\\||+97^{42k+21}+97^{40k+20}+97^{38k+19}+97^{36k+18}+97^{34k+17}\\||+97^{32k+16}+97^{30k+15}+97^{28k+14}+97^{26k+13}+97^{24k+12}\\||+97^{22k+11}+97^{20k+10}+97^{18k+9}+97^{16k+8}+97^{14k+7}\\||+97^{12k+6}+97^{10k+5}+97^{8k+4}+97^{6k+3}+97^{4k+2}\\||+97^{2k+1}+1\\|=|(97^{96k+48}-97^{95k+48}+49\cdot 97^{94k+47}-17\cdot 97^{93k+47}+449\cdot 97^{92k+46}\\||-103\cdot 97^{91k+46}+2007\cdot 97^{90k+45}-361\cdot 97^{89k+45}+5721\cdot 97^{88k+44}-857\cdot 97^{87k+44}\\||+11483\cdot 97^{86k+43}-1467\cdot 97^{85k+43}+16823\cdot 97^{84k+42}-1837\cdot 97^{83k+42}+17887\cdot 97^{82k+41}\\||-1637\cdot 97^{81k+41}+13077\cdot 97^{80k+40}-951\cdot 97^{79k+40}+5803\cdot 97^{78k+39}-321\cdot 97^{77k+39}\\||+1919\cdot 97^{76k+38}-209\cdot 97^{75k+38}+3009\cdot 97^{74k+37}-383\cdot 97^{73k+37}+3211\cdot 97^{72k+36}\\||-43\cdot 97^{71k+36}-4915\cdot 97^{70k+35}+1255\cdot 97^{69k+35}-20741\cdot 97^{68k+34}+2887\cdot 97^{67k+34}\\||-33801\cdot 97^{66k+33}+3621\cdot 97^{65k+33}-33645\cdot 97^{64k+32}+2873\cdot 97^{63k+32}-20927\cdot 97^{62k+31}\\||+1343\cdot 97^{61k+31}-6763\cdot 97^{60k+30}+257\cdot 97^{59k+30}-691\cdot 97^{58k+29}+57\cdot 97^{57k+29}\\||-875\cdot 97^{56k+28}+21\cdot 97^{55k+28}+2557\cdot 97^{54k+27}-797\cdot 97^{53k+27}+15261\cdot 97^{52k+26}\\||-2399\cdot 97^{51k+26}+31337\cdot 97^{50k+25}-3733\cdot 97^{49k+25}+38721\cdot 97^{48k+24}-3733\cdot 97^{47k+24}\\||+31337\cdot 97^{46k+23}-2399\cdot 97^{45k+23}+15261\cdot 97^{44k+22}-797\cdot 97^{43k+22}+2557\cdot 97^{42k+21}\\||+21\cdot 97^{41k+21}-875\cdot 97^{40k+20}+57\cdot 97^{39k+20}-691\cdot 97^{38k+19}+257\cdot 97^{37k+19}\\||-6763\cdot 97^{36k+18}+1343\cdot 97^{35k+18}-20927\cdot 97^{34k+17}+2873\cdot 97^{33k+17}-33645\cdot 97^{32k+16}\\||+3621\cdot 97^{31k+16}-33801\cdot 97^{30k+15}+2887\cdot 97^{29k+15}-20741\cdot 97^{28k+14}+1255\cdot 97^{27k+14}\\||-4915\cdot 97^{26k+13}-43\cdot 97^{25k+13}+3211\cdot 97^{24k+12}-383\cdot 97^{23k+12}+3009\cdot 97^{22k+11}\\||-209\cdot 97^{21k+11}+1919\cdot 97^{20k+10}-321\cdot 97^{19k+10}+5803\cdot 97^{18k+9}-951\cdot 97^{17k+9}\\||+13077\cdot 97^{16k+8}-1637\cdot 97^{15k+8}+17887\cdot 97^{14k+7}-1837\cdot 97^{13k+7}+16823\cdot 97^{12k+6}\\||-1467\cdot 97^{11k+6}+11483\cdot 97^{10k+5}-857\cdot 97^{9k+5}+5721\cdot 97^{8k+4}-361\cdot 97^{7k+4}\\||+2007\cdot 97^{6k+3}-103\cdot 97^{5k+3}+449\cdot 97^{4k+2}-17\cdot 97^{3k+2}+49\cdot 97^{2k+1}\\||-97^{k+1}+1)\\|\times|(97^{96k+48}+97^{95k+48}+49\cdot 97^{94k+47}+17\cdot 97^{93k+47}+449\cdot 97^{92k+46}\\||+103\cdot 97^{91k+46}+2007\cdot 97^{90k+45}+361\cdot 97^{89k+45}+5721\cdot 97^{88k+44}+857\cdot 97^{87k+44}\\||+11483\cdot 97^{86k+43}+1467\cdot 97^{85k+43}+16823\cdot 97^{84k+42}+1837\cdot 97^{83k+42}+17887\cdot 97^{82k+41}\\||+1637\cdot 97^{81k+41}+13077\cdot 97^{80k+40}+951\cdot 97^{79k+40}+5803\cdot 97^{78k+39}+321\cdot 97^{77k+39}\\||+1919\cdot 97^{76k+38}+209\cdot 97^{75k+38}+3009\cdot 97^{74k+37}+383\cdot 97^{73k+37}+3211\cdot 97^{72k+36}\\||+43\cdot 97^{71k+36}-4915\cdot 97^{70k+35}-1255\cdot 97^{69k+35}-20741\cdot 97^{68k+34}-2887\cdot 97^{67k+34}\\||-33801\cdot 97^{66k+33}-3621\cdot 97^{65k+33}-33645\cdot 97^{64k+32}-2873\cdot 97^{63k+32}-20927\cdot 97^{62k+31}\\||-1343\cdot 97^{61k+31}-6763\cdot 97^{60k+30}-257\cdot 97^{59k+30}-691\cdot 97^{58k+29}-57\cdot 97^{57k+29}\\||-875\cdot 97^{56k+28}-21\cdot 97^{55k+28}+2557\cdot 97^{54k+27}+797\cdot 97^{53k+27}+15261\cdot 97^{52k+26}\\||+2399\cdot 97^{51k+26}+31337\cdot 97^{50k+25}+3733\cdot 97^{49k+25}+38721\cdot 97^{48k+24}+3733\cdot 97^{47k+24}\\||+31337\cdot 97^{46k+23}+2399\cdot 97^{45k+23}+15261\cdot 97^{44k+22}+797\cdot 97^{43k+22}+2557\cdot 97^{42k+21}\\||-21\cdot 97^{41k+21}-875\cdot 97^{40k+20}-57\cdot 97^{39k+20}-691\cdot 97^{38k+19}-257\cdot 97^{37k+19}\\||-6763\cdot 97^{36k+18}-1343\cdot 97^{35k+18}-20927\cdot 97^{34k+17}-2873\cdot 97^{33k+17}-33645\cdot 97^{32k+16}\\||-3621\cdot 97^{31k+16}-33801\cdot 97^{30k+15}-2887\cdot 97^{29k+15}-20741\cdot 97^{28k+14}-1255\cdot 97^{27k+14}\\||-4915\cdot 97^{26k+13}+43\cdot 97^{25k+13}+3211\cdot 97^{24k+12}+383\cdot 97^{23k+12}+3009\cdot 97^{22k+11}\\||+209\cdot 97^{21k+11}+1919\cdot 97^{20k+10}+321\cdot 97^{19k+10}+5803\cdot 97^{18k+9}+951\cdot 97^{17k+9}\\||+13077\cdot 97^{16k+8}+1637\cdot 97^{15k+8}+17887\cdot 97^{14k+7}+1837\cdot 97^{13k+7}+16823\cdot 97^{12k+6}\\||+1467\cdot 97^{11k+6}+11483\cdot 97^{10k+5}+857\cdot 97^{9k+5}+5721\cdot 97^{8k+4}+361\cdot 97^{7k+4}\\||+2007\cdot 97^{6k+3}+103\cdot 97^{5k+3}+449\cdot 97^{4k+2}+17\cdot 97^{3k+2}+49\cdot 97^{2k+1}\\||+97^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{101}(101^{2k+1})\cdots{\large\Phi}_{105}(105^{2k+1})$${\large\Phi}_{101}(101^{2k+1})\cdots{\large\Phi}_{105}(105^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{101}(101^{2k+1})|=|101^{200k+100}+101^{198k+99}+101^{196k+98}+101^{194k+97}+101^{192k+96}\\||+101^{190k+95}+101^{188k+94}+101^{186k+93}+101^{184k+92}+101^{182k+91}\\||+101^{180k+90}+101^{178k+89}+101^{176k+88}+101^{174k+87}+101^{172k+86}\\||+101^{170k+85}+101^{168k+84}+101^{166k+83}+101^{164k+82}+101^{162k+81}\\||+101^{160k+80}+101^{158k+79}+101^{156k+78}+101^{154k+77}+101^{152k+76}\\||+101^{150k+75}+101^{148k+74}+101^{146k+73}+101^{144k+72}+101^{142k+71}\\||+101^{140k+70}+101^{138k+69}+101^{136k+68}+101^{134k+67}+101^{132k+66}\\||+101^{130k+65}+101^{128k+64}+101^{126k+63}+101^{124k+62}+101^{122k+61}\\||+101^{120k+60}+101^{118k+59}+101^{116k+58}+101^{114k+57}+101^{112k+56}\\||+101^{110k+55}+101^{108k+54}+101^{106k+53}+101^{104k+52}+101^{102k+51}\\||+101^{100k+50}+101^{98k+49}+101^{96k+48}+101^{94k+47}+101^{92k+46}\\||+101^{90k+45}+101^{88k+44}+101^{86k+43}+101^{84k+42}+101^{82k+41}\\||+101^{80k+40}+101^{78k+39}+101^{76k+38}+101^{74k+37}+101^{72k+36}\\||+101^{70k+35}+101^{68k+34}+101^{66k+33}+101^{64k+32}+101^{62k+31}\\||+101^{60k+30}+101^{58k+29}+101^{56k+28}+101^{54k+27}+101^{52k+26}\\||+101^{50k+25}+101^{48k+24}+101^{46k+23}+101^{44k+22}+101^{42k+21}\\||+101^{40k+20}+101^{38k+19}+101^{36k+18}+101^{34k+17}+101^{32k+16}\\||+101^{30k+15}+101^{28k+14}+101^{26k+13}+101^{24k+12}+101^{22k+11}\\||+101^{20k+10}+101^{18k+9}+101^{16k+8}+101^{14k+7}+101^{12k+6}\\||+101^{10k+5}+101^{8k+4}+101^{6k+3}+101^{4k+2}+101^{2k+1}+1\\|=|(101^{100k+50}-101^{99k+50}+51\cdot 101^{98k+49}-17\cdot 101^{97k+49}+417\cdot 101^{96k+48}\\||-77\cdot 101^{95k+48}+1105\cdot 101^{94k+47}-119\cdot 101^{93k+47}+929\cdot 101^{92k+46}-45\cdot 101^{91k+46}\\||+119\cdot 101^{90k+45}-17\cdot 101^{89k+45}+471\cdot 101^{88k+44}-63\cdot 101^{87k+44}+459\cdot 101^{86k+43}\\||-17\cdot 101^{85k+43}+121\cdot 101^{84k+42}-33\cdot 101^{83k+42}+479\cdot 101^{82k+41}-35\cdot 101^{81k+41}\\||+147\cdot 101^{80k+40}-19\cdot 101^{79k+40}+503\cdot 101^{78k+39}-83\cdot 101^{77k+39}+1067\cdot 101^{76k+38}\\||-131\cdot 101^{75k+38}+1597\cdot 101^{74k+37}-167\cdot 101^{73k+37}+1457\cdot 101^{72k+36}-123\cdot 101^{71k+36}\\||+1331\cdot 101^{70k+35}-151\cdot 101^{69k+35}+1261\cdot 101^{68k+34}-53\cdot 101^{67k+34}+3\cdot 101^{66k+33}\\||-21\cdot 101^{65k+33}+853\cdot 101^{64k+32}-121\cdot 101^{63k+32}+1099\cdot 101^{62k+31}-89\cdot 101^{61k+31}\\||+867\cdot 101^{60k+30}-85\cdot 101^{59k+30}+767\cdot 101^{58k+29}-87\cdot 101^{57k+29}+1289\cdot 101^{56k+28}\\||-157\cdot 101^{55k+28}+1351\cdot 101^{54k+27}-99\cdot 101^{53k+27}+1245\cdot 101^{52k+26}-205\cdot 101^{51k+26}\\||+2523\cdot 101^{50k+25}-205\cdot 101^{49k+25}+1245\cdot 101^{48k+24}-99\cdot 101^{47k+24}+1351\cdot 101^{46k+23}\\||-157\cdot 101^{45k+23}+1289\cdot 101^{44k+22}-87\cdot 101^{43k+22}+767\cdot 101^{42k+21}-85\cdot 101^{41k+21}\\||+867\cdot 101^{40k+20}-89\cdot 101^{39k+20}+1099\cdot 101^{38k+19}-121\cdot 101^{37k+19}+853\cdot 101^{36k+18}\\||-21\cdot 101^{35k+18}+3\cdot 101^{34k+17}-53\cdot 101^{33k+17}+1261\cdot 101^{32k+16}-151\cdot 101^{31k+16}\\||+1331\cdot 101^{30k+15}-123\cdot 101^{29k+15}+1457\cdot 101^{28k+14}-167\cdot 101^{27k+14}+1597\cdot 101^{26k+13}\\||-131\cdot 101^{25k+13}+1067\cdot 101^{24k+12}-83\cdot 101^{23k+12}+503\cdot 101^{22k+11}-19\cdot 101^{21k+11}\\||+147\cdot 101^{20k+10}-35\cdot 101^{19k+10}+479\cdot 101^{18k+9}-33\cdot 101^{17k+9}+121\cdot 101^{16k+8}\\||-17\cdot 101^{15k+8}+459\cdot 101^{14k+7}-63\cdot 101^{13k+7}+471\cdot 101^{12k+6}-17\cdot 101^{11k+6}\\||+119\cdot 101^{10k+5}-45\cdot 101^{9k+5}+929\cdot 101^{8k+4}-119\cdot 101^{7k+4}+1105\cdot 101^{6k+3}\\||-77\cdot 101^{5k+3}+417\cdot 101^{4k+2}-17\cdot 101^{3k+2}+51\cdot 101^{2k+1}-101^{k+1}+1)\\|\times|(101^{100k+50}+101^{99k+50}+51\cdot 101^{98k+49}+17\cdot 101^{97k+49}+417\cdot 101^{96k+48}\\||+77\cdot 101^{95k+48}+1105\cdot 101^{94k+47}+119\cdot 101^{93k+47}+929\cdot 101^{92k+46}+45\cdot 101^{91k+46}\\||+119\cdot 101^{90k+45}+17\cdot 101^{89k+45}+471\cdot 101^{88k+44}+63\cdot 101^{87k+44}+459\cdot 101^{86k+43}\\||+17\cdot 101^{85k+43}+121\cdot 101^{84k+42}+33\cdot 101^{83k+42}+479\cdot 101^{82k+41}+35\cdot 101^{81k+41}\\||+147\cdot 101^{80k+40}+19\cdot 101^{79k+40}+503\cdot 101^{78k+39}+83\cdot 101^{77k+39}+1067\cdot 101^{76k+38}\\||+131\cdot 101^{75k+38}+1597\cdot 101^{74k+37}+167\cdot 101^{73k+37}+1457\cdot 101^{72k+36}+123\cdot 101^{71k+36}\\||+1331\cdot 101^{70k+35}+151\cdot 101^{69k+35}+1261\cdot 101^{68k+34}+53\cdot 101^{67k+34}+3\cdot 101^{66k+33}\\||+21\cdot 101^{65k+33}+853\cdot 101^{64k+32}+121\cdot 101^{63k+32}+1099\cdot 101^{62k+31}+89\cdot 101^{61k+31}\\||+867\cdot 101^{60k+30}+85\cdot 101^{59k+30}+767\cdot 101^{58k+29}+87\cdot 101^{57k+29}+1289\cdot 101^{56k+28}\\||+157\cdot 101^{55k+28}+1351\cdot 101^{54k+27}+99\cdot 101^{53k+27}+1245\cdot 101^{52k+26}+205\cdot 101^{51k+26}\\||+2523\cdot 101^{50k+25}+205\cdot 101^{49k+25}+1245\cdot 101^{48k+24}+99\cdot 101^{47k+24}+1351\cdot 101^{46k+23}\\||+157\cdot 101^{45k+23}+1289\cdot 101^{44k+22}+87\cdot 101^{43k+22}+767\cdot 101^{42k+21}+85\cdot 101^{41k+21}\\||+867\cdot 101^{40k+20}+89\cdot 101^{39k+20}+1099\cdot 101^{38k+19}+121\cdot 101^{37k+19}+853\cdot 101^{36k+18}\\||+21\cdot 101^{35k+18}+3\cdot 101^{34k+17}+53\cdot 101^{33k+17}+1261\cdot 101^{32k+16}+151\cdot 101^{31k+16}\\||+1331\cdot 101^{30k+15}+123\cdot 101^{29k+15}+1457\cdot 101^{28k+14}+167\cdot 101^{27k+14}+1597\cdot 101^{26k+13}\\||+131\cdot 101^{25k+13}+1067\cdot 101^{24k+12}+83\cdot 101^{23k+12}+503\cdot 101^{22k+11}+19\cdot 101^{21k+11}\\||+147\cdot 101^{20k+10}+35\cdot 101^{19k+10}+479\cdot 101^{18k+9}+33\cdot 101^{17k+9}+121\cdot 101^{16k+8}\\||+17\cdot 101^{15k+8}+459\cdot 101^{14k+7}+63\cdot 101^{13k+7}+471\cdot 101^{12k+6}+17\cdot 101^{11k+6}\\||+119\cdot 101^{10k+5}+45\cdot 101^{9k+5}+929\cdot 101^{8k+4}+119\cdot 101^{7k+4}+1105\cdot 101^{6k+3}\\||+77\cdot 101^{5k+3}+417\cdot 101^{4k+2}+17\cdot 101^{3k+2}+51\cdot 101^{2k+1}+101^{k+1}+1)\\{\large\Phi}_{204}(102^{2k+1})|=|102^{128k+64}+102^{124k+62}-102^{116k+58}-102^{112k+56}+102^{104k+52}\\||+102^{100k+50}-102^{92k+46}-102^{88k+44}+102^{80k+40}+102^{76k+38}\\||-102^{68k+34}-102^{64k+32}-102^{60k+30}+102^{52k+26}+102^{48k+24}\\||-102^{40k+20}-102^{36k+18}+102^{28k+14}+102^{24k+12}-102^{16k+8}\\||-102^{12k+6}+102^{4k+2}+1\\|=|(102^{64k+32}-102^{63k+32}+51\cdot 102^{62k+31}-17\cdot 102^{61k+31}+434\cdot 102^{60k+30}\\||-87\cdot 102^{59k+30}+1479\cdot 102^{58k+29}-209\cdot 102^{57k+29}+2569\cdot 102^{56k+28}-262\cdot 102^{55k+28}\\||+2244\cdot 102^{54k+27}-144\cdot 102^{53k+27}+551\cdot 102^{52k+26}+11\cdot 102^{51k+26}-255\cdot 102^{50k+25}\\||-17\cdot 102^{49k+25}+946\cdot 102^{48k+24}-164\cdot 102^{47k+24}+1887\cdot 102^{46k+23}-140\cdot 102^{45k+23}\\||+329\cdot 102^{44k+22}+96\cdot 102^{43k+22}-1938\cdot 102^{42k+21}+211\cdot 102^{41k+21}-1409\cdot 102^{40k+20}\\||+2\cdot 102^{39k+20}+1479\cdot 102^{38k+19}-243\cdot 102^{37k+19}+2486\cdot 102^{36k+18}-156\cdot 102^{35k+18}\\||+153\cdot 102^{34k+17}+110\cdot 102^{33k+17}-1613\cdot 102^{32k+16}+110\cdot 102^{31k+16}+153\cdot 102^{30k+15}\\||-156\cdot 102^{29k+15}+2486\cdot 102^{28k+14}-243\cdot 102^{27k+14}+1479\cdot 102^{26k+13}+2\cdot 102^{25k+13}\\||-1409\cdot 102^{24k+12}+211\cdot 102^{23k+12}-1938\cdot 102^{22k+11}+96\cdot 102^{21k+11}+329\cdot 102^{20k+10}\\||-140\cdot 102^{19k+10}+1887\cdot 102^{18k+9}-164\cdot 102^{17k+9}+946\cdot 102^{16k+8}-17\cdot 102^{15k+8}\\||-255\cdot 102^{14k+7}+11\cdot 102^{13k+7}+551\cdot 102^{12k+6}-144\cdot 102^{11k+6}+2244\cdot 102^{10k+5}\\||-262\cdot 102^{9k+5}+2569\cdot 102^{8k+4}-209\cdot 102^{7k+4}+1479\cdot 102^{6k+3}-87\cdot 102^{5k+3}\\||+434\cdot 102^{4k+2}-17\cdot 102^{3k+2}+51\cdot 102^{2k+1}-102^{k+1}+1)\\|\times|(102^{64k+32}+102^{63k+32}+51\cdot 102^{62k+31}+17\cdot 102^{61k+31}+434\cdot 102^{60k+30}\\||+87\cdot 102^{59k+30}+1479\cdot 102^{58k+29}+209\cdot 102^{57k+29}+2569\cdot 102^{56k+28}+262\cdot 102^{55k+28}\\||+2244\cdot 102^{54k+27}+144\cdot 102^{53k+27}+551\cdot 102^{52k+26}-11\cdot 102^{51k+26}-255\cdot 102^{50k+25}\\||+17\cdot 102^{49k+25}+946\cdot 102^{48k+24}+164\cdot 102^{47k+24}+1887\cdot 102^{46k+23}+140\cdot 102^{45k+23}\\||+329\cdot 102^{44k+22}-96\cdot 102^{43k+22}-1938\cdot 102^{42k+21}-211\cdot 102^{41k+21}-1409\cdot 102^{40k+20}\\||-2\cdot 102^{39k+20}+1479\cdot 102^{38k+19}+243\cdot 102^{37k+19}+2486\cdot 102^{36k+18}+156\cdot 102^{35k+18}\\||+153\cdot 102^{34k+17}-110\cdot 102^{33k+17}-1613\cdot 102^{32k+16}-110\cdot 102^{31k+16}+153\cdot 102^{30k+15}\\||+156\cdot 102^{29k+15}+2486\cdot 102^{28k+14}+243\cdot 102^{27k+14}+1479\cdot 102^{26k+13}-2\cdot 102^{25k+13}\\||-1409\cdot 102^{24k+12}-211\cdot 102^{23k+12}-1938\cdot 102^{22k+11}-96\cdot 102^{21k+11}+329\cdot 102^{20k+10}\\||+140\cdot 102^{19k+10}+1887\cdot 102^{18k+9}+164\cdot 102^{17k+9}+946\cdot 102^{16k+8}+17\cdot 102^{15k+8}\\||-255\cdot 102^{14k+7}-11\cdot 102^{13k+7}+551\cdot 102^{12k+6}+144\cdot 102^{11k+6}+2244\cdot 102^{10k+5}\\||+262\cdot 102^{9k+5}+2569\cdot 102^{8k+4}+209\cdot 102^{7k+4}+1479\cdot 102^{6k+3}+87\cdot 102^{5k+3}\\||+434\cdot 102^{4k+2}+17\cdot 102^{3k+2}+51\cdot 102^{2k+1}+102^{k+1}+1)\\{\large\Phi}_{206}(103^{2k+1})|=|103^{204k+102}-103^{202k+101}+103^{200k+100}-103^{198k+99}+103^{196k+98}\\||-103^{194k+97}+103^{192k+96}-103^{190k+95}+103^{188k+94}-103^{186k+93}\\||+103^{184k+92}-103^{182k+91}+103^{180k+90}-103^{178k+89}+103^{176k+88}\\||-103^{174k+87}+103^{172k+86}-103^{170k+85}+103^{168k+84}-103^{166k+83}\\||+103^{164k+82}-103^{162k+81}+103^{160k+80}-103^{158k+79}+103^{156k+78}\\||-103^{154k+77}+103^{152k+76}-103^{150k+75}+103^{148k+74}-103^{146k+73}\\||+103^{144k+72}-103^{142k+71}+103^{140k+70}-103^{138k+69}+103^{136k+68}\\||-103^{134k+67}+103^{132k+66}-103^{130k+65}+103^{128k+64}-103^{126k+63}\\||+103^{124k+62}-103^{122k+61}+103^{120k+60}-103^{118k+59}+103^{116k+58}\\||-103^{114k+57}+103^{112k+56}-103^{110k+55}+103^{108k+54}-103^{106k+53}\\||+103^{104k+52}-103^{102k+51}+103^{100k+50}-103^{98k+49}+103^{96k+48}\\||-103^{94k+47}+103^{92k+46}-103^{90k+45}+103^{88k+44}-103^{86k+43}\\||+103^{84k+42}-103^{82k+41}+103^{80k+40}-103^{78k+39}+103^{76k+38}\\||-103^{74k+37}+103^{72k+36}-103^{70k+35}+103^{68k+34}-103^{66k+33}\\||+103^{64k+32}-103^{62k+31}+103^{60k+30}-103^{58k+29}+103^{56k+28}\\||-103^{54k+27}+103^{52k+26}-103^{50k+25}+103^{48k+24}-103^{46k+23}\\||+103^{44k+22}-103^{42k+21}+103^{40k+20}-103^{38k+19}+103^{36k+18}\\||-103^{34k+17}+103^{32k+16}-103^{30k+15}+103^{28k+14}-103^{26k+13}\\||+103^{24k+12}-103^{22k+11}+103^{20k+10}-103^{18k+9}+103^{16k+8}\\||-103^{14k+7}+103^{12k+6}-103^{10k+5}+103^{8k+4}-103^{6k+3}\\||+103^{4k+2}-103^{2k+1}+1\\|=|(103^{102k+51}-103^{101k+51}+51\cdot 103^{100k+50}-17\cdot 103^{99k+50}+451\cdot 103^{98k+49}\\||-97\cdot 103^{97k+49}+1873\cdot 103^{96k+48}-313\cdot 103^{95k+48}+4863\cdot 103^{94k+47}-667\cdot 103^{93k+47}\\||+8591\cdot 103^{92k+46}-977\cdot 103^{91k+46}+10313\cdot 103^{90k+45}-933\cdot 103^{89k+45}+7323\cdot 103^{88k+44}\\||-411\cdot 103^{87k+44}+673\cdot 103^{86k+43}+223\cdot 103^{85k+43}-3697\cdot 103^{84k+42}+289\cdot 103^{83k+42}\\||+211\cdot 103^{82k+41}-517\cdot 103^{81k+41}+11049\cdot 103^{80k+40}-1585\cdot 103^{79k+40}+18805\cdot 103^{78k+39}\\||-1781\cdot 103^{77k+39}+13567\cdot 103^{76k+38}-585\cdot 103^{75k+38}-3257\cdot 103^{74k+37}+1173\cdot 103^{73k+37}\\||-17867\cdot 103^{72k+36}+1925\cdot 103^{71k+36}-16279\cdot 103^{70k+35}+851\cdot 103^{69k+35}+1771\cdot 103^{68k+34}\\||-1245\cdot 103^{67k+34}+21519\cdot 103^{66k+33}-2605\cdot 103^{65k+33}+26327\cdot 103^{64k+32}-2097\cdot 103^{63k+32}\\||+12521\cdot 103^{62k+31}-205\cdot 103^{61k+31}-7659\cdot 103^{60k+30}+1429\cdot 103^{59k+30}-16905\cdot 103^{58k+29}\\||+1407\cdot 103^{57k+29}-7101\cdot 103^{56k+28}-317\cdot 103^{55k+28}+14633\cdot 103^{54k+27}-2453\cdot 103^{53k+27}\\||+31987\cdot 103^{52k+26}-3401\cdot 103^{51k+26}+31987\cdot 103^{50k+25}-2453\cdot 103^{49k+25}+14633\cdot 103^{48k+24}\\||-317\cdot 103^{47k+24}-7101\cdot 103^{46k+23}+1407\cdot 103^{45k+23}-16905\cdot 103^{44k+22}+1429\cdot 103^{43k+22}\\||-7659\cdot 103^{42k+21}-205\cdot 103^{41k+21}+12521\cdot 103^{40k+20}-2097\cdot 103^{39k+20}+26327\cdot 103^{38k+19}\\||-2605\cdot 103^{37k+19}+21519\cdot 103^{36k+18}-1245\cdot 103^{35k+18}+1771\cdot 103^{34k+17}+851\cdot 103^{33k+17}\\||-16279\cdot 103^{32k+16}+1925\cdot 103^{31k+16}-17867\cdot 103^{30k+15}+1173\cdot 103^{29k+15}-3257\cdot 103^{28k+14}\\||-585\cdot 103^{27k+14}+13567\cdot 103^{26k+13}-1781\cdot 103^{25k+13}+18805\cdot 103^{24k+12}-1585\cdot 103^{23k+12}\\||+11049\cdot 103^{22k+11}-517\cdot 103^{21k+11}+211\cdot 103^{20k+10}+289\cdot 103^{19k+10}-3697\cdot 103^{18k+9}\\||+223\cdot 103^{17k+9}+673\cdot 103^{16k+8}-411\cdot 103^{15k+8}+7323\cdot 103^{14k+7}-933\cdot 103^{13k+7}\\||+10313\cdot 103^{12k+6}-977\cdot 103^{11k+6}+8591\cdot 103^{10k+5}-667\cdot 103^{9k+5}+4863\cdot 103^{8k+4}\\||-313\cdot 103^{7k+4}+1873\cdot 103^{6k+3}-97\cdot 103^{5k+3}+451\cdot 103^{4k+2}-17\cdot 103^{3k+2}\\||+51\cdot 103^{2k+1}-103^{k+1}+1)\\|\times|(103^{102k+51}+103^{101k+51}+51\cdot 103^{100k+50}+17\cdot 103^{99k+50}+451\cdot 103^{98k+49}\\||+97\cdot 103^{97k+49}+1873\cdot 103^{96k+48}+313\cdot 103^{95k+48}+4863\cdot 103^{94k+47}+667\cdot 103^{93k+47}\\||+8591\cdot 103^{92k+46}+977\cdot 103^{91k+46}+10313\cdot 103^{90k+45}+933\cdot 103^{89k+45}+7323\cdot 103^{88k+44}\\||+411\cdot 103^{87k+44}+673\cdot 103^{86k+43}-223\cdot 103^{85k+43}-3697\cdot 103^{84k+42}-289\cdot 103^{83k+42}\\||+211\cdot 103^{82k+41}+517\cdot 103^{81k+41}+11049\cdot 103^{80k+40}+1585\cdot 103^{79k+40}+18805\cdot 103^{78k+39}\\||+1781\cdot 103^{77k+39}+13567\cdot 103^{76k+38}+585\cdot 103^{75k+38}-3257\cdot 103^{74k+37}-1173\cdot 103^{73k+37}\\||-17867\cdot 103^{72k+36}-1925\cdot 103^{71k+36}-16279\cdot 103^{70k+35}-851\cdot 103^{69k+35}+1771\cdot 103^{68k+34}\\||+1245\cdot 103^{67k+34}+21519\cdot 103^{66k+33}+2605\cdot 103^{65k+33}+26327\cdot 103^{64k+32}+2097\cdot 103^{63k+32}\\||+12521\cdot 103^{62k+31}+205\cdot 103^{61k+31}-7659\cdot 103^{60k+30}-1429\cdot 103^{59k+30}-16905\cdot 103^{58k+29}\\||-1407\cdot 103^{57k+29}-7101\cdot 103^{56k+28}+317\cdot 103^{55k+28}+14633\cdot 103^{54k+27}+2453\cdot 103^{53k+27}\\||+31987\cdot 103^{52k+26}+3401\cdot 103^{51k+26}+31987\cdot 103^{50k+25}+2453\cdot 103^{49k+25}+14633\cdot 103^{48k+24}\\||+317\cdot 103^{47k+24}-7101\cdot 103^{46k+23}-1407\cdot 103^{45k+23}-16905\cdot 103^{44k+22}-1429\cdot 103^{43k+22}\\||-7659\cdot 103^{42k+21}+205\cdot 103^{41k+21}+12521\cdot 103^{40k+20}+2097\cdot 103^{39k+20}+26327\cdot 103^{38k+19}\\||+2605\cdot 103^{37k+19}+21519\cdot 103^{36k+18}+1245\cdot 103^{35k+18}+1771\cdot 103^{34k+17}-851\cdot 103^{33k+17}\\||-16279\cdot 103^{32k+16}-1925\cdot 103^{31k+16}-17867\cdot 103^{30k+15}-1173\cdot 103^{29k+15}-3257\cdot 103^{28k+14}\\||+585\cdot 103^{27k+14}+13567\cdot 103^{26k+13}+1781\cdot 103^{25k+13}+18805\cdot 103^{24k+12}+1585\cdot 103^{23k+12}\\||+11049\cdot 103^{22k+11}+517\cdot 103^{21k+11}+211\cdot 103^{20k+10}-289\cdot 103^{19k+10}-3697\cdot 103^{18k+9}\\||-223\cdot 103^{17k+9}+673\cdot 103^{16k+8}+411\cdot 103^{15k+8}+7323\cdot 103^{14k+7}+933\cdot 103^{13k+7}\\||+10313\cdot 103^{12k+6}+977\cdot 103^{11k+6}+8591\cdot 103^{10k+5}+667\cdot 103^{9k+5}+4863\cdot 103^{8k+4}\\||+313\cdot 103^{7k+4}+1873\cdot 103^{6k+3}+97\cdot 103^{5k+3}+451\cdot 103^{4k+2}+17\cdot 103^{3k+2}\\||+51\cdot 103^{2k+1}+103^{k+1}+1)\\{\large\Phi}_{105}(105^{2k+1})|=|105^{96k+48}+105^{94k+47}+105^{92k+46}-105^{86k+43}-105^{84k+42}\\||-2\cdot 105^{82k+41}-105^{80k+40}-105^{78k+39}+105^{72k+36}+105^{70k+35}\\||+105^{68k+34}+105^{66k+33}+105^{64k+32}+105^{62k+31}-105^{56k+28}\\||-105^{52k+26}-105^{48k+24}-105^{44k+22}-105^{40k+20}+105^{34k+17}\\||+105^{32k+16}+105^{30k+15}+105^{28k+14}+105^{26k+13}+105^{24k+12}\\||-105^{18k+9}-105^{16k+8}-2\cdot 105^{14k+7}-105^{12k+6}-105^{10k+5}\\||+105^{4k+2}+105^{2k+1}+1\\|=|(105^{48k+24}-105^{47k+24}+53\cdot 105^{46k+23}-18\cdot 105^{45k+23}+486\cdot 105^{44k+22}\\||-101\cdot 105^{43k+22}+1857\cdot 105^{42k+21}-282\cdot 105^{41k+21}+3981\cdot 105^{40k+20}-481\cdot 105^{39k+20}\\||+5542\cdot 105^{38k+19}-556\cdot 105^{37k+19}+5363\cdot 105^{36k+18}-447\cdot 105^{35k+18}+3421\cdot 105^{34k+17}\\||-191\cdot 105^{33k+17}+269\cdot 105^{32k+16}+149\cdot 105^{31k+16}-3264\cdot 105^{30k+15}+464\cdot 105^{29k+15}\\||-5849\cdot 105^{28k+14}+634\cdot 105^{27k+14}-6769\cdot 105^{26k+13}+666\cdot 105^{25k+13}-6821\cdot 105^{24k+12}\\||+666\cdot 105^{23k+12}-6769\cdot 105^{22k+11}+634\cdot 105^{21k+11}-5849\cdot 105^{20k+10}+464\cdot 105^{19k+10}\\||-3264\cdot 105^{18k+9}+149\cdot 105^{17k+9}+269\cdot 105^{16k+8}-191\cdot 105^{15k+8}+3421\cdot 105^{14k+7}\\||-447\cdot 105^{13k+7}+5363\cdot 105^{12k+6}-556\cdot 105^{11k+6}+5542\cdot 105^{10k+5}-481\cdot 105^{9k+5}\\||+3981\cdot 105^{8k+4}-282\cdot 105^{7k+4}+1857\cdot 105^{6k+3}-101\cdot 105^{5k+3}+486\cdot 105^{4k+2}\\||-18\cdot 105^{3k+2}+53\cdot 105^{2k+1}-105^{k+1}+1)\\|\times|(105^{48k+24}+105^{47k+24}+53\cdot 105^{46k+23}+18\cdot 105^{45k+23}+486\cdot 105^{44k+22}\\||+101\cdot 105^{43k+22}+1857\cdot 105^{42k+21}+282\cdot 105^{41k+21}+3981\cdot 105^{40k+20}+481\cdot 105^{39k+20}\\||+5542\cdot 105^{38k+19}+556\cdot 105^{37k+19}+5363\cdot 105^{36k+18}+447\cdot 105^{35k+18}+3421\cdot 105^{34k+17}\\||+191\cdot 105^{33k+17}+269\cdot 105^{32k+16}-149\cdot 105^{31k+16}-3264\cdot 105^{30k+15}-464\cdot 105^{29k+15}\\||-5849\cdot 105^{28k+14}-634\cdot 105^{27k+14}-6769\cdot 105^{26k+13}-666\cdot 105^{25k+13}-6821\cdot 105^{24k+12}\\||-666\cdot 105^{23k+12}-6769\cdot 105^{22k+11}-634\cdot 105^{21k+11}-5849\cdot 105^{20k+10}-464\cdot 105^{19k+10}\\||-3264\cdot 105^{18k+9}-149\cdot 105^{17k+9}+269\cdot 105^{16k+8}+191\cdot 105^{15k+8}+3421\cdot 105^{14k+7}\\||+447\cdot 105^{13k+7}+5363\cdot 105^{12k+6}+556\cdot 105^{11k+6}+5542\cdot 105^{10k+5}+481\cdot 105^{9k+5}\\||+3981\cdot 105^{8k+4}+282\cdot 105^{7k+4}+1857\cdot 105^{6k+3}+101\cdot 105^{5k+3}+486\cdot 105^{4k+2}\\||+18\cdot 105^{3k+2}+53\cdot 105^{2k+1}+105^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{212}(106^{2k+1})\cdots{\large\Phi}_{220}(110^{2k+1})$${\large\Phi}_{212}(106^{2k+1})\cdots{\large\Phi}_{220}(110^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{212}(106^{2k+1})|=|106^{208k+104}-106^{204k+102}+106^{200k+100}-106^{196k+98}+106^{192k+96}\\||-106^{188k+94}+106^{184k+92}-106^{180k+90}+106^{176k+88}-106^{172k+86}\\||+106^{168k+84}-106^{164k+82}+106^{160k+80}-106^{156k+78}+106^{152k+76}\\||-106^{148k+74}+106^{144k+72}-106^{140k+70}+106^{136k+68}-106^{132k+66}\\||+106^{128k+64}-106^{124k+62}+106^{120k+60}-106^{116k+58}+106^{112k+56}\\||-106^{108k+54}+106^{104k+52}-106^{100k+50}+106^{96k+48}-106^{92k+46}\\||+106^{88k+44}-106^{84k+42}+106^{80k+40}-106^{76k+38}+106^{72k+36}\\||-106^{68k+34}+106^{64k+32}-106^{60k+30}+106^{56k+28}-106^{52k+26}\\||+106^{48k+24}-106^{44k+22}+106^{40k+20}-106^{36k+18}+106^{32k+16}\\||-106^{28k+14}+106^{24k+12}-106^{20k+10}+106^{16k+8}-106^{12k+6}\\||+106^{8k+4}-106^{4k+2}+1\\|=|(106^{104k+52}-106^{103k+52}+53\cdot 106^{102k+51}-18\cdot 106^{101k+51}+503\cdot 106^{100k+50}\\||-111\cdot 106^{99k+50}+2279\cdot 106^{98k+49}-400\cdot 106^{97k+49}+6897\cdot 106^{96k+48}-1057\cdot 106^{95k+48}\\||+16377\cdot 106^{94k+47}-2304\cdot 106^{93k+47}+33287\cdot 106^{92k+46}-4415\cdot 106^{91k+46}+60579\cdot 106^{90k+45}\\||-7668\cdot 106^{89k+45}+100757\cdot 106^{88k+44}-12249\cdot 106^{87k+44}+155025\cdot 106^{86k+43}-18206\cdot 106^{85k+43}\\||+223243\cdot 106^{84k+42}-25471\cdot 106^{83k+42}+304167\cdot 106^{82k+41}-33866\cdot 106^{81k+41}+395325\cdot 106^{80k+40}\\||-43091\cdot 106^{79k+40}+493165\cdot 106^{78k+39}-52784\cdot 106^{77k+39}+594147\cdot 106^{76k+38}-62651\cdot 106^{75k+38}\\||+695943\cdot 106^{74k+37}-72534\cdot 106^{73k+37}+797485\cdot 106^{72k+36}-82365\cdot 106^{71k+36}+898297\cdot 106^{70k+35}\\||-92114\cdot 106^{69k+35}+998243\cdot 106^{68k+34}-101785\cdot 106^{67k+34}+1097471\cdot 106^{66k+33}-111384\cdot 106^{65k+33}\\||+1195649\cdot 106^{64k+32}-120807\cdot 106^{63k+32}+1290709\cdot 106^{62k+31}-129750\cdot 106^{61k+31}+1378615\cdot 106^{60k+30}\\||-137763\cdot 106^{59k+30}+1454479\cdot 106^{58k+29}-144372\cdot 106^{57k+29}+1513561\cdot 106^{56k+28}-149133\cdot 106^{55k+28}\\||+1551469\cdot 106^{54k+27}-151646\cdot 106^{53k+27}+1564599\cdot 106^{52k+26}-151646\cdot 106^{51k+26}+1551469\cdot 106^{50k+25}\\||-149133\cdot 106^{49k+25}+1513561\cdot 106^{48k+24}-144372\cdot 106^{47k+24}+1454479\cdot 106^{46k+23}-137763\cdot 106^{45k+23}\\||+1378615\cdot 106^{44k+22}-129750\cdot 106^{43k+22}+1290709\cdot 106^{42k+21}-120807\cdot 106^{41k+21}+1195649\cdot 106^{40k+20}\\||-111384\cdot 106^{39k+20}+1097471\cdot 106^{38k+19}-101785\cdot 106^{37k+19}+998243\cdot 106^{36k+18}-92114\cdot 106^{35k+18}\\||+898297\cdot 106^{34k+17}-82365\cdot 106^{33k+17}+797485\cdot 106^{32k+16}-72534\cdot 106^{31k+16}+695943\cdot 106^{30k+15}\\||-62651\cdot 106^{29k+15}+594147\cdot 106^{28k+14}-52784\cdot 106^{27k+14}+493165\cdot 106^{26k+13}-43091\cdot 106^{25k+13}\\||+395325\cdot 106^{24k+12}-33866\cdot 106^{23k+12}+304167\cdot 106^{22k+11}-25471\cdot 106^{21k+11}+223243\cdot 106^{20k+10}\\||-18206\cdot 106^{19k+10}+155025\cdot 106^{18k+9}-12249\cdot 106^{17k+9}+100757\cdot 106^{16k+8}-7668\cdot 106^{15k+8}\\||+60579\cdot 106^{14k+7}-4415\cdot 106^{13k+7}+33287\cdot 106^{12k+6}-2304\cdot 106^{11k+6}+16377\cdot 106^{10k+5}\\||-1057\cdot 106^{9k+5}+6897\cdot 106^{8k+4}-400\cdot 106^{7k+4}+2279\cdot 106^{6k+3}-111\cdot 106^{5k+3}\\||+503\cdot 106^{4k+2}-18\cdot 106^{3k+2}+53\cdot 106^{2k+1}-106^{k+1}+1)\\|\times|(106^{104k+52}+106^{103k+52}+53\cdot 106^{102k+51}+18\cdot 106^{101k+51}+503\cdot 106^{100k+50}\\||+111\cdot 106^{99k+50}+2279\cdot 106^{98k+49}+400\cdot 106^{97k+49}+6897\cdot 106^{96k+48}+1057\cdot 106^{95k+48}\\||+16377\cdot 106^{94k+47}+2304\cdot 106^{93k+47}+33287\cdot 106^{92k+46}+4415\cdot 106^{91k+46}+60579\cdot 106^{90k+45}\\||+7668\cdot 106^{89k+45}+100757\cdot 106^{88k+44}+12249\cdot 106^{87k+44}+155025\cdot 106^{86k+43}+18206\cdot 106^{85k+43}\\||+223243\cdot 106^{84k+42}+25471\cdot 106^{83k+42}+304167\cdot 106^{82k+41}+33866\cdot 106^{81k+41}+395325\cdot 106^{80k+40}\\||+43091\cdot 106^{79k+40}+493165\cdot 106^{78k+39}+52784\cdot 106^{77k+39}+594147\cdot 106^{76k+38}+62651\cdot 106^{75k+38}\\||+695943\cdot 106^{74k+37}+72534\cdot 106^{73k+37}+797485\cdot 106^{72k+36}+82365\cdot 106^{71k+36}+898297\cdot 106^{70k+35}\\||+92114\cdot 106^{69k+35}+998243\cdot 106^{68k+34}+101785\cdot 106^{67k+34}+1097471\cdot 106^{66k+33}+111384\cdot 106^{65k+33}\\||+1195649\cdot 106^{64k+32}+120807\cdot 106^{63k+32}+1290709\cdot 106^{62k+31}+129750\cdot 106^{61k+31}+1378615\cdot 106^{60k+30}\\||+137763\cdot 106^{59k+30}+1454479\cdot 106^{58k+29}+144372\cdot 106^{57k+29}+1513561\cdot 106^{56k+28}+149133\cdot 106^{55k+28}\\||+1551469\cdot 106^{54k+27}+151646\cdot 106^{53k+27}+1564599\cdot 106^{52k+26}+151646\cdot 106^{51k+26}+1551469\cdot 106^{50k+25}\\||+149133\cdot 106^{49k+25}+1513561\cdot 106^{48k+24}+144372\cdot 106^{47k+24}+1454479\cdot 106^{46k+23}+137763\cdot 106^{45k+23}\\||+1378615\cdot 106^{44k+22}+129750\cdot 106^{43k+22}+1290709\cdot 106^{42k+21}+120807\cdot 106^{41k+21}+1195649\cdot 106^{40k+20}\\||+111384\cdot 106^{39k+20}+1097471\cdot 106^{38k+19}+101785\cdot 106^{37k+19}+998243\cdot 106^{36k+18}+92114\cdot 106^{35k+18}\\||+898297\cdot 106^{34k+17}+82365\cdot 106^{33k+17}+797485\cdot 106^{32k+16}+72534\cdot 106^{31k+16}+695943\cdot 106^{30k+15}\\||+62651\cdot 106^{29k+15}+594147\cdot 106^{28k+14}+52784\cdot 106^{27k+14}+493165\cdot 106^{26k+13}+43091\cdot 106^{25k+13}\\||+395325\cdot 106^{24k+12}+33866\cdot 106^{23k+12}+304167\cdot 106^{22k+11}+25471\cdot 106^{21k+11}+223243\cdot 106^{20k+10}\\||+18206\cdot 106^{19k+10}+155025\cdot 106^{18k+9}+12249\cdot 106^{17k+9}+100757\cdot 106^{16k+8}+7668\cdot 106^{15k+8}\\||+60579\cdot 106^{14k+7}+4415\cdot 106^{13k+7}+33287\cdot 106^{12k+6}+2304\cdot 106^{11k+6}+16377\cdot 106^{10k+5}\\||+1057\cdot 106^{9k+5}+6897\cdot 106^{8k+4}+400\cdot 106^{7k+4}+2279\cdot 106^{6k+3}+111\cdot 106^{5k+3}\\||+503\cdot 106^{4k+2}+18\cdot 106^{3k+2}+53\cdot 106^{2k+1}+106^{k+1}+1)\\{\large\Phi}_{214}(107^{2k+1})|=|107^{212k+106}-107^{210k+105}+107^{208k+104}-107^{206k+103}+107^{204k+102}\\||-107^{202k+101}+107^{200k+100}-107^{198k+99}+107^{196k+98}-107^{194k+97}\\||+107^{192k+96}-107^{190k+95}+107^{188k+94}-107^{186k+93}+107^{184k+92}\\||-107^{182k+91}+107^{180k+90}-107^{178k+89}+107^{176k+88}-107^{174k+87}\\||+107^{172k+86}-107^{170k+85}+107^{168k+84}-107^{166k+83}+107^{164k+82}\\||-107^{162k+81}+107^{160k+80}-107^{158k+79}+107^{156k+78}-107^{154k+77}\\||+107^{152k+76}-107^{150k+75}+107^{148k+74}-107^{146k+73}+107^{144k+72}\\||-107^{142k+71}+107^{140k+70}-107^{138k+69}+107^{136k+68}-107^{134k+67}\\||+107^{132k+66}-107^{130k+65}+107^{128k+64}-107^{126k+63}+107^{124k+62}\\||-107^{122k+61}+107^{120k+60}-107^{118k+59}+107^{116k+58}-107^{114k+57}\\||+107^{112k+56}-107^{110k+55}+107^{108k+54}-107^{106k+53}+107^{104k+52}\\||-107^{102k+51}+107^{100k+50}-107^{98k+49}+107^{96k+48}-107^{94k+47}\\||+107^{92k+46}-107^{90k+45}+107^{88k+44}-107^{86k+43}+107^{84k+42}\\||-107^{82k+41}+107^{80k+40}-107^{78k+39}+107^{76k+38}-107^{74k+37}\\||+107^{72k+36}-107^{70k+35}+107^{68k+34}-107^{66k+33}+107^{64k+32}\\||-107^{62k+31}+107^{60k+30}-107^{58k+29}+107^{56k+28}-107^{54k+27}\\||+107^{52k+26}-107^{50k+25}+107^{48k+24}-107^{46k+23}+107^{44k+22}\\||-107^{42k+21}+107^{40k+20}-107^{38k+19}+107^{36k+18}-107^{34k+17}\\||+107^{32k+16}-107^{30k+15}+107^{28k+14}-107^{26k+13}+107^{24k+12}\\||-107^{22k+11}+107^{20k+10}-107^{18k+9}+107^{16k+8}-107^{14k+7}\\||+107^{12k+6}-107^{10k+5}+107^{8k+4}-107^{6k+3}+107^{4k+2}\\||-107^{2k+1}+1\\|=|(107^{106k+53}-107^{105k+53}+53\cdot 107^{104k+52}-17\cdot 107^{103k+52}+415\cdot 107^{102k+51}\\||-69\cdot 107^{101k+51}+849\cdot 107^{100k+50}-47\cdot 107^{99k+50}-569\cdot 107^{98k+49}+197\cdot 107^{97k+49}\\||-3051\cdot 107^{96k+48}+243\cdot 107^{95k+48}+95\cdot 107^{94k+47}-383\cdot 107^{93k+47}+6905\cdot 107^{92k+46}\\||-623\cdot 107^{91k+46}+1585\cdot 107^{90k+45}+565\cdot 107^{89k+45}-11549\cdot 107^{88k+44}+1077\cdot 107^{87k+44}\\||-3329\cdot 107^{86k+43}-801\cdot 107^{85k+43}+16577\cdot 107^{84k+42}-1469\cdot 107^{83k+42}+3289\cdot 107^{82k+41}\\||+1235\cdot 107^{81k+41}-22583\cdot 107^{80k+40}+1775\cdot 107^{79k+40}-919\cdot 107^{78k+39}-1893\cdot 107^{77k+39}\\||+29411\cdot 107^{76k+38}-1973\cdot 107^{75k+38}-3591\cdot 107^{74k+37}+2703\cdot 107^{73k+37}-36177\cdot 107^{72k+36}\\||+2033\cdot 107^{71k+36}+9501\cdot 107^{70k+35}-3509\cdot 107^{69k+35}+41177\cdot 107^{68k+34}-1865\cdot 107^{67k+34}\\||-16637\cdot 107^{66k+33}+4225\cdot 107^{65k+33}-43539\cdot 107^{64k+32}+1433\cdot 107^{63k+32}+24965\cdot 107^{62k+31}\\||-4859\cdot 107^{61k+31}+43967\cdot 107^{60k+30}-871\cdot 107^{59k+30}-32915\cdot 107^{58k+29}+5315\cdot 107^{57k+29}\\||-42547\cdot 107^{56k+28}+281\cdot 107^{55k+28}+39097\cdot 107^{54k+27}-5497\cdot 107^{53k+27}+39097\cdot 107^{52k+26}\\||+281\cdot 107^{51k+26}-42547\cdot 107^{50k+25}+5315\cdot 107^{49k+25}-32915\cdot 107^{48k+24}-871\cdot 107^{47k+24}\\||+43967\cdot 107^{46k+23}-4859\cdot 107^{45k+23}+24965\cdot 107^{44k+22}+1433\cdot 107^{43k+22}-43539\cdot 107^{42k+21}\\||+4225\cdot 107^{41k+21}-16637\cdot 107^{40k+20}-1865\cdot 107^{39k+20}+41177\cdot 107^{38k+19}-3509\cdot 107^{37k+19}\\||+9501\cdot 107^{36k+18}+2033\cdot 107^{35k+18}-36177\cdot 107^{34k+17}+2703\cdot 107^{33k+17}-3591\cdot 107^{32k+16}\\||-1973\cdot 107^{31k+16}+29411\cdot 107^{30k+15}-1893\cdot 107^{29k+15}-919\cdot 107^{28k+14}+1775\cdot 107^{27k+14}\\||-22583\cdot 107^{26k+13}+1235\cdot 107^{25k+13}+3289\cdot 107^{24k+12}-1469\cdot 107^{23k+12}+16577\cdot 107^{22k+11}\\||-801\cdot 107^{21k+11}-3329\cdot 107^{20k+10}+1077\cdot 107^{19k+10}-11549\cdot 107^{18k+9}+565\cdot 107^{17k+9}\\||+1585\cdot 107^{16k+8}-623\cdot 107^{15k+8}+6905\cdot 107^{14k+7}-383\cdot 107^{13k+7}+95\cdot 107^{12k+6}\\||+243\cdot 107^{11k+6}-3051\cdot 107^{10k+5}+197\cdot 107^{9k+5}-569\cdot 107^{8k+4}-47\cdot 107^{7k+4}\\||+849\cdot 107^{6k+3}-69\cdot 107^{5k+3}+415\cdot 107^{4k+2}-17\cdot 107^{3k+2}+53\cdot 107^{2k+1}\\||-107^{k+1}+1)\\|\times|(107^{106k+53}+107^{105k+53}+53\cdot 107^{104k+52}+17\cdot 107^{103k+52}+415\cdot 107^{102k+51}\\||+69\cdot 107^{101k+51}+849\cdot 107^{100k+50}+47\cdot 107^{99k+50}-569\cdot 107^{98k+49}-197\cdot 107^{97k+49}\\||-3051\cdot 107^{96k+48}-243\cdot 107^{95k+48}+95\cdot 107^{94k+47}+383\cdot 107^{93k+47}+6905\cdot 107^{92k+46}\\||+623\cdot 107^{91k+46}+1585\cdot 107^{90k+45}-565\cdot 107^{89k+45}-11549\cdot 107^{88k+44}-1077\cdot 107^{87k+44}\\||-3329\cdot 107^{86k+43}+801\cdot 107^{85k+43}+16577\cdot 107^{84k+42}+1469\cdot 107^{83k+42}+3289\cdot 107^{82k+41}\\||-1235\cdot 107^{81k+41}-22583\cdot 107^{80k+40}-1775\cdot 107^{79k+40}-919\cdot 107^{78k+39}+1893\cdot 107^{77k+39}\\||+29411\cdot 107^{76k+38}+1973\cdot 107^{75k+38}-3591\cdot 107^{74k+37}-2703\cdot 107^{73k+37}-36177\cdot 107^{72k+36}\\||-2033\cdot 107^{71k+36}+9501\cdot 107^{70k+35}+3509\cdot 107^{69k+35}+41177\cdot 107^{68k+34}+1865\cdot 107^{67k+34}\\||-16637\cdot 107^{66k+33}-4225\cdot 107^{65k+33}-43539\cdot 107^{64k+32}-1433\cdot 107^{63k+32}+24965\cdot 107^{62k+31}\\||+4859\cdot 107^{61k+31}+43967\cdot 107^{60k+30}+871\cdot 107^{59k+30}-32915\cdot 107^{58k+29}-5315\cdot 107^{57k+29}\\||-42547\cdot 107^{56k+28}-281\cdot 107^{55k+28}+39097\cdot 107^{54k+27}+5497\cdot 107^{53k+27}+39097\cdot 107^{52k+26}\\||-281\cdot 107^{51k+26}-42547\cdot 107^{50k+25}-5315\cdot 107^{49k+25}-32915\cdot 107^{48k+24}+871\cdot 107^{47k+24}\\||+43967\cdot 107^{46k+23}+4859\cdot 107^{45k+23}+24965\cdot 107^{44k+22}-1433\cdot 107^{43k+22}-43539\cdot 107^{42k+21}\\||-4225\cdot 107^{41k+21}-16637\cdot 107^{40k+20}+1865\cdot 107^{39k+20}+41177\cdot 107^{38k+19}+3509\cdot 107^{37k+19}\\||+9501\cdot 107^{36k+18}-2033\cdot 107^{35k+18}-36177\cdot 107^{34k+17}-2703\cdot 107^{33k+17}-3591\cdot 107^{32k+16}\\||+1973\cdot 107^{31k+16}+29411\cdot 107^{30k+15}+1893\cdot 107^{29k+15}-919\cdot 107^{28k+14}-1775\cdot 107^{27k+14}\\||-22583\cdot 107^{26k+13}-1235\cdot 107^{25k+13}+3289\cdot 107^{24k+12}+1469\cdot 107^{23k+12}+16577\cdot 107^{22k+11}\\||+801\cdot 107^{21k+11}-3329\cdot 107^{20k+10}-1077\cdot 107^{19k+10}-11549\cdot 107^{18k+9}-565\cdot 107^{17k+9}\\||+1585\cdot 107^{16k+8}+623\cdot 107^{15k+8}+6905\cdot 107^{14k+7}+383\cdot 107^{13k+7}+95\cdot 107^{12k+6}\\||-243\cdot 107^{11k+6}-3051\cdot 107^{10k+5}-197\cdot 107^{9k+5}-569\cdot 107^{8k+4}+47\cdot 107^{7k+4}\\||+849\cdot 107^{6k+3}+69\cdot 107^{5k+3}+415\cdot 107^{4k+2}+17\cdot 107^{3k+2}+53\cdot 107^{2k+1}\\||+107^{k+1}+1)\\{\large\Phi}_{109}(109^{2k+1})|=|109^{216k+108}+109^{214k+107}+109^{212k+106}+109^{210k+105}+109^{208k+104}\\||+109^{206k+103}+109^{204k+102}+109^{202k+101}+109^{200k+100}+109^{198k+99}\\||+109^{196k+98}+109^{194k+97}+109^{192k+96}+109^{190k+95}+109^{188k+94}\\||+109^{186k+93}+109^{184k+92}+109^{182k+91}+109^{180k+90}+109^{178k+89}\\||+109^{176k+88}+109^{174k+87}+109^{172k+86}+109^{170k+85}+109^{168k+84}\\||+109^{166k+83}+109^{164k+82}+109^{162k+81}+109^{160k+80}+109^{158k+79}\\||+109^{156k+78}+109^{154k+77}+109^{152k+76}+109^{150k+75}+109^{148k+74}\\||+109^{146k+73}+109^{144k+72}+109^{142k+71}+109^{140k+70}+109^{138k+69}\\||+109^{136k+68}+109^{134k+67}+109^{132k+66}+109^{130k+65}+109^{128k+64}\\||+109^{126k+63}+109^{124k+62}+109^{122k+61}+109^{120k+60}+109^{118k+59}\\||+109^{116k+58}+109^{114k+57}+109^{112k+56}+109^{110k+55}+109^{108k+54}\\||+109^{106k+53}+109^{104k+52}+109^{102k+51}+109^{100k+50}+109^{98k+49}\\||+109^{96k+48}+109^{94k+47}+109^{92k+46}+109^{90k+45}+109^{88k+44}\\||+109^{86k+43}+109^{84k+42}+109^{82k+41}+109^{80k+40}+109^{78k+39}\\||+109^{76k+38}+109^{74k+37}+109^{72k+36}+109^{70k+35}+109^{68k+34}\\||+109^{66k+33}+109^{64k+32}+109^{62k+31}+109^{60k+30}+109^{58k+29}\\||+109^{56k+28}+109^{54k+27}+109^{52k+26}+109^{50k+25}+109^{48k+24}\\||+109^{46k+23}+109^{44k+22}+109^{42k+21}+109^{40k+20}+109^{38k+19}\\||+109^{36k+18}+109^{34k+17}+109^{32k+16}+109^{30k+15}+109^{28k+14}\\||+109^{26k+13}+109^{24k+12}+109^{22k+11}+109^{20k+10}+109^{18k+9}\\||+109^{16k+8}+109^{14k+7}+109^{12k+6}+109^{10k+5}+109^{8k+4}\\||+109^{6k+3}+109^{4k+2}+109^{2k+1}+1\\|=|(109^{108k+54}-109^{107k+54}+55\cdot 109^{106k+53}-19\cdot 109^{105k+53}+559\cdot 109^{104k+52}\\||-127\cdot 109^{103k+52}+2773\cdot 109^{102k+51}-505\cdot 109^{101k+51}+9307\cdot 109^{100k+50}-1483\cdot 109^{99k+50}\\||+24541\cdot 109^{98k+49}-3579\cdot 109^{97k+49}+54987\cdot 109^{96k+48}-7525\cdot 109^{95k+48}+109351\cdot 109^{94k+47}\\||-14239\cdot 109^{93k+47}+197803\cdot 109^{92k+46}-24717\cdot 109^{91k+46}+330591\cdot 109^{90k+45}-39889\cdot 109^{89k+45}\\||+516469\cdot 109^{88k+44}-60457\cdot 109^{87k+44}+760821\cdot 109^{86k+43}-86699\cdot 109^{85k+43}+1063573\cdot 109^{84k+42}\\||-118285\cdot 109^{83k+42}+1417653\cdot 109^{82k+41}-154181\cdot 109^{81k+41}+1808601\cdot 109^{80k+40}-192669\cdot 109^{79k+40}\\||+2215303\cdot 109^{78k+39}-231463\cdot 109^{77k+39}+2611733\cdot 109^{76k+38}-267939\cdot 109^{75k+38}+2970087\cdot 109^{74k+37}\\||-299495\cdot 109^{73k+37}+3264879\cdot 109^{72k+36}-323945\cdot 109^{71k+36}+3476861\cdot 109^{70k+35}-339867\cdot 109^{69k+35}\\||+3596301\cdot 109^{68k+34}-346871\cdot 109^{67k+34}+3625117\cdot 109^{66k+33}-345721\cdot 109^{65k+33}+3577115\cdot 109^{64k+32}\\||-338247\cdot 109^{63k+32}+3475919\cdot 109^{62k+31}-327053\cdot 109^{61k+31}+3351209\cdot 109^{60k+30}-315109\cdot 109^{59k+30}\\||+3234047\cdot 109^{58k+29}-305265\cdot 109^{57k+29}+3151519\cdot 109^{56k+28}-299741\cdot 109^{55k+28}+3121875\cdot 109^{54k+27}\\||-299741\cdot 109^{53k+27}+3151519\cdot 109^{52k+26}-305265\cdot 109^{51k+26}+3234047\cdot 109^{50k+25}-315109\cdot 109^{49k+25}\\||+3351209\cdot 109^{48k+24}-327053\cdot 109^{47k+24}+3475919\cdot 109^{46k+23}-338247\cdot 109^{45k+23}+3577115\cdot 109^{44k+22}\\||-345721\cdot 109^{43k+22}+3625117\cdot 109^{42k+21}-346871\cdot 109^{41k+21}+3596301\cdot 109^{40k+20}-339867\cdot 109^{39k+20}\\||+3476861\cdot 109^{38k+19}-323945\cdot 109^{37k+19}+3264879\cdot 109^{36k+18}-299495\cdot 109^{35k+18}+2970087\cdot 109^{34k+17}\\||-267939\cdot 109^{33k+17}+2611733\cdot 109^{32k+16}-231463\cdot 109^{31k+16}+2215303\cdot 109^{30k+15}-192669\cdot 109^{29k+15}\\||+1808601\cdot 109^{28k+14}-154181\cdot 109^{27k+14}+1417653\cdot 109^{26k+13}-118285\cdot 109^{25k+13}+1063573\cdot 109^{24k+12}\\||-86699\cdot 109^{23k+12}+760821\cdot 109^{22k+11}-60457\cdot 109^{21k+11}+516469\cdot 109^{20k+10}-39889\cdot 109^{19k+10}\\||+330591\cdot 109^{18k+9}-24717\cdot 109^{17k+9}+197803\cdot 109^{16k+8}-14239\cdot 109^{15k+8}+109351\cdot 109^{14k+7}\\||-7525\cdot 109^{13k+7}+54987\cdot 109^{12k+6}-3579\cdot 109^{11k+6}+24541\cdot 109^{10k+5}-1483\cdot 109^{9k+5}\\||+9307\cdot 109^{8k+4}-505\cdot 109^{7k+4}+2773\cdot 109^{6k+3}-127\cdot 109^{5k+3}+559\cdot 109^{4k+2}\\||-19\cdot 109^{3k+2}+55\cdot 109^{2k+1}-109^{k+1}+1)\\|\times|(109^{108k+54}+109^{107k+54}+55\cdot 109^{106k+53}+19\cdot 109^{105k+53}+559\cdot 109^{104k+52}\\||+127\cdot 109^{103k+52}+2773\cdot 109^{102k+51}+505\cdot 109^{101k+51}+9307\cdot 109^{100k+50}+1483\cdot 109^{99k+50}\\||+24541\cdot 109^{98k+49}+3579\cdot 109^{97k+49}+54987\cdot 109^{96k+48}+7525\cdot 109^{95k+48}+109351\cdot 109^{94k+47}\\||+14239\cdot 109^{93k+47}+197803\cdot 109^{92k+46}+24717\cdot 109^{91k+46}+330591\cdot 109^{90k+45}+39889\cdot 109^{89k+45}\\||+516469\cdot 109^{88k+44}+60457\cdot 109^{87k+44}+760821\cdot 109^{86k+43}+86699\cdot 109^{85k+43}+1063573\cdot 109^{84k+42}\\||+118285\cdot 109^{83k+42}+1417653\cdot 109^{82k+41}+154181\cdot 109^{81k+41}+1808601\cdot 109^{80k+40}+192669\cdot 109^{79k+40}\\||+2215303\cdot 109^{78k+39}+231463\cdot 109^{77k+39}+2611733\cdot 109^{76k+38}+267939\cdot 109^{75k+38}+2970087\cdot 109^{74k+37}\\||+299495\cdot 109^{73k+37}+3264879\cdot 109^{72k+36}+323945\cdot 109^{71k+36}+3476861\cdot 109^{70k+35}+339867\cdot 109^{69k+35}\\||+3596301\cdot 109^{68k+34}+346871\cdot 109^{67k+34}+3625117\cdot 109^{66k+33}+345721\cdot 109^{65k+33}+3577115\cdot 109^{64k+32}\\||+338247\cdot 109^{63k+32}+3475919\cdot 109^{62k+31}+327053\cdot 109^{61k+31}+3351209\cdot 109^{60k+30}+315109\cdot 109^{59k+30}\\||+3234047\cdot 109^{58k+29}+305265\cdot 109^{57k+29}+3151519\cdot 109^{56k+28}+299741\cdot 109^{55k+28}+3121875\cdot 109^{54k+27}\\||+299741\cdot 109^{53k+27}+3151519\cdot 109^{52k+26}+305265\cdot 109^{51k+26}+3234047\cdot 109^{50k+25}+315109\cdot 109^{49k+25}\\||+3351209\cdot 109^{48k+24}+327053\cdot 109^{47k+24}+3475919\cdot 109^{46k+23}+338247\cdot 109^{45k+23}+3577115\cdot 109^{44k+22}\\||+345721\cdot 109^{43k+22}+3625117\cdot 109^{42k+21}+346871\cdot 109^{41k+21}+3596301\cdot 109^{40k+20}+339867\cdot 109^{39k+20}\\||+3476861\cdot 109^{38k+19}+323945\cdot 109^{37k+19}+3264879\cdot 109^{36k+18}+299495\cdot 109^{35k+18}+2970087\cdot 109^{34k+17}\\||+267939\cdot 109^{33k+17}+2611733\cdot 109^{32k+16}+231463\cdot 109^{31k+16}+2215303\cdot 109^{30k+15}+192669\cdot 109^{29k+15}\\||+1808601\cdot 109^{28k+14}+154181\cdot 109^{27k+14}+1417653\cdot 109^{26k+13}+118285\cdot 109^{25k+13}+1063573\cdot 109^{24k+12}\\||+86699\cdot 109^{23k+12}+760821\cdot 109^{22k+11}+60457\cdot 109^{21k+11}+516469\cdot 109^{20k+10}+39889\cdot 109^{19k+10}\\||+330591\cdot 109^{18k+9}+24717\cdot 109^{17k+9}+197803\cdot 109^{16k+8}+14239\cdot 109^{15k+8}+109351\cdot 109^{14k+7}\\||+7525\cdot 109^{13k+7}+54987\cdot 109^{12k+6}+3579\cdot 109^{11k+6}+24541\cdot 109^{10k+5}+1483\cdot 109^{9k+5}\\||+9307\cdot 109^{8k+4}+505\cdot 109^{7k+4}+2773\cdot 109^{6k+3}+127\cdot 109^{5k+3}+559\cdot 109^{4k+2}\\||+19\cdot 109^{3k+2}+55\cdot 109^{2k+1}+109^{k+1}+1)\\{\large\Phi}_{220}(110^{2k+1})|=|110^{160k+80}+110^{156k+78}-110^{140k+70}-110^{136k+68}+110^{120k+60}\\||-110^{112k+56}-110^{100k+50}+110^{92k+46}+110^{80k+40}+110^{68k+34}\\||-110^{60k+30}-110^{48k+24}+110^{40k+20}-110^{24k+12}-110^{20k+10}\\||+110^{4k+2}+1\\|=|(110^{80k+40}-110^{79k+40}+55\cdot 110^{78k+39}-18\cdot 110^{77k+39}+468\cdot 110^{76k+38}\\||-83\cdot 110^{75k+38}+1210\cdot 110^{74k+37}-111\cdot 110^{73k+37}+488\cdot 110^{72k+36}+68\cdot 110^{71k+36}\\||-1925\cdot 110^{70k+35}+240\cdot 110^{69k+35}-2169\cdot 110^{68k+34}+99\cdot 110^{67k+34}+440\cdot 110^{66k+33}\\||-174\cdot 110^{65k+33}+2710\cdot 110^{64k+32}-254\cdot 110^{63k+32}+1430\cdot 110^{62k+31}+62\cdot 110^{61k+31}\\||-2541\cdot 110^{60k+30}+298\cdot 110^{59k+30}-2090\cdot 110^{58k+29}+18\cdot 110^{57k+29}+1417\cdot 110^{56k+28}\\||-197\cdot 110^{55k+28}+1870\cdot 110^{54k+27}-120\cdot 110^{53k+27}+482\cdot 110^{52k+26}+37\cdot 110^{51k+26}\\||-1155\cdot 110^{50k+25}+138\cdot 110^{49k+25}-1066\cdot 110^{48k+24}+28\cdot 110^{47k+24}+275\cdot 110^{46k+23}\\||-26\cdot 110^{45k+23}-90\cdot 110^{44k+22}+24\cdot 110^{43k+22}+110\cdot 110^{42k+21}-70\cdot 110^{41k+21}\\||+1041\cdot 110^{40k+20}-70\cdot 110^{39k+20}+110\cdot 110^{38k+19}+24\cdot 110^{37k+19}-90\cdot 110^{36k+18}\\||-26\cdot 110^{35k+18}+275\cdot 110^{34k+17}+28\cdot 110^{33k+17}-1066\cdot 110^{32k+16}+138\cdot 110^{31k+16}\\||-1155\cdot 110^{30k+15}+37\cdot 110^{29k+15}+482\cdot 110^{28k+14}-120\cdot 110^{27k+14}+1870\cdot 110^{26k+13}\\||-197\cdot 110^{25k+13}+1417\cdot 110^{24k+12}+18\cdot 110^{23k+12}-2090\cdot 110^{22k+11}+298\cdot 110^{21k+11}\\||-2541\cdot 110^{20k+10}+62\cdot 110^{19k+10}+1430\cdot 110^{18k+9}-254\cdot 110^{17k+9}+2710\cdot 110^{16k+8}\\||-174\cdot 110^{15k+8}+440\cdot 110^{14k+7}+99\cdot 110^{13k+7}-2169\cdot 110^{12k+6}+240\cdot 110^{11k+6}\\||-1925\cdot 110^{10k+5}+68\cdot 110^{9k+5}+488\cdot 110^{8k+4}-111\cdot 110^{7k+4}+1210\cdot 110^{6k+3}\\||-83\cdot 110^{5k+3}+468\cdot 110^{4k+2}-18\cdot 110^{3k+2}+55\cdot 110^{2k+1}-110^{k+1}+1)\\|\times|(110^{80k+40}+110^{79k+40}+55\cdot 110^{78k+39}+18\cdot 110^{77k+39}+468\cdot 110^{76k+38}\\||+83\cdot 110^{75k+38}+1210\cdot 110^{74k+37}+111\cdot 110^{73k+37}+488\cdot 110^{72k+36}-68\cdot 110^{71k+36}\\||-1925\cdot 110^{70k+35}-240\cdot 110^{69k+35}-2169\cdot 110^{68k+34}-99\cdot 110^{67k+34}+440\cdot 110^{66k+33}\\||+174\cdot 110^{65k+33}+2710\cdot 110^{64k+32}+254\cdot 110^{63k+32}+1430\cdot 110^{62k+31}-62\cdot 110^{61k+31}\\||-2541\cdot 110^{60k+30}-298\cdot 110^{59k+30}-2090\cdot 110^{58k+29}-18\cdot 110^{57k+29}+1417\cdot 110^{56k+28}\\||+197\cdot 110^{55k+28}+1870\cdot 110^{54k+27}+120\cdot 110^{53k+27}+482\cdot 110^{52k+26}-37\cdot 110^{51k+26}\\||-1155\cdot 110^{50k+25}-138\cdot 110^{49k+25}-1066\cdot 110^{48k+24}-28\cdot 110^{47k+24}+275\cdot 110^{46k+23}\\||+26\cdot 110^{45k+23}-90\cdot 110^{44k+22}-24\cdot 110^{43k+22}+110\cdot 110^{42k+21}+70\cdot 110^{41k+21}\\||+1041\cdot 110^{40k+20}+70\cdot 110^{39k+20}+110\cdot 110^{38k+19}-24\cdot 110^{37k+19}-90\cdot 110^{36k+18}\\||+26\cdot 110^{35k+18}+275\cdot 110^{34k+17}-28\cdot 110^{33k+17}-1066\cdot 110^{32k+16}-138\cdot 110^{31k+16}\\||-1155\cdot 110^{30k+15}-37\cdot 110^{29k+15}+482\cdot 110^{28k+14}+120\cdot 110^{27k+14}+1870\cdot 110^{26k+13}\\||+197\cdot 110^{25k+13}+1417\cdot 110^{24k+12}-18\cdot 110^{23k+12}-2090\cdot 110^{22k+11}-298\cdot 110^{21k+11}\\||-2541\cdot 110^{20k+10}-62\cdot 110^{19k+10}+1430\cdot 110^{18k+9}+254\cdot 110^{17k+9}+2710\cdot 110^{16k+8}\\||+174\cdot 110^{15k+8}+440\cdot 110^{14k+7}-99\cdot 110^{13k+7}-2169\cdot 110^{12k+6}-240\cdot 110^{11k+6}\\||-1925\cdot 110^{10k+5}-68\cdot 110^{9k+5}+488\cdot 110^{8k+4}+111\cdot 110^{7k+4}+1210\cdot 110^{6k+3}\\||+83\cdot 110^{5k+3}+468\cdot 110^{4k+2}+18\cdot 110^{3k+2}+55\cdot 110^{2k+1}+110^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{222}(111^{2k+1})\cdots{\large\Phi}_{230}(115^{2k+1})$${\large\Phi}_{222}(111^{2k+1})\cdots{\large\Phi}_{230}(115^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{222}(111^{2k+1})|=|111^{144k+72}+111^{142k+71}-111^{138k+69}-111^{136k+68}+111^{132k+66}\\||+111^{130k+65}-111^{126k+63}-111^{124k+62}+111^{120k+60}+111^{118k+59}\\||-111^{114k+57}-111^{112k+56}+111^{108k+54}+111^{106k+53}-111^{102k+51}\\||-111^{100k+50}+111^{96k+48}+111^{94k+47}-111^{90k+45}-111^{88k+44}\\||+111^{84k+42}+111^{82k+41}-111^{78k+39}-111^{76k+38}+111^{72k+36}\\||-111^{68k+34}-111^{66k+33}+111^{62k+31}+111^{60k+30}-111^{56k+28}\\||-111^{54k+27}+111^{50k+25}+111^{48k+24}-111^{44k+22}-111^{42k+21}\\||+111^{38k+19}+111^{36k+18}-111^{32k+16}-111^{30k+15}+111^{26k+13}\\||+111^{24k+12}-111^{20k+10}-111^{18k+9}+111^{14k+7}+111^{12k+6}\\||-111^{8k+4}-111^{6k+3}+111^{2k+1}+1\\|=|(111^{72k+36}-111^{71k+36}+56\cdot 111^{70k+35}-19\cdot 111^{69k+35}+541\cdot 111^{68k+34}\\||-112\cdot 111^{67k+34}+2171\cdot 111^{66k+33}-331\cdot 111^{65k+33}+5032\cdot 111^{64k+32}-633\cdot 111^{63k+32}\\||+8231\cdot 111^{62k+31}-902\cdot 111^{61k+31}+10243\cdot 111^{60k+30}-975\cdot 111^{59k+30}+9584\cdot 111^{58k+29}\\||-793\cdot 111^{57k+29}+6835\cdot 111^{56k+28}-496\cdot 111^{55k+28}+3665\cdot 111^{54k+27}-219\cdot 111^{53k+27}\\||+1354\cdot 111^{52k+26}-91\cdot 111^{51k+26}+1109\cdot 111^{50k+25}-156\cdot 111^{49k+25}+2407\cdot 111^{48k+24}\\||-319\cdot 111^{47k+24}+4514\cdot 111^{46k+23}-547\cdot 111^{45k+23}+6859\cdot 111^{44k+22}-718\cdot 111^{43k+22}\\||+7823\cdot 111^{42k+21}-735\cdot 111^{41k+21}+7444\cdot 111^{40k+20}-661\cdot 111^{39k+20}+6359\cdot 111^{38k+19}\\||-552\cdot 111^{37k+19}+5593\cdot 111^{36k+18}-552\cdot 111^{35k+18}+6359\cdot 111^{34k+17}-661\cdot 111^{33k+17}\\||+7444\cdot 111^{32k+16}-735\cdot 111^{31k+16}+7823\cdot 111^{30k+15}-718\cdot 111^{29k+15}+6859\cdot 111^{28k+14}\\||-547\cdot 111^{27k+14}+4514\cdot 111^{26k+13}-319\cdot 111^{25k+13}+2407\cdot 111^{24k+12}-156\cdot 111^{23k+12}\\||+1109\cdot 111^{22k+11}-91\cdot 111^{21k+11}+1354\cdot 111^{20k+10}-219\cdot 111^{19k+10}+3665\cdot 111^{18k+9}\\||-496\cdot 111^{17k+9}+6835\cdot 111^{16k+8}-793\cdot 111^{15k+8}+9584\cdot 111^{14k+7}-975\cdot 111^{13k+7}\\||+10243\cdot 111^{12k+6}-902\cdot 111^{11k+6}+8231\cdot 111^{10k+5}-633\cdot 111^{9k+5}+5032\cdot 111^{8k+4}\\||-331\cdot 111^{7k+4}+2171\cdot 111^{6k+3}-112\cdot 111^{5k+3}+541\cdot 111^{4k+2}-19\cdot 111^{3k+2}\\||+56\cdot 111^{2k+1}-111^{k+1}+1)\\|\times|(111^{72k+36}+111^{71k+36}+56\cdot 111^{70k+35}+19\cdot 111^{69k+35}+541\cdot 111^{68k+34}\\||+112\cdot 111^{67k+34}+2171\cdot 111^{66k+33}+331\cdot 111^{65k+33}+5032\cdot 111^{64k+32}+633\cdot 111^{63k+32}\\||+8231\cdot 111^{62k+31}+902\cdot 111^{61k+31}+10243\cdot 111^{60k+30}+975\cdot 111^{59k+30}+9584\cdot 111^{58k+29}\\||+793\cdot 111^{57k+29}+6835\cdot 111^{56k+28}+496\cdot 111^{55k+28}+3665\cdot 111^{54k+27}+219\cdot 111^{53k+27}\\||+1354\cdot 111^{52k+26}+91\cdot 111^{51k+26}+1109\cdot 111^{50k+25}+156\cdot 111^{49k+25}+2407\cdot 111^{48k+24}\\||+319\cdot 111^{47k+24}+4514\cdot 111^{46k+23}+547\cdot 111^{45k+23}+6859\cdot 111^{44k+22}+718\cdot 111^{43k+22}\\||+7823\cdot 111^{42k+21}+735\cdot 111^{41k+21}+7444\cdot 111^{40k+20}+661\cdot 111^{39k+20}+6359\cdot 111^{38k+19}\\||+552\cdot 111^{37k+19}+5593\cdot 111^{36k+18}+552\cdot 111^{35k+18}+6359\cdot 111^{34k+17}+661\cdot 111^{33k+17}\\||+7444\cdot 111^{32k+16}+735\cdot 111^{31k+16}+7823\cdot 111^{30k+15}+718\cdot 111^{29k+15}+6859\cdot 111^{28k+14}\\||+547\cdot 111^{27k+14}+4514\cdot 111^{26k+13}+319\cdot 111^{25k+13}+2407\cdot 111^{24k+12}+156\cdot 111^{23k+12}\\||+1109\cdot 111^{22k+11}+91\cdot 111^{21k+11}+1354\cdot 111^{20k+10}+219\cdot 111^{19k+10}+3665\cdot 111^{18k+9}\\||+496\cdot 111^{17k+9}+6835\cdot 111^{16k+8}+793\cdot 111^{15k+8}+9584\cdot 111^{14k+7}+975\cdot 111^{13k+7}\\||+10243\cdot 111^{12k+6}+902\cdot 111^{11k+6}+8231\cdot 111^{10k+5}+633\cdot 111^{9k+5}+5032\cdot 111^{8k+4}\\||+331\cdot 111^{7k+4}+2171\cdot 111^{6k+3}+112\cdot 111^{5k+3}+541\cdot 111^{4k+2}+19\cdot 111^{3k+2}\\||+56\cdot 111^{2k+1}+111^{k+1}+1)\\{\large\Phi}_{113}(113^{2k+1})|=|113^{224k+112}+113^{222k+111}+113^{220k+110}+113^{218k+109}+113^{216k+108}\\||+113^{214k+107}+113^{212k+106}+113^{210k+105}+113^{208k+104}+113^{206k+103}\\||+113^{204k+102}+113^{202k+101}+113^{200k+100}+113^{198k+99}+113^{196k+98}\\||+113^{194k+97}+113^{192k+96}+113^{190k+95}+113^{188k+94}+113^{186k+93}\\||+113^{184k+92}+113^{182k+91}+113^{180k+90}+113^{178k+89}+113^{176k+88}\\||+113^{174k+87}+113^{172k+86}+113^{170k+85}+113^{168k+84}+113^{166k+83}\\||+113^{164k+82}+113^{162k+81}+113^{160k+80}+113^{158k+79}+113^{156k+78}\\||+113^{154k+77}+113^{152k+76}+113^{150k+75}+113^{148k+74}+113^{146k+73}\\||+113^{144k+72}+113^{142k+71}+113^{140k+70}+113^{138k+69}+113^{136k+68}\\||+113^{134k+67}+113^{132k+66}+113^{130k+65}+113^{128k+64}+113^{126k+63}\\||+113^{124k+62}+113^{122k+61}+113^{120k+60}+113^{118k+59}+113^{116k+58}\\||+113^{114k+57}+113^{112k+56}+113^{110k+55}+113^{108k+54}+113^{106k+53}\\||+113^{104k+52}+113^{102k+51}+113^{100k+50}+113^{98k+49}+113^{96k+48}\\||+113^{94k+47}+113^{92k+46}+113^{90k+45}+113^{88k+44}+113^{86k+43}\\||+113^{84k+42}+113^{82k+41}+113^{80k+40}+113^{78k+39}+113^{76k+38}\\||+113^{74k+37}+113^{72k+36}+113^{70k+35}+113^{68k+34}+113^{66k+33}\\||+113^{64k+32}+113^{62k+31}+113^{60k+30}+113^{58k+29}+113^{56k+28}\\||+113^{54k+27}+113^{52k+26}+113^{50k+25}+113^{48k+24}+113^{46k+23}\\||+113^{44k+22}+113^{42k+21}+113^{40k+20}+113^{38k+19}+113^{36k+18}\\||+113^{34k+17}+113^{32k+16}+113^{30k+15}+113^{28k+14}+113^{26k+13}\\||+113^{24k+12}+113^{22k+11}+113^{20k+10}+113^{18k+9}+113^{16k+8}\\||+113^{14k+7}+113^{12k+6}+113^{10k+5}+113^{8k+4}+113^{6k+3}\\||+113^{4k+2}+113^{2k+1}+1\\|=|(113^{112k+56}-113^{111k+56}+57\cdot 113^{110k+55}-19\cdot 113^{109k+55}+523\cdot 113^{108k+54}\\||-97\cdot 113^{107k+54}+1547\cdot 113^{106k+53}-155\cdot 113^{105k+53}+831\cdot 113^{104k+52}+101\cdot 113^{103k+52}\\||-3467\cdot 113^{102k+51}+463\cdot 113^{101k+51}-3809\cdot 113^{100k+50}-51\cdot 113^{99k+50}+6851\cdot 113^{98k+49}\\||-1123\cdot 113^{97k+49}+12207\cdot 113^{96k+48}-561\cdot 113^{95k+48}-4875\cdot 113^{94k+47}+1417\cdot 113^{93k+47}\\||-18615\cdot 113^{92k+46}+1169\cdot 113^{91k+46}+1323\cdot 113^{90k+45}-1485\cdot 113^{89k+45}+23091\cdot 113^{88k+44}\\||-1787\cdot 113^{87k+44}+5631\cdot 113^{86k+43}+899\cdot 113^{85k+43}-18175\cdot 113^{84k+42}+1497\cdot 113^{83k+42}\\||-5045\cdot 113^{82k+41}-675\cdot 113^{81k+41}+13175\cdot 113^{80k+40}-921\cdot 113^{79k+40}+75\cdot 113^{78k+39}\\||+835\cdot 113^{77k+39}-10615\cdot 113^{76k+38}+333\cdot 113^{75k+38}+8009\cdot 113^{74k+37}-1543\cdot 113^{73k+37}\\||+15473\cdot 113^{72k+36}-421\cdot 113^{71k+36}-11141\cdot 113^{70k+35}+2131\cdot 113^{69k+35}-23043\cdot 113^{68k+34}\\||+1053\cdot 113^{67k+34}+7145\cdot 113^{66k+33}-2095\cdot 113^{65k+33}+25813\cdot 113^{64k+32}-1457\cdot 113^{63k+32}\\||-3403\cdot 113^{62k+31}+1947\cdot 113^{61k+31}-26935\cdot 113^{60k+30}+1759\cdot 113^{59k+30}-645\cdot 113^{58k+29}\\||-1601\cdot 113^{57k+29}+24281\cdot 113^{56k+28}-1601\cdot 113^{55k+28}-645\cdot 113^{54k+27}+1759\cdot 113^{53k+27}\\||-26935\cdot 113^{52k+26}+1947\cdot 113^{51k+26}-3403\cdot 113^{50k+25}-1457\cdot 113^{49k+25}+25813\cdot 113^{48k+24}\\||-2095\cdot 113^{47k+24}+7145\cdot 113^{46k+23}+1053\cdot 113^{45k+23}-23043\cdot 113^{44k+22}+2131\cdot 113^{43k+22}\\||-11141\cdot 113^{42k+21}-421\cdot 113^{41k+21}+15473\cdot 113^{40k+20}-1543\cdot 113^{39k+20}+8009\cdot 113^{38k+19}\\||+333\cdot 113^{37k+19}-10615\cdot 113^{36k+18}+835\cdot 113^{35k+18}+75\cdot 113^{34k+17}-921\cdot 113^{33k+17}\\||+13175\cdot 113^{32k+16}-675\cdot 113^{31k+16}-5045\cdot 113^{30k+15}+1497\cdot 113^{29k+15}-18175\cdot 113^{28k+14}\\||+899\cdot 113^{27k+14}+5631\cdot 113^{26k+13}-1787\cdot 113^{25k+13}+23091\cdot 113^{24k+12}-1485\cdot 113^{23k+12}\\||+1323\cdot 113^{22k+11}+1169\cdot 113^{21k+11}-18615\cdot 113^{20k+10}+1417\cdot 113^{19k+10}-4875\cdot 113^{18k+9}\\||-561\cdot 113^{17k+9}+12207\cdot 113^{16k+8}-1123\cdot 113^{15k+8}+6851\cdot 113^{14k+7}-51\cdot 113^{13k+7}\\||-3809\cdot 113^{12k+6}+463\cdot 113^{11k+6}-3467\cdot 113^{10k+5}+101\cdot 113^{9k+5}+831\cdot 113^{8k+4}\\||-155\cdot 113^{7k+4}+1547\cdot 113^{6k+3}-97\cdot 113^{5k+3}+523\cdot 113^{4k+2}-19\cdot 113^{3k+2}\\||+57\cdot 113^{2k+1}-113^{k+1}+1)\\|\times|(113^{112k+56}+113^{111k+56}+57\cdot 113^{110k+55}+19\cdot 113^{109k+55}+523\cdot 113^{108k+54}\\||+97\cdot 113^{107k+54}+1547\cdot 113^{106k+53}+155\cdot 113^{105k+53}+831\cdot 113^{104k+52}-101\cdot 113^{103k+52}\\||-3467\cdot 113^{102k+51}-463\cdot 113^{101k+51}-3809\cdot 113^{100k+50}+51\cdot 113^{99k+50}+6851\cdot 113^{98k+49}\\||+1123\cdot 113^{97k+49}+12207\cdot 113^{96k+48}+561\cdot 113^{95k+48}-4875\cdot 113^{94k+47}-1417\cdot 113^{93k+47}\\||-18615\cdot 113^{92k+46}-1169\cdot 113^{91k+46}+1323\cdot 113^{90k+45}+1485\cdot 113^{89k+45}+23091\cdot 113^{88k+44}\\||+1787\cdot 113^{87k+44}+5631\cdot 113^{86k+43}-899\cdot 113^{85k+43}-18175\cdot 113^{84k+42}-1497\cdot 113^{83k+42}\\||-5045\cdot 113^{82k+41}+675\cdot 113^{81k+41}+13175\cdot 113^{80k+40}+921\cdot 113^{79k+40}+75\cdot 113^{78k+39}\\||-835\cdot 113^{77k+39}-10615\cdot 113^{76k+38}-333\cdot 113^{75k+38}+8009\cdot 113^{74k+37}+1543\cdot 113^{73k+37}\\||+15473\cdot 113^{72k+36}+421\cdot 113^{71k+36}-11141\cdot 113^{70k+35}-2131\cdot 113^{69k+35}-23043\cdot 113^{68k+34}\\||-1053\cdot 113^{67k+34}+7145\cdot 113^{66k+33}+2095\cdot 113^{65k+33}+25813\cdot 113^{64k+32}+1457\cdot 113^{63k+32}\\||-3403\cdot 113^{62k+31}-1947\cdot 113^{61k+31}-26935\cdot 113^{60k+30}-1759\cdot 113^{59k+30}-645\cdot 113^{58k+29}\\||+1601\cdot 113^{57k+29}+24281\cdot 113^{56k+28}+1601\cdot 113^{55k+28}-645\cdot 113^{54k+27}-1759\cdot 113^{53k+27}\\||-26935\cdot 113^{52k+26}-1947\cdot 113^{51k+26}-3403\cdot 113^{50k+25}+1457\cdot 113^{49k+25}+25813\cdot 113^{48k+24}\\||+2095\cdot 113^{47k+24}+7145\cdot 113^{46k+23}-1053\cdot 113^{45k+23}-23043\cdot 113^{44k+22}-2131\cdot 113^{43k+22}\\||-11141\cdot 113^{42k+21}+421\cdot 113^{41k+21}+15473\cdot 113^{40k+20}+1543\cdot 113^{39k+20}+8009\cdot 113^{38k+19}\\||-333\cdot 113^{37k+19}-10615\cdot 113^{36k+18}-835\cdot 113^{35k+18}+75\cdot 113^{34k+17}+921\cdot 113^{33k+17}\\||+13175\cdot 113^{32k+16}+675\cdot 113^{31k+16}-5045\cdot 113^{30k+15}-1497\cdot 113^{29k+15}-18175\cdot 113^{28k+14}\\||-899\cdot 113^{27k+14}+5631\cdot 113^{26k+13}+1787\cdot 113^{25k+13}+23091\cdot 113^{24k+12}+1485\cdot 113^{23k+12}\\||+1323\cdot 113^{22k+11}-1169\cdot 113^{21k+11}-18615\cdot 113^{20k+10}-1417\cdot 113^{19k+10}-4875\cdot 113^{18k+9}\\||+561\cdot 113^{17k+9}+12207\cdot 113^{16k+8}+1123\cdot 113^{15k+8}+6851\cdot 113^{14k+7}+51\cdot 113^{13k+7}\\||-3809\cdot 113^{12k+6}-463\cdot 113^{11k+6}-3467\cdot 113^{10k+5}-101\cdot 113^{9k+5}+831\cdot 113^{8k+4}\\||+155\cdot 113^{7k+4}+1547\cdot 113^{6k+3}+97\cdot 113^{5k+3}+523\cdot 113^{4k+2}+19\cdot 113^{3k+2}\\||+57\cdot 113^{2k+1}+113^{k+1}+1)\\{\large\Phi}_{228}(114^{2k+1})|=|114^{144k+72}+114^{140k+70}-114^{132k+66}-114^{128k+64}+114^{120k+60}\\||+114^{116k+58}-114^{108k+54}-114^{104k+52}+114^{96k+48}+114^{92k+46}\\||-114^{84k+42}-114^{80k+40}+114^{72k+36}-114^{64k+32}-114^{60k+30}\\||+114^{52k+26}+114^{48k+24}-114^{40k+20}-114^{36k+18}+114^{28k+14}\\||+114^{24k+12}-114^{16k+8}-114^{12k+6}+114^{4k+2}+1\\|=|(114^{72k+36}-114^{71k+36}+57\cdot 114^{70k+35}-19\cdot 114^{69k+35}+542\cdot 114^{68k+34}\\||-109\cdot 114^{67k+34}+2109\cdot 114^{66k+33}-315\cdot 114^{65k+33}+4909\cdot 114^{64k+32}-636\cdot 114^{63k+32}\\||+9120\cdot 114^{62k+31}-1124\cdot 114^{61k+31}+15443\cdot 114^{60k+30}-1813\cdot 114^{59k+30}+23655\cdot 114^{58k+29}\\||-2655\cdot 114^{57k+29}+33550\cdot 114^{56k+28}-3687\cdot 114^{55k+28}+45771\cdot 114^{54k+27}-4926\cdot 114^{53k+27}\\||+59633\cdot 114^{52k+26}-6253\cdot 114^{51k+26}+73986\cdot 114^{50k+25}-7618\cdot 114^{49k+25}+88783\cdot 114^{48k+24}\\||-9006\cdot 114^{47k+24}+103227\cdot 114^{46k+23}-10284\cdot 114^{45k+23}+115838\cdot 114^{44k+22}-11371\cdot 114^{43k+22}\\||+126597\cdot 114^{42k+21}-12302\cdot 114^{41k+21}+135451\cdot 114^{40k+20}-12985\cdot 114^{39k+20}+140790\cdot 114^{38k+19}\\||-13296\cdot 114^{37k+19}+142325\cdot 114^{36k+18}-13296\cdot 114^{35k+18}+140790\cdot 114^{34k+17}-12985\cdot 114^{33k+17}\\||+135451\cdot 114^{32k+16}-12302\cdot 114^{31k+16}+126597\cdot 114^{30k+15}-11371\cdot 114^{29k+15}+115838\cdot 114^{28k+14}\\||-10284\cdot 114^{27k+14}+103227\cdot 114^{26k+13}-9006\cdot 114^{25k+13}+88783\cdot 114^{24k+12}-7618\cdot 114^{23k+12}\\||+73986\cdot 114^{22k+11}-6253\cdot 114^{21k+11}+59633\cdot 114^{20k+10}-4926\cdot 114^{19k+10}+45771\cdot 114^{18k+9}\\||-3687\cdot 114^{17k+9}+33550\cdot 114^{16k+8}-2655\cdot 114^{15k+8}+23655\cdot 114^{14k+7}-1813\cdot 114^{13k+7}\\||+15443\cdot 114^{12k+6}-1124\cdot 114^{11k+6}+9120\cdot 114^{10k+5}-636\cdot 114^{9k+5}+4909\cdot 114^{8k+4}\\||-315\cdot 114^{7k+4}+2109\cdot 114^{6k+3}-109\cdot 114^{5k+3}+542\cdot 114^{4k+2}-19\cdot 114^{3k+2}\\||+57\cdot 114^{2k+1}-114^{k+1}+1)\\|\times|(114^{72k+36}+114^{71k+36}+57\cdot 114^{70k+35}+19\cdot 114^{69k+35}+542\cdot 114^{68k+34}\\||+109\cdot 114^{67k+34}+2109\cdot 114^{66k+33}+315\cdot 114^{65k+33}+4909\cdot 114^{64k+32}+636\cdot 114^{63k+32}\\||+9120\cdot 114^{62k+31}+1124\cdot 114^{61k+31}+15443\cdot 114^{60k+30}+1813\cdot 114^{59k+30}+23655\cdot 114^{58k+29}\\||+2655\cdot 114^{57k+29}+33550\cdot 114^{56k+28}+3687\cdot 114^{55k+28}+45771\cdot 114^{54k+27}+4926\cdot 114^{53k+27}\\||+59633\cdot 114^{52k+26}+6253\cdot 114^{51k+26}+73986\cdot 114^{50k+25}+7618\cdot 114^{49k+25}+88783\cdot 114^{48k+24}\\||+9006\cdot 114^{47k+24}+103227\cdot 114^{46k+23}+10284\cdot 114^{45k+23}+115838\cdot 114^{44k+22}+11371\cdot 114^{43k+22}\\||+126597\cdot 114^{42k+21}+12302\cdot 114^{41k+21}+135451\cdot 114^{40k+20}+12985\cdot 114^{39k+20}+140790\cdot 114^{38k+19}\\||+13296\cdot 114^{37k+19}+142325\cdot 114^{36k+18}+13296\cdot 114^{35k+18}+140790\cdot 114^{34k+17}+12985\cdot 114^{33k+17}\\||+135451\cdot 114^{32k+16}+12302\cdot 114^{31k+16}+126597\cdot 114^{30k+15}+11371\cdot 114^{29k+15}+115838\cdot 114^{28k+14}\\||+10284\cdot 114^{27k+14}+103227\cdot 114^{26k+13}+9006\cdot 114^{25k+13}+88783\cdot 114^{24k+12}+7618\cdot 114^{23k+12}\\||+73986\cdot 114^{22k+11}+6253\cdot 114^{21k+11}+59633\cdot 114^{20k+10}+4926\cdot 114^{19k+10}+45771\cdot 114^{18k+9}\\||+3687\cdot 114^{17k+9}+33550\cdot 114^{16k+8}+2655\cdot 114^{15k+8}+23655\cdot 114^{14k+7}+1813\cdot 114^{13k+7}\\||+15443\cdot 114^{12k+6}+1124\cdot 114^{11k+6}+9120\cdot 114^{10k+5}+636\cdot 114^{9k+5}+4909\cdot 114^{8k+4}\\||+315\cdot 114^{7k+4}+2109\cdot 114^{6k+3}+109\cdot 114^{5k+3}+542\cdot 114^{4k+2}+19\cdot 114^{3k+2}\\||+57\cdot 114^{2k+1}+114^{k+1}+1)\\{\large\Phi}_{230}(115^{2k+1})|=|115^{176k+88}+115^{174k+87}-115^{166k+83}-115^{164k+82}+115^{156k+78}\\||+115^{154k+77}-115^{146k+73}-115^{144k+72}+115^{136k+68}+115^{134k+67}\\||-115^{130k+65}-115^{128k+64}-115^{126k+63}-115^{124k+62}+115^{120k+60}\\||+115^{118k+59}+115^{116k+58}+115^{114k+57}-115^{110k+55}-115^{108k+54}\\||-115^{106k+53}-115^{104k+52}+115^{100k+50}+115^{98k+49}+115^{96k+48}\\||+115^{94k+47}-115^{90k+45}-115^{88k+44}-115^{86k+43}+115^{82k+41}\\||+115^{80k+40}+115^{78k+39}+115^{76k+38}-115^{72k+36}-115^{70k+35}\\||-115^{68k+34}-115^{66k+33}+115^{62k+31}+115^{60k+30}+115^{58k+29}\\||+115^{56k+28}-115^{52k+26}-115^{50k+25}-115^{48k+24}-115^{46k+23}\\||+115^{42k+21}+115^{40k+20}-115^{32k+16}-115^{30k+15}+115^{22k+11}\\||+115^{20k+10}-115^{12k+6}-115^{10k+5}+115^{2k+1}+1\\|=|(115^{88k+44}-115^{87k+44}+58\cdot 115^{86k+43}-20\cdot 115^{85k+43}+618\cdot 115^{84k+42}\\||-139\cdot 115^{83k+42}+3141\cdot 115^{82k+41}-554\cdot 115^{81k+41}+10270\cdot 115^{80k+40}-1532\cdot 115^{79k+40}\\||+24539\cdot 115^{78k+39}-3213\cdot 115^{77k+39}+45722\cdot 115^{76k+38}-5370\cdot 115^{75k+38}+69092\cdot 115^{74k+37}\\||-7387\cdot 115^{73k+37}+87049\cdot 115^{72k+36}-8574\cdot 115^{71k+36}+93640\cdot 115^{70k+35}-8604\cdot 115^{69k+35}\\||+88321\cdot 115^{68k+34}-7697\cdot 115^{67k+34}+75788\cdot 115^{66k+33}-6427\cdot 115^{65k+33}+62713\cdot 115^{64k+32}\\||-5389\cdot 115^{63k+32}+54621\cdot 115^{62k+31}-4988\cdot 115^{61k+31}+54485\cdot 115^{60k+30}-5359\cdot 115^{59k+30}\\||+62069\cdot 115^{58k+29}-6313\cdot 115^{57k+29}+73632\cdot 115^{56k+28}-7377\cdot 115^{55k+28}+83487\cdot 115^{54k+27}\\||-8053\cdot 115^{53k+27}+87629\cdot 115^{52k+26}-8160\cdot 115^{51k+26}+86415\cdot 115^{50k+25}-7913\cdot 115^{49k+25}\\||+83281\cdot 115^{48k+24}-7645\cdot 115^{47k+24}+81088\cdot 115^{46k+23}-7515\cdot 115^{45k+23}+80433\cdot 115^{44k+22}\\||-7515\cdot 115^{43k+22}+81088\cdot 115^{42k+21}-7645\cdot 115^{41k+21}+83281\cdot 115^{40k+20}-7913\cdot 115^{39k+20}\\||+86415\cdot 115^{38k+19}-8160\cdot 115^{37k+19}+87629\cdot 115^{36k+18}-8053\cdot 115^{35k+18}+83487\cdot 115^{34k+17}\\||-7377\cdot 115^{33k+17}+73632\cdot 115^{32k+16}-6313\cdot 115^{31k+16}+62069\cdot 115^{30k+15}-5359\cdot 115^{29k+15}\\||+54485\cdot 115^{28k+14}-4988\cdot 115^{27k+14}+54621\cdot 115^{26k+13}-5389\cdot 115^{25k+13}+62713\cdot 115^{24k+12}\\||-6427\cdot 115^{23k+12}+75788\cdot 115^{22k+11}-7697\cdot 115^{21k+11}+88321\cdot 115^{20k+10}-8604\cdot 115^{19k+10}\\||+93640\cdot 115^{18k+9}-8574\cdot 115^{17k+9}+87049\cdot 115^{16k+8}-7387\cdot 115^{15k+8}+69092\cdot 115^{14k+7}\\||-5370\cdot 115^{13k+7}+45722\cdot 115^{12k+6}-3213\cdot 115^{11k+6}+24539\cdot 115^{10k+5}-1532\cdot 115^{9k+5}\\||+10270\cdot 115^{8k+4}-554\cdot 115^{7k+4}+3141\cdot 115^{6k+3}-139\cdot 115^{5k+3}+618\cdot 115^{4k+2}\\||-20\cdot 115^{3k+2}+58\cdot 115^{2k+1}-115^{k+1}+1)\\|\times|(115^{88k+44}+115^{87k+44}+58\cdot 115^{86k+43}+20\cdot 115^{85k+43}+618\cdot 115^{84k+42}\\||+139\cdot 115^{83k+42}+3141\cdot 115^{82k+41}+554\cdot 115^{81k+41}+10270\cdot 115^{80k+40}+1532\cdot 115^{79k+40}\\||+24539\cdot 115^{78k+39}+3213\cdot 115^{77k+39}+45722\cdot 115^{76k+38}+5370\cdot 115^{75k+38}+69092\cdot 115^{74k+37}\\||+7387\cdot 115^{73k+37}+87049\cdot 115^{72k+36}+8574\cdot 115^{71k+36}+93640\cdot 115^{70k+35}+8604\cdot 115^{69k+35}\\||+88321\cdot 115^{68k+34}+7697\cdot 115^{67k+34}+75788\cdot 115^{66k+33}+6427\cdot 115^{65k+33}+62713\cdot 115^{64k+32}\\||+5389\cdot 115^{63k+32}+54621\cdot 115^{62k+31}+4988\cdot 115^{61k+31}+54485\cdot 115^{60k+30}+5359\cdot 115^{59k+30}\\||+62069\cdot 115^{58k+29}+6313\cdot 115^{57k+29}+73632\cdot 115^{56k+28}+7377\cdot 115^{55k+28}+83487\cdot 115^{54k+27}\\||+8053\cdot 115^{53k+27}+87629\cdot 115^{52k+26}+8160\cdot 115^{51k+26}+86415\cdot 115^{50k+25}+7913\cdot 115^{49k+25}\\||+83281\cdot 115^{48k+24}+7645\cdot 115^{47k+24}+81088\cdot 115^{46k+23}+7515\cdot 115^{45k+23}+80433\cdot 115^{44k+22}\\||+7515\cdot 115^{43k+22}+81088\cdot 115^{42k+21}+7645\cdot 115^{41k+21}+83281\cdot 115^{40k+20}+7913\cdot 115^{39k+20}\\||+86415\cdot 115^{38k+19}+8160\cdot 115^{37k+19}+87629\cdot 115^{36k+18}+8053\cdot 115^{35k+18}+83487\cdot 115^{34k+17}\\||+7377\cdot 115^{33k+17}+73632\cdot 115^{32k+16}+6313\cdot 115^{31k+16}+62069\cdot 115^{30k+15}+5359\cdot 115^{29k+15}\\||+54485\cdot 115^{28k+14}+4988\cdot 115^{27k+14}+54621\cdot 115^{26k+13}+5389\cdot 115^{25k+13}+62713\cdot 115^{24k+12}\\||+6427\cdot 115^{23k+12}+75788\cdot 115^{22k+11}+7697\cdot 115^{21k+11}+88321\cdot 115^{20k+10}+8604\cdot 115^{19k+10}\\||+93640\cdot 115^{18k+9}+8574\cdot 115^{17k+9}+87049\cdot 115^{16k+8}+7387\cdot 115^{15k+8}+69092\cdot 115^{14k+7}\\||+5370\cdot 115^{13k+7}+45722\cdot 115^{12k+6}+3213\cdot 115^{11k+6}+24539\cdot 115^{10k+5}+1532\cdot 115^{9k+5}\\||+10270\cdot 115^{8k+4}+554\cdot 115^{7k+4}+3141\cdot 115^{6k+3}+139\cdot 115^{5k+3}+618\cdot 115^{4k+2}\\||+20\cdot 115^{3k+2}+58\cdot 115^{2k+1}+115^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{236}(118^{2k+1})\cdots{\large\Phi}_{238}(119^{2k+1})$${\large\Phi}_{236}(118^{2k+1})\cdots{\large\Phi}_{238}(119^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{236}(118^{2k+1})|=|118^{232k+116}-118^{228k+114}+118^{224k+112}-118^{220k+110}+118^{216k+108}\\||-118^{212k+106}+118^{208k+104}-118^{204k+102}+118^{200k+100}-118^{196k+98}\\||+118^{192k+96}-118^{188k+94}+118^{184k+92}-118^{180k+90}+118^{176k+88}\\||-118^{172k+86}+118^{168k+84}-118^{164k+82}+118^{160k+80}-118^{156k+78}\\||+118^{152k+76}-118^{148k+74}+118^{144k+72}-118^{140k+70}+118^{136k+68}\\||-118^{132k+66}+118^{128k+64}-118^{124k+62}+118^{120k+60}-118^{116k+58}\\||+118^{112k+56}-118^{108k+54}+118^{104k+52}-118^{100k+50}+118^{96k+48}\\||-118^{92k+46}+118^{88k+44}-118^{84k+42}+118^{80k+40}-118^{76k+38}\\||+118^{72k+36}-118^{68k+34}+118^{64k+32}-118^{60k+30}+118^{56k+28}\\||-118^{52k+26}+118^{48k+24}-118^{44k+22}+118^{40k+20}-118^{36k+18}\\||+118^{32k+16}-118^{28k+14}+118^{24k+12}-118^{20k+10}+118^{16k+8}\\||-118^{12k+6}+118^{8k+4}-118^{4k+2}+1\\|=|(118^{116k+58}-118^{115k+58}+59\cdot 118^{114k+57}-20\cdot 118^{113k+57}+619\cdot 118^{112k+56}\\||-135\cdot 118^{111k+56}+3009\cdot 118^{110k+55}-504\cdot 118^{109k+55}+8961\cdot 118^{108k+54}-1225\cdot 118^{107k+54}\\||+17995\cdot 118^{106k+53}-2038\cdot 118^{105k+53}+24599\cdot 118^{104k+52}-2231\cdot 118^{103k+52}+20237\cdot 118^{102k+51}\\||-1148\cdot 118^{101k+51}+1685\cdot 118^{100k+50}+967\cdot 118^{99k+50}-21889\cdot 118^{98k+49}+2776\cdot 118^{97k+49}\\||-33465\cdot 118^{96k+48}+2849\cdot 118^{95k+48}-22951\cdot 118^{94k+47}+1010\cdot 118^{93k+47}+2725\cdot 118^{92k+46}\\||-1443\cdot 118^{91k+46}+25783\cdot 118^{90k+45}-2922\cdot 118^{89k+45}+33211\cdot 118^{88k+44}-2829\cdot 118^{87k+44}\\||+25429\cdot 118^{86k+43}-1720\cdot 118^{85k+43}+11813\cdot 118^{84k+42}-539\cdot 118^{83k+42}+1475\cdot 118^{82k+41}\\||+98\cdot 118^{81k+41}-1897\cdot 118^{80k+40}+137\cdot 118^{79k+40}-531\cdot 118^{78k+39}-18\cdot 118^{77k+39}\\||+41\cdot 118^{76k+38}+117\cdot 118^{75k+38}-3481\cdot 118^{74k+37}+532\cdot 118^{73k+37}-6977\cdot 118^{72k+36}\\||+541\cdot 118^{71k+36}-1711\cdot 118^{70k+35}-506\cdot 118^{69k+35}+14757\cdot 118^{68k+34}-2231\cdot 118^{67k+34}\\||+31683\cdot 118^{66k+33}-3226\cdot 118^{65k+33}+33031\cdot 118^{64k+32}-2353\cdot 118^{63k+32}+13865\cdot 118^{62k+31}\\||-24\cdot 118^{61k+31}-12375\cdot 118^{60k+30}+1959\cdot 118^{59k+30}-24485\cdot 118^{58k+29}+1959\cdot 118^{57k+29}\\||-12375\cdot 118^{56k+28}-24\cdot 118^{55k+28}+13865\cdot 118^{54k+27}-2353\cdot 118^{53k+27}+33031\cdot 118^{52k+26}\\||-3226\cdot 118^{51k+26}+31683\cdot 118^{50k+25}-2231\cdot 118^{49k+25}+14757\cdot 118^{48k+24}-506\cdot 118^{47k+24}\\||-1711\cdot 118^{46k+23}+541\cdot 118^{45k+23}-6977\cdot 118^{44k+22}+532\cdot 118^{43k+22}-3481\cdot 118^{42k+21}\\||+117\cdot 118^{41k+21}+41\cdot 118^{40k+20}-18\cdot 118^{39k+20}-531\cdot 118^{38k+19}+137\cdot 118^{37k+19}\\||-1897\cdot 118^{36k+18}+98\cdot 118^{35k+18}+1475\cdot 118^{34k+17}-539\cdot 118^{33k+17}+11813\cdot 118^{32k+16}\\||-1720\cdot 118^{31k+16}+25429\cdot 118^{30k+15}-2829\cdot 118^{29k+15}+33211\cdot 118^{28k+14}-2922\cdot 118^{27k+14}\\||+25783\cdot 118^{26k+13}-1443\cdot 118^{25k+13}+2725\cdot 118^{24k+12}+1010\cdot 118^{23k+12}-22951\cdot 118^{22k+11}\\||+2849\cdot 118^{21k+11}-33465\cdot 118^{20k+10}+2776\cdot 118^{19k+10}-21889\cdot 118^{18k+9}+967\cdot 118^{17k+9}\\||+1685\cdot 118^{16k+8}-1148\cdot 118^{15k+8}+20237\cdot 118^{14k+7}-2231\cdot 118^{13k+7}+24599\cdot 118^{12k+6}\\||-2038\cdot 118^{11k+6}+17995\cdot 118^{10k+5}-1225\cdot 118^{9k+5}+8961\cdot 118^{8k+4}-504\cdot 118^{7k+4}\\||+3009\cdot 118^{6k+3}-135\cdot 118^{5k+3}+619\cdot 118^{4k+2}-20\cdot 118^{3k+2}+59\cdot 118^{2k+1}\\||-118^{k+1}+1)\\|\times|(118^{116k+58}+118^{115k+58}+59\cdot 118^{114k+57}+20\cdot 118^{113k+57}+619\cdot 118^{112k+56}\\||+135\cdot 118^{111k+56}+3009\cdot 118^{110k+55}+504\cdot 118^{109k+55}+8961\cdot 118^{108k+54}+1225\cdot 118^{107k+54}\\||+17995\cdot 118^{106k+53}+2038\cdot 118^{105k+53}+24599\cdot 118^{104k+52}+2231\cdot 118^{103k+52}+20237\cdot 118^{102k+51}\\||+1148\cdot 118^{101k+51}+1685\cdot 118^{100k+50}-967\cdot 118^{99k+50}-21889\cdot 118^{98k+49}-2776\cdot 118^{97k+49}\\||-33465\cdot 118^{96k+48}-2849\cdot 118^{95k+48}-22951\cdot 118^{94k+47}-1010\cdot 118^{93k+47}+2725\cdot 118^{92k+46}\\||+1443\cdot 118^{91k+46}+25783\cdot 118^{90k+45}+2922\cdot 118^{89k+45}+33211\cdot 118^{88k+44}+2829\cdot 118^{87k+44}\\||+25429\cdot 118^{86k+43}+1720\cdot 118^{85k+43}+11813\cdot 118^{84k+42}+539\cdot 118^{83k+42}+1475\cdot 118^{82k+41}\\||-98\cdot 118^{81k+41}-1897\cdot 118^{80k+40}-137\cdot 118^{79k+40}-531\cdot 118^{78k+39}+18\cdot 118^{77k+39}\\||+41\cdot 118^{76k+38}-117\cdot 118^{75k+38}-3481\cdot 118^{74k+37}-532\cdot 118^{73k+37}-6977\cdot 118^{72k+36}\\||-541\cdot 118^{71k+36}-1711\cdot 118^{70k+35}+506\cdot 118^{69k+35}+14757\cdot 118^{68k+34}+2231\cdot 118^{67k+34}\\||+31683\cdot 118^{66k+33}+3226\cdot 118^{65k+33}+33031\cdot 118^{64k+32}+2353\cdot 118^{63k+32}+13865\cdot 118^{62k+31}\\||+24\cdot 118^{61k+31}-12375\cdot 118^{60k+30}-1959\cdot 118^{59k+30}-24485\cdot 118^{58k+29}-1959\cdot 118^{57k+29}\\||-12375\cdot 118^{56k+28}+24\cdot 118^{55k+28}+13865\cdot 118^{54k+27}+2353\cdot 118^{53k+27}+33031\cdot 118^{52k+26}\\||+3226\cdot 118^{51k+26}+31683\cdot 118^{50k+25}+2231\cdot 118^{49k+25}+14757\cdot 118^{48k+24}+506\cdot 118^{47k+24}\\||-1711\cdot 118^{46k+23}-541\cdot 118^{45k+23}-6977\cdot 118^{44k+22}-532\cdot 118^{43k+22}-3481\cdot 118^{42k+21}\\||-117\cdot 118^{41k+21}+41\cdot 118^{40k+20}+18\cdot 118^{39k+20}-531\cdot 118^{38k+19}-137\cdot 118^{37k+19}\\||-1897\cdot 118^{36k+18}-98\cdot 118^{35k+18}+1475\cdot 118^{34k+17}+539\cdot 118^{33k+17}+11813\cdot 118^{32k+16}\\||+1720\cdot 118^{31k+16}+25429\cdot 118^{30k+15}+2829\cdot 118^{29k+15}+33211\cdot 118^{28k+14}+2922\cdot 118^{27k+14}\\||+25783\cdot 118^{26k+13}+1443\cdot 118^{25k+13}+2725\cdot 118^{24k+12}-1010\cdot 118^{23k+12}-22951\cdot 118^{22k+11}\\||-2849\cdot 118^{21k+11}-33465\cdot 118^{20k+10}-2776\cdot 118^{19k+10}-21889\cdot 118^{18k+9}-967\cdot 118^{17k+9}\\||+1685\cdot 118^{16k+8}+1148\cdot 118^{15k+8}+20237\cdot 118^{14k+7}+2231\cdot 118^{13k+7}+24599\cdot 118^{12k+6}\\||+2038\cdot 118^{11k+6}+17995\cdot 118^{10k+5}+1225\cdot 118^{9k+5}+8961\cdot 118^{8k+4}+504\cdot 118^{7k+4}\\||+3009\cdot 118^{6k+3}+135\cdot 118^{5k+3}+619\cdot 118^{4k+2}+20\cdot 118^{3k+2}+59\cdot 118^{2k+1}\\||+118^{k+1}+1)\\{\large\Phi}_{238}(119^{2k+1})|=|119^{192k+96}+119^{190k+95}-119^{178k+89}-119^{176k+88}+119^{164k+82}\\||+119^{162k+81}-119^{158k+79}-119^{156k+78}-119^{150k+75}-119^{148k+74}\\||+119^{144k+72}+119^{142k+71}+119^{136k+68}+119^{134k+67}-119^{130k+65}\\||-119^{128k+64}+119^{124k+62}-119^{120k+60}+119^{116k+58}+119^{114k+57}\\||-119^{110k+55}+119^{106k+53}-119^{102k+51}-119^{100k+50}+119^{96k+48}\\||-119^{92k+46}-119^{90k+45}+119^{86k+43}-119^{82k+41}+119^{78k+39}\\||+119^{76k+38}-119^{72k+36}+119^{68k+34}-119^{64k+32}-119^{62k+31}\\||+119^{58k+29}+119^{56k+28}+119^{50k+25}+119^{48k+24}-119^{44k+22}\\||-119^{42k+21}-119^{36k+18}-119^{34k+17}+119^{30k+15}+119^{28k+14}\\||-119^{16k+8}-119^{14k+7}+119^{2k+1}+1\\|=|(119^{96k+48}-119^{95k+48}+60\cdot 119^{94k+47}-20\cdot 119^{93k+47}+580\cdot 119^{92k+46}\\||-108\cdot 119^{91k+46}+1852\cdot 119^{90k+45}-203\cdot 119^{89k+45}+1877\cdot 119^{88k+44}-80\cdot 119^{87k+44}\\||-112\cdot 119^{86k+43}+10\cdot 119^{85k+43}+1274\cdot 119^{84k+42}-302\cdot 119^{83k+42}+4549\cdot 119^{82k+41}\\||-387\cdot 119^{81k+41}+2852\cdot 119^{80k+40}-155\cdot 119^{79k+40}+1275\cdot 119^{78k+39}-84\cdot 119^{77k+39}\\||-144\cdot 119^{76k+38}+117\cdot 119^{75k+38}-743\cdot 119^{74k+37}-200\cdot 119^{73k+37}+5649\cdot 119^{72k+36}\\||-593\cdot 119^{71k+36}+3290\cdot 119^{70k+35}+154\cdot 119^{69k+35}-4563\cdot 119^{68k+34}+321\cdot 119^{67k+34}\\||-220\cdot 119^{66k+33}-197\cdot 119^{65k+33}+2393\cdot 119^{64k+32}-180\cdot 119^{63k+32}+2555\cdot 119^{62k+31}\\||-334\cdot 119^{61k+31}+3009\cdot 119^{60k+30}+36\cdot 119^{59k+30}-4651\cdot 119^{58k+29}+587\cdot 119^{57k+29}\\||-4090\cdot 119^{56k+28}-43\cdot 119^{55k+28}+3726\cdot 119^{54k+27}-321\cdot 119^{53k+27}+528\cdot 119^{52k+26}\\||+249\cdot 119^{51k+26}-4381\cdot 119^{50k+25}+414\cdot 119^{49k+25}-4333\cdot 119^{48k+24}+414\cdot 119^{47k+24}\\||-4381\cdot 119^{46k+23}+249\cdot 119^{45k+23}+528\cdot 119^{44k+22}-321\cdot 119^{43k+22}+3726\cdot 119^{42k+21}\\||-43\cdot 119^{41k+21}-4090\cdot 119^{40k+20}+587\cdot 119^{39k+20}-4651\cdot 119^{38k+19}+36\cdot 119^{37k+19}\\||+3009\cdot 119^{36k+18}-334\cdot 119^{35k+18}+2555\cdot 119^{34k+17}-180\cdot 119^{33k+17}+2393\cdot 119^{32k+16}\\||-197\cdot 119^{31k+16}-220\cdot 119^{30k+15}+321\cdot 119^{29k+15}-4563\cdot 119^{28k+14}+154\cdot 119^{27k+14}\\||+3290\cdot 119^{26k+13}-593\cdot 119^{25k+13}+5649\cdot 119^{24k+12}-200\cdot 119^{23k+12}-743\cdot 119^{22k+11}\\||+117\cdot 119^{21k+11}-144\cdot 119^{20k+10}-84\cdot 119^{19k+10}+1275\cdot 119^{18k+9}-155\cdot 119^{17k+9}\\||+2852\cdot 119^{16k+8}-387\cdot 119^{15k+8}+4549\cdot 119^{14k+7}-302\cdot 119^{13k+7}+1274\cdot 119^{12k+6}\\||+10\cdot 119^{11k+6}-112\cdot 119^{10k+5}-80\cdot 119^{9k+5}+1877\cdot 119^{8k+4}-203\cdot 119^{7k+4}\\||+1852\cdot 119^{6k+3}-108\cdot 119^{5k+3}+580\cdot 119^{4k+2}-20\cdot 119^{3k+2}+60\cdot 119^{2k+1}\\||-119^{k+1}+1)\\|\times|(119^{96k+48}+119^{95k+48}+60\cdot 119^{94k+47}+20\cdot 119^{93k+47}+580\cdot 119^{92k+46}\\||+108\cdot 119^{91k+46}+1852\cdot 119^{90k+45}+203\cdot 119^{89k+45}+1877\cdot 119^{88k+44}+80\cdot 119^{87k+44}\\||-112\cdot 119^{86k+43}-10\cdot 119^{85k+43}+1274\cdot 119^{84k+42}+302\cdot 119^{83k+42}+4549\cdot 119^{82k+41}\\||+387\cdot 119^{81k+41}+2852\cdot 119^{80k+40}+155\cdot 119^{79k+40}+1275\cdot 119^{78k+39}+84\cdot 119^{77k+39}\\||-144\cdot 119^{76k+38}-117\cdot 119^{75k+38}-743\cdot 119^{74k+37}+200\cdot 119^{73k+37}+5649\cdot 119^{72k+36}\\||+593\cdot 119^{71k+36}+3290\cdot 119^{70k+35}-154\cdot 119^{69k+35}-4563\cdot 119^{68k+34}-321\cdot 119^{67k+34}\\||-220\cdot 119^{66k+33}+197\cdot 119^{65k+33}+2393\cdot 119^{64k+32}+180\cdot 119^{63k+32}+2555\cdot 119^{62k+31}\\||+334\cdot 119^{61k+31}+3009\cdot 119^{60k+30}-36\cdot 119^{59k+30}-4651\cdot 119^{58k+29}-587\cdot 119^{57k+29}\\||-4090\cdot 119^{56k+28}+43\cdot 119^{55k+28}+3726\cdot 119^{54k+27}+321\cdot 119^{53k+27}+528\cdot 119^{52k+26}\\||-249\cdot 119^{51k+26}-4381\cdot 119^{50k+25}-414\cdot 119^{49k+25}-4333\cdot 119^{48k+24}-414\cdot 119^{47k+24}\\||-4381\cdot 119^{46k+23}-249\cdot 119^{45k+23}+528\cdot 119^{44k+22}+321\cdot 119^{43k+22}+3726\cdot 119^{42k+21}\\||+43\cdot 119^{41k+21}-4090\cdot 119^{40k+20}-587\cdot 119^{39k+20}-4651\cdot 119^{38k+19}-36\cdot 119^{37k+19}\\||+3009\cdot 119^{36k+18}+334\cdot 119^{35k+18}+2555\cdot 119^{34k+17}+180\cdot 119^{33k+17}+2393\cdot 119^{32k+16}\\||+197\cdot 119^{31k+16}-220\cdot 119^{30k+15}-321\cdot 119^{29k+15}-4563\cdot 119^{28k+14}-154\cdot 119^{27k+14}\\||+3290\cdot 119^{26k+13}+593\cdot 119^{25k+13}+5649\cdot 119^{24k+12}+200\cdot 119^{23k+12}-743\cdot 119^{22k+11}\\||-117\cdot 119^{21k+11}-144\cdot 119^{20k+10}+84\cdot 119^{19k+10}+1275\cdot 119^{18k+9}+155\cdot 119^{17k+9}\\||+2852\cdot 119^{16k+8}+387\cdot 119^{15k+8}+4549\cdot 119^{14k+7}+302\cdot 119^{13k+7}+1274\cdot 119^{12k+6}\\||-10\cdot 119^{11k+6}-112\cdot 119^{10k+5}+80\cdot 119^{9k+5}+1877\cdot 119^{8k+4}+203\cdot 119^{7k+4}\\||+1852\cdot 119^{6k+3}+108\cdot 119^{5k+3}+580\cdot 119^{4k+2}+20\cdot 119^{3k+2}+60\cdot 119^{2k+1}\\||+119^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{244}(122^{2k+1})\cdots{\large\Phi}_{246}(123^{2k+1})$${\large\Phi}_{244}(122^{2k+1})\cdots{\large\Phi}_{246}(123^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{244}(122^{2k+1})|=|122^{240k+120}-122^{236k+118}+122^{232k+116}-122^{228k+114}+122^{224k+112}\\||-122^{220k+110}+122^{216k+108}-122^{212k+106}+122^{208k+104}-122^{204k+102}\\||+122^{200k+100}-122^{196k+98}+122^{192k+96}-122^{188k+94}+122^{184k+92}\\||-122^{180k+90}+122^{176k+88}-122^{172k+86}+122^{168k+84}-122^{164k+82}\\||+122^{160k+80}-122^{156k+78}+122^{152k+76}-122^{148k+74}+122^{144k+72}\\||-122^{140k+70}+122^{136k+68}-122^{132k+66}+122^{128k+64}-122^{124k+62}\\||+122^{120k+60}-122^{116k+58}+122^{112k+56}-122^{108k+54}+122^{104k+52}\\||-122^{100k+50}+122^{96k+48}-122^{92k+46}+122^{88k+44}-122^{84k+42}\\||+122^{80k+40}-122^{76k+38}+122^{72k+36}-122^{68k+34}+122^{64k+32}\\||-122^{60k+30}+122^{56k+28}-122^{52k+26}+122^{48k+24}-122^{44k+22}\\||+122^{40k+20}-122^{36k+18}+122^{32k+16}-122^{28k+14}+122^{24k+12}\\||-122^{20k+10}+122^{16k+8}-122^{12k+6}+122^{8k+4}-122^{4k+2}+1\\|=|(122^{120k+60}-122^{119k+60}+61\cdot 122^{118k+59}-20\cdot 122^{117k+59}+579\cdot 122^{116k+58}\\||-103\cdot 122^{115k+58}+1647\cdot 122^{114k+57}-138\cdot 122^{113k+57}+69\cdot 122^{112k+56}+269\cdot 122^{111k+56}\\||-6771\cdot 122^{110k+55}+840\cdot 122^{109k+55}-7957\cdot 122^{108k+54}+117\cdot 122^{107k+54}+9699\cdot 122^{106k+53}\\||-1896\cdot 122^{105k+53}+26429\cdot 122^{104k+52}-1891\cdot 122^{103k+52}+2989\cdot 122^{102k+51}+2038\cdot 122^{101k+51}\\||-45313\cdot 122^{100k+50}+4833\cdot 122^{99k+50}-38857\cdot 122^{98k+49}+294\cdot 122^{97k+49}+41237\cdot 122^{96k+48}\\||-6859\cdot 122^{95k+48}+83021\cdot 122^{94k+47}-5050\cdot 122^{93k+47}+1511\cdot 122^{92k+46}+5377\cdot 122^{91k+46}\\||-101565\cdot 122^{90k+45}+9562\cdot 122^{89k+45}-67247\cdot 122^{88k+44}+15\cdot 122^{87k+44}+69113\cdot 122^{86k+43}\\||-10190\cdot 122^{85k+43}+112755\cdot 122^{84k+42}-6359\cdot 122^{83k+42}+2623\cdot 122^{82k+41}+5736\cdot 122^{81k+41}\\||-103015\cdot 122^{80k+40}+9343\cdot 122^{79k+40}-66551\cdot 122^{78k+39}+850\cdot 122^{77k+39}+45659\cdot 122^{76k+38}\\||-7149\cdot 122^{75k+38}+81191\cdot 122^{74k+37}-5034\cdot 122^{73k+37}+14989\cdot 122^{72k+36}+2221\cdot 122^{71k+36}\\||-49715\cdot 122^{70k+35}+4904\cdot 122^{69k+35}-39453\cdot 122^{68k+34}+1235\cdot 122^{67k+34}+12139\cdot 122^{66k+33}\\||-2544\cdot 122^{65k+33}+29541\cdot 122^{64k+32}-1653\cdot 122^{63k+32}+1037\cdot 122^{62k+31}+1242\cdot 122^{61k+31}\\||-19449\cdot 122^{60k+30}+1242\cdot 122^{59k+30}+1037\cdot 122^{58k+29}-1653\cdot 122^{57k+29}+29541\cdot 122^{56k+28}\\||-2544\cdot 122^{55k+28}+12139\cdot 122^{54k+27}+1235\cdot 122^{53k+27}-39453\cdot 122^{52k+26}+4904\cdot 122^{51k+26}\\||-49715\cdot 122^{50k+25}+2221\cdot 122^{49k+25}+14989\cdot 122^{48k+24}-5034\cdot 122^{47k+24}+81191\cdot 122^{46k+23}\\||-7149\cdot 122^{45k+23}+45659\cdot 122^{44k+22}+850\cdot 122^{43k+22}-66551\cdot 122^{42k+21}+9343\cdot 122^{41k+21}\\||-103015\cdot 122^{40k+20}+5736\cdot 122^{39k+20}+2623\cdot 122^{38k+19}-6359\cdot 122^{37k+19}+112755\cdot 122^{36k+18}\\||-10190\cdot 122^{35k+18}+69113\cdot 122^{34k+17}+15\cdot 122^{33k+17}-67247\cdot 122^{32k+16}+9562\cdot 122^{31k+16}\\||-101565\cdot 122^{30k+15}+5377\cdot 122^{29k+15}+1511\cdot 122^{28k+14}-5050\cdot 122^{27k+14}+83021\cdot 122^{26k+13}\\||-6859\cdot 122^{25k+13}+41237\cdot 122^{24k+12}+294\cdot 122^{23k+12}-38857\cdot 122^{22k+11}+4833\cdot 122^{21k+11}\\||-45313\cdot 122^{20k+10}+2038\cdot 122^{19k+10}+2989\cdot 122^{18k+9}-1891\cdot 122^{17k+9}+26429\cdot 122^{16k+8}\\||-1896\cdot 122^{15k+8}+9699\cdot 122^{14k+7}+117\cdot 122^{13k+7}-7957\cdot 122^{12k+6}+840\cdot 122^{11k+6}\\||-6771\cdot 122^{10k+5}+269\cdot 122^{9k+5}+69\cdot 122^{8k+4}-138\cdot 122^{7k+4}+1647\cdot 122^{6k+3}\\||-103\cdot 122^{5k+3}+579\cdot 122^{4k+2}-20\cdot 122^{3k+2}+61\cdot 122^{2k+1}-122^{k+1}+1)\\|\times|(122^{120k+60}+122^{119k+60}+61\cdot 122^{118k+59}+20\cdot 122^{117k+59}+579\cdot 122^{116k+58}\\||+103\cdot 122^{115k+58}+1647\cdot 122^{114k+57}+138\cdot 122^{113k+57}+69\cdot 122^{112k+56}-269\cdot 122^{111k+56}\\||-6771\cdot 122^{110k+55}-840\cdot 122^{109k+55}-7957\cdot 122^{108k+54}-117\cdot 122^{107k+54}+9699\cdot 122^{106k+53}\\||+1896\cdot 122^{105k+53}+26429\cdot 122^{104k+52}+1891\cdot 122^{103k+52}+2989\cdot 122^{102k+51}-2038\cdot 122^{101k+51}\\||-45313\cdot 122^{100k+50}-4833\cdot 122^{99k+50}-38857\cdot 122^{98k+49}-294\cdot 122^{97k+49}+41237\cdot 122^{96k+48}\\||+6859\cdot 122^{95k+48}+83021\cdot 122^{94k+47}+5050\cdot 122^{93k+47}+1511\cdot 122^{92k+46}-5377\cdot 122^{91k+46}\\||-101565\cdot 122^{90k+45}-9562\cdot 122^{89k+45}-67247\cdot 122^{88k+44}-15\cdot 122^{87k+44}+69113\cdot 122^{86k+43}\\||+10190\cdot 122^{85k+43}+112755\cdot 122^{84k+42}+6359\cdot 122^{83k+42}+2623\cdot 122^{82k+41}-5736\cdot 122^{81k+41}\\||-103015\cdot 122^{80k+40}-9343\cdot 122^{79k+40}-66551\cdot 122^{78k+39}-850\cdot 122^{77k+39}+45659\cdot 122^{76k+38}\\||+7149\cdot 122^{75k+38}+81191\cdot 122^{74k+37}+5034\cdot 122^{73k+37}+14989\cdot 122^{72k+36}-2221\cdot 122^{71k+36}\\||-49715\cdot 122^{70k+35}-4904\cdot 122^{69k+35}-39453\cdot 122^{68k+34}-1235\cdot 122^{67k+34}+12139\cdot 122^{66k+33}\\||+2544\cdot 122^{65k+33}+29541\cdot 122^{64k+32}+1653\cdot 122^{63k+32}+1037\cdot 122^{62k+31}-1242\cdot 122^{61k+31}\\||-19449\cdot 122^{60k+30}-1242\cdot 122^{59k+30}+1037\cdot 122^{58k+29}+1653\cdot 122^{57k+29}+29541\cdot 122^{56k+28}\\||+2544\cdot 122^{55k+28}+12139\cdot 122^{54k+27}-1235\cdot 122^{53k+27}-39453\cdot 122^{52k+26}-4904\cdot 122^{51k+26}\\||-49715\cdot 122^{50k+25}-2221\cdot 122^{49k+25}+14989\cdot 122^{48k+24}+5034\cdot 122^{47k+24}+81191\cdot 122^{46k+23}\\||+7149\cdot 122^{45k+23}+45659\cdot 122^{44k+22}-850\cdot 122^{43k+22}-66551\cdot 122^{42k+21}-9343\cdot 122^{41k+21}\\||-103015\cdot 122^{40k+20}-5736\cdot 122^{39k+20}+2623\cdot 122^{38k+19}+6359\cdot 122^{37k+19}+112755\cdot 122^{36k+18}\\||+10190\cdot 122^{35k+18}+69113\cdot 122^{34k+17}-15\cdot 122^{33k+17}-67247\cdot 122^{32k+16}-9562\cdot 122^{31k+16}\\||-101565\cdot 122^{30k+15}-5377\cdot 122^{29k+15}+1511\cdot 122^{28k+14}+5050\cdot 122^{27k+14}+83021\cdot 122^{26k+13}\\||+6859\cdot 122^{25k+13}+41237\cdot 122^{24k+12}-294\cdot 122^{23k+12}-38857\cdot 122^{22k+11}-4833\cdot 122^{21k+11}\\||-45313\cdot 122^{20k+10}-2038\cdot 122^{19k+10}+2989\cdot 122^{18k+9}+1891\cdot 122^{17k+9}+26429\cdot 122^{16k+8}\\||+1896\cdot 122^{15k+8}+9699\cdot 122^{14k+7}-117\cdot 122^{13k+7}-7957\cdot 122^{12k+6}-840\cdot 122^{11k+6}\\||-6771\cdot 122^{10k+5}-269\cdot 122^{9k+5}+69\cdot 122^{8k+4}+138\cdot 122^{7k+4}+1647\cdot 122^{6k+3}\\||+103\cdot 122^{5k+3}+579\cdot 122^{4k+2}+20\cdot 122^{3k+2}+61\cdot 122^{2k+1}+122^{k+1}+1)\\{\large\Phi}_{246}(123^{2k+1})|=|123^{160k+80}+123^{158k+79}-123^{154k+77}-123^{152k+76}+123^{148k+74}\\||+123^{146k+73}-123^{142k+71}-123^{140k+70}+123^{136k+68}+123^{134k+67}\\||-123^{130k+65}-123^{128k+64}+123^{124k+62}+123^{122k+61}-123^{118k+59}\\||-123^{116k+58}+123^{112k+56}+123^{110k+55}-123^{106k+53}-123^{104k+52}\\||+123^{100k+50}+123^{98k+49}-123^{94k+47}-123^{92k+46}+123^{88k+44}\\||+123^{86k+43}-123^{82k+41}-123^{80k+40}-123^{78k+39}+123^{74k+37}\\||+123^{72k+36}-123^{68k+34}-123^{66k+33}+123^{62k+31}+123^{60k+30}\\||-123^{56k+28}-123^{54k+27}+123^{50k+25}+123^{48k+24}-123^{44k+22}\\||-123^{42k+21}+123^{38k+19}+123^{36k+18}-123^{32k+16}-123^{30k+15}\\||+123^{26k+13}+123^{24k+12}-123^{20k+10}-123^{18k+9}+123^{14k+7}\\||+123^{12k+6}-123^{8k+4}-123^{6k+3}+123^{2k+1}+1\\|=|(123^{80k+40}-123^{79k+40}+62\cdot 123^{78k+39}-21\cdot 123^{77k+39}+661\cdot 123^{76k+38}\\||-136\cdot 123^{75k+38}+2867\cdot 123^{74k+37}-417\cdot 123^{73k+37}+6364\cdot 123^{72k+36}-667\cdot 123^{71k+36}\\||+7001\cdot 123^{70k+35}-432\cdot 123^{69k+35}+1063\cdot 123^{68k+34}+283\cdot 123^{67k+34}-6358\cdot 123^{66k+33}\\||+667\cdot 123^{65k+33}-5999\cdot 123^{64k+32}+282\cdot 123^{63k+32}-595\cdot 123^{62k+31}+11\cdot 123^{61k+31}\\||-2294\cdot 123^{60k+30}+543\cdot 123^{59k+30}-8917\cdot 123^{58k+29}+766\cdot 123^{57k+29}-3629\cdot 123^{56k+28}\\||-413\cdot 123^{55k+28}+13082\cdot 123^{54k+27}-1649\cdot 123^{53k+27}+17935\cdot 123^{52k+26}-1116\cdot 123^{51k+26}\\||+4541\cdot 123^{50k+25}+139\cdot 123^{49k+25}-2894\cdot 123^{48k+24}-65\cdot 123^{47k+24}+6563\cdot 123^{46k+23}\\||-932\cdot 123^{45k+23}+8557\cdot 123^{44k+22}-53\cdot 123^{43k+22}-10804\cdot 123^{42k+21}+1869\cdot 123^{41k+21}\\||-24647\cdot 123^{40k+20}+1869\cdot 123^{39k+20}-10804\cdot 123^{38k+19}-53\cdot 123^{37k+19}+8557\cdot 123^{36k+18}\\||-932\cdot 123^{35k+18}+6563\cdot 123^{34k+17}-65\cdot 123^{33k+17}-2894\cdot 123^{32k+16}+139\cdot 123^{31k+16}\\||+4541\cdot 123^{30k+15}-1116\cdot 123^{29k+15}+17935\cdot 123^{28k+14}-1649\cdot 123^{27k+14}+13082\cdot 123^{26k+13}\\||-413\cdot 123^{25k+13}-3629\cdot 123^{24k+12}+766\cdot 123^{23k+12}-8917\cdot 123^{22k+11}+543\cdot 123^{21k+11}\\||-2294\cdot 123^{20k+10}+11\cdot 123^{19k+10}-595\cdot 123^{18k+9}+282\cdot 123^{17k+9}-5999\cdot 123^{16k+8}\\||+667\cdot 123^{15k+8}-6358\cdot 123^{14k+7}+283\cdot 123^{13k+7}+1063\cdot 123^{12k+6}-432\cdot 123^{11k+6}\\||+7001\cdot 123^{10k+5}-667\cdot 123^{9k+5}+6364\cdot 123^{8k+4}-417\cdot 123^{7k+4}+2867\cdot 123^{6k+3}\\||-136\cdot 123^{5k+3}+661\cdot 123^{4k+2}-21\cdot 123^{3k+2}+62\cdot 123^{2k+1}-123^{k+1}+1)\\|\times|(123^{80k+40}+123^{79k+40}+62\cdot 123^{78k+39}+21\cdot 123^{77k+39}+661\cdot 123^{76k+38}\\||+136\cdot 123^{75k+38}+2867\cdot 123^{74k+37}+417\cdot 123^{73k+37}+6364\cdot 123^{72k+36}+667\cdot 123^{71k+36}\\||+7001\cdot 123^{70k+35}+432\cdot 123^{69k+35}+1063\cdot 123^{68k+34}-283\cdot 123^{67k+34}-6358\cdot 123^{66k+33}\\||-667\cdot 123^{65k+33}-5999\cdot 123^{64k+32}-282\cdot 123^{63k+32}-595\cdot 123^{62k+31}-11\cdot 123^{61k+31}\\||-2294\cdot 123^{60k+30}-543\cdot 123^{59k+30}-8917\cdot 123^{58k+29}-766\cdot 123^{57k+29}-3629\cdot 123^{56k+28}\\||+413\cdot 123^{55k+28}+13082\cdot 123^{54k+27}+1649\cdot 123^{53k+27}+17935\cdot 123^{52k+26}+1116\cdot 123^{51k+26}\\||+4541\cdot 123^{50k+25}-139\cdot 123^{49k+25}-2894\cdot 123^{48k+24}+65\cdot 123^{47k+24}+6563\cdot 123^{46k+23}\\||+932\cdot 123^{45k+23}+8557\cdot 123^{44k+22}+53\cdot 123^{43k+22}-10804\cdot 123^{42k+21}-1869\cdot 123^{41k+21}\\||-24647\cdot 123^{40k+20}-1869\cdot 123^{39k+20}-10804\cdot 123^{38k+19}+53\cdot 123^{37k+19}+8557\cdot 123^{36k+18}\\||+932\cdot 123^{35k+18}+6563\cdot 123^{34k+17}+65\cdot 123^{33k+17}-2894\cdot 123^{32k+16}-139\cdot 123^{31k+16}\\||+4541\cdot 123^{30k+15}+1116\cdot 123^{29k+15}+17935\cdot 123^{28k+14}+1649\cdot 123^{27k+14}+13082\cdot 123^{26k+13}\\||+413\cdot 123^{25k+13}-3629\cdot 123^{24k+12}-766\cdot 123^{23k+12}-8917\cdot 123^{22k+11}-543\cdot 123^{21k+11}\\||-2294\cdot 123^{20k+10}-11\cdot 123^{19k+10}-595\cdot 123^{18k+9}-282\cdot 123^{17k+9}-5999\cdot 123^{16k+8}\\||-667\cdot 123^{15k+8}-6358\cdot 123^{14k+7}-283\cdot 123^{13k+7}+1063\cdot 123^{12k+6}+432\cdot 123^{11k+6}\\||+7001\cdot 123^{10k+5}+667\cdot 123^{9k+5}+6364\cdot 123^{8k+4}+417\cdot 123^{7k+4}+2867\cdot 123^{6k+3}\\||+136\cdot 123^{5k+3}+661\cdot 123^{4k+2}+21\cdot 123^{3k+2}+62\cdot 123^{2k+1}+123^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{254}(127^{2k+1})\cdots{\large\Phi}_{260}(130^{2k+1})$${\large\Phi}_{254}(127^{2k+1})\cdots{\large\Phi}_{260}(130^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{254}(127^{2k+1})|=|127^{252k+126}-127^{250k+125}+127^{248k+124}-127^{246k+123}+127^{244k+122}\\||-127^{242k+121}+127^{240k+120}-127^{238k+119}+127^{236k+118}-127^{234k+117}\\||+127^{232k+116}-127^{230k+115}+127^{228k+114}-127^{226k+113}+127^{224k+112}\\||-127^{222k+111}+127^{220k+110}-127^{218k+109}+127^{216k+108}-127^{214k+107}\\||+127^{212k+106}-127^{210k+105}+127^{208k+104}-127^{206k+103}+127^{204k+102}\\||-127^{202k+101}+127^{200k+100}-127^{198k+99}+127^{196k+98}-127^{194k+97}\\||+127^{192k+96}-127^{190k+95}+127^{188k+94}-127^{186k+93}+127^{184k+92}\\||-127^{182k+91}+127^{180k+90}-127^{178k+89}+127^{176k+88}-127^{174k+87}\\||+127^{172k+86}-127^{170k+85}+127^{168k+84}-127^{166k+83}+127^{164k+82}\\||-127^{162k+81}+127^{160k+80}-127^{158k+79}+127^{156k+78}-127^{154k+77}\\||+127^{152k+76}-127^{150k+75}+127^{148k+74}-127^{146k+73}+127^{144k+72}\\||-127^{142k+71}+127^{140k+70}-127^{138k+69}+127^{136k+68}-127^{134k+67}\\||+127^{132k+66}-127^{130k+65}+127^{128k+64}-127^{126k+63}+127^{124k+62}\\||-127^{122k+61}+127^{120k+60}-127^{118k+59}+127^{116k+58}-127^{114k+57}\\||+127^{112k+56}-127^{110k+55}+127^{108k+54}-127^{106k+53}+127^{104k+52}\\||-127^{102k+51}+127^{100k+50}-127^{98k+49}+127^{96k+48}-127^{94k+47}\\||+127^{92k+46}-127^{90k+45}+127^{88k+44}-127^{86k+43}+127^{84k+42}\\||-127^{82k+41}+127^{80k+40}-127^{78k+39}+127^{76k+38}-127^{74k+37}\\||+127^{72k+36}-127^{70k+35}+127^{68k+34}-127^{66k+33}+127^{64k+32}\\||-127^{62k+31}+127^{60k+30}-127^{58k+29}+127^{56k+28}-127^{54k+27}\\||+127^{52k+26}-127^{50k+25}+127^{48k+24}-127^{46k+23}+127^{44k+22}\\||-127^{42k+21}+127^{40k+20}-127^{38k+19}+127^{36k+18}-127^{34k+17}\\||+127^{32k+16}-127^{30k+15}+127^{28k+14}-127^{26k+13}+127^{24k+12}\\||-127^{22k+11}+127^{20k+10}-127^{18k+9}+127^{16k+8}-127^{14k+7}\\||+127^{12k+6}-127^{10k+5}+127^{8k+4}-127^{6k+3}+127^{4k+2}\\||-127^{2k+1}+1\\|=|(127^{126k+63}-127^{125k+63}+63\cdot 127^{124k+62}-21\cdot 127^{123k+62}+683\cdot 127^{122k+61}\\||-145\cdot 127^{121k+61}+3389\cdot 127^{120k+60}-555\cdot 127^{119k+60}+10449\cdot 127^{118k+59}-1421\cdot 127^{117k+59}\\||+22765\cdot 127^{116k+58}-2689\cdot 127^{115k+58}+38113\cdot 127^{114k+57}-4057\cdot 127^{113k+57}+52829\cdot 127^{112k+56}\\||-5269\cdot 127^{111k+56}+65511\cdot 127^{110k+55}-6339\cdot 127^{109k+55}+77257\cdot 127^{108k+54}-7353\cdot 127^{107k+54}\\||+87953\cdot 127^{106k+53}-8173\cdot 127^{105k+53}+94959\cdot 127^{104k+52}-8553\cdot 127^{103k+52}+96529\cdot 127^{102k+51}\\||-8493\cdot 127^{101k+51}+94367\cdot 127^{100k+50}-8245\cdot 127^{99k+50}+91661\cdot 127^{98k+49}-8059\cdot 127^{97k+49}\\||+90621\cdot 127^{96k+48}-8101\cdot 127^{95k+48}+93047\cdot 127^{94k+47}-8521\cdot 127^{93k+47}+100171\cdot 127^{92k+46}\\||-9327\cdot 127^{91k+46}+110253\cdot 127^{90k+45}-10197\cdot 127^{89k+45}+118431\cdot 127^{88k+44}-10681\cdot 127^{87k+44}\\||+120645\cdot 127^{86k+43}-10597\cdot 127^{85k+43}+116987\cdot 127^{84k+42}-10089\cdot 127^{83k+42}+109847\cdot 127^{82k+41}\\||-9369\cdot 127^{81k+41}+101017\cdot 127^{80k+40}-8545\cdot 127^{79k+40}+91569\cdot 127^{78k+39}-7721\cdot 127^{77k+39}\\||+82863\cdot 127^{76k+38}-7037\cdot 127^{75k+38}+76423\cdot 127^{74k+37}-6597\cdot 127^{73k+37}+73213\cdot 127^{72k+36}\\||-6491\cdot 127^{71k+36}+74319\cdot 127^{70k+35}-6821\cdot 127^{69k+35}+80709\cdot 127^{68k+34}-7583\cdot 127^{67k+34}\\||+90505\cdot 127^{66k+33}-8433\cdot 127^{65k+33}+98163\cdot 127^{64k+32}-8809\cdot 127^{63k+32}+98163\cdot 127^{62k+31}\\||-8433\cdot 127^{61k+31}+90505\cdot 127^{60k+30}-7583\cdot 127^{59k+30}+80709\cdot 127^{58k+29}-6821\cdot 127^{57k+29}\\||+74319\cdot 127^{56k+28}-6491\cdot 127^{55k+28}+73213\cdot 127^{54k+27}-6597\cdot 127^{53k+27}+76423\cdot 127^{52k+26}\\||-7037\cdot 127^{51k+26}+82863\cdot 127^{50k+25}-7721\cdot 127^{49k+25}+91569\cdot 127^{48k+24}-8545\cdot 127^{47k+24}\\||+101017\cdot 127^{46k+23}-9369\cdot 127^{45k+23}+109847\cdot 127^{44k+22}-10089\cdot 127^{43k+22}+116987\cdot 127^{42k+21}\\||-10597\cdot 127^{41k+21}+120645\cdot 127^{40k+20}-10681\cdot 127^{39k+20}+118431\cdot 127^{38k+19}-10197\cdot 127^{37k+19}\\||+110253\cdot 127^{36k+18}-9327\cdot 127^{35k+18}+100171\cdot 127^{34k+17}-8521\cdot 127^{33k+17}+93047\cdot 127^{32k+16}\\||-8101\cdot 127^{31k+16}+90621\cdot 127^{30k+15}-8059\cdot 127^{29k+15}+91661\cdot 127^{28k+14}-8245\cdot 127^{27k+14}\\||+94367\cdot 127^{26k+13}-8493\cdot 127^{25k+13}+96529\cdot 127^{24k+12}-8553\cdot 127^{23k+12}+94959\cdot 127^{22k+11}\\||-8173\cdot 127^{21k+11}+87953\cdot 127^{20k+10}-7353\cdot 127^{19k+10}+77257\cdot 127^{18k+9}-6339\cdot 127^{17k+9}\\||+65511\cdot 127^{16k+8}-5269\cdot 127^{15k+8}+52829\cdot 127^{14k+7}-4057\cdot 127^{13k+7}+38113\cdot 127^{12k+6}\\||-2689\cdot 127^{11k+6}+22765\cdot 127^{10k+5}-1421\cdot 127^{9k+5}+10449\cdot 127^{8k+4}-555\cdot 127^{7k+4}\\||+3389\cdot 127^{6k+3}-145\cdot 127^{5k+3}+683\cdot 127^{4k+2}-21\cdot 127^{3k+2}+63\cdot 127^{2k+1}\\||-127^{k+1}+1)\\|\times|(127^{126k+63}+127^{125k+63}+63\cdot 127^{124k+62}+21\cdot 127^{123k+62}+683\cdot 127^{122k+61}\\||+145\cdot 127^{121k+61}+3389\cdot 127^{120k+60}+555\cdot 127^{119k+60}+10449\cdot 127^{118k+59}+1421\cdot 127^{117k+59}\\||+22765\cdot 127^{116k+58}+2689\cdot 127^{115k+58}+38113\cdot 127^{114k+57}+4057\cdot 127^{113k+57}+52829\cdot 127^{112k+56}\\||+5269\cdot 127^{111k+56}+65511\cdot 127^{110k+55}+6339\cdot 127^{109k+55}+77257\cdot 127^{108k+54}+7353\cdot 127^{107k+54}\\||+87953\cdot 127^{106k+53}+8173\cdot 127^{105k+53}+94959\cdot 127^{104k+52}+8553\cdot 127^{103k+52}+96529\cdot 127^{102k+51}\\||+8493\cdot 127^{101k+51}+94367\cdot 127^{100k+50}+8245\cdot 127^{99k+50}+91661\cdot 127^{98k+49}+8059\cdot 127^{97k+49}\\||+90621\cdot 127^{96k+48}+8101\cdot 127^{95k+48}+93047\cdot 127^{94k+47}+8521\cdot 127^{93k+47}+100171\cdot 127^{92k+46}\\||+9327\cdot 127^{91k+46}+110253\cdot 127^{90k+45}+10197\cdot 127^{89k+45}+118431\cdot 127^{88k+44}+10681\cdot 127^{87k+44}\\||+120645\cdot 127^{86k+43}+10597\cdot 127^{85k+43}+116987\cdot 127^{84k+42}+10089\cdot 127^{83k+42}+109847\cdot 127^{82k+41}\\||+9369\cdot 127^{81k+41}+101017\cdot 127^{80k+40}+8545\cdot 127^{79k+40}+91569\cdot 127^{78k+39}+7721\cdot 127^{77k+39}\\||+82863\cdot 127^{76k+38}+7037\cdot 127^{75k+38}+76423\cdot 127^{74k+37}+6597\cdot 127^{73k+37}+73213\cdot 127^{72k+36}\\||+6491\cdot 127^{71k+36}+74319\cdot 127^{70k+35}+6821\cdot 127^{69k+35}+80709\cdot 127^{68k+34}+7583\cdot 127^{67k+34}\\||+90505\cdot 127^{66k+33}+8433\cdot 127^{65k+33}+98163\cdot 127^{64k+32}+8809\cdot 127^{63k+32}+98163\cdot 127^{62k+31}\\||+8433\cdot 127^{61k+31}+90505\cdot 127^{60k+30}+7583\cdot 127^{59k+30}+80709\cdot 127^{58k+29}+6821\cdot 127^{57k+29}\\||+74319\cdot 127^{56k+28}+6491\cdot 127^{55k+28}+73213\cdot 127^{54k+27}+6597\cdot 127^{53k+27}+76423\cdot 127^{52k+26}\\||+7037\cdot 127^{51k+26}+82863\cdot 127^{50k+25}+7721\cdot 127^{49k+25}+91569\cdot 127^{48k+24}+8545\cdot 127^{47k+24}\\||+101017\cdot 127^{46k+23}+9369\cdot 127^{45k+23}+109847\cdot 127^{44k+22}+10089\cdot 127^{43k+22}+116987\cdot 127^{42k+21}\\||+10597\cdot 127^{41k+21}+120645\cdot 127^{40k+20}+10681\cdot 127^{39k+20}+118431\cdot 127^{38k+19}+10197\cdot 127^{37k+19}\\||+110253\cdot 127^{36k+18}+9327\cdot 127^{35k+18}+100171\cdot 127^{34k+17}+8521\cdot 127^{33k+17}+93047\cdot 127^{32k+16}\\||+8101\cdot 127^{31k+16}+90621\cdot 127^{30k+15}+8059\cdot 127^{29k+15}+91661\cdot 127^{28k+14}+8245\cdot 127^{27k+14}\\||+94367\cdot 127^{26k+13}+8493\cdot 127^{25k+13}+96529\cdot 127^{24k+12}+8553\cdot 127^{23k+12}+94959\cdot 127^{22k+11}\\||+8173\cdot 127^{21k+11}+87953\cdot 127^{20k+10}+7353\cdot 127^{19k+10}+77257\cdot 127^{18k+9}+6339\cdot 127^{17k+9}\\||+65511\cdot 127^{16k+8}+5269\cdot 127^{15k+8}+52829\cdot 127^{14k+7}+4057\cdot 127^{13k+7}+38113\cdot 127^{12k+6}\\||+2689\cdot 127^{11k+6}+22765\cdot 127^{10k+5}+1421\cdot 127^{9k+5}+10449\cdot 127^{8k+4}+555\cdot 127^{7k+4}\\||+3389\cdot 127^{6k+3}+145\cdot 127^{5k+3}+683\cdot 127^{4k+2}+21\cdot 127^{3k+2}+63\cdot 127^{2k+1}\\||+127^{k+1}+1)\\{\large\Phi}_{129}(129^{2k+1})|=|129^{168k+84}-129^{166k+83}+129^{162k+81}-129^{160k+80}+129^{156k+78}\\||-129^{154k+77}+129^{150k+75}-129^{148k+74}+129^{144k+72}-129^{142k+71}\\||+129^{138k+69}-129^{136k+68}+129^{132k+66}-129^{130k+65}+129^{126k+63}\\||-129^{124k+62}+129^{120k+60}-129^{118k+59}+129^{114k+57}-129^{112k+56}\\||+129^{108k+54}-129^{106k+53}+129^{102k+51}-129^{100k+50}+129^{96k+48}\\||-129^{94k+47}+129^{90k+45}-129^{88k+44}+129^{84k+42}-129^{80k+40}\\||+129^{78k+39}-129^{74k+37}+129^{72k+36}-129^{68k+34}+129^{66k+33}\\||-129^{62k+31}+129^{60k+30}-129^{56k+28}+129^{54k+27}-129^{50k+25}\\||+129^{48k+24}-129^{44k+22}+129^{42k+21}-129^{38k+19}+129^{36k+18}\\||-129^{32k+16}+129^{30k+15}-129^{26k+13}+129^{24k+12}-129^{20k+10}\\||+129^{18k+9}-129^{14k+7}+129^{12k+6}-129^{8k+4}+129^{6k+3}\\||-129^{2k+1}+1\\|=|(129^{84k+42}-129^{83k+42}+64\cdot 129^{82k+41}-21\cdot 129^{81k+41}+661\cdot 129^{80k+40}\\||-128\cdot 129^{79k+40}+2653\cdot 129^{78k+39}-367\cdot 129^{77k+39}+5842\cdot 129^{76k+38}-665\cdot 129^{75k+38}\\||+9235\cdot 129^{74k+37}-948\cdot 129^{73k+37}+11875\cdot 129^{72k+36}-1075\cdot 129^{71k+36}+11566\cdot 129^{70k+35}\\||-881\cdot 129^{69k+35}+7759\cdot 129^{68k+34}-444\cdot 129^{67k+34}+2035\cdot 129^{66k+33}+91\cdot 129^{65k+33}\\||-3866\cdot 129^{64k+32}+549\cdot 129^{63k+32}-8081\cdot 129^{62k+31}+830\cdot 129^{61k+31}-10271\cdot 129^{60k+30}\\||+937\cdot 129^{59k+30}-10742\cdot 129^{58k+29}+959\cdot 129^{57k+29}-11267\cdot 129^{56k+28}+1032\cdot 129^{55k+28}\\||-11939\cdot 129^{54k+27}+1031\cdot 129^{53k+27}-10988\cdot 129^{52k+26}+855\cdot 129^{51k+26}-7685\cdot 129^{50k+25}\\||+416\cdot 129^{49k+25}-881\cdot 129^{48k+24}-309\cdot 129^{47k+24}+7972\cdot 129^{46k+23}-1061\cdot 129^{45k+23}\\||+15349\cdot 129^{44k+22}-1542\cdot 129^{43k+22}+18271\cdot 129^{42k+21}-1542\cdot 129^{41k+21}+15349\cdot 129^{40k+20}\\||-1061\cdot 129^{39k+20}+7972\cdot 129^{38k+19}-309\cdot 129^{37k+19}-881\cdot 129^{36k+18}+416\cdot 129^{35k+18}\\||-7685\cdot 129^{34k+17}+855\cdot 129^{33k+17}-10988\cdot 129^{32k+16}+1031\cdot 129^{31k+16}-11939\cdot 129^{30k+15}\\||+1032\cdot 129^{29k+15}-11267\cdot 129^{28k+14}+959\cdot 129^{27k+14}-10742\cdot 129^{26k+13}+937\cdot 129^{25k+13}\\||-10271\cdot 129^{24k+12}+830\cdot 129^{23k+12}-8081\cdot 129^{22k+11}+549\cdot 129^{21k+11}-3866\cdot 129^{20k+10}\\||+91\cdot 129^{19k+10}+2035\cdot 129^{18k+9}-444\cdot 129^{17k+9}+7759\cdot 129^{16k+8}-881\cdot 129^{15k+8}\\||+11566\cdot 129^{14k+7}-1075\cdot 129^{13k+7}+11875\cdot 129^{12k+6}-948\cdot 129^{11k+6}+9235\cdot 129^{10k+5}\\||-665\cdot 129^{9k+5}+5842\cdot 129^{8k+4}-367\cdot 129^{7k+4}+2653\cdot 129^{6k+3}-128\cdot 129^{5k+3}\\||+661\cdot 129^{4k+2}-21\cdot 129^{3k+2}+64\cdot 129^{2k+1}-129^{k+1}+1)\\|\times|(129^{84k+42}+129^{83k+42}+64\cdot 129^{82k+41}+21\cdot 129^{81k+41}+661\cdot 129^{80k+40}\\||+128\cdot 129^{79k+40}+2653\cdot 129^{78k+39}+367\cdot 129^{77k+39}+5842\cdot 129^{76k+38}+665\cdot 129^{75k+38}\\||+9235\cdot 129^{74k+37}+948\cdot 129^{73k+37}+11875\cdot 129^{72k+36}+1075\cdot 129^{71k+36}+11566\cdot 129^{70k+35}\\||+881\cdot 129^{69k+35}+7759\cdot 129^{68k+34}+444\cdot 129^{67k+34}+2035\cdot 129^{66k+33}-91\cdot 129^{65k+33}\\||-3866\cdot 129^{64k+32}-549\cdot 129^{63k+32}-8081\cdot 129^{62k+31}-830\cdot 129^{61k+31}-10271\cdot 129^{60k+30}\\||-937\cdot 129^{59k+30}-10742\cdot 129^{58k+29}-959\cdot 129^{57k+29}-11267\cdot 129^{56k+28}-1032\cdot 129^{55k+28}\\||-11939\cdot 129^{54k+27}-1031\cdot 129^{53k+27}-10988\cdot 129^{52k+26}-855\cdot 129^{51k+26}-7685\cdot 129^{50k+25}\\||-416\cdot 129^{49k+25}-881\cdot 129^{48k+24}+309\cdot 129^{47k+24}+7972\cdot 129^{46k+23}+1061\cdot 129^{45k+23}\\||+15349\cdot 129^{44k+22}+1542\cdot 129^{43k+22}+18271\cdot 129^{42k+21}+1542\cdot 129^{41k+21}+15349\cdot 129^{40k+20}\\||+1061\cdot 129^{39k+20}+7972\cdot 129^{38k+19}+309\cdot 129^{37k+19}-881\cdot 129^{36k+18}-416\cdot 129^{35k+18}\\||-7685\cdot 129^{34k+17}-855\cdot 129^{33k+17}-10988\cdot 129^{32k+16}-1031\cdot 129^{31k+16}-11939\cdot 129^{30k+15}\\||-1032\cdot 129^{29k+15}-11267\cdot 129^{28k+14}-959\cdot 129^{27k+14}-10742\cdot 129^{26k+13}-937\cdot 129^{25k+13}\\||-10271\cdot 129^{24k+12}-830\cdot 129^{23k+12}-8081\cdot 129^{22k+11}-549\cdot 129^{21k+11}-3866\cdot 129^{20k+10}\\||-91\cdot 129^{19k+10}+2035\cdot 129^{18k+9}+444\cdot 129^{17k+9}+7759\cdot 129^{16k+8}+881\cdot 129^{15k+8}\\||+11566\cdot 129^{14k+7}+1075\cdot 129^{13k+7}+11875\cdot 129^{12k+6}+948\cdot 129^{11k+6}+9235\cdot 129^{10k+5}\\||+665\cdot 129^{9k+5}+5842\cdot 129^{8k+4}+367\cdot 129^{7k+4}+2653\cdot 129^{6k+3}+128\cdot 129^{5k+3}\\||+661\cdot 129^{4k+2}+21\cdot 129^{3k+2}+64\cdot 129^{2k+1}+129^{k+1}+1)\\{\large\Phi}_{260}(130^{2k+1})|=|130^{192k+96}+130^{188k+94}-130^{172k+86}-130^{168k+84}+130^{152k+76}\\||+130^{148k+74}-130^{140k+70}-130^{136k+68}-130^{132k+66}-130^{128k+64}\\||+130^{120k+60}+130^{116k+58}+130^{112k+56}+130^{108k+54}-130^{100k+50}\\||-130^{96k+48}-130^{92k+46}+130^{84k+42}+130^{80k+40}+130^{76k+38}\\||+130^{72k+36}-130^{64k+32}-130^{60k+30}-130^{56k+28}-130^{52k+26}\\||+130^{44k+22}+130^{40k+20}-130^{24k+12}-130^{20k+10}+130^{4k+2}+1\\|=|(130^{96k+48}-130^{95k+48}+65\cdot 130^{94k+47}-22\cdot 130^{93k+47}+748\cdot 130^{92k+46}\\||-163\cdot 130^{91k+46}+4030\cdot 130^{90k+45}-689\cdot 130^{89k+45}+14048\cdot 130^{88k+44}-2052\cdot 130^{87k+44}\\||+36725\cdot 130^{86k+43}-4811\cdot 130^{85k+43}+78581\cdot 130^{84k+42}-9533\cdot 130^{83k+42}+145990\cdot 130^{82k+41}\\||-16779\cdot 130^{81k+41}+245540\cdot 130^{80k+40}-27154\cdot 130^{79k+40}+384410\cdot 130^{78k+39}-41290\cdot 130^{77k+39}\\||+569349\cdot 130^{76k+38}-59685\cdot 130^{75k+38}+804375\cdot 130^{74k+37}-82509\cdot 130^{73k+37}+1089202\cdot 130^{72k+36}\\||-109556\cdot 130^{71k+36}+1419795\cdot 130^{70k+35}-140360\cdot 130^{69k+35}+1789837\cdot 130^{68k+34}-174284\cdot 130^{67k+34}\\||+2190955\cdot 130^{66k+33}-210470\cdot 130^{65k+33}+2611689\cdot 130^{64k+32}-247758\cdot 130^{63k+32}+3037190\cdot 130^{62k+31}\\||-284735\cdot 130^{61k+31}+3450605\cdot 130^{60k+30}-319907\cdot 130^{59k+30}+3835195\cdot 130^{58k+29}-351860\cdot 130^{57k+29}\\||+4175611\cdot 130^{56k+28}-379317\cdot 130^{55k+28}+4458025\cdot 130^{54k+27}-401127\cdot 130^{53k+27}+4670098\cdot 130^{52k+26}\\||-416294\cdot 130^{51k+26}+4801745\cdot 130^{50k+25}-424074\cdot 130^{49k+25}+4846383\cdot 130^{48k+24}-424074\cdot 130^{47k+24}\\||+4801745\cdot 130^{46k+23}-416294\cdot 130^{45k+23}+4670098\cdot 130^{44k+22}-401127\cdot 130^{43k+22}+4458025\cdot 130^{42k+21}\\||-379317\cdot 130^{41k+21}+4175611\cdot 130^{40k+20}-351860\cdot 130^{39k+20}+3835195\cdot 130^{38k+19}-319907\cdot 130^{37k+19}\\||+3450605\cdot 130^{36k+18}-284735\cdot 130^{35k+18}+3037190\cdot 130^{34k+17}-247758\cdot 130^{33k+17}+2611689\cdot 130^{32k+16}\\||-210470\cdot 130^{31k+16}+2190955\cdot 130^{30k+15}-174284\cdot 130^{29k+15}+1789837\cdot 130^{28k+14}-140360\cdot 130^{27k+14}\\||+1419795\cdot 130^{26k+13}-109556\cdot 130^{25k+13}+1089202\cdot 130^{24k+12}-82509\cdot 130^{23k+12}+804375\cdot 130^{22k+11}\\||-59685\cdot 130^{21k+11}+569349\cdot 130^{20k+10}-41290\cdot 130^{19k+10}+384410\cdot 130^{18k+9}-27154\cdot 130^{17k+9}\\||+245540\cdot 130^{16k+8}-16779\cdot 130^{15k+8}+145990\cdot 130^{14k+7}-9533\cdot 130^{13k+7}+78581\cdot 130^{12k+6}\\||-4811\cdot 130^{11k+6}+36725\cdot 130^{10k+5}-2052\cdot 130^{9k+5}+14048\cdot 130^{8k+4}-689\cdot 130^{7k+4}\\||+4030\cdot 130^{6k+3}-163\cdot 130^{5k+3}+748\cdot 130^{4k+2}-22\cdot 130^{3k+2}+65\cdot 130^{2k+1}\\||-130^{k+1}+1)\\|\times|(130^{96k+48}+130^{95k+48}+65\cdot 130^{94k+47}+22\cdot 130^{93k+47}+748\cdot 130^{92k+46}\\||+163\cdot 130^{91k+46}+4030\cdot 130^{90k+45}+689\cdot 130^{89k+45}+14048\cdot 130^{88k+44}+2052\cdot 130^{87k+44}\\||+36725\cdot 130^{86k+43}+4811\cdot 130^{85k+43}+78581\cdot 130^{84k+42}+9533\cdot 130^{83k+42}+145990\cdot 130^{82k+41}\\||+16779\cdot 130^{81k+41}+245540\cdot 130^{80k+40}+27154\cdot 130^{79k+40}+384410\cdot 130^{78k+39}+41290\cdot 130^{77k+39}\\||+569349\cdot 130^{76k+38}+59685\cdot 130^{75k+38}+804375\cdot 130^{74k+37}+82509\cdot 130^{73k+37}+1089202\cdot 130^{72k+36}\\||+109556\cdot 130^{71k+36}+1419795\cdot 130^{70k+35}+140360\cdot 130^{69k+35}+1789837\cdot 130^{68k+34}+174284\cdot 130^{67k+34}\\||+2190955\cdot 130^{66k+33}+210470\cdot 130^{65k+33}+2611689\cdot 130^{64k+32}+247758\cdot 130^{63k+32}+3037190\cdot 130^{62k+31}\\||+284735\cdot 130^{61k+31}+3450605\cdot 130^{60k+30}+319907\cdot 130^{59k+30}+3835195\cdot 130^{58k+29}+351860\cdot 130^{57k+29}\\||+4175611\cdot 130^{56k+28}+379317\cdot 130^{55k+28}+4458025\cdot 130^{54k+27}+401127\cdot 130^{53k+27}+4670098\cdot 130^{52k+26}\\||+416294\cdot 130^{51k+26}+4801745\cdot 130^{50k+25}+424074\cdot 130^{49k+25}+4846383\cdot 130^{48k+24}+424074\cdot 130^{47k+24}\\||+4801745\cdot 130^{46k+23}+416294\cdot 130^{45k+23}+4670098\cdot 130^{44k+22}+401127\cdot 130^{43k+22}+4458025\cdot 130^{42k+21}\\||+379317\cdot 130^{41k+21}+4175611\cdot 130^{40k+20}+351860\cdot 130^{39k+20}+3835195\cdot 130^{38k+19}+319907\cdot 130^{37k+19}\\||+3450605\cdot 130^{36k+18}+284735\cdot 130^{35k+18}+3037190\cdot 130^{34k+17}+247758\cdot 130^{33k+17}+2611689\cdot 130^{32k+16}\\||+210470\cdot 130^{31k+16}+2190955\cdot 130^{30k+15}+174284\cdot 130^{29k+15}+1789837\cdot 130^{28k+14}+140360\cdot 130^{27k+14}\\||+1419795\cdot 130^{26k+13}+109556\cdot 130^{25k+13}+1089202\cdot 130^{24k+12}+82509\cdot 130^{23k+12}+804375\cdot 130^{22k+11}\\||+59685\cdot 130^{21k+11}+569349\cdot 130^{20k+10}+41290\cdot 130^{19k+10}+384410\cdot 130^{18k+9}+27154\cdot 130^{17k+9}\\||+245540\cdot 130^{16k+8}+16779\cdot 130^{15k+8}+145990\cdot 130^{14k+7}+9533\cdot 130^{13k+7}+78581\cdot 130^{12k+6}\\||+4811\cdot 130^{11k+6}+36725\cdot 130^{10k+5}+2052\cdot 130^{9k+5}+14048\cdot 130^{8k+4}+689\cdot 130^{7k+4}\\||+4030\cdot 130^{6k+3}+163\cdot 130^{5k+3}+748\cdot 130^{4k+2}+22\cdot 130^{3k+2}+65\cdot 130^{2k+1}\\||+130^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{262}(131^{2k+1})\cdots{\large\Phi}_{268}(134^{2k+1})$${\large\Phi}_{262}(131^{2k+1})\cdots{\large\Phi}_{268}(134^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{262}(131^{2k+1})|=|131^{260k+130}-131^{258k+129}+131^{256k+128}-131^{254k+127}+131^{252k+126}\\||-131^{250k+125}+131^{248k+124}-131^{246k+123}+131^{244k+122}-131^{242k+121}\\||+131^{240k+120}-131^{238k+119}+131^{236k+118}-131^{234k+117}+131^{232k+116}\\||-131^{230k+115}+131^{228k+114}-131^{226k+113}+131^{224k+112}-131^{222k+111}\\||+131^{220k+110}-131^{218k+109}+131^{216k+108}-131^{214k+107}+131^{212k+106}\\||-131^{210k+105}+131^{208k+104}-131^{206k+103}+131^{204k+102}-131^{202k+101}\\||+131^{200k+100}-131^{198k+99}+131^{196k+98}-131^{194k+97}+131^{192k+96}\\||-131^{190k+95}+131^{188k+94}-131^{186k+93}+131^{184k+92}-131^{182k+91}\\||+131^{180k+90}-131^{178k+89}+131^{176k+88}-131^{174k+87}+131^{172k+86}\\||-131^{170k+85}+131^{168k+84}-131^{166k+83}+131^{164k+82}-131^{162k+81}\\||+131^{160k+80}-131^{158k+79}+131^{156k+78}-131^{154k+77}+131^{152k+76}\\||-131^{150k+75}+131^{148k+74}-131^{146k+73}+131^{144k+72}-131^{142k+71}\\||+131^{140k+70}-131^{138k+69}+131^{136k+68}-131^{134k+67}+131^{132k+66}\\||-131^{130k+65}+131^{128k+64}-131^{126k+63}+131^{124k+62}-131^{122k+61}\\||+131^{120k+60}-131^{118k+59}+131^{116k+58}-131^{114k+57}+131^{112k+56}\\||-131^{110k+55}+131^{108k+54}-131^{106k+53}+131^{104k+52}-131^{102k+51}\\||+131^{100k+50}-131^{98k+49}+131^{96k+48}-131^{94k+47}+131^{92k+46}\\||-131^{90k+45}+131^{88k+44}-131^{86k+43}+131^{84k+42}-131^{82k+41}\\||+131^{80k+40}-131^{78k+39}+131^{76k+38}-131^{74k+37}+131^{72k+36}\\||-131^{70k+35}+131^{68k+34}-131^{66k+33}+131^{64k+32}-131^{62k+31}\\||+131^{60k+30}-131^{58k+29}+131^{56k+28}-131^{54k+27}+131^{52k+26}\\||-131^{50k+25}+131^{48k+24}-131^{46k+23}+131^{44k+22}-131^{42k+21}\\||+131^{40k+20}-131^{38k+19}+131^{36k+18}-131^{34k+17}+131^{32k+16}\\||-131^{30k+15}+131^{28k+14}-131^{26k+13}+131^{24k+12}-131^{22k+11}\\||+131^{20k+10}-131^{18k+9}+131^{16k+8}-131^{14k+7}+131^{12k+6}\\||-131^{10k+5}+131^{8k+4}-131^{6k+3}+131^{4k+2}-131^{2k+1}+1\\|=|(131^{130k+65}-131^{129k+65}+65\cdot 131^{128k+64}-21\cdot 131^{127k+64}+639\cdot 131^{126k+63}\\||-111\cdot 131^{125k+63}+1891\cdot 131^{124k+62}-175\cdot 131^{123k+62}+1211\cdot 131^{122k+61}+21\cdot 131^{121k+61}\\||-1365\cdot 131^{120k+60}+105\cdot 131^{119k+60}+105\cdot 131^{118k+59}-105\cdot 131^{117k+59}+885\cdot 131^{116k+58}\\||+39\cdot 131^{115k+58}-1149\cdot 131^{114k+57}+31\cdot 131^{113k+57}+845\cdot 131^{112k+56}-67\cdot 131^{111k+56}\\||-639\cdot 131^{110k+55}+155\cdot 131^{109k+55}-1623\cdot 131^{108k+54}+81\cdot 131^{107k+54}-557\cdot 131^{106k+53}\\||-15\cdot 131^{105k+53}+2163\cdot 131^{104k+52}-359\cdot 131^{103k+52}+3449\cdot 131^{102k+51}-23\cdot 131^{101k+51}\\||-1845\cdot 131^{100k+50}+31\cdot 131^{99k+50}+2209\cdot 131^{98k+49}-125\cdot 131^{97k+49}-2433\cdot 131^{96k+48}\\||+365\cdot 131^{95k+48}-855\cdot 131^{94k+47}-327\cdot 131^{93k+47}+4173\cdot 131^{92k+46}-65\cdot 131^{91k+46}\\||-1655\cdot 131^{90k+45}+103\cdot 131^{89k+45}-1151\cdot 131^{88k+44}+315\cdot 131^{87k+44}-5053\cdot 131^{86k+43}\\||+165\cdot 131^{85k+43}+2981\cdot 131^{84k+42}-311\cdot 131^{83k+42}-187\cdot 131^{82k+41}+159\cdot 131^{81k+41}\\||+1957\cdot 131^{80k+40}-523\cdot 131^{79k+40}+4089\cdot 131^{78k+39}+155\cdot 131^{77k+39}-4399\cdot 131^{76k+38}\\||+143\cdot 131^{75k+38}+1525\cdot 131^{74k+37}-123\cdot 131^{73k+37}+717\cdot 131^{72k+36}-233\cdot 131^{71k+36}\\||+4607\cdot 131^{70k+35}-183\cdot 131^{69k+35}-3191\cdot 131^{68k+34}+443\cdot 131^{67k+34}-2105\cdot 131^{66k+33}\\||-15\cdot 131^{65k+33}-2105\cdot 131^{64k+32}+443\cdot 131^{63k+32}-3191\cdot 131^{62k+31}-183\cdot 131^{61k+31}\\||+4607\cdot 131^{60k+30}-233\cdot 131^{59k+30}+717\cdot 131^{58k+29}-123\cdot 131^{57k+29}+1525\cdot 131^{56k+28}\\||+143\cdot 131^{55k+28}-4399\cdot 131^{54k+27}+155\cdot 131^{53k+27}+4089\cdot 131^{52k+26}-523\cdot 131^{51k+26}\\||+1957\cdot 131^{50k+25}+159\cdot 131^{49k+25}-187\cdot 131^{48k+24}-311\cdot 131^{47k+24}+2981\cdot 131^{46k+23}\\||+165\cdot 131^{45k+23}-5053\cdot 131^{44k+22}+315\cdot 131^{43k+22}-1151\cdot 131^{42k+21}+103\cdot 131^{41k+21}\\||-1655\cdot 131^{40k+20}-65\cdot 131^{39k+20}+4173\cdot 131^{38k+19}-327\cdot 131^{37k+19}-855\cdot 131^{36k+18}\\||+365\cdot 131^{35k+18}-2433\cdot 131^{34k+17}-125\cdot 131^{33k+17}+2209\cdot 131^{32k+16}+31\cdot 131^{31k+16}\\||-1845\cdot 131^{30k+15}-23\cdot 131^{29k+15}+3449\cdot 131^{28k+14}-359\cdot 131^{27k+14}+2163\cdot 131^{26k+13}\\||-15\cdot 131^{25k+13}-557\cdot 131^{24k+12}+81\cdot 131^{23k+12}-1623\cdot 131^{22k+11}+155\cdot 131^{21k+11}\\||-639\cdot 131^{20k+10}-67\cdot 131^{19k+10}+845\cdot 131^{18k+9}+31\cdot 131^{17k+9}-1149\cdot 131^{16k+8}\\||+39\cdot 131^{15k+8}+885\cdot 131^{14k+7}-105\cdot 131^{13k+7}+105\cdot 131^{12k+6}+105\cdot 131^{11k+6}\\||-1365\cdot 131^{10k+5}+21\cdot 131^{9k+5}+1211\cdot 131^{8k+4}-175\cdot 131^{7k+4}+1891\cdot 131^{6k+3}\\||-111\cdot 131^{5k+3}+639\cdot 131^{4k+2}-21\cdot 131^{3k+2}+65\cdot 131^{2k+1}-131^{k+1}+1)\\|\times|(131^{130k+65}+131^{129k+65}+65\cdot 131^{128k+64}+21\cdot 131^{127k+64}+639\cdot 131^{126k+63}\\||+111\cdot 131^{125k+63}+1891\cdot 131^{124k+62}+175\cdot 131^{123k+62}+1211\cdot 131^{122k+61}-21\cdot 131^{121k+61}\\||-1365\cdot 131^{120k+60}-105\cdot 131^{119k+60}+105\cdot 131^{118k+59}+105\cdot 131^{117k+59}+885\cdot 131^{116k+58}\\||-39\cdot 131^{115k+58}-1149\cdot 131^{114k+57}-31\cdot 131^{113k+57}+845\cdot 131^{112k+56}+67\cdot 131^{111k+56}\\||-639\cdot 131^{110k+55}-155\cdot 131^{109k+55}-1623\cdot 131^{108k+54}-81\cdot 131^{107k+54}-557\cdot 131^{106k+53}\\||+15\cdot 131^{105k+53}+2163\cdot 131^{104k+52}+359\cdot 131^{103k+52}+3449\cdot 131^{102k+51}+23\cdot 131^{101k+51}\\||-1845\cdot 131^{100k+50}-31\cdot 131^{99k+50}+2209\cdot 131^{98k+49}+125\cdot 131^{97k+49}-2433\cdot 131^{96k+48}\\||-365\cdot 131^{95k+48}-855\cdot 131^{94k+47}+327\cdot 131^{93k+47}+4173\cdot 131^{92k+46}+65\cdot 131^{91k+46}\\||-1655\cdot 131^{90k+45}-103\cdot 131^{89k+45}-1151\cdot 131^{88k+44}-315\cdot 131^{87k+44}-5053\cdot 131^{86k+43}\\||-165\cdot 131^{85k+43}+2981\cdot 131^{84k+42}+311\cdot 131^{83k+42}-187\cdot 131^{82k+41}-159\cdot 131^{81k+41}\\||+1957\cdot 131^{80k+40}+523\cdot 131^{79k+40}+4089\cdot 131^{78k+39}-155\cdot 131^{77k+39}-4399\cdot 131^{76k+38}\\||-143\cdot 131^{75k+38}+1525\cdot 131^{74k+37}+123\cdot 131^{73k+37}+717\cdot 131^{72k+36}+233\cdot 131^{71k+36}\\||+4607\cdot 131^{70k+35}+183\cdot 131^{69k+35}-3191\cdot 131^{68k+34}-443\cdot 131^{67k+34}-2105\cdot 131^{66k+33}\\||+15\cdot 131^{65k+33}-2105\cdot 131^{64k+32}-443\cdot 131^{63k+32}-3191\cdot 131^{62k+31}+183\cdot 131^{61k+31}\\||+4607\cdot 131^{60k+30}+233\cdot 131^{59k+30}+717\cdot 131^{58k+29}+123\cdot 131^{57k+29}+1525\cdot 131^{56k+28}\\||-143\cdot 131^{55k+28}-4399\cdot 131^{54k+27}-155\cdot 131^{53k+27}+4089\cdot 131^{52k+26}+523\cdot 131^{51k+26}\\||+1957\cdot 131^{50k+25}-159\cdot 131^{49k+25}-187\cdot 131^{48k+24}+311\cdot 131^{47k+24}+2981\cdot 131^{46k+23}\\||-165\cdot 131^{45k+23}-5053\cdot 131^{44k+22}-315\cdot 131^{43k+22}-1151\cdot 131^{42k+21}-103\cdot 131^{41k+21}\\||-1655\cdot 131^{40k+20}+65\cdot 131^{39k+20}+4173\cdot 131^{38k+19}+327\cdot 131^{37k+19}-855\cdot 131^{36k+18}\\||-365\cdot 131^{35k+18}-2433\cdot 131^{34k+17}+125\cdot 131^{33k+17}+2209\cdot 131^{32k+16}-31\cdot 131^{31k+16}\\||-1845\cdot 131^{30k+15}+23\cdot 131^{29k+15}+3449\cdot 131^{28k+14}+359\cdot 131^{27k+14}+2163\cdot 131^{26k+13}\\||+15\cdot 131^{25k+13}-557\cdot 131^{24k+12}-81\cdot 131^{23k+12}-1623\cdot 131^{22k+11}-155\cdot 131^{21k+11}\\||-639\cdot 131^{20k+10}+67\cdot 131^{19k+10}+845\cdot 131^{18k+9}-31\cdot 131^{17k+9}-1149\cdot 131^{16k+8}\\||-39\cdot 131^{15k+8}+885\cdot 131^{14k+7}+105\cdot 131^{13k+7}+105\cdot 131^{12k+6}-105\cdot 131^{11k+6}\\||-1365\cdot 131^{10k+5}-21\cdot 131^{9k+5}+1211\cdot 131^{8k+4}+175\cdot 131^{7k+4}+1891\cdot 131^{6k+3}\\||+111\cdot 131^{5k+3}+639\cdot 131^{4k+2}+21\cdot 131^{3k+2}+65\cdot 131^{2k+1}+131^{k+1}+1)\\{\large\Phi}_{133}(133^{2k+1})|=|133^{216k+108}-133^{214k+107}+133^{202k+101}-133^{200k+100}+133^{188k+94}\\||-133^{186k+93}+133^{178k+89}-133^{176k+88}+133^{174k+87}-133^{172k+86}\\||+133^{164k+82}-133^{162k+81}+133^{160k+80}-133^{158k+79}+133^{150k+75}\\||-133^{148k+74}+133^{146k+73}-133^{144k+72}+133^{140k+70}-133^{138k+69}\\||+133^{136k+68}-133^{134k+67}+133^{132k+66}-133^{130k+65}+133^{126k+63}\\||-133^{124k+62}+133^{122k+61}-133^{120k+60}+133^{118k+59}-133^{116k+58}\\||+133^{112k+56}-133^{110k+55}+133^{108k+54}-133^{106k+53}+133^{104k+52}\\||-133^{100k+50}+133^{98k+49}-133^{96k+48}+133^{94k+47}-133^{92k+46}\\||+133^{90k+45}-133^{86k+43}+133^{84k+42}-133^{82k+41}+133^{80k+40}\\||-133^{78k+39}+133^{76k+38}-133^{72k+36}+133^{70k+35}-133^{68k+34}\\||+133^{66k+33}-133^{58k+29}+133^{56k+28}-133^{54k+27}+133^{52k+26}\\||-133^{44k+22}+133^{42k+21}-133^{40k+20}+133^{38k+19}-133^{30k+15}\\||+133^{28k+14}-133^{16k+8}+133^{14k+7}-133^{2k+1}+1\\|=|(133^{108k+54}-133^{107k+54}+66\cdot 133^{106k+53}-22\cdot 133^{105k+53}+748\cdot 133^{104k+52}\\||-158\cdot 133^{103k+52}+3832\cdot 133^{102k+51}-619\cdot 133^{101k+51}+11971\cdot 133^{100k+50}-1584\cdot 133^{99k+50}\\||+25550\cdot 133^{98k+49}-2852\cdot 133^{97k+49}+39046\cdot 133^{96k+48}-3708\cdot 133^{95k+48}+43191\cdot 133^{94k+47}\\||-3493\cdot 133^{93k+47}+35038\cdot 133^{92k+46}-2552\cdot 133^{91k+46}+25976\cdot 133^{90k+45}-2341\cdot 133^{89k+45}\\||+33799\cdot 133^{88k+44}-3987\cdot 133^{87k+44}+61209\cdot 133^{86k+43}-6556\cdot 133^{85k+43}+84728\cdot 133^{84k+42}\\||-7362\cdot 133^{83k+42}+74585\cdot 133^{82k+41}-4787\cdot 133^{81k+41}+31193\cdot 133^{80k+40}-783\cdot 133^{79k+40}\\||-4470\cdot 133^{78k+39}+368\cdot 133^{77k+39}+11248\cdot 133^{76k+38}-3395\cdot 133^{75k+38}+72621\cdot 133^{74k+37}\\||-8887\cdot 133^{73k+37}+119869\cdot 133^{72k+36}-10308\cdot 133^{71k+36}+98697\cdot 133^{70k+35}-5571\cdot 133^{69k+35}\\||+25163\cdot 133^{68k+34}+587\cdot 133^{67k+34}-21003\cdot 133^{66k+33}+995\cdot 133^{65k+33}+21302\cdot 133^{64k+32}\\||-6071\cdot 133^{63k+32}+122363\cdot 133^{62k+31}-14261\cdot 133^{61k+31}+184873\cdot 133^{60k+30}-15435\cdot 133^{59k+30}\\||+145951\cdot 133^{58k+29}-8500\cdot 133^{57k+29}+48171\cdot 133^{56k+28}-947\cdot 133^{55k+28}-2837\cdot 133^{54k+27}\\||-947\cdot 133^{53k+27}+48171\cdot 133^{52k+26}-8500\cdot 133^{51k+26}+145951\cdot 133^{50k+25}-15435\cdot 133^{49k+25}\\||+184873\cdot 133^{48k+24}-14261\cdot 133^{47k+24}+122363\cdot 133^{46k+23}-6071\cdot 133^{45k+23}+21302\cdot 133^{44k+22}\\||+995\cdot 133^{43k+22}-21003\cdot 133^{42k+21}+587\cdot 133^{41k+21}+25163\cdot 133^{40k+20}-5571\cdot 133^{39k+20}\\||+98697\cdot 133^{38k+19}-10308\cdot 133^{37k+19}+119869\cdot 133^{36k+18}-8887\cdot 133^{35k+18}+72621\cdot 133^{34k+17}\\||-3395\cdot 133^{33k+17}+11248\cdot 133^{32k+16}+368\cdot 133^{31k+16}-4470\cdot 133^{30k+15}-783\cdot 133^{29k+15}\\||+31193\cdot 133^{28k+14}-4787\cdot 133^{27k+14}+74585\cdot 133^{26k+13}-7362\cdot 133^{25k+13}+84728\cdot 133^{24k+12}\\||-6556\cdot 133^{23k+12}+61209\cdot 133^{22k+11}-3987\cdot 133^{21k+11}+33799\cdot 133^{20k+10}-2341\cdot 133^{19k+10}\\||+25976\cdot 133^{18k+9}-2552\cdot 133^{17k+9}+35038\cdot 133^{16k+8}-3493\cdot 133^{15k+8}+43191\cdot 133^{14k+7}\\||-3708\cdot 133^{13k+7}+39046\cdot 133^{12k+6}-2852\cdot 133^{11k+6}+25550\cdot 133^{10k+5}-1584\cdot 133^{9k+5}\\||+11971\cdot 133^{8k+4}-619\cdot 133^{7k+4}+3832\cdot 133^{6k+3}-158\cdot 133^{5k+3}+748\cdot 133^{4k+2}\\||-22\cdot 133^{3k+2}+66\cdot 133^{2k+1}-133^{k+1}+1)\\|\times|(133^{108k+54}+133^{107k+54}+66\cdot 133^{106k+53}+22\cdot 133^{105k+53}+748\cdot 133^{104k+52}\\||+158\cdot 133^{103k+52}+3832\cdot 133^{102k+51}+619\cdot 133^{101k+51}+11971\cdot 133^{100k+50}+1584\cdot 133^{99k+50}\\||+25550\cdot 133^{98k+49}+2852\cdot 133^{97k+49}+39046\cdot 133^{96k+48}+3708\cdot 133^{95k+48}+43191\cdot 133^{94k+47}\\||+3493\cdot 133^{93k+47}+35038\cdot 133^{92k+46}+2552\cdot 133^{91k+46}+25976\cdot 133^{90k+45}+2341\cdot 133^{89k+45}\\||+33799\cdot 133^{88k+44}+3987\cdot 133^{87k+44}+61209\cdot 133^{86k+43}+6556\cdot 133^{85k+43}+84728\cdot 133^{84k+42}\\||+7362\cdot 133^{83k+42}+74585\cdot 133^{82k+41}+4787\cdot 133^{81k+41}+31193\cdot 133^{80k+40}+783\cdot 133^{79k+40}\\||-4470\cdot 133^{78k+39}-368\cdot 133^{77k+39}+11248\cdot 133^{76k+38}+3395\cdot 133^{75k+38}+72621\cdot 133^{74k+37}\\||+8887\cdot 133^{73k+37}+119869\cdot 133^{72k+36}+10308\cdot 133^{71k+36}+98697\cdot 133^{70k+35}+5571\cdot 133^{69k+35}\\||+25163\cdot 133^{68k+34}-587\cdot 133^{67k+34}-21003\cdot 133^{66k+33}-995\cdot 133^{65k+33}+21302\cdot 133^{64k+32}\\||+6071\cdot 133^{63k+32}+122363\cdot 133^{62k+31}+14261\cdot 133^{61k+31}+184873\cdot 133^{60k+30}+15435\cdot 133^{59k+30}\\||+145951\cdot 133^{58k+29}+8500\cdot 133^{57k+29}+48171\cdot 133^{56k+28}+947\cdot 133^{55k+28}-2837\cdot 133^{54k+27}\\||+947\cdot 133^{53k+27}+48171\cdot 133^{52k+26}+8500\cdot 133^{51k+26}+145951\cdot 133^{50k+25}+15435\cdot 133^{49k+25}\\||+184873\cdot 133^{48k+24}+14261\cdot 133^{47k+24}+122363\cdot 133^{46k+23}+6071\cdot 133^{45k+23}+21302\cdot 133^{44k+22}\\||-995\cdot 133^{43k+22}-21003\cdot 133^{42k+21}-587\cdot 133^{41k+21}+25163\cdot 133^{40k+20}+5571\cdot 133^{39k+20}\\||+98697\cdot 133^{38k+19}+10308\cdot 133^{37k+19}+119869\cdot 133^{36k+18}+8887\cdot 133^{35k+18}+72621\cdot 133^{34k+17}\\||+3395\cdot 133^{33k+17}+11248\cdot 133^{32k+16}-368\cdot 133^{31k+16}-4470\cdot 133^{30k+15}+783\cdot 133^{29k+15}\\||+31193\cdot 133^{28k+14}+4787\cdot 133^{27k+14}+74585\cdot 133^{26k+13}+7362\cdot 133^{25k+13}+84728\cdot 133^{24k+12}\\||+6556\cdot 133^{23k+12}+61209\cdot 133^{22k+11}+3987\cdot 133^{21k+11}+33799\cdot 133^{20k+10}+2341\cdot 133^{19k+10}\\||+25976\cdot 133^{18k+9}+2552\cdot 133^{17k+9}+35038\cdot 133^{16k+8}+3493\cdot 133^{15k+8}+43191\cdot 133^{14k+7}\\||+3708\cdot 133^{13k+7}+39046\cdot 133^{12k+6}+2852\cdot 133^{11k+6}+25550\cdot 133^{10k+5}+1584\cdot 133^{9k+5}\\||+11971\cdot 133^{8k+4}+619\cdot 133^{7k+4}+3832\cdot 133^{6k+3}+158\cdot 133^{5k+3}+748\cdot 133^{4k+2}\\||+22\cdot 133^{3k+2}+66\cdot 133^{2k+1}+133^{k+1}+1)\\{\large\Phi}_{268}(134^{2k+1})|=|134^{264k+132}-134^{260k+130}+134^{256k+128}-134^{252k+126}+134^{248k+124}\\||-134^{244k+122}+134^{240k+120}-134^{236k+118}+134^{232k+116}-134^{228k+114}\\||+134^{224k+112}-134^{220k+110}+134^{216k+108}-134^{212k+106}+134^{208k+104}\\||-134^{204k+102}+134^{200k+100}-134^{196k+98}+134^{192k+96}-134^{188k+94}\\||+134^{184k+92}-134^{180k+90}+134^{176k+88}-134^{172k+86}+134^{168k+84}\\||-134^{164k+82}+134^{160k+80}-134^{156k+78}+134^{152k+76}-134^{148k+74}\\||+134^{144k+72}-134^{140k+70}+134^{136k+68}-134^{132k+66}+134^{128k+64}\\||-134^{124k+62}+134^{120k+60}-134^{116k+58}+134^{112k+56}-134^{108k+54}\\||+134^{104k+52}-134^{100k+50}+134^{96k+48}-134^{92k+46}+134^{88k+44}\\||-134^{84k+42}+134^{80k+40}-134^{76k+38}+134^{72k+36}-134^{68k+34}\\||+134^{64k+32}-134^{60k+30}+134^{56k+28}-134^{52k+26}+134^{48k+24}\\||-134^{44k+22}+134^{40k+20}-134^{36k+18}+134^{32k+16}-134^{28k+14}\\||+134^{24k+12}-134^{20k+10}+134^{16k+8}-134^{12k+6}+134^{8k+4}\\||-134^{4k+2}+1\\|=|(134^{132k+66}-134^{131k+66}+67\cdot 134^{130k+65}-22\cdot 134^{129k+65}+703\cdot 134^{128k+64}\\||-127\cdot 134^{127k+64}+2345\cdot 134^{126k+63}-238\cdot 134^{125k+63}+2069\cdot 134^{124k+62}-27\cdot 134^{123k+62}\\||-1273\cdot 134^{122k+61}+60\cdot 134^{121k+61}+3111\cdot 134^{120k+60}-741\cdot 134^{119k+60}+11725\cdot 134^{118k+59}\\||-778\cdot 134^{117k+59}+921\cdot 134^{116k+58}+605\cdot 134^{115k+58}-7705\cdot 134^{114k+57}-130\cdot 134^{113k+57}\\||+15499\cdot 134^{112k+56}-2077\cdot 134^{111k+56}+19497\cdot 134^{110k+55}-318\cdot 134^{109k+55}-12203\cdot 134^{108k+54}\\||+1349\cdot 134^{107k+54}-2881\cdot 134^{106k+53}-1468\cdot 134^{105k+53}+28871\cdot 134^{104k+52}-2043\cdot 134^{103k+52}\\||+5829\cdot 134^{102k+51}+890\cdot 134^{101k+51}-12783\cdot 134^{100k+50}+153\cdot 134^{99k+50}+11591\cdot 134^{98k+49}\\||-1374\cdot 134^{97k+49}+9739\cdot 134^{96k+48}-161\cdot 134^{95k+48}+1541\cdot 134^{94k+47}-734\cdot 134^{93k+47}\\||+12801\cdot 134^{92k+46}-469\cdot 134^{91k+46}-10653\cdot 134^{90k+45}+1790\cdot 134^{89k+45}-11473\cdot 134^{88k+44}\\||-1243\cdot 134^{87k+44}+36917\cdot 134^{86k+43}-2984\cdot 134^{85k+43}+4013\cdot 134^{84k+42}+2907\cdot 134^{83k+42}\\||-48441\cdot 134^{82k+41}+2274\cdot 134^{81k+41}+17419\cdot 134^{80k+40}-4235\cdot 134^{79k+40}+43349\cdot 134^{78k+39}\\||-408\cdot 134^{77k+39}-36459\cdot 134^{76k+38}+4221\cdot 134^{75k+38}-25661\cdot 134^{74k+37}-982\cdot 134^{73k+37}\\||+31887\cdot 134^{72k+36}-1967\cdot 134^{71k+36}-3015\cdot 134^{70k+35}+1802\cdot 134^{69k+35}-17635\cdot 134^{68k+34}\\||+173\cdot 134^{67k+34}+6499\cdot 134^{66k+33}+173\cdot 134^{65k+33}-17635\cdot 134^{64k+32}+1802\cdot 134^{63k+32}\\||-3015\cdot 134^{62k+31}-1967\cdot 134^{61k+31}+31887\cdot 134^{60k+30}-982\cdot 134^{59k+30}-25661\cdot 134^{58k+29}\\||+4221\cdot 134^{57k+29}-36459\cdot 134^{56k+28}-408\cdot 134^{55k+28}+43349\cdot 134^{54k+27}-4235\cdot 134^{53k+27}\\||+17419\cdot 134^{52k+26}+2274\cdot 134^{51k+26}-48441\cdot 134^{50k+25}+2907\cdot 134^{49k+25}+4013\cdot 134^{48k+24}\\||-2984\cdot 134^{47k+24}+36917\cdot 134^{46k+23}-1243\cdot 134^{45k+23}-11473\cdot 134^{44k+22}+1790\cdot 134^{43k+22}\\||-10653\cdot 134^{42k+21}-469\cdot 134^{41k+21}+12801\cdot 134^{40k+20}-734\cdot 134^{39k+20}+1541\cdot 134^{38k+19}\\||-161\cdot 134^{37k+19}+9739\cdot 134^{36k+18}-1374\cdot 134^{35k+18}+11591\cdot 134^{34k+17}+153\cdot 134^{33k+17}\\||-12783\cdot 134^{32k+16}+890\cdot 134^{31k+16}+5829\cdot 134^{30k+15}-2043\cdot 134^{29k+15}+28871\cdot 134^{28k+14}\\||-1468\cdot 134^{27k+14}-2881\cdot 134^{26k+13}+1349\cdot 134^{25k+13}-12203\cdot 134^{24k+12}-318\cdot 134^{23k+12}\\||+19497\cdot 134^{22k+11}-2077\cdot 134^{21k+11}+15499\cdot 134^{20k+10}-130\cdot 134^{19k+10}-7705\cdot 134^{18k+9}\\||+605\cdot 134^{17k+9}+921\cdot 134^{16k+8}-778\cdot 134^{15k+8}+11725\cdot 134^{14k+7}-741\cdot 134^{13k+7}\\||+3111\cdot 134^{12k+6}+60\cdot 134^{11k+6}-1273\cdot 134^{10k+5}-27\cdot 134^{9k+5}+2069\cdot 134^{8k+4}\\||-238\cdot 134^{7k+4}+2345\cdot 134^{6k+3}-127\cdot 134^{5k+3}+703\cdot 134^{4k+2}-22\cdot 134^{3k+2}\\||+67\cdot 134^{2k+1}-134^{k+1}+1)\\|\times|(134^{132k+66}+134^{131k+66}+67\cdot 134^{130k+65}+22\cdot 134^{129k+65}+703\cdot 134^{128k+64}\\||+127\cdot 134^{127k+64}+2345\cdot 134^{126k+63}+238\cdot 134^{125k+63}+2069\cdot 134^{124k+62}+27\cdot 134^{123k+62}\\||-1273\cdot 134^{122k+61}-60\cdot 134^{121k+61}+3111\cdot 134^{120k+60}+741\cdot 134^{119k+60}+11725\cdot 134^{118k+59}\\||+778\cdot 134^{117k+59}+921\cdot 134^{116k+58}-605\cdot 134^{115k+58}-7705\cdot 134^{114k+57}+130\cdot 134^{113k+57}\\||+15499\cdot 134^{112k+56}+2077\cdot 134^{111k+56}+19497\cdot 134^{110k+55}+318\cdot 134^{109k+55}-12203\cdot 134^{108k+54}\\||-1349\cdot 134^{107k+54}-2881\cdot 134^{106k+53}+1468\cdot 134^{105k+53}+28871\cdot 134^{104k+52}+2043\cdot 134^{103k+52}\\||+5829\cdot 134^{102k+51}-890\cdot 134^{101k+51}-12783\cdot 134^{100k+50}-153\cdot 134^{99k+50}+11591\cdot 134^{98k+49}\\||+1374\cdot 134^{97k+49}+9739\cdot 134^{96k+48}+161\cdot 134^{95k+48}+1541\cdot 134^{94k+47}+734\cdot 134^{93k+47}\\||+12801\cdot 134^{92k+46}+469\cdot 134^{91k+46}-10653\cdot 134^{90k+45}-1790\cdot 134^{89k+45}-11473\cdot 134^{88k+44}\\||+1243\cdot 134^{87k+44}+36917\cdot 134^{86k+43}+2984\cdot 134^{85k+43}+4013\cdot 134^{84k+42}-2907\cdot 134^{83k+42}\\||-48441\cdot 134^{82k+41}-2274\cdot 134^{81k+41}+17419\cdot 134^{80k+40}+4235\cdot 134^{79k+40}+43349\cdot 134^{78k+39}\\||+408\cdot 134^{77k+39}-36459\cdot 134^{76k+38}-4221\cdot 134^{75k+38}-25661\cdot 134^{74k+37}+982\cdot 134^{73k+37}\\||+31887\cdot 134^{72k+36}+1967\cdot 134^{71k+36}-3015\cdot 134^{70k+35}-1802\cdot 134^{69k+35}-17635\cdot 134^{68k+34}\\||-173\cdot 134^{67k+34}+6499\cdot 134^{66k+33}-173\cdot 134^{65k+33}-17635\cdot 134^{64k+32}-1802\cdot 134^{63k+32}\\||-3015\cdot 134^{62k+31}+1967\cdot 134^{61k+31}+31887\cdot 134^{60k+30}+982\cdot 134^{59k+30}-25661\cdot 134^{58k+29}\\||-4221\cdot 134^{57k+29}-36459\cdot 134^{56k+28}+408\cdot 134^{55k+28}+43349\cdot 134^{54k+27}+4235\cdot 134^{53k+27}\\||+17419\cdot 134^{52k+26}-2274\cdot 134^{51k+26}-48441\cdot 134^{50k+25}-2907\cdot 134^{49k+25}+4013\cdot 134^{48k+24}\\||+2984\cdot 134^{47k+24}+36917\cdot 134^{46k+23}+1243\cdot 134^{45k+23}-11473\cdot 134^{44k+22}-1790\cdot 134^{43k+22}\\||-10653\cdot 134^{42k+21}+469\cdot 134^{41k+21}+12801\cdot 134^{40k+20}+734\cdot 134^{39k+20}+1541\cdot 134^{38k+19}\\||+161\cdot 134^{37k+19}+9739\cdot 134^{36k+18}+1374\cdot 134^{35k+18}+11591\cdot 134^{34k+17}-153\cdot 134^{33k+17}\\||-12783\cdot 134^{32k+16}-890\cdot 134^{31k+16}+5829\cdot 134^{30k+15}+2043\cdot 134^{29k+15}+28871\cdot 134^{28k+14}\\||+1468\cdot 134^{27k+14}-2881\cdot 134^{26k+13}-1349\cdot 134^{25k+13}-12203\cdot 134^{24k+12}+318\cdot 134^{23k+12}\\||+19497\cdot 134^{22k+11}+2077\cdot 134^{21k+11}+15499\cdot 134^{20k+10}+130\cdot 134^{19k+10}-7705\cdot 134^{18k+9}\\||-605\cdot 134^{17k+9}+921\cdot 134^{16k+8}+778\cdot 134^{15k+8}+11725\cdot 134^{14k+7}+741\cdot 134^{13k+7}\\||+3111\cdot 134^{12k+6}-60\cdot 134^{11k+6}-1273\cdot 134^{10k+5}+27\cdot 134^{9k+5}+2069\cdot 134^{8k+4}\\||+238\cdot 134^{7k+4}+2345\cdot 134^{6k+3}+127\cdot 134^{5k+3}+703\cdot 134^{4k+2}+22\cdot 134^{3k+2}\\||+67\cdot 134^{2k+1}+134^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{137}(137^{2k+1})\cdots{\large\Phi}_{278}(139^{2k+1})$${\large\Phi}_{137}(137^{2k+1})\cdots{\large\Phi}_{278}(139^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{137}(137^{2k+1})|=|137^{272k+136}+137^{270k+135}+137^{268k+134}+137^{266k+133}+137^{264k+132}\\||+137^{262k+131}+137^{260k+130}+137^{258k+129}+137^{256k+128}+137^{254k+127}\\||+137^{252k+126}+137^{250k+125}+137^{248k+124}+137^{246k+123}+137^{244k+122}\\||+137^{242k+121}+137^{240k+120}+137^{238k+119}+137^{236k+118}+137^{234k+117}\\||+137^{232k+116}+137^{230k+115}+137^{228k+114}+137^{226k+113}+137^{224k+112}\\||+137^{222k+111}+137^{220k+110}+137^{218k+109}+137^{216k+108}+137^{214k+107}\\||+137^{212k+106}+137^{210k+105}+137^{208k+104}+137^{206k+103}+137^{204k+102}\\||+137^{202k+101}+137^{200k+100}+137^{198k+99}+137^{196k+98}+137^{194k+97}\\||+137^{192k+96}+137^{190k+95}+137^{188k+94}+137^{186k+93}+137^{184k+92}\\||+137^{182k+91}+137^{180k+90}+137^{178k+89}+137^{176k+88}+137^{174k+87}\\||+137^{172k+86}+137^{170k+85}+137^{168k+84}+137^{166k+83}+137^{164k+82}\\||+137^{162k+81}+137^{160k+80}+137^{158k+79}+137^{156k+78}+137^{154k+77}\\||+137^{152k+76}+137^{150k+75}+137^{148k+74}+137^{146k+73}+137^{144k+72}\\||+137^{142k+71}+137^{140k+70}+137^{138k+69}+137^{136k+68}+137^{134k+67}\\||+137^{132k+66}+137^{130k+65}+137^{128k+64}+137^{126k+63}+137^{124k+62}\\||+137^{122k+61}+137^{120k+60}+137^{118k+59}+137^{116k+58}+137^{114k+57}\\||+137^{112k+56}+137^{110k+55}+137^{108k+54}+137^{106k+53}+137^{104k+52}\\||+137^{102k+51}+137^{100k+50}+137^{98k+49}+137^{96k+48}+137^{94k+47}\\||+137^{92k+46}+137^{90k+45}+137^{88k+44}+137^{86k+43}+137^{84k+42}\\||+137^{82k+41}+137^{80k+40}+137^{78k+39}+137^{76k+38}+137^{74k+37}\\||+137^{72k+36}+137^{70k+35}+137^{68k+34}+137^{66k+33}+137^{64k+32}\\||+137^{62k+31}+137^{60k+30}+137^{58k+29}+137^{56k+28}+137^{54k+27}\\||+137^{52k+26}+137^{50k+25}+137^{48k+24}+137^{46k+23}+137^{44k+22}\\||+137^{42k+21}+137^{40k+20}+137^{38k+19}+137^{36k+18}+137^{34k+17}\\||+137^{32k+16}+137^{30k+15}+137^{28k+14}+137^{26k+13}+137^{24k+12}\\||+137^{22k+11}+137^{20k+10}+137^{18k+9}+137^{16k+8}+137^{14k+7}\\||+137^{12k+6}+137^{10k+5}+137^{8k+4}+137^{6k+3}+137^{4k+2}\\||+137^{2k+1}+1\\|=|(137^{136k+68}-137^{135k+68}+69\cdot 137^{134k+67}-23\cdot 137^{133k+67}+771\cdot 137^{132k+66}\\||-145\cdot 137^{131k+66}+2903\cdot 137^{130k+65}-319\cdot 137^{129k+65}+3071\cdot 137^{128k+64}+5\cdot 137^{127k+64}\\||-5415\cdot 137^{126k+63}+915\cdot 137^{125k+63}-11985\cdot 137^{124k+62}+487\cdot 137^{123k+62}+8237\cdot 137^{122k+61}\\||-2093\cdot 137^{121k+61}+33521\cdot 137^{120k+60}-2253\cdot 137^{119k+60}+1161\cdot 137^{118k+59}+2819\cdot 137^{117k+59}\\||-58129\cdot 137^{116k+58}+4795\cdot 137^{115k+58}-20147\cdot 137^{114k+57}-3239\cdot 137^{113k+57}+89773\cdot 137^{112k+56}\\||-8869\cdot 137^{111k+56}+63183\cdot 137^{110k+55}+1783\cdot 137^{109k+55}-109663\cdot 137^{108k+54}+13157\cdot 137^{107k+54}\\||-120525\cdot 137^{106k+53}+1179\cdot 137^{105k+53}+119545\cdot 137^{104k+52}-17943\cdot 137^{103k+52}+200699\cdot 137^{102k+51}\\||-6941\cdot 137^{101k+51}-99171\cdot 137^{100k+50}+21399\cdot 137^{99k+50}-286007\cdot 137^{98k+49}+14623\cdot 137^{97k+49}\\||+50659\cdot 137^{96k+48}-23249\cdot 137^{95k+48}+373435\cdot 137^{94k+47}-24493\cdot 137^{93k+47}+38673\cdot 137^{92k+46}\\||+21693\cdot 137^{91k+46}-439163\cdot 137^{90k+45}+34945\cdot 137^{89k+45}-161411\cdot 137^{88k+44}-16229\cdot 137^{87k+44}\\||+467625\cdot 137^{86k+43}-44475\cdot 137^{85k+43}+306333\cdot 137^{84k+42}+6797\cdot 137^{83k+42}-445967\cdot 137^{82k+41}\\||+51401\cdot 137^{81k+41}-455713\cdot 137^{80k+40}+5999\cdot 137^{79k+40}+365695\cdot 137^{78k+39}-53767\cdot 137^{77k+39}\\||+579291\cdot 137^{76k+38}-19807\cdot 137^{75k+38}-242827\cdot 137^{74k+37}+51663\cdot 137^{73k+37}-666719\cdot 137^{72k+36}\\||+33539\cdot 137^{71k+36}+82147\cdot 137^{70k+35}-44225\cdot 137^{69k+35}+692513\cdot 137^{68k+34}-44225\cdot 137^{67k+34}\\||+82147\cdot 137^{66k+33}+33539\cdot 137^{65k+33}-666719\cdot 137^{64k+32}+51663\cdot 137^{63k+32}-242827\cdot 137^{62k+31}\\||-19807\cdot 137^{61k+31}+579291\cdot 137^{60k+30}-53767\cdot 137^{59k+30}+365695\cdot 137^{58k+29}+5999\cdot 137^{57k+29}\\||-455713\cdot 137^{56k+28}+51401\cdot 137^{55k+28}-445967\cdot 137^{54k+27}+6797\cdot 137^{53k+27}+306333\cdot 137^{52k+26}\\||-44475\cdot 137^{51k+26}+467625\cdot 137^{50k+25}-16229\cdot 137^{49k+25}-161411\cdot 137^{48k+24}+34945\cdot 137^{47k+24}\\||-439163\cdot 137^{46k+23}+21693\cdot 137^{45k+23}+38673\cdot 137^{44k+22}-24493\cdot 137^{43k+22}+373435\cdot 137^{42k+21}\\||-23249\cdot 137^{41k+21}+50659\cdot 137^{40k+20}+14623\cdot 137^{39k+20}-286007\cdot 137^{38k+19}+21399\cdot 137^{37k+19}\\||-99171\cdot 137^{36k+18}-6941\cdot 137^{35k+18}+200699\cdot 137^{34k+17}-17943\cdot 137^{33k+17}+119545\cdot 137^{32k+16}\\||+1179\cdot 137^{31k+16}-120525\cdot 137^{30k+15}+13157\cdot 137^{29k+15}-109663\cdot 137^{28k+14}+1783\cdot 137^{27k+14}\\||+63183\cdot 137^{26k+13}-8869\cdot 137^{25k+13}+89773\cdot 137^{24k+12}-3239\cdot 137^{23k+12}-20147\cdot 137^{22k+11}\\||+4795\cdot 137^{21k+11}-58129\cdot 137^{20k+10}+2819\cdot 137^{19k+10}+1161\cdot 137^{18k+9}-2253\cdot 137^{17k+9}\\||+33521\cdot 137^{16k+8}-2093\cdot 137^{15k+8}+8237\cdot 137^{14k+7}+487\cdot 137^{13k+7}-11985\cdot 137^{12k+6}\\||+915\cdot 137^{11k+6}-5415\cdot 137^{10k+5}+5\cdot 137^{9k+5}+3071\cdot 137^{8k+4}-319\cdot 137^{7k+4}\\||+2903\cdot 137^{6k+3}-145\cdot 137^{5k+3}+771\cdot 137^{4k+2}-23\cdot 137^{3k+2}+69\cdot 137^{2k+1}\\||-137^{k+1}+1)\\|\times|(137^{136k+68}+137^{135k+68}+69\cdot 137^{134k+67}+23\cdot 137^{133k+67}+771\cdot 137^{132k+66}\\||+145\cdot 137^{131k+66}+2903\cdot 137^{130k+65}+319\cdot 137^{129k+65}+3071\cdot 137^{128k+64}-5\cdot 137^{127k+64}\\||-5415\cdot 137^{126k+63}-915\cdot 137^{125k+63}-11985\cdot 137^{124k+62}-487\cdot 137^{123k+62}+8237\cdot 137^{122k+61}\\||+2093\cdot 137^{121k+61}+33521\cdot 137^{120k+60}+2253\cdot 137^{119k+60}+1161\cdot 137^{118k+59}-2819\cdot 137^{117k+59}\\||-58129\cdot 137^{116k+58}-4795\cdot 137^{115k+58}-20147\cdot 137^{114k+57}+3239\cdot 137^{113k+57}+89773\cdot 137^{112k+56}\\||+8869\cdot 137^{111k+56}+63183\cdot 137^{110k+55}-1783\cdot 137^{109k+55}-109663\cdot 137^{108k+54}-13157\cdot 137^{107k+54}\\||-120525\cdot 137^{106k+53}-1179\cdot 137^{105k+53}+119545\cdot 137^{104k+52}+17943\cdot 137^{103k+52}+200699\cdot 137^{102k+51}\\||+6941\cdot 137^{101k+51}-99171\cdot 137^{100k+50}-21399\cdot 137^{99k+50}-286007\cdot 137^{98k+49}-14623\cdot 137^{97k+49}\\||+50659\cdot 137^{96k+48}+23249\cdot 137^{95k+48}+373435\cdot 137^{94k+47}+24493\cdot 137^{93k+47}+38673\cdot 137^{92k+46}\\||-21693\cdot 137^{91k+46}-439163\cdot 137^{90k+45}-34945\cdot 137^{89k+45}-161411\cdot 137^{88k+44}+16229\cdot 137^{87k+44}\\||+467625\cdot 137^{86k+43}+44475\cdot 137^{85k+43}+306333\cdot 137^{84k+42}-6797\cdot 137^{83k+42}-445967\cdot 137^{82k+41}\\||-51401\cdot 137^{81k+41}-455713\cdot 137^{80k+40}-5999\cdot 137^{79k+40}+365695\cdot 137^{78k+39}+53767\cdot 137^{77k+39}\\||+579291\cdot 137^{76k+38}+19807\cdot 137^{75k+38}-242827\cdot 137^{74k+37}-51663\cdot 137^{73k+37}-666719\cdot 137^{72k+36}\\||-33539\cdot 137^{71k+36}+82147\cdot 137^{70k+35}+44225\cdot 137^{69k+35}+692513\cdot 137^{68k+34}+44225\cdot 137^{67k+34}\\||+82147\cdot 137^{66k+33}-33539\cdot 137^{65k+33}-666719\cdot 137^{64k+32}-51663\cdot 137^{63k+32}-242827\cdot 137^{62k+31}\\||+19807\cdot 137^{61k+31}+579291\cdot 137^{60k+30}+53767\cdot 137^{59k+30}+365695\cdot 137^{58k+29}-5999\cdot 137^{57k+29}\\||-455713\cdot 137^{56k+28}-51401\cdot 137^{55k+28}-445967\cdot 137^{54k+27}-6797\cdot 137^{53k+27}+306333\cdot 137^{52k+26}\\||+44475\cdot 137^{51k+26}+467625\cdot 137^{50k+25}+16229\cdot 137^{49k+25}-161411\cdot 137^{48k+24}-34945\cdot 137^{47k+24}\\||-439163\cdot 137^{46k+23}-21693\cdot 137^{45k+23}+38673\cdot 137^{44k+22}+24493\cdot 137^{43k+22}+373435\cdot 137^{42k+21}\\||+23249\cdot 137^{41k+21}+50659\cdot 137^{40k+20}-14623\cdot 137^{39k+20}-286007\cdot 137^{38k+19}-21399\cdot 137^{37k+19}\\||-99171\cdot 137^{36k+18}+6941\cdot 137^{35k+18}+200699\cdot 137^{34k+17}+17943\cdot 137^{33k+17}+119545\cdot 137^{32k+16}\\||-1179\cdot 137^{31k+16}-120525\cdot 137^{30k+15}-13157\cdot 137^{29k+15}-109663\cdot 137^{28k+14}-1783\cdot 137^{27k+14}\\||+63183\cdot 137^{26k+13}+8869\cdot 137^{25k+13}+89773\cdot 137^{24k+12}+3239\cdot 137^{23k+12}-20147\cdot 137^{22k+11}\\||-4795\cdot 137^{21k+11}-58129\cdot 137^{20k+10}-2819\cdot 137^{19k+10}+1161\cdot 137^{18k+9}+2253\cdot 137^{17k+9}\\||+33521\cdot 137^{16k+8}+2093\cdot 137^{15k+8}+8237\cdot 137^{14k+7}-487\cdot 137^{13k+7}-11985\cdot 137^{12k+6}\\||-915\cdot 137^{11k+6}-5415\cdot 137^{10k+5}-5\cdot 137^{9k+5}+3071\cdot 137^{8k+4}+319\cdot 137^{7k+4}\\||+2903\cdot 137^{6k+3}+145\cdot 137^{5k+3}+771\cdot 137^{4k+2}+23\cdot 137^{3k+2}+69\cdot 137^{2k+1}\\||+137^{k+1}+1)\\{\large\Phi}_{276}(138^{2k+1})|=|138^{176k+88}+138^{172k+86}-138^{164k+82}-138^{160k+80}+138^{152k+76}\\||+138^{148k+74}-138^{140k+70}-138^{136k+68}+138^{128k+64}+138^{124k+62}\\||-138^{116k+58}-138^{112k+56}+138^{104k+52}+138^{100k+50}-138^{92k+46}\\||-138^{88k+44}-138^{84k+42}+138^{76k+38}+138^{72k+36}-138^{64k+32}\\||-138^{60k+30}+138^{52k+26}+138^{48k+24}-138^{40k+20}-138^{36k+18}\\||+138^{28k+14}+138^{24k+12}-138^{16k+8}-138^{12k+6}+138^{4k+2}+1\\|=|(138^{88k+44}-138^{87k+44}+69\cdot 138^{86k+43}-23\cdot 138^{85k+43}+794\cdot 138^{84k+42}\\||-159\cdot 138^{83k+42}+3657\cdot 138^{82k+41}-519\cdot 138^{81k+41}+8737\cdot 138^{80k+40}-910\cdot 138^{79k+40}\\||+10764\cdot 138^{78k+39}-664\cdot 138^{77k+39}+1151\cdot 138^{76k+38}+755\cdot 138^{75k+38}-20769\cdot 138^{74k+37}\\||+2729\cdot 138^{73k+37}-39830\cdot 138^{72k+36}+3539\cdot 138^{71k+36}-35949\cdot 138^{70k+35}+1977\cdot 138^{69k+35}\\||-5221\cdot 138^{68k+34}-1296\cdot 138^{67k+34}+35052\cdot 138^{66k+33}-4401\cdot 138^{65k+33}+63475\cdot 138^{64k+32}\\||-5914\cdot 138^{63k+32}+69207\cdot 138^{62k+31}-5297\cdot 138^{61k+31}+48044\cdot 138^{60k+30}-2254\cdot 138^{59k+30}\\||-1725\cdot 138^{58k+29}+2920\cdot 138^{57k+29}-67295\cdot 138^{56k+28}+8132\cdot 138^{55k+28}-113712\cdot 138^{54k+27}\\||+10029\cdot 138^{53k+27}-106243\cdot 138^{52k+26}+6840\cdot 138^{51k+26}-44091\cdot 138^{50k+25}+251\cdot 138^{49k+25}\\||+37408\cdot 138^{48k+24}-6154\cdot 138^{47k+24}+98601\cdot 138^{46k+23}-9768\cdot 138^{45k+23}+120167\cdot 138^{44k+22}\\||-9768\cdot 138^{43k+22}+98601\cdot 138^{42k+21}-6154\cdot 138^{41k+21}+37408\cdot 138^{40k+20}+251\cdot 138^{39k+20}\\||-44091\cdot 138^{38k+19}+6840\cdot 138^{37k+19}-106243\cdot 138^{36k+18}+10029\cdot 138^{35k+18}-113712\cdot 138^{34k+17}\\||+8132\cdot 138^{33k+17}-67295\cdot 138^{32k+16}+2920\cdot 138^{31k+16}-1725\cdot 138^{30k+15}-2254\cdot 138^{29k+15}\\||+48044\cdot 138^{28k+14}-5297\cdot 138^{27k+14}+69207\cdot 138^{26k+13}-5914\cdot 138^{25k+13}+63475\cdot 138^{24k+12}\\||-4401\cdot 138^{23k+12}+35052\cdot 138^{22k+11}-1296\cdot 138^{21k+11}-5221\cdot 138^{20k+10}+1977\cdot 138^{19k+10}\\||-35949\cdot 138^{18k+9}+3539\cdot 138^{17k+9}-39830\cdot 138^{16k+8}+2729\cdot 138^{15k+8}-20769\cdot 138^{14k+7}\\||+755\cdot 138^{13k+7}+1151\cdot 138^{12k+6}-664\cdot 138^{11k+6}+10764\cdot 138^{10k+5}-910\cdot 138^{9k+5}\\||+8737\cdot 138^{8k+4}-519\cdot 138^{7k+4}+3657\cdot 138^{6k+3}-159\cdot 138^{5k+3}+794\cdot 138^{4k+2}\\||-23\cdot 138^{3k+2}+69\cdot 138^{2k+1}-138^{k+1}+1)\\|\times|(138^{88k+44}+138^{87k+44}+69\cdot 138^{86k+43}+23\cdot 138^{85k+43}+794\cdot 138^{84k+42}\\||+159\cdot 138^{83k+42}+3657\cdot 138^{82k+41}+519\cdot 138^{81k+41}+8737\cdot 138^{80k+40}+910\cdot 138^{79k+40}\\||+10764\cdot 138^{78k+39}+664\cdot 138^{77k+39}+1151\cdot 138^{76k+38}-755\cdot 138^{75k+38}-20769\cdot 138^{74k+37}\\||-2729\cdot 138^{73k+37}-39830\cdot 138^{72k+36}-3539\cdot 138^{71k+36}-35949\cdot 138^{70k+35}-1977\cdot 138^{69k+35}\\||-5221\cdot 138^{68k+34}+1296\cdot 138^{67k+34}+35052\cdot 138^{66k+33}+4401\cdot 138^{65k+33}+63475\cdot 138^{64k+32}\\||+5914\cdot 138^{63k+32}+69207\cdot 138^{62k+31}+5297\cdot 138^{61k+31}+48044\cdot 138^{60k+30}+2254\cdot 138^{59k+30}\\||-1725\cdot 138^{58k+29}-2920\cdot 138^{57k+29}-67295\cdot 138^{56k+28}-8132\cdot 138^{55k+28}-113712\cdot 138^{54k+27}\\||-10029\cdot 138^{53k+27}-106243\cdot 138^{52k+26}-6840\cdot 138^{51k+26}-44091\cdot 138^{50k+25}-251\cdot 138^{49k+25}\\||+37408\cdot 138^{48k+24}+6154\cdot 138^{47k+24}+98601\cdot 138^{46k+23}+9768\cdot 138^{45k+23}+120167\cdot 138^{44k+22}\\||+9768\cdot 138^{43k+22}+98601\cdot 138^{42k+21}+6154\cdot 138^{41k+21}+37408\cdot 138^{40k+20}-251\cdot 138^{39k+20}\\||-44091\cdot 138^{38k+19}-6840\cdot 138^{37k+19}-106243\cdot 138^{36k+18}-10029\cdot 138^{35k+18}-113712\cdot 138^{34k+17}\\||-8132\cdot 138^{33k+17}-67295\cdot 138^{32k+16}-2920\cdot 138^{31k+16}-1725\cdot 138^{30k+15}+2254\cdot 138^{29k+15}\\||+48044\cdot 138^{28k+14}+5297\cdot 138^{27k+14}+69207\cdot 138^{26k+13}+5914\cdot 138^{25k+13}+63475\cdot 138^{24k+12}\\||+4401\cdot 138^{23k+12}+35052\cdot 138^{22k+11}+1296\cdot 138^{21k+11}-5221\cdot 138^{20k+10}-1977\cdot 138^{19k+10}\\||-35949\cdot 138^{18k+9}-3539\cdot 138^{17k+9}-39830\cdot 138^{16k+8}-2729\cdot 138^{15k+8}-20769\cdot 138^{14k+7}\\||-755\cdot 138^{13k+7}+1151\cdot 138^{12k+6}+664\cdot 138^{11k+6}+10764\cdot 138^{10k+5}+910\cdot 138^{9k+5}\\||+8737\cdot 138^{8k+4}+519\cdot 138^{7k+4}+3657\cdot 138^{6k+3}+159\cdot 138^{5k+3}+794\cdot 138^{4k+2}\\||+23\cdot 138^{3k+2}+69\cdot 138^{2k+1}+138^{k+1}+1)\\{\large\Phi}_{278}(139^{2k+1})|=|139^{276k+138}-139^{274k+137}+139^{272k+136}-139^{270k+135}+139^{268k+134}\\||-139^{266k+133}+139^{264k+132}-139^{262k+131}+139^{260k+130}-139^{258k+129}\\||+139^{256k+128}-139^{254k+127}+139^{252k+126}-139^{250k+125}+139^{248k+124}\\||-139^{246k+123}+139^{244k+122}-139^{242k+121}+139^{240k+120}-139^{238k+119}\\||+139^{236k+118}-139^{234k+117}+139^{232k+116}-139^{230k+115}+139^{228k+114}\\||-139^{226k+113}+139^{224k+112}-139^{222k+111}+139^{220k+110}-139^{218k+109}\\||+139^{216k+108}-139^{214k+107}+139^{212k+106}-139^{210k+105}+139^{208k+104}\\||-139^{206k+103}+139^{204k+102}-139^{202k+101}+139^{200k+100}-139^{198k+99}\\||+139^{196k+98}-139^{194k+97}+139^{192k+96}-139^{190k+95}+139^{188k+94}\\||-139^{186k+93}+139^{184k+92}-139^{182k+91}+139^{180k+90}-139^{178k+89}\\||+139^{176k+88}-139^{174k+87}+139^{172k+86}-139^{170k+85}+139^{168k+84}\\||-139^{166k+83}+139^{164k+82}-139^{162k+81}+139^{160k+80}-139^{158k+79}\\||+139^{156k+78}-139^{154k+77}+139^{152k+76}-139^{150k+75}+139^{148k+74}\\||-139^{146k+73}+139^{144k+72}-139^{142k+71}+139^{140k+70}-139^{138k+69}\\||+139^{136k+68}-139^{134k+67}+139^{132k+66}-139^{130k+65}+139^{128k+64}\\||-139^{126k+63}+139^{124k+62}-139^{122k+61}+139^{120k+60}-139^{118k+59}\\||+139^{116k+58}-139^{114k+57}+139^{112k+56}-139^{110k+55}+139^{108k+54}\\||-139^{106k+53}+139^{104k+52}-139^{102k+51}+139^{100k+50}-139^{98k+49}\\||+139^{96k+48}-139^{94k+47}+139^{92k+46}-139^{90k+45}+139^{88k+44}\\||-139^{86k+43}+139^{84k+42}-139^{82k+41}+139^{80k+40}-139^{78k+39}\\||+139^{76k+38}-139^{74k+37}+139^{72k+36}-139^{70k+35}+139^{68k+34}\\||-139^{66k+33}+139^{64k+32}-139^{62k+31}+139^{60k+30}-139^{58k+29}\\||+139^{56k+28}-139^{54k+27}+139^{52k+26}-139^{50k+25}+139^{48k+24}\\||-139^{46k+23}+139^{44k+22}-139^{42k+21}+139^{40k+20}-139^{38k+19}\\||+139^{36k+18}-139^{34k+17}+139^{32k+16}-139^{30k+15}+139^{28k+14}\\||-139^{26k+13}+139^{24k+12}-139^{22k+11}+139^{20k+10}-139^{18k+9}\\||+139^{16k+8}-139^{14k+7}+139^{12k+6}-139^{10k+5}+139^{8k+4}\\||-139^{6k+3}+139^{4k+2}-139^{2k+1}+1\\|=|(139^{138k+69}-139^{137k+69}+69\cdot 139^{136k+68}-23\cdot 139^{135k+68}+817\cdot 139^{134k+67}\\||-173\cdot 139^{133k+67}+4439\cdot 139^{132k+66}-739\cdot 139^{131k+66}+15767\cdot 139^{130k+65}-2263\cdot 139^{129k+65}\\||+42619\cdot 139^{128k+64}-5491\cdot 139^{127k+64}+94083\cdot 139^{126k+63}-11151\cdot 139^{125k+63}+177323\cdot 139^{124k+62}\\||-19641\cdot 139^{123k+62}+293563\cdot 139^{122k+61}-30721\cdot 139^{121k+61}+435901\cdot 139^{120k+60}-43491\cdot 139^{119k+60}\\||+590593\cdot 139^{118k+59}-56599\cdot 139^{117k+59}+740963\cdot 139^{116k+58}-68709\cdot 139^{115k+58}+873439\cdot 139^{114k+57}\\||-78911\cdot 139^{113k+57}+980579\cdot 139^{112k+56}-86889\cdot 139^{111k+56}+1062391\cdot 139^{110k+55}-92895\cdot 139^{109k+55}\\||+1123681\cdot 139^{108k+54}-97437\cdot 139^{107k+54}+1171561\cdot 139^{106k+53}-101199\cdot 139^{105k+53}+1214421\cdot 139^{104k+52}\\||-104881\cdot 139^{103k+52}+1260651\cdot 139^{102k+51}-109243\cdot 139^{101k+51}+1319293\cdot 139^{100k+50}-114939\cdot 139^{99k+50}\\||+1395531\cdot 139^{98k+49}-122163\cdot 139^{97k+49}+1488437\cdot 139^{96k+48}-130479\cdot 139^{95k+48}+1587801\cdot 139^{94k+47}\\||-138653\cdot 139^{93k+47}+1677019\cdot 139^{92k+46}-145295\cdot 139^{91k+46}+1741315\cdot 139^{90k+45}-149411\cdot 139^{89k+45}\\||+1774391\cdot 139^{88k+44}-151111\cdot 139^{87k+44}+1785229\cdot 139^{86k+43}-151639\cdot 139^{85k+43}+1791973\cdot 139^{84k+42}\\||-152709\cdot 139^{83k+42}+1815109\cdot 139^{82k+41}-155809\cdot 139^{81k+41}+1865897\cdot 139^{80k+40}-161259\cdot 139^{79k+40}\\||+1941639\cdot 139^{78k+39}-168381\cdot 139^{77k+39}+2029357\cdot 139^{76k+38}-175725\cdot 139^{75k+38}+2110551\cdot 139^{74k+37}\\||-181875\cdot 139^{73k+37}+2171649\cdot 139^{72k+36}-185889\cdot 139^{71k+36}+2203573\cdot 139^{70k+35}-187241\cdot 139^{69k+35}\\||+2203573\cdot 139^{68k+34}-185889\cdot 139^{67k+34}+2171649\cdot 139^{66k+33}-181875\cdot 139^{65k+33}+2110551\cdot 139^{64k+32}\\||-175725\cdot 139^{63k+32}+2029357\cdot 139^{62k+31}-168381\cdot 139^{61k+31}+1941639\cdot 139^{60k+30}-161259\cdot 139^{59k+30}\\||+1865897\cdot 139^{58k+29}-155809\cdot 139^{57k+29}+1815109\cdot 139^{56k+28}-152709\cdot 139^{55k+28}+1791973\cdot 139^{54k+27}\\||-151639\cdot 139^{53k+27}+1785229\cdot 139^{52k+26}-151111\cdot 139^{51k+26}+1774391\cdot 139^{50k+25}-149411\cdot 139^{49k+25}\\||+1741315\cdot 139^{48k+24}-145295\cdot 139^{47k+24}+1677019\cdot 139^{46k+23}-138653\cdot 139^{45k+23}+1587801\cdot 139^{44k+22}\\||-130479\cdot 139^{43k+22}+1488437\cdot 139^{42k+21}-122163\cdot 139^{41k+21}+1395531\cdot 139^{40k+20}-114939\cdot 139^{39k+20}\\||+1319293\cdot 139^{38k+19}-109243\cdot 139^{37k+19}+1260651\cdot 139^{36k+18}-104881\cdot 139^{35k+18}+1214421\cdot 139^{34k+17}\\||-101199\cdot 139^{33k+17}+1171561\cdot 139^{32k+16}-97437\cdot 139^{31k+16}+1123681\cdot 139^{30k+15}-92895\cdot 139^{29k+15}\\||+1062391\cdot 139^{28k+14}-86889\cdot 139^{27k+14}+980579\cdot 139^{26k+13}-78911\cdot 139^{25k+13}+873439\cdot 139^{24k+12}\\||-68709\cdot 139^{23k+12}+740963\cdot 139^{22k+11}-56599\cdot 139^{21k+11}+590593\cdot 139^{20k+10}-43491\cdot 139^{19k+10}\\||+435901\cdot 139^{18k+9}-30721\cdot 139^{17k+9}+293563\cdot 139^{16k+8}-19641\cdot 139^{15k+8}+177323\cdot 139^{14k+7}\\||-11151\cdot 139^{13k+7}+94083\cdot 139^{12k+6}-5491\cdot 139^{11k+6}+42619\cdot 139^{10k+5}-2263\cdot 139^{9k+5}\\||+15767\cdot 139^{8k+4}-739\cdot 139^{7k+4}+4439\cdot 139^{6k+3}-173\cdot 139^{5k+3}+817\cdot 139^{4k+2}\\||-23\cdot 139^{3k+2}+69\cdot 139^{2k+1}-139^{k+1}+1)\\|\times|(139^{138k+69}+139^{137k+69}+69\cdot 139^{136k+68}+23\cdot 139^{135k+68}+817\cdot 139^{134k+67}\\||+173\cdot 139^{133k+67}+4439\cdot 139^{132k+66}+739\cdot 139^{131k+66}+15767\cdot 139^{130k+65}+2263\cdot 139^{129k+65}\\||+42619\cdot 139^{128k+64}+5491\cdot 139^{127k+64}+94083\cdot 139^{126k+63}+11151\cdot 139^{125k+63}+177323\cdot 139^{124k+62}\\||+19641\cdot 139^{123k+62}+293563\cdot 139^{122k+61}+30721\cdot 139^{121k+61}+435901\cdot 139^{120k+60}+43491\cdot 139^{119k+60}\\||+590593\cdot 139^{118k+59}+56599\cdot 139^{117k+59}+740963\cdot 139^{116k+58}+68709\cdot 139^{115k+58}+873439\cdot 139^{114k+57}\\||+78911\cdot 139^{113k+57}+980579\cdot 139^{112k+56}+86889\cdot 139^{111k+56}+1062391\cdot 139^{110k+55}+92895\cdot 139^{109k+55}\\||+1123681\cdot 139^{108k+54}+97437\cdot 139^{107k+54}+1171561\cdot 139^{106k+53}+101199\cdot 139^{105k+53}+1214421\cdot 139^{104k+52}\\||+104881\cdot 139^{103k+52}+1260651\cdot 139^{102k+51}+109243\cdot 139^{101k+51}+1319293\cdot 139^{100k+50}+114939\cdot 139^{99k+50}\\||+1395531\cdot 139^{98k+49}+122163\cdot 139^{97k+49}+1488437\cdot 139^{96k+48}+130479\cdot 139^{95k+48}+1587801\cdot 139^{94k+47}\\||+138653\cdot 139^{93k+47}+1677019\cdot 139^{92k+46}+145295\cdot 139^{91k+46}+1741315\cdot 139^{90k+45}+149411\cdot 139^{89k+45}\\||+1774391\cdot 139^{88k+44}+151111\cdot 139^{87k+44}+1785229\cdot 139^{86k+43}+151639\cdot 139^{85k+43}+1791973\cdot 139^{84k+42}\\||+152709\cdot 139^{83k+42}+1815109\cdot 139^{82k+41}+155809\cdot 139^{81k+41}+1865897\cdot 139^{80k+40}+161259\cdot 139^{79k+40}\\||+1941639\cdot 139^{78k+39}+168381\cdot 139^{77k+39}+2029357\cdot 139^{76k+38}+175725\cdot 139^{75k+38}+2110551\cdot 139^{74k+37}\\||+181875\cdot 139^{73k+37}+2171649\cdot 139^{72k+36}+185889\cdot 139^{71k+36}+2203573\cdot 139^{70k+35}+187241\cdot 139^{69k+35}\\||+2203573\cdot 139^{68k+34}+185889\cdot 139^{67k+34}+2171649\cdot 139^{66k+33}+181875\cdot 139^{65k+33}+2110551\cdot 139^{64k+32}\\||+175725\cdot 139^{63k+32}+2029357\cdot 139^{62k+31}+168381\cdot 139^{61k+31}+1941639\cdot 139^{60k+30}+161259\cdot 139^{59k+30}\\||+1865897\cdot 139^{58k+29}+155809\cdot 139^{57k+29}+1815109\cdot 139^{56k+28}+152709\cdot 139^{55k+28}+1791973\cdot 139^{54k+27}\\||+151639\cdot 139^{53k+27}+1785229\cdot 139^{52k+26}+151111\cdot 139^{51k+26}+1774391\cdot 139^{50k+25}+149411\cdot 139^{49k+25}\\||+1741315\cdot 139^{48k+24}+145295\cdot 139^{47k+24}+1677019\cdot 139^{46k+23}+138653\cdot 139^{45k+23}+1587801\cdot 139^{44k+22}\\||+130479\cdot 139^{43k+22}+1488437\cdot 139^{42k+21}+122163\cdot 139^{41k+21}+1395531\cdot 139^{40k+20}+114939\cdot 139^{39k+20}\\||+1319293\cdot 139^{38k+19}+109243\cdot 139^{37k+19}+1260651\cdot 139^{36k+18}+104881\cdot 139^{35k+18}+1214421\cdot 139^{34k+17}\\||+101199\cdot 139^{33k+17}+1171561\cdot 139^{32k+16}+97437\cdot 139^{31k+16}+1123681\cdot 139^{30k+15}+92895\cdot 139^{29k+15}\\||+1062391\cdot 139^{28k+14}+86889\cdot 139^{27k+14}+980579\cdot 139^{26k+13}+78911\cdot 139^{25k+13}+873439\cdot 139^{24k+12}\\||+68709\cdot 139^{23k+12}+740963\cdot 139^{22k+11}+56599\cdot 139^{21k+11}+590593\cdot 139^{20k+10}+43491\cdot 139^{19k+10}\\||+435901\cdot 139^{18k+9}+30721\cdot 139^{17k+9}+293563\cdot 139^{16k+8}+19641\cdot 139^{15k+8}+177323\cdot 139^{14k+7}\\||+11151\cdot 139^{13k+7}+94083\cdot 139^{12k+6}+5491\cdot 139^{11k+6}+42619\cdot 139^{10k+5}+2263\cdot 139^{9k+5}\\||+15767\cdot 139^{8k+4}+739\cdot 139^{7k+4}+4439\cdot 139^{6k+3}+173\cdot 139^{5k+3}+817\cdot 139^{4k+2}\\||+23\cdot 139^{3k+2}+69\cdot 139^{2k+1}+139^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{141}(141^{2k+1})\cdots{\large\Phi}_{145}(145^{2k+1})$${\large\Phi}_{141}(141^{2k+1})\cdots{\large\Phi}_{145}(145^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{141}(141^{2k+1})|=|141^{184k+92}-141^{182k+91}+141^{178k+89}-141^{176k+88}+141^{172k+86}\\||-141^{170k+85}+141^{166k+83}-141^{164k+82}+141^{160k+80}-141^{158k+79}\\||+141^{154k+77}-141^{152k+76}+141^{148k+74}-141^{146k+73}+141^{142k+71}\\||-141^{140k+70}+141^{136k+68}-141^{134k+67}+141^{130k+65}-141^{128k+64}\\||+141^{124k+62}-141^{122k+61}+141^{118k+59}-141^{116k+58}+141^{112k+56}\\||-141^{110k+55}+141^{106k+53}-141^{104k+52}+141^{100k+50}-141^{98k+49}\\||+141^{94k+47}-141^{92k+46}+141^{90k+45}-141^{86k+43}+141^{84k+42}\\||-141^{80k+40}+141^{78k+39}-141^{74k+37}+141^{72k+36}-141^{68k+34}\\||+141^{66k+33}-141^{62k+31}+141^{60k+30}-141^{56k+28}+141^{54k+27}\\||-141^{50k+25}+141^{48k+24}-141^{44k+22}+141^{42k+21}-141^{38k+19}\\||+141^{36k+18}-141^{32k+16}+141^{30k+15}-141^{26k+13}+141^{24k+12}\\||-141^{20k+10}+141^{18k+9}-141^{14k+7}+141^{12k+6}-141^{8k+4}\\||+141^{6k+3}-141^{2k+1}+1\\|=|(141^{92k+46}-141^{91k+46}+70\cdot 141^{90k+45}-23\cdot 141^{89k+45}+793\cdot 141^{88k+44}\\||-154\cdot 141^{87k+44}+3499\cdot 141^{86k+43}-485\cdot 141^{85k+43}+8452\cdot 141^{84k+42}-969\cdot 141^{83k+42}\\||+15115\cdot 141^{82k+41}-1658\cdot 141^{81k+41}+25549\cdot 141^{80k+40}-2749\cdot 141^{79k+40}+40558\cdot 141^{78k+39}\\||-4119\cdot 141^{77k+39}+57709\cdot 141^{76k+38}-5668\cdot 141^{75k+38}+77917\cdot 141^{74k+37}-7515\cdot 141^{73k+37}\\||+100522\cdot 141^{72k+36}-9361\cdot 141^{71k+36}+121033\cdot 141^{70k+35}-10980\cdot 141^{69k+35}+139189\cdot 141^{68k+34}\\||-12373\cdot 141^{67k+34}+152848\cdot 141^{66k+33}-13193\cdot 141^{65k+33}+158641\cdot 141^{64k+32}-13408\cdot 141^{63k+32}\\||+158305\cdot 141^{62k+31}-13083\cdot 141^{61k+31}+149896\cdot 141^{60k+30}-11975\cdot 141^{59k+30}+133123\cdot 141^{58k+29}\\||-10396\cdot 141^{57k+29}+113251\cdot 141^{56k+28}-8603\cdot 141^{55k+28}+90076\cdot 141^{54k+27}-6547\cdot 141^{53k+27}\\||+66361\cdot 141^{52k+26}-4782\cdot 141^{51k+26}+48991\cdot 141^{50k+25}-3575\cdot 141^{49k+25}+36940\cdot 141^{48k+24}\\||-2779\cdot 141^{47k+24}+31537\cdot 141^{46k+23}-2779\cdot 141^{45k+23}+36940\cdot 141^{44k+22}-3575\cdot 141^{43k+22}\\||+48991\cdot 141^{42k+21}-4782\cdot 141^{41k+21}+66361\cdot 141^{40k+20}-6547\cdot 141^{39k+20}+90076\cdot 141^{38k+19}\\||-8603\cdot 141^{37k+19}+113251\cdot 141^{36k+18}-10396\cdot 141^{35k+18}+133123\cdot 141^{34k+17}-11975\cdot 141^{33k+17}\\||+149896\cdot 141^{32k+16}-13083\cdot 141^{31k+16}+158305\cdot 141^{30k+15}-13408\cdot 141^{29k+15}+158641\cdot 141^{28k+14}\\||-13193\cdot 141^{27k+14}+152848\cdot 141^{26k+13}-12373\cdot 141^{25k+13}+139189\cdot 141^{24k+12}-10980\cdot 141^{23k+12}\\||+121033\cdot 141^{22k+11}-9361\cdot 141^{21k+11}+100522\cdot 141^{20k+10}-7515\cdot 141^{19k+10}+77917\cdot 141^{18k+9}\\||-5668\cdot 141^{17k+9}+57709\cdot 141^{16k+8}-4119\cdot 141^{15k+8}+40558\cdot 141^{14k+7}-2749\cdot 141^{13k+7}\\||+25549\cdot 141^{12k+6}-1658\cdot 141^{11k+6}+15115\cdot 141^{10k+5}-969\cdot 141^{9k+5}+8452\cdot 141^{8k+4}\\||-485\cdot 141^{7k+4}+3499\cdot 141^{6k+3}-154\cdot 141^{5k+3}+793\cdot 141^{4k+2}-23\cdot 141^{3k+2}\\||+70\cdot 141^{2k+1}-141^{k+1}+1)\\|\times|(141^{92k+46}+141^{91k+46}+70\cdot 141^{90k+45}+23\cdot 141^{89k+45}+793\cdot 141^{88k+44}\\||+154\cdot 141^{87k+44}+3499\cdot 141^{86k+43}+485\cdot 141^{85k+43}+8452\cdot 141^{84k+42}+969\cdot 141^{83k+42}\\||+15115\cdot 141^{82k+41}+1658\cdot 141^{81k+41}+25549\cdot 141^{80k+40}+2749\cdot 141^{79k+40}+40558\cdot 141^{78k+39}\\||+4119\cdot 141^{77k+39}+57709\cdot 141^{76k+38}+5668\cdot 141^{75k+38}+77917\cdot 141^{74k+37}+7515\cdot 141^{73k+37}\\||+100522\cdot 141^{72k+36}+9361\cdot 141^{71k+36}+121033\cdot 141^{70k+35}+10980\cdot 141^{69k+35}+139189\cdot 141^{68k+34}\\||+12373\cdot 141^{67k+34}+152848\cdot 141^{66k+33}+13193\cdot 141^{65k+33}+158641\cdot 141^{64k+32}+13408\cdot 141^{63k+32}\\||+158305\cdot 141^{62k+31}+13083\cdot 141^{61k+31}+149896\cdot 141^{60k+30}+11975\cdot 141^{59k+30}+133123\cdot 141^{58k+29}\\||+10396\cdot 141^{57k+29}+113251\cdot 141^{56k+28}+8603\cdot 141^{55k+28}+90076\cdot 141^{54k+27}+6547\cdot 141^{53k+27}\\||+66361\cdot 141^{52k+26}+4782\cdot 141^{51k+26}+48991\cdot 141^{50k+25}+3575\cdot 141^{49k+25}+36940\cdot 141^{48k+24}\\||+2779\cdot 141^{47k+24}+31537\cdot 141^{46k+23}+2779\cdot 141^{45k+23}+36940\cdot 141^{44k+22}+3575\cdot 141^{43k+22}\\||+48991\cdot 141^{42k+21}+4782\cdot 141^{41k+21}+66361\cdot 141^{40k+20}+6547\cdot 141^{39k+20}+90076\cdot 141^{38k+19}\\||+8603\cdot 141^{37k+19}+113251\cdot 141^{36k+18}+10396\cdot 141^{35k+18}+133123\cdot 141^{34k+17}+11975\cdot 141^{33k+17}\\||+149896\cdot 141^{32k+16}+13083\cdot 141^{31k+16}+158305\cdot 141^{30k+15}+13408\cdot 141^{29k+15}+158641\cdot 141^{28k+14}\\||+13193\cdot 141^{27k+14}+152848\cdot 141^{26k+13}+12373\cdot 141^{25k+13}+139189\cdot 141^{24k+12}+10980\cdot 141^{23k+12}\\||+121033\cdot 141^{22k+11}+9361\cdot 141^{21k+11}+100522\cdot 141^{20k+10}+7515\cdot 141^{19k+10}+77917\cdot 141^{18k+9}\\||+5668\cdot 141^{17k+9}+57709\cdot 141^{16k+8}+4119\cdot 141^{15k+8}+40558\cdot 141^{14k+7}+2749\cdot 141^{13k+7}\\||+25549\cdot 141^{12k+6}+1658\cdot 141^{11k+6}+15115\cdot 141^{10k+5}+969\cdot 141^{9k+5}+8452\cdot 141^{8k+4}\\||+485\cdot 141^{7k+4}+3499\cdot 141^{6k+3}+154\cdot 141^{5k+3}+793\cdot 141^{4k+2}+23\cdot 141^{3k+2}\\||+70\cdot 141^{2k+1}+141^{k+1}+1)\\{\large\Phi}_{284}(142^{2k+1})|=|142^{280k+140}-142^{276k+138}+142^{272k+136}-142^{268k+134}+142^{264k+132}\\||-142^{260k+130}+142^{256k+128}-142^{252k+126}+142^{248k+124}-142^{244k+122}\\||+142^{240k+120}-142^{236k+118}+142^{232k+116}-142^{228k+114}+142^{224k+112}\\||-142^{220k+110}+142^{216k+108}-142^{212k+106}+142^{208k+104}-142^{204k+102}\\||+142^{200k+100}-142^{196k+98}+142^{192k+96}-142^{188k+94}+142^{184k+92}\\||-142^{180k+90}+142^{176k+88}-142^{172k+86}+142^{168k+84}-142^{164k+82}\\||+142^{160k+80}-142^{156k+78}+142^{152k+76}-142^{148k+74}+142^{144k+72}\\||-142^{140k+70}+142^{136k+68}-142^{132k+66}+142^{128k+64}-142^{124k+62}\\||+142^{120k+60}-142^{116k+58}+142^{112k+56}-142^{108k+54}+142^{104k+52}\\||-142^{100k+50}+142^{96k+48}-142^{92k+46}+142^{88k+44}-142^{84k+42}\\||+142^{80k+40}-142^{76k+38}+142^{72k+36}-142^{68k+34}+142^{64k+32}\\||-142^{60k+30}+142^{56k+28}-142^{52k+26}+142^{48k+24}-142^{44k+22}\\||+142^{40k+20}-142^{36k+18}+142^{32k+16}-142^{28k+14}+142^{24k+12}\\||-142^{20k+10}+142^{16k+8}-142^{12k+6}+142^{8k+4}-142^{4k+2}+1\\|=|(142^{140k+70}-142^{139k+70}+71\cdot 142^{138k+69}-24\cdot 142^{137k+69}+887\cdot 142^{136k+68}\\||-191\cdot 142^{135k+68}+5041\cdot 142^{134k+67}-830\cdot 142^{133k+67}+17493\cdot 142^{132k+66}-2371\cdot 142^{131k+66}\\||+42103\cdot 142^{130k+65}-4900\cdot 142^{129k+65}+75983\cdot 142^{128k+64}-7853\cdot 142^{127k+64}+110121\cdot 142^{126k+63}\\||-10502\cdot 142^{125k+63}+138909\cdot 142^{124k+62}-12769\cdot 142^{123k+62}+165643\cdot 142^{122k+61}-15068\cdot 142^{121k+61}\\||+193211\cdot 142^{120k+60}-17209\cdot 142^{119k+60}+213213\cdot 142^{118k+59}-18132\cdot 142^{117k+59}+213029\cdot 142^{116k+58}\\||-17185\cdot 142^{115k+58}+193191\cdot 142^{114k+57}-15168\cdot 142^{113k+57}+169871\cdot 142^{112k+56}-13623\cdot 142^{111k+56}\\||+158969\cdot 142^{110k+55}-13398\cdot 142^{109k+55}+163685\cdot 142^{108k+54}-14281\cdot 142^{107k+54}+178423\cdot 142^{106k+53}\\||-15786\cdot 142^{105k+53}+199387\cdot 142^{104k+52}-17845\cdot 142^{103k+52}+228265\cdot 142^{102k+51}-20668\cdot 142^{101k+51}\\||+266129\cdot 142^{100k+50}-24035\cdot 142^{99k+50}+305087\cdot 142^{98k+49}-26834\cdot 142^{97k+49}+328171\cdot 142^{96k+48}\\||-27589\cdot 142^{95k+48}+321133\cdot 142^{94k+47}-25688\cdot 142^{93k+47}+285509\cdot 142^{92k+46}-21957\cdot 142^{91k+46}\\||+236643\cdot 142^{90k+45}-17786\cdot 142^{89k+45}+188231\cdot 142^{88k+44}-13899\cdot 142^{87k+44}+144201\cdot 142^{86k+43}\\||-10450\cdot 142^{85k+43}+107885\cdot 142^{84k+42}-8063\cdot 142^{83k+42}+90951\cdot 142^{82k+41}-7864\cdot 142^{81k+41}\\||+104463\cdot 142^{80k+40}-10249\cdot 142^{79k+40}+144769\cdot 142^{78k+39}-14272\cdot 142^{77k+39}+195881\cdot 142^{76k+38}\\||-18503\cdot 142^{75k+38}+242607\cdot 142^{74k+37}-21920\cdot 142^{73k+37}+275375\cdot 142^{72k+36}-23857\cdot 142^{71k+36}\\||+287337\cdot 142^{70k+35}-23857\cdot 142^{69k+35}+275375\cdot 142^{68k+34}-21920\cdot 142^{67k+34}+242607\cdot 142^{66k+33}\\||-18503\cdot 142^{65k+33}+195881\cdot 142^{64k+32}-14272\cdot 142^{63k+32}+144769\cdot 142^{62k+31}-10249\cdot 142^{61k+31}\\||+104463\cdot 142^{60k+30}-7864\cdot 142^{59k+30}+90951\cdot 142^{58k+29}-8063\cdot 142^{57k+29}+107885\cdot 142^{56k+28}\\||-10450\cdot 142^{55k+28}+144201\cdot 142^{54k+27}-13899\cdot 142^{53k+27}+188231\cdot 142^{52k+26}-17786\cdot 142^{51k+26}\\||+236643\cdot 142^{50k+25}-21957\cdot 142^{49k+25}+285509\cdot 142^{48k+24}-25688\cdot 142^{47k+24}+321133\cdot 142^{46k+23}\\||-27589\cdot 142^{45k+23}+328171\cdot 142^{44k+22}-26834\cdot 142^{43k+22}+305087\cdot 142^{42k+21}-24035\cdot 142^{41k+21}\\||+266129\cdot 142^{40k+20}-20668\cdot 142^{39k+20}+228265\cdot 142^{38k+19}-17845\cdot 142^{37k+19}+199387\cdot 142^{36k+18}\\||-15786\cdot 142^{35k+18}+178423\cdot 142^{34k+17}-14281\cdot 142^{33k+17}+163685\cdot 142^{32k+16}-13398\cdot 142^{31k+16}\\||+158969\cdot 142^{30k+15}-13623\cdot 142^{29k+15}+169871\cdot 142^{28k+14}-15168\cdot 142^{27k+14}+193191\cdot 142^{26k+13}\\||-17185\cdot 142^{25k+13}+213029\cdot 142^{24k+12}-18132\cdot 142^{23k+12}+213213\cdot 142^{22k+11}-17209\cdot 142^{21k+11}\\||+193211\cdot 142^{20k+10}-15068\cdot 142^{19k+10}+165643\cdot 142^{18k+9}-12769\cdot 142^{17k+9}+138909\cdot 142^{16k+8}\\||-10502\cdot 142^{15k+8}+110121\cdot 142^{14k+7}-7853\cdot 142^{13k+7}+75983\cdot 142^{12k+6}-4900\cdot 142^{11k+6}\\||+42103\cdot 142^{10k+5}-2371\cdot 142^{9k+5}+17493\cdot 142^{8k+4}-830\cdot 142^{7k+4}+5041\cdot 142^{6k+3}\\||-191\cdot 142^{5k+3}+887\cdot 142^{4k+2}-24\cdot 142^{3k+2}+71\cdot 142^{2k+1}-142^{k+1}+1)\\|\times|(142^{140k+70}+142^{139k+70}+71\cdot 142^{138k+69}+24\cdot 142^{137k+69}+887\cdot 142^{136k+68}\\||+191\cdot 142^{135k+68}+5041\cdot 142^{134k+67}+830\cdot 142^{133k+67}+17493\cdot 142^{132k+66}+2371\cdot 142^{131k+66}\\||+42103\cdot 142^{130k+65}+4900\cdot 142^{129k+65}+75983\cdot 142^{128k+64}+7853\cdot 142^{127k+64}+110121\cdot 142^{126k+63}\\||+10502\cdot 142^{125k+63}+138909\cdot 142^{124k+62}+12769\cdot 142^{123k+62}+165643\cdot 142^{122k+61}+15068\cdot 142^{121k+61}\\||+193211\cdot 142^{120k+60}+17209\cdot 142^{119k+60}+213213\cdot 142^{118k+59}+18132\cdot 142^{117k+59}+213029\cdot 142^{116k+58}\\||+17185\cdot 142^{115k+58}+193191\cdot 142^{114k+57}+15168\cdot 142^{113k+57}+169871\cdot 142^{112k+56}+13623\cdot 142^{111k+56}\\||+158969\cdot 142^{110k+55}+13398\cdot 142^{109k+55}+163685\cdot 142^{108k+54}+14281\cdot 142^{107k+54}+178423\cdot 142^{106k+53}\\||+15786\cdot 142^{105k+53}+199387\cdot 142^{104k+52}+17845\cdot 142^{103k+52}+228265\cdot 142^{102k+51}+20668\cdot 142^{101k+51}\\||+266129\cdot 142^{100k+50}+24035\cdot 142^{99k+50}+305087\cdot 142^{98k+49}+26834\cdot 142^{97k+49}+328171\cdot 142^{96k+48}\\||+27589\cdot 142^{95k+48}+321133\cdot 142^{94k+47}+25688\cdot 142^{93k+47}+285509\cdot 142^{92k+46}+21957\cdot 142^{91k+46}\\||+236643\cdot 142^{90k+45}+17786\cdot 142^{89k+45}+188231\cdot 142^{88k+44}+13899\cdot 142^{87k+44}+144201\cdot 142^{86k+43}\\||+10450\cdot 142^{85k+43}+107885\cdot 142^{84k+42}+8063\cdot 142^{83k+42}+90951\cdot 142^{82k+41}+7864\cdot 142^{81k+41}\\||+104463\cdot 142^{80k+40}+10249\cdot 142^{79k+40}+144769\cdot 142^{78k+39}+14272\cdot 142^{77k+39}+195881\cdot 142^{76k+38}\\||+18503\cdot 142^{75k+38}+242607\cdot 142^{74k+37}+21920\cdot 142^{73k+37}+275375\cdot 142^{72k+36}+23857\cdot 142^{71k+36}\\||+287337\cdot 142^{70k+35}+23857\cdot 142^{69k+35}+275375\cdot 142^{68k+34}+21920\cdot 142^{67k+34}+242607\cdot 142^{66k+33}\\||+18503\cdot 142^{65k+33}+195881\cdot 142^{64k+32}+14272\cdot 142^{63k+32}+144769\cdot 142^{62k+31}+10249\cdot 142^{61k+31}\\||+104463\cdot 142^{60k+30}+7864\cdot 142^{59k+30}+90951\cdot 142^{58k+29}+8063\cdot 142^{57k+29}+107885\cdot 142^{56k+28}\\||+10450\cdot 142^{55k+28}+144201\cdot 142^{54k+27}+13899\cdot 142^{53k+27}+188231\cdot 142^{52k+26}+17786\cdot 142^{51k+26}\\||+236643\cdot 142^{50k+25}+21957\cdot 142^{49k+25}+285509\cdot 142^{48k+24}+25688\cdot 142^{47k+24}+321133\cdot 142^{46k+23}\\||+27589\cdot 142^{45k+23}+328171\cdot 142^{44k+22}+26834\cdot 142^{43k+22}+305087\cdot 142^{42k+21}+24035\cdot 142^{41k+21}\\||+266129\cdot 142^{40k+20}+20668\cdot 142^{39k+20}+228265\cdot 142^{38k+19}+17845\cdot 142^{37k+19}+199387\cdot 142^{36k+18}\\||+15786\cdot 142^{35k+18}+178423\cdot 142^{34k+17}+14281\cdot 142^{33k+17}+163685\cdot 142^{32k+16}+13398\cdot 142^{31k+16}\\||+158969\cdot 142^{30k+15}+13623\cdot 142^{29k+15}+169871\cdot 142^{28k+14}+15168\cdot 142^{27k+14}+193191\cdot 142^{26k+13}\\||+17185\cdot 142^{25k+13}+213029\cdot 142^{24k+12}+18132\cdot 142^{23k+12}+213213\cdot 142^{22k+11}+17209\cdot 142^{21k+11}\\||+193211\cdot 142^{20k+10}+15068\cdot 142^{19k+10}+165643\cdot 142^{18k+9}+12769\cdot 142^{17k+9}+138909\cdot 142^{16k+8}\\||+10502\cdot 142^{15k+8}+110121\cdot 142^{14k+7}+7853\cdot 142^{13k+7}+75983\cdot 142^{12k+6}+4900\cdot 142^{11k+6}\\||+42103\cdot 142^{10k+5}+2371\cdot 142^{9k+5}+17493\cdot 142^{8k+4}+830\cdot 142^{7k+4}+5041\cdot 142^{6k+3}\\||+191\cdot 142^{5k+3}+887\cdot 142^{4k+2}+24\cdot 142^{3k+2}+71\cdot 142^{2k+1}+142^{k+1}+1)\\{\large\Phi}_{286}(143^{2k+1})|=|143^{240k+120}+143^{238k+119}-143^{218k+109}-143^{216k+108}-143^{214k+107}\\||-143^{212k+106}+143^{196k+98}+143^{194k+97}+143^{192k+96}+143^{190k+95}\\||+143^{188k+94}+143^{186k+93}-143^{174k+87}-143^{172k+86}-143^{170k+85}\\||-143^{168k+84}-143^{166k+83}-143^{164k+82}-143^{162k+81}-143^{160k+80}\\||+143^{152k+76}+143^{150k+75}+143^{148k+74}+143^{146k+73}+143^{144k+72}\\||+143^{142k+71}+143^{140k+70}+143^{138k+69}+143^{136k+68}+143^{134k+67}\\||-143^{130k+65}-143^{128k+64}-143^{126k+63}-143^{124k+62}-143^{122k+61}\\||-143^{120k+60}-143^{118k+59}-143^{116k+58}-143^{114k+57}-143^{112k+56}\\||-143^{110k+55}+143^{106k+53}+143^{104k+52}+143^{102k+51}+143^{100k+50}\\||+143^{98k+49}+143^{96k+48}+143^{94k+47}+143^{92k+46}+143^{90k+45}\\||+143^{88k+44}-143^{80k+40}-143^{78k+39}-143^{76k+38}-143^{74k+37}\\||-143^{72k+36}-143^{70k+35}-143^{68k+34}-143^{66k+33}+143^{54k+27}\\||+143^{52k+26}+143^{50k+25}+143^{48k+24}+143^{46k+23}+143^{44k+22}\\||-143^{28k+14}-143^{26k+13}-143^{24k+12}-143^{22k+11}+143^{2k+1}+1\\|=|(143^{120k+60}-143^{119k+60}+72\cdot 143^{118k+59}-24\cdot 143^{117k+59}+840\cdot 143^{116k+58}\\||-158\cdot 143^{115k+58}+3298\cdot 143^{114k+57}-360\cdot 143^{113k+57}+3480\cdot 143^{112k+56}+56\cdot 143^{111k+56}\\||-8442\cdot 143^{110k+55}+1479\cdot 143^{109k+55}-23627\cdot 143^{108k+54}+1717\cdot 143^{107k+54}-4939\cdot 143^{106k+53}\\||-1762\cdot 143^{105k+53}+48620\cdot 143^{104k+52}-5380\cdot 143^{103k+52}+56056\cdot 143^{102k+51}-1654\cdot 143^{101k+51}\\||-35750\cdot 143^{100k+50}+7532\cdot 143^{99k+50}-118515\cdot 143^{98k+49}+8655\cdot 143^{97k+49}-44171\cdot 143^{96k+48}\\||-3415\cdot 143^{95k+48}+119725\cdot 143^{94k+47}-13419\cdot 143^{93k+47}+144594\cdot 143^{92k+46}-6312\cdot 143^{91k+46}\\||-22600\cdot 143^{90k+45}+9554\cdot 143^{89k+45}-167128\cdot 143^{88k+44}+13735\cdot 143^{87k+44}-109167\cdot 143^{86k+43}\\||+1889\cdot 143^{85k+43}+66987\cdot 143^{84k+42}-11167\cdot 143^{83k+42}+160517\cdot 143^{82k+41}-11975\cdot 143^{81k+41}\\||+87593\cdot 143^{80k+40}-660\cdot 143^{79k+40}-76362\cdot 143^{78k+39}+12000\cdot 143^{77k+39}-173821\cdot 143^{76k+38}\\||+12939\cdot 143^{75k+38}-85981\cdot 143^{74k+37}-1419\cdot 143^{73k+37}+124277\cdot 143^{72k+36}-16671\cdot 143^{71k+36}\\||+211707\cdot 143^{70k+35}-12563\cdot 143^{69k+35}+30651\cdot 143^{68k+34}+8991\cdot 143^{67k+34}-214336\cdot 143^{66k+33}\\||+20763\cdot 143^{65k+33}-193095\cdot 143^{64k+32}+5485\cdot 143^{63k+32}+89039\cdot 143^{62k+31}-17867\cdot 143^{61k+31}\\||+261241\cdot 143^{60k+30}-17867\cdot 143^{59k+30}+89039\cdot 143^{58k+29}+5485\cdot 143^{57k+29}-193095\cdot 143^{56k+28}\\||+20763\cdot 143^{55k+28}-214336\cdot 143^{54k+27}+8991\cdot 143^{53k+27}+30651\cdot 143^{52k+26}-12563\cdot 143^{51k+26}\\||+211707\cdot 143^{50k+25}-16671\cdot 143^{49k+25}+124277\cdot 143^{48k+24}-1419\cdot 143^{47k+24}-85981\cdot 143^{46k+23}\\||+12939\cdot 143^{45k+23}-173821\cdot 143^{44k+22}+12000\cdot 143^{43k+22}-76362\cdot 143^{42k+21}-660\cdot 143^{41k+21}\\||+87593\cdot 143^{40k+20}-11975\cdot 143^{39k+20}+160517\cdot 143^{38k+19}-11167\cdot 143^{37k+19}+66987\cdot 143^{36k+18}\\||+1889\cdot 143^{35k+18}-109167\cdot 143^{34k+17}+13735\cdot 143^{33k+17}-167128\cdot 143^{32k+16}+9554\cdot 143^{31k+16}\\||-22600\cdot 143^{30k+15}-6312\cdot 143^{29k+15}+144594\cdot 143^{28k+14}-13419\cdot 143^{27k+14}+119725\cdot 143^{26k+13}\\||-3415\cdot 143^{25k+13}-44171\cdot 143^{24k+12}+8655\cdot 143^{23k+12}-118515\cdot 143^{22k+11}+7532\cdot 143^{21k+11}\\||-35750\cdot 143^{20k+10}-1654\cdot 143^{19k+10}+56056\cdot 143^{18k+9}-5380\cdot 143^{17k+9}+48620\cdot 143^{16k+8}\\||-1762\cdot 143^{15k+8}-4939\cdot 143^{14k+7}+1717\cdot 143^{13k+7}-23627\cdot 143^{12k+6}+1479\cdot 143^{11k+6}\\||-8442\cdot 143^{10k+5}+56\cdot 143^{9k+5}+3480\cdot 143^{8k+4}-360\cdot 143^{7k+4}+3298\cdot 143^{6k+3}\\||-158\cdot 143^{5k+3}+840\cdot 143^{4k+2}-24\cdot 143^{3k+2}+72\cdot 143^{2k+1}-143^{k+1}+1)\\|\times|(143^{120k+60}+143^{119k+60}+72\cdot 143^{118k+59}+24\cdot 143^{117k+59}+840\cdot 143^{116k+58}\\||+158\cdot 143^{115k+58}+3298\cdot 143^{114k+57}+360\cdot 143^{113k+57}+3480\cdot 143^{112k+56}-56\cdot 143^{111k+56}\\||-8442\cdot 143^{110k+55}-1479\cdot 143^{109k+55}-23627\cdot 143^{108k+54}-1717\cdot 143^{107k+54}-4939\cdot 143^{106k+53}\\||+1762\cdot 143^{105k+53}+48620\cdot 143^{104k+52}+5380\cdot 143^{103k+52}+56056\cdot 143^{102k+51}+1654\cdot 143^{101k+51}\\||-35750\cdot 143^{100k+50}-7532\cdot 143^{99k+50}-118515\cdot 143^{98k+49}-8655\cdot 143^{97k+49}-44171\cdot 143^{96k+48}\\||+3415\cdot 143^{95k+48}+119725\cdot 143^{94k+47}+13419\cdot 143^{93k+47}+144594\cdot 143^{92k+46}+6312\cdot 143^{91k+46}\\||-22600\cdot 143^{90k+45}-9554\cdot 143^{89k+45}-167128\cdot 143^{88k+44}-13735\cdot 143^{87k+44}-109167\cdot 143^{86k+43}\\||-1889\cdot 143^{85k+43}+66987\cdot 143^{84k+42}+11167\cdot 143^{83k+42}+160517\cdot 143^{82k+41}+11975\cdot 143^{81k+41}\\||+87593\cdot 143^{80k+40}+660\cdot 143^{79k+40}-76362\cdot 143^{78k+39}-12000\cdot 143^{77k+39}-173821\cdot 143^{76k+38}\\||-12939\cdot 143^{75k+38}-85981\cdot 143^{74k+37}+1419\cdot 143^{73k+37}+124277\cdot 143^{72k+36}+16671\cdot 143^{71k+36}\\||+211707\cdot 143^{70k+35}+12563\cdot 143^{69k+35}+30651\cdot 143^{68k+34}-8991\cdot 143^{67k+34}-214336\cdot 143^{66k+33}\\||-20763\cdot 143^{65k+33}-193095\cdot 143^{64k+32}-5485\cdot 143^{63k+32}+89039\cdot 143^{62k+31}+17867\cdot 143^{61k+31}\\||+261241\cdot 143^{60k+30}+17867\cdot 143^{59k+30}+89039\cdot 143^{58k+29}-5485\cdot 143^{57k+29}-193095\cdot 143^{56k+28}\\||-20763\cdot 143^{55k+28}-214336\cdot 143^{54k+27}-8991\cdot 143^{53k+27}+30651\cdot 143^{52k+26}+12563\cdot 143^{51k+26}\\||+211707\cdot 143^{50k+25}+16671\cdot 143^{49k+25}+124277\cdot 143^{48k+24}+1419\cdot 143^{47k+24}-85981\cdot 143^{46k+23}\\||-12939\cdot 143^{45k+23}-173821\cdot 143^{44k+22}-12000\cdot 143^{43k+22}-76362\cdot 143^{42k+21}+660\cdot 143^{41k+21}\\||+87593\cdot 143^{40k+20}+11975\cdot 143^{39k+20}+160517\cdot 143^{38k+19}+11167\cdot 143^{37k+19}+66987\cdot 143^{36k+18}\\||-1889\cdot 143^{35k+18}-109167\cdot 143^{34k+17}-13735\cdot 143^{33k+17}-167128\cdot 143^{32k+16}-9554\cdot 143^{31k+16}\\||-22600\cdot 143^{30k+15}+6312\cdot 143^{29k+15}+144594\cdot 143^{28k+14}+13419\cdot 143^{27k+14}+119725\cdot 143^{26k+13}\\||+3415\cdot 143^{25k+13}-44171\cdot 143^{24k+12}-8655\cdot 143^{23k+12}-118515\cdot 143^{22k+11}-7532\cdot 143^{21k+11}\\||-35750\cdot 143^{20k+10}+1654\cdot 143^{19k+10}+56056\cdot 143^{18k+9}+5380\cdot 143^{17k+9}+48620\cdot 143^{16k+8}\\||+1762\cdot 143^{15k+8}-4939\cdot 143^{14k+7}-1717\cdot 143^{13k+7}-23627\cdot 143^{12k+6}-1479\cdot 143^{11k+6}\\||-8442\cdot 143^{10k+5}-56\cdot 143^{9k+5}+3480\cdot 143^{8k+4}+360\cdot 143^{7k+4}+3298\cdot 143^{6k+3}\\||+158\cdot 143^{5k+3}+840\cdot 143^{4k+2}+24\cdot 143^{3k+2}+72\cdot 143^{2k+1}+143^{k+1}+1)\\{\large\Phi}_{145}(145^{2k+1})|=|145^{224k+112}-145^{222k+111}+145^{214k+107}-145^{212k+106}+145^{204k+102}\\||-145^{202k+101}+145^{194k+97}-145^{192k+96}+145^{184k+92}-145^{182k+91}\\||+145^{174k+87}-145^{172k+86}+145^{166k+83}-145^{162k+81}+145^{156k+78}\\||-145^{152k+76}+145^{146k+73}-145^{142k+71}+145^{136k+68}-145^{132k+66}\\||+145^{126k+63}-145^{122k+61}+145^{116k+58}-145^{112k+56}+145^{108k+54}\\||-145^{102k+51}+145^{98k+49}-145^{92k+46}+145^{88k+44}-145^{82k+41}\\||+145^{78k+39}-145^{72k+36}+145^{68k+34}-145^{62k+31}+145^{58k+29}\\||-145^{52k+26}+145^{50k+25}-145^{42k+21}+145^{40k+20}-145^{32k+16}\\||+145^{30k+15}-145^{22k+11}+145^{20k+10}-145^{12k+6}+145^{10k+5}\\||-145^{2k+1}+1\\|=|(145^{112k+56}-145^{111k+56}+72\cdot 145^{110k+55}-24\cdot 145^{109k+55}+888\cdot 145^{108k+54}\\||-187\cdot 145^{107k+54}+4939\cdot 145^{106k+53}-802\cdot 145^{105k+53}+17170\cdot 145^{104k+52}-2336\cdot 145^{103k+52}\\||+42861\cdot 145^{102k+51}-5079\cdot 145^{101k+51}+82152\cdot 145^{100k+50}-8660\cdot 145^{99k+50}+125408\cdot 145^{98k+49}\\||-11881\cdot 145^{97k+49}+154789\cdot 145^{96k+48}-13160\cdot 145^{95k+48}+152640\cdot 145^{94k+47}-11350\cdot 145^{93k+47}\\||+110821\cdot 145^{92k+46}-6329\cdot 145^{91k+46}+34732\cdot 145^{90k+45}+924\cdot 145^{89k+45}-58472\cdot 145^{88k+44}\\||+8657\cdot 145^{87k+44}-145491\cdot 145^{86k+43}+14922\cdot 145^{85k+43}-205030\cdot 145^{84k+42}+18327\cdot 145^{83k+42}\\||-226824\cdot 145^{82k+41}+18643\cdot 145^{81k+41}-215308\cdot 145^{80k+40}+16696\cdot 145^{79k+40}-183227\cdot 145^{78k+39}\\||+13524\cdot 145^{77k+39}-140351\cdot 145^{76k+38}+9614\cdot 145^{75k+38}-89050\cdot 145^{74k+37}+5013\cdot 145^{73k+37}\\||-30304\cdot 145^{72k+36}-7\cdot 145^{71k+36}+29452\cdot 145^{70k+35}-4684\cdot 145^{69k+35}+79733\cdot 145^{68k+34}\\||-8186\cdot 145^{67k+34}+112399\cdot 145^{66k+33}-10046\cdot 145^{65k+33}+124250\cdot 145^{64k+32}-10165\cdot 145^{63k+32}\\||+115876\cdot 145^{62k+31}-8765\cdot 145^{61k+31}+92812\cdot 145^{60k+30}-6608\cdot 145^{59k+30}+67973\cdot 145^{58k+29}\\||-4986\cdot 145^{57k+29}+57219\cdot 145^{56k+28}-4986\cdot 145^{55k+28}+67973\cdot 145^{54k+27}-6608\cdot 145^{53k+27}\\||+92812\cdot 145^{52k+26}-8765\cdot 145^{51k+26}+115876\cdot 145^{50k+25}-10165\cdot 145^{49k+25}+124250\cdot 145^{48k+24}\\||-10046\cdot 145^{47k+24}+112399\cdot 145^{46k+23}-8186\cdot 145^{45k+23}+79733\cdot 145^{44k+22}-4684\cdot 145^{43k+22}\\||+29452\cdot 145^{42k+21}-7\cdot 145^{41k+21}-30304\cdot 145^{40k+20}+5013\cdot 145^{39k+20}-89050\cdot 145^{38k+19}\\||+9614\cdot 145^{37k+19}-140351\cdot 145^{36k+18}+13524\cdot 145^{35k+18}-183227\cdot 145^{34k+17}+16696\cdot 145^{33k+17}\\||-215308\cdot 145^{32k+16}+18643\cdot 145^{31k+16}-226824\cdot 145^{30k+15}+18327\cdot 145^{29k+15}-205030\cdot 145^{28k+14}\\||+14922\cdot 145^{27k+14}-145491\cdot 145^{26k+13}+8657\cdot 145^{25k+13}-58472\cdot 145^{24k+12}+924\cdot 145^{23k+12}\\||+34732\cdot 145^{22k+11}-6329\cdot 145^{21k+11}+110821\cdot 145^{20k+10}-11350\cdot 145^{19k+10}+152640\cdot 145^{18k+9}\\||-13160\cdot 145^{17k+9}+154789\cdot 145^{16k+8}-11881\cdot 145^{15k+8}+125408\cdot 145^{14k+7}-8660\cdot 145^{13k+7}\\||+82152\cdot 145^{12k+6}-5079\cdot 145^{11k+6}+42861\cdot 145^{10k+5}-2336\cdot 145^{9k+5}+17170\cdot 145^{8k+4}\\||-802\cdot 145^{7k+4}+4939\cdot 145^{6k+3}-187\cdot 145^{5k+3}+888\cdot 145^{4k+2}-24\cdot 145^{3k+2}\\||+72\cdot 145^{2k+1}-145^{k+1}+1)\\|\times|(145^{112k+56}+145^{111k+56}+72\cdot 145^{110k+55}+24\cdot 145^{109k+55}+888\cdot 145^{108k+54}\\||+187\cdot 145^{107k+54}+4939\cdot 145^{106k+53}+802\cdot 145^{105k+53}+17170\cdot 145^{104k+52}+2336\cdot 145^{103k+52}\\||+42861\cdot 145^{102k+51}+5079\cdot 145^{101k+51}+82152\cdot 145^{100k+50}+8660\cdot 145^{99k+50}+125408\cdot 145^{98k+49}\\||+11881\cdot 145^{97k+49}+154789\cdot 145^{96k+48}+13160\cdot 145^{95k+48}+152640\cdot 145^{94k+47}+11350\cdot 145^{93k+47}\\||+110821\cdot 145^{92k+46}+6329\cdot 145^{91k+46}+34732\cdot 145^{90k+45}-924\cdot 145^{89k+45}-58472\cdot 145^{88k+44}\\||-8657\cdot 145^{87k+44}-145491\cdot 145^{86k+43}-14922\cdot 145^{85k+43}-205030\cdot 145^{84k+42}-18327\cdot 145^{83k+42}\\||-226824\cdot 145^{82k+41}-18643\cdot 145^{81k+41}-215308\cdot 145^{80k+40}-16696\cdot 145^{79k+40}-183227\cdot 145^{78k+39}\\||-13524\cdot 145^{77k+39}-140351\cdot 145^{76k+38}-9614\cdot 145^{75k+38}-89050\cdot 145^{74k+37}-5013\cdot 145^{73k+37}\\||-30304\cdot 145^{72k+36}+7\cdot 145^{71k+36}+29452\cdot 145^{70k+35}+4684\cdot 145^{69k+35}+79733\cdot 145^{68k+34}\\||+8186\cdot 145^{67k+34}+112399\cdot 145^{66k+33}+10046\cdot 145^{65k+33}+124250\cdot 145^{64k+32}+10165\cdot 145^{63k+32}\\||+115876\cdot 145^{62k+31}+8765\cdot 145^{61k+31}+92812\cdot 145^{60k+30}+6608\cdot 145^{59k+30}+67973\cdot 145^{58k+29}\\||+4986\cdot 145^{57k+29}+57219\cdot 145^{56k+28}+4986\cdot 145^{55k+28}+67973\cdot 145^{54k+27}+6608\cdot 145^{53k+27}\\||+92812\cdot 145^{52k+26}+8765\cdot 145^{51k+26}+115876\cdot 145^{50k+25}+10165\cdot 145^{49k+25}+124250\cdot 145^{48k+24}\\||+10046\cdot 145^{47k+24}+112399\cdot 145^{46k+23}+8186\cdot 145^{45k+23}+79733\cdot 145^{44k+22}+4684\cdot 145^{43k+22}\\||+29452\cdot 145^{42k+21}+7\cdot 145^{41k+21}-30304\cdot 145^{40k+20}-5013\cdot 145^{39k+20}-89050\cdot 145^{38k+19}\\||-9614\cdot 145^{37k+19}-140351\cdot 145^{36k+18}-13524\cdot 145^{35k+18}-183227\cdot 145^{34k+17}-16696\cdot 145^{33k+17}\\||-215308\cdot 145^{32k+16}-18643\cdot 145^{31k+16}-226824\cdot 145^{30k+15}-18327\cdot 145^{29k+15}-205030\cdot 145^{28k+14}\\||-14922\cdot 145^{27k+14}-145491\cdot 145^{26k+13}-8657\cdot 145^{25k+13}-58472\cdot 145^{24k+12}-924\cdot 145^{23k+12}\\||+34732\cdot 145^{22k+11}+6329\cdot 145^{21k+11}+110821\cdot 145^{20k+10}+11350\cdot 145^{19k+10}+152640\cdot 145^{18k+9}\\||+13160\cdot 145^{17k+9}+154789\cdot 145^{16k+8}+11881\cdot 145^{15k+8}+125408\cdot 145^{14k+7}+8660\cdot 145^{13k+7}\\||+82152\cdot 145^{12k+6}+5079\cdot 145^{11k+6}+42861\cdot 145^{10k+5}+2336\cdot 145^{9k+5}+17170\cdot 145^{8k+4}\\||+802\cdot 145^{7k+4}+4939\cdot 145^{6k+3}+187\cdot 145^{5k+3}+888\cdot 145^{4k+2}+24\cdot 145^{3k+2}\\||+72\cdot 145^{2k+1}+145^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{292}(146^{2k+1})\cdots{\large\Phi}_{149}(149^{2k+1})$${\large\Phi}_{292}(146^{2k+1})\cdots{\large\Phi}_{149}(149^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{292}(146^{2k+1})|=|146^{288k+144}-146^{284k+142}+146^{280k+140}-146^{276k+138}+146^{272k+136}\\||-146^{268k+134}+146^{264k+132}-146^{260k+130}+146^{256k+128}-146^{252k+126}\\||+146^{248k+124}-146^{244k+122}+146^{240k+120}-146^{236k+118}+146^{232k+116}\\||-146^{228k+114}+146^{224k+112}-146^{220k+110}+146^{216k+108}-146^{212k+106}\\||+146^{208k+104}-146^{204k+102}+146^{200k+100}-146^{196k+98}+146^{192k+96}\\||-146^{188k+94}+146^{184k+92}-146^{180k+90}+146^{176k+88}-146^{172k+86}\\||+146^{168k+84}-146^{164k+82}+146^{160k+80}-146^{156k+78}+146^{152k+76}\\||-146^{148k+74}+146^{144k+72}-146^{140k+70}+146^{136k+68}-146^{132k+66}\\||+146^{128k+64}-146^{124k+62}+146^{120k+60}-146^{116k+58}+146^{112k+56}\\||-146^{108k+54}+146^{104k+52}-146^{100k+50}+146^{96k+48}-146^{92k+46}\\||+146^{88k+44}-146^{84k+42}+146^{80k+40}-146^{76k+38}+146^{72k+36}\\||-146^{68k+34}+146^{64k+32}-146^{60k+30}+146^{56k+28}-146^{52k+26}\\||+146^{48k+24}-146^{44k+22}+146^{40k+20}-146^{36k+18}+146^{32k+16}\\||-146^{28k+14}+146^{24k+12}-146^{20k+10}+146^{16k+8}-146^{12k+6}\\||+146^{8k+4}-146^{4k+2}+1\\|=|(146^{144k+72}-146^{143k+72}+73\cdot 146^{142k+71}-24\cdot 146^{141k+71}+839\cdot 146^{140k+70}\\||-153\cdot 146^{139k+70}+3139\cdot 146^{138k+69}-332\cdot 146^{137k+69}+3477\cdot 146^{136k+68}-89\cdot 146^{135k+68}\\||-2263\cdot 146^{134k+67}+362\cdot 146^{133k+67}-3445\cdot 146^{132k+66}-15\cdot 146^{131k+66}+4015\cdot 146^{130k+65}\\||-474\cdot 146^{129k+65}+5469\cdot 146^{128k+64}-441\cdot 146^{127k+64}+6205\cdot 146^{126k+63}-492\cdot 146^{125k+63}\\||+1699\cdot 146^{124k+62}+479\cdot 146^{123k+62}-11461\cdot 146^{122k+61}+878\cdot 146^{121k+61}-3863\cdot 146^{120k+60}\\||-295\cdot 146^{119k+60}+7665\cdot 146^{118k+59}-770\cdot 146^{117k+59}+11299\cdot 146^{116k+58}-1083\cdot 146^{115k+58}\\||+10439\cdot 146^{114k+57}-86\cdot 146^{113k+57}-11227\cdot 146^{112k+56}+1571\cdot 146^{111k+56}-18031\cdot 146^{110k+55}\\||+852\cdot 146^{109k+55}-513\cdot 146^{108k+54}-683\cdot 146^{107k+54}+15111\cdot 146^{106k+53}-1566\cdot 146^{105k+53}\\||+17573\cdot 146^{104k+52}-839\cdot 146^{103k+52}-1387\cdot 146^{102k+51}+1092\cdot 146^{101k+51}-21861\cdot 146^{100k+50}\\||+2063\cdot 146^{99k+50}-20513\cdot 146^{98k+49}+696\cdot 146^{97k+49}+7801\cdot 146^{96k+48}-1753\cdot 146^{95k+48}\\||+25769\cdot 146^{94k+47}-1726\cdot 146^{93k+47}+10443\cdot 146^{92k+46}+105\cdot 146^{91k+46}-12629\cdot 146^{90k+45}\\||+1860\cdot 146^{89k+45}-27139\cdot 146^{88k+44}+1823\cdot 146^{87k+44}-6935\cdot 146^{86k+43}-958\cdot 146^{85k+43}\\||+24587\cdot 146^{84k+42}-2285\cdot 146^{83k+42}+22411\cdot 146^{82k+41}-1064\cdot 146^{81k+41}+885\cdot 146^{80k+40}\\||+1035\cdot 146^{79k+40}-23871\cdot 146^{78k+39}+2276\cdot 146^{77k+39}-20073\cdot 146^{76k+38}+357\cdot 146^{75k+38}\\||+12775\cdot 146^{74k+37}-2060\cdot 146^{73k+37}+29121\cdot 146^{72k+36}-2060\cdot 146^{71k+36}+12775\cdot 146^{70k+35}\\||+357\cdot 146^{69k+35}-20073\cdot 146^{68k+34}+2276\cdot 146^{67k+34}-23871\cdot 146^{66k+33}+1035\cdot 146^{65k+33}\\||+885\cdot 146^{64k+32}-1064\cdot 146^{63k+32}+22411\cdot 146^{62k+31}-2285\cdot 146^{61k+31}+24587\cdot 146^{60k+30}\\||-958\cdot 146^{59k+30}-6935\cdot 146^{58k+29}+1823\cdot 146^{57k+29}-27139\cdot 146^{56k+28}+1860\cdot 146^{55k+28}\\||-12629\cdot 146^{54k+27}+105\cdot 146^{53k+27}+10443\cdot 146^{52k+26}-1726\cdot 146^{51k+26}+25769\cdot 146^{50k+25}\\||-1753\cdot 146^{49k+25}+7801\cdot 146^{48k+24}+696\cdot 146^{47k+24}-20513\cdot 146^{46k+23}+2063\cdot 146^{45k+23}\\||-21861\cdot 146^{44k+22}+1092\cdot 146^{43k+22}-1387\cdot 146^{42k+21}-839\cdot 146^{41k+21}+17573\cdot 146^{40k+20}\\||-1566\cdot 146^{39k+20}+15111\cdot 146^{38k+19}-683\cdot 146^{37k+19}-513\cdot 146^{36k+18}+852\cdot 146^{35k+18}\\||-18031\cdot 146^{34k+17}+1571\cdot 146^{33k+17}-11227\cdot 146^{32k+16}-86\cdot 146^{31k+16}+10439\cdot 146^{30k+15}\\||-1083\cdot 146^{29k+15}+11299\cdot 146^{28k+14}-770\cdot 146^{27k+14}+7665\cdot 146^{26k+13}-295\cdot 146^{25k+13}\\||-3863\cdot 146^{24k+12}+878\cdot 146^{23k+12}-11461\cdot 146^{22k+11}+479\cdot 146^{21k+11}+1699\cdot 146^{20k+10}\\||-492\cdot 146^{19k+10}+6205\cdot 146^{18k+9}-441\cdot 146^{17k+9}+5469\cdot 146^{16k+8}-474\cdot 146^{15k+8}\\||+4015\cdot 146^{14k+7}-15\cdot 146^{13k+7}-3445\cdot 146^{12k+6}+362\cdot 146^{11k+6}-2263\cdot 146^{10k+5}\\||-89\cdot 146^{9k+5}+3477\cdot 146^{8k+4}-332\cdot 146^{7k+4}+3139\cdot 146^{6k+3}-153\cdot 146^{5k+3}\\||+839\cdot 146^{4k+2}-24\cdot 146^{3k+2}+73\cdot 146^{2k+1}-146^{k+1}+1)\\|\times|(146^{144k+72}+146^{143k+72}+73\cdot 146^{142k+71}+24\cdot 146^{141k+71}+839\cdot 146^{140k+70}\\||+153\cdot 146^{139k+70}+3139\cdot 146^{138k+69}+332\cdot 146^{137k+69}+3477\cdot 146^{136k+68}+89\cdot 146^{135k+68}\\||-2263\cdot 146^{134k+67}-362\cdot 146^{133k+67}-3445\cdot 146^{132k+66}+15\cdot 146^{131k+66}+4015\cdot 146^{130k+65}\\||+474\cdot 146^{129k+65}+5469\cdot 146^{128k+64}+441\cdot 146^{127k+64}+6205\cdot 146^{126k+63}+492\cdot 146^{125k+63}\\||+1699\cdot 146^{124k+62}-479\cdot 146^{123k+62}-11461\cdot 146^{122k+61}-878\cdot 146^{121k+61}-3863\cdot 146^{120k+60}\\||+295\cdot 146^{119k+60}+7665\cdot 146^{118k+59}+770\cdot 146^{117k+59}+11299\cdot 146^{116k+58}+1083\cdot 146^{115k+58}\\||+10439\cdot 146^{114k+57}+86\cdot 146^{113k+57}-11227\cdot 146^{112k+56}-1571\cdot 146^{111k+56}-18031\cdot 146^{110k+55}\\||-852\cdot 146^{109k+55}-513\cdot 146^{108k+54}+683\cdot 146^{107k+54}+15111\cdot 146^{106k+53}+1566\cdot 146^{105k+53}\\||+17573\cdot 146^{104k+52}+839\cdot 146^{103k+52}-1387\cdot 146^{102k+51}-1092\cdot 146^{101k+51}-21861\cdot 146^{100k+50}\\||-2063\cdot 146^{99k+50}-20513\cdot 146^{98k+49}-696\cdot 146^{97k+49}+7801\cdot 146^{96k+48}+1753\cdot 146^{95k+48}\\||+25769\cdot 146^{94k+47}+1726\cdot 146^{93k+47}+10443\cdot 146^{92k+46}-105\cdot 146^{91k+46}-12629\cdot 146^{90k+45}\\||-1860\cdot 146^{89k+45}-27139\cdot 146^{88k+44}-1823\cdot 146^{87k+44}-6935\cdot 146^{86k+43}+958\cdot 146^{85k+43}\\||+24587\cdot 146^{84k+42}+2285\cdot 146^{83k+42}+22411\cdot 146^{82k+41}+1064\cdot 146^{81k+41}+885\cdot 146^{80k+40}\\||-1035\cdot 146^{79k+40}-23871\cdot 146^{78k+39}-2276\cdot 146^{77k+39}-20073\cdot 146^{76k+38}-357\cdot 146^{75k+38}\\||+12775\cdot 146^{74k+37}+2060\cdot 146^{73k+37}+29121\cdot 146^{72k+36}+2060\cdot 146^{71k+36}+12775\cdot 146^{70k+35}\\||-357\cdot 146^{69k+35}-20073\cdot 146^{68k+34}-2276\cdot 146^{67k+34}-23871\cdot 146^{66k+33}-1035\cdot 146^{65k+33}\\||+885\cdot 146^{64k+32}+1064\cdot 146^{63k+32}+22411\cdot 146^{62k+31}+2285\cdot 146^{61k+31}+24587\cdot 146^{60k+30}\\||+958\cdot 146^{59k+30}-6935\cdot 146^{58k+29}-1823\cdot 146^{57k+29}-27139\cdot 146^{56k+28}-1860\cdot 146^{55k+28}\\||-12629\cdot 146^{54k+27}-105\cdot 146^{53k+27}+10443\cdot 146^{52k+26}+1726\cdot 146^{51k+26}+25769\cdot 146^{50k+25}\\||+1753\cdot 146^{49k+25}+7801\cdot 146^{48k+24}-696\cdot 146^{47k+24}-20513\cdot 146^{46k+23}-2063\cdot 146^{45k+23}\\||-21861\cdot 146^{44k+22}-1092\cdot 146^{43k+22}-1387\cdot 146^{42k+21}+839\cdot 146^{41k+21}+17573\cdot 146^{40k+20}\\||+1566\cdot 146^{39k+20}+15111\cdot 146^{38k+19}+683\cdot 146^{37k+19}-513\cdot 146^{36k+18}-852\cdot 146^{35k+18}\\||-18031\cdot 146^{34k+17}-1571\cdot 146^{33k+17}-11227\cdot 146^{32k+16}+86\cdot 146^{31k+16}+10439\cdot 146^{30k+15}\\||+1083\cdot 146^{29k+15}+11299\cdot 146^{28k+14}+770\cdot 146^{27k+14}+7665\cdot 146^{26k+13}+295\cdot 146^{25k+13}\\||-3863\cdot 146^{24k+12}-878\cdot 146^{23k+12}-11461\cdot 146^{22k+11}-479\cdot 146^{21k+11}+1699\cdot 146^{20k+10}\\||+492\cdot 146^{19k+10}+6205\cdot 146^{18k+9}+441\cdot 146^{17k+9}+5469\cdot 146^{16k+8}+474\cdot 146^{15k+8}\\||+4015\cdot 146^{14k+7}+15\cdot 146^{13k+7}-3445\cdot 146^{12k+6}-362\cdot 146^{11k+6}-2263\cdot 146^{10k+5}\\||+89\cdot 146^{9k+5}+3477\cdot 146^{8k+4}+332\cdot 146^{7k+4}+3139\cdot 146^{6k+3}+153\cdot 146^{5k+3}\\||+839\cdot 146^{4k+2}+24\cdot 146^{3k+2}+73\cdot 146^{2k+1}+146^{k+1}+1)\\{\large\Phi}_{149}(149^{2k+1})|=|149^{296k+148}+149^{294k+147}+149^{292k+146}+149^{290k+145}+149^{288k+144}\\||+149^{286k+143}+149^{284k+142}+149^{282k+141}+149^{280k+140}+149^{278k+139}\\||+149^{276k+138}+149^{274k+137}+149^{272k+136}+149^{270k+135}+149^{268k+134}\\||+149^{266k+133}+149^{264k+132}+149^{262k+131}+149^{260k+130}+149^{258k+129}\\||+149^{256k+128}+149^{254k+127}+149^{252k+126}+149^{250k+125}+149^{248k+124}\\||+149^{246k+123}+149^{244k+122}+149^{242k+121}+149^{240k+120}+149^{238k+119}\\||+149^{236k+118}+149^{234k+117}+149^{232k+116}+149^{230k+115}+149^{228k+114}\\||+149^{226k+113}+149^{224k+112}+149^{222k+111}+149^{220k+110}+149^{218k+109}\\||+149^{216k+108}+149^{214k+107}+149^{212k+106}+149^{210k+105}+149^{208k+104}\\||+149^{206k+103}+149^{204k+102}+149^{202k+101}+149^{200k+100}+149^{198k+99}\\||+149^{196k+98}+149^{194k+97}+149^{192k+96}+149^{190k+95}+149^{188k+94}\\||+149^{186k+93}+149^{184k+92}+149^{182k+91}+149^{180k+90}+149^{178k+89}\\||+149^{176k+88}+149^{174k+87}+149^{172k+86}+149^{170k+85}+149^{168k+84}\\||+149^{166k+83}+149^{164k+82}+149^{162k+81}+149^{160k+80}+149^{158k+79}\\||+149^{156k+78}+149^{154k+77}+149^{152k+76}+149^{150k+75}+149^{148k+74}\\||+149^{146k+73}+149^{144k+72}+149^{142k+71}+149^{140k+70}+149^{138k+69}\\||+149^{136k+68}+149^{134k+67}+149^{132k+66}+149^{130k+65}+149^{128k+64}\\||+149^{126k+63}+149^{124k+62}+149^{122k+61}+149^{120k+60}+149^{118k+59}\\||+149^{116k+58}+149^{114k+57}+149^{112k+56}+149^{110k+55}+149^{108k+54}\\||+149^{106k+53}+149^{104k+52}+149^{102k+51}+149^{100k+50}+149^{98k+49}\\||+149^{96k+48}+149^{94k+47}+149^{92k+46}+149^{90k+45}+149^{88k+44}\\||+149^{86k+43}+149^{84k+42}+149^{82k+41}+149^{80k+40}+149^{78k+39}\\||+149^{76k+38}+149^{74k+37}+149^{72k+36}+149^{70k+35}+149^{68k+34}\\||+149^{66k+33}+149^{64k+32}+149^{62k+31}+149^{60k+30}+149^{58k+29}\\||+149^{56k+28}+149^{54k+27}+149^{52k+26}+149^{50k+25}+149^{48k+24}\\||+149^{46k+23}+149^{44k+22}+149^{42k+21}+149^{40k+20}+149^{38k+19}\\||+149^{36k+18}+149^{34k+17}+149^{32k+16}+149^{30k+15}+149^{28k+14}\\||+149^{26k+13}+149^{24k+12}+149^{22k+11}+149^{20k+10}+149^{18k+9}\\||+149^{16k+8}+149^{14k+7}+149^{12k+6}+149^{10k+5}+149^{8k+4}\\||+149^{6k+3}+149^{4k+2}+149^{2k+1}+1\\|=|(149^{148k+74}-149^{147k+74}+75\cdot 149^{146k+73}-25\cdot 149^{145k+73}+913\cdot 149^{144k+72}\\||-173\cdot 149^{143k+72}+3865\cdot 149^{142k+71}-461\cdot 149^{141k+71}+6455\cdot 149^{140k+70}-471\cdot 149^{139k+70}\\||+4245\cdot 149^{138k+69}-343\cdot 149^{137k+69}+7877\cdot 149^{136k+68}-1251\cdot 149^{135k+68}+22821\cdot 149^{134k+67}\\||-2083\cdot 149^{133k+67}+20659\cdot 149^{132k+66}-963\cdot 149^{131k+66}+6093\cdot 149^{130k+65}-789\cdot 149^{129k+65}\\||+21709\cdot 149^{128k+64}-2855\cdot 149^{127k+64}+40099\cdot 149^{126k+63}-2761\cdot 149^{125k+63}+19797\cdot 149^{124k+62}\\||-589\cdot 149^{123k+62}+3041\cdot 149^{122k+61}-687\cdot 149^{121k+61}+18455\cdot 149^{120k+60}-2191\cdot 149^{119k+60}\\||+29139\cdot 149^{118k+59}-2059\cdot 149^{117k+59}+16341\cdot 149^{116k+58}-401\cdot 149^{115k+58}-6345\cdot 149^{114k+57}\\||+1053\cdot 149^{113k+57}-9633\cdot 149^{112k+56}-379\cdot 149^{111k+56}+23773\cdot 149^{110k+55}-2929\cdot 149^{109k+55}\\||+30543\cdot 149^{108k+54}-737\cdot 149^{107k+54}-15427\cdot 149^{106k+53}+2057\cdot 149^{105k+53}-11199\cdot 149^{104k+52}\\||-1577\cdot 149^{103k+52}+47961\cdot 149^{102k+51}-4785\cdot 149^{101k+51}+47027\cdot 149^{100k+50}-2007\cdot 149^{99k+50}\\||+7117\cdot 149^{98k+49}-455\cdot 149^{97k+49}+19201\cdot 149^{96k+48}-3189\cdot 149^{95k+48}+54553\cdot 149^{94k+47}\\||-4979\cdot 149^{93k+47}+57977\cdot 149^{92k+46}-4039\cdot 149^{91k+46}+38021\cdot 149^{90k+45}-2243\cdot 149^{89k+45}\\||+21417\cdot 149^{88k+44}-1949\cdot 149^{87k+44}+34359\cdot 149^{86k+43}-3855\cdot 149^{85k+43}+52659\cdot 149^{84k+42}\\||-3729\cdot 149^{83k+42}+28651\cdot 149^{82k+41}-991\cdot 149^{81k+41}+5299\cdot 149^{80k+40}-811\cdot 149^{79k+40}\\||+19125\cdot 149^{78k+39}-1971\cdot 149^{77k+39}+21113\cdot 149^{76k+38}-1173\cdot 149^{75k+38}+10891\cdot 149^{74k+37}\\||-1173\cdot 149^{73k+37}+21113\cdot 149^{72k+36}-1971\cdot 149^{71k+36}+19125\cdot 149^{70k+35}-811\cdot 149^{69k+35}\\||+5299\cdot 149^{68k+34}-991\cdot 149^{67k+34}+28651\cdot 149^{66k+33}-3729\cdot 149^{65k+33}+52659\cdot 149^{64k+32}\\||-3855\cdot 149^{63k+32}+34359\cdot 149^{62k+31}-1949\cdot 149^{61k+31}+21417\cdot 149^{60k+30}-2243\cdot 149^{59k+30}\\||+38021\cdot 149^{58k+29}-4039\cdot 149^{57k+29}+57977\cdot 149^{56k+28}-4979\cdot 149^{55k+28}+54553\cdot 149^{54k+27}\\||-3189\cdot 149^{53k+27}+19201\cdot 149^{52k+26}-455\cdot 149^{51k+26}+7117\cdot 149^{50k+25}-2007\cdot 149^{49k+25}\\||+47027\cdot 149^{48k+24}-4785\cdot 149^{47k+24}+47961\cdot 149^{46k+23}-1577\cdot 149^{45k+23}-11199\cdot 149^{44k+22}\\||+2057\cdot 149^{43k+22}-15427\cdot 149^{42k+21}-737\cdot 149^{41k+21}+30543\cdot 149^{40k+20}-2929\cdot 149^{39k+20}\\||+23773\cdot 149^{38k+19}-379\cdot 149^{37k+19}-9633\cdot 149^{36k+18}+1053\cdot 149^{35k+18}-6345\cdot 149^{34k+17}\\||-401\cdot 149^{33k+17}+16341\cdot 149^{32k+16}-2059\cdot 149^{31k+16}+29139\cdot 149^{30k+15}-2191\cdot 149^{29k+15}\\||+18455\cdot 149^{28k+14}-687\cdot 149^{27k+14}+3041\cdot 149^{26k+13}-589\cdot 149^{25k+13}+19797\cdot 149^{24k+12}\\||-2761\cdot 149^{23k+12}+40099\cdot 149^{22k+11}-2855\cdot 149^{21k+11}+21709\cdot 149^{20k+10}-789\cdot 149^{19k+10}\\||+6093\cdot 149^{18k+9}-963\cdot 149^{17k+9}+20659\cdot 149^{16k+8}-2083\cdot 149^{15k+8}+22821\cdot 149^{14k+7}\\||-1251\cdot 149^{13k+7}+7877\cdot 149^{12k+6}-343\cdot 149^{11k+6}+4245\cdot 149^{10k+5}-471\cdot 149^{9k+5}\\||+6455\cdot 149^{8k+4}-461\cdot 149^{7k+4}+3865\cdot 149^{6k+3}-173\cdot 149^{5k+3}+913\cdot 149^{4k+2}\\||-25\cdot 149^{3k+2}+75\cdot 149^{2k+1}-149^{k+1}+1)\\|\times|(149^{148k+74}+149^{147k+74}+75\cdot 149^{146k+73}+25\cdot 149^{145k+73}+913\cdot 149^{144k+72}\\||+173\cdot 149^{143k+72}+3865\cdot 149^{142k+71}+461\cdot 149^{141k+71}+6455\cdot 149^{140k+70}+471\cdot 149^{139k+70}\\||+4245\cdot 149^{138k+69}+343\cdot 149^{137k+69}+7877\cdot 149^{136k+68}+1251\cdot 149^{135k+68}+22821\cdot 149^{134k+67}\\||+2083\cdot 149^{133k+67}+20659\cdot 149^{132k+66}+963\cdot 149^{131k+66}+6093\cdot 149^{130k+65}+789\cdot 149^{129k+65}\\||+21709\cdot 149^{128k+64}+2855\cdot 149^{127k+64}+40099\cdot 149^{126k+63}+2761\cdot 149^{125k+63}+19797\cdot 149^{124k+62}\\||+589\cdot 149^{123k+62}+3041\cdot 149^{122k+61}+687\cdot 149^{121k+61}+18455\cdot 149^{120k+60}+2191\cdot 149^{119k+60}\\||+29139\cdot 149^{118k+59}+2059\cdot 149^{117k+59}+16341\cdot 149^{116k+58}+401\cdot 149^{115k+58}-6345\cdot 149^{114k+57}\\||-1053\cdot 149^{113k+57}-9633\cdot 149^{112k+56}+379\cdot 149^{111k+56}+23773\cdot 149^{110k+55}+2929\cdot 149^{109k+55}\\||+30543\cdot 149^{108k+54}+737\cdot 149^{107k+54}-15427\cdot 149^{106k+53}-2057\cdot 149^{105k+53}-11199\cdot 149^{104k+52}\\||+1577\cdot 149^{103k+52}+47961\cdot 149^{102k+51}+4785\cdot 149^{101k+51}+47027\cdot 149^{100k+50}+2007\cdot 149^{99k+50}\\||+7117\cdot 149^{98k+49}+455\cdot 149^{97k+49}+19201\cdot 149^{96k+48}+3189\cdot 149^{95k+48}+54553\cdot 149^{94k+47}\\||+4979\cdot 149^{93k+47}+57977\cdot 149^{92k+46}+4039\cdot 149^{91k+46}+38021\cdot 149^{90k+45}+2243\cdot 149^{89k+45}\\||+21417\cdot 149^{88k+44}+1949\cdot 149^{87k+44}+34359\cdot 149^{86k+43}+3855\cdot 149^{85k+43}+52659\cdot 149^{84k+42}\\||+3729\cdot 149^{83k+42}+28651\cdot 149^{82k+41}+991\cdot 149^{81k+41}+5299\cdot 149^{80k+40}+811\cdot 149^{79k+40}\\||+19125\cdot 149^{78k+39}+1971\cdot 149^{77k+39}+21113\cdot 149^{76k+38}+1173\cdot 149^{75k+38}+10891\cdot 149^{74k+37}\\||+1173\cdot 149^{73k+37}+21113\cdot 149^{72k+36}+1971\cdot 149^{71k+36}+19125\cdot 149^{70k+35}+811\cdot 149^{69k+35}\\||+5299\cdot 149^{68k+34}+991\cdot 149^{67k+34}+28651\cdot 149^{66k+33}+3729\cdot 149^{65k+33}+52659\cdot 149^{64k+32}\\||+3855\cdot 149^{63k+32}+34359\cdot 149^{62k+31}+1949\cdot 149^{61k+31}+21417\cdot 149^{60k+30}+2243\cdot 149^{59k+30}\\||+38021\cdot 149^{58k+29}+4039\cdot 149^{57k+29}+57977\cdot 149^{56k+28}+4979\cdot 149^{55k+28}+54553\cdot 149^{54k+27}\\||+3189\cdot 149^{53k+27}+19201\cdot 149^{52k+26}+455\cdot 149^{51k+26}+7117\cdot 149^{50k+25}+2007\cdot 149^{49k+25}\\||+47027\cdot 149^{48k+24}+4785\cdot 149^{47k+24}+47961\cdot 149^{46k+23}+1577\cdot 149^{45k+23}-11199\cdot 149^{44k+22}\\||-2057\cdot 149^{43k+22}-15427\cdot 149^{42k+21}+737\cdot 149^{41k+21}+30543\cdot 149^{40k+20}+2929\cdot 149^{39k+20}\\||+23773\cdot 149^{38k+19}+379\cdot 149^{37k+19}-9633\cdot 149^{36k+18}-1053\cdot 149^{35k+18}-6345\cdot 149^{34k+17}\\||+401\cdot 149^{33k+17}+16341\cdot 149^{32k+16}+2059\cdot 149^{31k+16}+29139\cdot 149^{30k+15}+2191\cdot 149^{29k+15}\\||+18455\cdot 149^{28k+14}+687\cdot 149^{27k+14}+3041\cdot 149^{26k+13}+589\cdot 149^{25k+13}+19797\cdot 149^{24k+12}\\||+2761\cdot 149^{23k+12}+40099\cdot 149^{22k+11}+2855\cdot 149^{21k+11}+21709\cdot 149^{20k+10}+789\cdot 149^{19k+10}\\||+6093\cdot 149^{18k+9}+963\cdot 149^{17k+9}+20659\cdot 149^{16k+8}+2083\cdot 149^{15k+8}+22821\cdot 149^{14k+7}\\||+1251\cdot 149^{13k+7}+7877\cdot 149^{12k+6}+343\cdot 149^{11k+6}+4245\cdot 149^{10k+5}+471\cdot 149^{9k+5}\\||+6455\cdot 149^{8k+4}+461\cdot 149^{7k+4}+3865\cdot 149^{6k+3}+173\cdot 149^{5k+3}+913\cdot 149^{4k+2}\\||+25\cdot 149^{3k+2}+75\cdot 149^{2k+1}+149^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{302}(151^{2k+1})\cdots{\large\Phi}_{310}(155^{2k+1})$${\large\Phi}_{302}(151^{2k+1})\cdots{\large\Phi}_{310}(155^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{302}(151^{2k+1})|=|151^{300k+150}-151^{298k+149}+151^{296k+148}-151^{294k+147}+151^{292k+146}\\||-151^{290k+145}+151^{288k+144}-151^{286k+143}+151^{284k+142}-151^{282k+141}\\||+151^{280k+140}-151^{278k+139}+151^{276k+138}-151^{274k+137}+151^{272k+136}\\||-151^{270k+135}+151^{268k+134}-151^{266k+133}+151^{264k+132}-151^{262k+131}\\||+151^{260k+130}-151^{258k+129}+151^{256k+128}-151^{254k+127}+151^{252k+126}\\||-151^{250k+125}+151^{248k+124}-151^{246k+123}+151^{244k+122}-151^{242k+121}\\||+151^{240k+120}-151^{238k+119}+151^{236k+118}-151^{234k+117}+151^{232k+116}\\||-151^{230k+115}+151^{228k+114}-151^{226k+113}+151^{224k+112}-151^{222k+111}\\||+151^{220k+110}-151^{218k+109}+151^{216k+108}-151^{214k+107}+151^{212k+106}\\||-151^{210k+105}+151^{208k+104}-151^{206k+103}+151^{204k+102}-151^{202k+101}\\||+151^{200k+100}-151^{198k+99}+151^{196k+98}-151^{194k+97}+151^{192k+96}\\||-151^{190k+95}+151^{188k+94}-151^{186k+93}+151^{184k+92}-151^{182k+91}\\||+151^{180k+90}-151^{178k+89}+151^{176k+88}-151^{174k+87}+151^{172k+86}\\||-151^{170k+85}+151^{168k+84}-151^{166k+83}+151^{164k+82}-151^{162k+81}\\||+151^{160k+80}-151^{158k+79}+151^{156k+78}-151^{154k+77}+151^{152k+76}\\||-151^{150k+75}+151^{148k+74}-151^{146k+73}+151^{144k+72}-151^{142k+71}\\||+151^{140k+70}-151^{138k+69}+151^{136k+68}-151^{134k+67}+151^{132k+66}\\||-151^{130k+65}+151^{128k+64}-151^{126k+63}+151^{124k+62}-151^{122k+61}\\||+151^{120k+60}-151^{118k+59}+151^{116k+58}-151^{114k+57}+151^{112k+56}\\||-151^{110k+55}+151^{108k+54}-151^{106k+53}+151^{104k+52}-151^{102k+51}\\||+151^{100k+50}-151^{98k+49}+151^{96k+48}-151^{94k+47}+151^{92k+46}\\||-151^{90k+45}+151^{88k+44}-151^{86k+43}+151^{84k+42}-151^{82k+41}\\||+151^{80k+40}-151^{78k+39}+151^{76k+38}-151^{74k+37}+151^{72k+36}\\||-151^{70k+35}+151^{68k+34}-151^{66k+33}+151^{64k+32}-151^{62k+31}\\||+151^{60k+30}-151^{58k+29}+151^{56k+28}-151^{54k+27}+151^{52k+26}\\||-151^{50k+25}+151^{48k+24}-151^{46k+23}+151^{44k+22}-151^{42k+21}\\||+151^{40k+20}-151^{38k+19}+151^{36k+18}-151^{34k+17}+151^{32k+16}\\||-151^{30k+15}+151^{28k+14}-151^{26k+13}+151^{24k+12}-151^{22k+11}\\||+151^{20k+10}-151^{18k+9}+151^{16k+8}-151^{14k+7}+151^{12k+6}\\||-151^{10k+5}+151^{8k+4}-151^{6k+3}+151^{4k+2}-151^{2k+1}+1\\|=|(151^{150k+75}-151^{149k+75}+75\cdot 151^{148k+74}-25\cdot 151^{147k+74}+963\cdot 151^{146k+73}\\||-203\cdot 151^{145k+73}+5615\cdot 151^{144k+72}-925\cdot 151^{143k+72}+21191\cdot 151^{142k+71}-3011\cdot 151^{141k+71}\\||+61245\cdot 151^{140k+70}-7893\cdot 151^{139k+70}+147973\cdot 151^{138k+69}-17791\cdot 151^{137k+69}+314011\cdot 151^{136k+68}\\||-35789\cdot 151^{135k+68}+601979\cdot 151^{134k+67}-65663\cdot 151^{133k+67}+1060813\cdot 151^{132k+66}-111485\cdot 151^{131k+66}\\||+1740103\cdot 151^{130k+65}-177119\cdot 151^{129k+65}+2683393\cdot 151^{128k+64}-265623\cdot 151^{127k+64}+3920163\cdot 151^{126k+63}\\||-378575\cdot 151^{125k+63}+5458147\cdot 151^{124k+62}-515581\cdot 151^{123k+62}+7279769\cdot 151^{122k+61}-674221\cdot 151^{121k+61}\\||+9344281\cdot 151^{120k+60}-850409\cdot 151^{119k+60}+11593887\cdot 151^{118k+59}-1039009\cdot 151^{117k+59}+13962915\cdot 151^{116k+58}\\||-1234729\cdot 151^{115k+58}+16390403\cdot 151^{114k+57}-1433207\cdot 151^{113k+57}+18832893\cdot 151^{112k+56}-1631893\cdot 151^{111k+56}\\||+21272247\cdot 151^{110k+55}-1830405\cdot 151^{109k+55}+23716775\cdot 151^{108k+54}-2030391\cdot 151^{107k+54}+26196933\cdot 151^{106k+53}\\||-2234957\cdot 151^{105k+53}+28755337\cdot 151^{104k+52}-2447617\cdot 151^{103k+52}+31431557\cdot 151^{102k+51}-2670969\cdot 151^{101k+51}\\||+34246343\cdot 151^{100k+50}-2905561\cdot 151^{99k+50}+37190305\cdot 151^{98k+49}-3149207\cdot 151^{97k+49}+40218599\cdot 151^{96k+48}\\||-3396831\cdot 151^{95k+48}+43252851\cdot 151^{94k+47}-3640969\cdot 151^{93k+47}+46191639\cdot 151^{92k+46}-3872927\cdot 151^{91k+46}\\||+48927227\cdot 151^{90k+45}-4084221\cdot 151^{89k+45}+51362931\cdot 151^{88k+44}-4267901\cdot 151^{87k+44}+53427867\cdot 151^{86k+43}\\||-4419589\cdot 151^{85k+43}+55086933\cdot 151^{84k+42}-4537979\cdot 151^{83k+42}+56342085\cdot 151^{82k+41}-4624505\cdot 151^{81k+41}\\||+57223357\cdot 151^{80k+40}-4682319\cdot 151^{79k+40}+57774333\cdot 151^{78k+39}-4715051\cdot 151^{77k+39}+58036881\cdot 151^{76k+38}\\||-4725591\cdot 151^{75k+38}+58036881\cdot 151^{74k+37}-4715051\cdot 151^{73k+37}+57774333\cdot 151^{72k+36}-4682319\cdot 151^{71k+36}\\||+57223357\cdot 151^{70k+35}-4624505\cdot 151^{69k+35}+56342085\cdot 151^{68k+34}-4537979\cdot 151^{67k+34}+55086933\cdot 151^{66k+33}\\||-4419589\cdot 151^{65k+33}+53427867\cdot 151^{64k+32}-4267901\cdot 151^{63k+32}+51362931\cdot 151^{62k+31}-4084221\cdot 151^{61k+31}\\||+48927227\cdot 151^{60k+30}-3872927\cdot 151^{59k+30}+46191639\cdot 151^{58k+29}-3640969\cdot 151^{57k+29}+43252851\cdot 151^{56k+28}\\||-3396831\cdot 151^{55k+28}+40218599\cdot 151^{54k+27}-3149207\cdot 151^{53k+27}+37190305\cdot 151^{52k+26}-2905561\cdot 151^{51k+26}\\||+34246343\cdot 151^{50k+25}-2670969\cdot 151^{49k+25}+31431557\cdot 151^{48k+24}-2447617\cdot 151^{47k+24}+28755337\cdot 151^{46k+23}\\||-2234957\cdot 151^{45k+23}+26196933\cdot 151^{44k+22}-2030391\cdot 151^{43k+22}+23716775\cdot 151^{42k+21}-1830405\cdot 151^{41k+21}\\||+21272247\cdot 151^{40k+20}-1631893\cdot 151^{39k+20}+18832893\cdot 151^{38k+19}-1433207\cdot 151^{37k+19}+16390403\cdot 151^{36k+18}\\||-1234729\cdot 151^{35k+18}+13962915\cdot 151^{34k+17}-1039009\cdot 151^{33k+17}+11593887\cdot 151^{32k+16}-850409\cdot 151^{31k+16}\\||+9344281\cdot 151^{30k+15}-674221\cdot 151^{29k+15}+7279769\cdot 151^{28k+14}-515581\cdot 151^{27k+14}+5458147\cdot 151^{26k+13}\\||-378575\cdot 151^{25k+13}+3920163\cdot 151^{24k+12}-265623\cdot 151^{23k+12}+2683393\cdot 151^{22k+11}-177119\cdot 151^{21k+11}\\||+1740103\cdot 151^{20k+10}-111485\cdot 151^{19k+10}+1060813\cdot 151^{18k+9}-65663\cdot 151^{17k+9}+601979\cdot 151^{16k+8}\\||-35789\cdot 151^{15k+8}+314011\cdot 151^{14k+7}-17791\cdot 151^{13k+7}+147973\cdot 151^{12k+6}-7893\cdot 151^{11k+6}\\||+61245\cdot 151^{10k+5}-3011\cdot 151^{9k+5}+21191\cdot 151^{8k+4}-925\cdot 151^{7k+4}+5615\cdot 151^{6k+3}\\||-203\cdot 151^{5k+3}+963\cdot 151^{4k+2}-25\cdot 151^{3k+2}+75\cdot 151^{2k+1}-151^{k+1}+1)\\|\times|(151^{150k+75}+151^{149k+75}+75\cdot 151^{148k+74}+25\cdot 151^{147k+74}+963\cdot 151^{146k+73}\\||+203\cdot 151^{145k+73}+5615\cdot 151^{144k+72}+925\cdot 151^{143k+72}+21191\cdot 151^{142k+71}+3011\cdot 151^{141k+71}\\||+61245\cdot 151^{140k+70}+7893\cdot 151^{139k+70}+147973\cdot 151^{138k+69}+17791\cdot 151^{137k+69}+314011\cdot 151^{136k+68}\\||+35789\cdot 151^{135k+68}+601979\cdot 151^{134k+67}+65663\cdot 151^{133k+67}+1060813\cdot 151^{132k+66}+111485\cdot 151^{131k+66}\\||+1740103\cdot 151^{130k+65}+177119\cdot 151^{129k+65}+2683393\cdot 151^{128k+64}+265623\cdot 151^{127k+64}+3920163\cdot 151^{126k+63}\\||+378575\cdot 151^{125k+63}+5458147\cdot 151^{124k+62}+515581\cdot 151^{123k+62}+7279769\cdot 151^{122k+61}+674221\cdot 151^{121k+61}\\||+9344281\cdot 151^{120k+60}+850409\cdot 151^{119k+60}+11593887\cdot 151^{118k+59}+1039009\cdot 151^{117k+59}+13962915\cdot 151^{116k+58}\\||+1234729\cdot 151^{115k+58}+16390403\cdot 151^{114k+57}+1433207\cdot 151^{113k+57}+18832893\cdot 151^{112k+56}+1631893\cdot 151^{111k+56}\\||+21272247\cdot 151^{110k+55}+1830405\cdot 151^{109k+55}+23716775\cdot 151^{108k+54}+2030391\cdot 151^{107k+54}+26196933\cdot 151^{106k+53}\\||+2234957\cdot 151^{105k+53}+28755337\cdot 151^{104k+52}+2447617\cdot 151^{103k+52}+31431557\cdot 151^{102k+51}+2670969\cdot 151^{101k+51}\\||+34246343\cdot 151^{100k+50}+2905561\cdot 151^{99k+50}+37190305\cdot 151^{98k+49}+3149207\cdot 151^{97k+49}+40218599\cdot 151^{96k+48}\\||+3396831\cdot 151^{95k+48}+43252851\cdot 151^{94k+47}+3640969\cdot 151^{93k+47}+46191639\cdot 151^{92k+46}+3872927\cdot 151^{91k+46}\\||+48927227\cdot 151^{90k+45}+4084221\cdot 151^{89k+45}+51362931\cdot 151^{88k+44}+4267901\cdot 151^{87k+44}+53427867\cdot 151^{86k+43}\\||+4419589\cdot 151^{85k+43}+55086933\cdot 151^{84k+42}+4537979\cdot 151^{83k+42}+56342085\cdot 151^{82k+41}+4624505\cdot 151^{81k+41}\\||+57223357\cdot 151^{80k+40}+4682319\cdot 151^{79k+40}+57774333\cdot 151^{78k+39}+4715051\cdot 151^{77k+39}+58036881\cdot 151^{76k+38}\\||+4725591\cdot 151^{75k+38}+58036881\cdot 151^{74k+37}+4715051\cdot 151^{73k+37}+57774333\cdot 151^{72k+36}+4682319\cdot 151^{71k+36}\\||+57223357\cdot 151^{70k+35}+4624505\cdot 151^{69k+35}+56342085\cdot 151^{68k+34}+4537979\cdot 151^{67k+34}+55086933\cdot 151^{66k+33}\\||+4419589\cdot 151^{65k+33}+53427867\cdot 151^{64k+32}+4267901\cdot 151^{63k+32}+51362931\cdot 151^{62k+31}+4084221\cdot 151^{61k+31}\\||+48927227\cdot 151^{60k+30}+3872927\cdot 151^{59k+30}+46191639\cdot 151^{58k+29}+3640969\cdot 151^{57k+29}+43252851\cdot 151^{56k+28}\\||+3396831\cdot 151^{55k+28}+40218599\cdot 151^{54k+27}+3149207\cdot 151^{53k+27}+37190305\cdot 151^{52k+26}+2905561\cdot 151^{51k+26}\\||+34246343\cdot 151^{50k+25}+2670969\cdot 151^{49k+25}+31431557\cdot 151^{48k+24}+2447617\cdot 151^{47k+24}+28755337\cdot 151^{46k+23}\\||+2234957\cdot 151^{45k+23}+26196933\cdot 151^{44k+22}+2030391\cdot 151^{43k+22}+23716775\cdot 151^{42k+21}+1830405\cdot 151^{41k+21}\\||+21272247\cdot 151^{40k+20}+1631893\cdot 151^{39k+20}+18832893\cdot 151^{38k+19}+1433207\cdot 151^{37k+19}+16390403\cdot 151^{36k+18}\\||+1234729\cdot 151^{35k+18}+13962915\cdot 151^{34k+17}+1039009\cdot 151^{33k+17}+11593887\cdot 151^{32k+16}+850409\cdot 151^{31k+16}\\||+9344281\cdot 151^{30k+15}+674221\cdot 151^{29k+15}+7279769\cdot 151^{28k+14}+515581\cdot 151^{27k+14}+5458147\cdot 151^{26k+13}\\||+378575\cdot 151^{25k+13}+3920163\cdot 151^{24k+12}+265623\cdot 151^{23k+12}+2683393\cdot 151^{22k+11}+177119\cdot 151^{21k+11}\\||+1740103\cdot 151^{20k+10}+111485\cdot 151^{19k+10}+1060813\cdot 151^{18k+9}+65663\cdot 151^{17k+9}+601979\cdot 151^{16k+8}\\||+35789\cdot 151^{15k+8}+314011\cdot 151^{14k+7}+17791\cdot 151^{13k+7}+147973\cdot 151^{12k+6}+7893\cdot 151^{11k+6}\\||+61245\cdot 151^{10k+5}+3011\cdot 151^{9k+5}+21191\cdot 151^{8k+4}+925\cdot 151^{7k+4}+5615\cdot 151^{6k+3}\\||+203\cdot 151^{5k+3}+963\cdot 151^{4k+2}+25\cdot 151^{3k+2}+75\cdot 151^{2k+1}+151^{k+1}+1)\\{\large\Phi}_{308}(154^{2k+1})|=|154^{240k+120}+154^{236k+118}-154^{212k+106}-154^{208k+104}-154^{196k+98}\\||-154^{192k+96}+154^{184k+92}+154^{180k+90}+154^{168k+84}+154^{164k+82}\\||-154^{156k+78}+154^{148k+74}-154^{140k+70}-154^{136k+68}+154^{128k+64}\\||-154^{120k+60}+154^{112k+56}-154^{104k+52}-154^{100k+50}+154^{92k+46}\\||-154^{84k+42}+154^{76k+38}+154^{72k+36}+154^{60k+30}+154^{56k+28}\\||-154^{48k+24}-154^{44k+22}-154^{32k+16}-154^{28k+14}+154^{4k+2}+1\\|=|(154^{120k+60}-154^{119k+60}+77\cdot 154^{118k+59}-26\cdot 154^{117k+59}+1040\cdot 154^{116k+58}\\||-224\cdot 154^{115k+58}+6468\cdot 154^{114k+57}-1091\cdot 154^{113k+57}+26074\cdot 154^{112k+56}-3781\cdot 154^{111k+56}\\||+79772\cdot 154^{110k+55}-10411\cdot 154^{109k+55}+200638\cdot 154^{108k+54}-24203\cdot 154^{107k+54}+435281\cdot 154^{106k+53}\\||-49385\cdot 154^{105k+53}+840701\cdot 154^{104k+52}-90766\cdot 154^{103k+52}+1477014\cdot 154^{102k+51}-153026\cdot 154^{101k+51}\\||+2397654\cdot 154^{100k+50}-239886\cdot 154^{99k+50}+3639097\cdot 154^{98k+49}-353337\cdot 154^{97k+49}+5212725\cdot 154^{96k+48}\\||-493141\cdot 154^{95k+48}+7100786\cdot 154^{94k+47}-656685\cdot 154^{93k+47}+9256967\cdot 154^{92k+46}-839238\cdot 154^{91k+46}\\||+11612293\cdot 154^{90k+45}-1034627\cdot 154^{89k+45}+14085508\cdot 154^{88k+44}-1236186\cdot 154^{87k+44}+16595656\cdot 154^{86k+43}\\||-1437781\cdot 154^{85k+43}+19074119\cdot 154^{84k+42}-1634656\cdot 154^{83k+42}+21472913\cdot 154^{82k+41}-1823893\cdot 154^{81k+41}\\||+23767558\cdot 154^{80k+40}-2004393\cdot 154^{79k+40}+25953543\cdot 154^{78k+39}-2176335\cdot 154^{77k+39}+28036962\cdot 154^{76k+38}\\||-2340273\cdot 154^{75k+38}+30022377\cdot 154^{74k+37}-2496158\cdot 154^{73k+37}+31901630\cdot 154^{72k+36}-2642586\cdot 154^{71k+36}\\||+33647075\cdot 154^{70k+35}-2776490\cdot 154^{69k+35}+35210781\cdot 154^{68k+34}-2893314\cdot 154^{67k+34}+36529570\cdot 154^{66k+33}\\||-2987640\cdot 154^{65k+33}+37535147\cdot 154^{64k+32}-3054135\cdot 154^{63k+32}+38166590\cdot 154^{62k+31}-3088552\cdot 154^{61k+31}\\||+38382015\cdot 154^{60k+30}-3088552\cdot 154^{59k+30}+38166590\cdot 154^{58k+29}-3054135\cdot 154^{57k+29}+37535147\cdot 154^{56k+28}\\||-2987640\cdot 154^{55k+28}+36529570\cdot 154^{54k+27}-2893314\cdot 154^{53k+27}+35210781\cdot 154^{52k+26}-2776490\cdot 154^{51k+26}\\||+33647075\cdot 154^{50k+25}-2642586\cdot 154^{49k+25}+31901630\cdot 154^{48k+24}-2496158\cdot 154^{47k+24}+30022377\cdot 154^{46k+23}\\||-2340273\cdot 154^{45k+23}+28036962\cdot 154^{44k+22}-2176335\cdot 154^{43k+22}+25953543\cdot 154^{42k+21}-2004393\cdot 154^{41k+21}\\||+23767558\cdot 154^{40k+20}-1823893\cdot 154^{39k+20}+21472913\cdot 154^{38k+19}-1634656\cdot 154^{37k+19}+19074119\cdot 154^{36k+18}\\||-1437781\cdot 154^{35k+18}+16595656\cdot 154^{34k+17}-1236186\cdot 154^{33k+17}+14085508\cdot 154^{32k+16}-1034627\cdot 154^{31k+16}\\||+11612293\cdot 154^{30k+15}-839238\cdot 154^{29k+15}+9256967\cdot 154^{28k+14}-656685\cdot 154^{27k+14}+7100786\cdot 154^{26k+13}\\||-493141\cdot 154^{25k+13}+5212725\cdot 154^{24k+12}-353337\cdot 154^{23k+12}+3639097\cdot 154^{22k+11}-239886\cdot 154^{21k+11}\\||+2397654\cdot 154^{20k+10}-153026\cdot 154^{19k+10}+1477014\cdot 154^{18k+9}-90766\cdot 154^{17k+9}+840701\cdot 154^{16k+8}\\||-49385\cdot 154^{15k+8}+435281\cdot 154^{14k+7}-24203\cdot 154^{13k+7}+200638\cdot 154^{12k+6}-10411\cdot 154^{11k+6}\\||+79772\cdot 154^{10k+5}-3781\cdot 154^{9k+5}+26074\cdot 154^{8k+4}-1091\cdot 154^{7k+4}+6468\cdot 154^{6k+3}\\||-224\cdot 154^{5k+3}+1040\cdot 154^{4k+2}-26\cdot 154^{3k+2}+77\cdot 154^{2k+1}-154^{k+1}+1)\\|\times|(154^{120k+60}+154^{119k+60}+77\cdot 154^{118k+59}+26\cdot 154^{117k+59}+1040\cdot 154^{116k+58}\\||+224\cdot 154^{115k+58}+6468\cdot 154^{114k+57}+1091\cdot 154^{113k+57}+26074\cdot 154^{112k+56}+3781\cdot 154^{111k+56}\\||+79772\cdot 154^{110k+55}+10411\cdot 154^{109k+55}+200638\cdot 154^{108k+54}+24203\cdot 154^{107k+54}+435281\cdot 154^{106k+53}\\||+49385\cdot 154^{105k+53}+840701\cdot 154^{104k+52}+90766\cdot 154^{103k+52}+1477014\cdot 154^{102k+51}+153026\cdot 154^{101k+51}\\||+2397654\cdot 154^{100k+50}+239886\cdot 154^{99k+50}+3639097\cdot 154^{98k+49}+353337\cdot 154^{97k+49}+5212725\cdot 154^{96k+48}\\||+493141\cdot 154^{95k+48}+7100786\cdot 154^{94k+47}+656685\cdot 154^{93k+47}+9256967\cdot 154^{92k+46}+839238\cdot 154^{91k+46}\\||+11612293\cdot 154^{90k+45}+1034627\cdot 154^{89k+45}+14085508\cdot 154^{88k+44}+1236186\cdot 154^{87k+44}+16595656\cdot 154^{86k+43}\\||+1437781\cdot 154^{85k+43}+19074119\cdot 154^{84k+42}+1634656\cdot 154^{83k+42}+21472913\cdot 154^{82k+41}+1823893\cdot 154^{81k+41}\\||+23767558\cdot 154^{80k+40}+2004393\cdot 154^{79k+40}+25953543\cdot 154^{78k+39}+2176335\cdot 154^{77k+39}+28036962\cdot 154^{76k+38}\\||+2340273\cdot 154^{75k+38}+30022377\cdot 154^{74k+37}+2496158\cdot 154^{73k+37}+31901630\cdot 154^{72k+36}+2642586\cdot 154^{71k+36}\\||+33647075\cdot 154^{70k+35}+2776490\cdot 154^{69k+35}+35210781\cdot 154^{68k+34}+2893314\cdot 154^{67k+34}+36529570\cdot 154^{66k+33}\\||+2987640\cdot 154^{65k+33}+37535147\cdot 154^{64k+32}+3054135\cdot 154^{63k+32}+38166590\cdot 154^{62k+31}+3088552\cdot 154^{61k+31}\\||+38382015\cdot 154^{60k+30}+3088552\cdot 154^{59k+30}+38166590\cdot 154^{58k+29}+3054135\cdot 154^{57k+29}+37535147\cdot 154^{56k+28}\\||+2987640\cdot 154^{55k+28}+36529570\cdot 154^{54k+27}+2893314\cdot 154^{53k+27}+35210781\cdot 154^{52k+26}+2776490\cdot 154^{51k+26}\\||+33647075\cdot 154^{50k+25}+2642586\cdot 154^{49k+25}+31901630\cdot 154^{48k+24}+2496158\cdot 154^{47k+24}+30022377\cdot 154^{46k+23}\\||+2340273\cdot 154^{45k+23}+28036962\cdot 154^{44k+22}+2176335\cdot 154^{43k+22}+25953543\cdot 154^{42k+21}+2004393\cdot 154^{41k+21}\\||+23767558\cdot 154^{40k+20}+1823893\cdot 154^{39k+20}+21472913\cdot 154^{38k+19}+1634656\cdot 154^{37k+19}+19074119\cdot 154^{36k+18}\\||+1437781\cdot 154^{35k+18}+16595656\cdot 154^{34k+17}+1236186\cdot 154^{33k+17}+14085508\cdot 154^{32k+16}+1034627\cdot 154^{31k+16}\\||+11612293\cdot 154^{30k+15}+839238\cdot 154^{29k+15}+9256967\cdot 154^{28k+14}+656685\cdot 154^{27k+14}+7100786\cdot 154^{26k+13}\\||+493141\cdot 154^{25k+13}+5212725\cdot 154^{24k+12}+353337\cdot 154^{23k+12}+3639097\cdot 154^{22k+11}+239886\cdot 154^{21k+11}\\||+2397654\cdot 154^{20k+10}+153026\cdot 154^{19k+10}+1477014\cdot 154^{18k+9}+90766\cdot 154^{17k+9}+840701\cdot 154^{16k+8}\\||+49385\cdot 154^{15k+8}+435281\cdot 154^{14k+7}+24203\cdot 154^{13k+7}+200638\cdot 154^{12k+6}+10411\cdot 154^{11k+6}\\||+79772\cdot 154^{10k+5}+3781\cdot 154^{9k+5}+26074\cdot 154^{8k+4}+1091\cdot 154^{7k+4}+6468\cdot 154^{6k+3}\\||+224\cdot 154^{5k+3}+1040\cdot 154^{4k+2}+26\cdot 154^{3k+2}+77\cdot 154^{2k+1}+154^{k+1}+1)\\{\large\Phi}_{310}(155^{2k+1})|=|155^{240k+120}+155^{238k+119}-155^{230k+115}-155^{228k+114}+155^{220k+110}\\||+155^{218k+109}-155^{210k+105}-155^{208k+104}+155^{200k+100}+155^{198k+99}\\||-155^{190k+95}-155^{188k+94}+155^{180k+90}-155^{176k+88}-155^{170k+85}\\||+155^{166k+83}+155^{160k+80}-155^{156k+78}-155^{150k+75}+155^{146k+73}\\||+155^{140k+70}-155^{136k+68}-155^{130k+65}+155^{126k+63}+155^{120k+60}\\||+155^{114k+57}-155^{110k+55}-155^{104k+52}+155^{100k+50}+155^{94k+47}\\||-155^{90k+45}-155^{84k+42}+155^{80k+40}+155^{74k+37}-155^{70k+35}\\||-155^{64k+32}+155^{60k+30}-155^{52k+26}-155^{50k+25}+155^{42k+21}\\||+155^{40k+20}-155^{32k+16}-155^{30k+15}+155^{22k+11}+155^{20k+10}\\||-155^{12k+6}-155^{10k+5}+155^{2k+1}+1\\|=|(155^{120k+60}-155^{119k+60}+78\cdot 155^{118k+59}-26\cdot 155^{117k+59}+988\cdot 155^{116k+58}\\||-187\cdot 155^{115k+58}+4311\cdot 155^{114k+57}-498\cdot 155^{113k+57}+6470\cdot 155^{112k+56}-286\cdot 155^{111k+56}\\||-2561\cdot 155^{110k+55}+729\cdot 155^{109k+55}-10848\cdot 155^{108k+54}+286\cdot 155^{107k+54}+12062\cdot 155^{106k+53}\\||-2281\cdot 155^{105k+53}+34259\cdot 155^{104k+52}-1812\cdot 155^{103k+52}-2800\cdot 155^{102k+51}+2164\cdot 155^{101k+51}\\||-32759\cdot 155^{100k+50}+1065\cdot 155^{99k+50}+21698\cdot 155^{98k+49}-4052\cdot 155^{97k+49}+53898\cdot 155^{96k+48}\\||-2341\cdot 155^{95k+48}-7959\cdot 155^{94k+47}+2692\cdot 155^{93k+47}-31810\cdot 155^{92k+46}+426\cdot 155^{91k+46}\\||+28299\cdot 155^{90k+45}-3914\cdot 155^{89k+45}+45827\cdot 155^{88k+44}-1916\cdot 155^{87k+44}-3648\cdot 155^{86k+43}\\||+1841\cdot 155^{85k+43}-26466\cdot 155^{84k+42}+1161\cdot 155^{83k+42}+7110\cdot 155^{82k+41}-2314\cdot 155^{81k+41}\\||+40381\cdot 155^{80k+40}-2774\cdot 155^{79k+40}+11613\cdot 155^{78k+39}+1464\cdot 155^{77k+39}-38872\cdot 155^{76k+38}\\||+3031\cdot 155^{75k+38}-14904\cdot 155^{74k+37}-1239\cdot 155^{73k+37}+33630\cdot 155^{72k+36}-2242\cdot 155^{71k+36}\\||+2379\cdot 155^{70k+35}+2104\cdot 155^{69k+35}-40343\cdot 155^{68k+34}+2692\cdot 155^{67k+34}-13068\cdot 155^{66k+33}\\||-513\cdot 155^{65k+33}+13214\cdot 155^{64k+32}-409\cdot 155^{63k+32}-11610\cdot 155^{62k+31}+2170\cdot 155^{61k+31}\\||-33139\cdot 155^{60k+30}+2170\cdot 155^{59k+30}-11610\cdot 155^{58k+29}-409\cdot 155^{57k+29}+13214\cdot 155^{56k+28}\\||-513\cdot 155^{55k+28}-13068\cdot 155^{54k+27}+2692\cdot 155^{53k+27}-40343\cdot 155^{52k+26}+2104\cdot 155^{51k+26}\\||+2379\cdot 155^{50k+25}-2242\cdot 155^{49k+25}+33630\cdot 155^{48k+24}-1239\cdot 155^{47k+24}-14904\cdot 155^{46k+23}\\||+3031\cdot 155^{45k+23}-38872\cdot 155^{44k+22}+1464\cdot 155^{43k+22}+11613\cdot 155^{42k+21}-2774\cdot 155^{41k+21}\\||+40381\cdot 155^{40k+20}-2314\cdot 155^{39k+20}+7110\cdot 155^{38k+19}+1161\cdot 155^{37k+19}-26466\cdot 155^{36k+18}\\||+1841\cdot 155^{35k+18}-3648\cdot 155^{34k+17}-1916\cdot 155^{33k+17}+45827\cdot 155^{32k+16}-3914\cdot 155^{31k+16}\\||+28299\cdot 155^{30k+15}+426\cdot 155^{29k+15}-31810\cdot 155^{28k+14}+2692\cdot 155^{27k+14}-7959\cdot 155^{26k+13}\\||-2341\cdot 155^{25k+13}+53898\cdot 155^{24k+12}-4052\cdot 155^{23k+12}+21698\cdot 155^{22k+11}+1065\cdot 155^{21k+11}\\||-32759\cdot 155^{20k+10}+2164\cdot 155^{19k+10}-2800\cdot 155^{18k+9}-1812\cdot 155^{17k+9}+34259\cdot 155^{16k+8}\\||-2281\cdot 155^{15k+8}+12062\cdot 155^{14k+7}+286\cdot 155^{13k+7}-10848\cdot 155^{12k+6}+729\cdot 155^{11k+6}\\||-2561\cdot 155^{10k+5}-286\cdot 155^{9k+5}+6470\cdot 155^{8k+4}-498\cdot 155^{7k+4}+4311\cdot 155^{6k+3}\\||-187\cdot 155^{5k+3}+988\cdot 155^{4k+2}-26\cdot 155^{3k+2}+78\cdot 155^{2k+1}-155^{k+1}+1)\\|\times|(155^{120k+60}+155^{119k+60}+78\cdot 155^{118k+59}+26\cdot 155^{117k+59}+988\cdot 155^{116k+58}\\||+187\cdot 155^{115k+58}+4311\cdot 155^{114k+57}+498\cdot 155^{113k+57}+6470\cdot 155^{112k+56}+286\cdot 155^{111k+56}\\||-2561\cdot 155^{110k+55}-729\cdot 155^{109k+55}-10848\cdot 155^{108k+54}-286\cdot 155^{107k+54}+12062\cdot 155^{106k+53}\\||+2281\cdot 155^{105k+53}+34259\cdot 155^{104k+52}+1812\cdot 155^{103k+52}-2800\cdot 155^{102k+51}-2164\cdot 155^{101k+51}\\||-32759\cdot 155^{100k+50}-1065\cdot 155^{99k+50}+21698\cdot 155^{98k+49}+4052\cdot 155^{97k+49}+53898\cdot 155^{96k+48}\\||+2341\cdot 155^{95k+48}-7959\cdot 155^{94k+47}-2692\cdot 155^{93k+47}-31810\cdot 155^{92k+46}-426\cdot 155^{91k+46}\\||+28299\cdot 155^{90k+45}+3914\cdot 155^{89k+45}+45827\cdot 155^{88k+44}+1916\cdot 155^{87k+44}-3648\cdot 155^{86k+43}\\||-1841\cdot 155^{85k+43}-26466\cdot 155^{84k+42}-1161\cdot 155^{83k+42}+7110\cdot 155^{82k+41}+2314\cdot 155^{81k+41}\\||+40381\cdot 155^{80k+40}+2774\cdot 155^{79k+40}+11613\cdot 155^{78k+39}-1464\cdot 155^{77k+39}-38872\cdot 155^{76k+38}\\||-3031\cdot 155^{75k+38}-14904\cdot 155^{74k+37}+1239\cdot 155^{73k+37}+33630\cdot 155^{72k+36}+2242\cdot 155^{71k+36}\\||+2379\cdot 155^{70k+35}-2104\cdot 155^{69k+35}-40343\cdot 155^{68k+34}-2692\cdot 155^{67k+34}-13068\cdot 155^{66k+33}\\||+513\cdot 155^{65k+33}+13214\cdot 155^{64k+32}+409\cdot 155^{63k+32}-11610\cdot 155^{62k+31}-2170\cdot 155^{61k+31}\\||-33139\cdot 155^{60k+30}-2170\cdot 155^{59k+30}-11610\cdot 155^{58k+29}+409\cdot 155^{57k+29}+13214\cdot 155^{56k+28}\\||+513\cdot 155^{55k+28}-13068\cdot 155^{54k+27}-2692\cdot 155^{53k+27}-40343\cdot 155^{52k+26}-2104\cdot 155^{51k+26}\\||+2379\cdot 155^{50k+25}+2242\cdot 155^{49k+25}+33630\cdot 155^{48k+24}+1239\cdot 155^{47k+24}-14904\cdot 155^{46k+23}\\||-3031\cdot 155^{45k+23}-38872\cdot 155^{44k+22}-1464\cdot 155^{43k+22}+11613\cdot 155^{42k+21}+2774\cdot 155^{41k+21}\\||+40381\cdot 155^{40k+20}+2314\cdot 155^{39k+20}+7110\cdot 155^{38k+19}-1161\cdot 155^{37k+19}-26466\cdot 155^{36k+18}\\||-1841\cdot 155^{35k+18}-3648\cdot 155^{34k+17}+1916\cdot 155^{33k+17}+45827\cdot 155^{32k+16}+3914\cdot 155^{31k+16}\\||+28299\cdot 155^{30k+15}-426\cdot 155^{29k+15}-31810\cdot 155^{28k+14}-2692\cdot 155^{27k+14}-7959\cdot 155^{26k+13}\\||+2341\cdot 155^{25k+13}+53898\cdot 155^{24k+12}+4052\cdot 155^{23k+12}+21698\cdot 155^{22k+11}-1065\cdot 155^{21k+11}\\||-32759\cdot 155^{20k+10}-2164\cdot 155^{19k+10}-2800\cdot 155^{18k+9}+1812\cdot 155^{17k+9}+34259\cdot 155^{16k+8}\\||+2281\cdot 155^{15k+8}+12062\cdot 155^{14k+7}-286\cdot 155^{13k+7}-10848\cdot 155^{12k+6}-729\cdot 155^{11k+6}\\||-2561\cdot 155^{10k+5}+286\cdot 155^{9k+5}+6470\cdot 155^{8k+4}+498\cdot 155^{7k+4}+4311\cdot 155^{6k+3}\\||+187\cdot 155^{5k+3}+988\cdot 155^{4k+2}+26\cdot 155^{3k+2}+78\cdot 155^{2k+1}+155^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{157}(157^{2k+1})\cdots{\large\Phi}_{318}(159^{2k+1})$${\large\Phi}_{157}(157^{2k+1})\cdots{\large\Phi}_{318}(159^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{157}(157^{2k+1})|=|157^{312k+156}+157^{310k+155}+157^{308k+154}+157^{306k+153}+157^{304k+152}\\||+157^{302k+151}+157^{300k+150}+157^{298k+149}+157^{296k+148}+157^{294k+147}\\||+157^{292k+146}+157^{290k+145}+157^{288k+144}+157^{286k+143}+157^{284k+142}\\||+157^{282k+141}+157^{280k+140}+157^{278k+139}+157^{276k+138}+157^{274k+137}\\||+157^{272k+136}+157^{270k+135}+157^{268k+134}+157^{266k+133}+157^{264k+132}\\||+157^{262k+131}+157^{260k+130}+157^{258k+129}+157^{256k+128}+157^{254k+127}\\||+157^{252k+126}+157^{250k+125}+157^{248k+124}+157^{246k+123}+157^{244k+122}\\||+157^{242k+121}+157^{240k+120}+157^{238k+119}+157^{236k+118}+157^{234k+117}\\||+157^{232k+116}+157^{230k+115}+157^{228k+114}+157^{226k+113}+157^{224k+112}\\||+157^{222k+111}+157^{220k+110}+157^{218k+109}+157^{216k+108}+157^{214k+107}\\||+157^{212k+106}+157^{210k+105}+157^{208k+104}+157^{206k+103}+157^{204k+102}\\||+157^{202k+101}+157^{200k+100}+157^{198k+99}+157^{196k+98}+157^{194k+97}\\||+157^{192k+96}+157^{190k+95}+157^{188k+94}+157^{186k+93}+157^{184k+92}\\||+157^{182k+91}+157^{180k+90}+157^{178k+89}+157^{176k+88}+157^{174k+87}\\||+157^{172k+86}+157^{170k+85}+157^{168k+84}+157^{166k+83}+157^{164k+82}\\||+157^{162k+81}+157^{160k+80}+157^{158k+79}+157^{156k+78}+157^{154k+77}\\||+157^{152k+76}+157^{150k+75}+157^{148k+74}+157^{146k+73}+157^{144k+72}\\||+157^{142k+71}+157^{140k+70}+157^{138k+69}+157^{136k+68}+157^{134k+67}\\||+157^{132k+66}+157^{130k+65}+157^{128k+64}+157^{126k+63}+157^{124k+62}\\||+157^{122k+61}+157^{120k+60}+157^{118k+59}+157^{116k+58}+157^{114k+57}\\||+157^{112k+56}+157^{110k+55}+157^{108k+54}+157^{106k+53}+157^{104k+52}\\||+157^{102k+51}+157^{100k+50}+157^{98k+49}+157^{96k+48}+157^{94k+47}\\||+157^{92k+46}+157^{90k+45}+157^{88k+44}+157^{86k+43}+157^{84k+42}\\||+157^{82k+41}+157^{80k+40}+157^{78k+39}+157^{76k+38}+157^{74k+37}\\||+157^{72k+36}+157^{70k+35}+157^{68k+34}+157^{66k+33}+157^{64k+32}\\||+157^{62k+31}+157^{60k+30}+157^{58k+29}+157^{56k+28}+157^{54k+27}\\||+157^{52k+26}+157^{50k+25}+157^{48k+24}+157^{46k+23}+157^{44k+22}\\||+157^{42k+21}+157^{40k+20}+157^{38k+19}+157^{36k+18}+157^{34k+17}\\||+157^{32k+16}+157^{30k+15}+157^{28k+14}+157^{26k+13}+157^{24k+12}\\||+157^{22k+11}+157^{20k+10}+157^{18k+9}+157^{16k+8}+157^{14k+7}\\||+157^{12k+6}+157^{10k+5}+157^{8k+4}+157^{6k+3}+157^{4k+2}\\||+157^{2k+1}+1\\|=|(157^{156k+78}-157^{155k+78}+79\cdot 157^{154k+77}-27\cdot 157^{153k+77}+1119\cdot 157^{152k+76}\\||-245\cdot 157^{151k+76}+7291\cdot 157^{150k+75}-1229\cdot 157^{149k+75}+29439\cdot 157^{148k+74}-4115\cdot 157^{147k+74}\\||+83439\cdot 157^{146k+73}-10015\cdot 157^{145k+73}+176063\cdot 157^{144k+72}-18431\cdot 157^{143k+72}+283379\cdot 157^{142k+71}\\||-25941\cdot 157^{141k+71}+347769\cdot 157^{140k+70}-27613\cdot 157^{139k+70}+319107\cdot 157^{138k+69}-21799\cdot 157^{137k+69}\\||+220813\cdot 157^{136k+68}-14335\cdot 157^{135k+68}+167965\cdot 157^{134k+67}-15975\cdot 157^{133k+67}+281549\cdot 157^{132k+66}\\||-32345\cdot 157^{131k+66}+552191\cdot 157^{130k+65}-55399\cdot 157^{129k+65}+800553\cdot 157^{128k+64}-67551\cdot 157^{127k+64}\\||+819759\cdot 157^{126k+63}-57955\cdot 157^{125k+63}+588761\cdot 157^{124k+62}-35373\cdot 157^{123k+62}+329115\cdot 157^{122k+61}\\||-22315\cdot 157^{121k+61}+312607\cdot 157^{120k+60}-33987\cdot 157^{119k+60}+597421\cdot 157^{118k+59}-63169\cdot 157^{117k+59}\\||+967893\cdot 157^{116k+58}-87179\cdot 157^{115k+58}+1145079\cdot 157^{114k+57}-89785\cdot 157^{113k+57}+1048929\cdot 157^{112k+56}\\||-75511\cdot 157^{111k+56}+850235\cdot 157^{110k+55}-63079\cdot 157^{109k+55}+784555\cdot 157^{108k+54}-66723\cdot 157^{107k+54}\\||+933761\cdot 157^{106k+53}-84285\cdot 157^{105k+53}+1176729\cdot 157^{104k+52}-101463\cdot 157^{103k+52}+1323233\cdot 157^{102k+51}\\||-105931\cdot 157^{101k+51}+1291095\cdot 157^{100k+50}-98407\cdot 157^{99k+50}+1178151\cdot 157^{98k+49}-91925\cdot 157^{97k+49}\\||+1172967\cdot 157^{96k+48}-99621\cdot 157^{95k+48}+1368771\cdot 157^{94k+47}-120569\cdot 157^{93k+47}+1640265\cdot 157^{92k+46}\\||-137427\cdot 157^{91k+46}+1728845\cdot 157^{90k+45}-131797\cdot 157^{89k+45}+1502537\cdot 157^{88k+44}-105067\cdot 157^{87k+44}\\||+1141461\cdot 157^{86k+43}-81985\cdot 157^{85k+43}+1011331\cdot 157^{84k+42}-88357\cdot 157^{83k+42}+1298627\cdot 157^{82k+41}\\||-123155\cdot 157^{81k+41}+1781591\cdot 157^{80k+40}-155973\cdot 157^{79k+40}+2017315\cdot 157^{78k+39}-155973\cdot 157^{77k+39}\\||+1781591\cdot 157^{76k+38}-123155\cdot 157^{75k+38}+1298627\cdot 157^{74k+37}-88357\cdot 157^{73k+37}+1011331\cdot 157^{72k+36}\\||-81985\cdot 157^{71k+36}+1141461\cdot 157^{70k+35}-105067\cdot 157^{69k+35}+1502537\cdot 157^{68k+34}-131797\cdot 157^{67k+34}\\||+1728845\cdot 157^{66k+33}-137427\cdot 157^{65k+33}+1640265\cdot 157^{64k+32}-120569\cdot 157^{63k+32}+1368771\cdot 157^{62k+31}\\||-99621\cdot 157^{61k+31}+1172967\cdot 157^{60k+30}-91925\cdot 157^{59k+30}+1178151\cdot 157^{58k+29}-98407\cdot 157^{57k+29}\\||+1291095\cdot 157^{56k+28}-105931\cdot 157^{55k+28}+1323233\cdot 157^{54k+27}-101463\cdot 157^{53k+27}+1176729\cdot 157^{52k+26}\\||-84285\cdot 157^{51k+26}+933761\cdot 157^{50k+25}-66723\cdot 157^{49k+25}+784555\cdot 157^{48k+24}-63079\cdot 157^{47k+24}\\||+850235\cdot 157^{46k+23}-75511\cdot 157^{45k+23}+1048929\cdot 157^{44k+22}-89785\cdot 157^{43k+22}+1145079\cdot 157^{42k+21}\\||-87179\cdot 157^{41k+21}+967893\cdot 157^{40k+20}-63169\cdot 157^{39k+20}+597421\cdot 157^{38k+19}-33987\cdot 157^{37k+19}\\||+312607\cdot 157^{36k+18}-22315\cdot 157^{35k+18}+329115\cdot 157^{34k+17}-35373\cdot 157^{33k+17}+588761\cdot 157^{32k+16}\\||-57955\cdot 157^{31k+16}+819759\cdot 157^{30k+15}-67551\cdot 157^{29k+15}+800553\cdot 157^{28k+14}-55399\cdot 157^{27k+14}\\||+552191\cdot 157^{26k+13}-32345\cdot 157^{25k+13}+281549\cdot 157^{24k+12}-15975\cdot 157^{23k+12}+167965\cdot 157^{22k+11}\\||-14335\cdot 157^{21k+11}+220813\cdot 157^{20k+10}-21799\cdot 157^{19k+10}+319107\cdot 157^{18k+9}-27613\cdot 157^{17k+9}\\||+347769\cdot 157^{16k+8}-25941\cdot 157^{15k+8}+283379\cdot 157^{14k+7}-18431\cdot 157^{13k+7}+176063\cdot 157^{12k+6}\\||-10015\cdot 157^{11k+6}+83439\cdot 157^{10k+5}-4115\cdot 157^{9k+5}+29439\cdot 157^{8k+4}-1229\cdot 157^{7k+4}\\||+7291\cdot 157^{6k+3}-245\cdot 157^{5k+3}+1119\cdot 157^{4k+2}-27\cdot 157^{3k+2}+79\cdot 157^{2k+1}\\||-157^{k+1}+1)\\|\times|(157^{156k+78}+157^{155k+78}+79\cdot 157^{154k+77}+27\cdot 157^{153k+77}+1119\cdot 157^{152k+76}\\||+245\cdot 157^{151k+76}+7291\cdot 157^{150k+75}+1229\cdot 157^{149k+75}+29439\cdot 157^{148k+74}+4115\cdot 157^{147k+74}\\||+83439\cdot 157^{146k+73}+10015\cdot 157^{145k+73}+176063\cdot 157^{144k+72}+18431\cdot 157^{143k+72}+283379\cdot 157^{142k+71}\\||+25941\cdot 157^{141k+71}+347769\cdot 157^{140k+70}+27613\cdot 157^{139k+70}+319107\cdot 157^{138k+69}+21799\cdot 157^{137k+69}\\||+220813\cdot 157^{136k+68}+14335\cdot 157^{135k+68}+167965\cdot 157^{134k+67}+15975\cdot 157^{133k+67}+281549\cdot 157^{132k+66}\\||+32345\cdot 157^{131k+66}+552191\cdot 157^{130k+65}+55399\cdot 157^{129k+65}+800553\cdot 157^{128k+64}+67551\cdot 157^{127k+64}\\||+819759\cdot 157^{126k+63}+57955\cdot 157^{125k+63}+588761\cdot 157^{124k+62}+35373\cdot 157^{123k+62}+329115\cdot 157^{122k+61}\\||+22315\cdot 157^{121k+61}+312607\cdot 157^{120k+60}+33987\cdot 157^{119k+60}+597421\cdot 157^{118k+59}+63169\cdot 157^{117k+59}\\||+967893\cdot 157^{116k+58}+87179\cdot 157^{115k+58}+1145079\cdot 157^{114k+57}+89785\cdot 157^{113k+57}+1048929\cdot 157^{112k+56}\\||+75511\cdot 157^{111k+56}+850235\cdot 157^{110k+55}+63079\cdot 157^{109k+55}+784555\cdot 157^{108k+54}+66723\cdot 157^{107k+54}\\||+933761\cdot 157^{106k+53}+84285\cdot 157^{105k+53}+1176729\cdot 157^{104k+52}+101463\cdot 157^{103k+52}+1323233\cdot 157^{102k+51}\\||+105931\cdot 157^{101k+51}+1291095\cdot 157^{100k+50}+98407\cdot 157^{99k+50}+1178151\cdot 157^{98k+49}+91925\cdot 157^{97k+49}\\||+1172967\cdot 157^{96k+48}+99621\cdot 157^{95k+48}+1368771\cdot 157^{94k+47}+120569\cdot 157^{93k+47}+1640265\cdot 157^{92k+46}\\||+137427\cdot 157^{91k+46}+1728845\cdot 157^{90k+45}+131797\cdot 157^{89k+45}+1502537\cdot 157^{88k+44}+105067\cdot 157^{87k+44}\\||+1141461\cdot 157^{86k+43}+81985\cdot 157^{85k+43}+1011331\cdot 157^{84k+42}+88357\cdot 157^{83k+42}+1298627\cdot 157^{82k+41}\\||+123155\cdot 157^{81k+41}+1781591\cdot 157^{80k+40}+155973\cdot 157^{79k+40}+2017315\cdot 157^{78k+39}+155973\cdot 157^{77k+39}\\||+1781591\cdot 157^{76k+38}+123155\cdot 157^{75k+38}+1298627\cdot 157^{74k+37}+88357\cdot 157^{73k+37}+1011331\cdot 157^{72k+36}\\||+81985\cdot 157^{71k+36}+1141461\cdot 157^{70k+35}+105067\cdot 157^{69k+35}+1502537\cdot 157^{68k+34}+131797\cdot 157^{67k+34}\\||+1728845\cdot 157^{66k+33}+137427\cdot 157^{65k+33}+1640265\cdot 157^{64k+32}+120569\cdot 157^{63k+32}+1368771\cdot 157^{62k+31}\\||+99621\cdot 157^{61k+31}+1172967\cdot 157^{60k+30}+91925\cdot 157^{59k+30}+1178151\cdot 157^{58k+29}+98407\cdot 157^{57k+29}\\||+1291095\cdot 157^{56k+28}+105931\cdot 157^{55k+28}+1323233\cdot 157^{54k+27}+101463\cdot 157^{53k+27}+1176729\cdot 157^{52k+26}\\||+84285\cdot 157^{51k+26}+933761\cdot 157^{50k+25}+66723\cdot 157^{49k+25}+784555\cdot 157^{48k+24}+63079\cdot 157^{47k+24}\\||+850235\cdot 157^{46k+23}+75511\cdot 157^{45k+23}+1048929\cdot 157^{44k+22}+89785\cdot 157^{43k+22}+1145079\cdot 157^{42k+21}\\||+87179\cdot 157^{41k+21}+967893\cdot 157^{40k+20}+63169\cdot 157^{39k+20}+597421\cdot 157^{38k+19}+33987\cdot 157^{37k+19}\\||+312607\cdot 157^{36k+18}+22315\cdot 157^{35k+18}+329115\cdot 157^{34k+17}+35373\cdot 157^{33k+17}+588761\cdot 157^{32k+16}\\||+57955\cdot 157^{31k+16}+819759\cdot 157^{30k+15}+67551\cdot 157^{29k+15}+800553\cdot 157^{28k+14}+55399\cdot 157^{27k+14}\\||+552191\cdot 157^{26k+13}+32345\cdot 157^{25k+13}+281549\cdot 157^{24k+12}+15975\cdot 157^{23k+12}+167965\cdot 157^{22k+11}\\||+14335\cdot 157^{21k+11}+220813\cdot 157^{20k+10}+21799\cdot 157^{19k+10}+319107\cdot 157^{18k+9}+27613\cdot 157^{17k+9}\\||+347769\cdot 157^{16k+8}+25941\cdot 157^{15k+8}+283379\cdot 157^{14k+7}+18431\cdot 157^{13k+7}+176063\cdot 157^{12k+6}\\||+10015\cdot 157^{11k+6}+83439\cdot 157^{10k+5}+4115\cdot 157^{9k+5}+29439\cdot 157^{8k+4}+1229\cdot 157^{7k+4}\\||+7291\cdot 157^{6k+3}+245\cdot 157^{5k+3}+1119\cdot 157^{4k+2}+27\cdot 157^{3k+2}+79\cdot 157^{2k+1}\\||+157^{k+1}+1)\\{\large\Phi}_{316}(158^{2k+1})|=|158^{312k+156}-158^{308k+154}+158^{304k+152}-158^{300k+150}+158^{296k+148}\\||-158^{292k+146}+158^{288k+144}-158^{284k+142}+158^{280k+140}-158^{276k+138}\\||+158^{272k+136}-158^{268k+134}+158^{264k+132}-158^{260k+130}+158^{256k+128}\\||-158^{252k+126}+158^{248k+124}-158^{244k+122}+158^{240k+120}-158^{236k+118}\\||+158^{232k+116}-158^{228k+114}+158^{224k+112}-158^{220k+110}+158^{216k+108}\\||-158^{212k+106}+158^{208k+104}-158^{204k+102}+158^{200k+100}-158^{196k+98}\\||+158^{192k+96}-158^{188k+94}+158^{184k+92}-158^{180k+90}+158^{176k+88}\\||-158^{172k+86}+158^{168k+84}-158^{164k+82}+158^{160k+80}-158^{156k+78}\\||+158^{152k+76}-158^{148k+74}+158^{144k+72}-158^{140k+70}+158^{136k+68}\\||-158^{132k+66}+158^{128k+64}-158^{124k+62}+158^{120k+60}-158^{116k+58}\\||+158^{112k+56}-158^{108k+54}+158^{104k+52}-158^{100k+50}+158^{96k+48}\\||-158^{92k+46}+158^{88k+44}-158^{84k+42}+158^{80k+40}-158^{76k+38}\\||+158^{72k+36}-158^{68k+34}+158^{64k+32}-158^{60k+30}+158^{56k+28}\\||-158^{52k+26}+158^{48k+24}-158^{44k+22}+158^{40k+20}-158^{36k+18}\\||+158^{32k+16}-158^{28k+14}+158^{24k+12}-158^{20k+10}+158^{16k+8}\\||-158^{12k+6}+158^{8k+4}-158^{4k+2}+1\\|=|(158^{156k+78}-158^{155k+78}+79\cdot 158^{154k+77}-26\cdot 158^{153k+77}+987\cdot 158^{152k+76}\\||-181\cdot 158^{151k+76}+4029\cdot 158^{150k+75}-416\cdot 158^{149k+75}+3901\cdot 158^{148k+74}+155\cdot 158^{147k+74}\\||-12245\cdot 158^{146k+73}+1808\cdot 158^{145k+73}-24989\cdot 158^{144k+72}+837\cdot 158^{143k+72}+22041\cdot 158^{142k+71}\\||-4834\cdot 158^{141k+71}+81461\cdot 158^{140k+70}-4717\cdot 158^{139k+70}-12877\cdot 158^{138k+69}+8784\cdot 158^{137k+69}\\||-179957\cdot 158^{136k+68}+13093\cdot 158^{135k+68}-41475\cdot 158^{134k+67}-11936\cdot 158^{133k+67}+313237\cdot 158^{132k+66}\\||-26949\cdot 158^{131k+66}+171035\cdot 158^{130k+65}+11238\cdot 158^{129k+65}-448609\cdot 158^{128k+64}+45221\cdot 158^{127k+64}\\||-389075\cdot 158^{126k+63}-3776\cdot 158^{125k+63}+540093\cdot 158^{124k+62}-65067\cdot 158^{123k+62}+686747\cdot 158^{122k+61}\\||-12328\cdot 158^{121k+61}-540437\cdot 158^{120k+60}+82435\cdot 158^{119k+60}-1032135\cdot 158^{118k+59}+37284\cdot 158^{117k+59}\\||+411201\cdot 158^{116k+58}-92563\cdot 158^{115k+58}+1368675\cdot 158^{114k+57}-68832\cdot 158^{113k+57}-138701\cdot 158^{112k+56}\\||+91341\cdot 158^{111k+56}-1628427\cdot 158^{110k+55}+102722\cdot 158^{109k+55}-264807\cdot 158^{108k+54}-75663\cdot 158^{107k+54}\\||+1733339\cdot 158^{106k+53}-132106\cdot 158^{105k+53}+742359\cdot 158^{104k+52}+45605\cdot 158^{103k+52}-1624635\cdot 158^{102k+51}\\||+149352\cdot 158^{101k+51}-1201067\cdot 158^{100k+50}-5059\cdot 158^{99k+50}+1283355\cdot 158^{98k+49}-147864\cdot 158^{97k+49}\\||+1525203\cdot 158^{96k+48}-37845\cdot 158^{95k+48}-755319\cdot 158^{94k+47}+125116\cdot 158^{93k+47}-1615783\cdot 158^{92k+46}\\||+72971\cdot 158^{91k+46}+144491\cdot 158^{90k+45}-84064\cdot 158^{89k+45}+1426843\cdot 158^{88k+44}-91501\cdot 158^{87k+44}\\||+419253\cdot 158^{86k+43}+32208\cdot 158^{85k+43}-976595\cdot 158^{84k+42}+88131\cdot 158^{83k+42}-811409\cdot 158^{82k+41}\\||+20058\cdot 158^{81k+41}+347595\cdot 158^{80k+40}-62939\cdot 158^{79k+40}+952977\cdot 158^{78k+39}-62939\cdot 158^{77k+39}\\||+347595\cdot 158^{76k+38}+20058\cdot 158^{75k+38}-811409\cdot 158^{74k+37}+88131\cdot 158^{73k+37}-976595\cdot 158^{72k+36}\\||+32208\cdot 158^{71k+36}+419253\cdot 158^{70k+35}-91501\cdot 158^{69k+35}+1426843\cdot 158^{68k+34}-84064\cdot 158^{67k+34}\\||+144491\cdot 158^{66k+33}+72971\cdot 158^{65k+33}-1615783\cdot 158^{64k+32}+125116\cdot 158^{63k+32}-755319\cdot 158^{62k+31}\\||-37845\cdot 158^{61k+31}+1525203\cdot 158^{60k+30}-147864\cdot 158^{59k+30}+1283355\cdot 158^{58k+29}-5059\cdot 158^{57k+29}\\||-1201067\cdot 158^{56k+28}+149352\cdot 158^{55k+28}-1624635\cdot 158^{54k+27}+45605\cdot 158^{53k+27}+742359\cdot 158^{52k+26}\\||-132106\cdot 158^{51k+26}+1733339\cdot 158^{50k+25}-75663\cdot 158^{49k+25}-264807\cdot 158^{48k+24}+102722\cdot 158^{47k+24}\\||-1628427\cdot 158^{46k+23}+91341\cdot 158^{45k+23}-138701\cdot 158^{44k+22}-68832\cdot 158^{43k+22}+1368675\cdot 158^{42k+21}\\||-92563\cdot 158^{41k+21}+411201\cdot 158^{40k+20}+37284\cdot 158^{39k+20}-1032135\cdot 158^{38k+19}+82435\cdot 158^{37k+19}\\||-540437\cdot 158^{36k+18}-12328\cdot 158^{35k+18}+686747\cdot 158^{34k+17}-65067\cdot 158^{33k+17}+540093\cdot 158^{32k+16}\\||-3776\cdot 158^{31k+16}-389075\cdot 158^{30k+15}+45221\cdot 158^{29k+15}-448609\cdot 158^{28k+14}+11238\cdot 158^{27k+14}\\||+171035\cdot 158^{26k+13}-26949\cdot 158^{25k+13}+313237\cdot 158^{24k+12}-11936\cdot 158^{23k+12}-41475\cdot 158^{22k+11}\\||+13093\cdot 158^{21k+11}-179957\cdot 158^{20k+10}+8784\cdot 158^{19k+10}-12877\cdot 158^{18k+9}-4717\cdot 158^{17k+9}\\||+81461\cdot 158^{16k+8}-4834\cdot 158^{15k+8}+22041\cdot 158^{14k+7}+837\cdot 158^{13k+7}-24989\cdot 158^{12k+6}\\||+1808\cdot 158^{11k+6}-12245\cdot 158^{10k+5}+155\cdot 158^{9k+5}+3901\cdot 158^{8k+4}-416\cdot 158^{7k+4}\\||+4029\cdot 158^{6k+3}-181\cdot 158^{5k+3}+987\cdot 158^{4k+2}-26\cdot 158^{3k+2}+79\cdot 158^{2k+1}\\||-158^{k+1}+1)\\|\times|(158^{156k+78}+158^{155k+78}+79\cdot 158^{154k+77}+26\cdot 158^{153k+77}+987\cdot 158^{152k+76}\\||+181\cdot 158^{151k+76}+4029\cdot 158^{150k+75}+416\cdot 158^{149k+75}+3901\cdot 158^{148k+74}-155\cdot 158^{147k+74}\\||-12245\cdot 158^{146k+73}-1808\cdot 158^{145k+73}-24989\cdot 158^{144k+72}-837\cdot 158^{143k+72}+22041\cdot 158^{142k+71}\\||+4834\cdot 158^{141k+71}+81461\cdot 158^{140k+70}+4717\cdot 158^{139k+70}-12877\cdot 158^{138k+69}-8784\cdot 158^{137k+69}\\||-179957\cdot 158^{136k+68}-13093\cdot 158^{135k+68}-41475\cdot 158^{134k+67}+11936\cdot 158^{133k+67}+313237\cdot 158^{132k+66}\\||+26949\cdot 158^{131k+66}+171035\cdot 158^{130k+65}-11238\cdot 158^{129k+65}-448609\cdot 158^{128k+64}-45221\cdot 158^{127k+64}\\||-389075\cdot 158^{126k+63}+3776\cdot 158^{125k+63}+540093\cdot 158^{124k+62}+65067\cdot 158^{123k+62}+686747\cdot 158^{122k+61}\\||+12328\cdot 158^{121k+61}-540437\cdot 158^{120k+60}-82435\cdot 158^{119k+60}-1032135\cdot 158^{118k+59}-37284\cdot 158^{117k+59}\\||+411201\cdot 158^{116k+58}+92563\cdot 158^{115k+58}+1368675\cdot 158^{114k+57}+68832\cdot 158^{113k+57}-138701\cdot 158^{112k+56}\\||-91341\cdot 158^{111k+56}-1628427\cdot 158^{110k+55}-102722\cdot 158^{109k+55}-264807\cdot 158^{108k+54}+75663\cdot 158^{107k+54}\\||+1733339\cdot 158^{106k+53}+132106\cdot 158^{105k+53}+742359\cdot 158^{104k+52}-45605\cdot 158^{103k+52}-1624635\cdot 158^{102k+51}\\||-149352\cdot 158^{101k+51}-1201067\cdot 158^{100k+50}+5059\cdot 158^{99k+50}+1283355\cdot 158^{98k+49}+147864\cdot 158^{97k+49}\\||+1525203\cdot 158^{96k+48}+37845\cdot 158^{95k+48}-755319\cdot 158^{94k+47}-125116\cdot 158^{93k+47}-1615783\cdot 158^{92k+46}\\||-72971\cdot 158^{91k+46}+144491\cdot 158^{90k+45}+84064\cdot 158^{89k+45}+1426843\cdot 158^{88k+44}+91501\cdot 158^{87k+44}\\||+419253\cdot 158^{86k+43}-32208\cdot 158^{85k+43}-976595\cdot 158^{84k+42}-88131\cdot 158^{83k+42}-811409\cdot 158^{82k+41}\\||-20058\cdot 158^{81k+41}+347595\cdot 158^{80k+40}+62939\cdot 158^{79k+40}+952977\cdot 158^{78k+39}+62939\cdot 158^{77k+39}\\||+347595\cdot 158^{76k+38}-20058\cdot 158^{75k+38}-811409\cdot 158^{74k+37}-88131\cdot 158^{73k+37}-976595\cdot 158^{72k+36}\\||-32208\cdot 158^{71k+36}+419253\cdot 158^{70k+35}+91501\cdot 158^{69k+35}+1426843\cdot 158^{68k+34}+84064\cdot 158^{67k+34}\\||+144491\cdot 158^{66k+33}-72971\cdot 158^{65k+33}-1615783\cdot 158^{64k+32}-125116\cdot 158^{63k+32}-755319\cdot 158^{62k+31}\\||+37845\cdot 158^{61k+31}+1525203\cdot 158^{60k+30}+147864\cdot 158^{59k+30}+1283355\cdot 158^{58k+29}+5059\cdot 158^{57k+29}\\||-1201067\cdot 158^{56k+28}-149352\cdot 158^{55k+28}-1624635\cdot 158^{54k+27}-45605\cdot 158^{53k+27}+742359\cdot 158^{52k+26}\\||+132106\cdot 158^{51k+26}+1733339\cdot 158^{50k+25}+75663\cdot 158^{49k+25}-264807\cdot 158^{48k+24}-102722\cdot 158^{47k+24}\\||-1628427\cdot 158^{46k+23}-91341\cdot 158^{45k+23}-138701\cdot 158^{44k+22}+68832\cdot 158^{43k+22}+1368675\cdot 158^{42k+21}\\||+92563\cdot 158^{41k+21}+411201\cdot 158^{40k+20}-37284\cdot 158^{39k+20}-1032135\cdot 158^{38k+19}-82435\cdot 158^{37k+19}\\||-540437\cdot 158^{36k+18}+12328\cdot 158^{35k+18}+686747\cdot 158^{34k+17}+65067\cdot 158^{33k+17}+540093\cdot 158^{32k+16}\\||+3776\cdot 158^{31k+16}-389075\cdot 158^{30k+15}-45221\cdot 158^{29k+15}-448609\cdot 158^{28k+14}-11238\cdot 158^{27k+14}\\||+171035\cdot 158^{26k+13}+26949\cdot 158^{25k+13}+313237\cdot 158^{24k+12}+11936\cdot 158^{23k+12}-41475\cdot 158^{22k+11}\\||-13093\cdot 158^{21k+11}-179957\cdot 158^{20k+10}-8784\cdot 158^{19k+10}-12877\cdot 158^{18k+9}+4717\cdot 158^{17k+9}\\||+81461\cdot 158^{16k+8}+4834\cdot 158^{15k+8}+22041\cdot 158^{14k+7}-837\cdot 158^{13k+7}-24989\cdot 158^{12k+6}\\||-1808\cdot 158^{11k+6}-12245\cdot 158^{10k+5}-155\cdot 158^{9k+5}+3901\cdot 158^{8k+4}+416\cdot 158^{7k+4}\\||+4029\cdot 158^{6k+3}+181\cdot 158^{5k+3}+987\cdot 158^{4k+2}+26\cdot 158^{3k+2}+79\cdot 158^{2k+1}\\||+158^{k+1}+1)\\{\large\Phi}_{318}(159^{2k+1})|=|159^{208k+104}+159^{206k+103}-159^{202k+101}-159^{200k+100}+159^{196k+98}\\||+159^{194k+97}-159^{190k+95}-159^{188k+94}+159^{184k+92}+159^{182k+91}\\||-159^{178k+89}-159^{176k+88}+159^{172k+86}+159^{170k+85}-159^{166k+83}\\||-159^{164k+82}+159^{160k+80}+159^{158k+79}-159^{154k+77}-159^{152k+76}\\||+159^{148k+74}+159^{146k+73}-159^{142k+71}-159^{140k+70}+159^{136k+68}\\||+159^{134k+67}-159^{130k+65}-159^{128k+64}+159^{124k+62}+159^{122k+61}\\||-159^{118k+59}-159^{116k+58}+159^{112k+56}+159^{110k+55}-159^{106k+53}\\||-159^{104k+52}-159^{102k+51}+159^{98k+49}+159^{96k+48}-159^{92k+46}\\||-159^{90k+45}+159^{86k+43}+159^{84k+42}-159^{80k+40}-159^{78k+39}\\||+159^{74k+37}+159^{72k+36}-159^{68k+34}-159^{66k+33}+159^{62k+31}\\||+159^{60k+30}-159^{56k+28}-159^{54k+27}+159^{50k+25}+159^{48k+24}\\||-159^{44k+22}-159^{42k+21}+159^{38k+19}+159^{36k+18}-159^{32k+16}\\||-159^{30k+15}+159^{26k+13}+159^{24k+12}-159^{20k+10}-159^{18k+9}\\||+159^{14k+7}+159^{12k+6}-159^{8k+4}-159^{6k+3}+159^{2k+1}+1\\|=|(159^{104k+52}-159^{103k+52}+80\cdot 159^{102k+51}-27\cdot 159^{101k+51}+1093\cdot 159^{100k+50}\\||-224\cdot 159^{99k+50}+6131\cdot 159^{98k+49}-915\cdot 159^{97k+49}+19312\cdot 159^{96k+48}-2329\cdot 159^{95k+48}\\||+41255\cdot 159^{94k+47}-4294\cdot 159^{93k+47}+66787\cdot 159^{92k+46}-6153\cdot 159^{91k+46}+84974\cdot 159^{90k+45}\\||-6977\cdot 159^{89k+45}+86653\cdot 159^{88k+44}-6512\cdot 159^{87k+44}+76187\cdot 159^{86k+43}-5633\cdot 159^{85k+43}\\||+68794\cdot 159^{84k+42}-5649\cdot 159^{83k+42}+79115\cdot 159^{82k+41}-7276\cdot 159^{81k+41}+106945\cdot 159^{80k+40}\\||-9645\cdot 159^{79k+40}+132596\cdot 159^{78k+39}-10891\cdot 159^{77k+39}+134437\cdot 159^{76k+38}-9846\cdot 159^{75k+38}\\||+108569\cdot 159^{74k+37}-7237\cdot 159^{73k+37}+76216\cdot 159^{72k+36}-5287\cdot 159^{71k+36}+64283\cdot 159^{70k+35}\\||-5478\cdot 159^{69k+35}+79507\cdot 159^{68k+34}-7345\cdot 159^{67k+34}+104396\cdot 159^{66k+33}-8787\cdot 159^{65k+33}\\||+109165\cdot 159^{64k+32}-7868\cdot 159^{63k+32}+83003\cdot 159^{62k+31}-5079\cdot 159^{61k+31}+46234\cdot 159^{60k+30}\\||-2627\cdot 159^{59k+30}+27347\cdot 159^{58k+29}-2376\cdot 159^{57k+29}+39925\cdot 159^{56k+28}-4297\cdot 159^{55k+28}\\||+68552\cdot 159^{54k+27}-6267\cdot 159^{53k+27}+82837\cdot 159^{52k+26}-6267\cdot 159^{51k+26}+68552\cdot 159^{50k+25}\\||-4297\cdot 159^{49k+25}+39925\cdot 159^{48k+24}-2376\cdot 159^{47k+24}+27347\cdot 159^{46k+23}-2627\cdot 159^{45k+23}\\||+46234\cdot 159^{44k+22}-5079\cdot 159^{43k+22}+83003\cdot 159^{42k+21}-7868\cdot 159^{41k+21}+109165\cdot 159^{40k+20}\\||-8787\cdot 159^{39k+20}+104396\cdot 159^{38k+19}-7345\cdot 159^{37k+19}+79507\cdot 159^{36k+18}-5478\cdot 159^{35k+18}\\||+64283\cdot 159^{34k+17}-5287\cdot 159^{33k+17}+76216\cdot 159^{32k+16}-7237\cdot 159^{31k+16}+108569\cdot 159^{30k+15}\\||-9846\cdot 159^{29k+15}+134437\cdot 159^{28k+14}-10891\cdot 159^{27k+14}+132596\cdot 159^{26k+13}-9645\cdot 159^{25k+13}\\||+106945\cdot 159^{24k+12}-7276\cdot 159^{23k+12}+79115\cdot 159^{22k+11}-5649\cdot 159^{21k+11}+68794\cdot 159^{20k+10}\\||-5633\cdot 159^{19k+10}+76187\cdot 159^{18k+9}-6512\cdot 159^{17k+9}+86653\cdot 159^{16k+8}-6977\cdot 159^{15k+8}\\||+84974\cdot 159^{14k+7}-6153\cdot 159^{13k+7}+66787\cdot 159^{12k+6}-4294\cdot 159^{11k+6}+41255\cdot 159^{10k+5}\\||-2329\cdot 159^{9k+5}+19312\cdot 159^{8k+4}-915\cdot 159^{7k+4}+6131\cdot 159^{6k+3}-224\cdot 159^{5k+3}\\||+1093\cdot 159^{4k+2}-27\cdot 159^{3k+2}+80\cdot 159^{2k+1}-159^{k+1}+1)\\|\times|(159^{104k+52}+159^{103k+52}+80\cdot 159^{102k+51}+27\cdot 159^{101k+51}+1093\cdot 159^{100k+50}\\||+224\cdot 159^{99k+50}+6131\cdot 159^{98k+49}+915\cdot 159^{97k+49}+19312\cdot 159^{96k+48}+2329\cdot 159^{95k+48}\\||+41255\cdot 159^{94k+47}+4294\cdot 159^{93k+47}+66787\cdot 159^{92k+46}+6153\cdot 159^{91k+46}+84974\cdot 159^{90k+45}\\||+6977\cdot 159^{89k+45}+86653\cdot 159^{88k+44}+6512\cdot 159^{87k+44}+76187\cdot 159^{86k+43}+5633\cdot 159^{85k+43}\\||+68794\cdot 159^{84k+42}+5649\cdot 159^{83k+42}+79115\cdot 159^{82k+41}+7276\cdot 159^{81k+41}+106945\cdot 159^{80k+40}\\||+9645\cdot 159^{79k+40}+132596\cdot 159^{78k+39}+10891\cdot 159^{77k+39}+134437\cdot 159^{76k+38}+9846\cdot 159^{75k+38}\\||+108569\cdot 159^{74k+37}+7237\cdot 159^{73k+37}+76216\cdot 159^{72k+36}+5287\cdot 159^{71k+36}+64283\cdot 159^{70k+35}\\||+5478\cdot 159^{69k+35}+79507\cdot 159^{68k+34}+7345\cdot 159^{67k+34}+104396\cdot 159^{66k+33}+8787\cdot 159^{65k+33}\\||+109165\cdot 159^{64k+32}+7868\cdot 159^{63k+32}+83003\cdot 159^{62k+31}+5079\cdot 159^{61k+31}+46234\cdot 159^{60k+30}\\||+2627\cdot 159^{59k+30}+27347\cdot 159^{58k+29}+2376\cdot 159^{57k+29}+39925\cdot 159^{56k+28}+4297\cdot 159^{55k+28}\\||+68552\cdot 159^{54k+27}+6267\cdot 159^{53k+27}+82837\cdot 159^{52k+26}+6267\cdot 159^{51k+26}+68552\cdot 159^{50k+25}\\||+4297\cdot 159^{49k+25}+39925\cdot 159^{48k+24}+2376\cdot 159^{47k+24}+27347\cdot 159^{46k+23}+2627\cdot 159^{45k+23}\\||+46234\cdot 159^{44k+22}+5079\cdot 159^{43k+22}+83003\cdot 159^{42k+21}+7868\cdot 159^{41k+21}+109165\cdot 159^{40k+20}\\||+8787\cdot 159^{39k+20}+104396\cdot 159^{38k+19}+7345\cdot 159^{37k+19}+79507\cdot 159^{36k+18}+5478\cdot 159^{35k+18}\\||+64283\cdot 159^{34k+17}+5287\cdot 159^{33k+17}+76216\cdot 159^{32k+16}+7237\cdot 159^{31k+16}+108569\cdot 159^{30k+15}\\||+9846\cdot 159^{29k+15}+134437\cdot 159^{28k+14}+10891\cdot 159^{27k+14}+132596\cdot 159^{26k+13}+9645\cdot 159^{25k+13}\\||+106945\cdot 159^{24k+12}+7276\cdot 159^{23k+12}+79115\cdot 159^{22k+11}+5649\cdot 159^{21k+11}+68794\cdot 159^{20k+10}\\||+5633\cdot 159^{19k+10}+76187\cdot 159^{18k+9}+6512\cdot 159^{17k+9}+86653\cdot 159^{16k+8}+6977\cdot 159^{15k+8}\\||+84974\cdot 159^{14k+7}+6153\cdot 159^{13k+7}+66787\cdot 159^{12k+6}+4294\cdot 159^{11k+6}+41255\cdot 159^{10k+5}\\||+2329\cdot 159^{9k+5}+19312\cdot 159^{8k+4}+915\cdot 159^{7k+4}+6131\cdot 159^{6k+3}+224\cdot 159^{5k+3}\\||+1093\cdot 159^{4k+2}+27\cdot 159^{3k+2}+80\cdot 159^{2k+1}+159^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{161}(161^{2k+1})\cdots{\large\Phi}_{165}(165^{2k+1})$${\large\Phi}_{161}(161^{2k+1})\cdots{\large\Phi}_{165}(165^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{161}(161^{2k+1})|=|161^{264k+132}-161^{262k+131}+161^{250k+125}-161^{248k+124}+161^{236k+118}\\||-161^{234k+117}+161^{222k+111}-161^{220k+110}+161^{218k+109}-161^{216k+108}\\||+161^{208k+104}-161^{206k+103}+161^{204k+102}-161^{202k+101}+161^{194k+97}\\||-161^{192k+96}+161^{190k+95}-161^{188k+94}+161^{180k+90}-161^{178k+89}\\||+161^{176k+88}-161^{174k+87}+161^{172k+86}-161^{170k+85}+161^{166k+83}\\||-161^{164k+82}+161^{162k+81}-161^{160k+80}+161^{158k+79}-161^{156k+78}\\||+161^{152k+76}-161^{150k+75}+161^{148k+74}-161^{146k+73}+161^{144k+72}\\||-161^{142k+71}+161^{138k+69}-161^{136k+68}+161^{134k+67}-161^{132k+66}\\||+161^{130k+65}-161^{128k+64}+161^{126k+63}-161^{122k+61}+161^{120k+60}\\||-161^{118k+59}+161^{116k+58}-161^{114k+57}+161^{112k+56}-161^{108k+54}\\||+161^{106k+53}-161^{104k+52}+161^{102k+51}-161^{100k+50}+161^{98k+49}\\||-161^{94k+47}+161^{92k+46}-161^{90k+45}+161^{88k+44}-161^{86k+43}\\||+161^{84k+42}-161^{76k+38}+161^{74k+37}-161^{72k+36}+161^{70k+35}\\||-161^{62k+31}+161^{60k+30}-161^{58k+29}+161^{56k+28}-161^{48k+24}\\||+161^{46k+23}-161^{44k+22}+161^{42k+21}-161^{30k+15}+161^{28k+14}\\||-161^{16k+8}+161^{14k+7}-161^{2k+1}+1\\|=|(161^{132k+66}-161^{131k+66}+80\cdot 161^{130k+65}-26\cdot 161^{129k+65}+986\cdot 161^{128k+64}\\||-176\cdot 161^{127k+64}+3874\cdot 161^{126k+63}-395\cdot 161^{125k+63}+4313\cdot 161^{124k+62}-92\cdot 161^{123k+62}\\||-2954\cdot 161^{122k+61}+364\cdot 161^{121k+61}-1008\cdot 161^{120k+60}-526\cdot 161^{119k+60}+12629\cdot 161^{118k+59}\\||-843\cdot 161^{117k+59}+374\cdot 161^{116k+58}+906\cdot 161^{115k+58}-16080\cdot 161^{114k+57}+812\cdot 161^{113k+57}\\||+738\cdot 161^{112k+56}-705\cdot 161^{111k+56}+10137\cdot 161^{110k+55}-453\cdot 161^{109k+55}-763\cdot 161^{108k+54}\\||+558\cdot 161^{107k+54}-11452\cdot 161^{106k+53}+892\cdot 161^{105k+53}-4941\cdot 161^{104k+52}-439\cdot 161^{103k+52}\\||+14549\cdot 161^{102k+51}-1337\cdot 161^{101k+51}+11892\cdot 161^{100k+50}-160\cdot 161^{99k+50}-8502\cdot 161^{98k+49}\\||+1181\cdot 161^{97k+49}-12893\cdot 161^{96k+48}+107\cdot 161^{95k+48}+13377\cdot 161^{94k+47}-1634\cdot 161^{93k+47}\\||+14756\cdot 161^{92k+46}-4\cdot 161^{91k+46}-12767\cdot 161^{90k+45}+1351\cdot 161^{89k+45}-14403\cdot 161^{88k+44}\\||+655\cdot 161^{87k+44}+241\cdot 161^{86k+43}-833\cdot 161^{85k+43}+17102\cdot 161^{84k+42}-979\cdot 161^{83k+42}\\||-2873\cdot 161^{82k+41}+1343\cdot 161^{81k+41}-17789\cdot 161^{80k+40}+423\cdot 161^{79k+40}+7977\cdot 161^{78k+39}\\||-928\cdot 161^{77k+39}+7421\cdot 161^{76k+38}-251\cdot 161^{75k+38}+2551\cdot 161^{74k+37}-121\cdot 161^{73k+37}\\||-3259\cdot 161^{72k+36}+681\cdot 161^{71k+36}-9148\cdot 161^{70k+35}+357\cdot 161^{69k+35}+417\cdot 161^{68k+34}\\||-191\cdot 161^{67k+34}+2609\cdot 161^{66k+33}-191\cdot 161^{65k+33}+417\cdot 161^{64k+32}+357\cdot 161^{63k+32}\\||-9148\cdot 161^{62k+31}+681\cdot 161^{61k+31}-3259\cdot 161^{60k+30}-121\cdot 161^{59k+30}+2551\cdot 161^{58k+29}\\||-251\cdot 161^{57k+29}+7421\cdot 161^{56k+28}-928\cdot 161^{55k+28}+7977\cdot 161^{54k+27}+423\cdot 161^{53k+27}\\||-17789\cdot 161^{52k+26}+1343\cdot 161^{51k+26}-2873\cdot 161^{50k+25}-979\cdot 161^{49k+25}+17102\cdot 161^{48k+24}\\||-833\cdot 161^{47k+24}+241\cdot 161^{46k+23}+655\cdot 161^{45k+23}-14403\cdot 161^{44k+22}+1351\cdot 161^{43k+22}\\||-12767\cdot 161^{42k+21}-4\cdot 161^{41k+21}+14756\cdot 161^{40k+20}-1634\cdot 161^{39k+20}+13377\cdot 161^{38k+19}\\||+107\cdot 161^{37k+19}-12893\cdot 161^{36k+18}+1181\cdot 161^{35k+18}-8502\cdot 161^{34k+17}-160\cdot 161^{33k+17}\\||+11892\cdot 161^{32k+16}-1337\cdot 161^{31k+16}+14549\cdot 161^{30k+15}-439\cdot 161^{29k+15}-4941\cdot 161^{28k+14}\\||+892\cdot 161^{27k+14}-11452\cdot 161^{26k+13}+558\cdot 161^{25k+13}-763\cdot 161^{24k+12}-453\cdot 161^{23k+12}\\||+10137\cdot 161^{22k+11}-705\cdot 161^{21k+11}+738\cdot 161^{20k+10}+812\cdot 161^{19k+10}-16080\cdot 161^{18k+9}\\||+906\cdot 161^{17k+9}+374\cdot 161^{16k+8}-843\cdot 161^{15k+8}+12629\cdot 161^{14k+7}-526\cdot 161^{13k+7}\\||-1008\cdot 161^{12k+6}+364\cdot 161^{11k+6}-2954\cdot 161^{10k+5}-92\cdot 161^{9k+5}+4313\cdot 161^{8k+4}\\||-395\cdot 161^{7k+4}+3874\cdot 161^{6k+3}-176\cdot 161^{5k+3}+986\cdot 161^{4k+2}-26\cdot 161^{3k+2}\\||+80\cdot 161^{2k+1}-161^{k+1}+1)\\|\times|(161^{132k+66}+161^{131k+66}+80\cdot 161^{130k+65}+26\cdot 161^{129k+65}+986\cdot 161^{128k+64}\\||+176\cdot 161^{127k+64}+3874\cdot 161^{126k+63}+395\cdot 161^{125k+63}+4313\cdot 161^{124k+62}+92\cdot 161^{123k+62}\\||-2954\cdot 161^{122k+61}-364\cdot 161^{121k+61}-1008\cdot 161^{120k+60}+526\cdot 161^{119k+60}+12629\cdot 161^{118k+59}\\||+843\cdot 161^{117k+59}+374\cdot 161^{116k+58}-906\cdot 161^{115k+58}-16080\cdot 161^{114k+57}-812\cdot 161^{113k+57}\\||+738\cdot 161^{112k+56}+705\cdot 161^{111k+56}+10137\cdot 161^{110k+55}+453\cdot 161^{109k+55}-763\cdot 161^{108k+54}\\||-558\cdot 161^{107k+54}-11452\cdot 161^{106k+53}-892\cdot 161^{105k+53}-4941\cdot 161^{104k+52}+439\cdot 161^{103k+52}\\||+14549\cdot 161^{102k+51}+1337\cdot 161^{101k+51}+11892\cdot 161^{100k+50}+160\cdot 161^{99k+50}-8502\cdot 161^{98k+49}\\||-1181\cdot 161^{97k+49}-12893\cdot 161^{96k+48}-107\cdot 161^{95k+48}+13377\cdot 161^{94k+47}+1634\cdot 161^{93k+47}\\||+14756\cdot 161^{92k+46}+4\cdot 161^{91k+46}-12767\cdot 161^{90k+45}-1351\cdot 161^{89k+45}-14403\cdot 161^{88k+44}\\||-655\cdot 161^{87k+44}+241\cdot 161^{86k+43}+833\cdot 161^{85k+43}+17102\cdot 161^{84k+42}+979\cdot 161^{83k+42}\\||-2873\cdot 161^{82k+41}-1343\cdot 161^{81k+41}-17789\cdot 161^{80k+40}-423\cdot 161^{79k+40}+7977\cdot 161^{78k+39}\\||+928\cdot 161^{77k+39}+7421\cdot 161^{76k+38}+251\cdot 161^{75k+38}+2551\cdot 161^{74k+37}+121\cdot 161^{73k+37}\\||-3259\cdot 161^{72k+36}-681\cdot 161^{71k+36}-9148\cdot 161^{70k+35}-357\cdot 161^{69k+35}+417\cdot 161^{68k+34}\\||+191\cdot 161^{67k+34}+2609\cdot 161^{66k+33}+191\cdot 161^{65k+33}+417\cdot 161^{64k+32}-357\cdot 161^{63k+32}\\||-9148\cdot 161^{62k+31}-681\cdot 161^{61k+31}-3259\cdot 161^{60k+30}+121\cdot 161^{59k+30}+2551\cdot 161^{58k+29}\\||+251\cdot 161^{57k+29}+7421\cdot 161^{56k+28}+928\cdot 161^{55k+28}+7977\cdot 161^{54k+27}-423\cdot 161^{53k+27}\\||-17789\cdot 161^{52k+26}-1343\cdot 161^{51k+26}-2873\cdot 161^{50k+25}+979\cdot 161^{49k+25}+17102\cdot 161^{48k+24}\\||+833\cdot 161^{47k+24}+241\cdot 161^{46k+23}-655\cdot 161^{45k+23}-14403\cdot 161^{44k+22}-1351\cdot 161^{43k+22}\\||-12767\cdot 161^{42k+21}+4\cdot 161^{41k+21}+14756\cdot 161^{40k+20}+1634\cdot 161^{39k+20}+13377\cdot 161^{38k+19}\\||-107\cdot 161^{37k+19}-12893\cdot 161^{36k+18}-1181\cdot 161^{35k+18}-8502\cdot 161^{34k+17}+160\cdot 161^{33k+17}\\||+11892\cdot 161^{32k+16}+1337\cdot 161^{31k+16}+14549\cdot 161^{30k+15}+439\cdot 161^{29k+15}-4941\cdot 161^{28k+14}\\||-892\cdot 161^{27k+14}-11452\cdot 161^{26k+13}-558\cdot 161^{25k+13}-763\cdot 161^{24k+12}+453\cdot 161^{23k+12}\\||+10137\cdot 161^{22k+11}+705\cdot 161^{21k+11}+738\cdot 161^{20k+10}-812\cdot 161^{19k+10}-16080\cdot 161^{18k+9}\\||-906\cdot 161^{17k+9}+374\cdot 161^{16k+8}+843\cdot 161^{15k+8}+12629\cdot 161^{14k+7}+526\cdot 161^{13k+7}\\||-1008\cdot 161^{12k+6}-364\cdot 161^{11k+6}-2954\cdot 161^{10k+5}+92\cdot 161^{9k+5}+4313\cdot 161^{8k+4}\\||+395\cdot 161^{7k+4}+3874\cdot 161^{6k+3}+176\cdot 161^{5k+3}+986\cdot 161^{4k+2}+26\cdot 161^{3k+2}\\||+80\cdot 161^{2k+1}+161^{k+1}+1)\\{\large\Phi}_{326}(163^{2k+1})|=|163^{324k+162}-163^{322k+161}+163^{320k+160}-163^{318k+159}+163^{316k+158}\\||-163^{314k+157}+163^{312k+156}-163^{310k+155}+163^{308k+154}-163^{306k+153}\\||+163^{304k+152}-163^{302k+151}+163^{300k+150}-163^{298k+149}+163^{296k+148}\\||-163^{294k+147}+163^{292k+146}-163^{290k+145}+163^{288k+144}-163^{286k+143}\\||+163^{284k+142}-163^{282k+141}+163^{280k+140}-163^{278k+139}+163^{276k+138}\\||-163^{274k+137}+163^{272k+136}-163^{270k+135}+163^{268k+134}-163^{266k+133}\\||+163^{264k+132}-163^{262k+131}+163^{260k+130}-163^{258k+129}+163^{256k+128}\\||-163^{254k+127}+163^{252k+126}-163^{250k+125}+163^{248k+124}-163^{246k+123}\\||+163^{244k+122}-163^{242k+121}+163^{240k+120}-163^{238k+119}+163^{236k+118}\\||-163^{234k+117}+163^{232k+116}-163^{230k+115}+163^{228k+114}-163^{226k+113}\\||+163^{224k+112}-163^{222k+111}+163^{220k+110}-163^{218k+109}+163^{216k+108}\\||-163^{214k+107}+163^{212k+106}-163^{210k+105}+163^{208k+104}-163^{206k+103}\\||+163^{204k+102}-163^{202k+101}+163^{200k+100}-163^{198k+99}+163^{196k+98}\\||-163^{194k+97}+163^{192k+96}-163^{190k+95}+163^{188k+94}-163^{186k+93}\\||+163^{184k+92}-163^{182k+91}+163^{180k+90}-163^{178k+89}+163^{176k+88}\\||-163^{174k+87}+163^{172k+86}-163^{170k+85}+163^{168k+84}-163^{166k+83}\\||+163^{164k+82}-163^{162k+81}+163^{160k+80}-163^{158k+79}+163^{156k+78}\\||-163^{154k+77}+163^{152k+76}-163^{150k+75}+163^{148k+74}-163^{146k+73}\\||+163^{144k+72}-163^{142k+71}+163^{140k+70}-163^{138k+69}+163^{136k+68}\\||-163^{134k+67}+163^{132k+66}-163^{130k+65}+163^{128k+64}-163^{126k+63}\\||+163^{124k+62}-163^{122k+61}+163^{120k+60}-163^{118k+59}+163^{116k+58}\\||-163^{114k+57}+163^{112k+56}-163^{110k+55}+163^{108k+54}-163^{106k+53}\\||+163^{104k+52}-163^{102k+51}+163^{100k+50}-163^{98k+49}+163^{96k+48}\\||-163^{94k+47}+163^{92k+46}-163^{90k+45}+163^{88k+44}-163^{86k+43}\\||+163^{84k+42}-163^{82k+41}+163^{80k+40}-163^{78k+39}+163^{76k+38}\\||-163^{74k+37}+163^{72k+36}-163^{70k+35}+163^{68k+34}-163^{66k+33}\\||+163^{64k+32}-163^{62k+31}+163^{60k+30}-163^{58k+29}+163^{56k+28}\\||-163^{54k+27}+163^{52k+26}-163^{50k+25}+163^{48k+24}-163^{46k+23}\\||+163^{44k+22}-163^{42k+21}+163^{40k+20}-163^{38k+19}+163^{36k+18}\\||-163^{34k+17}+163^{32k+16}-163^{30k+15}+163^{28k+14}-163^{26k+13}\\||+163^{24k+12}-163^{22k+11}+163^{20k+10}-163^{18k+9}+163^{16k+8}\\||-163^{14k+7}+163^{12k+6}-163^{10k+5}+163^{8k+4}-163^{6k+3}\\||+163^{4k+2}-163^{2k+1}+1\\|=|(163^{162k+81}-163^{161k+81}+81\cdot 163^{160k+80}-27\cdot 163^{159k+80}+1121\cdot 163^{158k+79}\\||-235\cdot 163^{157k+79}+6917\cdot 163^{156k+78}-1107\cdot 163^{155k+78}+26079\cdot 163^{154k+77}-3451\cdot 163^{153k+77}\\||+68901\cdot 163^{152k+76}-7883\cdot 163^{151k+76}+138431\cdot 163^{150k+75}-14157\cdot 163^{149k+75}+225947\cdot 163^{148k+74}\\||-21379\cdot 163^{147k+74}+321745\cdot 163^{146k+73}-29259\cdot 163^{145k+73}+430327\cdot 163^{144k+72}-38669\cdot 163^{143k+72}\\||+563737\cdot 163^{142k+71}-49981\cdot 163^{141k+71}+711927\cdot 163^{140k+70}-60989\cdot 163^{139k+70}+832027\cdot 163^{138k+69}\\||-67999\cdot 163^{137k+69}+887093\cdot 163^{136k+68}-69959\cdot 163^{135k+68}+893771\cdot 163^{134k+67}-70237\cdot 163^{133k+67}\\||+907413\cdot 163^{132k+66}-72575\cdot 163^{131k+66}+949931\cdot 163^{130k+65}-75963\cdot 163^{129k+65}+978545\cdot 163^{128k+64}\\||-76133\cdot 163^{127k+64}+952427\cdot 163^{126k+63}-72741\cdot 163^{125k+63}+914035\cdot 163^{124k+62}-72199\cdot 163^{123k+62}\\||+960557\cdot 163^{122k+61}-80741\cdot 163^{121k+61}+1124081\cdot 163^{120k+60}-95965\cdot 163^{119k+60}+1317293\cdot 163^{118k+59}\\||-108655\cdot 163^{117k+59}+1429833\cdot 163^{116k+58}-113529\cdot 163^{115k+58}+1457661\cdot 163^{114k+57}-115025\cdot 163^{113k+57}\\||+1492625\cdot 163^{112k+56}-120009\cdot 163^{111k+56}+1579305\cdot 163^{110k+55}-126725\cdot 163^{109k+55}+1628867\cdot 163^{108k+54}\\||-125063\cdot 163^{107k+54}+1515473\cdot 163^{106k+53}-109005\cdot 163^{105k+53}+1243067\cdot 163^{104k+52}-85653\cdot 163^{103k+52}\\||+965847\cdot 163^{102k+51}-68491\cdot 163^{101k+51}+821181\cdot 163^{100k+50}-62299\cdot 163^{99k+50}+778213\cdot 163^{98k+49}\\||-58765\cdot 163^{97k+49}+699405\cdot 163^{96k+48}-49043\cdot 163^{95k+48}+544275\cdot 163^{94k+47}-37331\cdot 163^{93k+47}\\||+446891\cdot 163^{92k+46}-36879\cdot 163^{91k+46}+549611\cdot 163^{90k+45}-52341\cdot 163^{89k+45}+799815\cdot 163^{88k+44}\\||-71585\cdot 163^{87k+44}+986729\cdot 163^{86k+43}-79001\cdot 163^{85k+43}+986989\cdot 163^{84k+42}-73839\cdot 163^{83k+42}\\||+901839\cdot 163^{82k+41}-69359\cdot 163^{81k+41}+901839\cdot 163^{80k+40}-73839\cdot 163^{79k+40}+986989\cdot 163^{78k+39}\\||-79001\cdot 163^{77k+39}+986729\cdot 163^{76k+38}-71585\cdot 163^{75k+38}+799815\cdot 163^{74k+37}-52341\cdot 163^{73k+37}\\||+549611\cdot 163^{72k+36}-36879\cdot 163^{71k+36}+446891\cdot 163^{70k+35}-37331\cdot 163^{69k+35}+544275\cdot 163^{68k+34}\\||-49043\cdot 163^{67k+34}+699405\cdot 163^{66k+33}-58765\cdot 163^{65k+33}+778213\cdot 163^{64k+32}-62299\cdot 163^{63k+32}\\||+821181\cdot 163^{62k+31}-68491\cdot 163^{61k+31}+965847\cdot 163^{60k+30}-85653\cdot 163^{59k+30}+1243067\cdot 163^{58k+29}\\||-109005\cdot 163^{57k+29}+1515473\cdot 163^{56k+28}-125063\cdot 163^{55k+28}+1628867\cdot 163^{54k+27}-126725\cdot 163^{53k+27}\\||+1579305\cdot 163^{52k+26}-120009\cdot 163^{51k+26}+1492625\cdot 163^{50k+25}-115025\cdot 163^{49k+25}+1457661\cdot 163^{48k+24}\\||-113529\cdot 163^{47k+24}+1429833\cdot 163^{46k+23}-108655\cdot 163^{45k+23}+1317293\cdot 163^{44k+22}-95965\cdot 163^{43k+22}\\||+1124081\cdot 163^{42k+21}-80741\cdot 163^{41k+21}+960557\cdot 163^{40k+20}-72199\cdot 163^{39k+20}+914035\cdot 163^{38k+19}\\||-72741\cdot 163^{37k+19}+952427\cdot 163^{36k+18}-76133\cdot 163^{35k+18}+978545\cdot 163^{34k+17}-75963\cdot 163^{33k+17}\\||+949931\cdot 163^{32k+16}-72575\cdot 163^{31k+16}+907413\cdot 163^{30k+15}-70237\cdot 163^{29k+15}+893771\cdot 163^{28k+14}\\||-69959\cdot 163^{27k+14}+887093\cdot 163^{26k+13}-67999\cdot 163^{25k+13}+832027\cdot 163^{24k+12}-60989\cdot 163^{23k+12}\\||+711927\cdot 163^{22k+11}-49981\cdot 163^{21k+11}+563737\cdot 163^{20k+10}-38669\cdot 163^{19k+10}+430327\cdot 163^{18k+9}\\||-29259\cdot 163^{17k+9}+321745\cdot 163^{16k+8}-21379\cdot 163^{15k+8}+225947\cdot 163^{14k+7}-14157\cdot 163^{13k+7}\\||+138431\cdot 163^{12k+6}-7883\cdot 163^{11k+6}+68901\cdot 163^{10k+5}-3451\cdot 163^{9k+5}+26079\cdot 163^{8k+4}\\||-1107\cdot 163^{7k+4}+6917\cdot 163^{6k+3}-235\cdot 163^{5k+3}+1121\cdot 163^{4k+2}-27\cdot 163^{3k+2}\\||+81\cdot 163^{2k+1}-163^{k+1}+1)\\|\times|(163^{162k+81}+163^{161k+81}+81\cdot 163^{160k+80}+27\cdot 163^{159k+80}+1121\cdot 163^{158k+79}\\||+235\cdot 163^{157k+79}+6917\cdot 163^{156k+78}+1107\cdot 163^{155k+78}+26079\cdot 163^{154k+77}+3451\cdot 163^{153k+77}\\||+68901\cdot 163^{152k+76}+7883\cdot 163^{151k+76}+138431\cdot 163^{150k+75}+14157\cdot 163^{149k+75}+225947\cdot 163^{148k+74}\\||+21379\cdot 163^{147k+74}+321745\cdot 163^{146k+73}+29259\cdot 163^{145k+73}+430327\cdot 163^{144k+72}+38669\cdot 163^{143k+72}\\||+563737\cdot 163^{142k+71}+49981\cdot 163^{141k+71}+711927\cdot 163^{140k+70}+60989\cdot 163^{139k+70}+832027\cdot 163^{138k+69}\\||+67999\cdot 163^{137k+69}+887093\cdot 163^{136k+68}+69959\cdot 163^{135k+68}+893771\cdot 163^{134k+67}+70237\cdot 163^{133k+67}\\||+907413\cdot 163^{132k+66}+72575\cdot 163^{131k+66}+949931\cdot 163^{130k+65}+75963\cdot 163^{129k+65}+978545\cdot 163^{128k+64}\\||+76133\cdot 163^{127k+64}+952427\cdot 163^{126k+63}+72741\cdot 163^{125k+63}+914035\cdot 163^{124k+62}+72199\cdot 163^{123k+62}\\||+960557\cdot 163^{122k+61}+80741\cdot 163^{121k+61}+1124081\cdot 163^{120k+60}+95965\cdot 163^{119k+60}+1317293\cdot 163^{118k+59}\\||+108655\cdot 163^{117k+59}+1429833\cdot 163^{116k+58}+113529\cdot 163^{115k+58}+1457661\cdot 163^{114k+57}+115025\cdot 163^{113k+57}\\||+1492625\cdot 163^{112k+56}+120009\cdot 163^{111k+56}+1579305\cdot 163^{110k+55}+126725\cdot 163^{109k+55}+1628867\cdot 163^{108k+54}\\||+125063\cdot 163^{107k+54}+1515473\cdot 163^{106k+53}+109005\cdot 163^{105k+53}+1243067\cdot 163^{104k+52}+85653\cdot 163^{103k+52}\\||+965847\cdot 163^{102k+51}+68491\cdot 163^{101k+51}+821181\cdot 163^{100k+50}+62299\cdot 163^{99k+50}+778213\cdot 163^{98k+49}\\||+58765\cdot 163^{97k+49}+699405\cdot 163^{96k+48}+49043\cdot 163^{95k+48}+544275\cdot 163^{94k+47}+37331\cdot 163^{93k+47}\\||+446891\cdot 163^{92k+46}+36879\cdot 163^{91k+46}+549611\cdot 163^{90k+45}+52341\cdot 163^{89k+45}+799815\cdot 163^{88k+44}\\||+71585\cdot 163^{87k+44}+986729\cdot 163^{86k+43}+79001\cdot 163^{85k+43}+986989\cdot 163^{84k+42}+73839\cdot 163^{83k+42}\\||+901839\cdot 163^{82k+41}+69359\cdot 163^{81k+41}+901839\cdot 163^{80k+40}+73839\cdot 163^{79k+40}+986989\cdot 163^{78k+39}\\||+79001\cdot 163^{77k+39}+986729\cdot 163^{76k+38}+71585\cdot 163^{75k+38}+799815\cdot 163^{74k+37}+52341\cdot 163^{73k+37}\\||+549611\cdot 163^{72k+36}+36879\cdot 163^{71k+36}+446891\cdot 163^{70k+35}+37331\cdot 163^{69k+35}+544275\cdot 163^{68k+34}\\||+49043\cdot 163^{67k+34}+699405\cdot 163^{66k+33}+58765\cdot 163^{65k+33}+778213\cdot 163^{64k+32}+62299\cdot 163^{63k+32}\\||+821181\cdot 163^{62k+31}+68491\cdot 163^{61k+31}+965847\cdot 163^{60k+30}+85653\cdot 163^{59k+30}+1243067\cdot 163^{58k+29}\\||+109005\cdot 163^{57k+29}+1515473\cdot 163^{56k+28}+125063\cdot 163^{55k+28}+1628867\cdot 163^{54k+27}+126725\cdot 163^{53k+27}\\||+1579305\cdot 163^{52k+26}+120009\cdot 163^{51k+26}+1492625\cdot 163^{50k+25}+115025\cdot 163^{49k+25}+1457661\cdot 163^{48k+24}\\||+113529\cdot 163^{47k+24}+1429833\cdot 163^{46k+23}+108655\cdot 163^{45k+23}+1317293\cdot 163^{44k+22}+95965\cdot 163^{43k+22}\\||+1124081\cdot 163^{42k+21}+80741\cdot 163^{41k+21}+960557\cdot 163^{40k+20}+72199\cdot 163^{39k+20}+914035\cdot 163^{38k+19}\\||+72741\cdot 163^{37k+19}+952427\cdot 163^{36k+18}+76133\cdot 163^{35k+18}+978545\cdot 163^{34k+17}+75963\cdot 163^{33k+17}\\||+949931\cdot 163^{32k+16}+72575\cdot 163^{31k+16}+907413\cdot 163^{30k+15}+70237\cdot 163^{29k+15}+893771\cdot 163^{28k+14}\\||+69959\cdot 163^{27k+14}+887093\cdot 163^{26k+13}+67999\cdot 163^{25k+13}+832027\cdot 163^{24k+12}+60989\cdot 163^{23k+12}\\||+711927\cdot 163^{22k+11}+49981\cdot 163^{21k+11}+563737\cdot 163^{20k+10}+38669\cdot 163^{19k+10}+430327\cdot 163^{18k+9}\\||+29259\cdot 163^{17k+9}+321745\cdot 163^{16k+8}+21379\cdot 163^{15k+8}+225947\cdot 163^{14k+7}+14157\cdot 163^{13k+7}\\||+138431\cdot 163^{12k+6}+7883\cdot 163^{11k+6}+68901\cdot 163^{10k+5}+3451\cdot 163^{9k+5}+26079\cdot 163^{8k+4}\\||+1107\cdot 163^{7k+4}+6917\cdot 163^{6k+3}+235\cdot 163^{5k+3}+1121\cdot 163^{4k+2}+27\cdot 163^{3k+2}\\||+81\cdot 163^{2k+1}+163^{k+1}+1)\\{\large\Phi}_{165}(165^{2k+1})|=|165^{160k+80}+165^{158k+79}+165^{156k+78}-165^{150k+75}-165^{148k+74}\\||-165^{146k+73}-165^{138k+69}-165^{136k+68}-165^{134k+67}+165^{130k+65}\\||+2\cdot 165^{128k+64}+2\cdot 165^{126k+63}+165^{124k+62}-165^{120k+60}-165^{118k+59}\\||-165^{116k+58}-165^{108k+54}-165^{106k+53}-165^{104k+52}+165^{100k+50}\\||+2\cdot 165^{98k+49}+2\cdot 165^{96k+48}+2\cdot 165^{94k+47}+165^{92k+46}-165^{88k+44}\\||-165^{86k+43}-165^{84k+42}-165^{82k+41}-165^{80k+40}-165^{78k+39}\\||-165^{76k+38}-165^{74k+37}-165^{72k+36}+165^{68k+34}+2\cdot 165^{66k+33}\\||+2\cdot 165^{64k+32}+2\cdot 165^{62k+31}+165^{60k+30}-165^{56k+28}-165^{54k+27}\\||-165^{52k+26}-165^{44k+22}-165^{42k+21}-165^{40k+20}+165^{36k+18}\\||+2\cdot 165^{34k+17}+2\cdot 165^{32k+16}+165^{30k+15}-165^{26k+13}-165^{24k+12}\\||-165^{22k+11}-165^{14k+7}-165^{12k+6}-165^{10k+5}+165^{4k+2}\\||+165^{2k+1}+1\\|=|(165^{80k+40}-165^{79k+40}+83\cdot 165^{78k+39}-28\cdot 165^{77k+39}+1176\cdot 165^{76k+38}\\||-241\cdot 165^{75k+38}+6837\cdot 165^{74k+37}-1015\cdot 165^{73k+37}+21936\cdot 165^{72k+36}-2580\cdot 165^{71k+36}\\||+45682\cdot 165^{70k+35}-4545\cdot 165^{69k+35}+70373\cdot 165^{68k+34}-6341\cdot 165^{67k+34}+92004\cdot 165^{66k+33}\\||-7983\cdot 165^{65k+33}+113178\cdot 165^{64k+32}-9608\cdot 165^{63k+32}+132489\cdot 165^{62k+31}-10894\cdot 165^{61k+31}\\||+145987\cdot 165^{60k+30}-11781\cdot 165^{59k+30}+156351\cdot 165^{58k+29}-12486\cdot 165^{57k+29}+161606\cdot 165^{56k+28}\\||-12284\cdot 165^{55k+28}+147567\cdot 165^{54k+27}-10223\cdot 165^{53k+27}+111099\cdot 165^{52k+26}-6974\cdot 165^{51k+26}\\||+68683\cdot 165^{50k+25}-3800\cdot 165^{49k+25}+29232\cdot 165^{48k+24}-718\cdot 165^{47k+24}-10813\cdot 165^{46k+23}\\||+2268\cdot 165^{45k+23}-43515\cdot 165^{44k+22}+4095\cdot 165^{43k+22}-56763\cdot 165^{42k+21}+4503\cdot 165^{41k+21}\\||-57905\cdot 165^{40k+20}+4503\cdot 165^{39k+20}-56763\cdot 165^{38k+19}+4095\cdot 165^{37k+19}-43515\cdot 165^{36k+18}\\||+2268\cdot 165^{35k+18}-10813\cdot 165^{34k+17}-718\cdot 165^{33k+17}+29232\cdot 165^{32k+16}-3800\cdot 165^{31k+16}\\||+68683\cdot 165^{30k+15}-6974\cdot 165^{29k+15}+111099\cdot 165^{28k+14}-10223\cdot 165^{27k+14}+147567\cdot 165^{26k+13}\\||-12284\cdot 165^{25k+13}+161606\cdot 165^{24k+12}-12486\cdot 165^{23k+12}+156351\cdot 165^{22k+11}-11781\cdot 165^{21k+11}\\||+145987\cdot 165^{20k+10}-10894\cdot 165^{19k+10}+132489\cdot 165^{18k+9}-9608\cdot 165^{17k+9}+113178\cdot 165^{16k+8}\\||-7983\cdot 165^{15k+8}+92004\cdot 165^{14k+7}-6341\cdot 165^{13k+7}+70373\cdot 165^{12k+6}-4545\cdot 165^{11k+6}\\||+45682\cdot 165^{10k+5}-2580\cdot 165^{9k+5}+21936\cdot 165^{8k+4}-1015\cdot 165^{7k+4}+6837\cdot 165^{6k+3}\\||-241\cdot 165^{5k+3}+1176\cdot 165^{4k+2}-28\cdot 165^{3k+2}+83\cdot 165^{2k+1}-165^{k+1}+1)\\|\times|(165^{80k+40}+165^{79k+40}+83\cdot 165^{78k+39}+28\cdot 165^{77k+39}+1176\cdot 165^{76k+38}\\||+241\cdot 165^{75k+38}+6837\cdot 165^{74k+37}+1015\cdot 165^{73k+37}+21936\cdot 165^{72k+36}+2580\cdot 165^{71k+36}\\||+45682\cdot 165^{70k+35}+4545\cdot 165^{69k+35}+70373\cdot 165^{68k+34}+6341\cdot 165^{67k+34}+92004\cdot 165^{66k+33}\\||+7983\cdot 165^{65k+33}+113178\cdot 165^{64k+32}+9608\cdot 165^{63k+32}+132489\cdot 165^{62k+31}+10894\cdot 165^{61k+31}\\||+145987\cdot 165^{60k+30}+11781\cdot 165^{59k+30}+156351\cdot 165^{58k+29}+12486\cdot 165^{57k+29}+161606\cdot 165^{56k+28}\\||+12284\cdot 165^{55k+28}+147567\cdot 165^{54k+27}+10223\cdot 165^{53k+27}+111099\cdot 165^{52k+26}+6974\cdot 165^{51k+26}\\||+68683\cdot 165^{50k+25}+3800\cdot 165^{49k+25}+29232\cdot 165^{48k+24}+718\cdot 165^{47k+24}-10813\cdot 165^{46k+23}\\||-2268\cdot 165^{45k+23}-43515\cdot 165^{44k+22}-4095\cdot 165^{43k+22}-56763\cdot 165^{42k+21}-4503\cdot 165^{41k+21}\\||-57905\cdot 165^{40k+20}-4503\cdot 165^{39k+20}-56763\cdot 165^{38k+19}-4095\cdot 165^{37k+19}-43515\cdot 165^{36k+18}\\||-2268\cdot 165^{35k+18}-10813\cdot 165^{34k+17}+718\cdot 165^{33k+17}+29232\cdot 165^{32k+16}+3800\cdot 165^{31k+16}\\||+68683\cdot 165^{30k+15}+6974\cdot 165^{29k+15}+111099\cdot 165^{28k+14}+10223\cdot 165^{27k+14}+147567\cdot 165^{26k+13}\\||+12284\cdot 165^{25k+13}+161606\cdot 165^{24k+12}+12486\cdot 165^{23k+12}+156351\cdot 165^{22k+11}+11781\cdot 165^{21k+11}\\||+145987\cdot 165^{20k+10}+10894\cdot 165^{19k+10}+132489\cdot 165^{18k+9}+9608\cdot 165^{17k+9}+113178\cdot 165^{16k+8}\\||+7983\cdot 165^{15k+8}+92004\cdot 165^{14k+7}+6341\cdot 165^{13k+7}+70373\cdot 165^{12k+6}+4545\cdot 165^{11k+6}\\||+45682\cdot 165^{10k+5}+2580\cdot 165^{9k+5}+21936\cdot 165^{8k+4}+1015\cdot 165^{7k+4}+6837\cdot 165^{6k+3}\\||+241\cdot 165^{5k+3}+1176\cdot 165^{4k+2}+28\cdot 165^{3k+2}+83\cdot 165^{2k+1}+165^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{332}(166^{2k+1})\cdots{\large\Phi}_{340}(170^{2k+1})$${\large\Phi}_{332}(166^{2k+1})\cdots{\large\Phi}_{340}(170^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{332}(166^{2k+1})|=|166^{328k+164}-166^{324k+162}+166^{320k+160}-166^{316k+158}+166^{312k+156}\\||-166^{308k+154}+166^{304k+152}-166^{300k+150}+166^{296k+148}-166^{292k+146}\\||+166^{288k+144}-166^{284k+142}+166^{280k+140}-166^{276k+138}+166^{272k+136}\\||-166^{268k+134}+166^{264k+132}-166^{260k+130}+166^{256k+128}-166^{252k+126}\\||+166^{248k+124}-166^{244k+122}+166^{240k+120}-166^{236k+118}+166^{232k+116}\\||-166^{228k+114}+166^{224k+112}-166^{220k+110}+166^{216k+108}-166^{212k+106}\\||+166^{208k+104}-166^{204k+102}+166^{200k+100}-166^{196k+98}+166^{192k+96}\\||-166^{188k+94}+166^{184k+92}-166^{180k+90}+166^{176k+88}-166^{172k+86}\\||+166^{168k+84}-166^{164k+82}+166^{160k+80}-166^{156k+78}+166^{152k+76}\\||-166^{148k+74}+166^{144k+72}-166^{140k+70}+166^{136k+68}-166^{132k+66}\\||+166^{128k+64}-166^{124k+62}+166^{120k+60}-166^{116k+58}+166^{112k+56}\\||-166^{108k+54}+166^{104k+52}-166^{100k+50}+166^{96k+48}-166^{92k+46}\\||+166^{88k+44}-166^{84k+42}+166^{80k+40}-166^{76k+38}+166^{72k+36}\\||-166^{68k+34}+166^{64k+32}-166^{60k+30}+166^{56k+28}-166^{52k+26}\\||+166^{48k+24}-166^{44k+22}+166^{40k+20}-166^{36k+18}+166^{32k+16}\\||-166^{28k+14}+166^{24k+12}-166^{20k+10}+166^{16k+8}-166^{12k+6}\\||+166^{8k+4}-166^{4k+2}+1\\|=|(166^{164k+82}-166^{163k+82}+83\cdot 166^{162k+81}-28\cdot 166^{161k+81}+1203\cdot 166^{160k+80}\\||-257\cdot 166^{159k+80}+7885\cdot 166^{158k+79}-1302\cdot 166^{157k+79}+32609\cdot 166^{156k+78}-4567\cdot 166^{155k+78}\\||+99683\cdot 166^{154k+77}-12410\cdot 166^{153k+77}+244471\cdot 166^{152k+76}-27811\cdot 166^{151k+76}+505885\cdot 166^{150k+75}\\||-53622\cdot 166^{149k+75}+916081\cdot 166^{148k+74}-91855\cdot 166^{147k+74}+1494415\cdot 166^{146k+73}-143600\cdot 166^{145k+73}\\||+2252279\cdot 166^{144k+72}-209807\cdot 166^{143k+72}+3206373\cdot 166^{142k+71}-292348\cdot 166^{141k+71}+4389733\cdot 166^{140k+70}\\||-394425\cdot 166^{139k+70}+5848595\cdot 166^{138k+69}-519588\cdot 166^{137k+69}+7621371\cdot 166^{136k+68}-669711\cdot 166^{135k+68}\\||+9712245\cdot 166^{134k+67}-843324\cdot 166^{133k+67}+12079461\cdot 166^{132k+66}-1035729\cdot 166^{131k+66}+14650911\cdot 166^{130k+65}\\||-1241130\cdot 166^{129k+65}+17358355\cdot 166^{128k+64}-1455277\cdot 166^{127k+64}+20163937\cdot 166^{126k+63}-1676452\cdot 166^{125k+63}\\||+23055473\cdot 166^{124k+62}-1903757\cdot 166^{123k+62}+26010955\cdot 166^{122k+61}-2133866\cdot 166^{121k+61}+28959351\cdot 166^{120k+60}\\||-2358899\cdot 166^{119k+60}+31772317\cdot 166^{118k+59}-2567542\cdot 166^{117k+59}+34300257\cdot 166^{116k+58}-2749079\cdot 166^{115k+58}\\||+36430775\cdot 166^{114k+57}-2897558\cdot 166^{113k+57}+38126683\cdot 166^{112k+56}-3012899\cdot 166^{111k+56}+39413297\cdot 166^{110k+55}\\||-3098010\cdot 166^{109k+55}+40324741\cdot 166^{108k+54}-3154245\cdot 166^{107k+54}+40853679\cdot 166^{106k+53}-3179044\cdot 166^{105k+53}\\||+40948287\cdot 166^{104k+52}-3167947\cdot 166^{103k+52}+40562349\cdot 166^{102k+51}-3119560\cdot 166^{101k+51}+39719589\cdot 166^{100k+50}\\||-3039485\cdot 166^{99k+50}+38538975\cdot 166^{98k+49}-2939806\cdot 166^{97k+49}+37196331\cdot 166^{96k+48}-2834193\cdot 166^{95k+48}\\||+35848945\cdot 166^{94k+47}-2732256\cdot 166^{93k+47}+34579993\cdot 166^{92k+46}-2637431\cdot 166^{91k+46}+33404927\cdot 166^{90k+45}\\||-2549918\cdot 166^{89k+45}+32331443\cdot 166^{88k+44}-2471945\cdot 166^{87k+44}+31419401\cdot 166^{86k+43}-2410728\cdot 166^{85k+43}\\||+30787929\cdot 166^{84k+42}-2376409\cdot 166^{83k+42}+30560019\cdot 166^{82k+41}-2376409\cdot 166^{81k+41}+30787929\cdot 166^{80k+40}\\||-2410728\cdot 166^{79k+40}+31419401\cdot 166^{78k+39}-2471945\cdot 166^{77k+39}+32331443\cdot 166^{76k+38}-2549918\cdot 166^{75k+38}\\||+33404927\cdot 166^{74k+37}-2637431\cdot 166^{73k+37}+34579993\cdot 166^{72k+36}-2732256\cdot 166^{71k+36}+35848945\cdot 166^{70k+35}\\||-2834193\cdot 166^{69k+35}+37196331\cdot 166^{68k+34}-2939806\cdot 166^{67k+34}+38538975\cdot 166^{66k+33}-3039485\cdot 166^{65k+33}\\||+39719589\cdot 166^{64k+32}-3119560\cdot 166^{63k+32}+40562349\cdot 166^{62k+31}-3167947\cdot 166^{61k+31}+40948287\cdot 166^{60k+30}\\||-3179044\cdot 166^{59k+30}+40853679\cdot 166^{58k+29}-3154245\cdot 166^{57k+29}+40324741\cdot 166^{56k+28}-3098010\cdot 166^{55k+28}\\||+39413297\cdot 166^{54k+27}-3012899\cdot 166^{53k+27}+38126683\cdot 166^{52k+26}-2897558\cdot 166^{51k+26}+36430775\cdot 166^{50k+25}\\||-2749079\cdot 166^{49k+25}+34300257\cdot 166^{48k+24}-2567542\cdot 166^{47k+24}+31772317\cdot 166^{46k+23}-2358899\cdot 166^{45k+23}\\||+28959351\cdot 166^{44k+22}-2133866\cdot 166^{43k+22}+26010955\cdot 166^{42k+21}-1903757\cdot 166^{41k+21}+23055473\cdot 166^{40k+20}\\||-1676452\cdot 166^{39k+20}+20163937\cdot 166^{38k+19}-1455277\cdot 166^{37k+19}+17358355\cdot 166^{36k+18}-1241130\cdot 166^{35k+18}\\||+14650911\cdot 166^{34k+17}-1035729\cdot 166^{33k+17}+12079461\cdot 166^{32k+16}-843324\cdot 166^{31k+16}+9712245\cdot 166^{30k+15}\\||-669711\cdot 166^{29k+15}+7621371\cdot 166^{28k+14}-519588\cdot 166^{27k+14}+5848595\cdot 166^{26k+13}-394425\cdot 166^{25k+13}\\||+4389733\cdot 166^{24k+12}-292348\cdot 166^{23k+12}+3206373\cdot 166^{22k+11}-209807\cdot 166^{21k+11}+2252279\cdot 166^{20k+10}\\||-143600\cdot 166^{19k+10}+1494415\cdot 166^{18k+9}-91855\cdot 166^{17k+9}+916081\cdot 166^{16k+8}-53622\cdot 166^{15k+8}\\||+505885\cdot 166^{14k+7}-27811\cdot 166^{13k+7}+244471\cdot 166^{12k+6}-12410\cdot 166^{11k+6}+99683\cdot 166^{10k+5}\\||-4567\cdot 166^{9k+5}+32609\cdot 166^{8k+4}-1302\cdot 166^{7k+4}+7885\cdot 166^{6k+3}-257\cdot 166^{5k+3}\\||+1203\cdot 166^{4k+2}-28\cdot 166^{3k+2}+83\cdot 166^{2k+1}-166^{k+1}+1)\\|\times|(166^{164k+82}+166^{163k+82}+83\cdot 166^{162k+81}+28\cdot 166^{161k+81}+1203\cdot 166^{160k+80}\\||+257\cdot 166^{159k+80}+7885\cdot 166^{158k+79}+1302\cdot 166^{157k+79}+32609\cdot 166^{156k+78}+4567\cdot 166^{155k+78}\\||+99683\cdot 166^{154k+77}+12410\cdot 166^{153k+77}+244471\cdot 166^{152k+76}+27811\cdot 166^{151k+76}+505885\cdot 166^{150k+75}\\||+53622\cdot 166^{149k+75}+916081\cdot 166^{148k+74}+91855\cdot 166^{147k+74}+1494415\cdot 166^{146k+73}+143600\cdot 166^{145k+73}\\||+2252279\cdot 166^{144k+72}+209807\cdot 166^{143k+72}+3206373\cdot 166^{142k+71}+292348\cdot 166^{141k+71}+4389733\cdot 166^{140k+70}\\||+394425\cdot 166^{139k+70}+5848595\cdot 166^{138k+69}+519588\cdot 166^{137k+69}+7621371\cdot 166^{136k+68}+669711\cdot 166^{135k+68}\\||+9712245\cdot 166^{134k+67}+843324\cdot 166^{133k+67}+12079461\cdot 166^{132k+66}+1035729\cdot 166^{131k+66}+14650911\cdot 166^{130k+65}\\||+1241130\cdot 166^{129k+65}+17358355\cdot 166^{128k+64}+1455277\cdot 166^{127k+64}+20163937\cdot 166^{126k+63}+1676452\cdot 166^{125k+63}\\||+23055473\cdot 166^{124k+62}+1903757\cdot 166^{123k+62}+26010955\cdot 166^{122k+61}+2133866\cdot 166^{121k+61}+28959351\cdot 166^{120k+60}\\||+2358899\cdot 166^{119k+60}+31772317\cdot 166^{118k+59}+2567542\cdot 166^{117k+59}+34300257\cdot 166^{116k+58}+2749079\cdot 166^{115k+58}\\||+36430775\cdot 166^{114k+57}+2897558\cdot 166^{113k+57}+38126683\cdot 166^{112k+56}+3012899\cdot 166^{111k+56}+39413297\cdot 166^{110k+55}\\||+3098010\cdot 166^{109k+55}+40324741\cdot 166^{108k+54}+3154245\cdot 166^{107k+54}+40853679\cdot 166^{106k+53}+3179044\cdot 166^{105k+53}\\||+40948287\cdot 166^{104k+52}+3167947\cdot 166^{103k+52}+40562349\cdot 166^{102k+51}+3119560\cdot 166^{101k+51}+39719589\cdot 166^{100k+50}\\||+3039485\cdot 166^{99k+50}+38538975\cdot 166^{98k+49}+2939806\cdot 166^{97k+49}+37196331\cdot 166^{96k+48}+2834193\cdot 166^{95k+48}\\||+35848945\cdot 166^{94k+47}+2732256\cdot 166^{93k+47}+34579993\cdot 166^{92k+46}+2637431\cdot 166^{91k+46}+33404927\cdot 166^{90k+45}\\||+2549918\cdot 166^{89k+45}+32331443\cdot 166^{88k+44}+2471945\cdot 166^{87k+44}+31419401\cdot 166^{86k+43}+2410728\cdot 166^{85k+43}\\||+30787929\cdot 166^{84k+42}+2376409\cdot 166^{83k+42}+30560019\cdot 166^{82k+41}+2376409\cdot 166^{81k+41}+30787929\cdot 166^{80k+40}\\||+2410728\cdot 166^{79k+40}+31419401\cdot 166^{78k+39}+2471945\cdot 166^{77k+39}+32331443\cdot 166^{76k+38}+2549918\cdot 166^{75k+38}\\||+33404927\cdot 166^{74k+37}+2637431\cdot 166^{73k+37}+34579993\cdot 166^{72k+36}+2732256\cdot 166^{71k+36}+35848945\cdot 166^{70k+35}\\||+2834193\cdot 166^{69k+35}+37196331\cdot 166^{68k+34}+2939806\cdot 166^{67k+34}+38538975\cdot 166^{66k+33}+3039485\cdot 166^{65k+33}\\||+39719589\cdot 166^{64k+32}+3119560\cdot 166^{63k+32}+40562349\cdot 166^{62k+31}+3167947\cdot 166^{61k+31}+40948287\cdot 166^{60k+30}\\||+3179044\cdot 166^{59k+30}+40853679\cdot 166^{58k+29}+3154245\cdot 166^{57k+29}+40324741\cdot 166^{56k+28}+3098010\cdot 166^{55k+28}\\||+39413297\cdot 166^{54k+27}+3012899\cdot 166^{53k+27}+38126683\cdot 166^{52k+26}+2897558\cdot 166^{51k+26}+36430775\cdot 166^{50k+25}\\||+2749079\cdot 166^{49k+25}+34300257\cdot 166^{48k+24}+2567542\cdot 166^{47k+24}+31772317\cdot 166^{46k+23}+2358899\cdot 166^{45k+23}\\||+28959351\cdot 166^{44k+22}+2133866\cdot 166^{43k+22}+26010955\cdot 166^{42k+21}+1903757\cdot 166^{41k+21}+23055473\cdot 166^{40k+20}\\||+1676452\cdot 166^{39k+20}+20163937\cdot 166^{38k+19}+1455277\cdot 166^{37k+19}+17358355\cdot 166^{36k+18}+1241130\cdot 166^{35k+18}\\||+14650911\cdot 166^{34k+17}+1035729\cdot 166^{33k+17}+12079461\cdot 166^{32k+16}+843324\cdot 166^{31k+16}+9712245\cdot 166^{30k+15}\\||+669711\cdot 166^{29k+15}+7621371\cdot 166^{28k+14}+519588\cdot 166^{27k+14}+5848595\cdot 166^{26k+13}+394425\cdot 166^{25k+13}\\||+4389733\cdot 166^{24k+12}+292348\cdot 166^{23k+12}+3206373\cdot 166^{22k+11}+209807\cdot 166^{21k+11}+2252279\cdot 166^{20k+10}\\||+143600\cdot 166^{19k+10}+1494415\cdot 166^{18k+9}+91855\cdot 166^{17k+9}+916081\cdot 166^{16k+8}+53622\cdot 166^{15k+8}\\||+505885\cdot 166^{14k+7}+27811\cdot 166^{13k+7}+244471\cdot 166^{12k+6}+12410\cdot 166^{11k+6}+99683\cdot 166^{10k+5}\\||+4567\cdot 166^{9k+5}+32609\cdot 166^{8k+4}+1302\cdot 166^{7k+4}+7885\cdot 166^{6k+3}+257\cdot 166^{5k+3}\\||+1203\cdot 166^{4k+2}+28\cdot 166^{3k+2}+83\cdot 166^{2k+1}+166^{k+1}+1)\\{\large\Phi}_{334}(167^{2k+1})|=|167^{332k+166}-167^{330k+165}+167^{328k+164}-167^{326k+163}+167^{324k+162}\\||-167^{322k+161}+167^{320k+160}-167^{318k+159}+167^{316k+158}-167^{314k+157}\\||+167^{312k+156}-167^{310k+155}+167^{308k+154}-167^{306k+153}+167^{304k+152}\\||-167^{302k+151}+167^{300k+150}-167^{298k+149}+167^{296k+148}-167^{294k+147}\\||+167^{292k+146}-167^{290k+145}+167^{288k+144}-167^{286k+143}+167^{284k+142}\\||-167^{282k+141}+167^{280k+140}-167^{278k+139}+167^{276k+138}-167^{274k+137}\\||+167^{272k+136}-167^{270k+135}+167^{268k+134}-167^{266k+133}+167^{264k+132}\\||-167^{262k+131}+167^{260k+130}-167^{258k+129}+167^{256k+128}-167^{254k+127}\\||+167^{252k+126}-167^{250k+125}+167^{248k+124}-167^{246k+123}+167^{244k+122}\\||-167^{242k+121}+167^{240k+120}-167^{238k+119}+167^{236k+118}-167^{234k+117}\\||+167^{232k+116}-167^{230k+115}+167^{228k+114}-167^{226k+113}+167^{224k+112}\\||-167^{222k+111}+167^{220k+110}-167^{218k+109}+167^{216k+108}-167^{214k+107}\\||+167^{212k+106}-167^{210k+105}+167^{208k+104}-167^{206k+103}+167^{204k+102}\\||-167^{202k+101}+167^{200k+100}-167^{198k+99}+167^{196k+98}-167^{194k+97}\\||+167^{192k+96}-167^{190k+95}+167^{188k+94}-167^{186k+93}+167^{184k+92}\\||-167^{182k+91}+167^{180k+90}-167^{178k+89}+167^{176k+88}-167^{174k+87}\\||+167^{172k+86}-167^{170k+85}+167^{168k+84}-167^{166k+83}+167^{164k+82}\\||-167^{162k+81}+167^{160k+80}-167^{158k+79}+167^{156k+78}-167^{154k+77}\\||+167^{152k+76}-167^{150k+75}+167^{148k+74}-167^{146k+73}+167^{144k+72}\\||-167^{142k+71}+167^{140k+70}-167^{138k+69}+167^{136k+68}-167^{134k+67}\\||+167^{132k+66}-167^{130k+65}+167^{128k+64}-167^{126k+63}+167^{124k+62}\\||-167^{122k+61}+167^{120k+60}-167^{118k+59}+167^{116k+58}-167^{114k+57}\\||+167^{112k+56}-167^{110k+55}+167^{108k+54}-167^{106k+53}+167^{104k+52}\\||-167^{102k+51}+167^{100k+50}-167^{98k+49}+167^{96k+48}-167^{94k+47}\\||+167^{92k+46}-167^{90k+45}+167^{88k+44}-167^{86k+43}+167^{84k+42}\\||-167^{82k+41}+167^{80k+40}-167^{78k+39}+167^{76k+38}-167^{74k+37}\\||+167^{72k+36}-167^{70k+35}+167^{68k+34}-167^{66k+33}+167^{64k+32}\\||-167^{62k+31}+167^{60k+30}-167^{58k+29}+167^{56k+28}-167^{54k+27}\\||+167^{52k+26}-167^{50k+25}+167^{48k+24}-167^{46k+23}+167^{44k+22}\\||-167^{42k+21}+167^{40k+20}-167^{38k+19}+167^{36k+18}-167^{34k+17}\\||+167^{32k+16}-167^{30k+15}+167^{28k+14}-167^{26k+13}+167^{24k+12}\\||-167^{22k+11}+167^{20k+10}-167^{18k+9}+167^{16k+8}-167^{14k+7}\\||+167^{12k+6}-167^{10k+5}+167^{8k+4}-167^{6k+3}+167^{4k+2}\\||-167^{2k+1}+1\\|=|(167^{166k+83}-167^{165k+83}+83\cdot 167^{164k+82}-27\cdot 167^{163k+82}+1065\cdot 167^{162k+81}\\||-191\cdot 167^{161k+81}+4373\cdot 167^{160k+80}-437\cdot 167^{159k+80}+4127\cdot 167^{158k+79}+185\cdot 167^{157k+79}\\||-14085\cdot 167^{156k+78}+2101\cdot 167^{155k+78}-33807\cdot 167^{154k+77}+1969\cdot 167^{153k+77}+1869\cdot 167^{152k+76}\\||-3279\cdot 167^{151k+76}+79629\cdot 167^{150k+75}-7107\cdot 167^{149k+75}+62709\cdot 167^{148k+74}+531\cdot 167^{147k+74}\\||-93199\cdot 167^{146k+73}+12095\cdot 167^{145k+73}-158129\cdot 167^{144k+72}+6551\cdot 167^{143k+72}+41035\cdot 167^{142k+71}\\||-12731\cdot 167^{141k+71}+224551\cdot 167^{140k+70}-14315\cdot 167^{139k+70}+56961\cdot 167^{138k+69}+7927\cdot 167^{137k+69}\\||-216735\cdot 167^{136k+68}+17771\cdot 167^{135k+68}-136349\cdot 167^{134k+67}-971\cdot 167^{133k+67}+138503\cdot 167^{132k+66}\\||-13893\cdot 167^{131k+66}+125303\cdot 167^{130k+65}-1625\cdot 167^{129k+65}-62681\cdot 167^{128k+64}+5803\cdot 167^{127k+64}\\||-17447\cdot 167^{126k+63}-4459\cdot 167^{125k+63}+82261\cdot 167^{124k+62}-1591\cdot 167^{123k+62}-101627\cdot 167^{122k+61}\\||+15969\cdot 167^{121k+61}-210429\cdot 167^{120k+60}+6345\cdot 167^{119k+60}+129653\cdot 167^{118k+59}-24297\cdot 167^{117k+59}\\||+360383\cdot 167^{116k+58}-17409\cdot 167^{115k+58}-37723\cdot 167^{114k+57}+23137\cdot 167^{113k+57}-423843\cdot 167^{112k+56}\\||+26697\cdot 167^{111k+56}-101363\cdot 167^{110k+55}-14069\cdot 167^{109k+55}+360979\cdot 167^{108k+54}-27281\cdot 167^{107k+54}\\||+176217\cdot 167^{106k+53}+4743\cdot 167^{105k+53}-230777\cdot 167^{104k+52}+19613\cdot 167^{103k+52}-139647\cdot 167^{102k+51}\\||-2017\cdot 167^{101k+51}+139983\cdot 167^{100k+50}-10857\cdot 167^{99k+50}+39545\cdot 167^{98k+49}+6793\cdot 167^{97k+49}\\||-153053\cdot 167^{96k+48}+8367\cdot 167^{95k+48}+25443\cdot 167^{94k+47}-13117\cdot 167^{93k+47}+235897\cdot 167^{92k+46}\\||-13757\cdot 167^{91k+46}+16127\cdot 167^{90k+45}+13285\cdot 167^{89k+45}-292089\cdot 167^{88k+44}+21835\cdot 167^{87k+44}\\||-140487\cdot 167^{86k+43}-5521\cdot 167^{85k+43}+256857\cdot 167^{84k+42}-25543\cdot 167^{83k+42}+256857\cdot 167^{82k+41}\\||-5521\cdot 167^{81k+41}-140487\cdot 167^{80k+40}+21835\cdot 167^{79k+40}-292089\cdot 167^{78k+39}+13285\cdot 167^{77k+39}\\||+16127\cdot 167^{76k+38}-13757\cdot 167^{75k+38}+235897\cdot 167^{74k+37}-13117\cdot 167^{73k+37}+25443\cdot 167^{72k+36}\\||+8367\cdot 167^{71k+36}-153053\cdot 167^{70k+35}+6793\cdot 167^{69k+35}+39545\cdot 167^{68k+34}-10857\cdot 167^{67k+34}\\||+139983\cdot 167^{66k+33}-2017\cdot 167^{65k+33}-139647\cdot 167^{64k+32}+19613\cdot 167^{63k+32}-230777\cdot 167^{62k+31}\\||+4743\cdot 167^{61k+31}+176217\cdot 167^{60k+30}-27281\cdot 167^{59k+30}+360979\cdot 167^{58k+29}-14069\cdot 167^{57k+29}\\||-101363\cdot 167^{56k+28}+26697\cdot 167^{55k+28}-423843\cdot 167^{54k+27}+23137\cdot 167^{53k+27}-37723\cdot 167^{52k+26}\\||-17409\cdot 167^{51k+26}+360383\cdot 167^{50k+25}-24297\cdot 167^{49k+25}+129653\cdot 167^{48k+24}+6345\cdot 167^{47k+24}\\||-210429\cdot 167^{46k+23}+15969\cdot 167^{45k+23}-101627\cdot 167^{44k+22}-1591\cdot 167^{43k+22}+82261\cdot 167^{42k+21}\\||-4459\cdot 167^{41k+21}-17447\cdot 167^{40k+20}+5803\cdot 167^{39k+20}-62681\cdot 167^{38k+19}-1625\cdot 167^{37k+19}\\||+125303\cdot 167^{36k+18}-13893\cdot 167^{35k+18}+138503\cdot 167^{34k+17}-971\cdot 167^{33k+17}-136349\cdot 167^{32k+16}\\||+17771\cdot 167^{31k+16}-216735\cdot 167^{30k+15}+7927\cdot 167^{29k+15}+56961\cdot 167^{28k+14}-14315\cdot 167^{27k+14}\\||+224551\cdot 167^{26k+13}-12731\cdot 167^{25k+13}+41035\cdot 167^{24k+12}+6551\cdot 167^{23k+12}-158129\cdot 167^{22k+11}\\||+12095\cdot 167^{21k+11}-93199\cdot 167^{20k+10}+531\cdot 167^{19k+10}+62709\cdot 167^{18k+9}-7107\cdot 167^{17k+9}\\||+79629\cdot 167^{16k+8}-3279\cdot 167^{15k+8}+1869\cdot 167^{14k+7}+1969\cdot 167^{13k+7}-33807\cdot 167^{12k+6}\\||+2101\cdot 167^{11k+6}-14085\cdot 167^{10k+5}+185\cdot 167^{9k+5}+4127\cdot 167^{8k+4}-437\cdot 167^{7k+4}\\||+4373\cdot 167^{6k+3}-191\cdot 167^{5k+3}+1065\cdot 167^{4k+2}-27\cdot 167^{3k+2}+83\cdot 167^{2k+1}\\||-167^{k+1}+1)\\|\times|(167^{166k+83}+167^{165k+83}+83\cdot 167^{164k+82}+27\cdot 167^{163k+82}+1065\cdot 167^{162k+81}\\||+191\cdot 167^{161k+81}+4373\cdot 167^{160k+80}+437\cdot 167^{159k+80}+4127\cdot 167^{158k+79}-185\cdot 167^{157k+79}\\||-14085\cdot 167^{156k+78}-2101\cdot 167^{155k+78}-33807\cdot 167^{154k+77}-1969\cdot 167^{153k+77}+1869\cdot 167^{152k+76}\\||+3279\cdot 167^{151k+76}+79629\cdot 167^{150k+75}+7107\cdot 167^{149k+75}+62709\cdot 167^{148k+74}-531\cdot 167^{147k+74}\\||-93199\cdot 167^{146k+73}-12095\cdot 167^{145k+73}-158129\cdot 167^{144k+72}-6551\cdot 167^{143k+72}+41035\cdot 167^{142k+71}\\||+12731\cdot 167^{141k+71}+224551\cdot 167^{140k+70}+14315\cdot 167^{139k+70}+56961\cdot 167^{138k+69}-7927\cdot 167^{137k+69}\\||-216735\cdot 167^{136k+68}-17771\cdot 167^{135k+68}-136349\cdot 167^{134k+67}+971\cdot 167^{133k+67}+138503\cdot 167^{132k+66}\\||+13893\cdot 167^{131k+66}+125303\cdot 167^{130k+65}+1625\cdot 167^{129k+65}-62681\cdot 167^{128k+64}-5803\cdot 167^{127k+64}\\||-17447\cdot 167^{126k+63}+4459\cdot 167^{125k+63}+82261\cdot 167^{124k+62}+1591\cdot 167^{123k+62}-101627\cdot 167^{122k+61}\\||-15969\cdot 167^{121k+61}-210429\cdot 167^{120k+60}-6345\cdot 167^{119k+60}+129653\cdot 167^{118k+59}+24297\cdot 167^{117k+59}\\||+360383\cdot 167^{116k+58}+17409\cdot 167^{115k+58}-37723\cdot 167^{114k+57}-23137\cdot 167^{113k+57}-423843\cdot 167^{112k+56}\\||-26697\cdot 167^{111k+56}-101363\cdot 167^{110k+55}+14069\cdot 167^{109k+55}+360979\cdot 167^{108k+54}+27281\cdot 167^{107k+54}\\||+176217\cdot 167^{106k+53}-4743\cdot 167^{105k+53}-230777\cdot 167^{104k+52}-19613\cdot 167^{103k+52}-139647\cdot 167^{102k+51}\\||+2017\cdot 167^{101k+51}+139983\cdot 167^{100k+50}+10857\cdot 167^{99k+50}+39545\cdot 167^{98k+49}-6793\cdot 167^{97k+49}\\||-153053\cdot 167^{96k+48}-8367\cdot 167^{95k+48}+25443\cdot 167^{94k+47}+13117\cdot 167^{93k+47}+235897\cdot 167^{92k+46}\\||+13757\cdot 167^{91k+46}+16127\cdot 167^{90k+45}-13285\cdot 167^{89k+45}-292089\cdot 167^{88k+44}-21835\cdot 167^{87k+44}\\||-140487\cdot 167^{86k+43}+5521\cdot 167^{85k+43}+256857\cdot 167^{84k+42}+25543\cdot 167^{83k+42}+256857\cdot 167^{82k+41}\\||+5521\cdot 167^{81k+41}-140487\cdot 167^{80k+40}-21835\cdot 167^{79k+40}-292089\cdot 167^{78k+39}-13285\cdot 167^{77k+39}\\||+16127\cdot 167^{76k+38}+13757\cdot 167^{75k+38}+235897\cdot 167^{74k+37}+13117\cdot 167^{73k+37}+25443\cdot 167^{72k+36}\\||-8367\cdot 167^{71k+36}-153053\cdot 167^{70k+35}-6793\cdot 167^{69k+35}+39545\cdot 167^{68k+34}+10857\cdot 167^{67k+34}\\||+139983\cdot 167^{66k+33}+2017\cdot 167^{65k+33}-139647\cdot 167^{64k+32}-19613\cdot 167^{63k+32}-230777\cdot 167^{62k+31}\\||-4743\cdot 167^{61k+31}+176217\cdot 167^{60k+30}+27281\cdot 167^{59k+30}+360979\cdot 167^{58k+29}+14069\cdot 167^{57k+29}\\||-101363\cdot 167^{56k+28}-26697\cdot 167^{55k+28}-423843\cdot 167^{54k+27}-23137\cdot 167^{53k+27}-37723\cdot 167^{52k+26}\\||+17409\cdot 167^{51k+26}+360383\cdot 167^{50k+25}+24297\cdot 167^{49k+25}+129653\cdot 167^{48k+24}-6345\cdot 167^{47k+24}\\||-210429\cdot 167^{46k+23}-15969\cdot 167^{45k+23}-101627\cdot 167^{44k+22}+1591\cdot 167^{43k+22}+82261\cdot 167^{42k+21}\\||+4459\cdot 167^{41k+21}-17447\cdot 167^{40k+20}-5803\cdot 167^{39k+20}-62681\cdot 167^{38k+19}+1625\cdot 167^{37k+19}\\||+125303\cdot 167^{36k+18}+13893\cdot 167^{35k+18}+138503\cdot 167^{34k+17}+971\cdot 167^{33k+17}-136349\cdot 167^{32k+16}\\||-17771\cdot 167^{31k+16}-216735\cdot 167^{30k+15}-7927\cdot 167^{29k+15}+56961\cdot 167^{28k+14}+14315\cdot 167^{27k+14}\\||+224551\cdot 167^{26k+13}+12731\cdot 167^{25k+13}+41035\cdot 167^{24k+12}-6551\cdot 167^{23k+12}-158129\cdot 167^{22k+11}\\||-12095\cdot 167^{21k+11}-93199\cdot 167^{20k+10}-531\cdot 167^{19k+10}+62709\cdot 167^{18k+9}+7107\cdot 167^{17k+9}\\||+79629\cdot 167^{16k+8}+3279\cdot 167^{15k+8}+1869\cdot 167^{14k+7}-1969\cdot 167^{13k+7}-33807\cdot 167^{12k+6}\\||-2101\cdot 167^{11k+6}-14085\cdot 167^{10k+5}-185\cdot 167^{9k+5}+4127\cdot 167^{8k+4}+437\cdot 167^{7k+4}\\||+4373\cdot 167^{6k+3}+191\cdot 167^{5k+3}+1065\cdot 167^{4k+2}+27\cdot 167^{3k+2}+83\cdot 167^{2k+1}\\||+167^{k+1}+1)\\{\large\Phi}_{340}(170^{2k+1})|=|170^{256k+128}+170^{252k+126}-170^{236k+118}-170^{232k+116}+170^{216k+108}\\||+170^{212k+106}-170^{196k+98}-170^{192k+96}-170^{188k+94}-170^{184k+92}\\||+170^{176k+88}+170^{172k+86}+170^{168k+84}+170^{164k+82}-170^{156k+78}\\||-170^{152k+76}-170^{148k+74}-170^{144k+72}+170^{136k+68}+170^{132k+66}\\||+170^{128k+64}+170^{124k+62}+170^{120k+60}-170^{112k+56}-170^{108k+54}\\||-170^{104k+52}-170^{100k+50}+170^{92k+46}+170^{88k+44}+170^{84k+42}\\||+170^{80k+40}-170^{72k+36}-170^{68k+34}-170^{64k+32}-170^{60k+30}\\||+170^{44k+22}+170^{40k+20}-170^{24k+12}-170^{20k+10}+170^{4k+2}+1\\|=|(170^{128k+64}-170^{127k+64}+85\cdot 170^{126k+63}-28\cdot 170^{125k+63}+1148\cdot 170^{124k+62}\\||-213\cdot 170^{123k+62}+5270\cdot 170^{122k+61}-597\cdot 170^{121k+61}+8468\cdot 170^{120k+60}-412\cdot 170^{119k+60}\\||-1615\cdot 170^{118k+59}+701\cdot 170^{117k+59}-11119\cdot 170^{116k+58}+200\cdot 170^{115k+58}+15300\cdot 170^{114k+57}\\||-2590\cdot 170^{113k+57}+40620\cdot 170^{112k+56}-2223\cdot 170^{111k+56}+3910\cdot 170^{110k+55}+1473\cdot 170^{109k+55}\\||-24601\cdot 170^{108k+54}+587\cdot 170^{107k+54}+21165\cdot 170^{106k+53}-3338\cdot 170^{105k+53}+46362\cdot 170^{104k+52}\\||-2361\cdot 170^{103k+52}+10030\cdot 170^{102k+51}+86\cdot 170^{101k+51}+3282\cdot 170^{100k+50}-1369\cdot 170^{99k+50}\\||+31535\cdot 170^{98k+49}-2733\cdot 170^{97k+49}+28119\cdot 170^{96k+48}-1004\cdot 170^{95k+48}-1955\cdot 170^{94k+47}\\||+675\cdot 170^{93k+47}-1575\cdot 170^{92k+46}-1465\cdot 170^{91k+46}+43350\cdot 170^{90k+45}-4238\cdot 170^{89k+45}\\||+43111\cdot 170^{88k+44}-780\cdot 170^{87k+44}-24225\cdot 170^{86k+43}+2854\cdot 170^{85k+43}-20377\cdot 170^{84k+42}\\||-930\cdot 170^{83k+42}+33915\cdot 170^{82k+41}-2132\cdot 170^{81k+41}+38\cdot 170^{80k+40}+1951\cdot 170^{79k+40}\\||-28135\cdot 170^{78k+39}+665\cdot 170^{77k+39}+12641\cdot 170^{76k+38}-1114\cdot 170^{75k+38}-6545\cdot 170^{74k+37}\\||+2627\cdot 170^{73k+37}-47685\cdot 170^{72k+36}+2999\cdot 170^{71k+36}-18530\cdot 170^{70k+35}+230\cdot 170^{69k+35}\\||-2111\cdot 170^{68k+34}+990\cdot 170^{67k+34}-26095\cdot 170^{66k+33}+2676\cdot 170^{65k+33}-37723\cdot 170^{64k+32}\\||+2676\cdot 170^{63k+32}-26095\cdot 170^{62k+31}+990\cdot 170^{61k+31}-2111\cdot 170^{60k+30}+230\cdot 170^{59k+30}\\||-18530\cdot 170^{58k+29}+2999\cdot 170^{57k+29}-47685\cdot 170^{56k+28}+2627\cdot 170^{55k+28}-6545\cdot 170^{54k+27}\\||-1114\cdot 170^{53k+27}+12641\cdot 170^{52k+26}+665\cdot 170^{51k+26}-28135\cdot 170^{50k+25}+1951\cdot 170^{49k+25}\\||+38\cdot 170^{48k+24}-2132\cdot 170^{47k+24}+33915\cdot 170^{46k+23}-930\cdot 170^{45k+23}-20377\cdot 170^{44k+22}\\||+2854\cdot 170^{43k+22}-24225\cdot 170^{42k+21}-780\cdot 170^{41k+21}+43111\cdot 170^{40k+20}-4238\cdot 170^{39k+20}\\||+43350\cdot 170^{38k+19}-1465\cdot 170^{37k+19}-1575\cdot 170^{36k+18}+675\cdot 170^{35k+18}-1955\cdot 170^{34k+17}\\||-1004\cdot 170^{33k+17}+28119\cdot 170^{32k+16}-2733\cdot 170^{31k+16}+31535\cdot 170^{30k+15}-1369\cdot 170^{29k+15}\\||+3282\cdot 170^{28k+14}+86\cdot 170^{27k+14}+10030\cdot 170^{26k+13}-2361\cdot 170^{25k+13}+46362\cdot 170^{24k+12}\\||-3338\cdot 170^{23k+12}+21165\cdot 170^{22k+11}+587\cdot 170^{21k+11}-24601\cdot 170^{20k+10}+1473\cdot 170^{19k+10}\\||+3910\cdot 170^{18k+9}-2223\cdot 170^{17k+9}+40620\cdot 170^{16k+8}-2590\cdot 170^{15k+8}+15300\cdot 170^{14k+7}\\||+200\cdot 170^{13k+7}-11119\cdot 170^{12k+6}+701\cdot 170^{11k+6}-1615\cdot 170^{10k+5}-412\cdot 170^{9k+5}\\||+8468\cdot 170^{8k+4}-597\cdot 170^{7k+4}+5270\cdot 170^{6k+3}-213\cdot 170^{5k+3}+1148\cdot 170^{4k+2}\\||-28\cdot 170^{3k+2}+85\cdot 170^{2k+1}-170^{k+1}+1)\\|\times|(170^{128k+64}+170^{127k+64}+85\cdot 170^{126k+63}+28\cdot 170^{125k+63}+1148\cdot 170^{124k+62}\\||+213\cdot 170^{123k+62}+5270\cdot 170^{122k+61}+597\cdot 170^{121k+61}+8468\cdot 170^{120k+60}+412\cdot 170^{119k+60}\\||-1615\cdot 170^{118k+59}-701\cdot 170^{117k+59}-11119\cdot 170^{116k+58}-200\cdot 170^{115k+58}+15300\cdot 170^{114k+57}\\||+2590\cdot 170^{113k+57}+40620\cdot 170^{112k+56}+2223\cdot 170^{111k+56}+3910\cdot 170^{110k+55}-1473\cdot 170^{109k+55}\\||-24601\cdot 170^{108k+54}-587\cdot 170^{107k+54}+21165\cdot 170^{106k+53}+3338\cdot 170^{105k+53}+46362\cdot 170^{104k+52}\\||+2361\cdot 170^{103k+52}+10030\cdot 170^{102k+51}-86\cdot 170^{101k+51}+3282\cdot 170^{100k+50}+1369\cdot 170^{99k+50}\\||+31535\cdot 170^{98k+49}+2733\cdot 170^{97k+49}+28119\cdot 170^{96k+48}+1004\cdot 170^{95k+48}-1955\cdot 170^{94k+47}\\||-675\cdot 170^{93k+47}-1575\cdot 170^{92k+46}+1465\cdot 170^{91k+46}+43350\cdot 170^{90k+45}+4238\cdot 170^{89k+45}\\||+43111\cdot 170^{88k+44}+780\cdot 170^{87k+44}-24225\cdot 170^{86k+43}-2854\cdot 170^{85k+43}-20377\cdot 170^{84k+42}\\||+930\cdot 170^{83k+42}+33915\cdot 170^{82k+41}+2132\cdot 170^{81k+41}+38\cdot 170^{80k+40}-1951\cdot 170^{79k+40}\\||-28135\cdot 170^{78k+39}-665\cdot 170^{77k+39}+12641\cdot 170^{76k+38}+1114\cdot 170^{75k+38}-6545\cdot 170^{74k+37}\\||-2627\cdot 170^{73k+37}-47685\cdot 170^{72k+36}-2999\cdot 170^{71k+36}-18530\cdot 170^{70k+35}-230\cdot 170^{69k+35}\\||-2111\cdot 170^{68k+34}-990\cdot 170^{67k+34}-26095\cdot 170^{66k+33}-2676\cdot 170^{65k+33}-37723\cdot 170^{64k+32}\\||-2676\cdot 170^{63k+32}-26095\cdot 170^{62k+31}-990\cdot 170^{61k+31}-2111\cdot 170^{60k+30}-230\cdot 170^{59k+30}\\||-18530\cdot 170^{58k+29}-2999\cdot 170^{57k+29}-47685\cdot 170^{56k+28}-2627\cdot 170^{55k+28}-6545\cdot 170^{54k+27}\\||+1114\cdot 170^{53k+27}+12641\cdot 170^{52k+26}-665\cdot 170^{51k+26}-28135\cdot 170^{50k+25}-1951\cdot 170^{49k+25}\\||+38\cdot 170^{48k+24}+2132\cdot 170^{47k+24}+33915\cdot 170^{46k+23}+930\cdot 170^{45k+23}-20377\cdot 170^{44k+22}\\||-2854\cdot 170^{43k+22}-24225\cdot 170^{42k+21}+780\cdot 170^{41k+21}+43111\cdot 170^{40k+20}+4238\cdot 170^{39k+20}\\||+43350\cdot 170^{38k+19}+1465\cdot 170^{37k+19}-1575\cdot 170^{36k+18}-675\cdot 170^{35k+18}-1955\cdot 170^{34k+17}\\||+1004\cdot 170^{33k+17}+28119\cdot 170^{32k+16}+2733\cdot 170^{31k+16}+31535\cdot 170^{30k+15}+1369\cdot 170^{29k+15}\\||+3282\cdot 170^{28k+14}-86\cdot 170^{27k+14}+10030\cdot 170^{26k+13}+2361\cdot 170^{25k+13}+46362\cdot 170^{24k+12}\\||+3338\cdot 170^{23k+12}+21165\cdot 170^{22k+11}-587\cdot 170^{21k+11}-24601\cdot 170^{20k+10}-1473\cdot 170^{19k+10}\\||+3910\cdot 170^{18k+9}+2223\cdot 170^{17k+9}+40620\cdot 170^{16k+8}+2590\cdot 170^{15k+8}+15300\cdot 170^{14k+7}\\||-200\cdot 170^{13k+7}-11119\cdot 170^{12k+6}-701\cdot 170^{11k+6}-1615\cdot 170^{10k+5}+412\cdot 170^{9k+5}\\||+8468\cdot 170^{8k+4}+597\cdot 170^{7k+4}+5270\cdot 170^{6k+3}+213\cdot 170^{5k+3}+1148\cdot 170^{4k+2}\\||+28\cdot 170^{3k+2}+85\cdot 170^{2k+1}+170^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{173}(173^{2k+1})\cdots{\large\Phi}_{348}(174^{2k+1})$${\large\Phi}_{173}(173^{2k+1})\cdots{\large\Phi}_{348}(174^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{173}(173^{2k+1})|=|173^{344k+172}+173^{342k+171}+173^{340k+170}+173^{338k+169}+173^{336k+168}\\||+173^{334k+167}+173^{332k+166}+173^{330k+165}+173^{328k+164}+173^{326k+163}\\||+173^{324k+162}+173^{322k+161}+173^{320k+160}+173^{318k+159}+173^{316k+158}\\||+173^{314k+157}+173^{312k+156}+173^{310k+155}+173^{308k+154}+173^{306k+153}\\||+173^{304k+152}+173^{302k+151}+173^{300k+150}+173^{298k+149}+173^{296k+148}\\||+173^{294k+147}+173^{292k+146}+173^{290k+145}+173^{288k+144}+173^{286k+143}\\||+173^{284k+142}+173^{282k+141}+173^{280k+140}+173^{278k+139}+173^{276k+138}\\||+173^{274k+137}+173^{272k+136}+173^{270k+135}+173^{268k+134}+173^{266k+133}\\||+173^{264k+132}+173^{262k+131}+173^{260k+130}+173^{258k+129}+173^{256k+128}\\||+173^{254k+127}+173^{252k+126}+173^{250k+125}+173^{248k+124}+173^{246k+123}\\||+173^{244k+122}+173^{242k+121}+173^{240k+120}+173^{238k+119}+173^{236k+118}\\||+173^{234k+117}+173^{232k+116}+173^{230k+115}+173^{228k+114}+173^{226k+113}\\||+173^{224k+112}+173^{222k+111}+173^{220k+110}+173^{218k+109}+173^{216k+108}\\||+173^{214k+107}+173^{212k+106}+173^{210k+105}+173^{208k+104}+173^{206k+103}\\||+173^{204k+102}+173^{202k+101}+173^{200k+100}+173^{198k+99}+173^{196k+98}\\||+173^{194k+97}+173^{192k+96}+173^{190k+95}+173^{188k+94}+173^{186k+93}\\||+173^{184k+92}+173^{182k+91}+173^{180k+90}+173^{178k+89}+173^{176k+88}\\||+173^{174k+87}+173^{172k+86}+173^{170k+85}+173^{168k+84}+173^{166k+83}\\||+173^{164k+82}+173^{162k+81}+173^{160k+80}+173^{158k+79}+173^{156k+78}\\||+173^{154k+77}+173^{152k+76}+173^{150k+75}+173^{148k+74}+173^{146k+73}\\||+173^{144k+72}+173^{142k+71}+173^{140k+70}+173^{138k+69}+173^{136k+68}\\||+173^{134k+67}+173^{132k+66}+173^{130k+65}+173^{128k+64}+173^{126k+63}\\||+173^{124k+62}+173^{122k+61}+173^{120k+60}+173^{118k+59}+173^{116k+58}\\||+173^{114k+57}+173^{112k+56}+173^{110k+55}+173^{108k+54}+173^{106k+53}\\||+173^{104k+52}+173^{102k+51}+173^{100k+50}+173^{98k+49}+173^{96k+48}\\||+173^{94k+47}+173^{92k+46}+173^{90k+45}+173^{88k+44}+173^{86k+43}\\||+173^{84k+42}+173^{82k+41}+173^{80k+40}+173^{78k+39}+173^{76k+38}\\||+173^{74k+37}+173^{72k+36}+173^{70k+35}+173^{68k+34}+173^{66k+33}\\||+173^{64k+32}+173^{62k+31}+173^{60k+30}+173^{58k+29}+173^{56k+28}\\||+173^{54k+27}+173^{52k+26}+173^{50k+25}+173^{48k+24}+173^{46k+23}\\||+173^{44k+22}+173^{42k+21}+173^{40k+20}+173^{38k+19}+173^{36k+18}\\||+173^{34k+17}+173^{32k+16}+173^{30k+15}+173^{28k+14}+173^{26k+13}\\||+173^{24k+12}+173^{22k+11}+173^{20k+10}+173^{18k+9}+173^{16k+8}\\||+173^{14k+7}+173^{12k+6}+173^{10k+5}+173^{8k+4}+173^{6k+3}\\||+173^{4k+2}+173^{2k+1}+1\\|=|(173^{172k+86}-173^{171k+86}+87\cdot 173^{170k+85}-29\cdot 173^{169k+85}+1233\cdot 173^{168k+84}\\||-235\cdot 173^{167k+84}+6131\cdot 173^{166k+83}-725\cdot 173^{165k+83}+10879\cdot 173^{164k+82}-491\cdot 173^{163k+82}\\||-6765\cdot 173^{162k+81}+2131\cdot 173^{161k+81}-50273\cdot 173^{160k+80}+4617\cdot 173^{159k+80}-45953\cdot 173^{158k+79}\\||+5\cdot 173^{157k+79}+67931\cdot 173^{156k+78}-10101\cdot 173^{155k+78}+161335\cdot 173^{154k+77}-9689\cdot 173^{153k+77}\\||+29011\cdot 173^{152k+76}+7981\cdot 173^{151k+76}-222505\cdot 173^{150k+75}+20569\cdot 173^{149k+75}-220709\cdot 173^{148k+74}\\||+6457\cdot 173^{147k+74}+88181\cdot 173^{146k+73}-17867\cdot 173^{145k+73}+305341\cdot 173^{144k+72}-21469\cdot 173^{143k+72}\\||+184195\cdot 173^{142k+71}-3655\cdot 173^{141k+71}-90495\cdot 173^{140k+70}+15955\cdot 173^{139k+70}-298583\cdot 173^{138k+69}\\||+26039\cdot 173^{137k+69}-316907\cdot 173^{136k+68}+14895\cdot 173^{135k+68}+23233\cdot 173^{134k+67}-22559\cdot 173^{133k+67}\\||+532747\cdot 173^{132k+66}-47331\cdot 173^{131k+66}+493713\cdot 173^{130k+65}-12021\cdot 173^{129k+65}-276329\cdot 173^{128k+64}\\||+48915\cdot 173^{127k+64}-791537\cdot 173^{126k+63}+49849\cdot 173^{125k+63}-288531\cdot 173^{124k+62}-12545\cdot 173^{123k+62}\\||+536751\cdot 173^{122k+61}-53895\cdot 173^{121k+61}+654379\cdot 173^{120k+60}-32561\cdot 173^{119k+60}+123373\cdot 173^{118k+59}\\||+13467\cdot 173^{117k+59}-422047\cdot 173^{116k+58}+44363\cdot 173^{115k+58}-635229\cdot 173^{114k+57}+41391\cdot 173^{113k+57}\\||-290847\cdot 173^{112k+56}-7447\cdot 173^{111k+56}+524949\cdot 173^{110k+55}-63959\cdot 173^{109k+55}+904983\cdot 173^{108k+54}\\||-49725\cdot 173^{107k+54}+150839\cdot 173^{106k+53}+32749\cdot 173^{105k+53}-875267\cdot 173^{104k+52}+77425\cdot 173^{103k+52}\\||-815507\cdot 173^{102k+51}+26889\cdot 173^{101k+51}+194993\cdot 173^{100k+50}-49313\cdot 173^{99k+50}+880919\cdot 173^{98k+49}\\||-64649\cdot 173^{97k+49}+591515\cdot 173^{96k+48}-14255\cdot 173^{95k+48}-257525\cdot 173^{94k+47}+48339\cdot 173^{93k+47}\\||-849653\cdot 173^{92k+46}+63149\cdot 173^{91k+46}-564983\cdot 173^{90k+45}+8651\cdot 173^{89k+45}+391721\cdot 173^{88k+44}\\||-59873\cdot 173^{87k+44}+937115\cdot 173^{86k+43}-59873\cdot 173^{85k+43}+391721\cdot 173^{84k+42}+8651\cdot 173^{83k+42}\\||-564983\cdot 173^{82k+41}+63149\cdot 173^{81k+41}-849653\cdot 173^{80k+40}+48339\cdot 173^{79k+40}-257525\cdot 173^{78k+39}\\||-14255\cdot 173^{77k+39}+591515\cdot 173^{76k+38}-64649\cdot 173^{75k+38}+880919\cdot 173^{74k+37}-49313\cdot 173^{73k+37}\\||+194993\cdot 173^{72k+36}+26889\cdot 173^{71k+36}-815507\cdot 173^{70k+35}+77425\cdot 173^{69k+35}-875267\cdot 173^{68k+34}\\||+32749\cdot 173^{67k+34}+150839\cdot 173^{66k+33}-49725\cdot 173^{65k+33}+904983\cdot 173^{64k+32}-63959\cdot 173^{63k+32}\\||+524949\cdot 173^{62k+31}-7447\cdot 173^{61k+31}-290847\cdot 173^{60k+30}+41391\cdot 173^{59k+30}-635229\cdot 173^{58k+29}\\||+44363\cdot 173^{57k+29}-422047\cdot 173^{56k+28}+13467\cdot 173^{55k+28}+123373\cdot 173^{54k+27}-32561\cdot 173^{53k+27}\\||+654379\cdot 173^{52k+26}-53895\cdot 173^{51k+26}+536751\cdot 173^{50k+25}-12545\cdot 173^{49k+25}-288531\cdot 173^{48k+24}\\||+49849\cdot 173^{47k+24}-791537\cdot 173^{46k+23}+48915\cdot 173^{45k+23}-276329\cdot 173^{44k+22}-12021\cdot 173^{43k+22}\\||+493713\cdot 173^{42k+21}-47331\cdot 173^{41k+21}+532747\cdot 173^{40k+20}-22559\cdot 173^{39k+20}+23233\cdot 173^{38k+19}\\||+14895\cdot 173^{37k+19}-316907\cdot 173^{36k+18}+26039\cdot 173^{35k+18}-298583\cdot 173^{34k+17}+15955\cdot 173^{33k+17}\\||-90495\cdot 173^{32k+16}-3655\cdot 173^{31k+16}+184195\cdot 173^{30k+15}-21469\cdot 173^{29k+15}+305341\cdot 173^{28k+14}\\||-17867\cdot 173^{27k+14}+88181\cdot 173^{26k+13}+6457\cdot 173^{25k+13}-220709\cdot 173^{24k+12}+20569\cdot 173^{23k+12}\\||-222505\cdot 173^{22k+11}+7981\cdot 173^{21k+11}+29011\cdot 173^{20k+10}-9689\cdot 173^{19k+10}+161335\cdot 173^{18k+9}\\||-10101\cdot 173^{17k+9}+67931\cdot 173^{16k+8}+5\cdot 173^{15k+8}-45953\cdot 173^{14k+7}+4617\cdot 173^{13k+7}\\||-50273\cdot 173^{12k+6}+2131\cdot 173^{11k+6}-6765\cdot 173^{10k+5}-491\cdot 173^{9k+5}+10879\cdot 173^{8k+4}\\||-725\cdot 173^{7k+4}+6131\cdot 173^{6k+3}-235\cdot 173^{5k+3}+1233\cdot 173^{4k+2}-29\cdot 173^{3k+2}\\||+87\cdot 173^{2k+1}-173^{k+1}+1)\\|\times|(173^{172k+86}+173^{171k+86}+87\cdot 173^{170k+85}+29\cdot 173^{169k+85}+1233\cdot 173^{168k+84}\\||+235\cdot 173^{167k+84}+6131\cdot 173^{166k+83}+725\cdot 173^{165k+83}+10879\cdot 173^{164k+82}+491\cdot 173^{163k+82}\\||-6765\cdot 173^{162k+81}-2131\cdot 173^{161k+81}-50273\cdot 173^{160k+80}-4617\cdot 173^{159k+80}-45953\cdot 173^{158k+79}\\||-5\cdot 173^{157k+79}+67931\cdot 173^{156k+78}+10101\cdot 173^{155k+78}+161335\cdot 173^{154k+77}+9689\cdot 173^{153k+77}\\||+29011\cdot 173^{152k+76}-7981\cdot 173^{151k+76}-222505\cdot 173^{150k+75}-20569\cdot 173^{149k+75}-220709\cdot 173^{148k+74}\\||-6457\cdot 173^{147k+74}+88181\cdot 173^{146k+73}+17867\cdot 173^{145k+73}+305341\cdot 173^{144k+72}+21469\cdot 173^{143k+72}\\||+184195\cdot 173^{142k+71}+3655\cdot 173^{141k+71}-90495\cdot 173^{140k+70}-15955\cdot 173^{139k+70}-298583\cdot 173^{138k+69}\\||-26039\cdot 173^{137k+69}-316907\cdot 173^{136k+68}-14895\cdot 173^{135k+68}+23233\cdot 173^{134k+67}+22559\cdot 173^{133k+67}\\||+532747\cdot 173^{132k+66}+47331\cdot 173^{131k+66}+493713\cdot 173^{130k+65}+12021\cdot 173^{129k+65}-276329\cdot 173^{128k+64}\\||-48915\cdot 173^{127k+64}-791537\cdot 173^{126k+63}-49849\cdot 173^{125k+63}-288531\cdot 173^{124k+62}+12545\cdot 173^{123k+62}\\||+536751\cdot 173^{122k+61}+53895\cdot 173^{121k+61}+654379\cdot 173^{120k+60}+32561\cdot 173^{119k+60}+123373\cdot 173^{118k+59}\\||-13467\cdot 173^{117k+59}-422047\cdot 173^{116k+58}-44363\cdot 173^{115k+58}-635229\cdot 173^{114k+57}-41391\cdot 173^{113k+57}\\||-290847\cdot 173^{112k+56}+7447\cdot 173^{111k+56}+524949\cdot 173^{110k+55}+63959\cdot 173^{109k+55}+904983\cdot 173^{108k+54}\\||+49725\cdot 173^{107k+54}+150839\cdot 173^{106k+53}-32749\cdot 173^{105k+53}-875267\cdot 173^{104k+52}-77425\cdot 173^{103k+52}\\||-815507\cdot 173^{102k+51}-26889\cdot 173^{101k+51}+194993\cdot 173^{100k+50}+49313\cdot 173^{99k+50}+880919\cdot 173^{98k+49}\\||+64649\cdot 173^{97k+49}+591515\cdot 173^{96k+48}+14255\cdot 173^{95k+48}-257525\cdot 173^{94k+47}-48339\cdot 173^{93k+47}\\||-849653\cdot 173^{92k+46}-63149\cdot 173^{91k+46}-564983\cdot 173^{90k+45}-8651\cdot 173^{89k+45}+391721\cdot 173^{88k+44}\\||+59873\cdot 173^{87k+44}+937115\cdot 173^{86k+43}+59873\cdot 173^{85k+43}+391721\cdot 173^{84k+42}-8651\cdot 173^{83k+42}\\||-564983\cdot 173^{82k+41}-63149\cdot 173^{81k+41}-849653\cdot 173^{80k+40}-48339\cdot 173^{79k+40}-257525\cdot 173^{78k+39}\\||+14255\cdot 173^{77k+39}+591515\cdot 173^{76k+38}+64649\cdot 173^{75k+38}+880919\cdot 173^{74k+37}+49313\cdot 173^{73k+37}\\||+194993\cdot 173^{72k+36}-26889\cdot 173^{71k+36}-815507\cdot 173^{70k+35}-77425\cdot 173^{69k+35}-875267\cdot 173^{68k+34}\\||-32749\cdot 173^{67k+34}+150839\cdot 173^{66k+33}+49725\cdot 173^{65k+33}+904983\cdot 173^{64k+32}+63959\cdot 173^{63k+32}\\||+524949\cdot 173^{62k+31}+7447\cdot 173^{61k+31}-290847\cdot 173^{60k+30}-41391\cdot 173^{59k+30}-635229\cdot 173^{58k+29}\\||-44363\cdot 173^{57k+29}-422047\cdot 173^{56k+28}-13467\cdot 173^{55k+28}+123373\cdot 173^{54k+27}+32561\cdot 173^{53k+27}\\||+654379\cdot 173^{52k+26}+53895\cdot 173^{51k+26}+536751\cdot 173^{50k+25}+12545\cdot 173^{49k+25}-288531\cdot 173^{48k+24}\\||-49849\cdot 173^{47k+24}-791537\cdot 173^{46k+23}-48915\cdot 173^{45k+23}-276329\cdot 173^{44k+22}+12021\cdot 173^{43k+22}\\||+493713\cdot 173^{42k+21}+47331\cdot 173^{41k+21}+532747\cdot 173^{40k+20}+22559\cdot 173^{39k+20}+23233\cdot 173^{38k+19}\\||-14895\cdot 173^{37k+19}-316907\cdot 173^{36k+18}-26039\cdot 173^{35k+18}-298583\cdot 173^{34k+17}-15955\cdot 173^{33k+17}\\||-90495\cdot 173^{32k+16}+3655\cdot 173^{31k+16}+184195\cdot 173^{30k+15}+21469\cdot 173^{29k+15}+305341\cdot 173^{28k+14}\\||+17867\cdot 173^{27k+14}+88181\cdot 173^{26k+13}-6457\cdot 173^{25k+13}-220709\cdot 173^{24k+12}-20569\cdot 173^{23k+12}\\||-222505\cdot 173^{22k+11}-7981\cdot 173^{21k+11}+29011\cdot 173^{20k+10}+9689\cdot 173^{19k+10}+161335\cdot 173^{18k+9}\\||+10101\cdot 173^{17k+9}+67931\cdot 173^{16k+8}-5\cdot 173^{15k+8}-45953\cdot 173^{14k+7}-4617\cdot 173^{13k+7}\\||-50273\cdot 173^{12k+6}-2131\cdot 173^{11k+6}-6765\cdot 173^{10k+5}+491\cdot 173^{9k+5}+10879\cdot 173^{8k+4}\\||+725\cdot 173^{7k+4}+6131\cdot 173^{6k+3}+235\cdot 173^{5k+3}+1233\cdot 173^{4k+2}+29\cdot 173^{3k+2}\\||+87\cdot 173^{2k+1}+173^{k+1}+1)\\{\large\Phi}_{348}(174^{2k+1})|=|174^{224k+112}+174^{220k+110}-174^{212k+106}-174^{208k+104}+174^{200k+100}\\||+174^{196k+98}-174^{188k+94}-174^{184k+92}+174^{176k+88}+174^{172k+86}\\||-174^{164k+82}-174^{160k+80}+174^{152k+76}+174^{148k+74}-174^{140k+70}\\||-174^{136k+68}+174^{128k+64}+174^{124k+62}-174^{116k+58}-174^{112k+56}\\||-174^{108k+54}+174^{100k+50}+174^{96k+48}-174^{88k+44}-174^{84k+42}\\||+174^{76k+38}+174^{72k+36}-174^{64k+32}-174^{60k+30}+174^{52k+26}\\||+174^{48k+24}-174^{40k+20}-174^{36k+18}+174^{28k+14}+174^{24k+12}\\||-174^{16k+8}-174^{12k+6}+174^{4k+2}+1\\|=|(174^{112k+56}-174^{111k+56}+87\cdot 174^{110k+55}-29\cdot 174^{109k+55}+1262\cdot 174^{108k+54}\\||-253\cdot 174^{107k+54}+7395\cdot 174^{106k+53}-1077\cdot 174^{105k+53}+24349\cdot 174^{104k+52}-2892\cdot 174^{103k+52}\\||+55680\cdot 174^{102k+51}-5810\cdot 174^{101k+51}+100055\cdot 174^{100k+50}-9413\cdot 174^{99k+50}+146769\cdot 174^{98k+49}\\||-12575\cdot 174^{97k+49}+180070\cdot 174^{96k+48}-14271\cdot 174^{95k+48}+189225\cdot 174^{94k+47}-13797\cdot 174^{93k+47}\\||+166583\cdot 174^{92k+46}-10954\cdot 174^{91k+46}+117972\cdot 174^{90k+45}-6728\cdot 174^{89k+45}+57721\cdot 174^{88k+44}\\||-1971\cdot 174^{87k+44}-4089\cdot 174^{86k+43}+2241\cdot 174^{85k+43}-48490\cdot 174^{84k+42}+4608\cdot 174^{83k+42}\\||-66903\cdot 174^{82k+41}+5006\cdot 174^{81k+41}-56141\cdot 174^{80k+40}+2738\cdot 174^{79k+40}-7482\cdot 174^{78k+39}\\||-2013\cdot 174^{77k+39}+63629\cdot 174^{76k+38}-7824\cdot 174^{75k+38}+144681\cdot 174^{74k+37}-14029\cdot 174^{73k+37}\\||+219346\cdot 174^{72k+36}-18470\cdot 174^{71k+36}+257259\cdot 174^{70k+35}-19828\cdot 174^{69k+35}+256817\cdot 174^{68k+34}\\||-18306\cdot 174^{67k+34}+214542\cdot 174^{66k+33}-13527\cdot 174^{65k+33}+138295\cdot 174^{64k+32}-7462\cdot 174^{63k+32}\\||+59943\cdot 174^{62k+31}-1693\cdot 174^{61k+31}-13114\cdot 174^{60k+30}+3224\cdot 174^{59k+30}-62379\cdot 174^{58k+29}\\||+5496\cdot 174^{57k+29}-75365\cdot 174^{56k+28}+5496\cdot 174^{55k+28}-62379\cdot 174^{54k+27}+3224\cdot 174^{53k+27}\\||-13114\cdot 174^{52k+26}-1693\cdot 174^{51k+26}+59943\cdot 174^{50k+25}-7462\cdot 174^{49k+25}+138295\cdot 174^{48k+24}\\||-13527\cdot 174^{47k+24}+214542\cdot 174^{46k+23}-18306\cdot 174^{45k+23}+256817\cdot 174^{44k+22}-19828\cdot 174^{43k+22}\\||+257259\cdot 174^{42k+21}-18470\cdot 174^{41k+21}+219346\cdot 174^{40k+20}-14029\cdot 174^{39k+20}+144681\cdot 174^{38k+19}\\||-7824\cdot 174^{37k+19}+63629\cdot 174^{36k+18}-2013\cdot 174^{35k+18}-7482\cdot 174^{34k+17}+2738\cdot 174^{33k+17}\\||-56141\cdot 174^{32k+16}+5006\cdot 174^{31k+16}-66903\cdot 174^{30k+15}+4608\cdot 174^{29k+15}-48490\cdot 174^{28k+14}\\||+2241\cdot 174^{27k+14}-4089\cdot 174^{26k+13}-1971\cdot 174^{25k+13}+57721\cdot 174^{24k+12}-6728\cdot 174^{23k+12}\\||+117972\cdot 174^{22k+11}-10954\cdot 174^{21k+11}+166583\cdot 174^{20k+10}-13797\cdot 174^{19k+10}+189225\cdot 174^{18k+9}\\||-14271\cdot 174^{17k+9}+180070\cdot 174^{16k+8}-12575\cdot 174^{15k+8}+146769\cdot 174^{14k+7}-9413\cdot 174^{13k+7}\\||+100055\cdot 174^{12k+6}-5810\cdot 174^{11k+6}+55680\cdot 174^{10k+5}-2892\cdot 174^{9k+5}+24349\cdot 174^{8k+4}\\||-1077\cdot 174^{7k+4}+7395\cdot 174^{6k+3}-253\cdot 174^{5k+3}+1262\cdot 174^{4k+2}-29\cdot 174^{3k+2}\\||+87\cdot 174^{2k+1}-174^{k+1}+1)\\|\times|(174^{112k+56}+174^{111k+56}+87\cdot 174^{110k+55}+29\cdot 174^{109k+55}+1262\cdot 174^{108k+54}\\||+253\cdot 174^{107k+54}+7395\cdot 174^{106k+53}+1077\cdot 174^{105k+53}+24349\cdot 174^{104k+52}+2892\cdot 174^{103k+52}\\||+55680\cdot 174^{102k+51}+5810\cdot 174^{101k+51}+100055\cdot 174^{100k+50}+9413\cdot 174^{99k+50}+146769\cdot 174^{98k+49}\\||+12575\cdot 174^{97k+49}+180070\cdot 174^{96k+48}+14271\cdot 174^{95k+48}+189225\cdot 174^{94k+47}+13797\cdot 174^{93k+47}\\||+166583\cdot 174^{92k+46}+10954\cdot 174^{91k+46}+117972\cdot 174^{90k+45}+6728\cdot 174^{89k+45}+57721\cdot 174^{88k+44}\\||+1971\cdot 174^{87k+44}-4089\cdot 174^{86k+43}-2241\cdot 174^{85k+43}-48490\cdot 174^{84k+42}-4608\cdot 174^{83k+42}\\||-66903\cdot 174^{82k+41}-5006\cdot 174^{81k+41}-56141\cdot 174^{80k+40}-2738\cdot 174^{79k+40}-7482\cdot 174^{78k+39}\\||+2013\cdot 174^{77k+39}+63629\cdot 174^{76k+38}+7824\cdot 174^{75k+38}+144681\cdot 174^{74k+37}+14029\cdot 174^{73k+37}\\||+219346\cdot 174^{72k+36}+18470\cdot 174^{71k+36}+257259\cdot 174^{70k+35}+19828\cdot 174^{69k+35}+256817\cdot 174^{68k+34}\\||+18306\cdot 174^{67k+34}+214542\cdot 174^{66k+33}+13527\cdot 174^{65k+33}+138295\cdot 174^{64k+32}+7462\cdot 174^{63k+32}\\||+59943\cdot 174^{62k+31}+1693\cdot 174^{61k+31}-13114\cdot 174^{60k+30}-3224\cdot 174^{59k+30}-62379\cdot 174^{58k+29}\\||-5496\cdot 174^{57k+29}-75365\cdot 174^{56k+28}-5496\cdot 174^{55k+28}-62379\cdot 174^{54k+27}-3224\cdot 174^{53k+27}\\||-13114\cdot 174^{52k+26}+1693\cdot 174^{51k+26}+59943\cdot 174^{50k+25}+7462\cdot 174^{49k+25}+138295\cdot 174^{48k+24}\\||+13527\cdot 174^{47k+24}+214542\cdot 174^{46k+23}+18306\cdot 174^{45k+23}+256817\cdot 174^{44k+22}+19828\cdot 174^{43k+22}\\||+257259\cdot 174^{42k+21}+18470\cdot 174^{41k+21}+219346\cdot 174^{40k+20}+14029\cdot 174^{39k+20}+144681\cdot 174^{38k+19}\\||+7824\cdot 174^{37k+19}+63629\cdot 174^{36k+18}+2013\cdot 174^{35k+18}-7482\cdot 174^{34k+17}-2738\cdot 174^{33k+17}\\||-56141\cdot 174^{32k+16}-5006\cdot 174^{31k+16}-66903\cdot 174^{30k+15}-4608\cdot 174^{29k+15}-48490\cdot 174^{28k+14}\\||-2241\cdot 174^{27k+14}-4089\cdot 174^{26k+13}+1971\cdot 174^{25k+13}+57721\cdot 174^{24k+12}+6728\cdot 174^{23k+12}\\||+117972\cdot 174^{22k+11}+10954\cdot 174^{21k+11}+166583\cdot 174^{20k+10}+13797\cdot 174^{19k+10}+189225\cdot 174^{18k+9}\\||+14271\cdot 174^{17k+9}+180070\cdot 174^{16k+8}+12575\cdot 174^{15k+8}+146769\cdot 174^{14k+7}+9413\cdot 174^{13k+7}\\||+100055\cdot 174^{12k+6}+5810\cdot 174^{11k+6}+55680\cdot 174^{10k+5}+2892\cdot 174^{9k+5}+24349\cdot 174^{8k+4}\\||+1077\cdot 174^{7k+4}+7395\cdot 174^{6k+3}+253\cdot 174^{5k+3}+1262\cdot 174^{4k+2}+29\cdot 174^{3k+2}\\||+87\cdot 174^{2k+1}+174^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{177}(177^{2k+1})\cdots{\large\Phi}_{358}(179^{2k+1})$${\large\Phi}_{177}(177^{2k+1})\cdots{\large\Phi}_{358}(179^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{177}(177^{2k+1})|=|177^{232k+116}-177^{230k+115}+177^{226k+113}-177^{224k+112}+177^{220k+110}\\||-177^{218k+109}+177^{214k+107}-177^{212k+106}+177^{208k+104}-177^{206k+103}\\||+177^{202k+101}-177^{200k+100}+177^{196k+98}-177^{194k+97}+177^{190k+95}\\||-177^{188k+94}+177^{184k+92}-177^{182k+91}+177^{178k+89}-177^{176k+88}\\||+177^{172k+86}-177^{170k+85}+177^{166k+83}-177^{164k+82}+177^{160k+80}\\||-177^{158k+79}+177^{154k+77}-177^{152k+76}+177^{148k+74}-177^{146k+73}\\||+177^{142k+71}-177^{140k+70}+177^{136k+68}-177^{134k+67}+177^{130k+65}\\||-177^{128k+64}+177^{124k+62}-177^{122k+61}+177^{118k+59}-177^{116k+58}\\||+177^{114k+57}-177^{110k+55}+177^{108k+54}-177^{104k+52}+177^{102k+51}\\||-177^{98k+49}+177^{96k+48}-177^{92k+46}+177^{90k+45}-177^{86k+43}\\||+177^{84k+42}-177^{80k+40}+177^{78k+39}-177^{74k+37}+177^{72k+36}\\||-177^{68k+34}+177^{66k+33}-177^{62k+31}+177^{60k+30}-177^{56k+28}\\||+177^{54k+27}-177^{50k+25}+177^{48k+24}-177^{44k+22}+177^{42k+21}\\||-177^{38k+19}+177^{36k+18}-177^{32k+16}+177^{30k+15}-177^{26k+13}\\||+177^{24k+12}-177^{20k+10}+177^{18k+9}-177^{14k+7}+177^{12k+6}\\||-177^{8k+4}+177^{6k+3}-177^{2k+1}+1\\|=|(177^{116k+58}-177^{115k+58}+88\cdot 177^{114k+57}-29\cdot 177^{113k+57}+1261\cdot 177^{112k+56}\\||-246\cdot 177^{111k+56}+7003\cdot 177^{110k+55}-949\cdot 177^{109k+55}+19366\cdot 177^{108k+54}-1895\cdot 177^{107k+54}\\||+27307\cdot 177^{106k+53}-1744\cdot 177^{105k+53}+12535\cdot 177^{104k+52}+135\cdot 177^{103k+52}-13970\cdot 177^{102k+51}\\||+1313\cdot 177^{101k+51}-8447\cdot 177^{100k+50}-860\cdot 177^{99k+50}+34585\cdot 177^{98k+49}-3765\cdot 177^{97k+49}\\||+48706\cdot 177^{96k+48}-2083\cdot 177^{95k+48}-6779\cdot 177^{94k+47}+3126\cdot 177^{93k+47}-61817\cdot 177^{92k+46}\\||+4319\cdot 177^{91k+46}-28256\cdot 177^{90k+45}-1169\cdot 177^{89k+45}+57049\cdot 177^{88k+44}-5982\cdot 177^{87k+44}\\||+73879\cdot 177^{86k+43}-3167\cdot 177^{85k+43}-2708\cdot 177^{84k+42}+3185\cdot 177^{83k+42}-61043\cdot 177^{82k+41}\\||+3916\cdot 177^{81k+41}-20759\cdot 177^{80k+40}-1399\cdot 177^{79k+40}+49150\cdot 177^{78k+39}-4425\cdot 177^{77k+39}\\||+45361\cdot 177^{76k+38}-1186\cdot 177^{75k+38}-17429\cdot 177^{74k+37}+3201\cdot 177^{73k+37}-53480\cdot 177^{72k+36}\\||+3809\cdot 177^{71k+36}-39497\cdot 177^{70k+35}+1980\cdot 177^{69k+35}-15533\cdot 177^{68k+34}+617\cdot 177^{67k+34}\\||-3320\cdot 177^{66k+33}-35\cdot 177^{65k+33}+3385\cdot 177^{64k+32}-336\cdot 177^{63k+32}+2533\cdot 177^{62k+31}\\||+193\cdot 177^{61k+31}-9314\cdot 177^{60k+30}+1131\cdot 177^{59k+30}-17291\cdot 177^{58k+29}+1131\cdot 177^{57k+29}\\||-9314\cdot 177^{56k+28}+193\cdot 177^{55k+28}+2533\cdot 177^{54k+27}-336\cdot 177^{53k+27}+3385\cdot 177^{52k+26}\\||-35\cdot 177^{51k+26}-3320\cdot 177^{50k+25}+617\cdot 177^{49k+25}-15533\cdot 177^{48k+24}+1980\cdot 177^{47k+24}\\||-39497\cdot 177^{46k+23}+3809\cdot 177^{45k+23}-53480\cdot 177^{44k+22}+3201\cdot 177^{43k+22}-17429\cdot 177^{42k+21}\\||-1186\cdot 177^{41k+21}+45361\cdot 177^{40k+20}-4425\cdot 177^{39k+20}+49150\cdot 177^{38k+19}-1399\cdot 177^{37k+19}\\||-20759\cdot 177^{36k+18}+3916\cdot 177^{35k+18}-61043\cdot 177^{34k+17}+3185\cdot 177^{33k+17}-2708\cdot 177^{32k+16}\\||-3167\cdot 177^{31k+16}+73879\cdot 177^{30k+15}-5982\cdot 177^{29k+15}+57049\cdot 177^{28k+14}-1169\cdot 177^{27k+14}\\||-28256\cdot 177^{26k+13}+4319\cdot 177^{25k+13}-61817\cdot 177^{24k+12}+3126\cdot 177^{23k+12}-6779\cdot 177^{22k+11}\\||-2083\cdot 177^{21k+11}+48706\cdot 177^{20k+10}-3765\cdot 177^{19k+10}+34585\cdot 177^{18k+9}-860\cdot 177^{17k+9}\\||-8447\cdot 177^{16k+8}+1313\cdot 177^{15k+8}-13970\cdot 177^{14k+7}+135\cdot 177^{13k+7}+12535\cdot 177^{12k+6}\\||-1744\cdot 177^{11k+6}+27307\cdot 177^{10k+5}-1895\cdot 177^{9k+5}+19366\cdot 177^{8k+4}-949\cdot 177^{7k+4}\\||+7003\cdot 177^{6k+3}-246\cdot 177^{5k+3}+1261\cdot 177^{4k+2}-29\cdot 177^{3k+2}+88\cdot 177^{2k+1}\\||-177^{k+1}+1)\\|\times|(177^{116k+58}+177^{115k+58}+88\cdot 177^{114k+57}+29\cdot 177^{113k+57}+1261\cdot 177^{112k+56}\\||+246\cdot 177^{111k+56}+7003\cdot 177^{110k+55}+949\cdot 177^{109k+55}+19366\cdot 177^{108k+54}+1895\cdot 177^{107k+54}\\||+27307\cdot 177^{106k+53}+1744\cdot 177^{105k+53}+12535\cdot 177^{104k+52}-135\cdot 177^{103k+52}-13970\cdot 177^{102k+51}\\||-1313\cdot 177^{101k+51}-8447\cdot 177^{100k+50}+860\cdot 177^{99k+50}+34585\cdot 177^{98k+49}+3765\cdot 177^{97k+49}\\||+48706\cdot 177^{96k+48}+2083\cdot 177^{95k+48}-6779\cdot 177^{94k+47}-3126\cdot 177^{93k+47}-61817\cdot 177^{92k+46}\\||-4319\cdot 177^{91k+46}-28256\cdot 177^{90k+45}+1169\cdot 177^{89k+45}+57049\cdot 177^{88k+44}+5982\cdot 177^{87k+44}\\||+73879\cdot 177^{86k+43}+3167\cdot 177^{85k+43}-2708\cdot 177^{84k+42}-3185\cdot 177^{83k+42}-61043\cdot 177^{82k+41}\\||-3916\cdot 177^{81k+41}-20759\cdot 177^{80k+40}+1399\cdot 177^{79k+40}+49150\cdot 177^{78k+39}+4425\cdot 177^{77k+39}\\||+45361\cdot 177^{76k+38}+1186\cdot 177^{75k+38}-17429\cdot 177^{74k+37}-3201\cdot 177^{73k+37}-53480\cdot 177^{72k+36}\\||-3809\cdot 177^{71k+36}-39497\cdot 177^{70k+35}-1980\cdot 177^{69k+35}-15533\cdot 177^{68k+34}-617\cdot 177^{67k+34}\\||-3320\cdot 177^{66k+33}+35\cdot 177^{65k+33}+3385\cdot 177^{64k+32}+336\cdot 177^{63k+32}+2533\cdot 177^{62k+31}\\||-193\cdot 177^{61k+31}-9314\cdot 177^{60k+30}-1131\cdot 177^{59k+30}-17291\cdot 177^{58k+29}-1131\cdot 177^{57k+29}\\||-9314\cdot 177^{56k+28}-193\cdot 177^{55k+28}+2533\cdot 177^{54k+27}+336\cdot 177^{53k+27}+3385\cdot 177^{52k+26}\\||+35\cdot 177^{51k+26}-3320\cdot 177^{50k+25}-617\cdot 177^{49k+25}-15533\cdot 177^{48k+24}-1980\cdot 177^{47k+24}\\||-39497\cdot 177^{46k+23}-3809\cdot 177^{45k+23}-53480\cdot 177^{44k+22}-3201\cdot 177^{43k+22}-17429\cdot 177^{42k+21}\\||+1186\cdot 177^{41k+21}+45361\cdot 177^{40k+20}+4425\cdot 177^{39k+20}+49150\cdot 177^{38k+19}+1399\cdot 177^{37k+19}\\||-20759\cdot 177^{36k+18}-3916\cdot 177^{35k+18}-61043\cdot 177^{34k+17}-3185\cdot 177^{33k+17}-2708\cdot 177^{32k+16}\\||+3167\cdot 177^{31k+16}+73879\cdot 177^{30k+15}+5982\cdot 177^{29k+15}+57049\cdot 177^{28k+14}+1169\cdot 177^{27k+14}\\||-28256\cdot 177^{26k+13}-4319\cdot 177^{25k+13}-61817\cdot 177^{24k+12}-3126\cdot 177^{23k+12}-6779\cdot 177^{22k+11}\\||+2083\cdot 177^{21k+11}+48706\cdot 177^{20k+10}+3765\cdot 177^{19k+10}+34585\cdot 177^{18k+9}+860\cdot 177^{17k+9}\\||-8447\cdot 177^{16k+8}-1313\cdot 177^{15k+8}-13970\cdot 177^{14k+7}-135\cdot 177^{13k+7}+12535\cdot 177^{12k+6}\\||+1744\cdot 177^{11k+6}+27307\cdot 177^{10k+5}+1895\cdot 177^{9k+5}+19366\cdot 177^{8k+4}+949\cdot 177^{7k+4}\\||+7003\cdot 177^{6k+3}+246\cdot 177^{5k+3}+1261\cdot 177^{4k+2}+29\cdot 177^{3k+2}+88\cdot 177^{2k+1}\\||+177^{k+1}+1)\\{\large\Phi}_{356}(178^{2k+1})|=|178^{352k+176}-178^{348k+174}+178^{344k+172}-178^{340k+170}+178^{336k+168}\\||-178^{332k+166}+178^{328k+164}-178^{324k+162}+178^{320k+160}-178^{316k+158}\\||+178^{312k+156}-178^{308k+154}+178^{304k+152}-178^{300k+150}+178^{296k+148}\\||-178^{292k+146}+178^{288k+144}-178^{284k+142}+178^{280k+140}-178^{276k+138}\\||+178^{272k+136}-178^{268k+134}+178^{264k+132}-178^{260k+130}+178^{256k+128}\\||-178^{252k+126}+178^{248k+124}-178^{244k+122}+178^{240k+120}-178^{236k+118}\\||+178^{232k+116}-178^{228k+114}+178^{224k+112}-178^{220k+110}+178^{216k+108}\\||-178^{212k+106}+178^{208k+104}-178^{204k+102}+178^{200k+100}-178^{196k+98}\\||+178^{192k+96}-178^{188k+94}+178^{184k+92}-178^{180k+90}+178^{176k+88}\\||-178^{172k+86}+178^{168k+84}-178^{164k+82}+178^{160k+80}-178^{156k+78}\\||+178^{152k+76}-178^{148k+74}+178^{144k+72}-178^{140k+70}+178^{136k+68}\\||-178^{132k+66}+178^{128k+64}-178^{124k+62}+178^{120k+60}-178^{116k+58}\\||+178^{112k+56}-178^{108k+54}+178^{104k+52}-178^{100k+50}+178^{96k+48}\\||-178^{92k+46}+178^{88k+44}-178^{84k+42}+178^{80k+40}-178^{76k+38}\\||+178^{72k+36}-178^{68k+34}+178^{64k+32}-178^{60k+30}+178^{56k+28}\\||-178^{52k+26}+178^{48k+24}-178^{44k+22}+178^{40k+20}-178^{36k+18}\\||+178^{32k+16}-178^{28k+14}+178^{24k+12}-178^{20k+10}+178^{16k+8}\\||-178^{12k+6}+178^{8k+4}-178^{4k+2}+1\\|=|(178^{176k+88}-178^{175k+88}+89\cdot 178^{174k+87}-30\cdot 178^{173k+87}+1379\cdot 178^{172k+86}\\||-293\cdot 178^{171k+86}+9523\cdot 178^{170k+85}-1536\cdot 178^{169k+85}+39661\cdot 178^{168k+84}-5237\cdot 178^{167k+84}\\||+112941\cdot 178^{166k+83}-12616\cdot 178^{165k+83}+231739\cdot 178^{164k+82}-22069\cdot 178^{163k+82}+343451\cdot 178^{162k+81}\\||-27240\cdot 178^{161k+81}+339917\cdot 178^{160k+80}-19757\cdot 178^{159k+80}+134301\cdot 178^{158k+79}+2722\cdot 178^{157k+79}\\||-224873\cdot 178^{156k+78}+29943\cdot 178^{155k+78}-525901\cdot 178^{154k+77}+43108\cdot 178^{153k+77}-530779\cdot 178^{152k+76}\\||+29519\cdot 178^{151k+76}-183607\cdot 178^{150k+75}-4918\cdot 178^{149k+75}+311427\cdot 178^{148k+74}-38367\cdot 178^{147k+74}\\||+633591\cdot 178^{146k+73}-49290\cdot 178^{145k+73}+582045\cdot 178^{144k+72}-31585\cdot 178^{143k+72}+203365\cdot 178^{142k+71}\\||+2686\cdot 178^{141k+71}-256825\cdot 178^{140k+70}+31673\cdot 178^{139k+70}-503829\cdot 178^{138k+69}+36300\cdot 178^{137k+69}\\||-364843\cdot 178^{136k+68}+12401\cdot 178^{135k+68}+76273\cdot 178^{134k+67}-23312\cdot 178^{133k+67}+487791\cdot 178^{132k+66}\\||-42431\cdot 178^{131k+66}+527147\cdot 178^{130k+65}-28508\cdot 178^{129k+65}+162509\cdot 178^{128k+64}+5319\cdot 178^{127k+64}\\||-260859\cdot 178^{126k+63}+27022\cdot 178^{125k+63}-348817\cdot 178^{124k+62}+17651\cdot 178^{123k+62}-57049\cdot 178^{122k+61}\\||-10138\cdot 178^{121k+61}+291125\cdot 178^{120k+60}-28139\cdot 178^{119k+60}+376381\cdot 178^{118k+59}-22912\cdot 178^{117k+59}\\||+191451\cdot 178^{116k+58}-5061\cdot 178^{115k+58}-36757\cdot 178^{114k+57}+7704\cdot 178^{113k+57}-123755\cdot 178^{112k+56}\\||+7629\cdot 178^{111k+56}-43699\cdot 178^{110k+55}-3138\cdot 178^{109k+55}+144687\cdot 178^{108k+54}-18821\cdot 178^{107k+54}\\||+342383\cdot 178^{106k+53}-29658\cdot 178^{105k+53}+388845\cdot 178^{104k+52}-23091\cdot 178^{103k+52}+155661\cdot 178^{102k+51}\\||+3456\cdot 178^{101k+51}-257509\cdot 178^{100k+50}+32283\cdot 178^{99k+50}-523409\cdot 178^{98k+49}+38374\cdot 178^{97k+49}\\||-399027\cdot 178^{96k+48}+15925\cdot 178^{95k+48}+4005\cdot 178^{94k+47}-15392\cdot 178^{93k+47}+359171\cdot 178^{92k+46}\\||-34011\cdot 178^{91k+46}+497599\cdot 178^{90k+45}-38284\cdot 178^{89k+45}+512561\cdot 178^{88k+44}-38284\cdot 178^{87k+44}\\||+497599\cdot 178^{86k+43}-34011\cdot 178^{85k+43}+359171\cdot 178^{84k+42}-15392\cdot 178^{83k+42}+4005\cdot 178^{82k+41}\\||+15925\cdot 178^{81k+41}-399027\cdot 178^{80k+40}+38374\cdot 178^{79k+40}-523409\cdot 178^{78k+39}+32283\cdot 178^{77k+39}\\||-257509\cdot 178^{76k+38}+3456\cdot 178^{75k+38}+155661\cdot 178^{74k+37}-23091\cdot 178^{73k+37}+388845\cdot 178^{72k+36}\\||-29658\cdot 178^{71k+36}+342383\cdot 178^{70k+35}-18821\cdot 178^{69k+35}+144687\cdot 178^{68k+34}-3138\cdot 178^{67k+34}\\||-43699\cdot 178^{66k+33}+7629\cdot 178^{65k+33}-123755\cdot 178^{64k+32}+7704\cdot 178^{63k+32}-36757\cdot 178^{62k+31}\\||-5061\cdot 178^{61k+31}+191451\cdot 178^{60k+30}-22912\cdot 178^{59k+30}+376381\cdot 178^{58k+29}-28139\cdot 178^{57k+29}\\||+291125\cdot 178^{56k+28}-10138\cdot 178^{55k+28}-57049\cdot 178^{54k+27}+17651\cdot 178^{53k+27}-348817\cdot 178^{52k+26}\\||+27022\cdot 178^{51k+26}-260859\cdot 178^{50k+25}+5319\cdot 178^{49k+25}+162509\cdot 178^{48k+24}-28508\cdot 178^{47k+24}\\||+527147\cdot 178^{46k+23}-42431\cdot 178^{45k+23}+487791\cdot 178^{44k+22}-23312\cdot 178^{43k+22}+76273\cdot 178^{42k+21}\\||+12401\cdot 178^{41k+21}-364843\cdot 178^{40k+20}+36300\cdot 178^{39k+20}-503829\cdot 178^{38k+19}+31673\cdot 178^{37k+19}\\||-256825\cdot 178^{36k+18}+2686\cdot 178^{35k+18}+203365\cdot 178^{34k+17}-31585\cdot 178^{33k+17}+582045\cdot 178^{32k+16}\\||-49290\cdot 178^{31k+16}+633591\cdot 178^{30k+15}-38367\cdot 178^{29k+15}+311427\cdot 178^{28k+14}-4918\cdot 178^{27k+14}\\||-183607\cdot 178^{26k+13}+29519\cdot 178^{25k+13}-530779\cdot 178^{24k+12}+43108\cdot 178^{23k+12}-525901\cdot 178^{22k+11}\\||+29943\cdot 178^{21k+11}-224873\cdot 178^{20k+10}+2722\cdot 178^{19k+10}+134301\cdot 178^{18k+9}-19757\cdot 178^{17k+9}\\||+339917\cdot 178^{16k+8}-27240\cdot 178^{15k+8}+343451\cdot 178^{14k+7}-22069\cdot 178^{13k+7}+231739\cdot 178^{12k+6}\\||-12616\cdot 178^{11k+6}+112941\cdot 178^{10k+5}-5237\cdot 178^{9k+5}+39661\cdot 178^{8k+4}-1536\cdot 178^{7k+4}\\||+9523\cdot 178^{6k+3}-293\cdot 178^{5k+3}+1379\cdot 178^{4k+2}-30\cdot 178^{3k+2}+89\cdot 178^{2k+1}\\||-178^{k+1}+1)\\|\times|(178^{176k+88}+178^{175k+88}+89\cdot 178^{174k+87}+30\cdot 178^{173k+87}+1379\cdot 178^{172k+86}\\||+293\cdot 178^{171k+86}+9523\cdot 178^{170k+85}+1536\cdot 178^{169k+85}+39661\cdot 178^{168k+84}+5237\cdot 178^{167k+84}\\||+112941\cdot 178^{166k+83}+12616\cdot 178^{165k+83}+231739\cdot 178^{164k+82}+22069\cdot 178^{163k+82}+343451\cdot 178^{162k+81}\\||+27240\cdot 178^{161k+81}+339917\cdot 178^{160k+80}+19757\cdot 178^{159k+80}+134301\cdot 178^{158k+79}-2722\cdot 178^{157k+79}\\||-224873\cdot 178^{156k+78}-29943\cdot 178^{155k+78}-525901\cdot 178^{154k+77}-43108\cdot 178^{153k+77}-530779\cdot 178^{152k+76}\\||-29519\cdot 178^{151k+76}-183607\cdot 178^{150k+75}+4918\cdot 178^{149k+75}+311427\cdot 178^{148k+74}+38367\cdot 178^{147k+74}\\||+633591\cdot 178^{146k+73}+49290\cdot 178^{145k+73}+582045\cdot 178^{144k+72}+31585\cdot 178^{143k+72}+203365\cdot 178^{142k+71}\\||-2686\cdot 178^{141k+71}-256825\cdot 178^{140k+70}-31673\cdot 178^{139k+70}-503829\cdot 178^{138k+69}-36300\cdot 178^{137k+69}\\||-364843\cdot 178^{136k+68}-12401\cdot 178^{135k+68}+76273\cdot 178^{134k+67}+23312\cdot 178^{133k+67}+487791\cdot 178^{132k+66}\\||+42431\cdot 178^{131k+66}+527147\cdot 178^{130k+65}+28508\cdot 178^{129k+65}+162509\cdot 178^{128k+64}-5319\cdot 178^{127k+64}\\||-260859\cdot 178^{126k+63}-27022\cdot 178^{125k+63}-348817\cdot 178^{124k+62}-17651\cdot 178^{123k+62}-57049\cdot 178^{122k+61}\\||+10138\cdot 178^{121k+61}+291125\cdot 178^{120k+60}+28139\cdot 178^{119k+60}+376381\cdot 178^{118k+59}+22912\cdot 178^{117k+59}\\||+191451\cdot 178^{116k+58}+5061\cdot 178^{115k+58}-36757\cdot 178^{114k+57}-7704\cdot 178^{113k+57}-123755\cdot 178^{112k+56}\\||-7629\cdot 178^{111k+56}-43699\cdot 178^{110k+55}+3138\cdot 178^{109k+55}+144687\cdot 178^{108k+54}+18821\cdot 178^{107k+54}\\||+342383\cdot 178^{106k+53}+29658\cdot 178^{105k+53}+388845\cdot 178^{104k+52}+23091\cdot 178^{103k+52}+155661\cdot 178^{102k+51}\\||-3456\cdot 178^{101k+51}-257509\cdot 178^{100k+50}-32283\cdot 178^{99k+50}-523409\cdot 178^{98k+49}-38374\cdot 178^{97k+49}\\||-399027\cdot 178^{96k+48}-15925\cdot 178^{95k+48}+4005\cdot 178^{94k+47}+15392\cdot 178^{93k+47}+359171\cdot 178^{92k+46}\\||+34011\cdot 178^{91k+46}+497599\cdot 178^{90k+45}+38284\cdot 178^{89k+45}+512561\cdot 178^{88k+44}+38284\cdot 178^{87k+44}\\||+497599\cdot 178^{86k+43}+34011\cdot 178^{85k+43}+359171\cdot 178^{84k+42}+15392\cdot 178^{83k+42}+4005\cdot 178^{82k+41}\\||-15925\cdot 178^{81k+41}-399027\cdot 178^{80k+40}-38374\cdot 178^{79k+40}-523409\cdot 178^{78k+39}-32283\cdot 178^{77k+39}\\||-257509\cdot 178^{76k+38}-3456\cdot 178^{75k+38}+155661\cdot 178^{74k+37}+23091\cdot 178^{73k+37}+388845\cdot 178^{72k+36}\\||+29658\cdot 178^{71k+36}+342383\cdot 178^{70k+35}+18821\cdot 178^{69k+35}+144687\cdot 178^{68k+34}+3138\cdot 178^{67k+34}\\||-43699\cdot 178^{66k+33}-7629\cdot 178^{65k+33}-123755\cdot 178^{64k+32}-7704\cdot 178^{63k+32}-36757\cdot 178^{62k+31}\\||+5061\cdot 178^{61k+31}+191451\cdot 178^{60k+30}+22912\cdot 178^{59k+30}+376381\cdot 178^{58k+29}+28139\cdot 178^{57k+29}\\||+291125\cdot 178^{56k+28}+10138\cdot 178^{55k+28}-57049\cdot 178^{54k+27}-17651\cdot 178^{53k+27}-348817\cdot 178^{52k+26}\\||-27022\cdot 178^{51k+26}-260859\cdot 178^{50k+25}-5319\cdot 178^{49k+25}+162509\cdot 178^{48k+24}+28508\cdot 178^{47k+24}\\||+527147\cdot 178^{46k+23}+42431\cdot 178^{45k+23}+487791\cdot 178^{44k+22}+23312\cdot 178^{43k+22}+76273\cdot 178^{42k+21}\\||-12401\cdot 178^{41k+21}-364843\cdot 178^{40k+20}-36300\cdot 178^{39k+20}-503829\cdot 178^{38k+19}-31673\cdot 178^{37k+19}\\||-256825\cdot 178^{36k+18}-2686\cdot 178^{35k+18}+203365\cdot 178^{34k+17}+31585\cdot 178^{33k+17}+582045\cdot 178^{32k+16}\\||+49290\cdot 178^{31k+16}+633591\cdot 178^{30k+15}+38367\cdot 178^{29k+15}+311427\cdot 178^{28k+14}+4918\cdot 178^{27k+14}\\||-183607\cdot 178^{26k+13}-29519\cdot 178^{25k+13}-530779\cdot 178^{24k+12}-43108\cdot 178^{23k+12}-525901\cdot 178^{22k+11}\\||-29943\cdot 178^{21k+11}-224873\cdot 178^{20k+10}-2722\cdot 178^{19k+10}+134301\cdot 178^{18k+9}+19757\cdot 178^{17k+9}\\||+339917\cdot 178^{16k+8}+27240\cdot 178^{15k+8}+343451\cdot 178^{14k+7}+22069\cdot 178^{13k+7}+231739\cdot 178^{12k+6}\\||+12616\cdot 178^{11k+6}+112941\cdot 178^{10k+5}+5237\cdot 178^{9k+5}+39661\cdot 178^{8k+4}+1536\cdot 178^{7k+4}\\||+9523\cdot 178^{6k+3}+293\cdot 178^{5k+3}+1379\cdot 178^{4k+2}+30\cdot 178^{3k+2}+89\cdot 178^{2k+1}\\||+178^{k+1}+1)\\{\large\Phi}_{358}(179^{2k+1})|=|179^{356k+178}-179^{354k+177}+179^{352k+176}-179^{350k+175}+179^{348k+174}\\||-179^{346k+173}+179^{344k+172}-179^{342k+171}+179^{340k+170}-179^{338k+169}\\||+179^{336k+168}-179^{334k+167}+179^{332k+166}-179^{330k+165}+179^{328k+164}\\||-179^{326k+163}+179^{324k+162}-179^{322k+161}+179^{320k+160}-179^{318k+159}\\||+179^{316k+158}-179^{314k+157}+179^{312k+156}-179^{310k+155}+179^{308k+154}\\||-179^{306k+153}+179^{304k+152}-179^{302k+151}+179^{300k+150}-179^{298k+149}\\||+179^{296k+148}-179^{294k+147}+179^{292k+146}-179^{290k+145}+179^{288k+144}\\||-179^{286k+143}+179^{284k+142}-179^{282k+141}+179^{280k+140}-179^{278k+139}\\||+179^{276k+138}-179^{274k+137}+179^{272k+136}-179^{270k+135}+179^{268k+134}\\||-179^{266k+133}+179^{264k+132}-179^{262k+131}+179^{260k+130}-179^{258k+129}\\||+179^{256k+128}-179^{254k+127}+179^{252k+126}-179^{250k+125}+179^{248k+124}\\||-179^{246k+123}+179^{244k+122}-179^{242k+121}+179^{240k+120}-179^{238k+119}\\||+179^{236k+118}-179^{234k+117}+179^{232k+116}-179^{230k+115}+179^{228k+114}\\||-179^{226k+113}+179^{224k+112}-179^{222k+111}+179^{220k+110}-179^{218k+109}\\||+179^{216k+108}-179^{214k+107}+179^{212k+106}-179^{210k+105}+179^{208k+104}\\||-179^{206k+103}+179^{204k+102}-179^{202k+101}+179^{200k+100}-179^{198k+99}\\||+179^{196k+98}-179^{194k+97}+179^{192k+96}-179^{190k+95}+179^{188k+94}\\||-179^{186k+93}+179^{184k+92}-179^{182k+91}+179^{180k+90}-179^{178k+89}\\||+179^{176k+88}-179^{174k+87}+179^{172k+86}-179^{170k+85}+179^{168k+84}\\||-179^{166k+83}+179^{164k+82}-179^{162k+81}+179^{160k+80}-179^{158k+79}\\||+179^{156k+78}-179^{154k+77}+179^{152k+76}-179^{150k+75}+179^{148k+74}\\||-179^{146k+73}+179^{144k+72}-179^{142k+71}+179^{140k+70}-179^{138k+69}\\||+179^{136k+68}-179^{134k+67}+179^{132k+66}-179^{130k+65}+179^{128k+64}\\||-179^{126k+63}+179^{124k+62}-179^{122k+61}+179^{120k+60}-179^{118k+59}\\||+179^{116k+58}-179^{114k+57}+179^{112k+56}-179^{110k+55}+179^{108k+54}\\||-179^{106k+53}+179^{104k+52}-179^{102k+51}+179^{100k+50}-179^{98k+49}\\||+179^{96k+48}-179^{94k+47}+179^{92k+46}-179^{90k+45}+179^{88k+44}\\||-179^{86k+43}+179^{84k+42}-179^{82k+41}+179^{80k+40}-179^{78k+39}\\||+179^{76k+38}-179^{74k+37}+179^{72k+36}-179^{70k+35}+179^{68k+34}\\||-179^{66k+33}+179^{64k+32}-179^{62k+31}+179^{60k+30}-179^{58k+29}\\||+179^{56k+28}-179^{54k+27}+179^{52k+26}-179^{50k+25}+179^{48k+24}\\||-179^{46k+23}+179^{44k+22}-179^{42k+21}+179^{40k+20}-179^{38k+19}\\||+179^{36k+18}-179^{34k+17}+179^{32k+16}-179^{30k+15}+179^{28k+14}\\||-179^{26k+13}+179^{24k+12}-179^{22k+11}+179^{20k+10}-179^{18k+9}\\||+179^{16k+8}-179^{14k+7}+179^{12k+6}-179^{10k+5}+179^{8k+4}\\||-179^{6k+3}+179^{4k+2}-179^{2k+1}+1\\|=|(179^{178k+89}-179^{177k+89}+89\cdot 179^{176k+88}-29\cdot 179^{175k+88}+1231\cdot 179^{174k+87}\\||-223\cdot 179^{173k+87}+5627\cdot 179^{172k+86}-613\cdot 179^{171k+86}+8837\cdot 179^{170k+85}-457\cdot 179^{169k+85}\\||+1301\cdot 179^{168k+84}+57\cdot 179^{167k+84}+5505\cdot 179^{166k+83}-1545\cdot 179^{165k+83}+36787\cdot 179^{164k+82}\\||-3115\cdot 179^{163k+82}+29941\cdot 179^{162k+81}-829\cdot 179^{161k+81}+4549\cdot 179^{160k+80}-1693\cdot 179^{159k+80}\\||+56619\cdot 179^{158k+79}-6077\cdot 179^{157k+79}+77723\cdot 179^{156k+78}-3953\cdot 179^{155k+78}+35593\cdot 179^{154k+77}\\||-3673\cdot 179^{153k+77}+86897\cdot 179^{152k+76}-8745\cdot 179^{151k+76}+114417\cdot 179^{150k+75}-6621\cdot 179^{149k+75}\\||+75897\cdot 179^{148k+74}-7577\cdot 179^{147k+74}+148597\cdot 179^{146k+73}-12923\cdot 179^{145k+73}+148707\cdot 179^{144k+72}\\||-7641\cdot 179^{143k+72}+90227\cdot 179^{142k+71}-10525\cdot 179^{141k+71}+217121\cdot 179^{140k+70}-18513\cdot 179^{139k+70}\\||+199385\cdot 179^{138k+69}-8851\cdot 179^{137k+69}+90505\cdot 179^{136k+68}-11489\cdot 179^{135k+68}+252909\cdot 179^{134k+67}\\||-21641\cdot 179^{133k+67}+222787\cdot 179^{132k+66}-8827\cdot 179^{131k+66}+85733\cdot 179^{130k+65}-12397\cdot 179^{129k+65}\\||+279613\cdot 179^{128k+64}-22769\cdot 179^{127k+64}+203615\cdot 179^{126k+63}-5321\cdot 179^{125k+63}+42041\cdot 179^{124k+62}\\||-11143\cdot 179^{123k+62}+280849\cdot 179^{122k+61}-21745\cdot 179^{121k+61}+152189\cdot 179^{120k+60}+499\cdot 179^{119k+60}\\||-28741\cdot 179^{118k+59}-7919\cdot 179^{117k+59}+251655\cdot 179^{116k+58}-18145\cdot 179^{115k+58}+68131\cdot 179^{114k+57}\\||+8209\cdot 179^{113k+57}-118827\cdot 179^{112k+56}-3157\cdot 179^{111k+56}+195779\cdot 179^{110k+55}-12425\cdot 179^{109k+55}\\||-35209\cdot 179^{108k+54}+16211\cdot 179^{107k+54}-203263\cdot 179^{106k+53}+1481\cdot 179^{105k+53}+129325\cdot 179^{104k+52}\\||-5433\cdot 179^{103k+52}-146953\cdot 179^{102k+51}+23425\cdot 179^{101k+51}-262117\cdot 179^{100k+50}+4143\cdot 179^{99k+50}\\||+78639\cdot 179^{98k+49}+1157\cdot 179^{97k+49}-254019\cdot 179^{96k+48}+29631\cdot 179^{95k+48}-295703\cdot 179^{94k+47}\\||+4171\cdot 179^{93k+47}+71389\cdot 179^{92k+46}+4003\cdot 179^{91k+46}-310273\cdot 179^{90k+45}+32865\cdot 179^{89k+45}\\||-310273\cdot 179^{88k+44}+4003\cdot 179^{87k+44}+71389\cdot 179^{86k+43}+4171\cdot 179^{85k+43}-295703\cdot 179^{84k+42}\\||+29631\cdot 179^{83k+42}-254019\cdot 179^{82k+41}+1157\cdot 179^{81k+41}+78639\cdot 179^{80k+40}+4143\cdot 179^{79k+40}\\||-262117\cdot 179^{78k+39}+23425\cdot 179^{77k+39}-146953\cdot 179^{76k+38}-5433\cdot 179^{75k+38}+129325\cdot 179^{74k+37}\\||+1481\cdot 179^{73k+37}-203263\cdot 179^{72k+36}+16211\cdot 179^{71k+36}-35209\cdot 179^{70k+35}-12425\cdot 179^{69k+35}\\||+195779\cdot 179^{68k+34}-3157\cdot 179^{67k+34}-118827\cdot 179^{66k+33}+8209\cdot 179^{65k+33}+68131\cdot 179^{64k+32}\\||-18145\cdot 179^{63k+32}+251655\cdot 179^{62k+31}-7919\cdot 179^{61k+31}-28741\cdot 179^{60k+30}+499\cdot 179^{59k+30}\\||+152189\cdot 179^{58k+29}-21745\cdot 179^{57k+29}+280849\cdot 179^{56k+28}-11143\cdot 179^{55k+28}+42041\cdot 179^{54k+27}\\||-5321\cdot 179^{53k+27}+203615\cdot 179^{52k+26}-22769\cdot 179^{51k+26}+279613\cdot 179^{50k+25}-12397\cdot 179^{49k+25}\\||+85733\cdot 179^{48k+24}-8827\cdot 179^{47k+24}+222787\cdot 179^{46k+23}-21641\cdot 179^{45k+23}+252909\cdot 179^{44k+22}\\||-11489\cdot 179^{43k+22}+90505\cdot 179^{42k+21}-8851\cdot 179^{41k+21}+199385\cdot 179^{40k+20}-18513\cdot 179^{39k+20}\\||+217121\cdot 179^{38k+19}-10525\cdot 179^{37k+19}+90227\cdot 179^{36k+18}-7641\cdot 179^{35k+18}+148707\cdot 179^{34k+17}\\||-12923\cdot 179^{33k+17}+148597\cdot 179^{32k+16}-7577\cdot 179^{31k+16}+75897\cdot 179^{30k+15}-6621\cdot 179^{29k+15}\\||+114417\cdot 179^{28k+14}-8745\cdot 179^{27k+14}+86897\cdot 179^{26k+13}-3673\cdot 179^{25k+13}+35593\cdot 179^{24k+12}\\||-3953\cdot 179^{23k+12}+77723\cdot 179^{22k+11}-6077\cdot 179^{21k+11}+56619\cdot 179^{20k+10}-1693\cdot 179^{19k+10}\\||+4549\cdot 179^{18k+9}-829\cdot 179^{17k+9}+29941\cdot 179^{16k+8}-3115\cdot 179^{15k+8}+36787\cdot 179^{14k+7}\\||-1545\cdot 179^{13k+7}+5505\cdot 179^{12k+6}+57\cdot 179^{11k+6}+1301\cdot 179^{10k+5}-457\cdot 179^{9k+5}\\||+8837\cdot 179^{8k+4}-613\cdot 179^{7k+4}+5627\cdot 179^{6k+3}-223\cdot 179^{5k+3}+1231\cdot 179^{4k+2}\\||-29\cdot 179^{3k+2}+89\cdot 179^{2k+1}-179^{k+1}+1)\\|\times|(179^{178k+89}+179^{177k+89}+89\cdot 179^{176k+88}+29\cdot 179^{175k+88}+1231\cdot 179^{174k+87}\\||+223\cdot 179^{173k+87}+5627\cdot 179^{172k+86}+613\cdot 179^{171k+86}+8837\cdot 179^{170k+85}+457\cdot 179^{169k+85}\\||+1301\cdot 179^{168k+84}-57\cdot 179^{167k+84}+5505\cdot 179^{166k+83}+1545\cdot 179^{165k+83}+36787\cdot 179^{164k+82}\\||+3115\cdot 179^{163k+82}+29941\cdot 179^{162k+81}+829\cdot 179^{161k+81}+4549\cdot 179^{160k+80}+1693\cdot 179^{159k+80}\\||+56619\cdot 179^{158k+79}+6077\cdot 179^{157k+79}+77723\cdot 179^{156k+78}+3953\cdot 179^{155k+78}+35593\cdot 179^{154k+77}\\||+3673\cdot 179^{153k+77}+86897\cdot 179^{152k+76}+8745\cdot 179^{151k+76}+114417\cdot 179^{150k+75}+6621\cdot 179^{149k+75}\\||+75897\cdot 179^{148k+74}+7577\cdot 179^{147k+74}+148597\cdot 179^{146k+73}+12923\cdot 179^{145k+73}+148707\cdot 179^{144k+72}\\||+7641\cdot 179^{143k+72}+90227\cdot 179^{142k+71}+10525\cdot 179^{141k+71}+217121\cdot 179^{140k+70}+18513\cdot 179^{139k+70}\\||+199385\cdot 179^{138k+69}+8851\cdot 179^{137k+69}+90505\cdot 179^{136k+68}+11489\cdot 179^{135k+68}+252909\cdot 179^{134k+67}\\||+21641\cdot 179^{133k+67}+222787\cdot 179^{132k+66}+8827\cdot 179^{131k+66}+85733\cdot 179^{130k+65}+12397\cdot 179^{129k+65}\\||+279613\cdot 179^{128k+64}+22769\cdot 179^{127k+64}+203615\cdot 179^{126k+63}+5321\cdot 179^{125k+63}+42041\cdot 179^{124k+62}\\||+11143\cdot 179^{123k+62}+280849\cdot 179^{122k+61}+21745\cdot 179^{121k+61}+152189\cdot 179^{120k+60}-499\cdot 179^{119k+60}\\||-28741\cdot 179^{118k+59}+7919\cdot 179^{117k+59}+251655\cdot 179^{116k+58}+18145\cdot 179^{115k+58}+68131\cdot 179^{114k+57}\\||-8209\cdot 179^{113k+57}-118827\cdot 179^{112k+56}+3157\cdot 179^{111k+56}+195779\cdot 179^{110k+55}+12425\cdot 179^{109k+55}\\||-35209\cdot 179^{108k+54}-16211\cdot 179^{107k+54}-203263\cdot 179^{106k+53}-1481\cdot 179^{105k+53}+129325\cdot 179^{104k+52}\\||+5433\cdot 179^{103k+52}-146953\cdot 179^{102k+51}-23425\cdot 179^{101k+51}-262117\cdot 179^{100k+50}-4143\cdot 179^{99k+50}\\||+78639\cdot 179^{98k+49}-1157\cdot 179^{97k+49}-254019\cdot 179^{96k+48}-29631\cdot 179^{95k+48}-295703\cdot 179^{94k+47}\\||-4171\cdot 179^{93k+47}+71389\cdot 179^{92k+46}-4003\cdot 179^{91k+46}-310273\cdot 179^{90k+45}-32865\cdot 179^{89k+45}\\||-310273\cdot 179^{88k+44}-4003\cdot 179^{87k+44}+71389\cdot 179^{86k+43}-4171\cdot 179^{85k+43}-295703\cdot 179^{84k+42}\\||-29631\cdot 179^{83k+42}-254019\cdot 179^{82k+41}-1157\cdot 179^{81k+41}+78639\cdot 179^{80k+40}-4143\cdot 179^{79k+40}\\||-262117\cdot 179^{78k+39}-23425\cdot 179^{77k+39}-146953\cdot 179^{76k+38}+5433\cdot 179^{75k+38}+129325\cdot 179^{74k+37}\\||-1481\cdot 179^{73k+37}-203263\cdot 179^{72k+36}-16211\cdot 179^{71k+36}-35209\cdot 179^{70k+35}+12425\cdot 179^{69k+35}\\||+195779\cdot 179^{68k+34}+3157\cdot 179^{67k+34}-118827\cdot 179^{66k+33}-8209\cdot 179^{65k+33}+68131\cdot 179^{64k+32}\\||+18145\cdot 179^{63k+32}+251655\cdot 179^{62k+31}+7919\cdot 179^{61k+31}-28741\cdot 179^{60k+30}-499\cdot 179^{59k+30}\\||+152189\cdot 179^{58k+29}+21745\cdot 179^{57k+29}+280849\cdot 179^{56k+28}+11143\cdot 179^{55k+28}+42041\cdot 179^{54k+27}\\||+5321\cdot 179^{53k+27}+203615\cdot 179^{52k+26}+22769\cdot 179^{51k+26}+279613\cdot 179^{50k+25}+12397\cdot 179^{49k+25}\\||+85733\cdot 179^{48k+24}+8827\cdot 179^{47k+24}+222787\cdot 179^{46k+23}+21641\cdot 179^{45k+23}+252909\cdot 179^{44k+22}\\||+11489\cdot 179^{43k+22}+90505\cdot 179^{42k+21}+8851\cdot 179^{41k+21}+199385\cdot 179^{40k+20}+18513\cdot 179^{39k+20}\\||+217121\cdot 179^{38k+19}+10525\cdot 179^{37k+19}+90227\cdot 179^{36k+18}+7641\cdot 179^{35k+18}+148707\cdot 179^{34k+17}\\||+12923\cdot 179^{33k+17}+148597\cdot 179^{32k+16}+7577\cdot 179^{31k+16}+75897\cdot 179^{30k+15}+6621\cdot 179^{29k+15}\\||+114417\cdot 179^{28k+14}+8745\cdot 179^{27k+14}+86897\cdot 179^{26k+13}+3673\cdot 179^{25k+13}+35593\cdot 179^{24k+12}\\||+3953\cdot 179^{23k+12}+77723\cdot 179^{22k+11}+6077\cdot 179^{21k+11}+56619\cdot 179^{20k+10}+1693\cdot 179^{19k+10}\\||+4549\cdot 179^{18k+9}+829\cdot 179^{17k+9}+29941\cdot 179^{16k+8}+3115\cdot 179^{15k+8}+36787\cdot 179^{14k+7}\\||+1545\cdot 179^{13k+7}+5505\cdot 179^{12k+6}-57\cdot 179^{11k+6}+1301\cdot 179^{10k+5}+457\cdot 179^{9k+5}\\||+8837\cdot 179^{8k+4}+613\cdot 179^{7k+4}+5627\cdot 179^{6k+3}+223\cdot 179^{5k+3}+1231\cdot 179^{4k+2}\\||+29\cdot 179^{3k+2}+89\cdot 179^{2k+1}+179^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{181}(181^{2k+1})\cdots{\large\Phi}_{185}(185^{2k+1})$${\large\Phi}_{181}(181^{2k+1})\cdots{\large\Phi}_{185}(185^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{181}(181^{2k+1})|=|181^{360k+180}+181^{358k+179}+181^{356k+178}+181^{354k+177}+181^{352k+176}\\||+181^{350k+175}+181^{348k+174}+181^{346k+173}+181^{344k+172}+181^{342k+171}\\||+181^{340k+170}+181^{338k+169}+181^{336k+168}+181^{334k+167}+181^{332k+166}\\||+181^{330k+165}+181^{328k+164}+181^{326k+163}+181^{324k+162}+181^{322k+161}\\||+181^{320k+160}+181^{318k+159}+181^{316k+158}+181^{314k+157}+181^{312k+156}\\||+181^{310k+155}+181^{308k+154}+181^{306k+153}+181^{304k+152}+181^{302k+151}\\||+181^{300k+150}+181^{298k+149}+181^{296k+148}+181^{294k+147}+181^{292k+146}\\||+181^{290k+145}+181^{288k+144}+181^{286k+143}+181^{284k+142}+181^{282k+141}\\||+181^{280k+140}+181^{278k+139}+181^{276k+138}+181^{274k+137}+181^{272k+136}\\||+181^{270k+135}+181^{268k+134}+181^{266k+133}+181^{264k+132}+181^{262k+131}\\||+181^{260k+130}+181^{258k+129}+181^{256k+128}+181^{254k+127}+181^{252k+126}\\||+181^{250k+125}+181^{248k+124}+181^{246k+123}+181^{244k+122}+181^{242k+121}\\||+181^{240k+120}+181^{238k+119}+181^{236k+118}+181^{234k+117}+181^{232k+116}\\||+181^{230k+115}+181^{228k+114}+181^{226k+113}+181^{224k+112}+181^{222k+111}\\||+181^{220k+110}+181^{218k+109}+181^{216k+108}+181^{214k+107}+181^{212k+106}\\||+181^{210k+105}+181^{208k+104}+181^{206k+103}+181^{204k+102}+181^{202k+101}\\||+181^{200k+100}+181^{198k+99}+181^{196k+98}+181^{194k+97}+181^{192k+96}\\||+181^{190k+95}+181^{188k+94}+181^{186k+93}+181^{184k+92}+181^{182k+91}\\||+181^{180k+90}+181^{178k+89}+181^{176k+88}+181^{174k+87}+181^{172k+86}\\||+181^{170k+85}+181^{168k+84}+181^{166k+83}+181^{164k+82}+181^{162k+81}\\||+181^{160k+80}+181^{158k+79}+181^{156k+78}+181^{154k+77}+181^{152k+76}\\||+181^{150k+75}+181^{148k+74}+181^{146k+73}+181^{144k+72}+181^{142k+71}\\||+181^{140k+70}+181^{138k+69}+181^{136k+68}+181^{134k+67}+181^{132k+66}\\||+181^{130k+65}+181^{128k+64}+181^{126k+63}+181^{124k+62}+181^{122k+61}\\||+181^{120k+60}+181^{118k+59}+181^{116k+58}+181^{114k+57}+181^{112k+56}\\||+181^{110k+55}+181^{108k+54}+181^{106k+53}+181^{104k+52}+181^{102k+51}\\||+181^{100k+50}+181^{98k+49}+181^{96k+48}+181^{94k+47}+181^{92k+46}\\||+181^{90k+45}+181^{88k+44}+181^{86k+43}+181^{84k+42}+181^{82k+41}\\||+181^{80k+40}+181^{78k+39}+181^{76k+38}+181^{74k+37}+181^{72k+36}\\||+181^{70k+35}+181^{68k+34}+181^{66k+33}+181^{64k+32}+181^{62k+31}\\||+181^{60k+30}+181^{58k+29}+181^{56k+28}+181^{54k+27}+181^{52k+26}\\||+181^{50k+25}+181^{48k+24}+181^{46k+23}+181^{44k+22}+181^{42k+21}\\||+181^{40k+20}+181^{38k+19}+181^{36k+18}+181^{34k+17}+181^{32k+16}\\||+181^{30k+15}+181^{28k+14}+181^{26k+13}+181^{24k+12}+181^{22k+11}\\||+181^{20k+10}+181^{18k+9}+181^{16k+8}+181^{14k+7}+181^{12k+6}\\||+181^{10k+5}+181^{8k+4}+181^{6k+3}+181^{4k+2}+181^{2k+1}+1\\|=|(181^{180k+90}-181^{179k+90}+91\cdot 181^{178k+89}-31\cdot 181^{177k+89}+1471\cdot 181^{176k+88}\\||-319\cdot 181^{175k+88}+10849\cdot 181^{174k+87}-1823\cdot 181^{173k+87}+50693\cdot 181^{172k+86}-7233\cdot 181^{171k+86}\\||+175455\cdot 181^{170k+85}-22275\cdot 181^{169k+85}+488127\cdot 181^{168k+84}-56667\cdot 181^{167k+84}+1146995\cdot 181^{166k+83}\\||-124043\cdot 181^{165k+83}+2356143\cdot 181^{164k+82}-240665\cdot 181^{163k+82}+4342735\cdot 181^{162k+81}-423641\cdot 181^{161k+81}\\||+7336493\cdot 181^{160k+80}-689935\cdot 181^{159k+80}+11565409\cdot 181^{158k+79}-1056695\cdot 181^{157k+79}+17266213\cdot 181^{156k+78}\\||-1542093\cdot 181^{155k+78}+24689187\cdot 181^{154k+77}-2164643\cdot 181^{153k+77}+34069917\cdot 181^{152k+76}-2939613\cdot 181^{151k+76}\\||+45564415\cdot 181^{150k+75}-3873513\cdot 181^{149k+75}+59176395\cdot 181^{148k+74}-4959751\cdot 181^{147k+74}+74725283\cdot 181^{146k+73}\\||-6178801\cdot 181^{145k+73}+91883601\cdot 181^{144k+72}-7503129\cdot 181^{143k+72}+110260249\cdot 181^{142k+71}-8903485\cdot 181^{141k+71}\\||+129469491\cdot 181^{140k+70}-10351773\cdot 181^{139k+70}+149131357\cdot 181^{138k+69}-11818397\cdot 181^{137k+69}+168811581\cdot 181^{136k+68}\\||-13267353\cdot 181^{135k+68}+187970873\cdot 181^{134k+67}-14655111\cdot 181^{133k+67}+206000539\cdot 181^{132k+66}-15937367\cdot 181^{131k+66}\\||+222359661\cdot 181^{130k+65}-17081123\cdot 181^{129k+65}+236734871\cdot 181^{128k+64}-18074189\cdot 181^{127k+64}+249111207\cdot 181^{126k+63}\\||-18925035\cdot 181^{125k+63}+259695447\cdot 181^{124k+62}-19652629\cdot 181^{123k+62}+268747811\cdot 181^{122k+61}-20274195\cdot 181^{121k+61}\\||+276454539\cdot 181^{120k+60}-20800417\cdot 181^{119k+60}+282938957\cdot 181^{118k+59}-21241583\cdot 181^{117k+59}+288393919\cdot 181^{116k+58}\\||-21618479\cdot 181^{115k+58}+293201889\cdot 181^{114k+57}-21966721\cdot 181^{113k+57}+297909063\cdot 181^{112k+56}-22328189\cdot 181^{111k+56}\\||+303034457\cdot 181^{110k+55}-22733571\cdot 181^{109k+55}+308835561\cdot 181^{108k+54}-23188473\cdot 181^{107k+54}+315206759\cdot 181^{106k+53}\\||-23673703\cdot 181^{105k+53}+321787617\cdot 181^{104k+52}-24159499\cdot 181^{103k+52}+328199001\cdot 181^{102k+51}-24622773\cdot 181^{101k+51}\\||+334222425\cdot 181^{100k+50}-25053845\cdot 181^{99k+50}+339786913\cdot 181^{98k+49}-25448387\cdot 181^{97k+49}+344794341\cdot 181^{96k+48}\\||-25792751\cdot 181^{95k+48}+348949301\cdot 181^{94k+47}-26056749\cdot 181^{93k+47}+351764987\cdot 181^{92k+46}-26202217\cdot 181^{91k+46}\\||+352769163\cdot 181^{90k+45}-26202217\cdot 181^{89k+45}+351764987\cdot 181^{88k+44}-26056749\cdot 181^{87k+44}+348949301\cdot 181^{86k+43}\\||-25792751\cdot 181^{85k+43}+344794341\cdot 181^{84k+42}-25448387\cdot 181^{83k+42}+339786913\cdot 181^{82k+41}-25053845\cdot 181^{81k+41}\\||+334222425\cdot 181^{80k+40}-24622773\cdot 181^{79k+40}+328199001\cdot 181^{78k+39}-24159499\cdot 181^{77k+39}+321787617\cdot 181^{76k+38}\\||-23673703\cdot 181^{75k+38}+315206759\cdot 181^{74k+37}-23188473\cdot 181^{73k+37}+308835561\cdot 181^{72k+36}-22733571\cdot 181^{71k+36}\\||+303034457\cdot 181^{70k+35}-22328189\cdot 181^{69k+35}+297909063\cdot 181^{68k+34}-21966721\cdot 181^{67k+34}+293201889\cdot 181^{66k+33}\\||-21618479\cdot 181^{65k+33}+288393919\cdot 181^{64k+32}-21241583\cdot 181^{63k+32}+282938957\cdot 181^{62k+31}-20800417\cdot 181^{61k+31}\\||+276454539\cdot 181^{60k+30}-20274195\cdot 181^{59k+30}+268747811\cdot 181^{58k+29}-19652629\cdot 181^{57k+29}+259695447\cdot 181^{56k+28}\\||-18925035\cdot 181^{55k+28}+249111207\cdot 181^{54k+27}-18074189\cdot 181^{53k+27}+236734871\cdot 181^{52k+26}-17081123\cdot 181^{51k+26}\\||+222359661\cdot 181^{50k+25}-15937367\cdot 181^{49k+25}+206000539\cdot 181^{48k+24}-14655111\cdot 181^{47k+24}+187970873\cdot 181^{46k+23}\\||-13267353\cdot 181^{45k+23}+168811581\cdot 181^{44k+22}-11818397\cdot 181^{43k+22}+149131357\cdot 181^{42k+21}-10351773\cdot 181^{41k+21}\\||+129469491\cdot 181^{40k+20}-8903485\cdot 181^{39k+20}+110260249\cdot 181^{38k+19}-7503129\cdot 181^{37k+19}+91883601\cdot 181^{36k+18}\\||-6178801\cdot 181^{35k+18}+74725283\cdot 181^{34k+17}-4959751\cdot 181^{33k+17}+59176395\cdot 181^{32k+16}-3873513\cdot 181^{31k+16}\\||+45564415\cdot 181^{30k+15}-2939613\cdot 181^{29k+15}+34069917\cdot 181^{28k+14}-2164643\cdot 181^{27k+14}+24689187\cdot 181^{26k+13}\\||-1542093\cdot 181^{25k+13}+17266213\cdot 181^{24k+12}-1056695\cdot 181^{23k+12}+11565409\cdot 181^{22k+11}-689935\cdot 181^{21k+11}\\||+7336493\cdot 181^{20k+10}-423641\cdot 181^{19k+10}+4342735\cdot 181^{18k+9}-240665\cdot 181^{17k+9}+2356143\cdot 181^{16k+8}\\||-124043\cdot 181^{15k+8}+1146995\cdot 181^{14k+7}-56667\cdot 181^{13k+7}+488127\cdot 181^{12k+6}-22275\cdot 181^{11k+6}\\||+175455\cdot 181^{10k+5}-7233\cdot 181^{9k+5}+50693\cdot 181^{8k+4}-1823\cdot 181^{7k+4}+10849\cdot 181^{6k+3}\\||-319\cdot 181^{5k+3}+1471\cdot 181^{4k+2}-31\cdot 181^{3k+2}+91\cdot 181^{2k+1}-181^{k+1}+1)\\|\times|(181^{180k+90}+181^{179k+90}+91\cdot 181^{178k+89}+31\cdot 181^{177k+89}+1471\cdot 181^{176k+88}\\||+319\cdot 181^{175k+88}+10849\cdot 181^{174k+87}+1823\cdot 181^{173k+87}+50693\cdot 181^{172k+86}+7233\cdot 181^{171k+86}\\||+175455\cdot 181^{170k+85}+22275\cdot 181^{169k+85}+488127\cdot 181^{168k+84}+56667\cdot 181^{167k+84}+1146995\cdot 181^{166k+83}\\||+124043\cdot 181^{165k+83}+2356143\cdot 181^{164k+82}+240665\cdot 181^{163k+82}+4342735\cdot 181^{162k+81}+423641\cdot 181^{161k+81}\\||+7336493\cdot 181^{160k+80}+689935\cdot 181^{159k+80}+11565409\cdot 181^{158k+79}+1056695\cdot 181^{157k+79}+17266213\cdot 181^{156k+78}\\||+1542093\cdot 181^{155k+78}+24689187\cdot 181^{154k+77}+2164643\cdot 181^{153k+77}+34069917\cdot 181^{152k+76}+2939613\cdot 181^{151k+76}\\||+45564415\cdot 181^{150k+75}+3873513\cdot 181^{149k+75}+59176395\cdot 181^{148k+74}+4959751\cdot 181^{147k+74}+74725283\cdot 181^{146k+73}\\||+6178801\cdot 181^{145k+73}+91883601\cdot 181^{144k+72}+7503129\cdot 181^{143k+72}+110260249\cdot 181^{142k+71}+8903485\cdot 181^{141k+71}\\||+129469491\cdot 181^{140k+70}+10351773\cdot 181^{139k+70}+149131357\cdot 181^{138k+69}+11818397\cdot 181^{137k+69}+168811581\cdot 181^{136k+68}\\||+13267353\cdot 181^{135k+68}+187970873\cdot 181^{134k+67}+14655111\cdot 181^{133k+67}+206000539\cdot 181^{132k+66}+15937367\cdot 181^{131k+66}\\||+222359661\cdot 181^{130k+65}+17081123\cdot 181^{129k+65}+236734871\cdot 181^{128k+64}+18074189\cdot 181^{127k+64}+249111207\cdot 181^{126k+63}\\||+18925035\cdot 181^{125k+63}+259695447\cdot 181^{124k+62}+19652629\cdot 181^{123k+62}+268747811\cdot 181^{122k+61}+20274195\cdot 181^{121k+61}\\||+276454539\cdot 181^{120k+60}+20800417\cdot 181^{119k+60}+282938957\cdot 181^{118k+59}+21241583\cdot 181^{117k+59}+288393919\cdot 181^{116k+58}\\||+21618479\cdot 181^{115k+58}+293201889\cdot 181^{114k+57}+21966721\cdot 181^{113k+57}+297909063\cdot 181^{112k+56}+22328189\cdot 181^{111k+56}\\||+303034457\cdot 181^{110k+55}+22733571\cdot 181^{109k+55}+308835561\cdot 181^{108k+54}+23188473\cdot 181^{107k+54}+315206759\cdot 181^{106k+53}\\||+23673703\cdot 181^{105k+53}+321787617\cdot 181^{104k+52}+24159499\cdot 181^{103k+52}+328199001\cdot 181^{102k+51}+24622773\cdot 181^{101k+51}\\||+334222425\cdot 181^{100k+50}+25053845\cdot 181^{99k+50}+339786913\cdot 181^{98k+49}+25448387\cdot 181^{97k+49}+344794341\cdot 181^{96k+48}\\||+25792751\cdot 181^{95k+48}+348949301\cdot 181^{94k+47}+26056749\cdot 181^{93k+47}+351764987\cdot 181^{92k+46}+26202217\cdot 181^{91k+46}\\||+352769163\cdot 181^{90k+45}+26202217\cdot 181^{89k+45}+351764987\cdot 181^{88k+44}+26056749\cdot 181^{87k+44}+348949301\cdot 181^{86k+43}\\||+25792751\cdot 181^{85k+43}+344794341\cdot 181^{84k+42}+25448387\cdot 181^{83k+42}+339786913\cdot 181^{82k+41}+25053845\cdot 181^{81k+41}\\||+334222425\cdot 181^{80k+40}+24622773\cdot 181^{79k+40}+328199001\cdot 181^{78k+39}+24159499\cdot 181^{77k+39}+321787617\cdot 181^{76k+38}\\||+23673703\cdot 181^{75k+38}+315206759\cdot 181^{74k+37}+23188473\cdot 181^{73k+37}+308835561\cdot 181^{72k+36}+22733571\cdot 181^{71k+36}\\||+303034457\cdot 181^{70k+35}+22328189\cdot 181^{69k+35}+297909063\cdot 181^{68k+34}+21966721\cdot 181^{67k+34}+293201889\cdot 181^{66k+33}\\||+21618479\cdot 181^{65k+33}+288393919\cdot 181^{64k+32}+21241583\cdot 181^{63k+32}+282938957\cdot 181^{62k+31}+20800417\cdot 181^{61k+31}\\||+276454539\cdot 181^{60k+30}+20274195\cdot 181^{59k+30}+268747811\cdot 181^{58k+29}+19652629\cdot 181^{57k+29}+259695447\cdot 181^{56k+28}\\||+18925035\cdot 181^{55k+28}+249111207\cdot 181^{54k+27}+18074189\cdot 181^{53k+27}+236734871\cdot 181^{52k+26}+17081123\cdot 181^{51k+26}\\||+222359661\cdot 181^{50k+25}+15937367\cdot 181^{49k+25}+206000539\cdot 181^{48k+24}+14655111\cdot 181^{47k+24}+187970873\cdot 181^{46k+23}\\||+13267353\cdot 181^{45k+23}+168811581\cdot 181^{44k+22}+11818397\cdot 181^{43k+22}+149131357\cdot 181^{42k+21}+10351773\cdot 181^{41k+21}\\||+129469491\cdot 181^{40k+20}+8903485\cdot 181^{39k+20}+110260249\cdot 181^{38k+19}+7503129\cdot 181^{37k+19}+91883601\cdot 181^{36k+18}\\||+6178801\cdot 181^{35k+18}+74725283\cdot 181^{34k+17}+4959751\cdot 181^{33k+17}+59176395\cdot 181^{32k+16}+3873513\cdot 181^{31k+16}\\||+45564415\cdot 181^{30k+15}+2939613\cdot 181^{29k+15}+34069917\cdot 181^{28k+14}+2164643\cdot 181^{27k+14}+24689187\cdot 181^{26k+13}\\||+1542093\cdot 181^{25k+13}+17266213\cdot 181^{24k+12}+1056695\cdot 181^{23k+12}+11565409\cdot 181^{22k+11}+689935\cdot 181^{21k+11}\\||+7336493\cdot 181^{20k+10}+423641\cdot 181^{19k+10}+4342735\cdot 181^{18k+9}+240665\cdot 181^{17k+9}+2356143\cdot 181^{16k+8}\\||+124043\cdot 181^{15k+8}+1146995\cdot 181^{14k+7}+56667\cdot 181^{13k+7}+488127\cdot 181^{12k+6}+22275\cdot 181^{11k+6}\\||+175455\cdot 181^{10k+5}+7233\cdot 181^{9k+5}+50693\cdot 181^{8k+4}+1823\cdot 181^{7k+4}+10849\cdot 181^{6k+3}\\||+319\cdot 181^{5k+3}+1471\cdot 181^{4k+2}+31\cdot 181^{3k+2}+91\cdot 181^{2k+1}+181^{k+1}+1)\\{\large\Phi}_{364}(182^{2k+1})|=|182^{288k+144}+182^{284k+142}-182^{260k+130}-182^{256k+128}-182^{236k+118}\\||+182^{228k+114}+182^{208k+104}-182^{200k+100}+182^{184k+92}+182^{172k+86}\\||-182^{156k+78}-182^{144k+72}-182^{132k+66}+182^{116k+58}+182^{104k+52}\\||-182^{88k+44}+182^{80k+40}+182^{60k+30}-182^{52k+26}-182^{32k+16}\\||-182^{28k+14}+182^{4k+2}+1\\|=|(182^{144k+72}-182^{143k+72}+91\cdot 182^{142k+71}-30\cdot 182^{141k+71}+1320\cdot 182^{140k+70}\\||-246\cdot 182^{139k+70}+6552\cdot 182^{138k+69}-743\cdot 182^{137k+69}+10954\cdot 182^{136k+68}-397\cdot 182^{135k+68}\\||-9464\cdot 182^{134k+67}+2314\cdot 182^{133k+67}-50340\cdot 182^{132k+66}+3869\cdot 182^{131k+66}-24843\cdot 182^{130k+65}\\||-2276\cdot 182^{129k+65}+94389\cdot 182^{128k+64}-9766\cdot 182^{127k+64}+110656\cdot 182^{126k+63}-1712\cdot 182^{125k+63}\\||-101262\cdot 182^{124k+62}+14966\cdot 182^{123k+62}-216398\cdot 182^{122k+61}+8772\cdot 182^{121k+61}+58520\cdot 182^{120k+60}\\||-16958\cdot 182^{119k+60}+297479\cdot 182^{118k+59}-15930\cdot 182^{117k+59}+11486\cdot 182^{116k+58}+15666\cdot 182^{115k+58}\\||-333515\cdot 182^{114k+57}+21056\cdot 182^{113k+57}-84536\cdot 182^{112k+56}-11821\cdot 182^{111k+56}+316134\cdot 182^{110k+55}\\||-22372\cdot 182^{109k+55}+128514\cdot 182^{108k+54}+7701\cdot 182^{107k+54}-265720\cdot 182^{106k+53}+20102\cdot 182^{105k+53}\\||-124863\cdot 182^{104k+52}-6266\cdot 182^{103k+52}+236782\cdot 182^{102k+51}-18356\cdot 182^{101k+51}+113427\cdot 182^{100k+50}\\||+6646\cdot 182^{99k+50}-248612\cdot 182^{98k+49}+20336\cdot 182^{97k+49}-148386\cdot 182^{96k+48}-4998\cdot 182^{95k+48}\\||+261898\cdot 182^{94k+47}-24492\cdot 182^{93k+47}+228763\cdot 182^{92k+46}+89\cdot 182^{91k+46}-247702\cdot 182^{90k+45}\\||+28306\cdot 182^{89k+45}-323842\cdot 182^{88k+44}+6628\cdot 182^{87k+44}+209755\cdot 182^{86k+43}-30985\cdot 182^{85k+43}\\||+416942\cdot 182^{84k+42}-14356\cdot 182^{83k+42}-143962\cdot 182^{82k+41}+31058\cdot 182^{81k+41}-479706\cdot 182^{80k+40}\\||+21184\cdot 182^{79k+40}+63791\cdot 182^{78k+39}-28218\cdot 182^{77k+39}+490070\cdot 182^{76k+38}-24436\cdot 182^{75k+38}\\||-12558\cdot 182^{74k+37}+25612\cdot 182^{73k+37}-482173\cdot 182^{72k+36}+25612\cdot 182^{71k+36}-12558\cdot 182^{70k+35}\\||-24436\cdot 182^{69k+35}+490070\cdot 182^{68k+34}-28218\cdot 182^{67k+34}+63791\cdot 182^{66k+33}+21184\cdot 182^{65k+33}\\||-479706\cdot 182^{64k+32}+31058\cdot 182^{63k+32}-143962\cdot 182^{62k+31}-14356\cdot 182^{61k+31}+416942\cdot 182^{60k+30}\\||-30985\cdot 182^{59k+30}+209755\cdot 182^{58k+29}+6628\cdot 182^{57k+29}-323842\cdot 182^{56k+28}+28306\cdot 182^{55k+28}\\||-247702\cdot 182^{54k+27}+89\cdot 182^{53k+27}+228763\cdot 182^{52k+26}-24492\cdot 182^{51k+26}+261898\cdot 182^{50k+25}\\||-4998\cdot 182^{49k+25}-148386\cdot 182^{48k+24}+20336\cdot 182^{47k+24}-248612\cdot 182^{46k+23}+6646\cdot 182^{45k+23}\\||+113427\cdot 182^{44k+22}-18356\cdot 182^{43k+22}+236782\cdot 182^{42k+21}-6266\cdot 182^{41k+21}-124863\cdot 182^{40k+20}\\||+20102\cdot 182^{39k+20}-265720\cdot 182^{38k+19}+7701\cdot 182^{37k+19}+128514\cdot 182^{36k+18}-22372\cdot 182^{35k+18}\\||+316134\cdot 182^{34k+17}-11821\cdot 182^{33k+17}-84536\cdot 182^{32k+16}+21056\cdot 182^{31k+16}-333515\cdot 182^{30k+15}\\||+15666\cdot 182^{29k+15}+11486\cdot 182^{28k+14}-15930\cdot 182^{27k+14}+297479\cdot 182^{26k+13}-16958\cdot 182^{25k+13}\\||+58520\cdot 182^{24k+12}+8772\cdot 182^{23k+12}-216398\cdot 182^{22k+11}+14966\cdot 182^{21k+11}-101262\cdot 182^{20k+10}\\||-1712\cdot 182^{19k+10}+110656\cdot 182^{18k+9}-9766\cdot 182^{17k+9}+94389\cdot 182^{16k+8}-2276\cdot 182^{15k+8}\\||-24843\cdot 182^{14k+7}+3869\cdot 182^{13k+7}-50340\cdot 182^{12k+6}+2314\cdot 182^{11k+6}-9464\cdot 182^{10k+5}\\||-397\cdot 182^{9k+5}+10954\cdot 182^{8k+4}-743\cdot 182^{7k+4}+6552\cdot 182^{6k+3}-246\cdot 182^{5k+3}\\||+1320\cdot 182^{4k+2}-30\cdot 182^{3k+2}+91\cdot 182^{2k+1}-182^{k+1}+1)\\|\times|(182^{144k+72}+182^{143k+72}+91\cdot 182^{142k+71}+30\cdot 182^{141k+71}+1320\cdot 182^{140k+70}\\||+246\cdot 182^{139k+70}+6552\cdot 182^{138k+69}+743\cdot 182^{137k+69}+10954\cdot 182^{136k+68}+397\cdot 182^{135k+68}\\||-9464\cdot 182^{134k+67}-2314\cdot 182^{133k+67}-50340\cdot 182^{132k+66}-3869\cdot 182^{131k+66}-24843\cdot 182^{130k+65}\\||+2276\cdot 182^{129k+65}+94389\cdot 182^{128k+64}+9766\cdot 182^{127k+64}+110656\cdot 182^{126k+63}+1712\cdot 182^{125k+63}\\||-101262\cdot 182^{124k+62}-14966\cdot 182^{123k+62}-216398\cdot 182^{122k+61}-8772\cdot 182^{121k+61}+58520\cdot 182^{120k+60}\\||+16958\cdot 182^{119k+60}+297479\cdot 182^{118k+59}+15930\cdot 182^{117k+59}+11486\cdot 182^{116k+58}-15666\cdot 182^{115k+58}\\||-333515\cdot 182^{114k+57}-21056\cdot 182^{113k+57}-84536\cdot 182^{112k+56}+11821\cdot 182^{111k+56}+316134\cdot 182^{110k+55}\\||+22372\cdot 182^{109k+55}+128514\cdot 182^{108k+54}-7701\cdot 182^{107k+54}-265720\cdot 182^{106k+53}-20102\cdot 182^{105k+53}\\||-124863\cdot 182^{104k+52}+6266\cdot 182^{103k+52}+236782\cdot 182^{102k+51}+18356\cdot 182^{101k+51}+113427\cdot 182^{100k+50}\\||-6646\cdot 182^{99k+50}-248612\cdot 182^{98k+49}-20336\cdot 182^{97k+49}-148386\cdot 182^{96k+48}+4998\cdot 182^{95k+48}\\||+261898\cdot 182^{94k+47}+24492\cdot 182^{93k+47}+228763\cdot 182^{92k+46}-89\cdot 182^{91k+46}-247702\cdot 182^{90k+45}\\||-28306\cdot 182^{89k+45}-323842\cdot 182^{88k+44}-6628\cdot 182^{87k+44}+209755\cdot 182^{86k+43}+30985\cdot 182^{85k+43}\\||+416942\cdot 182^{84k+42}+14356\cdot 182^{83k+42}-143962\cdot 182^{82k+41}-31058\cdot 182^{81k+41}-479706\cdot 182^{80k+40}\\||-21184\cdot 182^{79k+40}+63791\cdot 182^{78k+39}+28218\cdot 182^{77k+39}+490070\cdot 182^{76k+38}+24436\cdot 182^{75k+38}\\||-12558\cdot 182^{74k+37}-25612\cdot 182^{73k+37}-482173\cdot 182^{72k+36}-25612\cdot 182^{71k+36}-12558\cdot 182^{70k+35}\\||+24436\cdot 182^{69k+35}+490070\cdot 182^{68k+34}+28218\cdot 182^{67k+34}+63791\cdot 182^{66k+33}-21184\cdot 182^{65k+33}\\||-479706\cdot 182^{64k+32}-31058\cdot 182^{63k+32}-143962\cdot 182^{62k+31}+14356\cdot 182^{61k+31}+416942\cdot 182^{60k+30}\\||+30985\cdot 182^{59k+30}+209755\cdot 182^{58k+29}-6628\cdot 182^{57k+29}-323842\cdot 182^{56k+28}-28306\cdot 182^{55k+28}\\||-247702\cdot 182^{54k+27}-89\cdot 182^{53k+27}+228763\cdot 182^{52k+26}+24492\cdot 182^{51k+26}+261898\cdot 182^{50k+25}\\||+4998\cdot 182^{49k+25}-148386\cdot 182^{48k+24}-20336\cdot 182^{47k+24}-248612\cdot 182^{46k+23}-6646\cdot 182^{45k+23}\\||+113427\cdot 182^{44k+22}+18356\cdot 182^{43k+22}+236782\cdot 182^{42k+21}+6266\cdot 182^{41k+21}-124863\cdot 182^{40k+20}\\||-20102\cdot 182^{39k+20}-265720\cdot 182^{38k+19}-7701\cdot 182^{37k+19}+128514\cdot 182^{36k+18}+22372\cdot 182^{35k+18}\\||+316134\cdot 182^{34k+17}+11821\cdot 182^{33k+17}-84536\cdot 182^{32k+16}-21056\cdot 182^{31k+16}-333515\cdot 182^{30k+15}\\||-15666\cdot 182^{29k+15}+11486\cdot 182^{28k+14}+15930\cdot 182^{27k+14}+297479\cdot 182^{26k+13}+16958\cdot 182^{25k+13}\\||+58520\cdot 182^{24k+12}-8772\cdot 182^{23k+12}-216398\cdot 182^{22k+11}-14966\cdot 182^{21k+11}-101262\cdot 182^{20k+10}\\||+1712\cdot 182^{19k+10}+110656\cdot 182^{18k+9}+9766\cdot 182^{17k+9}+94389\cdot 182^{16k+8}+2276\cdot 182^{15k+8}\\||-24843\cdot 182^{14k+7}-3869\cdot 182^{13k+7}-50340\cdot 182^{12k+6}-2314\cdot 182^{11k+6}-9464\cdot 182^{10k+5}\\||+397\cdot 182^{9k+5}+10954\cdot 182^{8k+4}+743\cdot 182^{7k+4}+6552\cdot 182^{6k+3}+246\cdot 182^{5k+3}\\||+1320\cdot 182^{4k+2}+30\cdot 182^{3k+2}+91\cdot 182^{2k+1}+182^{k+1}+1)\\{\large\Phi}_{366}(183^{2k+1})|=|183^{240k+120}+183^{238k+119}-183^{234k+117}-183^{232k+116}+183^{228k+114}\\||+183^{226k+113}-183^{222k+111}-183^{220k+110}+183^{216k+108}+183^{214k+107}\\||-183^{210k+105}-183^{208k+104}+183^{204k+102}+183^{202k+101}-183^{198k+99}\\||-183^{196k+98}+183^{192k+96}+183^{190k+95}-183^{186k+93}-183^{184k+92}\\||+183^{180k+90}+183^{178k+89}-183^{174k+87}-183^{172k+86}+183^{168k+84}\\||+183^{166k+83}-183^{162k+81}-183^{160k+80}+183^{156k+78}+183^{154k+77}\\||-183^{150k+75}-183^{148k+74}+183^{144k+72}+183^{142k+71}-183^{138k+69}\\||-183^{136k+68}+183^{132k+66}+183^{130k+65}-183^{126k+63}-183^{124k+62}\\||+183^{120k+60}-183^{116k+58}-183^{114k+57}+183^{110k+55}+183^{108k+54}\\||-183^{104k+52}-183^{102k+51}+183^{98k+49}+183^{96k+48}-183^{92k+46}\\||-183^{90k+45}+183^{86k+43}+183^{84k+42}-183^{80k+40}-183^{78k+39}\\||+183^{74k+37}+183^{72k+36}-183^{68k+34}-183^{66k+33}+183^{62k+31}\\||+183^{60k+30}-183^{56k+28}-183^{54k+27}+183^{50k+25}+183^{48k+24}\\||-183^{44k+22}-183^{42k+21}+183^{38k+19}+183^{36k+18}-183^{32k+16}\\||-183^{30k+15}+183^{26k+13}+183^{24k+12}-183^{20k+10}-183^{18k+9}\\||+183^{14k+7}+183^{12k+6}-183^{8k+4}-183^{6k+3}+183^{2k+1}+1\\|=|(183^{120k+60}-183^{119k+60}+92\cdot 183^{118k+59}-31\cdot 183^{117k+59}+1441\cdot 183^{116k+58}\\||-294\cdot 183^{115k+58}+9161\cdot 183^{114k+57}-1333\cdot 183^{113k+57}+30748\cdot 183^{112k+56}-3375\cdot 183^{111k+56}\\||+58811\cdot 183^{110k+55}-4774\cdot 183^{109k+55}+57643\cdot 183^{108k+54}-2649\cdot 183^{107k+54}+2528\cdot 183^{106k+53}\\||+2449\cdot 183^{105k+53}-58979\cdot 183^{104k+52}+4800\cdot 183^{103k+52}-48037\cdot 183^{102k+51}+1081\cdot 183^{101k+51}\\||+22150\cdot 183^{100k+50}-3591\cdot 183^{99k+50}+57227\cdot 183^{98k+49}-3718\cdot 183^{97k+49}+37291\cdot 183^{96k+48}\\||-2085\cdot 183^{95k+48}+26438\cdot 183^{94k+47}-1937\cdot 183^{93k+47}+16591\cdot 183^{92k+46}+732\cdot 183^{91k+46}\\||-49843\cdot 183^{90k+45}+6485\cdot 183^{89k+45}-102950\cdot 183^{88k+44}+6017\cdot 183^{87k+44}-24829\cdot 183^{86k+43}\\||-3546\cdot 183^{85k+43}+109615\cdot 183^{84k+42}-10175\cdot 183^{83k+42}+125432\cdot 183^{82k+41}-6225\cdot 183^{81k+41}\\||+35245\cdot 183^{80k+40}+212\cdot 183^{79k+40}-23953\cdot 183^{78k+39}+2607\cdot 183^{77k+39}-49586\cdot 183^{76k+38}\\||+5459\cdot 183^{75k+38}-101995\cdot 183^{74k+37}+8648\cdot 183^{73k+37}-101093\cdot 183^{72k+36}+3561\cdot 183^{71k+36}\\||+29804\cdot 183^{70k+35}-7873\cdot 183^{69k+35}+153583\cdot 183^{68k+34}-11440\cdot 183^{67k+34}+113597\cdot 183^{66k+33}\\||-3747\cdot 183^{65k+33}-7952\cdot 183^{64k+32}+3275\cdot 183^{63k+32}-55849\cdot 183^{62k+31}+3936\cdot 183^{61k+31}\\||-50327\cdot 183^{60k+30}+3936\cdot 183^{59k+30}-55849\cdot 183^{58k+29}+3275\cdot 183^{57k+29}-7952\cdot 183^{56k+28}\\||-3747\cdot 183^{55k+28}+113597\cdot 183^{54k+27}-11440\cdot 183^{53k+27}+153583\cdot 183^{52k+26}-7873\cdot 183^{51k+26}\\||+29804\cdot 183^{50k+25}+3561\cdot 183^{49k+25}-101093\cdot 183^{48k+24}+8648\cdot 183^{47k+24}-101995\cdot 183^{46k+23}\\||+5459\cdot 183^{45k+23}-49586\cdot 183^{44k+22}+2607\cdot 183^{43k+22}-23953\cdot 183^{42k+21}+212\cdot 183^{41k+21}\\||+35245\cdot 183^{40k+20}-6225\cdot 183^{39k+20}+125432\cdot 183^{38k+19}-10175\cdot 183^{37k+19}+109615\cdot 183^{36k+18}\\||-3546\cdot 183^{35k+18}-24829\cdot 183^{34k+17}+6017\cdot 183^{33k+17}-102950\cdot 183^{32k+16}+6485\cdot 183^{31k+16}\\||-49843\cdot 183^{30k+15}+732\cdot 183^{29k+15}+16591\cdot 183^{28k+14}-1937\cdot 183^{27k+14}+26438\cdot 183^{26k+13}\\||-2085\cdot 183^{25k+13}+37291\cdot 183^{24k+12}-3718\cdot 183^{23k+12}+57227\cdot 183^{22k+11}-3591\cdot 183^{21k+11}\\||+22150\cdot 183^{20k+10}+1081\cdot 183^{19k+10}-48037\cdot 183^{18k+9}+4800\cdot 183^{17k+9}-58979\cdot 183^{16k+8}\\||+2449\cdot 183^{15k+8}+2528\cdot 183^{14k+7}-2649\cdot 183^{13k+7}+57643\cdot 183^{12k+6}-4774\cdot 183^{11k+6}\\||+58811\cdot 183^{10k+5}-3375\cdot 183^{9k+5}+30748\cdot 183^{8k+4}-1333\cdot 183^{7k+4}+9161\cdot 183^{6k+3}\\||-294\cdot 183^{5k+3}+1441\cdot 183^{4k+2}-31\cdot 183^{3k+2}+92\cdot 183^{2k+1}-183^{k+1}+1)\\|\times|(183^{120k+60}+183^{119k+60}+92\cdot 183^{118k+59}+31\cdot 183^{117k+59}+1441\cdot 183^{116k+58}\\||+294\cdot 183^{115k+58}+9161\cdot 183^{114k+57}+1333\cdot 183^{113k+57}+30748\cdot 183^{112k+56}+3375\cdot 183^{111k+56}\\||+58811\cdot 183^{110k+55}+4774\cdot 183^{109k+55}+57643\cdot 183^{108k+54}+2649\cdot 183^{107k+54}+2528\cdot 183^{106k+53}\\||-2449\cdot 183^{105k+53}-58979\cdot 183^{104k+52}-4800\cdot 183^{103k+52}-48037\cdot 183^{102k+51}-1081\cdot 183^{101k+51}\\||+22150\cdot 183^{100k+50}+3591\cdot 183^{99k+50}+57227\cdot 183^{98k+49}+3718\cdot 183^{97k+49}+37291\cdot 183^{96k+48}\\||+2085\cdot 183^{95k+48}+26438\cdot 183^{94k+47}+1937\cdot 183^{93k+47}+16591\cdot 183^{92k+46}-732\cdot 183^{91k+46}\\||-49843\cdot 183^{90k+45}-6485\cdot 183^{89k+45}-102950\cdot 183^{88k+44}-6017\cdot 183^{87k+44}-24829\cdot 183^{86k+43}\\||+3546\cdot 183^{85k+43}+109615\cdot 183^{84k+42}+10175\cdot 183^{83k+42}+125432\cdot 183^{82k+41}+6225\cdot 183^{81k+41}\\||+35245\cdot 183^{80k+40}-212\cdot 183^{79k+40}-23953\cdot 183^{78k+39}-2607\cdot 183^{77k+39}-49586\cdot 183^{76k+38}\\||-5459\cdot 183^{75k+38}-101995\cdot 183^{74k+37}-8648\cdot 183^{73k+37}-101093\cdot 183^{72k+36}-3561\cdot 183^{71k+36}\\||+29804\cdot 183^{70k+35}+7873\cdot 183^{69k+35}+153583\cdot 183^{68k+34}+11440\cdot 183^{67k+34}+113597\cdot 183^{66k+33}\\||+3747\cdot 183^{65k+33}-7952\cdot 183^{64k+32}-3275\cdot 183^{63k+32}-55849\cdot 183^{62k+31}-3936\cdot 183^{61k+31}\\||-50327\cdot 183^{60k+30}-3936\cdot 183^{59k+30}-55849\cdot 183^{58k+29}-3275\cdot 183^{57k+29}-7952\cdot 183^{56k+28}\\||+3747\cdot 183^{55k+28}+113597\cdot 183^{54k+27}+11440\cdot 183^{53k+27}+153583\cdot 183^{52k+26}+7873\cdot 183^{51k+26}\\||+29804\cdot 183^{50k+25}-3561\cdot 183^{49k+25}-101093\cdot 183^{48k+24}-8648\cdot 183^{47k+24}-101995\cdot 183^{46k+23}\\||-5459\cdot 183^{45k+23}-49586\cdot 183^{44k+22}-2607\cdot 183^{43k+22}-23953\cdot 183^{42k+21}-212\cdot 183^{41k+21}\\||+35245\cdot 183^{40k+20}+6225\cdot 183^{39k+20}+125432\cdot 183^{38k+19}+10175\cdot 183^{37k+19}+109615\cdot 183^{36k+18}\\||+3546\cdot 183^{35k+18}-24829\cdot 183^{34k+17}-6017\cdot 183^{33k+17}-102950\cdot 183^{32k+16}-6485\cdot 183^{31k+16}\\||-49843\cdot 183^{30k+15}-732\cdot 183^{29k+15}+16591\cdot 183^{28k+14}+1937\cdot 183^{27k+14}+26438\cdot 183^{26k+13}\\||+2085\cdot 183^{25k+13}+37291\cdot 183^{24k+12}+3718\cdot 183^{23k+12}+57227\cdot 183^{22k+11}+3591\cdot 183^{21k+11}\\||+22150\cdot 183^{20k+10}-1081\cdot 183^{19k+10}-48037\cdot 183^{18k+9}-4800\cdot 183^{17k+9}-58979\cdot 183^{16k+8}\\||-2449\cdot 183^{15k+8}+2528\cdot 183^{14k+7}+2649\cdot 183^{13k+7}+57643\cdot 183^{12k+6}+4774\cdot 183^{11k+6}\\||+58811\cdot 183^{10k+5}+3375\cdot 183^{9k+5}+30748\cdot 183^{8k+4}+1333\cdot 183^{7k+4}+9161\cdot 183^{6k+3}\\||+294\cdot 183^{5k+3}+1441\cdot 183^{4k+2}+31\cdot 183^{3k+2}+92\cdot 183^{2k+1}+183^{k+1}+1)\\{\large\Phi}_{185}(185^{2k+1})|=|185^{288k+144}-185^{286k+143}+185^{278k+139}-185^{276k+138}+185^{268k+134}\\||-185^{266k+133}+185^{258k+129}-185^{256k+128}+185^{248k+124}-185^{246k+123}\\||+185^{238k+119}-185^{236k+118}+185^{228k+114}-185^{226k+113}+185^{218k+109}\\||-185^{216k+108}+185^{214k+107}-185^{212k+106}+185^{208k+104}-185^{206k+103}\\||+185^{204k+102}-185^{202k+101}+185^{198k+99}-185^{196k+98}+185^{194k+97}\\||-185^{192k+96}+185^{188k+94}-185^{186k+93}+185^{184k+92}-185^{182k+91}\\||+185^{178k+89}-185^{176k+88}+185^{174k+87}-185^{172k+86}+185^{168k+84}\\||-185^{166k+83}+185^{164k+82}-185^{162k+81}+185^{158k+79}-185^{156k+78}\\||+185^{154k+77}-185^{152k+76}+185^{148k+74}-185^{146k+73}+185^{144k+72}\\||-185^{142k+71}+185^{140k+70}-185^{136k+68}+185^{134k+67}-185^{132k+66}\\||+185^{130k+65}-185^{126k+63}+185^{124k+62}-185^{122k+61}+185^{120k+60}\\||-185^{116k+58}+185^{114k+57}-185^{112k+56}+185^{110k+55}-185^{106k+53}\\||+185^{104k+52}-185^{102k+51}+185^{100k+50}-185^{96k+48}+185^{94k+47}\\||-185^{92k+46}+185^{90k+45}-185^{86k+43}+185^{84k+42}-185^{82k+41}\\||+185^{80k+40}-185^{76k+38}+185^{74k+37}-185^{72k+36}+185^{70k+35}\\||-185^{62k+31}+185^{60k+30}-185^{52k+26}+185^{50k+25}-185^{42k+21}\\||+185^{40k+20}-185^{32k+16}+185^{30k+15}-185^{22k+11}+185^{20k+10}\\||-185^{12k+6}+185^{10k+5}-185^{2k+1}+1\\|=|(185^{144k+72}-185^{143k+72}+92\cdot 185^{142k+71}-30\cdot 185^{141k+71}+1318\cdot 185^{140k+70}\\||-239\cdot 185^{139k+70}+6209\cdot 185^{138k+69}-660\cdot 185^{137k+69}+8760\cdot 185^{136k+68}-170\cdot 185^{135k+68}\\||-11239\cdot 185^{134k+67}+2029\cdot 185^{133k+67}-37498\cdot 185^{132k+66}+2306\cdot 185^{131k+66}-6032\cdot 185^{130k+65}\\||-2317\cdot 185^{129k+65}+66569\cdot 185^{128k+64}-6138\cdot 185^{127k+64}+71990\cdot 185^{126k+63}-2230\cdot 185^{125k+63}\\||-33459\cdot 185^{124k+62}+7417\cdot 185^{123k+62}-145398\cdot 185^{122k+61}+10422\cdot 185^{121k+61}-80252\cdot 185^{120k+60}\\||-1733\cdot 185^{119k+60}+132909\cdot 185^{118k+59}-15160\cdot 185^{117k+59}+215070\cdot 185^{116k+58}-11268\cdot 185^{115k+58}\\||+35601\cdot 185^{114k+57}+7855\cdot 185^{113k+57}-231978\cdot 185^{112k+56}+21720\cdot 185^{111k+56}-265702\cdot 185^{110k+55}\\||+10365\cdot 185^{109k+55}+44179\cdot 185^{108k+54}-16865\cdot 185^{107k+54}+351725\cdot 185^{106k+53}-27106\cdot 185^{105k+53}\\||+270521\cdot 185^{104k+52}-5963\cdot 185^{103k+52}-148153\cdot 185^{102k+51}+25663\cdot 185^{101k+51}-453982\cdot 185^{100k+50}\\||+30819\cdot 185^{99k+50}-245131\cdot 185^{98k+49}-1367\cdot 185^{97k+49}+289115\cdot 185^{96k+48}-35242\cdot 185^{95k+48}\\||+526481\cdot 185^{94k+47}-30171\cdot 185^{93k+47}+159617\cdot 185^{92k+46}+11317\cdot 185^{91k+46}-433182\cdot 185^{90k+45}\\||+43035\cdot 185^{89k+45}-554711\cdot 185^{88k+44}+25365\cdot 185^{87k+44}-20085\cdot 185^{86k+43}-23326\cdot 185^{85k+43}\\||+559521\cdot 185^{84k+42}-46231\cdot 185^{83k+42}+501307\cdot 185^{82k+41}-15809\cdot 185^{81k+41}-141362\cdot 185^{80k+40}\\||+33533\cdot 185^{79k+40}-630101\cdot 185^{78k+39}+44773\cdot 185^{77k+39}-400145\cdot 185^{76k+38}+5102\cdot 185^{75k+38}\\||+281021\cdot 185^{74k+37}-40035\cdot 185^{73k+37}+642057\cdot 185^{72k+36}-40035\cdot 185^{71k+36}+281021\cdot 185^{70k+35}\\||+5102\cdot 185^{69k+35}-400145\cdot 185^{68k+34}+44773\cdot 185^{67k+34}-630101\cdot 185^{66k+33}+33533\cdot 185^{65k+33}\\||-141362\cdot 185^{64k+32}-15809\cdot 185^{63k+32}+501307\cdot 185^{62k+31}-46231\cdot 185^{61k+31}+559521\cdot 185^{60k+30}\\||-23326\cdot 185^{59k+30}-20085\cdot 185^{58k+29}+25365\cdot 185^{57k+29}-554711\cdot 185^{56k+28}+43035\cdot 185^{55k+28}\\||-433182\cdot 185^{54k+27}+11317\cdot 185^{53k+27}+159617\cdot 185^{52k+26}-30171\cdot 185^{51k+26}+526481\cdot 185^{50k+25}\\||-35242\cdot 185^{49k+25}+289115\cdot 185^{48k+24}-1367\cdot 185^{47k+24}-245131\cdot 185^{46k+23}+30819\cdot 185^{45k+23}\\||-453982\cdot 185^{44k+22}+25663\cdot 185^{43k+22}-148153\cdot 185^{42k+21}-5963\cdot 185^{41k+21}+270521\cdot 185^{40k+20}\\||-27106\cdot 185^{39k+20}+351725\cdot 185^{38k+19}-16865\cdot 185^{37k+19}+44179\cdot 185^{36k+18}+10365\cdot 185^{35k+18}\\||-265702\cdot 185^{34k+17}+21720\cdot 185^{33k+17}-231978\cdot 185^{32k+16}+7855\cdot 185^{31k+16}+35601\cdot 185^{30k+15}\\||-11268\cdot 185^{29k+15}+215070\cdot 185^{28k+14}-15160\cdot 185^{27k+14}+132909\cdot 185^{26k+13}-1733\cdot 185^{25k+13}\\||-80252\cdot 185^{24k+12}+10422\cdot 185^{23k+12}-145398\cdot 185^{22k+11}+7417\cdot 185^{21k+11}-33459\cdot 185^{20k+10}\\||-2230\cdot 185^{19k+10}+71990\cdot 185^{18k+9}-6138\cdot 185^{17k+9}+66569\cdot 185^{16k+8}-2317\cdot 185^{15k+8}\\||-6032\cdot 185^{14k+7}+2306\cdot 185^{13k+7}-37498\cdot 185^{12k+6}+2029\cdot 185^{11k+6}-11239\cdot 185^{10k+5}\\||-170\cdot 185^{9k+5}+8760\cdot 185^{8k+4}-660\cdot 185^{7k+4}+6209\cdot 185^{6k+3}-239\cdot 185^{5k+3}\\||+1318\cdot 185^{4k+2}-30\cdot 185^{3k+2}+92\cdot 185^{2k+1}-185^{k+1}+1)\\|\times|(185^{144k+72}+185^{143k+72}+92\cdot 185^{142k+71}+30\cdot 185^{141k+71}+1318\cdot 185^{140k+70}\\||+239\cdot 185^{139k+70}+6209\cdot 185^{138k+69}+660\cdot 185^{137k+69}+8760\cdot 185^{136k+68}+170\cdot 185^{135k+68}\\||-11239\cdot 185^{134k+67}-2029\cdot 185^{133k+67}-37498\cdot 185^{132k+66}-2306\cdot 185^{131k+66}-6032\cdot 185^{130k+65}\\||+2317\cdot 185^{129k+65}+66569\cdot 185^{128k+64}+6138\cdot 185^{127k+64}+71990\cdot 185^{126k+63}+2230\cdot 185^{125k+63}\\||-33459\cdot 185^{124k+62}-7417\cdot 185^{123k+62}-145398\cdot 185^{122k+61}-10422\cdot 185^{121k+61}-80252\cdot 185^{120k+60}\\||+1733\cdot 185^{119k+60}+132909\cdot 185^{118k+59}+15160\cdot 185^{117k+59}+215070\cdot 185^{116k+58}+11268\cdot 185^{115k+58}\\||+35601\cdot 185^{114k+57}-7855\cdot 185^{113k+57}-231978\cdot 185^{112k+56}-21720\cdot 185^{111k+56}-265702\cdot 185^{110k+55}\\||-10365\cdot 185^{109k+55}+44179\cdot 185^{108k+54}+16865\cdot 185^{107k+54}+351725\cdot 185^{106k+53}+27106\cdot 185^{105k+53}\\||+270521\cdot 185^{104k+52}+5963\cdot 185^{103k+52}-148153\cdot 185^{102k+51}-25663\cdot 185^{101k+51}-453982\cdot 185^{100k+50}\\||-30819\cdot 185^{99k+50}-245131\cdot 185^{98k+49}+1367\cdot 185^{97k+49}+289115\cdot 185^{96k+48}+35242\cdot 185^{95k+48}\\||+526481\cdot 185^{94k+47}+30171\cdot 185^{93k+47}+159617\cdot 185^{92k+46}-11317\cdot 185^{91k+46}-433182\cdot 185^{90k+45}\\||-43035\cdot 185^{89k+45}-554711\cdot 185^{88k+44}-25365\cdot 185^{87k+44}-20085\cdot 185^{86k+43}+23326\cdot 185^{85k+43}\\||+559521\cdot 185^{84k+42}+46231\cdot 185^{83k+42}+501307\cdot 185^{82k+41}+15809\cdot 185^{81k+41}-141362\cdot 185^{80k+40}\\||-33533\cdot 185^{79k+40}-630101\cdot 185^{78k+39}-44773\cdot 185^{77k+39}-400145\cdot 185^{76k+38}-5102\cdot 185^{75k+38}\\||+281021\cdot 185^{74k+37}+40035\cdot 185^{73k+37}+642057\cdot 185^{72k+36}+40035\cdot 185^{71k+36}+281021\cdot 185^{70k+35}\\||-5102\cdot 185^{69k+35}-400145\cdot 185^{68k+34}-44773\cdot 185^{67k+34}-630101\cdot 185^{66k+33}-33533\cdot 185^{65k+33}\\||-141362\cdot 185^{64k+32}+15809\cdot 185^{63k+32}+501307\cdot 185^{62k+31}+46231\cdot 185^{61k+31}+559521\cdot 185^{60k+30}\\||+23326\cdot 185^{59k+30}-20085\cdot 185^{58k+29}-25365\cdot 185^{57k+29}-554711\cdot 185^{56k+28}-43035\cdot 185^{55k+28}\\||-433182\cdot 185^{54k+27}-11317\cdot 185^{53k+27}+159617\cdot 185^{52k+26}+30171\cdot 185^{51k+26}+526481\cdot 185^{50k+25}\\||+35242\cdot 185^{49k+25}+289115\cdot 185^{48k+24}+1367\cdot 185^{47k+24}-245131\cdot 185^{46k+23}-30819\cdot 185^{45k+23}\\||-453982\cdot 185^{44k+22}-25663\cdot 185^{43k+22}-148153\cdot 185^{42k+21}+5963\cdot 185^{41k+21}+270521\cdot 185^{40k+20}\\||+27106\cdot 185^{39k+20}+351725\cdot 185^{38k+19}+16865\cdot 185^{37k+19}+44179\cdot 185^{36k+18}-10365\cdot 185^{35k+18}\\||-265702\cdot 185^{34k+17}-21720\cdot 185^{33k+17}-231978\cdot 185^{32k+16}-7855\cdot 185^{31k+16}+35601\cdot 185^{30k+15}\\||+11268\cdot 185^{29k+15}+215070\cdot 185^{28k+14}+15160\cdot 185^{27k+14}+132909\cdot 185^{26k+13}+1733\cdot 185^{25k+13}\\||-80252\cdot 185^{24k+12}-10422\cdot 185^{23k+12}-145398\cdot 185^{22k+11}-7417\cdot 185^{21k+11}-33459\cdot 185^{20k+10}\\||+2230\cdot 185^{19k+10}+71990\cdot 185^{18k+9}+6138\cdot 185^{17k+9}+66569\cdot 185^{16k+8}+2317\cdot 185^{15k+8}\\||-6032\cdot 185^{14k+7}-2306\cdot 185^{13k+7}-37498\cdot 185^{12k+6}-2029\cdot 185^{11k+6}-11239\cdot 185^{10k+5}\\||+170\cdot 185^{9k+5}+8760\cdot 185^{8k+4}+660\cdot 185^{7k+4}+6209\cdot 185^{6k+3}+239\cdot 185^{5k+3}\\||+1318\cdot 185^{4k+2}+30\cdot 185^{3k+2}+92\cdot 185^{2k+1}+185^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{372}(186^{2k+1})\cdots{\large\Phi}_{380}(190^{2k+1})$${\large\Phi}_{372}(186^{2k+1})\cdots{\large\Phi}_{380}(190^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{372}(186^{2k+1})|=|186^{240k+120}+186^{236k+118}-186^{228k+114}-186^{224k+112}+186^{216k+108}\\||+186^{212k+106}-186^{204k+102}-186^{200k+100}+186^{192k+96}+186^{188k+94}\\||-186^{180k+90}-186^{176k+88}+186^{168k+84}+186^{164k+82}-186^{156k+78}\\||-186^{152k+76}+186^{144k+72}+186^{140k+70}-186^{132k+66}-186^{128k+64}\\||+186^{120k+60}-186^{112k+56}-186^{108k+54}+186^{100k+50}+186^{96k+48}\\||-186^{88k+44}-186^{84k+42}+186^{76k+38}+186^{72k+36}-186^{64k+32}\\||-186^{60k+30}+186^{52k+26}+186^{48k+24}-186^{40k+20}-186^{36k+18}\\||+186^{28k+14}+186^{24k+12}-186^{16k+8}-186^{12k+6}+186^{4k+2}+1\\|=|(186^{120k+60}-186^{119k+60}+93\cdot 186^{118k+59}-31\cdot 186^{117k+59}+1442\cdot 186^{116k+58}\\||-289\cdot 186^{115k+58}+9021\cdot 186^{114k+57}-1311\cdot 186^{113k+57}+31585\cdot 186^{112k+56}-3744\cdot 186^{111k+56}\\||+77376\cdot 186^{110k+55}-8218\cdot 186^{109k+55}+157187\cdot 186^{108k+54}-15739\cdot 186^{107k+54}+285603\cdot 186^{106k+53}\\||-27127\cdot 186^{105k+53}+466750\cdot 186^{104k+52}-42151\cdot 186^{103k+52}+693687\cdot 186^{102k+51}-60343\cdot 186^{101k+51}\\||+961991\cdot 186^{100k+50}-81294\cdot 186^{99k+50}+1259592\cdot 186^{98k+49}-103426\cdot 186^{97k+49}+1558081\cdot 186^{96k+48}\\||-124657\cdot 186^{95k+48}+1835541\cdot 186^{94k+47}-143973\cdot 186^{93k+47}+2082638\cdot 186^{92k+46}-160653\cdot 186^{91k+46}\\||+2287149\cdot 186^{90k+45}-173826\cdot 186^{89k+45}+2442619\cdot 186^{88k+44}-183679\cdot 186^{87k+44}+2560290\cdot 186^{86k+43}\\||-191402\cdot 186^{85k+43}+2656865\cdot 186^{84k+42}-198048\cdot 186^{83k+42}+2743965\cdot 186^{82k+41}-204338\cdot 186^{81k+41}\\||+2830522\cdot 186^{80k+40}-210883\cdot 186^{79k+40}+2924199\cdot 186^{78k+39}-218162\cdot 186^{77k+39}+3029117\cdot 186^{76k+38}\\||-226153\cdot 186^{75k+38}+3139122\cdot 186^{74k+37}-234038\cdot 186^{73k+37}+3241591\cdot 186^{72k+36}-241110\cdot 186^{71k+36}\\||+3332283\cdot 186^{70k+35}-247344\cdot 186^{69k+35}+3410270\cdot 186^{68k+34}-252343\cdot 186^{67k+34}+3466017\cdot 186^{66k+33}\\||-255482\cdot 186^{65k+33}+3498139\cdot 186^{64k+32}-257317\cdot 186^{63k+32}+3518562\cdot 186^{62k+31}-258468\cdot 186^{61k+31}\\||+3527405\cdot 186^{60k+30}-258468\cdot 186^{59k+30}+3518562\cdot 186^{58k+29}-257317\cdot 186^{57k+29}+3498139\cdot 186^{56k+28}\\||-255482\cdot 186^{55k+28}+3466017\cdot 186^{54k+27}-252343\cdot 186^{53k+27}+3410270\cdot 186^{52k+26}-247344\cdot 186^{51k+26}\\||+3332283\cdot 186^{50k+25}-241110\cdot 186^{49k+25}+3241591\cdot 186^{48k+24}-234038\cdot 186^{47k+24}+3139122\cdot 186^{46k+23}\\||-226153\cdot 186^{45k+23}+3029117\cdot 186^{44k+22}-218162\cdot 186^{43k+22}+2924199\cdot 186^{42k+21}-210883\cdot 186^{41k+21}\\||+2830522\cdot 186^{40k+20}-204338\cdot 186^{39k+20}+2743965\cdot 186^{38k+19}-198048\cdot 186^{37k+19}+2656865\cdot 186^{36k+18}\\||-191402\cdot 186^{35k+18}+2560290\cdot 186^{34k+17}-183679\cdot 186^{33k+17}+2442619\cdot 186^{32k+16}-173826\cdot 186^{31k+16}\\||+2287149\cdot 186^{30k+15}-160653\cdot 186^{29k+15}+2082638\cdot 186^{28k+14}-143973\cdot 186^{27k+14}+1835541\cdot 186^{26k+13}\\||-124657\cdot 186^{25k+13}+1558081\cdot 186^{24k+12}-103426\cdot 186^{23k+12}+1259592\cdot 186^{22k+11}-81294\cdot 186^{21k+11}\\||+961991\cdot 186^{20k+10}-60343\cdot 186^{19k+10}+693687\cdot 186^{18k+9}-42151\cdot 186^{17k+9}+466750\cdot 186^{16k+8}\\||-27127\cdot 186^{15k+8}+285603\cdot 186^{14k+7}-15739\cdot 186^{13k+7}+157187\cdot 186^{12k+6}-8218\cdot 186^{11k+6}\\||+77376\cdot 186^{10k+5}-3744\cdot 186^{9k+5}+31585\cdot 186^{8k+4}-1311\cdot 186^{7k+4}+9021\cdot 186^{6k+3}\\||-289\cdot 186^{5k+3}+1442\cdot 186^{4k+2}-31\cdot 186^{3k+2}+93\cdot 186^{2k+1}-186^{k+1}+1)\\|\times|(186^{120k+60}+186^{119k+60}+93\cdot 186^{118k+59}+31\cdot 186^{117k+59}+1442\cdot 186^{116k+58}\\||+289\cdot 186^{115k+58}+9021\cdot 186^{114k+57}+1311\cdot 186^{113k+57}+31585\cdot 186^{112k+56}+3744\cdot 186^{111k+56}\\||+77376\cdot 186^{110k+55}+8218\cdot 186^{109k+55}+157187\cdot 186^{108k+54}+15739\cdot 186^{107k+54}+285603\cdot 186^{106k+53}\\||+27127\cdot 186^{105k+53}+466750\cdot 186^{104k+52}+42151\cdot 186^{103k+52}+693687\cdot 186^{102k+51}+60343\cdot 186^{101k+51}\\||+961991\cdot 186^{100k+50}+81294\cdot 186^{99k+50}+1259592\cdot 186^{98k+49}+103426\cdot 186^{97k+49}+1558081\cdot 186^{96k+48}\\||+124657\cdot 186^{95k+48}+1835541\cdot 186^{94k+47}+143973\cdot 186^{93k+47}+2082638\cdot 186^{92k+46}+160653\cdot 186^{91k+46}\\||+2287149\cdot 186^{90k+45}+173826\cdot 186^{89k+45}+2442619\cdot 186^{88k+44}+183679\cdot 186^{87k+44}+2560290\cdot 186^{86k+43}\\||+191402\cdot 186^{85k+43}+2656865\cdot 186^{84k+42}+198048\cdot 186^{83k+42}+2743965\cdot 186^{82k+41}+204338\cdot 186^{81k+41}\\||+2830522\cdot 186^{80k+40}+210883\cdot 186^{79k+40}+2924199\cdot 186^{78k+39}+218162\cdot 186^{77k+39}+3029117\cdot 186^{76k+38}\\||+226153\cdot 186^{75k+38}+3139122\cdot 186^{74k+37}+234038\cdot 186^{73k+37}+3241591\cdot 186^{72k+36}+241110\cdot 186^{71k+36}\\||+3332283\cdot 186^{70k+35}+247344\cdot 186^{69k+35}+3410270\cdot 186^{68k+34}+252343\cdot 186^{67k+34}+3466017\cdot 186^{66k+33}\\||+255482\cdot 186^{65k+33}+3498139\cdot 186^{64k+32}+257317\cdot 186^{63k+32}+3518562\cdot 186^{62k+31}+258468\cdot 186^{61k+31}\\||+3527405\cdot 186^{60k+30}+258468\cdot 186^{59k+30}+3518562\cdot 186^{58k+29}+257317\cdot 186^{57k+29}+3498139\cdot 186^{56k+28}\\||+255482\cdot 186^{55k+28}+3466017\cdot 186^{54k+27}+252343\cdot 186^{53k+27}+3410270\cdot 186^{52k+26}+247344\cdot 186^{51k+26}\\||+3332283\cdot 186^{50k+25}+241110\cdot 186^{49k+25}+3241591\cdot 186^{48k+24}+234038\cdot 186^{47k+24}+3139122\cdot 186^{46k+23}\\||+226153\cdot 186^{45k+23}+3029117\cdot 186^{44k+22}+218162\cdot 186^{43k+22}+2924199\cdot 186^{42k+21}+210883\cdot 186^{41k+21}\\||+2830522\cdot 186^{40k+20}+204338\cdot 186^{39k+20}+2743965\cdot 186^{38k+19}+198048\cdot 186^{37k+19}+2656865\cdot 186^{36k+18}\\||+191402\cdot 186^{35k+18}+2560290\cdot 186^{34k+17}+183679\cdot 186^{33k+17}+2442619\cdot 186^{32k+16}+173826\cdot 186^{31k+16}\\||+2287149\cdot 186^{30k+15}+160653\cdot 186^{29k+15}+2082638\cdot 186^{28k+14}+143973\cdot 186^{27k+14}+1835541\cdot 186^{26k+13}\\||+124657\cdot 186^{25k+13}+1558081\cdot 186^{24k+12}+103426\cdot 186^{23k+12}+1259592\cdot 186^{22k+11}+81294\cdot 186^{21k+11}\\||+961991\cdot 186^{20k+10}+60343\cdot 186^{19k+10}+693687\cdot 186^{18k+9}+42151\cdot 186^{17k+9}+466750\cdot 186^{16k+8}\\||+27127\cdot 186^{15k+8}+285603\cdot 186^{14k+7}+15739\cdot 186^{13k+7}+157187\cdot 186^{12k+6}+8218\cdot 186^{11k+6}\\||+77376\cdot 186^{10k+5}+3744\cdot 186^{9k+5}+31585\cdot 186^{8k+4}+1311\cdot 186^{7k+4}+9021\cdot 186^{6k+3}\\||+289\cdot 186^{5k+3}+1442\cdot 186^{4k+2}+31\cdot 186^{3k+2}+93\cdot 186^{2k+1}+186^{k+1}+1)\\{\large\Phi}_{374}(187^{2k+1})|=|187^{320k+160}+187^{318k+159}-187^{298k+149}-187^{296k+148}-187^{286k+143}\\||-187^{284k+142}+187^{276k+138}+187^{274k+137}+187^{264k+132}+187^{262k+131}\\||-187^{254k+127}+187^{250k+125}-187^{242k+121}-187^{240k+120}+187^{232k+116}\\||-187^{228k+114}+187^{220k+110}-187^{216k+108}-187^{210k+105}+187^{206k+103}\\||-187^{198k+99}+187^{194k+97}+187^{188k+94}+187^{182k+91}+187^{176k+88}\\||-187^{172k+86}-187^{166k+83}-187^{160k+80}-187^{154k+77}-187^{148k+74}\\||+187^{144k+72}+187^{138k+69}+187^{132k+66}+187^{126k+63}-187^{122k+61}\\||+187^{114k+57}-187^{110k+55}-187^{104k+52}+187^{100k+50}-187^{92k+46}\\||+187^{88k+44}-187^{80k+40}-187^{78k+39}+187^{70k+35}-187^{66k+33}\\||+187^{58k+29}+187^{56k+28}+187^{46k+23}+187^{44k+22}-187^{36k+18}\\||-187^{34k+17}-187^{24k+12}-187^{22k+11}+187^{2k+1}+1\\|=|(187^{160k+80}-187^{159k+80}+94\cdot 187^{158k+79}-32\cdot 187^{157k+79}+1566\cdot 187^{156k+78}\\||-338\cdot 187^{155k+78}+11746\cdot 187^{154k+77}-1932\cdot 187^{153k+77}+53574\cdot 187^{152k+76}-7254\cdot 187^{151k+76}\\||+169208\cdot 187^{150k+75}-19563\cdot 187^{149k+75}+393515\cdot 187^{148k+74}-39454\cdot 187^{147k+74}+689216\cdot 187^{146k+73}\\||-59808\cdot 187^{145k+73}+895246\cdot 187^{144k+72}-65173\cdot 187^{143k+72}+783123\cdot 187^{142k+71}-41180\cdot 187^{141k+71}\\||+243474\cdot 187^{140k+70}+10442\cdot 187^{139k+70}-546525\cdot 187^{138k+69}+66707\cdot 187^{137k+69}-1190404\cdot 187^{136k+68}\\||+98682\cdot 187^{135k+68}-1382594\cdot 187^{134k+67}+95648\cdot 187^{133k+67}-1161125\cdot 187^{132k+66}+71825\cdot 187^{131k+66}\\||-801970\cdot 187^{130k+65}+46206\cdot 187^{129k+65}-461324\cdot 187^{128k+64}+19309\cdot 187^{127k+64}-10600\cdot 187^{126k+63}\\||-23179\cdot 187^{125k+63}+714194\cdot 187^{124k+62}-84180\cdot 187^{123k+62}+1578520\cdot 187^{122k+61}-141913\cdot 187^{121k+61}\\||+2190255\cdot 187^{120k+60}-168172\cdot 187^{119k+60}+2264172\cdot 187^{118k+59}-153304\cdot 187^{117k+59}+1816131\cdot 187^{116k+58}\\||-105248\cdot 187^{115k+58}+972279\cdot 187^{114k+57}-30364\cdot 187^{113k+57}-228290\cdot 187^{112k+56}+68592\cdot 187^{111k+56}\\||-1667635\cdot 187^{110k+55}+171484\cdot 187^{109k+55}-2883107\cdot 187^{108k+54}+234026\cdot 187^{107k+54}-3242486\cdot 187^{106k+53}\\||+219395\cdot 187^{105k+53}-2512602\cdot 187^{104k+52}+135869\cdot 187^{103k+52}-1132216\cdot 187^{102k+51}+30954\cdot 187^{101k+51}\\||+209948\cdot 187^{100k+50}-54675\cdot 187^{99k+50}+1204928\cdot 187^{98k+49}-118163\cdot 187^{97k+49}+2012540\cdot 187^{96k+48}\\||-175976\cdot 187^{95k+48}+2778701\cdot 187^{94k+47}-225402\cdot 187^{93k+47}+3254602\cdot 187^{92k+46}-236579\cdot 187^{91k+46}\\||+2983520\cdot 187^{90k+45}-182140\cdot 187^{89k+45}+1782647\cdot 187^{88k+44}-66900\cdot 187^{87k+44}-38139\cdot 187^{86k+43}\\||+72794\cdot 187^{85k+43}-1881076\cdot 187^{84k+42}+192431\cdot 187^{83k+42}-3198780\cdot 187^{82k+41}+259680\cdot 187^{81k+41}\\||-3670407\cdot 187^{80k+40}+259680\cdot 187^{79k+40}-3198780\cdot 187^{78k+39}+192431\cdot 187^{77k+39}-1881076\cdot 187^{76k+38}\\||+72794\cdot 187^{75k+38}-38139\cdot 187^{74k+37}-66900\cdot 187^{73k+37}+1782647\cdot 187^{72k+36}-182140\cdot 187^{71k+36}\\||+2983520\cdot 187^{70k+35}-236579\cdot 187^{69k+35}+3254602\cdot 187^{68k+34}-225402\cdot 187^{67k+34}+2778701\cdot 187^{66k+33}\\||-175976\cdot 187^{65k+33}+2012540\cdot 187^{64k+32}-118163\cdot 187^{63k+32}+1204928\cdot 187^{62k+31}-54675\cdot 187^{61k+31}\\||+209948\cdot 187^{60k+30}+30954\cdot 187^{59k+30}-1132216\cdot 187^{58k+29}+135869\cdot 187^{57k+29}-2512602\cdot 187^{56k+28}\\||+219395\cdot 187^{55k+28}-3242486\cdot 187^{54k+27}+234026\cdot 187^{53k+27}-2883107\cdot 187^{52k+26}+171484\cdot 187^{51k+26}\\||-1667635\cdot 187^{50k+25}+68592\cdot 187^{49k+25}-228290\cdot 187^{48k+24}-30364\cdot 187^{47k+24}+972279\cdot 187^{46k+23}\\||-105248\cdot 187^{45k+23}+1816131\cdot 187^{44k+22}-153304\cdot 187^{43k+22}+2264172\cdot 187^{42k+21}-168172\cdot 187^{41k+21}\\||+2190255\cdot 187^{40k+20}-141913\cdot 187^{39k+20}+1578520\cdot 187^{38k+19}-84180\cdot 187^{37k+19}+714194\cdot 187^{36k+18}\\||-23179\cdot 187^{35k+18}-10600\cdot 187^{34k+17}+19309\cdot 187^{33k+17}-461324\cdot 187^{32k+16}+46206\cdot 187^{31k+16}\\||-801970\cdot 187^{30k+15}+71825\cdot 187^{29k+15}-1161125\cdot 187^{28k+14}+95648\cdot 187^{27k+14}-1382594\cdot 187^{26k+13}\\||+98682\cdot 187^{25k+13}-1190404\cdot 187^{24k+12}+66707\cdot 187^{23k+12}-546525\cdot 187^{22k+11}+10442\cdot 187^{21k+11}\\||+243474\cdot 187^{20k+10}-41180\cdot 187^{19k+10}+783123\cdot 187^{18k+9}-65173\cdot 187^{17k+9}+895246\cdot 187^{16k+8}\\||-59808\cdot 187^{15k+8}+689216\cdot 187^{14k+7}-39454\cdot 187^{13k+7}+393515\cdot 187^{12k+6}-19563\cdot 187^{11k+6}\\||+169208\cdot 187^{10k+5}-7254\cdot 187^{9k+5}+53574\cdot 187^{8k+4}-1932\cdot 187^{7k+4}+11746\cdot 187^{6k+3}\\||-338\cdot 187^{5k+3}+1566\cdot 187^{4k+2}-32\cdot 187^{3k+2}+94\cdot 187^{2k+1}-187^{k+1}+1)\\|\times|(187^{160k+80}+187^{159k+80}+94\cdot 187^{158k+79}+32\cdot 187^{157k+79}+1566\cdot 187^{156k+78}\\||+338\cdot 187^{155k+78}+11746\cdot 187^{154k+77}+1932\cdot 187^{153k+77}+53574\cdot 187^{152k+76}+7254\cdot 187^{151k+76}\\||+169208\cdot 187^{150k+75}+19563\cdot 187^{149k+75}+393515\cdot 187^{148k+74}+39454\cdot 187^{147k+74}+689216\cdot 187^{146k+73}\\||+59808\cdot 187^{145k+73}+895246\cdot 187^{144k+72}+65173\cdot 187^{143k+72}+783123\cdot 187^{142k+71}+41180\cdot 187^{141k+71}\\||+243474\cdot 187^{140k+70}-10442\cdot 187^{139k+70}-546525\cdot 187^{138k+69}-66707\cdot 187^{137k+69}-1190404\cdot 187^{136k+68}\\||-98682\cdot 187^{135k+68}-1382594\cdot 187^{134k+67}-95648\cdot 187^{133k+67}-1161125\cdot 187^{132k+66}-71825\cdot 187^{131k+66}\\||-801970\cdot 187^{130k+65}-46206\cdot 187^{129k+65}-461324\cdot 187^{128k+64}-19309\cdot 187^{127k+64}-10600\cdot 187^{126k+63}\\||+23179\cdot 187^{125k+63}+714194\cdot 187^{124k+62}+84180\cdot 187^{123k+62}+1578520\cdot 187^{122k+61}+141913\cdot 187^{121k+61}\\||+2190255\cdot 187^{120k+60}+168172\cdot 187^{119k+60}+2264172\cdot 187^{118k+59}+153304\cdot 187^{117k+59}+1816131\cdot 187^{116k+58}\\||+105248\cdot 187^{115k+58}+972279\cdot 187^{114k+57}+30364\cdot 187^{113k+57}-228290\cdot 187^{112k+56}-68592\cdot 187^{111k+56}\\||-1667635\cdot 187^{110k+55}-171484\cdot 187^{109k+55}-2883107\cdot 187^{108k+54}-234026\cdot 187^{107k+54}-3242486\cdot 187^{106k+53}\\||-219395\cdot 187^{105k+53}-2512602\cdot 187^{104k+52}-135869\cdot 187^{103k+52}-1132216\cdot 187^{102k+51}-30954\cdot 187^{101k+51}\\||+209948\cdot 187^{100k+50}+54675\cdot 187^{99k+50}+1204928\cdot 187^{98k+49}+118163\cdot 187^{97k+49}+2012540\cdot 187^{96k+48}\\||+175976\cdot 187^{95k+48}+2778701\cdot 187^{94k+47}+225402\cdot 187^{93k+47}+3254602\cdot 187^{92k+46}+236579\cdot 187^{91k+46}\\||+2983520\cdot 187^{90k+45}+182140\cdot 187^{89k+45}+1782647\cdot 187^{88k+44}+66900\cdot 187^{87k+44}-38139\cdot 187^{86k+43}\\||-72794\cdot 187^{85k+43}-1881076\cdot 187^{84k+42}-192431\cdot 187^{83k+42}-3198780\cdot 187^{82k+41}-259680\cdot 187^{81k+41}\\||-3670407\cdot 187^{80k+40}-259680\cdot 187^{79k+40}-3198780\cdot 187^{78k+39}-192431\cdot 187^{77k+39}-1881076\cdot 187^{76k+38}\\||-72794\cdot 187^{75k+38}-38139\cdot 187^{74k+37}+66900\cdot 187^{73k+37}+1782647\cdot 187^{72k+36}+182140\cdot 187^{71k+36}\\||+2983520\cdot 187^{70k+35}+236579\cdot 187^{69k+35}+3254602\cdot 187^{68k+34}+225402\cdot 187^{67k+34}+2778701\cdot 187^{66k+33}\\||+175976\cdot 187^{65k+33}+2012540\cdot 187^{64k+32}+118163\cdot 187^{63k+32}+1204928\cdot 187^{62k+31}+54675\cdot 187^{61k+31}\\||+209948\cdot 187^{60k+30}-30954\cdot 187^{59k+30}-1132216\cdot 187^{58k+29}-135869\cdot 187^{57k+29}-2512602\cdot 187^{56k+28}\\||-219395\cdot 187^{55k+28}-3242486\cdot 187^{54k+27}-234026\cdot 187^{53k+27}-2883107\cdot 187^{52k+26}-171484\cdot 187^{51k+26}\\||-1667635\cdot 187^{50k+25}-68592\cdot 187^{49k+25}-228290\cdot 187^{48k+24}+30364\cdot 187^{47k+24}+972279\cdot 187^{46k+23}\\||+105248\cdot 187^{45k+23}+1816131\cdot 187^{44k+22}+153304\cdot 187^{43k+22}+2264172\cdot 187^{42k+21}+168172\cdot 187^{41k+21}\\||+2190255\cdot 187^{40k+20}+141913\cdot 187^{39k+20}+1578520\cdot 187^{38k+19}+84180\cdot 187^{37k+19}+714194\cdot 187^{36k+18}\\||+23179\cdot 187^{35k+18}-10600\cdot 187^{34k+17}-19309\cdot 187^{33k+17}-461324\cdot 187^{32k+16}-46206\cdot 187^{31k+16}\\||-801970\cdot 187^{30k+15}-71825\cdot 187^{29k+15}-1161125\cdot 187^{28k+14}-95648\cdot 187^{27k+14}-1382594\cdot 187^{26k+13}\\||-98682\cdot 187^{25k+13}-1190404\cdot 187^{24k+12}-66707\cdot 187^{23k+12}-546525\cdot 187^{22k+11}-10442\cdot 187^{21k+11}\\||+243474\cdot 187^{20k+10}+41180\cdot 187^{19k+10}+783123\cdot 187^{18k+9}+65173\cdot 187^{17k+9}+895246\cdot 187^{16k+8}\\||+59808\cdot 187^{15k+8}+689216\cdot 187^{14k+7}+39454\cdot 187^{13k+7}+393515\cdot 187^{12k+6}+19563\cdot 187^{11k+6}\\||+169208\cdot 187^{10k+5}+7254\cdot 187^{9k+5}+53574\cdot 187^{8k+4}+1932\cdot 187^{7k+4}+11746\cdot 187^{6k+3}\\||+338\cdot 187^{5k+3}+1566\cdot 187^{4k+2}+32\cdot 187^{3k+2}+94\cdot 187^{2k+1}+187^{k+1}+1)\\{\large\Phi}_{380}(190^{2k+1})|=|190^{288k+144}+190^{284k+142}-190^{268k+134}-190^{264k+132}+190^{248k+124}\\||+190^{244k+122}-190^{228k+114}-190^{224k+112}-190^{212k+106}+190^{204k+102}\\||+190^{192k+96}-190^{184k+92}-190^{172k+86}+190^{164k+82}+190^{152k+76}\\||-190^{144k+72}+190^{136k+68}+190^{124k+62}-190^{116k+58}-190^{104k+52}\\||+190^{96k+48}+190^{84k+42}-190^{76k+38}-190^{64k+32}-190^{60k+30}\\||+190^{44k+22}+190^{40k+20}-190^{24k+12}-190^{20k+10}+190^{4k+2}+1\\|=|(190^{144k+72}-190^{143k+72}+95\cdot 190^{142k+71}-32\cdot 190^{141k+71}+1568\cdot 190^{140k+70}\\||-333\cdot 190^{139k+70}+11590\cdot 190^{138k+69}-1889\cdot 190^{137k+69}+53188\cdot 190^{136k+68}-7282\cdot 190^{135k+68}\\||+177175\cdot 190^{134k+67}-21431\cdot 190^{133k+67}+469021\cdot 190^{132k+66}-51796\cdot 190^{131k+66}+1048040\cdot 190^{130k+65}\\||-108164\cdot 190^{129k+65}+2064180\cdot 190^{128k+64}-202488\cdot 190^{127k+64}+3696640\cdot 190^{126k+63}-348721\cdot 190^{125k+63}\\||+6147749\cdot 190^{124k+62}-561864\cdot 190^{123k+62}+9620745\cdot 190^{122k+61}-855696\cdot 190^{121k+61}+14281802\cdot 190^{120k+60}\\||-1239839\cdot 190^{119k+60}+20222080\cdot 190^{118k+59}-1717505\cdot 190^{117k+59}+27436012\cdot 190^{116k+58}-2284597\cdot 190^{115k+58}\\||+35816235\cdot 190^{114k+57}-2929660\cdot 190^{113k+57}+45154739\cdot 190^{112k+56}-3634034\cdot 190^{111k+56}+55147500\cdot 190^{110k+55}\\||-4372630\cdot 190^{109k+55}+65415480\cdot 190^{108k+54}-5116452\cdot 190^{107k+54}+75554355\cdot 190^{106k+53}-5837136\cdot 190^{105k+53}\\||+85204556\cdot 190^{104k+52}-6512046\cdot 190^{103k+52}+94114315\cdot 190^{102k+51}-7127901\cdot 190^{101k+51}+102173648\cdot 190^{100k+50}\\||-7682106\cdot 190^{99k+50}+109419860\cdot 190^{98k+49}-8182475\cdot 190^{97k+49}+116027093\cdot 190^{96k+48}-8646046\cdot 190^{95k+48}\\||+122282480\cdot 190^{94k+47}-9096568\cdot 190^{93k+47}+128537521\cdot 190^{92k+46}-9559860\cdot 190^{91k+46}+135130280\cdot 190^{90k+45}\\||-10057504\cdot 190^{89k+45}+142296560\cdot 190^{88k+44}-10600854\cdot 190^{87k+44}+150100665\cdot 190^{86k+43}-11187330\cdot 190^{85k+43}\\||+158404584\cdot 190^{84k+42}-11799626\cdot 190^{83k+42}+166875005\cdot 190^{82k+41}-12407353\cdot 190^{81k+41}+175019832\cdot 190^{80k+40}\\||-12970614\cdot 190^{79k+40}+182249520\cdot 190^{78k+39}-13445277\cdot 190^{77k+39}+187959767\cdot 190^{76k+38}-13789520\cdot 190^{75k+38}\\||+191625640\cdot 190^{74k+37}-13970624\cdot 190^{73k+37}+192889839\cdot 190^{72k+36}-13970624\cdot 190^{71k+36}+191625640\cdot 190^{70k+35}\\||-13789520\cdot 190^{69k+35}+187959767\cdot 190^{68k+34}-13445277\cdot 190^{67k+34}+182249520\cdot 190^{66k+33}-12970614\cdot 190^{65k+33}\\||+175019832\cdot 190^{64k+32}-12407353\cdot 190^{63k+32}+166875005\cdot 190^{62k+31}-11799626\cdot 190^{61k+31}+158404584\cdot 190^{60k+30}\\||-11187330\cdot 190^{59k+30}+150100665\cdot 190^{58k+29}-10600854\cdot 190^{57k+29}+142296560\cdot 190^{56k+28}-10057504\cdot 190^{55k+28}\\||+135130280\cdot 190^{54k+27}-9559860\cdot 190^{53k+27}+128537521\cdot 190^{52k+26}-9096568\cdot 190^{51k+26}+122282480\cdot 190^{50k+25}\\||-8646046\cdot 190^{49k+25}+116027093\cdot 190^{48k+24}-8182475\cdot 190^{47k+24}+109419860\cdot 190^{46k+23}-7682106\cdot 190^{45k+23}\\||+102173648\cdot 190^{44k+22}-7127901\cdot 190^{43k+22}+94114315\cdot 190^{42k+21}-6512046\cdot 190^{41k+21}+85204556\cdot 190^{40k+20}\\||-5837136\cdot 190^{39k+20}+75554355\cdot 190^{38k+19}-5116452\cdot 190^{37k+19}+65415480\cdot 190^{36k+18}-4372630\cdot 190^{35k+18}\\||+55147500\cdot 190^{34k+17}-3634034\cdot 190^{33k+17}+45154739\cdot 190^{32k+16}-2929660\cdot 190^{31k+16}+35816235\cdot 190^{30k+15}\\||-2284597\cdot 190^{29k+15}+27436012\cdot 190^{28k+14}-1717505\cdot 190^{27k+14}+20222080\cdot 190^{26k+13}-1239839\cdot 190^{25k+13}\\||+14281802\cdot 190^{24k+12}-855696\cdot 190^{23k+12}+9620745\cdot 190^{22k+11}-561864\cdot 190^{21k+11}+6147749\cdot 190^{20k+10}\\||-348721\cdot 190^{19k+10}+3696640\cdot 190^{18k+9}-202488\cdot 190^{17k+9}+2064180\cdot 190^{16k+8}-108164\cdot 190^{15k+8}\\||+1048040\cdot 190^{14k+7}-51796\cdot 190^{13k+7}+469021\cdot 190^{12k+6}-21431\cdot 190^{11k+6}+177175\cdot 190^{10k+5}\\||-7282\cdot 190^{9k+5}+53188\cdot 190^{8k+4}-1889\cdot 190^{7k+4}+11590\cdot 190^{6k+3}-333\cdot 190^{5k+3}\\||+1568\cdot 190^{4k+2}-32\cdot 190^{3k+2}+95\cdot 190^{2k+1}-190^{k+1}+1)\\|\times|(190^{144k+72}+190^{143k+72}+95\cdot 190^{142k+71}+32\cdot 190^{141k+71}+1568\cdot 190^{140k+70}\\||+333\cdot 190^{139k+70}+11590\cdot 190^{138k+69}+1889\cdot 190^{137k+69}+53188\cdot 190^{136k+68}+7282\cdot 190^{135k+68}\\||+177175\cdot 190^{134k+67}+21431\cdot 190^{133k+67}+469021\cdot 190^{132k+66}+51796\cdot 190^{131k+66}+1048040\cdot 190^{130k+65}\\||+108164\cdot 190^{129k+65}+2064180\cdot 190^{128k+64}+202488\cdot 190^{127k+64}+3696640\cdot 190^{126k+63}+348721\cdot 190^{125k+63}\\||+6147749\cdot 190^{124k+62}+561864\cdot 190^{123k+62}+9620745\cdot 190^{122k+61}+855696\cdot 190^{121k+61}+14281802\cdot 190^{120k+60}\\||+1239839\cdot 190^{119k+60}+20222080\cdot 190^{118k+59}+1717505\cdot 190^{117k+59}+27436012\cdot 190^{116k+58}+2284597\cdot 190^{115k+58}\\||+35816235\cdot 190^{114k+57}+2929660\cdot 190^{113k+57}+45154739\cdot 190^{112k+56}+3634034\cdot 190^{111k+56}+55147500\cdot 190^{110k+55}\\||+4372630\cdot 190^{109k+55}+65415480\cdot 190^{108k+54}+5116452\cdot 190^{107k+54}+75554355\cdot 190^{106k+53}+5837136\cdot 190^{105k+53}\\||+85204556\cdot 190^{104k+52}+6512046\cdot 190^{103k+52}+94114315\cdot 190^{102k+51}+7127901\cdot 190^{101k+51}+102173648\cdot 190^{100k+50}\\||+7682106\cdot 190^{99k+50}+109419860\cdot 190^{98k+49}+8182475\cdot 190^{97k+49}+116027093\cdot 190^{96k+48}+8646046\cdot 190^{95k+48}\\||+122282480\cdot 190^{94k+47}+9096568\cdot 190^{93k+47}+128537521\cdot 190^{92k+46}+9559860\cdot 190^{91k+46}+135130280\cdot 190^{90k+45}\\||+10057504\cdot 190^{89k+45}+142296560\cdot 190^{88k+44}+10600854\cdot 190^{87k+44}+150100665\cdot 190^{86k+43}+11187330\cdot 190^{85k+43}\\||+158404584\cdot 190^{84k+42}+11799626\cdot 190^{83k+42}+166875005\cdot 190^{82k+41}+12407353\cdot 190^{81k+41}+175019832\cdot 190^{80k+40}\\||+12970614\cdot 190^{79k+40}+182249520\cdot 190^{78k+39}+13445277\cdot 190^{77k+39}+187959767\cdot 190^{76k+38}+13789520\cdot 190^{75k+38}\\||+191625640\cdot 190^{74k+37}+13970624\cdot 190^{73k+37}+192889839\cdot 190^{72k+36}+13970624\cdot 190^{71k+36}+191625640\cdot 190^{70k+35}\\||+13789520\cdot 190^{69k+35}+187959767\cdot 190^{68k+34}+13445277\cdot 190^{67k+34}+182249520\cdot 190^{66k+33}+12970614\cdot 190^{65k+33}\\||+175019832\cdot 190^{64k+32}+12407353\cdot 190^{63k+32}+166875005\cdot 190^{62k+31}+11799626\cdot 190^{61k+31}+158404584\cdot 190^{60k+30}\\||+11187330\cdot 190^{59k+30}+150100665\cdot 190^{58k+29}+10600854\cdot 190^{57k+29}+142296560\cdot 190^{56k+28}+10057504\cdot 190^{55k+28}\\||+135130280\cdot 190^{54k+27}+9559860\cdot 190^{53k+27}+128537521\cdot 190^{52k+26}+9096568\cdot 190^{51k+26}+122282480\cdot 190^{50k+25}\\||+8646046\cdot 190^{49k+25}+116027093\cdot 190^{48k+24}+8182475\cdot 190^{47k+24}+109419860\cdot 190^{46k+23}+7682106\cdot 190^{45k+23}\\||+102173648\cdot 190^{44k+22}+7127901\cdot 190^{43k+22}+94114315\cdot 190^{42k+21}+6512046\cdot 190^{41k+21}+85204556\cdot 190^{40k+20}\\||+5837136\cdot 190^{39k+20}+75554355\cdot 190^{38k+19}+5116452\cdot 190^{37k+19}+65415480\cdot 190^{36k+18}+4372630\cdot 190^{35k+18}\\||+55147500\cdot 190^{34k+17}+3634034\cdot 190^{33k+17}+45154739\cdot 190^{32k+16}+2929660\cdot 190^{31k+16}+35816235\cdot 190^{30k+15}\\||+2284597\cdot 190^{29k+15}+27436012\cdot 190^{28k+14}+1717505\cdot 190^{27k+14}+20222080\cdot 190^{26k+13}+1239839\cdot 190^{25k+13}\\||+14281802\cdot 190^{24k+12}+855696\cdot 190^{23k+12}+9620745\cdot 190^{22k+11}+561864\cdot 190^{21k+11}+6147749\cdot 190^{20k+10}\\||+348721\cdot 190^{19k+10}+3696640\cdot 190^{18k+9}+202488\cdot 190^{17k+9}+2064180\cdot 190^{16k+8}+108164\cdot 190^{15k+8}\\||+1048040\cdot 190^{14k+7}+51796\cdot 190^{13k+7}+469021\cdot 190^{12k+6}+21431\cdot 190^{11k+6}+177175\cdot 190^{10k+5}\\||+7282\cdot 190^{9k+5}+53188\cdot 190^{8k+4}+1889\cdot 190^{7k+4}+11590\cdot 190^{6k+3}+333\cdot 190^{5k+3}\\||+1568\cdot 190^{4k+2}+32\cdot 190^{3k+2}+95\cdot 190^{2k+1}+190^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{382}(191^{2k+1})\cdots{\large\Phi}_{390}(195^{2k+1})$${\large\Phi}_{382}(191^{2k+1})\cdots{\large\Phi}_{390}(195^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{382}(191^{2k+1})|=|191^{380k+190}-191^{378k+189}+191^{376k+188}-191^{374k+187}+191^{372k+186}\\||-191^{370k+185}+191^{368k+184}-191^{366k+183}+191^{364k+182}-191^{362k+181}\\||+191^{360k+180}-191^{358k+179}+191^{356k+178}-191^{354k+177}+191^{352k+176}\\||-191^{350k+175}+191^{348k+174}-191^{346k+173}+191^{344k+172}-191^{342k+171}\\||+191^{340k+170}-191^{338k+169}+191^{336k+168}-191^{334k+167}+191^{332k+166}\\||-191^{330k+165}+191^{328k+164}-191^{326k+163}+191^{324k+162}-191^{322k+161}\\||+191^{320k+160}-191^{318k+159}+191^{316k+158}-191^{314k+157}+191^{312k+156}\\||-191^{310k+155}+191^{308k+154}-191^{306k+153}+191^{304k+152}-191^{302k+151}\\||+191^{300k+150}-191^{298k+149}+191^{296k+148}-191^{294k+147}+191^{292k+146}\\||-191^{290k+145}+191^{288k+144}-191^{286k+143}+191^{284k+142}-191^{282k+141}\\||+191^{280k+140}-191^{278k+139}+191^{276k+138}-191^{274k+137}+191^{272k+136}\\||-191^{270k+135}+191^{268k+134}-191^{266k+133}+191^{264k+132}-191^{262k+131}\\||+191^{260k+130}-191^{258k+129}+191^{256k+128}-191^{254k+127}+191^{252k+126}\\||-191^{250k+125}+191^{248k+124}-191^{246k+123}+191^{244k+122}-191^{242k+121}\\||+191^{240k+120}-191^{238k+119}+191^{236k+118}-191^{234k+117}+191^{232k+116}\\||-191^{230k+115}+191^{228k+114}-191^{226k+113}+191^{224k+112}-191^{222k+111}\\||+191^{220k+110}-191^{218k+109}+191^{216k+108}-191^{214k+107}+191^{212k+106}\\||-191^{210k+105}+191^{208k+104}-191^{206k+103}+191^{204k+102}-191^{202k+101}\\||+191^{200k+100}-191^{198k+99}+191^{196k+98}-191^{194k+97}+191^{192k+96}\\||-191^{190k+95}+191^{188k+94}-191^{186k+93}+191^{184k+92}-191^{182k+91}\\||+191^{180k+90}-191^{178k+89}+191^{176k+88}-191^{174k+87}+191^{172k+86}\\||-191^{170k+85}+191^{168k+84}-191^{166k+83}+191^{164k+82}-191^{162k+81}\\||+191^{160k+80}-191^{158k+79}+191^{156k+78}-191^{154k+77}+191^{152k+76}\\||-191^{150k+75}+191^{148k+74}-191^{146k+73}+191^{144k+72}-191^{142k+71}\\||+191^{140k+70}-191^{138k+69}+191^{136k+68}-191^{134k+67}+191^{132k+66}\\||-191^{130k+65}+191^{128k+64}-191^{126k+63}+191^{124k+62}-191^{122k+61}\\||+191^{120k+60}-191^{118k+59}+191^{116k+58}-191^{114k+57}+191^{112k+56}\\||-191^{110k+55}+191^{108k+54}-191^{106k+53}+191^{104k+52}-191^{102k+51}\\||+191^{100k+50}-191^{98k+49}+191^{96k+48}-191^{94k+47}+191^{92k+46}\\||-191^{90k+45}+191^{88k+44}-191^{86k+43}+191^{84k+42}-191^{82k+41}\\||+191^{80k+40}-191^{78k+39}+191^{76k+38}-191^{74k+37}+191^{72k+36}\\||-191^{70k+35}+191^{68k+34}-191^{66k+33}+191^{64k+32}-191^{62k+31}\\||+191^{60k+30}-191^{58k+29}+191^{56k+28}-191^{54k+27}+191^{52k+26}\\||-191^{50k+25}+191^{48k+24}-191^{46k+23}+191^{44k+22}-191^{42k+21}\\||+191^{40k+20}-191^{38k+19}+191^{36k+18}-191^{34k+17}+191^{32k+16}\\||-191^{30k+15}+191^{28k+14}-191^{26k+13}+191^{24k+12}-191^{22k+11}\\||+191^{20k+10}-191^{18k+9}+191^{16k+8}-191^{14k+7}+191^{12k+6}\\||-191^{10k+5}+191^{8k+4}-191^{6k+3}+191^{4k+2}-191^{2k+1}+1\\|=|(191^{190k+95}-191^{189k+95}+95\cdot 191^{188k+94}-31\cdot 191^{187k+94}+1409\cdot 191^{186k+93}\\||-257\cdot 191^{185k+93}+7007\cdot 191^{184k+92}-781\cdot 191^{183k+92}+12563\cdot 191^{182k+91}-723\cdot 191^{181k+91}\\||+3725\cdot 191^{180k+90}+45\cdot 191^{179k+90}+5069\cdot 191^{178k+89}-1741\cdot 191^{177k+89}+48241\cdot 191^{176k+88}\\||-4401\cdot 191^{175k+88}+50095\cdot 191^{174k+87}-1711\cdot 191^{173k+87}+7261\cdot 191^{172k+86}-1747\cdot 191^{171k+86}\\||+70925\cdot 191^{170k+85}-8351\cdot 191^{169k+85}+123759\cdot 191^{168k+84}-6831\cdot 191^{167k+84}+64113\cdot 191^{166k+83}\\||-5413\cdot 191^{165k+83}+130183\cdot 191^{164k+82}-13511\cdot 191^{163k+82}+194139\cdot 191^{162k+81}-10805\cdot 191^{161k+81}\\||+107943\cdot 191^{160k+80}-9701\cdot 191^{159k+80}+231823\cdot 191^{158k+79}-23805\cdot 191^{157k+79}+338979\cdot 191^{156k+78}\\||-18001\cdot 191^{155k+78}+145279\cdot 191^{154k+77}-10349\cdot 191^{153k+77}+272989\cdot 191^{152k+76}-31849\cdot 191^{151k+76}\\||+501947\cdot 191^{150k+75}-29181\cdot 191^{149k+75}+239565\cdot 191^{148k+74}-12765\cdot 191^{147k+74}+292089\cdot 191^{146k+73}\\||-35649\cdot 191^{145k+73}+592267\cdot 191^{144k+72}-35625\cdot 191^{143k+72}+288147\cdot 191^{142k+71}-13571\cdot 191^{141k+71}\\||+308505\cdot 191^{140k+70}-39829\cdot 191^{139k+70}+677379\cdot 191^{138k+69}-39521\cdot 191^{137k+69}+260507\cdot 191^{136k+68}\\||-6349\cdot 191^{135k+68}+204165\cdot 191^{134k+67}-36999\cdot 191^{133k+67}+713379\cdot 191^{132k+66}-43127\cdot 191^{131k+66}\\||+242977\cdot 191^{130k+65}+2109\cdot 191^{129k+65}+30711\cdot 191^{128k+64}-25929\cdot 191^{127k+64}+622771\cdot 191^{126k+63}\\||-39087\cdot 191^{125k+63}+156311\cdot 191^{124k+62}+13301\cdot 191^{123k+62}-163655\cdot 191^{122k+61}-13721\cdot 191^{121k+61}\\||+515281\cdot 191^{120k+60}-33291\cdot 191^{119k+60}+28461\cdot 191^{118k+59}+29249\cdot 191^{117k+59}-443473\cdot 191^{116k+58}\\||+4469\cdot 191^{115k+58}+359647\cdot 191^{114k+57}-28063\cdot 191^{113k+57}-41779\cdot 191^{112k+56}+39951\cdot 191^{111k+56}\\||-680081\cdot 191^{110k+55}+23485\cdot 191^{109k+55}+148827\cdot 191^{108k+54}-18581\cdot 191^{107k+54}-131823\cdot 191^{106k+53}\\||+47959\cdot 191^{105k+53}-836061\cdot 191^{104k+52}+35675\cdot 191^{103k+52}+22561\cdot 191^{102k+51}-13943\cdot 191^{101k+51}\\||-171823\cdot 191^{100k+50}+53625\cdot 191^{99k+50}-978019\cdot 191^{98k+49}+47393\cdot 191^{97k+49}-77381\cdot 191^{96k+48}\\||-14825\cdot 191^{95k+48}-77381\cdot 191^{94k+47}+47393\cdot 191^{93k+47}-978019\cdot 191^{92k+46}+53625\cdot 191^{91k+46}\\||-171823\cdot 191^{90k+45}-13943\cdot 191^{89k+45}+22561\cdot 191^{88k+44}+35675\cdot 191^{87k+44}-836061\cdot 191^{86k+43}\\||+47959\cdot 191^{85k+43}-131823\cdot 191^{84k+42}-18581\cdot 191^{83k+42}+148827\cdot 191^{82k+41}+23485\cdot 191^{81k+41}\\||-680081\cdot 191^{80k+40}+39951\cdot 191^{79k+40}-41779\cdot 191^{78k+39}-28063\cdot 191^{77k+39}+359647\cdot 191^{76k+38}\\||+4469\cdot 191^{75k+38}-443473\cdot 191^{74k+37}+29249\cdot 191^{73k+37}+28461\cdot 191^{72k+36}-33291\cdot 191^{71k+36}\\||+515281\cdot 191^{70k+35}-13721\cdot 191^{69k+35}-163655\cdot 191^{68k+34}+13301\cdot 191^{67k+34}+156311\cdot 191^{66k+33}\\||-39087\cdot 191^{65k+33}+622771\cdot 191^{64k+32}-25929\cdot 191^{63k+32}+30711\cdot 191^{62k+31}+2109\cdot 191^{61k+31}\\||+242977\cdot 191^{60k+30}-43127\cdot 191^{59k+30}+713379\cdot 191^{58k+29}-36999\cdot 191^{57k+29}+204165\cdot 191^{56k+28}\\||-6349\cdot 191^{55k+28}+260507\cdot 191^{54k+27}-39521\cdot 191^{53k+27}+677379\cdot 191^{52k+26}-39829\cdot 191^{51k+26}\\||+308505\cdot 191^{50k+25}-13571\cdot 191^{49k+25}+288147\cdot 191^{48k+24}-35625\cdot 191^{47k+24}+592267\cdot 191^{46k+23}\\||-35649\cdot 191^{45k+23}+292089\cdot 191^{44k+22}-12765\cdot 191^{43k+22}+239565\cdot 191^{42k+21}-29181\cdot 191^{41k+21}\\||+501947\cdot 191^{40k+20}-31849\cdot 191^{39k+20}+272989\cdot 191^{38k+19}-10349\cdot 191^{37k+19}+145279\cdot 191^{36k+18}\\||-18001\cdot 191^{35k+18}+338979\cdot 191^{34k+17}-23805\cdot 191^{33k+17}+231823\cdot 191^{32k+16}-9701\cdot 191^{31k+16}\\||+107943\cdot 191^{30k+15}-10805\cdot 191^{29k+15}+194139\cdot 191^{28k+14}-13511\cdot 191^{27k+14}+130183\cdot 191^{26k+13}\\||-5413\cdot 191^{25k+13}+64113\cdot 191^{24k+12}-6831\cdot 191^{23k+12}+123759\cdot 191^{22k+11}-8351\cdot 191^{21k+11}\\||+70925\cdot 191^{20k+10}-1747\cdot 191^{19k+10}+7261\cdot 191^{18k+9}-1711\cdot 191^{17k+9}+50095\cdot 191^{16k+8}\\||-4401\cdot 191^{15k+8}+48241\cdot 191^{14k+7}-1741\cdot 191^{13k+7}+5069\cdot 191^{12k+6}+45\cdot 191^{11k+6}\\||+3725\cdot 191^{10k+5}-723\cdot 191^{9k+5}+12563\cdot 191^{8k+4}-781\cdot 191^{7k+4}+7007\cdot 191^{6k+3}\\||-257\cdot 191^{5k+3}+1409\cdot 191^{4k+2}-31\cdot 191^{3k+2}+95\cdot 191^{2k+1}-191^{k+1}+1)\\|\times|(191^{190k+95}+191^{189k+95}+95\cdot 191^{188k+94}+31\cdot 191^{187k+94}+1409\cdot 191^{186k+93}\\||+257\cdot 191^{185k+93}+7007\cdot 191^{184k+92}+781\cdot 191^{183k+92}+12563\cdot 191^{182k+91}+723\cdot 191^{181k+91}\\||+3725\cdot 191^{180k+90}-45\cdot 191^{179k+90}+5069\cdot 191^{178k+89}+1741\cdot 191^{177k+89}+48241\cdot 191^{176k+88}\\||+4401\cdot 191^{175k+88}+50095\cdot 191^{174k+87}+1711\cdot 191^{173k+87}+7261\cdot 191^{172k+86}+1747\cdot 191^{171k+86}\\||+70925\cdot 191^{170k+85}+8351\cdot 191^{169k+85}+123759\cdot 191^{168k+84}+6831\cdot 191^{167k+84}+64113\cdot 191^{166k+83}\\||+5413\cdot 191^{165k+83}+130183\cdot 191^{164k+82}+13511\cdot 191^{163k+82}+194139\cdot 191^{162k+81}+10805\cdot 191^{161k+81}\\||+107943\cdot 191^{160k+80}+9701\cdot 191^{159k+80}+231823\cdot 191^{158k+79}+23805\cdot 191^{157k+79}+338979\cdot 191^{156k+78}\\||+18001\cdot 191^{155k+78}+145279\cdot 191^{154k+77}+10349\cdot 191^{153k+77}+272989\cdot 191^{152k+76}+31849\cdot 191^{151k+76}\\||+501947\cdot 191^{150k+75}+29181\cdot 191^{149k+75}+239565\cdot 191^{148k+74}+12765\cdot 191^{147k+74}+292089\cdot 191^{146k+73}\\||+35649\cdot 191^{145k+73}+592267\cdot 191^{144k+72}+35625\cdot 191^{143k+72}+288147\cdot 191^{142k+71}+13571\cdot 191^{141k+71}\\||+308505\cdot 191^{140k+70}+39829\cdot 191^{139k+70}+677379\cdot 191^{138k+69}+39521\cdot 191^{137k+69}+260507\cdot 191^{136k+68}\\||+6349\cdot 191^{135k+68}+204165\cdot 191^{134k+67}+36999\cdot 191^{133k+67}+713379\cdot 191^{132k+66}+43127\cdot 191^{131k+66}\\||+242977\cdot 191^{130k+65}-2109\cdot 191^{129k+65}+30711\cdot 191^{128k+64}+25929\cdot 191^{127k+64}+622771\cdot 191^{126k+63}\\||+39087\cdot 191^{125k+63}+156311\cdot 191^{124k+62}-13301\cdot 191^{123k+62}-163655\cdot 191^{122k+61}+13721\cdot 191^{121k+61}\\||+515281\cdot 191^{120k+60}+33291\cdot 191^{119k+60}+28461\cdot 191^{118k+59}-29249\cdot 191^{117k+59}-443473\cdot 191^{116k+58}\\||-4469\cdot 191^{115k+58}+359647\cdot 191^{114k+57}+28063\cdot 191^{113k+57}-41779\cdot 191^{112k+56}-39951\cdot 191^{111k+56}\\||-680081\cdot 191^{110k+55}-23485\cdot 191^{109k+55}+148827\cdot 191^{108k+54}+18581\cdot 191^{107k+54}-131823\cdot 191^{106k+53}\\||-47959\cdot 191^{105k+53}-836061\cdot 191^{104k+52}-35675\cdot 191^{103k+52}+22561\cdot 191^{102k+51}+13943\cdot 191^{101k+51}\\||-171823\cdot 191^{100k+50}-53625\cdot 191^{99k+50}-978019\cdot 191^{98k+49}-47393\cdot 191^{97k+49}-77381\cdot 191^{96k+48}\\||+14825\cdot 191^{95k+48}-77381\cdot 191^{94k+47}-47393\cdot 191^{93k+47}-978019\cdot 191^{92k+46}-53625\cdot 191^{91k+46}\\||-171823\cdot 191^{90k+45}+13943\cdot 191^{89k+45}+22561\cdot 191^{88k+44}-35675\cdot 191^{87k+44}-836061\cdot 191^{86k+43}\\||-47959\cdot 191^{85k+43}-131823\cdot 191^{84k+42}+18581\cdot 191^{83k+42}+148827\cdot 191^{82k+41}-23485\cdot 191^{81k+41}\\||-680081\cdot 191^{80k+40}-39951\cdot 191^{79k+40}-41779\cdot 191^{78k+39}+28063\cdot 191^{77k+39}+359647\cdot 191^{76k+38}\\||-4469\cdot 191^{75k+38}-443473\cdot 191^{74k+37}-29249\cdot 191^{73k+37}+28461\cdot 191^{72k+36}+33291\cdot 191^{71k+36}\\||+515281\cdot 191^{70k+35}+13721\cdot 191^{69k+35}-163655\cdot 191^{68k+34}-13301\cdot 191^{67k+34}+156311\cdot 191^{66k+33}\\||+39087\cdot 191^{65k+33}+622771\cdot 191^{64k+32}+25929\cdot 191^{63k+32}+30711\cdot 191^{62k+31}-2109\cdot 191^{61k+31}\\||+242977\cdot 191^{60k+30}+43127\cdot 191^{59k+30}+713379\cdot 191^{58k+29}+36999\cdot 191^{57k+29}+204165\cdot 191^{56k+28}\\||+6349\cdot 191^{55k+28}+260507\cdot 191^{54k+27}+39521\cdot 191^{53k+27}+677379\cdot 191^{52k+26}+39829\cdot 191^{51k+26}\\||+308505\cdot 191^{50k+25}+13571\cdot 191^{49k+25}+288147\cdot 191^{48k+24}+35625\cdot 191^{47k+24}+592267\cdot 191^{46k+23}\\||+35649\cdot 191^{45k+23}+292089\cdot 191^{44k+22}+12765\cdot 191^{43k+22}+239565\cdot 191^{42k+21}+29181\cdot 191^{41k+21}\\||+501947\cdot 191^{40k+20}+31849\cdot 191^{39k+20}+272989\cdot 191^{38k+19}+10349\cdot 191^{37k+19}+145279\cdot 191^{36k+18}\\||+18001\cdot 191^{35k+18}+338979\cdot 191^{34k+17}+23805\cdot 191^{33k+17}+231823\cdot 191^{32k+16}+9701\cdot 191^{31k+16}\\||+107943\cdot 191^{30k+15}+10805\cdot 191^{29k+15}+194139\cdot 191^{28k+14}+13511\cdot 191^{27k+14}+130183\cdot 191^{26k+13}\\||+5413\cdot 191^{25k+13}+64113\cdot 191^{24k+12}+6831\cdot 191^{23k+12}+123759\cdot 191^{22k+11}+8351\cdot 191^{21k+11}\\||+70925\cdot 191^{20k+10}+1747\cdot 191^{19k+10}+7261\cdot 191^{18k+9}+1711\cdot 191^{17k+9}+50095\cdot 191^{16k+8}\\||+4401\cdot 191^{15k+8}+48241\cdot 191^{14k+7}+1741\cdot 191^{13k+7}+5069\cdot 191^{12k+6}-45\cdot 191^{11k+6}\\||+3725\cdot 191^{10k+5}+723\cdot 191^{9k+5}+12563\cdot 191^{8k+4}+781\cdot 191^{7k+4}+7007\cdot 191^{6k+3}\\||+257\cdot 191^{5k+3}+1409\cdot 191^{4k+2}+31\cdot 191^{3k+2}+95\cdot 191^{2k+1}+191^{k+1}+1)\\{\large\Phi}_{193}(193^{2k+1})|=|193^{384k+192}+193^{382k+191}+193^{380k+190}+193^{378k+189}+193^{376k+188}\\||+193^{374k+187}+193^{372k+186}+193^{370k+185}+193^{368k+184}+193^{366k+183}\\||+193^{364k+182}+193^{362k+181}+193^{360k+180}+193^{358k+179}+193^{356k+178}\\||+193^{354k+177}+193^{352k+176}+193^{350k+175}+193^{348k+174}+193^{346k+173}\\||+193^{344k+172}+193^{342k+171}+193^{340k+170}+193^{338k+169}+193^{336k+168}\\||+193^{334k+167}+193^{332k+166}+193^{330k+165}+193^{328k+164}+193^{326k+163}\\||+193^{324k+162}+193^{322k+161}+193^{320k+160}+193^{318k+159}+193^{316k+158}\\||+193^{314k+157}+193^{312k+156}+193^{310k+155}+193^{308k+154}+193^{306k+153}\\||+193^{304k+152}+193^{302k+151}+193^{300k+150}+193^{298k+149}+193^{296k+148}\\||+193^{294k+147}+193^{292k+146}+193^{290k+145}+193^{288k+144}+193^{286k+143}\\||+193^{284k+142}+193^{282k+141}+193^{280k+140}+193^{278k+139}+193^{276k+138}\\||+193^{274k+137}+193^{272k+136}+193^{270k+135}+193^{268k+134}+193^{266k+133}\\||+193^{264k+132}+193^{262k+131}+193^{260k+130}+193^{258k+129}+193^{256k+128}\\||+193^{254k+127}+193^{252k+126}+193^{250k+125}+193^{248k+124}+193^{246k+123}\\||+193^{244k+122}+193^{242k+121}+193^{240k+120}+193^{238k+119}+193^{236k+118}\\||+193^{234k+117}+193^{232k+116}+193^{230k+115}+193^{228k+114}+193^{226k+113}\\||+193^{224k+112}+193^{222k+111}+193^{220k+110}+193^{218k+109}+193^{216k+108}\\||+193^{214k+107}+193^{212k+106}+193^{210k+105}+193^{208k+104}+193^{206k+103}\\||+193^{204k+102}+193^{202k+101}+193^{200k+100}+193^{198k+99}+193^{196k+98}\\||+193^{194k+97}+193^{192k+96}+193^{190k+95}+193^{188k+94}+193^{186k+93}\\||+193^{184k+92}+193^{182k+91}+193^{180k+90}+193^{178k+89}+193^{176k+88}\\||+193^{174k+87}+193^{172k+86}+193^{170k+85}+193^{168k+84}+193^{166k+83}\\||+193^{164k+82}+193^{162k+81}+193^{160k+80}+193^{158k+79}+193^{156k+78}\\||+193^{154k+77}+193^{152k+76}+193^{150k+75}+193^{148k+74}+193^{146k+73}\\||+193^{144k+72}+193^{142k+71}+193^{140k+70}+193^{138k+69}+193^{136k+68}\\||+193^{134k+67}+193^{132k+66}+193^{130k+65}+193^{128k+64}+193^{126k+63}\\||+193^{124k+62}+193^{122k+61}+193^{120k+60}+193^{118k+59}+193^{116k+58}\\||+193^{114k+57}+193^{112k+56}+193^{110k+55}+193^{108k+54}+193^{106k+53}\\||+193^{104k+52}+193^{102k+51}+193^{100k+50}+193^{98k+49}+193^{96k+48}\\||+193^{94k+47}+193^{92k+46}+193^{90k+45}+193^{88k+44}+193^{86k+43}\\||+193^{84k+42}+193^{82k+41}+193^{80k+40}+193^{78k+39}+193^{76k+38}\\||+193^{74k+37}+193^{72k+36}+193^{70k+35}+193^{68k+34}+193^{66k+33}\\||+193^{64k+32}+193^{62k+31}+193^{60k+30}+193^{58k+29}+193^{56k+28}\\||+193^{54k+27}+193^{52k+26}+193^{50k+25}+193^{48k+24}+193^{46k+23}\\||+193^{44k+22}+193^{42k+21}+193^{40k+20}+193^{38k+19}+193^{36k+18}\\||+193^{34k+17}+193^{32k+16}+193^{30k+15}+193^{28k+14}+193^{26k+13}\\||+193^{24k+12}+193^{22k+11}+193^{20k+10}+193^{18k+9}+193^{16k+8}\\||+193^{14k+7}+193^{12k+6}+193^{10k+5}+193^{8k+4}+193^{6k+3}\\||+193^{4k+2}+193^{2k+1}+1\\|=|(193^{192k+96}-193^{191k+96}+97\cdot 193^{190k+95}-33\cdot 193^{189k+95}+1665\cdot 193^{188k+94}\\||-359\cdot 193^{187k+94}+12871\cdot 193^{186k+93}-2119\cdot 193^{185k+93}+60839\cdot 193^{184k+92}-8295\cdot 193^{183k+92}\\||+202265\cdot 193^{182k+91}-23891\cdot 193^{181k+91}+513011\cdot 193^{180k+90}-54121\cdot 193^{179k+90}+1051273\cdot 193^{178k+89}\\||-101519\cdot 193^{177k+89}+1825227\cdot 193^{176k+88}-164841\cdot 193^{175k+88}+2797581\cdot 193^{174k+87}-240343\cdot 193^{173k+87}\\||+3902137\cdot 193^{172k+86}-321741\cdot 193^{171k+86}+5017139\cdot 193^{170k+85}-396735\cdot 193^{169k+85}+5914263\cdot 193^{168k+84}\\||-445103\cdot 193^{167k+84}+6280541\cdot 193^{166k+83}-444389\cdot 193^{165k+83}+5842261\cdot 193^{164k+82}-379911\cdot 193^{163k+82}\\||+4483581\cdot 193^{162k+81}-249949\cdot 193^{161k+81}+2266385\cdot 193^{160k+80}-64543\cdot 193^{159k+80}-595271\cdot 193^{158k+79}\\||+155201\cdot 193^{157k+79}-3720513\cdot 193^{156k+78}+375223\cdot 193^{155k+78}-6551009\cdot 193^{154k+77}+550875\cdot 193^{153k+77}\\||-8442457\cdot 193^{152k+76}+637391\cdot 193^{151k+76}-8842563\cdot 193^{150k+75}+603059\cdot 193^{149k+75}-7457045\cdot 193^{148k+74}\\||+439187\cdot 193^{147k+74}-4359527\cdot 193^{146k+73}+166041\cdot 193^{145k+73}-42289\cdot 193^{144k+72}-166655\cdot 193^{143k+72}\\||+4635051\cdot 193^{142k+71}-488153\cdot 193^{141k+71}+8622235\cdot 193^{140k+70}-722209\cdot 193^{139k+70}+10905969\cdot 193^{138k+69}\\||-802749\cdot 193^{137k+69}+10710065\cdot 193^{136k+68}-687515\cdot 193^{135k+68}+7686981\cdot 193^{134k+67}-372341\cdot 193^{133k+67}\\||+2109307\cdot 193^{132k+66}+97947\cdot 193^{131k+66}-5061135\cdot 193^{130k+65}+632959\cdot 193^{129k+65}-12349103\cdot 193^{128k+64}\\||+1117355\cdot 193^{127k+64}-18122429\cdot 193^{126k+63}+1438133\cdot 193^{125k+63}-20955971\cdot 193^{124k+62}+1508419\cdot 193^{123k+62}\\||-19928513\cdot 193^{122k+61}+1286943\cdot 193^{121k+61}-14867947\cdot 193^{120k+60}+792845\cdot 193^{119k+60}-6489491\cdot 193^{118k+59}\\||+108491\cdot 193^{117k+59}+3686031\cdot 193^{116k+58}-635273\cdot 193^{115k+58}+13642031\cdot 193^{114k+57}-1286761\cdot 193^{113k+57}\\||+21292751\cdot 193^{112k+56}-1705539\cdot 193^{111k+56}+24934157\cdot 193^{110k+55}-1794437\cdot 193^{109k+55}+23664889\cdot 193^{108k+54}\\||-1525961\cdot 193^{107k+54}+17658821\cdot 193^{106k+53}-952303\cdot 193^{105k+53}+8146861\cdot 193^{104k+52}-192839\cdot 193^{103k+52}\\||-2884107\cdot 193^{102k+51}+593553\cdot 193^{101k+51}-13116605\cdot 193^{100k+50}+1240077\cdot 193^{99k+50}-20347287\cdot 193^{98k+49}\\||+1604863\cdot 193^{97k+49}-22957943\cdot 193^{96k+48}+1604863\cdot 193^{95k+48}-20347287\cdot 193^{94k+47}+1240077\cdot 193^{93k+47}\\||-13116605\cdot 193^{92k+46}+593553\cdot 193^{91k+46}-2884107\cdot 193^{90k+45}-192839\cdot 193^{89k+45}+8146861\cdot 193^{88k+44}\\||-952303\cdot 193^{87k+44}+17658821\cdot 193^{86k+43}-1525961\cdot 193^{85k+43}+23664889\cdot 193^{84k+42}-1794437\cdot 193^{83k+42}\\||+24934157\cdot 193^{82k+41}-1705539\cdot 193^{81k+41}+21292751\cdot 193^{80k+40}-1286761\cdot 193^{79k+40}+13642031\cdot 193^{78k+39}\\||-635273\cdot 193^{77k+39}+3686031\cdot 193^{76k+38}+108491\cdot 193^{75k+38}-6489491\cdot 193^{74k+37}+792845\cdot 193^{73k+37}\\||-14867947\cdot 193^{72k+36}+1286943\cdot 193^{71k+36}-19928513\cdot 193^{70k+35}+1508419\cdot 193^{69k+35}-20955971\cdot 193^{68k+34}\\||+1438133\cdot 193^{67k+34}-18122429\cdot 193^{66k+33}+1117355\cdot 193^{65k+33}-12349103\cdot 193^{64k+32}+632959\cdot 193^{63k+32}\\||-5061135\cdot 193^{62k+31}+97947\cdot 193^{61k+31}+2109307\cdot 193^{60k+30}-372341\cdot 193^{59k+30}+7686981\cdot 193^{58k+29}\\||-687515\cdot 193^{57k+29}+10710065\cdot 193^{56k+28}-802749\cdot 193^{55k+28}+10905969\cdot 193^{54k+27}-722209\cdot 193^{53k+27}\\||+8622235\cdot 193^{52k+26}-488153\cdot 193^{51k+26}+4635051\cdot 193^{50k+25}-166655\cdot 193^{49k+25}-42289\cdot 193^{48k+24}\\||+166041\cdot 193^{47k+24}-4359527\cdot 193^{46k+23}+439187\cdot 193^{45k+23}-7457045\cdot 193^{44k+22}+603059\cdot 193^{43k+22}\\||-8842563\cdot 193^{42k+21}+637391\cdot 193^{41k+21}-8442457\cdot 193^{40k+20}+550875\cdot 193^{39k+20}-6551009\cdot 193^{38k+19}\\||+375223\cdot 193^{37k+19}-3720513\cdot 193^{36k+18}+155201\cdot 193^{35k+18}-595271\cdot 193^{34k+17}-64543\cdot 193^{33k+17}\\||+2266385\cdot 193^{32k+16}-249949\cdot 193^{31k+16}+4483581\cdot 193^{30k+15}-379911\cdot 193^{29k+15}+5842261\cdot 193^{28k+14}\\||-444389\cdot 193^{27k+14}+6280541\cdot 193^{26k+13}-445103\cdot 193^{25k+13}+5914263\cdot 193^{24k+12}-396735\cdot 193^{23k+12}\\||+5017139\cdot 193^{22k+11}-321741\cdot 193^{21k+11}+3902137\cdot 193^{20k+10}-240343\cdot 193^{19k+10}+2797581\cdot 193^{18k+9}\\||-164841\cdot 193^{17k+9}+1825227\cdot 193^{16k+8}-101519\cdot 193^{15k+8}+1051273\cdot 193^{14k+7}-54121\cdot 193^{13k+7}\\||+513011\cdot 193^{12k+6}-23891\cdot 193^{11k+6}+202265\cdot 193^{10k+5}-8295\cdot 193^{9k+5}+60839\cdot 193^{8k+4}\\||-2119\cdot 193^{7k+4}+12871\cdot 193^{6k+3}-359\cdot 193^{5k+3}+1665\cdot 193^{4k+2}-33\cdot 193^{3k+2}\\||+97\cdot 193^{2k+1}-193^{k+1}+1)\\|\times|(193^{192k+96}+193^{191k+96}+97\cdot 193^{190k+95}+33\cdot 193^{189k+95}+1665\cdot 193^{188k+94}\\||+359\cdot 193^{187k+94}+12871\cdot 193^{186k+93}+2119\cdot 193^{185k+93}+60839\cdot 193^{184k+92}+8295\cdot 193^{183k+92}\\||+202265\cdot 193^{182k+91}+23891\cdot 193^{181k+91}+513011\cdot 193^{180k+90}+54121\cdot 193^{179k+90}+1051273\cdot 193^{178k+89}\\||+101519\cdot 193^{177k+89}+1825227\cdot 193^{176k+88}+164841\cdot 193^{175k+88}+2797581\cdot 193^{174k+87}+240343\cdot 193^{173k+87}\\||+3902137\cdot 193^{172k+86}+321741\cdot 193^{171k+86}+5017139\cdot 193^{170k+85}+396735\cdot 193^{169k+85}+5914263\cdot 193^{168k+84}\\||+445103\cdot 193^{167k+84}+6280541\cdot 193^{166k+83}+444389\cdot 193^{165k+83}+5842261\cdot 193^{164k+82}+379911\cdot 193^{163k+82}\\||+4483581\cdot 193^{162k+81}+249949\cdot 193^{161k+81}+2266385\cdot 193^{160k+80}+64543\cdot 193^{159k+80}-595271\cdot 193^{158k+79}\\||-155201\cdot 193^{157k+79}-3720513\cdot 193^{156k+78}-375223\cdot 193^{155k+78}-6551009\cdot 193^{154k+77}-550875\cdot 193^{153k+77}\\||-8442457\cdot 193^{152k+76}-637391\cdot 193^{151k+76}-8842563\cdot 193^{150k+75}-603059\cdot 193^{149k+75}-7457045\cdot 193^{148k+74}\\||-439187\cdot 193^{147k+74}-4359527\cdot 193^{146k+73}-166041\cdot 193^{145k+73}-42289\cdot 193^{144k+72}+166655\cdot 193^{143k+72}\\||+4635051\cdot 193^{142k+71}+488153\cdot 193^{141k+71}+8622235\cdot 193^{140k+70}+722209\cdot 193^{139k+70}+10905969\cdot 193^{138k+69}\\||+802749\cdot 193^{137k+69}+10710065\cdot 193^{136k+68}+687515\cdot 193^{135k+68}+7686981\cdot 193^{134k+67}+372341\cdot 193^{133k+67}\\||+2109307\cdot 193^{132k+66}-97947\cdot 193^{131k+66}-5061135\cdot 193^{130k+65}-632959\cdot 193^{129k+65}-12349103\cdot 193^{128k+64}\\||-1117355\cdot 193^{127k+64}-18122429\cdot 193^{126k+63}-1438133\cdot 193^{125k+63}-20955971\cdot 193^{124k+62}-1508419\cdot 193^{123k+62}\\||-19928513\cdot 193^{122k+61}-1286943\cdot 193^{121k+61}-14867947\cdot 193^{120k+60}-792845\cdot 193^{119k+60}-6489491\cdot 193^{118k+59}\\||-108491\cdot 193^{117k+59}+3686031\cdot 193^{116k+58}+635273\cdot 193^{115k+58}+13642031\cdot 193^{114k+57}+1286761\cdot 193^{113k+57}\\||+21292751\cdot 193^{112k+56}+1705539\cdot 193^{111k+56}+24934157\cdot 193^{110k+55}+1794437\cdot 193^{109k+55}+23664889\cdot 193^{108k+54}\\||+1525961\cdot 193^{107k+54}+17658821\cdot 193^{106k+53}+952303\cdot 193^{105k+53}+8146861\cdot 193^{104k+52}+192839\cdot 193^{103k+52}\\||-2884107\cdot 193^{102k+51}-593553\cdot 193^{101k+51}-13116605\cdot 193^{100k+50}-1240077\cdot 193^{99k+50}-20347287\cdot 193^{98k+49}\\||-1604863\cdot 193^{97k+49}-22957943\cdot 193^{96k+48}-1604863\cdot 193^{95k+48}-20347287\cdot 193^{94k+47}-1240077\cdot 193^{93k+47}\\||-13116605\cdot 193^{92k+46}-593553\cdot 193^{91k+46}-2884107\cdot 193^{90k+45}+192839\cdot 193^{89k+45}+8146861\cdot 193^{88k+44}\\||+952303\cdot 193^{87k+44}+17658821\cdot 193^{86k+43}+1525961\cdot 193^{85k+43}+23664889\cdot 193^{84k+42}+1794437\cdot 193^{83k+42}\\||+24934157\cdot 193^{82k+41}+1705539\cdot 193^{81k+41}+21292751\cdot 193^{80k+40}+1286761\cdot 193^{79k+40}+13642031\cdot 193^{78k+39}\\||+635273\cdot 193^{77k+39}+3686031\cdot 193^{76k+38}-108491\cdot 193^{75k+38}-6489491\cdot 193^{74k+37}-792845\cdot 193^{73k+37}\\||-14867947\cdot 193^{72k+36}-1286943\cdot 193^{71k+36}-19928513\cdot 193^{70k+35}-1508419\cdot 193^{69k+35}-20955971\cdot 193^{68k+34}\\||-1438133\cdot 193^{67k+34}-18122429\cdot 193^{66k+33}-1117355\cdot 193^{65k+33}-12349103\cdot 193^{64k+32}-632959\cdot 193^{63k+32}\\||-5061135\cdot 193^{62k+31}-97947\cdot 193^{61k+31}+2109307\cdot 193^{60k+30}+372341\cdot 193^{59k+30}+7686981\cdot 193^{58k+29}\\||+687515\cdot 193^{57k+29}+10710065\cdot 193^{56k+28}+802749\cdot 193^{55k+28}+10905969\cdot 193^{54k+27}+722209\cdot 193^{53k+27}\\||+8622235\cdot 193^{52k+26}+488153\cdot 193^{51k+26}+4635051\cdot 193^{50k+25}+166655\cdot 193^{49k+25}-42289\cdot 193^{48k+24}\\||-166041\cdot 193^{47k+24}-4359527\cdot 193^{46k+23}-439187\cdot 193^{45k+23}-7457045\cdot 193^{44k+22}-603059\cdot 193^{43k+22}\\||-8842563\cdot 193^{42k+21}-637391\cdot 193^{41k+21}-8442457\cdot 193^{40k+20}-550875\cdot 193^{39k+20}-6551009\cdot 193^{38k+19}\\||-375223\cdot 193^{37k+19}-3720513\cdot 193^{36k+18}-155201\cdot 193^{35k+18}-595271\cdot 193^{34k+17}+64543\cdot 193^{33k+17}\\||+2266385\cdot 193^{32k+16}+249949\cdot 193^{31k+16}+4483581\cdot 193^{30k+15}+379911\cdot 193^{29k+15}+5842261\cdot 193^{28k+14}\\||+444389\cdot 193^{27k+14}+6280541\cdot 193^{26k+13}+445103\cdot 193^{25k+13}+5914263\cdot 193^{24k+12}+396735\cdot 193^{23k+12}\\||+5017139\cdot 193^{22k+11}+321741\cdot 193^{21k+11}+3902137\cdot 193^{20k+10}+240343\cdot 193^{19k+10}+2797581\cdot 193^{18k+9}\\||+164841\cdot 193^{17k+9}+1825227\cdot 193^{16k+8}+101519\cdot 193^{15k+8}+1051273\cdot 193^{14k+7}+54121\cdot 193^{13k+7}\\||+513011\cdot 193^{12k+6}+23891\cdot 193^{11k+6}+202265\cdot 193^{10k+5}+8295\cdot 193^{9k+5}+60839\cdot 193^{8k+4}\\||+2119\cdot 193^{7k+4}+12871\cdot 193^{6k+3}+359\cdot 193^{5k+3}+1665\cdot 193^{4k+2}+33\cdot 193^{3k+2}\\||+97\cdot 193^{2k+1}+193^{k+1}+1)\\{\large\Phi}_{388}(194^{2k+1})|=|194^{384k+192}-194^{380k+190}+194^{376k+188}-194^{372k+186}+194^{368k+184}\\||-194^{364k+182}+194^{360k+180}-194^{356k+178}+194^{352k+176}-194^{348k+174}\\||+194^{344k+172}-194^{340k+170}+194^{336k+168}-194^{332k+166}+194^{328k+164}\\||-194^{324k+162}+194^{320k+160}-194^{316k+158}+194^{312k+156}-194^{308k+154}\\||+194^{304k+152}-194^{300k+150}+194^{296k+148}-194^{292k+146}+194^{288k+144}\\||-194^{284k+142}+194^{280k+140}-194^{276k+138}+194^{272k+136}-194^{268k+134}\\||+194^{264k+132}-194^{260k+130}+194^{256k+128}-194^{252k+126}+194^{248k+124}\\||-194^{244k+122}+194^{240k+120}-194^{236k+118}+194^{232k+116}-194^{228k+114}\\||+194^{224k+112}-194^{220k+110}+194^{216k+108}-194^{212k+106}+194^{208k+104}\\||-194^{204k+102}+194^{200k+100}-194^{196k+98}+194^{192k+96}-194^{188k+94}\\||+194^{184k+92}-194^{180k+90}+194^{176k+88}-194^{172k+86}+194^{168k+84}\\||-194^{164k+82}+194^{160k+80}-194^{156k+78}+194^{152k+76}-194^{148k+74}\\||+194^{144k+72}-194^{140k+70}+194^{136k+68}-194^{132k+66}+194^{128k+64}\\||-194^{124k+62}+194^{120k+60}-194^{116k+58}+194^{112k+56}-194^{108k+54}\\||+194^{104k+52}-194^{100k+50}+194^{96k+48}-194^{92k+46}+194^{88k+44}\\||-194^{84k+42}+194^{80k+40}-194^{76k+38}+194^{72k+36}-194^{68k+34}\\||+194^{64k+32}-194^{60k+30}+194^{56k+28}-194^{52k+26}+194^{48k+24}\\||-194^{44k+22}+194^{40k+20}-194^{36k+18}+194^{32k+16}-194^{28k+14}\\||+194^{24k+12}-194^{20k+10}+194^{16k+8}-194^{12k+6}+194^{8k+4}\\||-194^{4k+2}+1\\|=|(194^{192k+96}-194^{191k+96}+97\cdot 194^{190k+95}-32\cdot 194^{189k+95}+1503\cdot 194^{188k+94}\\||-281\cdot 194^{187k+94}+8051\cdot 194^{186k+93}-940\cdot 194^{185k+93}+16357\cdot 194^{184k+92}-1017\cdot 194^{183k+92}\\||+4753\cdot 194^{182k+91}+616\cdot 194^{181k+91}-17721\cdot 194^{180k+90}+1095\cdot 194^{179k+90}-1649\cdot 194^{178k+89}\\||-944\cdot 194^{177k+89}+17361\cdot 194^{176k+88}-583\cdot 194^{175k+88}-5723\cdot 194^{174k+87}+900\cdot 194^{173k+87}\\||-9349\cdot 194^{172k+86}+239\cdot 194^{171k+86}-2425\cdot 194^{170k+85}+496\cdot 194^{169k+85}-10919\cdot 194^{168k+84}\\||+687\cdot 194^{167k+84}-1843\cdot 194^{166k+83}-796\cdot 194^{165k+83}+24987\cdot 194^{164k+82}-2137\cdot 194^{163k+82}\\||+15035\cdot 194^{162k+81}+1094\cdot 194^{161k+81}-37751\cdot 194^{160k+80}+2121\cdot 194^{159k+80}+4753\cdot 194^{158k+79}\\||-2394\cdot 194^{157k+79}+31251\cdot 194^{156k+78}-611\cdot 194^{155k+78}-3977\cdot 194^{154k+77}-446\cdot 194^{153k+77}\\||+19573\cdot 194^{152k+76}-949\cdot 194^{151k+76}-9215\cdot 194^{150k+75}+1844\cdot 194^{149k+75}-25513\cdot 194^{148k+74}\\||+1203\cdot 194^{147k+74}-6305\cdot 194^{146k+73}-682\cdot 194^{145k+73}+27461\cdot 194^{144k+72}-1955\cdot 194^{143k+72}\\||-3783\cdot 194^{142k+71}+2996\cdot 194^{141k+71}-44361\cdot 194^{140k+70}+253\cdot 194^{139k+70}+37927\cdot 194^{138k+69}\\||-2534\cdot 194^{137k+69}-2699\cdot 194^{136k+68}+1851\cdot 194^{135k+68}-6111\cdot 194^{134k+67}-2122\cdot 194^{133k+67}\\||+37875\cdot 194^{132k+66}-841\cdot 194^{131k+66}-19497\cdot 194^{130k+65}+2232\cdot 194^{129k+65}-24527\cdot 194^{128k+64}\\||+679\cdot 194^{127k+64}+12513\cdot 194^{126k+63}-2518\cdot 194^{125k+63}+36059\cdot 194^{124k+62}-79\cdot 194^{123k+62}\\||-45493\cdot 194^{122k+61}+4018\cdot 194^{121k+61}-14135\cdot 194^{120k+60}-2827\cdot 194^{119k+60}+50537\cdot 194^{118k+59}\\||-950\cdot 194^{117k+59}-27245\cdot 194^{116k+58}+2129\cdot 194^{115k+58}-97\cdot 194^{114k+57}-1744\cdot 194^{113k+57}\\||+20465\cdot 194^{112k+56}+215\cdot 194^{111k+56}-24347\cdot 194^{110k+55}+2078\cdot 194^{109k+55}-12257\cdot 194^{108k+54}\\||-1501\cdot 194^{107k+54}+52283\cdot 194^{106k+53}-4024\cdot 194^{105k+53}+22245\cdot 194^{104k+52}+1907\cdot 194^{103k+52}\\||-51895\cdot 194^{102k+51}+2604\cdot 194^{101k+51}+479\cdot 194^{100k+50}-1659\cdot 194^{99k+50}+15423\cdot 194^{98k+49}\\||+580\cdot 194^{97k+49}-20255\cdot 194^{96k+48}+580\cdot 194^{95k+48}+15423\cdot 194^{94k+47}-1659\cdot 194^{93k+47}\\||+479\cdot 194^{92k+46}+2604\cdot 194^{91k+46}-51895\cdot 194^{90k+45}+1907\cdot 194^{89k+45}+22245\cdot 194^{88k+44}\\||-4024\cdot 194^{87k+44}+52283\cdot 194^{86k+43}-1501\cdot 194^{85k+43}-12257\cdot 194^{84k+42}+2078\cdot 194^{83k+42}\\||-24347\cdot 194^{82k+41}+215\cdot 194^{81k+41}+20465\cdot 194^{80k+40}-1744\cdot 194^{79k+40}-97\cdot 194^{78k+39}\\||+2129\cdot 194^{77k+39}-27245\cdot 194^{76k+38}-950\cdot 194^{75k+38}+50537\cdot 194^{74k+37}-2827\cdot 194^{73k+37}\\||-14135\cdot 194^{72k+36}+4018\cdot 194^{71k+36}-45493\cdot 194^{70k+35}-79\cdot 194^{69k+35}+36059\cdot 194^{68k+34}\\||-2518\cdot 194^{67k+34}+12513\cdot 194^{66k+33}+679\cdot 194^{65k+33}-24527\cdot 194^{64k+32}+2232\cdot 194^{63k+32}\\||-19497\cdot 194^{62k+31}-841\cdot 194^{61k+31}+37875\cdot 194^{60k+30}-2122\cdot 194^{59k+30}-6111\cdot 194^{58k+29}\\||+1851\cdot 194^{57k+29}-2699\cdot 194^{56k+28}-2534\cdot 194^{55k+28}+37927\cdot 194^{54k+27}+253\cdot 194^{53k+27}\\||-44361\cdot 194^{52k+26}+2996\cdot 194^{51k+26}-3783\cdot 194^{50k+25}-1955\cdot 194^{49k+25}+27461\cdot 194^{48k+24}\\||-682\cdot 194^{47k+24}-6305\cdot 194^{46k+23}+1203\cdot 194^{45k+23}-25513\cdot 194^{44k+22}+1844\cdot 194^{43k+22}\\||-9215\cdot 194^{42k+21}-949\cdot 194^{41k+21}+19573\cdot 194^{40k+20}-446\cdot 194^{39k+20}-3977\cdot 194^{38k+19}\\||-611\cdot 194^{37k+19}+31251\cdot 194^{36k+18}-2394\cdot 194^{35k+18}+4753\cdot 194^{34k+17}+2121\cdot 194^{33k+17}\\||-37751\cdot 194^{32k+16}+1094\cdot 194^{31k+16}+15035\cdot 194^{30k+15}-2137\cdot 194^{29k+15}+24987\cdot 194^{28k+14}\\||-796\cdot 194^{27k+14}-1843\cdot 194^{26k+13}+687\cdot 194^{25k+13}-10919\cdot 194^{24k+12}+496\cdot 194^{23k+12}\\||-2425\cdot 194^{22k+11}+239\cdot 194^{21k+11}-9349\cdot 194^{20k+10}+900\cdot 194^{19k+10}-5723\cdot 194^{18k+9}\\||-583\cdot 194^{17k+9}+17361\cdot 194^{16k+8}-944\cdot 194^{15k+8}-1649\cdot 194^{14k+7}+1095\cdot 194^{13k+7}\\||-17721\cdot 194^{12k+6}+616\cdot 194^{11k+6}+4753\cdot 194^{10k+5}-1017\cdot 194^{9k+5}+16357\cdot 194^{8k+4}\\||-940\cdot 194^{7k+4}+8051\cdot 194^{6k+3}-281\cdot 194^{5k+3}+1503\cdot 194^{4k+2}-32\cdot 194^{3k+2}\\||+97\cdot 194^{2k+1}-194^{k+1}+1)\\|\times|(194^{192k+96}+194^{191k+96}+97\cdot 194^{190k+95}+32\cdot 194^{189k+95}+1503\cdot 194^{188k+94}\\||+281\cdot 194^{187k+94}+8051\cdot 194^{186k+93}+940\cdot 194^{185k+93}+16357\cdot 194^{184k+92}+1017\cdot 194^{183k+92}\\||+4753\cdot 194^{182k+91}-616\cdot 194^{181k+91}-17721\cdot 194^{180k+90}-1095\cdot 194^{179k+90}-1649\cdot 194^{178k+89}\\||+944\cdot 194^{177k+89}+17361\cdot 194^{176k+88}+583\cdot 194^{175k+88}-5723\cdot 194^{174k+87}-900\cdot 194^{173k+87}\\||-9349\cdot 194^{172k+86}-239\cdot 194^{171k+86}-2425\cdot 194^{170k+85}-496\cdot 194^{169k+85}-10919\cdot 194^{168k+84}\\||-687\cdot 194^{167k+84}-1843\cdot 194^{166k+83}+796\cdot 194^{165k+83}+24987\cdot 194^{164k+82}+2137\cdot 194^{163k+82}\\||+15035\cdot 194^{162k+81}-1094\cdot 194^{161k+81}-37751\cdot 194^{160k+80}-2121\cdot 194^{159k+80}+4753\cdot 194^{158k+79}\\||+2394\cdot 194^{157k+79}+31251\cdot 194^{156k+78}+611\cdot 194^{155k+78}-3977\cdot 194^{154k+77}+446\cdot 194^{153k+77}\\||+19573\cdot 194^{152k+76}+949\cdot 194^{151k+76}-9215\cdot 194^{150k+75}-1844\cdot 194^{149k+75}-25513\cdot 194^{148k+74}\\||-1203\cdot 194^{147k+74}-6305\cdot 194^{146k+73}+682\cdot 194^{145k+73}+27461\cdot 194^{144k+72}+1955\cdot 194^{143k+72}\\||-3783\cdot 194^{142k+71}-2996\cdot 194^{141k+71}-44361\cdot 194^{140k+70}-253\cdot 194^{139k+70}+37927\cdot 194^{138k+69}\\||+2534\cdot 194^{137k+69}-2699\cdot 194^{136k+68}-1851\cdot 194^{135k+68}-6111\cdot 194^{134k+67}+2122\cdot 194^{133k+67}\\||+37875\cdot 194^{132k+66}+841\cdot 194^{131k+66}-19497\cdot 194^{130k+65}-2232\cdot 194^{129k+65}-24527\cdot 194^{128k+64}\\||-679\cdot 194^{127k+64}+12513\cdot 194^{126k+63}+2518\cdot 194^{125k+63}+36059\cdot 194^{124k+62}+79\cdot 194^{123k+62}\\||-45493\cdot 194^{122k+61}-4018\cdot 194^{121k+61}-14135\cdot 194^{120k+60}+2827\cdot 194^{119k+60}+50537\cdot 194^{118k+59}\\||+950\cdot 194^{117k+59}-27245\cdot 194^{116k+58}-2129\cdot 194^{115k+58}-97\cdot 194^{114k+57}+1744\cdot 194^{113k+57}\\||+20465\cdot 194^{112k+56}-215\cdot 194^{111k+56}-24347\cdot 194^{110k+55}-2078\cdot 194^{109k+55}-12257\cdot 194^{108k+54}\\||+1501\cdot 194^{107k+54}+52283\cdot 194^{106k+53}+4024\cdot 194^{105k+53}+22245\cdot 194^{104k+52}-1907\cdot 194^{103k+52}\\||-51895\cdot 194^{102k+51}-2604\cdot 194^{101k+51}+479\cdot 194^{100k+50}+1659\cdot 194^{99k+50}+15423\cdot 194^{98k+49}\\||-580\cdot 194^{97k+49}-20255\cdot 194^{96k+48}-580\cdot 194^{95k+48}+15423\cdot 194^{94k+47}+1659\cdot 194^{93k+47}\\||+479\cdot 194^{92k+46}-2604\cdot 194^{91k+46}-51895\cdot 194^{90k+45}-1907\cdot 194^{89k+45}+22245\cdot 194^{88k+44}\\||+4024\cdot 194^{87k+44}+52283\cdot 194^{86k+43}+1501\cdot 194^{85k+43}-12257\cdot 194^{84k+42}-2078\cdot 194^{83k+42}\\||-24347\cdot 194^{82k+41}-215\cdot 194^{81k+41}+20465\cdot 194^{80k+40}+1744\cdot 194^{79k+40}-97\cdot 194^{78k+39}\\||-2129\cdot 194^{77k+39}-27245\cdot 194^{76k+38}+950\cdot 194^{75k+38}+50537\cdot 194^{74k+37}+2827\cdot 194^{73k+37}\\||-14135\cdot 194^{72k+36}-4018\cdot 194^{71k+36}-45493\cdot 194^{70k+35}+79\cdot 194^{69k+35}+36059\cdot 194^{68k+34}\\||+2518\cdot 194^{67k+34}+12513\cdot 194^{66k+33}-679\cdot 194^{65k+33}-24527\cdot 194^{64k+32}-2232\cdot 194^{63k+32}\\||-19497\cdot 194^{62k+31}+841\cdot 194^{61k+31}+37875\cdot 194^{60k+30}+2122\cdot 194^{59k+30}-6111\cdot 194^{58k+29}\\||-1851\cdot 194^{57k+29}-2699\cdot 194^{56k+28}+2534\cdot 194^{55k+28}+37927\cdot 194^{54k+27}-253\cdot 194^{53k+27}\\||-44361\cdot 194^{52k+26}-2996\cdot 194^{51k+26}-3783\cdot 194^{50k+25}+1955\cdot 194^{49k+25}+27461\cdot 194^{48k+24}\\||+682\cdot 194^{47k+24}-6305\cdot 194^{46k+23}-1203\cdot 194^{45k+23}-25513\cdot 194^{44k+22}-1844\cdot 194^{43k+22}\\||-9215\cdot 194^{42k+21}+949\cdot 194^{41k+21}+19573\cdot 194^{40k+20}+446\cdot 194^{39k+20}-3977\cdot 194^{38k+19}\\||+611\cdot 194^{37k+19}+31251\cdot 194^{36k+18}+2394\cdot 194^{35k+18}+4753\cdot 194^{34k+17}-2121\cdot 194^{33k+17}\\||-37751\cdot 194^{32k+16}-1094\cdot 194^{31k+16}+15035\cdot 194^{30k+15}+2137\cdot 194^{29k+15}+24987\cdot 194^{28k+14}\\||+796\cdot 194^{27k+14}-1843\cdot 194^{26k+13}-687\cdot 194^{25k+13}-10919\cdot 194^{24k+12}-496\cdot 194^{23k+12}\\||-2425\cdot 194^{22k+11}-239\cdot 194^{21k+11}-9349\cdot 194^{20k+10}-900\cdot 194^{19k+10}-5723\cdot 194^{18k+9}\\||+583\cdot 194^{17k+9}+17361\cdot 194^{16k+8}+944\cdot 194^{15k+8}-1649\cdot 194^{14k+7}-1095\cdot 194^{13k+7}\\||-17721\cdot 194^{12k+6}-616\cdot 194^{11k+6}+4753\cdot 194^{10k+5}+1017\cdot 194^{9k+5}+16357\cdot 194^{8k+4}\\||+940\cdot 194^{7k+4}+8051\cdot 194^{6k+3}+281\cdot 194^{5k+3}+1503\cdot 194^{4k+2}+32\cdot 194^{3k+2}\\||+97\cdot 194^{2k+1}+194^{k+1}+1)\\{\large\Phi}_{390}(195^{2k+1})|=|195^{192k+96}-195^{190k+95}+195^{188k+94}+195^{182k+91}-195^{180k+90}\\||+195^{178k+89}+195^{166k+83}-195^{164k+82}+195^{160k+80}-195^{158k+79}\\||+195^{156k+78}-195^{154k+77}+195^{150k+75}-195^{148k+74}-195^{136k+68}\\||+195^{134k+67}-195^{130k+65}+195^{128k+64}-195^{126k+63}+195^{124k+62}\\||-195^{120k+60}+195^{118k+59}-195^{114k+57}+195^{112k+56}-195^{110k+55}\\||+195^{106k+53}-2\cdot 195^{104k+52}+195^{102k+51}-195^{98k+49}+195^{96k+48}\\||-195^{94k+47}+195^{90k+45}-2\cdot 195^{88k+44}+195^{86k+43}-195^{82k+41}\\||+195^{80k+40}-195^{78k+39}+195^{74k+37}-195^{72k+36}+195^{68k+34}\\||-195^{66k+33}+195^{64k+32}-195^{62k+31}+195^{58k+29}-195^{56k+28}\\||-195^{44k+22}+195^{42k+21}-195^{38k+19}+195^{36k+18}-195^{34k+17}\\||+195^{32k+16}-195^{28k+14}+195^{26k+13}+195^{14k+7}-195^{12k+6}\\||+195^{10k+5}+195^{4k+2}-195^{2k+1}+1\\|=|(195^{96k+48}-195^{95k+48}+97\cdot 195^{94k+47}-32\cdot 195^{93k+47}+1536\cdot 195^{92k+46}\\||-301\cdot 195^{91k+46}+9543\cdot 195^{90k+45}-1325\cdot 195^{89k+45}+31296\cdot 195^{88k+44}-3360\cdot 195^{87k+44}\\||+63038\cdot 195^{86k+43}-5464\cdot 195^{85k+43}+82988\cdot 195^{84k+42}-5717\cdot 195^{83k+42}+64881\cdot 195^{82k+41}\\||-2732\cdot 195^{81k+41}+1833\cdot 195^{80k+40}+2871\cdot 195^{79k+40}-82599\cdot 195^{78k+39}+8619\cdot 195^{77k+39}\\||-148268\cdot 195^{76k+38}+11593\cdot 195^{75k+38}-157859\cdot 195^{74k+37}+9620\cdot 195^{73k+37}-91380\cdot 195^{72k+36}\\||+2248\cdot 195^{71k+36}+40448\cdot 195^{70k+35}-8310\cdot 195^{69k+35}+185021\cdot 195^{68k+34}-16923\cdot 195^{67k+34}\\||+260342\cdot 195^{66k+33}-17981\cdot 195^{65k+33}+207587\cdot 195^{64k+32}-9617\cdot 195^{63k+32}+40377\cdot 195^{62k+31}\\||+4438\cdot 195^{61k+31}-159599\cdot 195^{60k+30}+17203\cdot 195^{59k+30}-293822\cdot 195^{58k+29}+22449\cdot 195^{57k+29}\\||-295985\cdot 195^{56k+28}+17331\cdot 195^{55k+28}-156194\cdot 195^{54k+27}+3367\cdot 195^{53k+27}+73422\cdot 195^{52k+26}\\||-13631\cdot 195^{51k+26}+288188\cdot 195^{50k+25}-25293\cdot 195^{49k+25}+375977\cdot 195^{48k+24}-25293\cdot 195^{47k+24}\\||+288188\cdot 195^{46k+23}-13631\cdot 195^{45k+23}+73422\cdot 195^{44k+22}+3367\cdot 195^{43k+22}-156194\cdot 195^{42k+21}\\||+17331\cdot 195^{41k+21}-295985\cdot 195^{40k+20}+22449\cdot 195^{39k+20}-293822\cdot 195^{38k+19}+17203\cdot 195^{37k+19}\\||-159599\cdot 195^{36k+18}+4438\cdot 195^{35k+18}+40377\cdot 195^{34k+17}-9617\cdot 195^{33k+17}+207587\cdot 195^{32k+16}\\||-17981\cdot 195^{31k+16}+260342\cdot 195^{30k+15}-16923\cdot 195^{29k+15}+185021\cdot 195^{28k+14}-8310\cdot 195^{27k+14}\\||+40448\cdot 195^{26k+13}+2248\cdot 195^{25k+13}-91380\cdot 195^{24k+12}+9620\cdot 195^{23k+12}-157859\cdot 195^{22k+11}\\||+11593\cdot 195^{21k+11}-148268\cdot 195^{20k+10}+8619\cdot 195^{19k+10}-82599\cdot 195^{18k+9}+2871\cdot 195^{17k+9}\\||+1833\cdot 195^{16k+8}-2732\cdot 195^{15k+8}+64881\cdot 195^{14k+7}-5717\cdot 195^{13k+7}+82988\cdot 195^{12k+6}\\||-5464\cdot 195^{11k+6}+63038\cdot 195^{10k+5}-3360\cdot 195^{9k+5}+31296\cdot 195^{8k+4}-1325\cdot 195^{7k+4}\\||+9543\cdot 195^{6k+3}-301\cdot 195^{5k+3}+1536\cdot 195^{4k+2}-32\cdot 195^{3k+2}+97\cdot 195^{2k+1}\\||-195^{k+1}+1)\\|\times|(195^{96k+48}+195^{95k+48}+97\cdot 195^{94k+47}+32\cdot 195^{93k+47}+1536\cdot 195^{92k+46}\\||+301\cdot 195^{91k+46}+9543\cdot 195^{90k+45}+1325\cdot 195^{89k+45}+31296\cdot 195^{88k+44}+3360\cdot 195^{87k+44}\\||+63038\cdot 195^{86k+43}+5464\cdot 195^{85k+43}+82988\cdot 195^{84k+42}+5717\cdot 195^{83k+42}+64881\cdot 195^{82k+41}\\||+2732\cdot 195^{81k+41}+1833\cdot 195^{80k+40}-2871\cdot 195^{79k+40}-82599\cdot 195^{78k+39}-8619\cdot 195^{77k+39}\\||-148268\cdot 195^{76k+38}-11593\cdot 195^{75k+38}-157859\cdot 195^{74k+37}-9620\cdot 195^{73k+37}-91380\cdot 195^{72k+36}\\||-2248\cdot 195^{71k+36}+40448\cdot 195^{70k+35}+8310\cdot 195^{69k+35}+185021\cdot 195^{68k+34}+16923\cdot 195^{67k+34}\\||+260342\cdot 195^{66k+33}+17981\cdot 195^{65k+33}+207587\cdot 195^{64k+32}+9617\cdot 195^{63k+32}+40377\cdot 195^{62k+31}\\||-4438\cdot 195^{61k+31}-159599\cdot 195^{60k+30}-17203\cdot 195^{59k+30}-293822\cdot 195^{58k+29}-22449\cdot 195^{57k+29}\\||-295985\cdot 195^{56k+28}-17331\cdot 195^{55k+28}-156194\cdot 195^{54k+27}-3367\cdot 195^{53k+27}+73422\cdot 195^{52k+26}\\||+13631\cdot 195^{51k+26}+288188\cdot 195^{50k+25}+25293\cdot 195^{49k+25}+375977\cdot 195^{48k+24}+25293\cdot 195^{47k+24}\\||+288188\cdot 195^{46k+23}+13631\cdot 195^{45k+23}+73422\cdot 195^{44k+22}-3367\cdot 195^{43k+22}-156194\cdot 195^{42k+21}\\||-17331\cdot 195^{41k+21}-295985\cdot 195^{40k+20}-22449\cdot 195^{39k+20}-293822\cdot 195^{38k+19}-17203\cdot 195^{37k+19}\\||-159599\cdot 195^{36k+18}-4438\cdot 195^{35k+18}+40377\cdot 195^{34k+17}+9617\cdot 195^{33k+17}+207587\cdot 195^{32k+16}\\||+17981\cdot 195^{31k+16}+260342\cdot 195^{30k+15}+16923\cdot 195^{29k+15}+185021\cdot 195^{28k+14}+8310\cdot 195^{27k+14}\\||+40448\cdot 195^{26k+13}-2248\cdot 195^{25k+13}-91380\cdot 195^{24k+12}-9620\cdot 195^{23k+12}-157859\cdot 195^{22k+11}\\||-11593\cdot 195^{21k+11}-148268\cdot 195^{20k+10}-8619\cdot 195^{19k+10}-82599\cdot 195^{18k+9}-2871\cdot 195^{17k+9}\\||+1833\cdot 195^{16k+8}+2732\cdot 195^{15k+8}+64881\cdot 195^{14k+7}+5717\cdot 195^{13k+7}+82988\cdot 195^{12k+6}\\||+5464\cdot 195^{11k+6}+63038\cdot 195^{10k+5}+3360\cdot 195^{9k+5}+31296\cdot 195^{8k+4}+1325\cdot 195^{7k+4}\\||+9543\cdot 195^{6k+3}+301\cdot 195^{5k+3}+1536\cdot 195^{4k+2}+32\cdot 195^{3k+2}+97\cdot 195^{2k+1}\\||+195^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{197}(197^{2k+1})\cdots{\large\Phi}_{398}(199^{2k+1})$${\large\Phi}_{197}(197^{2k+1})\cdots{\large\Phi}_{398}(199^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{197}(197^{2k+1})|=|197^{392k+196}+197^{390k+195}+197^{388k+194}+197^{386k+193}+197^{384k+192}\\||+197^{382k+191}+197^{380k+190}+197^{378k+189}+197^{376k+188}+197^{374k+187}\\||+197^{372k+186}+197^{370k+185}+197^{368k+184}+197^{366k+183}+197^{364k+182}\\||+197^{362k+181}+197^{360k+180}+197^{358k+179}+197^{356k+178}+197^{354k+177}\\||+197^{352k+176}+197^{350k+175}+197^{348k+174}+197^{346k+173}+197^{344k+172}\\||+197^{342k+171}+197^{340k+170}+197^{338k+169}+197^{336k+168}+197^{334k+167}\\||+197^{332k+166}+197^{330k+165}+197^{328k+164}+197^{326k+163}+197^{324k+162}\\||+197^{322k+161}+197^{320k+160}+197^{318k+159}+197^{316k+158}+197^{314k+157}\\||+197^{312k+156}+197^{310k+155}+197^{308k+154}+197^{306k+153}+197^{304k+152}\\||+197^{302k+151}+197^{300k+150}+197^{298k+149}+197^{296k+148}+197^{294k+147}\\||+197^{292k+146}+197^{290k+145}+197^{288k+144}+197^{286k+143}+197^{284k+142}\\||+197^{282k+141}+197^{280k+140}+197^{278k+139}+197^{276k+138}+197^{274k+137}\\||+197^{272k+136}+197^{270k+135}+197^{268k+134}+197^{266k+133}+197^{264k+132}\\||+197^{262k+131}+197^{260k+130}+197^{258k+129}+197^{256k+128}+197^{254k+127}\\||+197^{252k+126}+197^{250k+125}+197^{248k+124}+197^{246k+123}+197^{244k+122}\\||+197^{242k+121}+197^{240k+120}+197^{238k+119}+197^{236k+118}+197^{234k+117}\\||+197^{232k+116}+197^{230k+115}+197^{228k+114}+197^{226k+113}+197^{224k+112}\\||+197^{222k+111}+197^{220k+110}+197^{218k+109}+197^{216k+108}+197^{214k+107}\\||+197^{212k+106}+197^{210k+105}+197^{208k+104}+197^{206k+103}+197^{204k+102}\\||+197^{202k+101}+197^{200k+100}+197^{198k+99}+197^{196k+98}+197^{194k+97}\\||+197^{192k+96}+197^{190k+95}+197^{188k+94}+197^{186k+93}+197^{184k+92}\\||+197^{182k+91}+197^{180k+90}+197^{178k+89}+197^{176k+88}+197^{174k+87}\\||+197^{172k+86}+197^{170k+85}+197^{168k+84}+197^{166k+83}+197^{164k+82}\\||+197^{162k+81}+197^{160k+80}+197^{158k+79}+197^{156k+78}+197^{154k+77}\\||+197^{152k+76}+197^{150k+75}+197^{148k+74}+197^{146k+73}+197^{144k+72}\\||+197^{142k+71}+197^{140k+70}+197^{138k+69}+197^{136k+68}+197^{134k+67}\\||+197^{132k+66}+197^{130k+65}+197^{128k+64}+197^{126k+63}+197^{124k+62}\\||+197^{122k+61}+197^{120k+60}+197^{118k+59}+197^{116k+58}+197^{114k+57}\\||+197^{112k+56}+197^{110k+55}+197^{108k+54}+197^{106k+53}+197^{104k+52}\\||+197^{102k+51}+197^{100k+50}+197^{98k+49}+197^{96k+48}+197^{94k+47}\\||+197^{92k+46}+197^{90k+45}+197^{88k+44}+197^{86k+43}+197^{84k+42}\\||+197^{82k+41}+197^{80k+40}+197^{78k+39}+197^{76k+38}+197^{74k+37}\\||+197^{72k+36}+197^{70k+35}+197^{68k+34}+197^{66k+33}+197^{64k+32}\\||+197^{62k+31}+197^{60k+30}+197^{58k+29}+197^{56k+28}+197^{54k+27}\\||+197^{52k+26}+197^{50k+25}+197^{48k+24}+197^{46k+23}+197^{44k+22}\\||+197^{42k+21}+197^{40k+20}+197^{38k+19}+197^{36k+18}+197^{34k+17}\\||+197^{32k+16}+197^{30k+15}+197^{28k+14}+197^{26k+13}+197^{24k+12}\\||+197^{22k+11}+197^{20k+10}+197^{18k+9}+197^{16k+8}+197^{14k+7}\\||+197^{12k+6}+197^{10k+5}+197^{8k+4}+197^{6k+3}+197^{4k+2}\\||+197^{2k+1}+1\\|=|(197^{196k+98}-197^{195k+98}+99\cdot 197^{194k+97}-33\cdot 197^{193k+97}+1601\cdot 197^{192k+96}\\||-307\cdot 197^{191k+96}+9247\cdot 197^{190k+95}-1127\cdot 197^{189k+95}+20773\cdot 197^{188k+94}-1277\cdot 197^{187k+94}\\||+749\cdot 197^{186k+93}+2257\cdot 197^{185k+93}-68247\cdot 197^{184k+92}+6041\cdot 197^{183k+92}-54071\cdot 197^{182k+91}\\||-2413\cdot 197^{181k+91}+151689\cdot 197^{180k+90}-16567\cdot 197^{179k+90}+198389\cdot 197^{178k+89}-957\cdot 197^{177k+89}\\||-267221\cdot 197^{176k+88}+35191\cdot 197^{175k+88}-488439\cdot 197^{174k+87}+11403\cdot 197^{173k+87}+394157\cdot 197^{172k+86}\\||-63109\cdot 197^{171k+86}+967277\cdot 197^{170k+85}-32231\cdot 197^{169k+85}-503673\cdot 197^{168k+84}+100097\cdot 197^{167k+84}\\||-1650819\cdot 197^{166k+83}+64889\cdot 197^{165k+83}+584077\cdot 197^{164k+82}-146317\cdot 197^{163k+82}+2553313\cdot 197^{162k+81}\\||-110915\cdot 197^{161k+81}-609697\cdot 197^{160k+80}+199789\cdot 197^{159k+80}-3648775\cdot 197^{158k+79}+169143\cdot 197^{157k+79}\\||+578681\cdot 197^{156k+78}-258921\cdot 197^{155k+78}+4903917\cdot 197^{154k+77}-237813\cdot 197^{153k+77}-487561\cdot 197^{152k+76}\\||+320943\cdot 197^{151k+76}-6256141\cdot 197^{150k+75}+312637\cdot 197^{149k+75}+367541\cdot 197^{148k+74}-385205\cdot 197^{147k+74}\\||+7667523\cdot 197^{146k+73}-390899\cdot 197^{145k+73}-227731\cdot 197^{144k+72}+449391\cdot 197^{143k+72}-9074939\cdot 197^{142k+71}\\||+467843\cdot 197^{141k+71}+112475\cdot 197^{140k+70}-514349\cdot 197^{139k+70}+10467787\cdot 197^{138k+69}-542635\cdot 197^{137k+69}\\||-16241\cdot 197^{136k+68}+578161\cdot 197^{135k+68}-11809025\cdot 197^{134k+67}+613189\cdot 197^{133k+67}-51193\cdot 197^{132k+66}\\||-640323\cdot 197^{131k+66}+13090005\cdot 197^{130k+65}-680027\cdot 197^{129k+65}+121293\cdot 197^{128k+64}+697325\cdot 197^{127k+64}\\||-14260345\cdot 197^{126k+63}+740703\cdot 197^{125k+63}-184305\cdot 197^{124k+62}-748381\cdot 197^{123k+62}+15301563\cdot 197^{122k+61}\\||-794489\cdot 197^{121k+61}+248477\cdot 197^{120k+60}+791589\cdot 197^{119k+60}-16177899\cdot 197^{118k+59}+839125\cdot 197^{117k+59}\\||-296167\cdot 197^{116k+58}-826993\cdot 197^{115k+58}+16876987\cdot 197^{114k+57}-873387\cdot 197^{113k+57}+314205\cdot 197^{112k+56}\\||+854775\cdot 197^{111k+56}-17388137\cdot 197^{110k+55}+895675\cdot 197^{109k+55}-272339\cdot 197^{108k+54}-877343\cdot 197^{107k+54}\\||+17745271\cdot 197^{106k+53}-908201\cdot 197^{105k+53}+195769\cdot 197^{104k+52}+893447\cdot 197^{103k+52}-17937085\cdot 197^{102k+51}\\||+910223\cdot 197^{101k+51}-67703\cdot 197^{100k+50}-905125\cdot 197^{99k+50}+18004419\cdot 197^{98k+49}-905125\cdot 197^{97k+49}\\||-67703\cdot 197^{96k+48}+910223\cdot 197^{95k+48}-17937085\cdot 197^{94k+47}+893447\cdot 197^{93k+47}+195769\cdot 197^{92k+46}\\||-908201\cdot 197^{91k+46}+17745271\cdot 197^{90k+45}-877343\cdot 197^{89k+45}-272339\cdot 197^{88k+44}+895675\cdot 197^{87k+44}\\||-17388137\cdot 197^{86k+43}+854775\cdot 197^{85k+43}+314205\cdot 197^{84k+42}-873387\cdot 197^{83k+42}+16876987\cdot 197^{82k+41}\\||-826993\cdot 197^{81k+41}-296167\cdot 197^{80k+40}+839125\cdot 197^{79k+40}-16177899\cdot 197^{78k+39}+791589\cdot 197^{77k+39}\\||+248477\cdot 197^{76k+38}-794489\cdot 197^{75k+38}+15301563\cdot 197^{74k+37}-748381\cdot 197^{73k+37}-184305\cdot 197^{72k+36}\\||+740703\cdot 197^{71k+36}-14260345\cdot 197^{70k+35}+697325\cdot 197^{69k+35}+121293\cdot 197^{68k+34}-680027\cdot 197^{67k+34}\\||+13090005\cdot 197^{66k+33}-640323\cdot 197^{65k+33}-51193\cdot 197^{64k+32}+613189\cdot 197^{63k+32}-11809025\cdot 197^{62k+31}\\||+578161\cdot 197^{61k+31}-16241\cdot 197^{60k+30}-542635\cdot 197^{59k+30}+10467787\cdot 197^{58k+29}-514349\cdot 197^{57k+29}\\||+112475\cdot 197^{56k+28}+467843\cdot 197^{55k+28}-9074939\cdot 197^{54k+27}+449391\cdot 197^{53k+27}-227731\cdot 197^{52k+26}\\||-390899\cdot 197^{51k+26}+7667523\cdot 197^{50k+25}-385205\cdot 197^{49k+25}+367541\cdot 197^{48k+24}+312637\cdot 197^{47k+24}\\||-6256141\cdot 197^{46k+23}+320943\cdot 197^{45k+23}-487561\cdot 197^{44k+22}-237813\cdot 197^{43k+22}+4903917\cdot 197^{42k+21}\\||-258921\cdot 197^{41k+21}+578681\cdot 197^{40k+20}+169143\cdot 197^{39k+20}-3648775\cdot 197^{38k+19}+199789\cdot 197^{37k+19}\\||-609697\cdot 197^{36k+18}-110915\cdot 197^{35k+18}+2553313\cdot 197^{34k+17}-146317\cdot 197^{33k+17}+584077\cdot 197^{32k+16}\\||+64889\cdot 197^{31k+16}-1650819\cdot 197^{30k+15}+100097\cdot 197^{29k+15}-503673\cdot 197^{28k+14}-32231\cdot 197^{27k+14}\\||+967277\cdot 197^{26k+13}-63109\cdot 197^{25k+13}+394157\cdot 197^{24k+12}+11403\cdot 197^{23k+12}-488439\cdot 197^{22k+11}\\||+35191\cdot 197^{21k+11}-267221\cdot 197^{20k+10}-957\cdot 197^{19k+10}+198389\cdot 197^{18k+9}-16567\cdot 197^{17k+9}\\||+151689\cdot 197^{16k+8}-2413\cdot 197^{15k+8}-54071\cdot 197^{14k+7}+6041\cdot 197^{13k+7}-68247\cdot 197^{12k+6}\\||+2257\cdot 197^{11k+6}+749\cdot 197^{10k+5}-1277\cdot 197^{9k+5}+20773\cdot 197^{8k+4}-1127\cdot 197^{7k+4}\\||+9247\cdot 197^{6k+3}-307\cdot 197^{5k+3}+1601\cdot 197^{4k+2}-33\cdot 197^{3k+2}+99\cdot 197^{2k+1}\\||-197^{k+1}+1)\\|\times|(197^{196k+98}+197^{195k+98}+99\cdot 197^{194k+97}+33\cdot 197^{193k+97}+1601\cdot 197^{192k+96}\\||+307\cdot 197^{191k+96}+9247\cdot 197^{190k+95}+1127\cdot 197^{189k+95}+20773\cdot 197^{188k+94}+1277\cdot 197^{187k+94}\\||+749\cdot 197^{186k+93}-2257\cdot 197^{185k+93}-68247\cdot 197^{184k+92}-6041\cdot 197^{183k+92}-54071\cdot 197^{182k+91}\\||+2413\cdot 197^{181k+91}+151689\cdot 197^{180k+90}+16567\cdot 197^{179k+90}+198389\cdot 197^{178k+89}+957\cdot 197^{177k+89}\\||-267221\cdot 197^{176k+88}-35191\cdot 197^{175k+88}-488439\cdot 197^{174k+87}-11403\cdot 197^{173k+87}+394157\cdot 197^{172k+86}\\||+63109\cdot 197^{171k+86}+967277\cdot 197^{170k+85}+32231\cdot 197^{169k+85}-503673\cdot 197^{168k+84}-100097\cdot 197^{167k+84}\\||-1650819\cdot 197^{166k+83}-64889\cdot 197^{165k+83}+584077\cdot 197^{164k+82}+146317\cdot 197^{163k+82}+2553313\cdot 197^{162k+81}\\||+110915\cdot 197^{161k+81}-609697\cdot 197^{160k+80}-199789\cdot 197^{159k+80}-3648775\cdot 197^{158k+79}-169143\cdot 197^{157k+79}\\||+578681\cdot 197^{156k+78}+258921\cdot 197^{155k+78}+4903917\cdot 197^{154k+77}+237813\cdot 197^{153k+77}-487561\cdot 197^{152k+76}\\||-320943\cdot 197^{151k+76}-6256141\cdot 197^{150k+75}-312637\cdot 197^{149k+75}+367541\cdot 197^{148k+74}+385205\cdot 197^{147k+74}\\||+7667523\cdot 197^{146k+73}+390899\cdot 197^{145k+73}-227731\cdot 197^{144k+72}-449391\cdot 197^{143k+72}-9074939\cdot 197^{142k+71}\\||-467843\cdot 197^{141k+71}+112475\cdot 197^{140k+70}+514349\cdot 197^{139k+70}+10467787\cdot 197^{138k+69}+542635\cdot 197^{137k+69}\\||-16241\cdot 197^{136k+68}-578161\cdot 197^{135k+68}-11809025\cdot 197^{134k+67}-613189\cdot 197^{133k+67}-51193\cdot 197^{132k+66}\\||+640323\cdot 197^{131k+66}+13090005\cdot 197^{130k+65}+680027\cdot 197^{129k+65}+121293\cdot 197^{128k+64}-697325\cdot 197^{127k+64}\\||-14260345\cdot 197^{126k+63}-740703\cdot 197^{125k+63}-184305\cdot 197^{124k+62}+748381\cdot 197^{123k+62}+15301563\cdot 197^{122k+61}\\||+794489\cdot 197^{121k+61}+248477\cdot 197^{120k+60}-791589\cdot 197^{119k+60}-16177899\cdot 197^{118k+59}-839125\cdot 197^{117k+59}\\||-296167\cdot 197^{116k+58}+826993\cdot 197^{115k+58}+16876987\cdot 197^{114k+57}+873387\cdot 197^{113k+57}+314205\cdot 197^{112k+56}\\||-854775\cdot 197^{111k+56}-17388137\cdot 197^{110k+55}-895675\cdot 197^{109k+55}-272339\cdot 197^{108k+54}+877343\cdot 197^{107k+54}\\||+17745271\cdot 197^{106k+53}+908201\cdot 197^{105k+53}+195769\cdot 197^{104k+52}-893447\cdot 197^{103k+52}-17937085\cdot 197^{102k+51}\\||-910223\cdot 197^{101k+51}-67703\cdot 197^{100k+50}+905125\cdot 197^{99k+50}+18004419\cdot 197^{98k+49}+905125\cdot 197^{97k+49}\\||-67703\cdot 197^{96k+48}-910223\cdot 197^{95k+48}-17937085\cdot 197^{94k+47}-893447\cdot 197^{93k+47}+195769\cdot 197^{92k+46}\\||+908201\cdot 197^{91k+46}+17745271\cdot 197^{90k+45}+877343\cdot 197^{89k+45}-272339\cdot 197^{88k+44}-895675\cdot 197^{87k+44}\\||-17388137\cdot 197^{86k+43}-854775\cdot 197^{85k+43}+314205\cdot 197^{84k+42}+873387\cdot 197^{83k+42}+16876987\cdot 197^{82k+41}\\||+826993\cdot 197^{81k+41}-296167\cdot 197^{80k+40}-839125\cdot 197^{79k+40}-16177899\cdot 197^{78k+39}-791589\cdot 197^{77k+39}\\||+248477\cdot 197^{76k+38}+794489\cdot 197^{75k+38}+15301563\cdot 197^{74k+37}+748381\cdot 197^{73k+37}-184305\cdot 197^{72k+36}\\||-740703\cdot 197^{71k+36}-14260345\cdot 197^{70k+35}-697325\cdot 197^{69k+35}+121293\cdot 197^{68k+34}+680027\cdot 197^{67k+34}\\||+13090005\cdot 197^{66k+33}+640323\cdot 197^{65k+33}-51193\cdot 197^{64k+32}-613189\cdot 197^{63k+32}-11809025\cdot 197^{62k+31}\\||-578161\cdot 197^{61k+31}-16241\cdot 197^{60k+30}+542635\cdot 197^{59k+30}+10467787\cdot 197^{58k+29}+514349\cdot 197^{57k+29}\\||+112475\cdot 197^{56k+28}-467843\cdot 197^{55k+28}-9074939\cdot 197^{54k+27}-449391\cdot 197^{53k+27}-227731\cdot 197^{52k+26}\\||+390899\cdot 197^{51k+26}+7667523\cdot 197^{50k+25}+385205\cdot 197^{49k+25}+367541\cdot 197^{48k+24}-312637\cdot 197^{47k+24}\\||-6256141\cdot 197^{46k+23}-320943\cdot 197^{45k+23}-487561\cdot 197^{44k+22}+237813\cdot 197^{43k+22}+4903917\cdot 197^{42k+21}\\||+258921\cdot 197^{41k+21}+578681\cdot 197^{40k+20}-169143\cdot 197^{39k+20}-3648775\cdot 197^{38k+19}-199789\cdot 197^{37k+19}\\||-609697\cdot 197^{36k+18}+110915\cdot 197^{35k+18}+2553313\cdot 197^{34k+17}+146317\cdot 197^{33k+17}+584077\cdot 197^{32k+16}\\||-64889\cdot 197^{31k+16}-1650819\cdot 197^{30k+15}-100097\cdot 197^{29k+15}-503673\cdot 197^{28k+14}+32231\cdot 197^{27k+14}\\||+967277\cdot 197^{26k+13}+63109\cdot 197^{25k+13}+394157\cdot 197^{24k+12}-11403\cdot 197^{23k+12}-488439\cdot 197^{22k+11}\\||-35191\cdot 197^{21k+11}-267221\cdot 197^{20k+10}+957\cdot 197^{19k+10}+198389\cdot 197^{18k+9}+16567\cdot 197^{17k+9}\\||+151689\cdot 197^{16k+8}+2413\cdot 197^{15k+8}-54071\cdot 197^{14k+7}-6041\cdot 197^{13k+7}-68247\cdot 197^{12k+6}\\||-2257\cdot 197^{11k+6}+749\cdot 197^{10k+5}+1277\cdot 197^{9k+5}+20773\cdot 197^{8k+4}+1127\cdot 197^{7k+4}\\||+9247\cdot 197^{6k+3}+307\cdot 197^{5k+3}+1601\cdot 197^{4k+2}+33\cdot 197^{3k+2}+99\cdot 197^{2k+1}\\||+197^{k+1}+1)\\{\large\Phi}_{398}(199^{2k+1})|=|199^{396k+198}-199^{394k+197}+199^{392k+196}-199^{390k+195}+199^{388k+194}\\||-199^{386k+193}+199^{384k+192}-199^{382k+191}+199^{380k+190}-199^{378k+189}\\||+199^{376k+188}-199^{374k+187}+199^{372k+186}-199^{370k+185}+199^{368k+184}\\||-199^{366k+183}+199^{364k+182}-199^{362k+181}+199^{360k+180}-199^{358k+179}\\||+199^{356k+178}-199^{354k+177}+199^{352k+176}-199^{350k+175}+199^{348k+174}\\||-199^{346k+173}+199^{344k+172}-199^{342k+171}+199^{340k+170}-199^{338k+169}\\||+199^{336k+168}-199^{334k+167}+199^{332k+166}-199^{330k+165}+199^{328k+164}\\||-199^{326k+163}+199^{324k+162}-199^{322k+161}+199^{320k+160}-199^{318k+159}\\||+199^{316k+158}-199^{314k+157}+199^{312k+156}-199^{310k+155}+199^{308k+154}\\||-199^{306k+153}+199^{304k+152}-199^{302k+151}+199^{300k+150}-199^{298k+149}\\||+199^{296k+148}-199^{294k+147}+199^{292k+146}-199^{290k+145}+199^{288k+144}\\||-199^{286k+143}+199^{284k+142}-199^{282k+141}+199^{280k+140}-199^{278k+139}\\||+199^{276k+138}-199^{274k+137}+199^{272k+136}-199^{270k+135}+199^{268k+134}\\||-199^{266k+133}+199^{264k+132}-199^{262k+131}+199^{260k+130}-199^{258k+129}\\||+199^{256k+128}-199^{254k+127}+199^{252k+126}-199^{250k+125}+199^{248k+124}\\||-199^{246k+123}+199^{244k+122}-199^{242k+121}+199^{240k+120}-199^{238k+119}\\||+199^{236k+118}-199^{234k+117}+199^{232k+116}-199^{230k+115}+199^{228k+114}\\||-199^{226k+113}+199^{224k+112}-199^{222k+111}+199^{220k+110}-199^{218k+109}\\||+199^{216k+108}-199^{214k+107}+199^{212k+106}-199^{210k+105}+199^{208k+104}\\||-199^{206k+103}+199^{204k+102}-199^{202k+101}+199^{200k+100}-199^{198k+99}\\||+199^{196k+98}-199^{194k+97}+199^{192k+96}-199^{190k+95}+199^{188k+94}\\||-199^{186k+93}+199^{184k+92}-199^{182k+91}+199^{180k+90}-199^{178k+89}\\||+199^{176k+88}-199^{174k+87}+199^{172k+86}-199^{170k+85}+199^{168k+84}\\||-199^{166k+83}+199^{164k+82}-199^{162k+81}+199^{160k+80}-199^{158k+79}\\||+199^{156k+78}-199^{154k+77}+199^{152k+76}-199^{150k+75}+199^{148k+74}\\||-199^{146k+73}+199^{144k+72}-199^{142k+71}+199^{140k+70}-199^{138k+69}\\||+199^{136k+68}-199^{134k+67}+199^{132k+66}-199^{130k+65}+199^{128k+64}\\||-199^{126k+63}+199^{124k+62}-199^{122k+61}+199^{120k+60}-199^{118k+59}\\||+199^{116k+58}-199^{114k+57}+199^{112k+56}-199^{110k+55}+199^{108k+54}\\||-199^{106k+53}+199^{104k+52}-199^{102k+51}+199^{100k+50}-199^{98k+49}\\||+199^{96k+48}-199^{94k+47}+199^{92k+46}-199^{90k+45}+199^{88k+44}\\||-199^{86k+43}+199^{84k+42}-199^{82k+41}+199^{80k+40}-199^{78k+39}\\||+199^{76k+38}-199^{74k+37}+199^{72k+36}-199^{70k+35}+199^{68k+34}\\||-199^{66k+33}+199^{64k+32}-199^{62k+31}+199^{60k+30}-199^{58k+29}\\||+199^{56k+28}-199^{54k+27}+199^{52k+26}-199^{50k+25}+199^{48k+24}\\||-199^{46k+23}+199^{44k+22}-199^{42k+21}+199^{40k+20}-199^{38k+19}\\||+199^{36k+18}-199^{34k+17}+199^{32k+16}-199^{30k+15}+199^{28k+14}\\||-199^{26k+13}+199^{24k+12}-199^{22k+11}+199^{20k+10}-199^{18k+9}\\||+199^{16k+8}-199^{14k+7}+199^{12k+6}-199^{10k+5}+199^{8k+4}\\||-199^{6k+3}+199^{4k+2}-199^{2k+1}+1\\|=|(199^{198k+99}-199^{197k+99}+99\cdot 199^{196k+98}-33\cdot 199^{195k+98}+1667\cdot 199^{194k+97}\\||-347\cdot 199^{193k+97}+12375\cdot 199^{192k+96}-1975\cdot 199^{191k+96}+57205\cdot 199^{190k+95}-7721\cdot 199^{189k+95}\\||+194579\cdot 199^{188k+94}-23321\cdot 199^{187k+94}+529993\cdot 199^{186k+93}-57993\cdot 199^{185k+93}+1215639\cdot 199^{184k+92}\\||-123761\cdot 199^{183k+92}+2431779\cdot 199^{182k+91}-233597\cdot 199^{181k+91}+4356719\cdot 199^{180k+90}-399437\cdot 199^{179k+90}\\||+7146795\cdot 199^{178k+89}-631589\cdot 199^{177k+89}+10940537\cdot 199^{176k+88}-939833\cdot 199^{175k+88}+15882429\cdot 199^{174k+87}\\||-1335253\cdot 199^{173k+87}+22141819\cdot 199^{172k+86}-1830469\cdot 199^{171k+86}+29896087\cdot 199^{170k+85}-2437075\cdot 199^{169k+85}\\||+39279355\cdot 199^{168k+84}-3161375\cdot 199^{167k+84}+50322949\cdot 199^{166k+83}-4001117\cdot 199^{165k+83}+62935069\cdot 199^{164k+82}\\||-4946297\cdot 199^{163k+82}+76941443\cdot 199^{162k+81}-5983585\cdot 199^{161k+81}+92159977\cdot 199^{160k+80}-7101611\cdot 199^{159k+80}\\||+108459149\cdot 199^{158k+79}-8292843\cdot 199^{157k+79}+125745059\cdot 199^{156k+78}-9550167\cdot 199^{155k+78}+143889447\cdot 199^{154k+77}\\||-10861035\cdot 199^{153k+77}+162650973\cdot 199^{152k+76}-12203425\cdot 199^{151k+76}+181657909\cdot 199^{150k+75}-13548033\cdot 199^{149k+75}\\||+200480847\cdot 199^{148k+74}-14865219\cdot 199^{147k+74}+218738341\cdot 199^{146k+73}-16131885\cdot 199^{145k+73}+236167097\cdot 199^{144k+72}\\||-17333227\cdot 199^{143k+72}+252592149\cdot 199^{142k+71}-18457357\cdot 199^{141k+71}+267826531\cdot 199^{140k+70}-19488061\cdot 199^{139k+70}\\||+281585249\cdot 199^{138k+69}-20401057\cdot 199^{137k+69}+293483623\cdot 199^{136k+68}-21168191\cdot 199^{135k+68}+303148249\cdot 199^{134k+67}\\||-21767161\cdot 199^{133k+67}+310352611\cdot 199^{132k+66}-22189597\cdot 199^{131k+66}+315093865\cdot 199^{130k+65}-22442703\cdot 199^{129k+65}\\||+317551445\cdot 199^{128k+64}-22542271\cdot 199^{127k+64}+317958341\cdot 199^{126k+63}-22503655\cdot 199^{125k+63}+316496927\cdot 199^{124k+62}\\||-22336957\cdot 199^{123k+62}+313280373\cdot 199^{122k+61}-22049959\cdot 199^{121k+61}+308448383\cdot 199^{120k+60}-21656831\cdot 199^{119k+60}\\||+302282057\cdot 199^{118k+59}-21183977\cdot 199^{117k+59}+295242765\cdot 199^{116k+58}-20669091\cdot 199^{115k+58}+287898015\cdot 199^{114k+57}\\||-20151881\cdot 199^{113k+57}+280760439\cdot 199^{112k+56}-19663229\cdot 199^{111k+56}+274171593\cdot 199^{110k+55}-19220373\cdot 199^{109k+55}\\||+268287415\cdot 199^{108k+54}-18830139\cdot 199^{107k+54}+263182337\cdot 199^{106k+53}-18498823\cdot 199^{105k+53}+258985113\cdot 199^{104k+52}\\||-18239283\cdot 199^{103k+52}+255930359\cdot 199^{102k+51}-18071005\cdot 199^{101k+51}+254305083\cdot 199^{100k+50}-18012449\cdot 199^{99k+50}\\||+254305083\cdot 199^{98k+49}-18071005\cdot 199^{97k+49}+255930359\cdot 199^{96k+48}-18239283\cdot 199^{95k+48}+258985113\cdot 199^{94k+47}\\||-18498823\cdot 199^{93k+47}+263182337\cdot 199^{92k+46}-18830139\cdot 199^{91k+46}+268287415\cdot 199^{90k+45}-19220373\cdot 199^{89k+45}\\||+274171593\cdot 199^{88k+44}-19663229\cdot 199^{87k+44}+280760439\cdot 199^{86k+43}-20151881\cdot 199^{85k+43}+287898015\cdot 199^{84k+42}\\||-20669091\cdot 199^{83k+42}+295242765\cdot 199^{82k+41}-21183977\cdot 199^{81k+41}+302282057\cdot 199^{80k+40}-21656831\cdot 199^{79k+40}\\||+308448383\cdot 199^{78k+39}-22049959\cdot 199^{77k+39}+313280373\cdot 199^{76k+38}-22336957\cdot 199^{75k+38}+316496927\cdot 199^{74k+37}\\||-22503655\cdot 199^{73k+37}+317958341\cdot 199^{72k+36}-22542271\cdot 199^{71k+36}+317551445\cdot 199^{70k+35}-22442703\cdot 199^{69k+35}\\||+315093865\cdot 199^{68k+34}-22189597\cdot 199^{67k+34}+310352611\cdot 199^{66k+33}-21767161\cdot 199^{65k+33}+303148249\cdot 199^{64k+32}\\||-21168191\cdot 199^{63k+32}+293483623\cdot 199^{62k+31}-20401057\cdot 199^{61k+31}+281585249\cdot 199^{60k+30}-19488061\cdot 199^{59k+30}\\||+267826531\cdot 199^{58k+29}-18457357\cdot 199^{57k+29}+252592149\cdot 199^{56k+28}-17333227\cdot 199^{55k+28}+236167097\cdot 199^{54k+27}\\||-16131885\cdot 199^{53k+27}+218738341\cdot 199^{52k+26}-14865219\cdot 199^{51k+26}+200480847\cdot 199^{50k+25}-13548033\cdot 199^{49k+25}\\||+181657909\cdot 199^{48k+24}-12203425\cdot 199^{47k+24}+162650973\cdot 199^{46k+23}-10861035\cdot 199^{45k+23}+143889447\cdot 199^{44k+22}\\||-9550167\cdot 199^{43k+22}+125745059\cdot 199^{42k+21}-8292843\cdot 199^{41k+21}+108459149\cdot 199^{40k+20}-7101611\cdot 199^{39k+20}\\||+92159977\cdot 199^{38k+19}-5983585\cdot 199^{37k+19}+76941443\cdot 199^{36k+18}-4946297\cdot 199^{35k+18}+62935069\cdot 199^{34k+17}\\||-4001117\cdot 199^{33k+17}+50322949\cdot 199^{32k+16}-3161375\cdot 199^{31k+16}+39279355\cdot 199^{30k+15}-2437075\cdot 199^{29k+15}\\||+29896087\cdot 199^{28k+14}-1830469\cdot 199^{27k+14}+22141819\cdot 199^{26k+13}-1335253\cdot 199^{25k+13}+15882429\cdot 199^{24k+12}\\||-939833\cdot 199^{23k+12}+10940537\cdot 199^{22k+11}-631589\cdot 199^{21k+11}+7146795\cdot 199^{20k+10}-399437\cdot 199^{19k+10}\\||+4356719\cdot 199^{18k+9}-233597\cdot 199^{17k+9}+2431779\cdot 199^{16k+8}-123761\cdot 199^{15k+8}+1215639\cdot 199^{14k+7}\\||-57993\cdot 199^{13k+7}+529993\cdot 199^{12k+6}-23321\cdot 199^{11k+6}+194579\cdot 199^{10k+5}-7721\cdot 199^{9k+5}\\||+57205\cdot 199^{8k+4}-1975\cdot 199^{7k+4}+12375\cdot 199^{6k+3}-347\cdot 199^{5k+3}+1667\cdot 199^{4k+2}\\||-33\cdot 199^{3k+2}+99\cdot 199^{2k+1}-199^{k+1}+1)\\|\times|(199^{198k+99}+199^{197k+99}+99\cdot 199^{196k+98}+33\cdot 199^{195k+98}+1667\cdot 199^{194k+97}\\||+347\cdot 199^{193k+97}+12375\cdot 199^{192k+96}+1975\cdot 199^{191k+96}+57205\cdot 199^{190k+95}+7721\cdot 199^{189k+95}\\||+194579\cdot 199^{188k+94}+23321\cdot 199^{187k+94}+529993\cdot 199^{186k+93}+57993\cdot 199^{185k+93}+1215639\cdot 199^{184k+92}\\||+123761\cdot 199^{183k+92}+2431779\cdot 199^{182k+91}+233597\cdot 199^{181k+91}+4356719\cdot 199^{180k+90}+399437\cdot 199^{179k+90}\\||+7146795\cdot 199^{178k+89}+631589\cdot 199^{177k+89}+10940537\cdot 199^{176k+88}+939833\cdot 199^{175k+88}+15882429\cdot 199^{174k+87}\\||+1335253\cdot 199^{173k+87}+22141819\cdot 199^{172k+86}+1830469\cdot 199^{171k+86}+29896087\cdot 199^{170k+85}+2437075\cdot 199^{169k+85}\\||+39279355\cdot 199^{168k+84}+3161375\cdot 199^{167k+84}+50322949\cdot 199^{166k+83}+4001117\cdot 199^{165k+83}+62935069\cdot 199^{164k+82}\\||+4946297\cdot 199^{163k+82}+76941443\cdot 199^{162k+81}+5983585\cdot 199^{161k+81}+92159977\cdot 199^{160k+80}+7101611\cdot 199^{159k+80}\\||+108459149\cdot 199^{158k+79}+8292843\cdot 199^{157k+79}+125745059\cdot 199^{156k+78}+9550167\cdot 199^{155k+78}+143889447\cdot 199^{154k+77}\\||+10861035\cdot 199^{153k+77}+162650973\cdot 199^{152k+76}+12203425\cdot 199^{151k+76}+181657909\cdot 199^{150k+75}+13548033\cdot 199^{149k+75}\\||+200480847\cdot 199^{148k+74}+14865219\cdot 199^{147k+74}+218738341\cdot 199^{146k+73}+16131885\cdot 199^{145k+73}+236167097\cdot 199^{144k+72}\\||+17333227\cdot 199^{143k+72}+252592149\cdot 199^{142k+71}+18457357\cdot 199^{141k+71}+267826531\cdot 199^{140k+70}+19488061\cdot 199^{139k+70}\\||+281585249\cdot 199^{138k+69}+20401057\cdot 199^{137k+69}+293483623\cdot 199^{136k+68}+21168191\cdot 199^{135k+68}+303148249\cdot 199^{134k+67}\\||+21767161\cdot 199^{133k+67}+310352611\cdot 199^{132k+66}+22189597\cdot 199^{131k+66}+315093865\cdot 199^{130k+65}+22442703\cdot 199^{129k+65}\\||+317551445\cdot 199^{128k+64}+22542271\cdot 199^{127k+64}+317958341\cdot 199^{126k+63}+22503655\cdot 199^{125k+63}+316496927\cdot 199^{124k+62}\\||+22336957\cdot 199^{123k+62}+313280373\cdot 199^{122k+61}+22049959\cdot 199^{121k+61}+308448383\cdot 199^{120k+60}+21656831\cdot 199^{119k+60}\\||+302282057\cdot 199^{118k+59}+21183977\cdot 199^{117k+59}+295242765\cdot 199^{116k+58}+20669091\cdot 199^{115k+58}+287898015\cdot 199^{114k+57}\\||+20151881\cdot 199^{113k+57}+280760439\cdot 199^{112k+56}+19663229\cdot 199^{111k+56}+274171593\cdot 199^{110k+55}+19220373\cdot 199^{109k+55}\\||+268287415\cdot 199^{108k+54}+18830139\cdot 199^{107k+54}+263182337\cdot 199^{106k+53}+18498823\cdot 199^{105k+53}+258985113\cdot 199^{104k+52}\\||+18239283\cdot 199^{103k+52}+255930359\cdot 199^{102k+51}+18071005\cdot 199^{101k+51}+254305083\cdot 199^{100k+50}+18012449\cdot 199^{99k+50}\\||+254305083\cdot 199^{98k+49}+18071005\cdot 199^{97k+49}+255930359\cdot 199^{96k+48}+18239283\cdot 199^{95k+48}+258985113\cdot 199^{94k+47}\\||+18498823\cdot 199^{93k+47}+263182337\cdot 199^{92k+46}+18830139\cdot 199^{91k+46}+268287415\cdot 199^{90k+45}+19220373\cdot 199^{89k+45}\\||+274171593\cdot 199^{88k+44}+19663229\cdot 199^{87k+44}+280760439\cdot 199^{86k+43}+20151881\cdot 199^{85k+43}+287898015\cdot 199^{84k+42}\\||+20669091\cdot 199^{83k+42}+295242765\cdot 199^{82k+41}+21183977\cdot 199^{81k+41}+302282057\cdot 199^{80k+40}+21656831\cdot 199^{79k+40}\\||+308448383\cdot 199^{78k+39}+22049959\cdot 199^{77k+39}+313280373\cdot 199^{76k+38}+22336957\cdot 199^{75k+38}+316496927\cdot 199^{74k+37}\\||+22503655\cdot 199^{73k+37}+317958341\cdot 199^{72k+36}+22542271\cdot 199^{71k+36}+317551445\cdot 199^{70k+35}+22442703\cdot 199^{69k+35}\\||+315093865\cdot 199^{68k+34}+22189597\cdot 199^{67k+34}+310352611\cdot 199^{66k+33}+21767161\cdot 199^{65k+33}+303148249\cdot 199^{64k+32}\\||+21168191\cdot 199^{63k+32}+293483623\cdot 199^{62k+31}+20401057\cdot 199^{61k+31}+281585249\cdot 199^{60k+30}+19488061\cdot 199^{59k+30}\\||+267826531\cdot 199^{58k+29}+18457357\cdot 199^{57k+29}+252592149\cdot 199^{56k+28}+17333227\cdot 199^{55k+28}+236167097\cdot 199^{54k+27}\\||+16131885\cdot 199^{53k+27}+218738341\cdot 199^{52k+26}+14865219\cdot 199^{51k+26}+200480847\cdot 199^{50k+25}+13548033\cdot 199^{49k+25}\\||+181657909\cdot 199^{48k+24}+12203425\cdot 199^{47k+24}+162650973\cdot 199^{46k+23}+10861035\cdot 199^{45k+23}+143889447\cdot 199^{44k+22}\\||+9550167\cdot 199^{43k+22}+125745059\cdot 199^{42k+21}+8292843\cdot 199^{41k+21}+108459149\cdot 199^{40k+20}+7101611\cdot 199^{39k+20}\\||+92159977\cdot 199^{38k+19}+5983585\cdot 199^{37k+19}+76941443\cdot 199^{36k+18}+4946297\cdot 199^{35k+18}+62935069\cdot 199^{34k+17}\\||+4001117\cdot 199^{33k+17}+50322949\cdot 199^{32k+16}+3161375\cdot 199^{31k+16}+39279355\cdot 199^{30k+15}+2437075\cdot 199^{29k+15}\\||+29896087\cdot 199^{28k+14}+1830469\cdot 199^{27k+14}+22141819\cdot 199^{26k+13}+1335253\cdot 199^{25k+13}+15882429\cdot 199^{24k+12}\\||+939833\cdot 199^{23k+12}+10940537\cdot 199^{22k+11}+631589\cdot 199^{21k+11}+7146795\cdot 199^{20k+10}+399437\cdot 199^{19k+10}\\||+4356719\cdot 199^{18k+9}+233597\cdot 199^{17k+9}+2431779\cdot 199^{16k+8}+123761\cdot 199^{15k+8}+1215639\cdot 199^{14k+7}\\||+57993\cdot 199^{13k+7}+529993\cdot 199^{12k+6}+23321\cdot 199^{11k+6}+194579\cdot 199^{10k+5}+7721\cdot 199^{9k+5}\\||+57205\cdot 199^{8k+4}+1975\cdot 199^{7k+4}+12375\cdot 199^{6k+3}+347\cdot 199^{5k+3}+1667\cdot 199^{4k+2}\\||+33\cdot 199^{3k+2}+99\cdot 199^{2k+1}+199^{k+1}+1)\end{eqnarray}%%
$$\begin{eqnarray}
{\large\Phi}_{20}(x)
& = & x^8-x^6+x^4-x^2+1 \\
& = & (x^4+5x^3+7x^2+5x+1)^2-10x(x^3+2x^2+2x+1)^2
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{20}(10^{2k+1})
& = & 10^{16k+8}-10^{12k+6}+10^{8k+4}-10^{4k+2}+1 \\
& = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-10\cdot 10^{2k+1}(10^{6k+3}+2\cdot 10^{4k+2}+2\cdot 10^{2k+1}+1)^2 \\
& = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-(10^{k+1})^2(10^{6k+3}+2\cdot 10^{4k+2}+2\cdot 10^{2k+1}+1)^2 \\
& = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-(10^{7k+4}+2\cdot 10^{5k+3}+2\cdot 10^{3k+2}+10^{k+1})^2 \\
& = & (10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1) \\
& \times & (10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1) \\
& = & {\large\Phi}_{20\mathrm{L}}(10^{2k+1}){\large\Phi}_{20\mathrm{M}}(10^{2k+1}) \\
{\large\Phi}_{20\mathrm{L}}(10^{2k+1})
& = & 10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1 \\
& = & (10^{2k+1}+1)((10^{4k+2}+10^{2k+1})(10^{2k+1}-10^{k+1}+3)-10^{k+1}+2)-1 \\
{\large\Phi}_{20\mathrm{M}}(10^{2k+1})
& = & 10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1 \\
& = & (10^{2k+1}+1)((10^{4k+2}+10^{2k+1})(10^{2k+1}+10^{k+1}+3)+10^{k+1}+2)-1
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{20,\mp 1}(10^{2k+1})
& = & \prod_{d\mid r}{{\large\Phi}_{(40k+20)/d,\mp \left( \frac{10}{d} \right) }(10)}\hspace{2em}
\text{($r$ is the greatest divisor of $2k+1$ that satisfies $\mathrm{gcd}(20,r)=1$)} \\
{\large\Phi}_{40k+20,\mp 1}(10)
& = & \frac{{\large\Phi}_{20,\mp 1}(10^{2k+1})}{\prod_{d\mid r;1\lt d}{{\large\Phi}_{(40k+20)/d,\mp \left( \frac{10}{d} \right) }(10)}}
\end{eqnarray}$$
$$\begin{eqnarray}
{\large\Phi}_{(40k+20)\mathrm{L}}(10)
& = & \mathrm{gcd}({\large\Phi}_{40k+20}(10),{\large\Phi}_{20\mathrm{L}}(10^{2k+1})) \\
{\large\Phi}_{(40k+20)\mathrm{M}}(10)
& = & \mathrm{gcd}({\large\Phi}_{40k+20}(10),{\large\Phi}_{20\mathrm{M}}(10^{2k+1}))
\end{eqnarray}$$