Table of contents 目次

  1. Repunit レピュニット
    1. Definition of repunit レピュニットの定義
    2. Factorization of repunit レピュニットの因数分解
    3. List of repunit レピュニットの一覧
    4. Links related to repunit レピュニットの関連リンク
  2. Möbius function メビウス関数
    1. Definition of Möbius function メビウス関数の定義
    2. List of Möbius function メビウス関数の一覧
    3. Links related to Möbius function メビウス関数の関連リンク
  3. Euler's totient function オイラーのトーシェント関数
    1. Definition of Euler's totient function オイラーのトーシェント関数の定義
    2. Calculation of Euler's totient function オイラーのトーシェント関数の計算
    3. List of Euler's totient function オイラーのトーシェント関数の一覧
    4. Links related to Euler's totient function オイラーのトーシェント関数の関連リンク
  4. Radical function ラジカル関数
    1. Definition of radical function ラジカル関数の定義
    2. Calculation of radical function ラジカル関数の計算
    3. List of radical function ラジカル関数の一覧
    4. Links related to radical function ラジカル関数の関連リンク
  5. Squarefree part 無平方核
    1. Definition of squarefree part 無平方核の定義
    2. Calculation of squarefree part 無平方核の計算
    3. List of squarefree part 無平方核の一覧
    4. Links related to squarefree core 無平方核の関連リンク
  6. Cyclotomic polynomial 円分多項式
    1. Definition of cyclotomic polynomial 円分多項式の定義
    2. Calculation of cyclotomic polynomials 円分多項式の計算
    3. List of cyclotomic polynomials 円分多項式の一覧
    4. Links related to cyclotomic polynomials 円分多項式の関連リンク
  7. Aurifeuillean factorization of cyclotomic numbers 円分数のオーラフィーユ因数分解
    1. List of Aurifeuillean factorization of cyclotomic numbers 円分数のオーラフィーユ因数分解の一覧
    2. Aurifeuillean factorization of repunit レピュニットのオーラフィーユ因数分解
    3. Links related to Aurifeuillean factorization オーラフィーユ因数分解の関連リンク

1. Repunit レピュニット

1.1. Definition of repunit レピュニットの定義

$$\begin{eqnarray} \mathrm{R}_{n} & = & \frac{10^{n}-1}{10-1} & \hspace{2em} & \text{(base-$10$-repunit)} \\ \mathrm{M}_{n}^{(x)} & = & \frac{x^{n}-1}{x-1} & & \text{(base-$x$-repunit)} \end{eqnarray}$$

1.2. Factorization of repunit レピュニットの因数分解

$$\begin{eqnarray} \mathrm{M}_{n}^{(x)} & = & \frac{x^{n}-1}{x-1} & = & \prod_{d\mid n;1\lt d}{{\large\Phi}_{d}(x)} \\ x^{n}+1 & = & \frac{x^{2n}-1}{x^{n}-1} & = & \prod_{d\mid 2n;d\nmid n}{{\large\Phi}_{d}(x)} \end{eqnarray}$$

1.3. List of repunit レピュニットの一覧

See Factorization of 11...11 (Repunit). 11...11 (レピュニット) の素因数分解 を参照。

1.4. Links related to repunit レピュニットの関連リンク

2. Möbius function メビウス関数

2.1. Definition of Möbius function メビウス関数の定義

$$\begin{eqnarray} \mu(n) & = & 0 & \hspace{2em} & \text{if $n$ has one or more repeated prime factors (squareful)} \\ \mu(n) & = & 1 & & \text{if $n$ is $1$} \\ \mu(n) & = & (-1)^k & & \text{if $n$ is a product of $k$ distinct prime numbers (squarefree)} \end{eqnarray}$$

2.2. List of Möbius function メビウス関数の一覧

$\mu(1)\cdots\mu(20)$$\mu(1)\cdots\mu(20)$
$$\begin{eqnarray}\mu(1)&=&1&\hspace{2em}&\\\mu(2)&=&-1&&2\\\mu(3)&=&-1&&3\\\mu(4)&=&0&&2^2\\\mu(5)&=&-1&&5\\\mu(6)&=&1&&2\cdot 3\\\mu(7)&=&-1&&7\\\mu(8)&=&0&&2^3\\\mu(9)&=&0&&3^2\\\mu(10)&=&1&&2\cdot 5\\\mu(11)&=&-1&&11\\\mu(12)&=&0&&2^2\cdot 3\\\mu(13)&=&-1&&13\\\mu(14)&=&1&&2\cdot 7\\\mu(15)&=&1&&3\cdot 5\\\mu(16)&=&0&&2^4\\\mu(17)&=&-1&&17\\\mu(18)&=&0&&2\cdot 3^2\\\mu(19)&=&-1&&19\\\mu(20)&=&0&&2^2\cdot 5\end{eqnarray}$$
$\mu(21)\cdots\mu(40)$$\mu(21)\cdots\mu(40)$
%%\begin{eqnarray}\mu(21)|=|1|\hspace{2em}|3\cdot 7\\\mu(22)|=|1||2\cdot 11\\\mu(23)|=|-1||23\\\mu(24)|=|0||2^3\cdot 3\\\mu(25)|=|0||5^2\\\mu(26)|=|1||2\cdot 13\\\mu(27)|=|0||3^3\\\mu(28)|=|0||2^2\cdot 7\\\mu(29)|=|-1||29\\\mu(30)|=|-1||2\cdot 3\cdot 5\\\mu(31)|=|-1||31\\\mu(32)|=|0||2^5\\\mu(33)|=|1||3\cdot 11\\\mu(34)|=|1||2\cdot 17\\\mu(35)|=|1||5\cdot 7\\\mu(36)|=|0||2^2\cdot 3^2\\\mu(37)|=|-1||37\\\mu(38)|=|1||2\cdot 19\\\mu(39)|=|1||3\cdot 13\\\mu(40)|=|0||2^3\cdot 5\end{eqnarray}%%
$\mu(41)\cdots\mu(60)$$\mu(41)\cdots\mu(60)$
%%\begin{eqnarray}\mu(41)|=|-1|\hspace{2em}|41\\\mu(42)|=|-1||2\cdot 3\cdot 7\\\mu(43)|=|-1||43\\\mu(44)|=|0||2^2\cdot 11\\\mu(45)|=|0||3^2\cdot 5\\\mu(46)|=|1||2\cdot 23\\\mu(47)|=|-1||47\\\mu(48)|=|0||2^4\cdot 3\\\mu(49)|=|0||7^2\\\mu(50)|=|0||2\cdot 5^2\\\mu(51)|=|1||3\cdot 17\\\mu(52)|=|0||2^2\cdot 13\\\mu(53)|=|-1||53\\\mu(54)|=|0||2\cdot 3^3\\\mu(55)|=|1||5\cdot 11\\\mu(56)|=|0||2^3\cdot 7\\\mu(57)|=|1||3\cdot 19\\\mu(58)|=|1||2\cdot 29\\\mu(59)|=|-1||59\\\mu(60)|=|0||2^2\cdot 3\cdot 5\end{eqnarray}%%
$\mu(61)\cdots\mu(80)$$\mu(61)\cdots\mu(80)$
%%\begin{eqnarray}\mu(61)|=|-1|\hspace{2em}|61\\\mu(62)|=|1||2\cdot 31\\\mu(63)|=|0||3^2\cdot 7\\\mu(64)|=|0||2^6\\\mu(65)|=|1||5\cdot 13\\\mu(66)|=|-1||2\cdot 3\cdot 11\\\mu(67)|=|-1||67\\\mu(68)|=|0||2^2\cdot 17\\\mu(69)|=|1||3\cdot 23\\\mu(70)|=|-1||2\cdot 5\cdot 7\\\mu(71)|=|-1||71\\\mu(72)|=|0||2^3\cdot 3^2\\\mu(73)|=|-1||73\\\mu(74)|=|1||2\cdot 37\\\mu(75)|=|0||3\cdot 5^2\\\mu(76)|=|0||2^2\cdot 19\\\mu(77)|=|1||7\cdot 11\\\mu(78)|=|-1||2\cdot 3\cdot 13\\\mu(79)|=|-1||79\\\mu(80)|=|0||2^4\cdot 5\end{eqnarray}%%
$\mu(81)\cdots\mu(100)$$\mu(81)\cdots\mu(100)$
%%\begin{eqnarray}\mu(81)|=|0|\hspace{2em}|3^4\\\mu(82)|=|1||2\cdot 41\\\mu(83)|=|-1||83\\\mu(84)|=|0||2^2\cdot 3\cdot 7\\\mu(85)|=|1||5\cdot 17\\\mu(86)|=|1||2\cdot 43\\\mu(87)|=|1||3\cdot 29\\\mu(88)|=|0||2^3\cdot 11\\\mu(89)|=|-1||89\\\mu(90)|=|0||2\cdot 3^2\cdot 5\\\mu(91)|=|1||7\cdot 13\\\mu(92)|=|0||2^2\cdot 23\\\mu(93)|=|1||3\cdot 31\\\mu(94)|=|1||2\cdot 47\\\mu(95)|=|1||5\cdot 19\\\mu(96)|=|0||2^5\cdot 3\\\mu(97)|=|-1||97\\\mu(98)|=|0||2\cdot 7^2\\\mu(99)|=|0||3^2\cdot 11\\\mu(100)|=|0||2^2\cdot 5^2\end{eqnarray}%%
$\mu(101)\cdots\mu(120)$$\mu(101)\cdots\mu(120)$
%%\begin{eqnarray}\mu(101)|=|-1|\hspace{2em}|101\\\mu(102)|=|-1||2\cdot 3\cdot 17\\\mu(103)|=|-1||103\\\mu(104)|=|0||2^3\cdot 13\\\mu(105)|=|-1||3\cdot 5\cdot 7\\\mu(106)|=|1||2\cdot 53\\\mu(107)|=|-1||107\\\mu(108)|=|0||2^2\cdot 3^3\\\mu(109)|=|-1||109\\\mu(110)|=|-1||2\cdot 5\cdot 11\\\mu(111)|=|1||3\cdot 37\\\mu(112)|=|0||2^4\cdot 7\\\mu(113)|=|-1||113\\\mu(114)|=|-1||2\cdot 3\cdot 19\\\mu(115)|=|1||5\cdot 23\\\mu(116)|=|0||2^2\cdot 29\\\mu(117)|=|0||3^2\cdot 13\\\mu(118)|=|1||2\cdot 59\\\mu(119)|=|1||7\cdot 17\\\mu(120)|=|0||2^3\cdot 3\cdot 5\end{eqnarray}%%
$\mu(121)\cdots\mu(140)$$\mu(121)\cdots\mu(140)$
%%\begin{eqnarray}\mu(121)|=|0|\hspace{2em}|11^2\\\mu(122)|=|1||2\cdot 61\\\mu(123)|=|1||3\cdot 41\\\mu(124)|=|0||2^2\cdot 31\\\mu(125)|=|0||5^3\\\mu(126)|=|0||2\cdot 3^2\cdot 7\\\mu(127)|=|-1||127\\\mu(128)|=|0||2^7\\\mu(129)|=|1||3\cdot 43\\\mu(130)|=|-1||2\cdot 5\cdot 13\\\mu(131)|=|-1||131\\\mu(132)|=|0||2^2\cdot 3\cdot 11\\\mu(133)|=|1||7\cdot 19\\\mu(134)|=|1||2\cdot 67\\\mu(135)|=|0||3^3\cdot 5\\\mu(136)|=|0||2^3\cdot 17\\\mu(137)|=|-1||137\\\mu(138)|=|-1||2\cdot 3\cdot 23\\\mu(139)|=|-1||139\\\mu(140)|=|0||2^2\cdot 5\cdot 7\end{eqnarray}%%
$\mu(141)\cdots\mu(160)$$\mu(141)\cdots\mu(160)$
%%\begin{eqnarray}\mu(141)|=|1|\hspace{2em}|3\cdot 47\\\mu(142)|=|1||2\cdot 71\\\mu(143)|=|1||11\cdot 13\\\mu(144)|=|0||2^4\cdot 3^2\\\mu(145)|=|1||5\cdot 29\\\mu(146)|=|1||2\cdot 73\\\mu(147)|=|0||3\cdot 7^2\\\mu(148)|=|0||2^2\cdot 37\\\mu(149)|=|-1||149\\\mu(150)|=|0||2\cdot 3\cdot 5^2\\\mu(151)|=|-1||151\\\mu(152)|=|0||2^3\cdot 19\\\mu(153)|=|0||3^2\cdot 17\\\mu(154)|=|-1||2\cdot 7\cdot 11\\\mu(155)|=|1||5\cdot 31\\\mu(156)|=|0||2^2\cdot 3\cdot 13\\\mu(157)|=|-1||157\\\mu(158)|=|1||2\cdot 79\\\mu(159)|=|1||3\cdot 53\\\mu(160)|=|0||2^5\cdot 5\end{eqnarray}%%
$\mu(161)\cdots\mu(180)$$\mu(161)\cdots\mu(180)$
%%\begin{eqnarray}\mu(161)|=|1|\hspace{2em}|7\cdot 23\\\mu(162)|=|0||2\cdot 3^4\\\mu(163)|=|-1||163\\\mu(164)|=|0||2^2\cdot 41\\\mu(165)|=|-1||3\cdot 5\cdot 11\\\mu(166)|=|1||2\cdot 83\\\mu(167)|=|-1||167\\\mu(168)|=|0||2^3\cdot 3\cdot 7\\\mu(169)|=|0||13^2\\\mu(170)|=|-1||2\cdot 5\cdot 17\\\mu(171)|=|0||3^2\cdot 19\\\mu(172)|=|0||2^2\cdot 43\\\mu(173)|=|-1||173\\\mu(174)|=|-1||2\cdot 3\cdot 29\\\mu(175)|=|0||5^2\cdot 7\\\mu(176)|=|0||2^4\cdot 11\\\mu(177)|=|1||3\cdot 59\\\mu(178)|=|1||2\cdot 89\\\mu(179)|=|-1||179\\\mu(180)|=|0||2^2\cdot 3^2\cdot 5\end{eqnarray}%%
$\mu(181)\cdots\mu(200)$$\mu(181)\cdots\mu(200)$
%%\begin{eqnarray}\mu(181)|=|-1|\hspace{2em}|181\\\mu(182)|=|-1||2\cdot 7\cdot 13\\\mu(183)|=|1||3\cdot 61\\\mu(184)|=|0||2^3\cdot 23\\\mu(185)|=|1||5\cdot 37\\\mu(186)|=|-1||2\cdot 3\cdot 31\\\mu(187)|=|1||11\cdot 17\\\mu(188)|=|0||2^2\cdot 47\\\mu(189)|=|0||3^3\cdot 7\\\mu(190)|=|-1||2\cdot 5\cdot 19\\\mu(191)|=|-1||191\\\mu(192)|=|0||2^6\cdot 3\\\mu(193)|=|-1||193\\\mu(194)|=|1||2\cdot 97\\\mu(195)|=|-1||3\cdot 5\cdot 13\\\mu(196)|=|0||2^2\cdot 7^2\\\mu(197)|=|-1||197\\\mu(198)|=|0||2\cdot 3^2\cdot 11\\\mu(199)|=|-1||199\\\mu(200)|=|0||2^3\cdot 5^2\end{eqnarray}%%

2.3. Links related to Möbius function メビウス関数の関連リンク

3. Euler's totient function オイラーのトーシェント関数

トーシェント is also written as トーティエント. トーシェントはトーティエントとも書く。

3.1. Definition of Euler's totient function オイラーのトーシェント関数の定義

Euler's totient function $\phi(n)$ is the number of positive integers that are less than or equal to the positive integer $n$ and that are relatively prime to $n$. オイラーのトーシェント関数 $\phi(n)$ は正の整数 $n$ 以下で $n$ と互いに素である正の整数の個数です。

3.2. Calculation of Euler's totient function オイラーのトーシェント関数の計算

$$\begin{eqnarray} n & = & \prod{p_{i}^{e_{i}}} \\ \phi(n) & = & \prod{(p_{i}-1)p_{i}^{e_{i}-1}} \end{eqnarray}$$

3.3. List of Euler's totient function オイラーのトーシェント関数の一覧

$\phi(1)\cdots\phi(20)$$\phi(1)\cdots\phi(20)$
$$\begin{eqnarray}\phi(1)&=&1&\hspace{2em}&\\\phi(2)&=&1&&(2-1)2^{1-1}\\\phi(3)&=&2&&(3-1)3^{1-1}\\\phi(4)&=&2&&(2-1)2^{2-1}\\\phi(5)&=&4&&(5-1)5^{1-1}\\\phi(6)&=&2&&(2-1)2^{1-1} \cdot (3-1)3^{1-1}\\\phi(7)&=&6&&(7-1)7^{1-1}\\\phi(8)&=&4&&(2-1)2^{3-1}\\\phi(9)&=&6&&(3-1)3^{2-1}\\\phi(10)&=&4&&(2-1)2^{1-1} \cdot (5-1)5^{1-1}\\\phi(11)&=&10&&(11-1)11^{1-1}\\\phi(12)&=&4&&(2-1)2^{2-1} \cdot (3-1)3^{1-1}\\\phi(13)&=&12&&(13-1)13^{1-1}\\\phi(14)&=&6&&(2-1)2^{1-1} \cdot (7-1)7^{1-1}\\\phi(15)&=&8&&(3-1)3^{1-1} \cdot (5-1)5^{1-1}\\\phi(16)&=&8&&(2-1)2^{4-1}\\\phi(17)&=&16&&(17-1)17^{1-1}\\\phi(18)&=&6&&(2-1)2^{1-1} \cdot (3-1)3^{2-1}\\\phi(19)&=&18&&(19-1)19^{1-1}\\\phi(20)&=&8&&(2-1)2^{2-1} \cdot (5-1)5^{1-1}\end{eqnarray}$$
$\phi(21)\cdots\phi(40)$$\phi(21)\cdots\phi(40)$
%%\begin{eqnarray}\phi(21)|=|12|\hspace{2em}|(3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(22)|=|10||(2-1)2^{1-1} \cdot (11-1)11^{1-1}\\\phi(23)|=|22||(23-1)23^{1-1}\\\phi(24)|=|8||(2-1)2^{3-1} \cdot (3-1)3^{1-1}\\\phi(25)|=|20||(5-1)5^{2-1}\\\phi(26)|=|12||(2-1)2^{1-1} \cdot (13-1)13^{1-1}\\\phi(27)|=|18||(3-1)3^{3-1}\\\phi(28)|=|12||(2-1)2^{2-1} \cdot (7-1)7^{1-1}\\\phi(29)|=|28||(29-1)29^{1-1}\\\phi(30)|=|8||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\\\phi(31)|=|30||(31-1)31^{1-1}\\\phi(32)|=|16||(2-1)2^{5-1}\\\phi(33)|=|20||(3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(34)|=|16||(2-1)2^{1-1} \cdot (17-1)17^{1-1}\\\phi(35)|=|24||(5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(36)|=|12||(2-1)2^{2-1} \cdot (3-1)3^{2-1}\\\phi(37)|=|36||(37-1)37^{1-1}\\\phi(38)|=|18||(2-1)2^{1-1} \cdot (19-1)19^{1-1}\\\phi(39)|=|24||(3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(40)|=|16||(2-1)2^{3-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(41)\cdots\phi(60)$$\phi(41)\cdots\phi(60)$
%%\begin{eqnarray}\phi(41)|=|40|\hspace{2em}|(41-1)41^{1-1}\\\phi(42)|=|12||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(43)|=|42||(43-1)43^{1-1}\\\phi(44)|=|20||(2-1)2^{2-1} \cdot (11-1)11^{1-1}\\\phi(45)|=|24||(3-1)3^{2-1} \cdot (5-1)5^{1-1}\\\phi(46)|=|22||(2-1)2^{1-1} \cdot (23-1)23^{1-1}\\\phi(47)|=|46||(47-1)47^{1-1}\\\phi(48)|=|16||(2-1)2^{4-1} \cdot (3-1)3^{1-1}\\\phi(49)|=|42||(7-1)7^{2-1}\\\phi(50)|=|20||(2-1)2^{1-1} \cdot (5-1)5^{2-1}\\\phi(51)|=|32||(3-1)3^{1-1} \cdot (17-1)17^{1-1}\\\phi(52)|=|24||(2-1)2^{2-1} \cdot (13-1)13^{1-1}\\\phi(53)|=|52||(53-1)53^{1-1}\\\phi(54)|=|18||(2-1)2^{1-1} \cdot (3-1)3^{3-1}\\\phi(55)|=|40||(5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(56)|=|24||(2-1)2^{3-1} \cdot (7-1)7^{1-1}\\\phi(57)|=|36||(3-1)3^{1-1} \cdot (19-1)19^{1-1}\\\phi(58)|=|28||(2-1)2^{1-1} \cdot (29-1)29^{1-1}\\\phi(59)|=|58||(59-1)59^{1-1}\\\phi(60)|=|16||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(61)\cdots\phi(80)$$\phi(61)\cdots\phi(80)$
%%\begin{eqnarray}\phi(61)|=|60|\hspace{2em}|(61-1)61^{1-1}\\\phi(62)|=|30||(2-1)2^{1-1} \cdot (31-1)31^{1-1}\\\phi(63)|=|36||(3-1)3^{2-1} \cdot (7-1)7^{1-1}\\\phi(64)|=|32||(2-1)2^{6-1}\\\phi(65)|=|48||(5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(66)|=|20||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(67)|=|66||(67-1)67^{1-1}\\\phi(68)|=|32||(2-1)2^{2-1} \cdot (17-1)17^{1-1}\\\phi(69)|=|44||(3-1)3^{1-1} \cdot (23-1)23^{1-1}\\\phi(70)|=|24||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(71)|=|70||(71-1)71^{1-1}\\\phi(72)|=|24||(2-1)2^{3-1} \cdot (3-1)3^{2-1}\\\phi(73)|=|72||(73-1)73^{1-1}\\\phi(74)|=|36||(2-1)2^{1-1} \cdot (37-1)37^{1-1}\\\phi(75)|=|40||(3-1)3^{1-1} \cdot (5-1)5^{2-1}\\\phi(76)|=|36||(2-1)2^{2-1} \cdot (19-1)19^{1-1}\\\phi(77)|=|60||(7-1)7^{1-1} \cdot (11-1)11^{1-1}\\\phi(78)|=|24||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(79)|=|78||(79-1)79^{1-1}\\\phi(80)|=|32||(2-1)2^{4-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(81)\cdots\phi(100)$$\phi(81)\cdots\phi(100)$
%%\begin{eqnarray}\phi(81)|=|54|\hspace{2em}|(3-1)3^{4-1}\\\phi(82)|=|40||(2-1)2^{1-1} \cdot (41-1)41^{1-1}\\\phi(83)|=|82||(83-1)83^{1-1}\\\phi(84)|=|24||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(85)|=|64||(5-1)5^{1-1} \cdot (17-1)17^{1-1}\\\phi(86)|=|42||(2-1)2^{1-1} \cdot (43-1)43^{1-1}\\\phi(87)|=|56||(3-1)3^{1-1} \cdot (29-1)29^{1-1}\\\phi(88)|=|40||(2-1)2^{3-1} \cdot (11-1)11^{1-1}\\\phi(89)|=|88||(89-1)89^{1-1}\\\phi(90)|=|24||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (5-1)5^{1-1}\\\phi(91)|=|72||(7-1)7^{1-1} \cdot (13-1)13^{1-1}\\\phi(92)|=|44||(2-1)2^{2-1} \cdot (23-1)23^{1-1}\\\phi(93)|=|60||(3-1)3^{1-1} \cdot (31-1)31^{1-1}\\\phi(94)|=|46||(2-1)2^{1-1} \cdot (47-1)47^{1-1}\\\phi(95)|=|72||(5-1)5^{1-1} \cdot (19-1)19^{1-1}\\\phi(96)|=|32||(2-1)2^{5-1} \cdot (3-1)3^{1-1}\\\phi(97)|=|96||(97-1)97^{1-1}\\\phi(98)|=|42||(2-1)2^{1-1} \cdot (7-1)7^{2-1}\\\phi(99)|=|60||(3-1)3^{2-1} \cdot (11-1)11^{1-1}\\\phi(100)|=|40||(2-1)2^{2-1} \cdot (5-1)5^{2-1}\end{eqnarray}%%
$\phi(101)\cdots\phi(120)$$\phi(101)\cdots\phi(120)$
%%\begin{eqnarray}\phi(101)|=|100|\hspace{2em}|(101-1)101^{1-1}\\\phi(102)|=|32||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (17-1)17^{1-1}\\\phi(103)|=|102||(103-1)103^{1-1}\\\phi(104)|=|48||(2-1)2^{3-1} \cdot (13-1)13^{1-1}\\\phi(105)|=|48||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\\\phi(106)|=|52||(2-1)2^{1-1} \cdot (53-1)53^{1-1}\\\phi(107)|=|106||(107-1)107^{1-1}\\\phi(108)|=|36||(2-1)2^{2-1} \cdot (3-1)3^{3-1}\\\phi(109)|=|108||(109-1)109^{1-1}\\\phi(110)|=|40||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(111)|=|72||(3-1)3^{1-1} \cdot (37-1)37^{1-1}\\\phi(112)|=|48||(2-1)2^{4-1} \cdot (7-1)7^{1-1}\\\phi(113)|=|112||(113-1)113^{1-1}\\\phi(114)|=|36||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (19-1)19^{1-1}\\\phi(115)|=|88||(5-1)5^{1-1} \cdot (23-1)23^{1-1}\\\phi(116)|=|56||(2-1)2^{2-1} \cdot (29-1)29^{1-1}\\\phi(117)|=|72||(3-1)3^{2-1} \cdot (13-1)13^{1-1}\\\phi(118)|=|58||(2-1)2^{1-1} \cdot (59-1)59^{1-1}\\\phi(119)|=|96||(7-1)7^{1-1} \cdot (17-1)17^{1-1}\\\phi(120)|=|32||(2-1)2^{3-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(121)\cdots\phi(140)$$\phi(121)\cdots\phi(140)$
%%\begin{eqnarray}\phi(121)|=|110|\hspace{2em}|(11-1)11^{2-1}\\\phi(122)|=|60||(2-1)2^{1-1} \cdot (61-1)61^{1-1}\\\phi(123)|=|80||(3-1)3^{1-1} \cdot (41-1)41^{1-1}\\\phi(124)|=|60||(2-1)2^{2-1} \cdot (31-1)31^{1-1}\\\phi(125)|=|100||(5-1)5^{3-1}\\\phi(126)|=|36||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (7-1)7^{1-1}\\\phi(127)|=|126||(127-1)127^{1-1}\\\phi(128)|=|64||(2-1)2^{7-1}\\\phi(129)|=|84||(3-1)3^{1-1} \cdot (43-1)43^{1-1}\\\phi(130)|=|48||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(131)|=|130||(131-1)131^{1-1}\\\phi(132)|=|40||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (11-1)11^{1-1}\\\phi(133)|=|108||(7-1)7^{1-1} \cdot (19-1)19^{1-1}\\\phi(134)|=|66||(2-1)2^{1-1} \cdot (67-1)67^{1-1}\\\phi(135)|=|72||(3-1)3^{3-1} \cdot (5-1)5^{1-1}\\\phi(136)|=|64||(2-1)2^{3-1} \cdot (17-1)17^{1-1}\\\phi(137)|=|136||(137-1)137^{1-1}\\\phi(138)|=|44||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (23-1)23^{1-1}\\\phi(139)|=|138||(139-1)139^{1-1}\\\phi(140)|=|48||(2-1)2^{2-1} \cdot (5-1)5^{1-1} \cdot (7-1)7^{1-1}\end{eqnarray}%%
$\phi(141)\cdots\phi(160)$$\phi(141)\cdots\phi(160)$
%%\begin{eqnarray}\phi(141)|=|92|\hspace{2em}|(3-1)3^{1-1} \cdot (47-1)47^{1-1}\\\phi(142)|=|70||(2-1)2^{1-1} \cdot (71-1)71^{1-1}\\\phi(143)|=|120||(11-1)11^{1-1} \cdot (13-1)13^{1-1}\\\phi(144)|=|48||(2-1)2^{4-1} \cdot (3-1)3^{2-1}\\\phi(145)|=|112||(5-1)5^{1-1} \cdot (29-1)29^{1-1}\\\phi(146)|=|72||(2-1)2^{1-1} \cdot (73-1)73^{1-1}\\\phi(147)|=|84||(3-1)3^{1-1} \cdot (7-1)7^{2-1}\\\phi(148)|=|72||(2-1)2^{2-1} \cdot (37-1)37^{1-1}\\\phi(149)|=|148||(149-1)149^{1-1}\\\phi(150)|=|40||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (5-1)5^{2-1}\\\phi(151)|=|150||(151-1)151^{1-1}\\\phi(152)|=|72||(2-1)2^{3-1} \cdot (19-1)19^{1-1}\\\phi(153)|=|96||(3-1)3^{2-1} \cdot (17-1)17^{1-1}\\\phi(154)|=|60||(2-1)2^{1-1} \cdot (7-1)7^{1-1} \cdot (11-1)11^{1-1}\\\phi(155)|=|120||(5-1)5^{1-1} \cdot (31-1)31^{1-1}\\\phi(156)|=|48||(2-1)2^{2-1} \cdot (3-1)3^{1-1} \cdot (13-1)13^{1-1}\\\phi(157)|=|156||(157-1)157^{1-1}\\\phi(158)|=|78||(2-1)2^{1-1} \cdot (79-1)79^{1-1}\\\phi(159)|=|104||(3-1)3^{1-1} \cdot (53-1)53^{1-1}\\\phi(160)|=|64||(2-1)2^{5-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(161)\cdots\phi(180)$$\phi(161)\cdots\phi(180)$
%%\begin{eqnarray}\phi(161)|=|132|\hspace{2em}|(7-1)7^{1-1} \cdot (23-1)23^{1-1}\\\phi(162)|=|54||(2-1)2^{1-1} \cdot (3-1)3^{4-1}\\\phi(163)|=|162||(163-1)163^{1-1}\\\phi(164)|=|80||(2-1)2^{2-1} \cdot (41-1)41^{1-1}\\\phi(165)|=|80||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (11-1)11^{1-1}\\\phi(166)|=|82||(2-1)2^{1-1} \cdot (83-1)83^{1-1}\\\phi(167)|=|166||(167-1)167^{1-1}\\\phi(168)|=|48||(2-1)2^{3-1} \cdot (3-1)3^{1-1} \cdot (7-1)7^{1-1}\\\phi(169)|=|156||(13-1)13^{2-1}\\\phi(170)|=|64||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (17-1)17^{1-1}\\\phi(171)|=|108||(3-1)3^{2-1} \cdot (19-1)19^{1-1}\\\phi(172)|=|84||(2-1)2^{2-1} \cdot (43-1)43^{1-1}\\\phi(173)|=|172||(173-1)173^{1-1}\\\phi(174)|=|56||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (29-1)29^{1-1}\\\phi(175)|=|120||(5-1)5^{2-1} \cdot (7-1)7^{1-1}\\\phi(176)|=|80||(2-1)2^{4-1} \cdot (11-1)11^{1-1}\\\phi(177)|=|116||(3-1)3^{1-1} \cdot (59-1)59^{1-1}\\\phi(178)|=|88||(2-1)2^{1-1} \cdot (89-1)89^{1-1}\\\phi(179)|=|178||(179-1)179^{1-1}\\\phi(180)|=|48||(2-1)2^{2-1} \cdot (3-1)3^{2-1} \cdot (5-1)5^{1-1}\end{eqnarray}%%
$\phi(181)\cdots\phi(200)$$\phi(181)\cdots\phi(200)$
%%\begin{eqnarray}\phi(181)|=|180|\hspace{2em}|(181-1)181^{1-1}\\\phi(182)|=|72||(2-1)2^{1-1} \cdot (7-1)7^{1-1} \cdot (13-1)13^{1-1}\\\phi(183)|=|120||(3-1)3^{1-1} \cdot (61-1)61^{1-1}\\\phi(184)|=|88||(2-1)2^{3-1} \cdot (23-1)23^{1-1}\\\phi(185)|=|144||(5-1)5^{1-1} \cdot (37-1)37^{1-1}\\\phi(186)|=|60||(2-1)2^{1-1} \cdot (3-1)3^{1-1} \cdot (31-1)31^{1-1}\\\phi(187)|=|160||(11-1)11^{1-1} \cdot (17-1)17^{1-1}\\\phi(188)|=|92||(2-1)2^{2-1} \cdot (47-1)47^{1-1}\\\phi(189)|=|108||(3-1)3^{3-1} \cdot (7-1)7^{1-1}\\\phi(190)|=|72||(2-1)2^{1-1} \cdot (5-1)5^{1-1} \cdot (19-1)19^{1-1}\\\phi(191)|=|190||(191-1)191^{1-1}\\\phi(192)|=|64||(2-1)2^{6-1} \cdot (3-1)3^{1-1}\\\phi(193)|=|192||(193-1)193^{1-1}\\\phi(194)|=|96||(2-1)2^{1-1} \cdot (97-1)97^{1-1}\\\phi(195)|=|96||(3-1)3^{1-1} \cdot (5-1)5^{1-1} \cdot (13-1)13^{1-1}\\\phi(196)|=|84||(2-1)2^{2-1} \cdot (7-1)7^{2-1}\\\phi(197)|=|196||(197-1)197^{1-1}\\\phi(198)|=|60||(2-1)2^{1-1} \cdot (3-1)3^{2-1} \cdot (11-1)11^{1-1}\\\phi(199)|=|198||(199-1)199^{1-1}\\\phi(200)|=|80||(2-1)2^{3-1} \cdot (5-1)5^{2-1}\end{eqnarray}%%

3.4. Links related to Euler's totient function オイラーのトーシェント関数の関連リンク

4. Radical function ラジカル関数

4.1. Definition of radical function ラジカル関数の定義

Radical function $\mathrm{rad}(n)$ is the largest squarefree divisor of $n$. It is also written as squarefree kernel of $n$. ラジカル関数 $\mathrm{rad}(n)$ は $n$ の無平方の最大の約数です。$n$ の squarefree kernel とも書きます。

4.2. Calculation of radical function ラジカル関数の計算

$$\begin{eqnarray} n & = & \prod{p_{i}^{e_{i}}} \\ \mathrm{rad}(n) & = & \prod{p_{i}} \end{eqnarray}$$

4.3. List of radical function ラジカル関数の一覧

$\mathrm{rad}(1)\cdots\mathrm{rad}(20)$$\mathrm{rad}(1)\cdots\mathrm{rad}(20)$
$$\begin{eqnarray}\mathrm{rad}(1)&=&1&\hspace{2em}&\\\mathrm{rad}(2)&=&2&&2\\\mathrm{rad}(3)&=&3&&3\\\mathrm{rad}(4)&=&2&&2\\\mathrm{rad}(5)&=&5&&5\\\mathrm{rad}(6)&=&6&&2 \cdot 3\\\mathrm{rad}(7)&=&7&&7\\\mathrm{rad}(8)&=&2&&2\\\mathrm{rad}(9)&=&3&&3\\\mathrm{rad}(10)&=&10&&2 \cdot 5\\\mathrm{rad}(11)&=&11&&11\\\mathrm{rad}(12)&=&6&&2 \cdot 3\\\mathrm{rad}(13)&=&13&&13\\\mathrm{rad}(14)&=&14&&2 \cdot 7\\\mathrm{rad}(15)&=&15&&3 \cdot 5\\\mathrm{rad}(16)&=&2&&2\\\mathrm{rad}(17)&=&17&&17\\\mathrm{rad}(18)&=&6&&2 \cdot 3\\\mathrm{rad}(19)&=&19&&19\\\mathrm{rad}(20)&=&10&&2 \cdot 5\end{eqnarray}$$
$\mathrm{rad}(21)\cdots\mathrm{rad}(40)$$\mathrm{rad}(21)\cdots\mathrm{rad}(40)$
%%\begin{eqnarray}\mathrm{rad}(21)|=|21|\hspace{2em}|3 \cdot 7\\\mathrm{rad}(22)|=|22||2 \cdot 11\\\mathrm{rad}(23)|=|23||23\\\mathrm{rad}(24)|=|6||2 \cdot 3\\\mathrm{rad}(25)|=|5||5\\\mathrm{rad}(26)|=|26||2 \cdot 13\\\mathrm{rad}(27)|=|3||3\\\mathrm{rad}(28)|=|14||2 \cdot 7\\\mathrm{rad}(29)|=|29||29\\\mathrm{rad}(30)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(31)|=|31||31\\\mathrm{rad}(32)|=|2||2\\\mathrm{rad}(33)|=|33||3 \cdot 11\\\mathrm{rad}(34)|=|34||2 \cdot 17\\\mathrm{rad}(35)|=|35||5 \cdot 7\\\mathrm{rad}(36)|=|6||2 \cdot 3\\\mathrm{rad}(37)|=|37||37\\\mathrm{rad}(38)|=|38||2 \cdot 19\\\mathrm{rad}(39)|=|39||3 \cdot 13\\\mathrm{rad}(40)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(41)\cdots\mathrm{rad}(60)$$\mathrm{rad}(41)\cdots\mathrm{rad}(60)$
%%\begin{eqnarray}\mathrm{rad}(41)|=|41|\hspace{2em}|41\\\mathrm{rad}(42)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(43)|=|43||43\\\mathrm{rad}(44)|=|22||2 \cdot 11\\\mathrm{rad}(45)|=|15||3 \cdot 5\\\mathrm{rad}(46)|=|46||2 \cdot 23\\\mathrm{rad}(47)|=|47||47\\\mathrm{rad}(48)|=|6||2 \cdot 3\\\mathrm{rad}(49)|=|7||7\\\mathrm{rad}(50)|=|10||2 \cdot 5\\\mathrm{rad}(51)|=|51||3 \cdot 17\\\mathrm{rad}(52)|=|26||2 \cdot 13\\\mathrm{rad}(53)|=|53||53\\\mathrm{rad}(54)|=|6||2 \cdot 3\\\mathrm{rad}(55)|=|55||5 \cdot 11\\\mathrm{rad}(56)|=|14||2 \cdot 7\\\mathrm{rad}(57)|=|57||3 \cdot 19\\\mathrm{rad}(58)|=|58||2 \cdot 29\\\mathrm{rad}(59)|=|59||59\\\mathrm{rad}(60)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(61)\cdots\mathrm{rad}(80)$$\mathrm{rad}(61)\cdots\mathrm{rad}(80)$
%%\begin{eqnarray}\mathrm{rad}(61)|=|61|\hspace{2em}|61\\\mathrm{rad}(62)|=|62||2 \cdot 31\\\mathrm{rad}(63)|=|21||3 \cdot 7\\\mathrm{rad}(64)|=|2||2\\\mathrm{rad}(65)|=|65||5 \cdot 13\\\mathrm{rad}(66)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(67)|=|67||67\\\mathrm{rad}(68)|=|34||2 \cdot 17\\\mathrm{rad}(69)|=|69||3 \cdot 23\\\mathrm{rad}(70)|=|70||2 \cdot 5 \cdot 7\\\mathrm{rad}(71)|=|71||71\\\mathrm{rad}(72)|=|6||2 \cdot 3\\\mathrm{rad}(73)|=|73||73\\\mathrm{rad}(74)|=|74||2 \cdot 37\\\mathrm{rad}(75)|=|15||3 \cdot 5\\\mathrm{rad}(76)|=|38||2 \cdot 19\\\mathrm{rad}(77)|=|77||7 \cdot 11\\\mathrm{rad}(78)|=|78||2 \cdot 3 \cdot 13\\\mathrm{rad}(79)|=|79||79\\\mathrm{rad}(80)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(81)\cdots\mathrm{rad}(100)$$\mathrm{rad}(81)\cdots\mathrm{rad}(100)$
%%\begin{eqnarray}\mathrm{rad}(81)|=|3|\hspace{2em}|3\\\mathrm{rad}(82)|=|82||2 \cdot 41\\\mathrm{rad}(83)|=|83||83\\\mathrm{rad}(84)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(85)|=|85||5 \cdot 17\\\mathrm{rad}(86)|=|86||2 \cdot 43\\\mathrm{rad}(87)|=|87||3 \cdot 29\\\mathrm{rad}(88)|=|22||2 \cdot 11\\\mathrm{rad}(89)|=|89||89\\\mathrm{rad}(90)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(91)|=|91||7 \cdot 13\\\mathrm{rad}(92)|=|46||2 \cdot 23\\\mathrm{rad}(93)|=|93||3 \cdot 31\\\mathrm{rad}(94)|=|94||2 \cdot 47\\\mathrm{rad}(95)|=|95||5 \cdot 19\\\mathrm{rad}(96)|=|6||2 \cdot 3\\\mathrm{rad}(97)|=|97||97\\\mathrm{rad}(98)|=|14||2 \cdot 7\\\mathrm{rad}(99)|=|33||3 \cdot 11\\\mathrm{rad}(100)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(101)\cdots\mathrm{rad}(120)$$\mathrm{rad}(101)\cdots\mathrm{rad}(120)$
%%\begin{eqnarray}\mathrm{rad}(101)|=|101|\hspace{2em}|101\\\mathrm{rad}(102)|=|102||2 \cdot 3 \cdot 17\\\mathrm{rad}(103)|=|103||103\\\mathrm{rad}(104)|=|26||2 \cdot 13\\\mathrm{rad}(105)|=|105||3 \cdot 5 \cdot 7\\\mathrm{rad}(106)|=|106||2 \cdot 53\\\mathrm{rad}(107)|=|107||107\\\mathrm{rad}(108)|=|6||2 \cdot 3\\\mathrm{rad}(109)|=|109||109\\\mathrm{rad}(110)|=|110||2 \cdot 5 \cdot 11\\\mathrm{rad}(111)|=|111||3 \cdot 37\\\mathrm{rad}(112)|=|14||2 \cdot 7\\\mathrm{rad}(113)|=|113||113\\\mathrm{rad}(114)|=|114||2 \cdot 3 \cdot 19\\\mathrm{rad}(115)|=|115||5 \cdot 23\\\mathrm{rad}(116)|=|58||2 \cdot 29\\\mathrm{rad}(117)|=|39||3 \cdot 13\\\mathrm{rad}(118)|=|118||2 \cdot 59\\\mathrm{rad}(119)|=|119||7 \cdot 17\\\mathrm{rad}(120)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(121)\cdots\mathrm{rad}(140)$$\mathrm{rad}(121)\cdots\mathrm{rad}(140)$
%%\begin{eqnarray}\mathrm{rad}(121)|=|11|\hspace{2em}|11\\\mathrm{rad}(122)|=|122||2 \cdot 61\\\mathrm{rad}(123)|=|123||3 \cdot 41\\\mathrm{rad}(124)|=|62||2 \cdot 31\\\mathrm{rad}(125)|=|5||5\\\mathrm{rad}(126)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(127)|=|127||127\\\mathrm{rad}(128)|=|2||2\\\mathrm{rad}(129)|=|129||3 \cdot 43\\\mathrm{rad}(130)|=|130||2 \cdot 5 \cdot 13\\\mathrm{rad}(131)|=|131||131\\\mathrm{rad}(132)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(133)|=|133||7 \cdot 19\\\mathrm{rad}(134)|=|134||2 \cdot 67\\\mathrm{rad}(135)|=|15||3 \cdot 5\\\mathrm{rad}(136)|=|34||2 \cdot 17\\\mathrm{rad}(137)|=|137||137\\\mathrm{rad}(138)|=|138||2 \cdot 3 \cdot 23\\\mathrm{rad}(139)|=|139||139\\\mathrm{rad}(140)|=|70||2 \cdot 5 \cdot 7\end{eqnarray}%%
$\mathrm{rad}(141)\cdots\mathrm{rad}(160)$$\mathrm{rad}(141)\cdots\mathrm{rad}(160)$
%%\begin{eqnarray}\mathrm{rad}(141)|=|141|\hspace{2em}|3 \cdot 47\\\mathrm{rad}(142)|=|142||2 \cdot 71\\\mathrm{rad}(143)|=|143||11 \cdot 13\\\mathrm{rad}(144)|=|6||2 \cdot 3\\\mathrm{rad}(145)|=|145||5 \cdot 29\\\mathrm{rad}(146)|=|146||2 \cdot 73\\\mathrm{rad}(147)|=|21||3 \cdot 7\\\mathrm{rad}(148)|=|74||2 \cdot 37\\\mathrm{rad}(149)|=|149||149\\\mathrm{rad}(150)|=|30||2 \cdot 3 \cdot 5\\\mathrm{rad}(151)|=|151||151\\\mathrm{rad}(152)|=|38||2 \cdot 19\\\mathrm{rad}(153)|=|51||3 \cdot 17\\\mathrm{rad}(154)|=|154||2 \cdot 7 \cdot 11\\\mathrm{rad}(155)|=|155||5 \cdot 31\\\mathrm{rad}(156)|=|78||2 \cdot 3 \cdot 13\\\mathrm{rad}(157)|=|157||157\\\mathrm{rad}(158)|=|158||2 \cdot 79\\\mathrm{rad}(159)|=|159||3 \cdot 53\\\mathrm{rad}(160)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(161)\cdots\mathrm{rad}(180)$$\mathrm{rad}(161)\cdots\mathrm{rad}(180)$
%%\begin{eqnarray}\mathrm{rad}(161)|=|161|\hspace{2em}|7 \cdot 23\\\mathrm{rad}(162)|=|6||2 \cdot 3\\\mathrm{rad}(163)|=|163||163\\\mathrm{rad}(164)|=|82||2 \cdot 41\\\mathrm{rad}(165)|=|165||3 \cdot 5 \cdot 11\\\mathrm{rad}(166)|=|166||2 \cdot 83\\\mathrm{rad}(167)|=|167||167\\\mathrm{rad}(168)|=|42||2 \cdot 3 \cdot 7\\\mathrm{rad}(169)|=|13||13\\\mathrm{rad}(170)|=|170||2 \cdot 5 \cdot 17\\\mathrm{rad}(171)|=|57||3 \cdot 19\\\mathrm{rad}(172)|=|86||2 \cdot 43\\\mathrm{rad}(173)|=|173||173\\\mathrm{rad}(174)|=|174||2 \cdot 3 \cdot 29\\\mathrm{rad}(175)|=|35||5 \cdot 7\\\mathrm{rad}(176)|=|22||2 \cdot 11\\\mathrm{rad}(177)|=|177||3 \cdot 59\\\mathrm{rad}(178)|=|178||2 \cdot 89\\\mathrm{rad}(179)|=|179||179\\\mathrm{rad}(180)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{rad}(181)\cdots\mathrm{rad}(200)$$\mathrm{rad}(181)\cdots\mathrm{rad}(200)$
%%\begin{eqnarray}\mathrm{rad}(181)|=|181|\hspace{2em}|181\\\mathrm{rad}(182)|=|182||2 \cdot 7 \cdot 13\\\mathrm{rad}(183)|=|183||3 \cdot 61\\\mathrm{rad}(184)|=|46||2 \cdot 23\\\mathrm{rad}(185)|=|185||5 \cdot 37\\\mathrm{rad}(186)|=|186||2 \cdot 3 \cdot 31\\\mathrm{rad}(187)|=|187||11 \cdot 17\\\mathrm{rad}(188)|=|94||2 \cdot 47\\\mathrm{rad}(189)|=|21||3 \cdot 7\\\mathrm{rad}(190)|=|190||2 \cdot 5 \cdot 19\\\mathrm{rad}(191)|=|191||191\\\mathrm{rad}(192)|=|6||2 \cdot 3\\\mathrm{rad}(193)|=|193||193\\\mathrm{rad}(194)|=|194||2 \cdot 97\\\mathrm{rad}(195)|=|195||3 \cdot 5 \cdot 13\\\mathrm{rad}(196)|=|14||2 \cdot 7\\\mathrm{rad}(197)|=|197||197\\\mathrm{rad}(198)|=|66||2 \cdot 3 \cdot 11\\\mathrm{rad}(199)|=|199||199\\\mathrm{rad}(200)|=|10||2 \cdot 5\end{eqnarray}%%

4.4. Links related to radical function ラジカル関数の関連リンク

5. Squarefree part 無平方核

5.1. Definition of squarefree part 無平方核の定義

Squarefree part $\mathrm{core}(n)$ is the quotient of $n$ divided by the largest square factor. 無平方核 $\mathrm{core}(n)$ は $n$ を最大の平方因子で割った商です。

5.2. Calculation of squarefree part 無平方核の計算

$$\begin{eqnarray} n & = & \prod{p_{i}^{e_{i}}} \\ \mathrm{core}(n) & = & \prod{p_{i}^{e_{i}\mathrm{mod}2}} \end{eqnarray}$$

5.3. List of squarefree part 無平方核の一覧

$\mathrm{core}(1)\cdots\mathrm{core}(20)$$\mathrm{core}(1)\cdots\mathrm{core}(20)$
$$\begin{eqnarray}\mathrm{core}(1)&=&1&\hspace{2em}&\\\mathrm{core}(2)&=&2&&2\\\mathrm{core}(3)&=&3&&3\\\mathrm{core}(4)&=&1&&\\\mathrm{core}(5)&=&5&&5\\\mathrm{core}(6)&=&6&&2 \cdot 3\\\mathrm{core}(7)&=&7&&7\\\mathrm{core}(8)&=&2&&2\\\mathrm{core}(9)&=&1&&\\\mathrm{core}(10)&=&10&&2 \cdot 5\\\mathrm{core}(11)&=&11&&11\\\mathrm{core}(12)&=&3&&3\\\mathrm{core}(13)&=&13&&13\\\mathrm{core}(14)&=&14&&2 \cdot 7\\\mathrm{core}(15)&=&15&&3 \cdot 5\\\mathrm{core}(16)&=&1&&\\\mathrm{core}(17)&=&17&&17\\\mathrm{core}(18)&=&2&&2\\\mathrm{core}(19)&=&19&&19\\\mathrm{core}(20)&=&5&&5\end{eqnarray}$$
$\mathrm{core}(21)\cdots\mathrm{core}(40)$$\mathrm{core}(21)\cdots\mathrm{core}(40)$
%%\begin{eqnarray}\mathrm{core}(21)|=|21|\hspace{2em}|3 \cdot 7\\\mathrm{core}(22)|=|22||2 \cdot 11\\\mathrm{core}(23)|=|23||23\\\mathrm{core}(24)|=|6||2 \cdot 3\\\mathrm{core}(25)|=|1||\\\mathrm{core}(26)|=|26||2 \cdot 13\\\mathrm{core}(27)|=|3||3\\\mathrm{core}(28)|=|7||7\\\mathrm{core}(29)|=|29||29\\\mathrm{core}(30)|=|30||2 \cdot 3 \cdot 5\\\mathrm{core}(31)|=|31||31\\\mathrm{core}(32)|=|2||2\\\mathrm{core}(33)|=|33||3 \cdot 11\\\mathrm{core}(34)|=|34||2 \cdot 17\\\mathrm{core}(35)|=|35||5 \cdot 7\\\mathrm{core}(36)|=|1||\\\mathrm{core}(37)|=|37||37\\\mathrm{core}(38)|=|38||2 \cdot 19\\\mathrm{core}(39)|=|39||3 \cdot 13\\\mathrm{core}(40)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{core}(41)\cdots\mathrm{core}(60)$$\mathrm{core}(41)\cdots\mathrm{core}(60)$
%%\begin{eqnarray}\mathrm{core}(41)|=|41|\hspace{2em}|41\\\mathrm{core}(42)|=|42||2 \cdot 3 \cdot 7\\\mathrm{core}(43)|=|43||43\\\mathrm{core}(44)|=|11||11\\\mathrm{core}(45)|=|5||5\\\mathrm{core}(46)|=|46||2 \cdot 23\\\mathrm{core}(47)|=|47||47\\\mathrm{core}(48)|=|3||3\\\mathrm{core}(49)|=|1||\\\mathrm{core}(50)|=|2||2\\\mathrm{core}(51)|=|51||3 \cdot 17\\\mathrm{core}(52)|=|13||13\\\mathrm{core}(53)|=|53||53\\\mathrm{core}(54)|=|6||2 \cdot 3\\\mathrm{core}(55)|=|55||5 \cdot 11\\\mathrm{core}(56)|=|14||2 \cdot 7\\\mathrm{core}(57)|=|57||3 \cdot 19\\\mathrm{core}(58)|=|58||2 \cdot 29\\\mathrm{core}(59)|=|59||59\\\mathrm{core}(60)|=|15||3 \cdot 5\end{eqnarray}%%
$\mathrm{core}(61)\cdots\mathrm{core}(80)$$\mathrm{core}(61)\cdots\mathrm{core}(80)$
%%\begin{eqnarray}\mathrm{core}(61)|=|61|\hspace{2em}|61\\\mathrm{core}(62)|=|62||2 \cdot 31\\\mathrm{core}(63)|=|7||7\\\mathrm{core}(64)|=|1||\\\mathrm{core}(65)|=|65||5 \cdot 13\\\mathrm{core}(66)|=|66||2 \cdot 3 \cdot 11\\\mathrm{core}(67)|=|67||67\\\mathrm{core}(68)|=|17||17\\\mathrm{core}(69)|=|69||3 \cdot 23\\\mathrm{core}(70)|=|70||2 \cdot 5 \cdot 7\\\mathrm{core}(71)|=|71||71\\\mathrm{core}(72)|=|2||2\\\mathrm{core}(73)|=|73||73\\\mathrm{core}(74)|=|74||2 \cdot 37\\\mathrm{core}(75)|=|3||3\\\mathrm{core}(76)|=|19||19\\\mathrm{core}(77)|=|77||7 \cdot 11\\\mathrm{core}(78)|=|78||2 \cdot 3 \cdot 13\\\mathrm{core}(79)|=|79||79\\\mathrm{core}(80)|=|5||5\end{eqnarray}%%
$\mathrm{core}(81)\cdots\mathrm{core}(100)$$\mathrm{core}(81)\cdots\mathrm{core}(100)$
%%\begin{eqnarray}\mathrm{core}(81)|=|1|\hspace{2em}|\\\mathrm{core}(82)|=|82||2 \cdot 41\\\mathrm{core}(83)|=|83||83\\\mathrm{core}(84)|=|21||3 \cdot 7\\\mathrm{core}(85)|=|85||5 \cdot 17\\\mathrm{core}(86)|=|86||2 \cdot 43\\\mathrm{core}(87)|=|87||3 \cdot 29\\\mathrm{core}(88)|=|22||2 \cdot 11\\\mathrm{core}(89)|=|89||89\\\mathrm{core}(90)|=|10||2 \cdot 5\\\mathrm{core}(91)|=|91||7 \cdot 13\\\mathrm{core}(92)|=|23||23\\\mathrm{core}(93)|=|93||3 \cdot 31\\\mathrm{core}(94)|=|94||2 \cdot 47\\\mathrm{core}(95)|=|95||5 \cdot 19\\\mathrm{core}(96)|=|6||2 \cdot 3\\\mathrm{core}(97)|=|97||97\\\mathrm{core}(98)|=|2||2\\\mathrm{core}(99)|=|11||11\\\mathrm{core}(100)|=|1||\end{eqnarray}%%
$\mathrm{core}(101)\cdots\mathrm{core}(120)$$\mathrm{core}(101)\cdots\mathrm{core}(120)$
%%\begin{eqnarray}\mathrm{core}(101)|=|101|\hspace{2em}|101\\\mathrm{core}(102)|=|102||2 \cdot 3 \cdot 17\\\mathrm{core}(103)|=|103||103\\\mathrm{core}(104)|=|26||2 \cdot 13\\\mathrm{core}(105)|=|105||3 \cdot 5 \cdot 7\\\mathrm{core}(106)|=|106||2 \cdot 53\\\mathrm{core}(107)|=|107||107\\\mathrm{core}(108)|=|3||3\\\mathrm{core}(109)|=|109||109\\\mathrm{core}(110)|=|110||2 \cdot 5 \cdot 11\\\mathrm{core}(111)|=|111||3 \cdot 37\\\mathrm{core}(112)|=|7||7\\\mathrm{core}(113)|=|113||113\\\mathrm{core}(114)|=|114||2 \cdot 3 \cdot 19\\\mathrm{core}(115)|=|115||5 \cdot 23\\\mathrm{core}(116)|=|29||29\\\mathrm{core}(117)|=|13||13\\\mathrm{core}(118)|=|118||2 \cdot 59\\\mathrm{core}(119)|=|119||7 \cdot 17\\\mathrm{core}(120)|=|30||2 \cdot 3 \cdot 5\end{eqnarray}%%
$\mathrm{core}(121)\cdots\mathrm{core}(140)$$\mathrm{core}(121)\cdots\mathrm{core}(140)$
%%\begin{eqnarray}\mathrm{core}(121)|=|1|\hspace{2em}|\\\mathrm{core}(122)|=|122||2 \cdot 61\\\mathrm{core}(123)|=|123||3 \cdot 41\\\mathrm{core}(124)|=|31||31\\\mathrm{core}(125)|=|5||5\\\mathrm{core}(126)|=|14||2 \cdot 7\\\mathrm{core}(127)|=|127||127\\\mathrm{core}(128)|=|2||2\\\mathrm{core}(129)|=|129||3 \cdot 43\\\mathrm{core}(130)|=|130||2 \cdot 5 \cdot 13\\\mathrm{core}(131)|=|131||131\\\mathrm{core}(132)|=|33||3 \cdot 11\\\mathrm{core}(133)|=|133||7 \cdot 19\\\mathrm{core}(134)|=|134||2 \cdot 67\\\mathrm{core}(135)|=|15||3 \cdot 5\\\mathrm{core}(136)|=|34||2 \cdot 17\\\mathrm{core}(137)|=|137||137\\\mathrm{core}(138)|=|138||2 \cdot 3 \cdot 23\\\mathrm{core}(139)|=|139||139\\\mathrm{core}(140)|=|35||5 \cdot 7\end{eqnarray}%%
$\mathrm{core}(141)\cdots\mathrm{core}(160)$$\mathrm{core}(141)\cdots\mathrm{core}(160)$
%%\begin{eqnarray}\mathrm{core}(141)|=|141|\hspace{2em}|3 \cdot 47\\\mathrm{core}(142)|=|142||2 \cdot 71\\\mathrm{core}(143)|=|143||11 \cdot 13\\\mathrm{core}(144)|=|1||\\\mathrm{core}(145)|=|145||5 \cdot 29\\\mathrm{core}(146)|=|146||2 \cdot 73\\\mathrm{core}(147)|=|3||3\\\mathrm{core}(148)|=|37||37\\\mathrm{core}(149)|=|149||149\\\mathrm{core}(150)|=|6||2 \cdot 3\\\mathrm{core}(151)|=|151||151\\\mathrm{core}(152)|=|38||2 \cdot 19\\\mathrm{core}(153)|=|17||17\\\mathrm{core}(154)|=|154||2 \cdot 7 \cdot 11\\\mathrm{core}(155)|=|155||5 \cdot 31\\\mathrm{core}(156)|=|39||3 \cdot 13\\\mathrm{core}(157)|=|157||157\\\mathrm{core}(158)|=|158||2 \cdot 79\\\mathrm{core}(159)|=|159||3 \cdot 53\\\mathrm{core}(160)|=|10||2 \cdot 5\end{eqnarray}%%
$\mathrm{core}(161)\cdots\mathrm{core}(180)$$\mathrm{core}(161)\cdots\mathrm{core}(180)$
%%\begin{eqnarray}\mathrm{core}(161)|=|161|\hspace{2em}|7 \cdot 23\\\mathrm{core}(162)|=|2||2\\\mathrm{core}(163)|=|163||163\\\mathrm{core}(164)|=|41||41\\\mathrm{core}(165)|=|165||3 \cdot 5 \cdot 11\\\mathrm{core}(166)|=|166||2 \cdot 83\\\mathrm{core}(167)|=|167||167\\\mathrm{core}(168)|=|42||2 \cdot 3 \cdot 7\\\mathrm{core}(169)|=|1||\\\mathrm{core}(170)|=|170||2 \cdot 5 \cdot 17\\\mathrm{core}(171)|=|19||19\\\mathrm{core}(172)|=|43||43\\\mathrm{core}(173)|=|173||173\\\mathrm{core}(174)|=|174||2 \cdot 3 \cdot 29\\\mathrm{core}(175)|=|7||7\\\mathrm{core}(176)|=|11||11\\\mathrm{core}(177)|=|177||3 \cdot 59\\\mathrm{core}(178)|=|178||2 \cdot 89\\\mathrm{core}(179)|=|179||179\\\mathrm{core}(180)|=|5||5\end{eqnarray}%%
$\mathrm{core}(181)\cdots\mathrm{core}(200)$$\mathrm{core}(181)\cdots\mathrm{core}(200)$
%%\begin{eqnarray}\mathrm{core}(181)|=|181|\hspace{2em}|181\\\mathrm{core}(182)|=|182||2 \cdot 7 \cdot 13\\\mathrm{core}(183)|=|183||3 \cdot 61\\\mathrm{core}(184)|=|46||2 \cdot 23\\\mathrm{core}(185)|=|185||5 \cdot 37\\\mathrm{core}(186)|=|186||2 \cdot 3 \cdot 31\\\mathrm{core}(187)|=|187||11 \cdot 17\\\mathrm{core}(188)|=|47||47\\\mathrm{core}(189)|=|21||3 \cdot 7\\\mathrm{core}(190)|=|190||2 \cdot 5 \cdot 19\\\mathrm{core}(191)|=|191||191\\\mathrm{core}(192)|=|3||3\\\mathrm{core}(193)|=|193||193\\\mathrm{core}(194)|=|194||2 \cdot 97\\\mathrm{core}(195)|=|195||3 \cdot 5 \cdot 13\\\mathrm{core}(196)|=|1||\\\mathrm{core}(197)|=|197||197\\\mathrm{core}(198)|=|22||2 \cdot 11\\\mathrm{core}(199)|=|199||199\\\mathrm{core}(200)|=|2||2\end{eqnarray}%%

5.4. Links related to squarefree core 無平方核の関連リンク

6. Cyclotomic polynomial 円分多項式

6.1. Definition of cyclotomic polynomial 円分多項式の定義

$$\begin{eqnarray} {\large\Phi}_{1}(x) & = & x-1 \\ x^{n}-1 & = & \prod_{d\mid n}{{\large\Phi}_{d}(x)} \end{eqnarray}$$

6.2. Calculation of cyclotomic polynomials 円分多項式の計算

$$\begin{eqnarray} {\large\Phi}_{n}(x) & = & \prod_{d\mid n}{(x^{d}-1)^{\mu(n/d)}}\hspace{1em}\text{or}\hspace{1em} \prod_{d\mid n}{(x^{n/d}-1)^{\mu(d)}} \\ & = & \frac{\prod_{d\mid n;\mu(n/d)=1}{x^{d}-1}}{\prod_{d\mid n;\mu(n/d)=-1}{x^{d}-1}} \\ & = & \frac{\left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}}\right) \left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}-1}\right) \left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}}\right)} {\left(\prod_{d\mid n;\mu(n/d)=1}{x^{d}}\right) \left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}-1}\right) \left(\prod_{d\mid n;\mu(n/d)=-1}{x^{d}}\right)} \\ & = & \frac{x^{\sum_{d\mid n;\mu(n/d)=1}{\,\,\,\,d}}}{x^{\sum_{d\mid n;\mu(n/d)=-1}{\,\,\,\,d}}} \left(\prod_{d\mid n;\mu(n/d)=1}{\frac{x^{d}-1}{x^{d}}}\right) \left(\prod_{d\mid n;\mu(n/d)=-1}{\frac{x^d}{x^d-1}}\right) \\ & = & x^{\phi(n)} \left(\prod_{d\mid n;\mu(n/d)=1}{1-\frac{1}{x^{d}}}\right) \left(\prod_{d\mid n;\mu(n/d)=-1}{1+\frac{1}{x^{d}}+\frac{1}{x^{2d}}+\frac{1}{x^{3d}}+\cdots}\right) \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{2^{j+1\,}(2k+1)}(x) & = & \prod_{d\mid 2k+1}{(x^{2^{j}d}+1)^{\mu((2k+1)/d)}}\hspace{1em}\text{or}\hspace{1em} \prod_{d\mid 2k+1}{(x^{2^{j}(2k+1)/d}+1)^{\mu(d)}} \\ & = & \frac{\prod_{d\mid 2k+1;\mu((2k+1)/d)=1}{x^{2^{j}d}+1}}{\prod_{d\mid 2k+1;\mu((2k+1)/d)=-1}{x^{2^{j}d}+1}} \\ & = & \frac{\prod_{d\mid 2k+1;\mu((2k+1)/d)=1}{(x^{2^{j}})^{d}+1}}{\prod_{d\mid 2k+1;\mu((2k+1)/d)=-1}{(x^{2^{j}})^{d}+1}} \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{n}(x) & = & {\large\Phi}_{\mathrm{rad}(n)}(x^{n/\mathrm{rad}(n)}) \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{n}(x^{s}) & = & \prod_{d\mid r}{{\large\Phi}_{n s/d}(x)}\hspace{2em} \text{($1\lt x$, $r$ is the greatest divisor of $s$ that satisfies $\mathrm{gcd}(n,r)=1$)} \end{eqnarray}$$

6.3. List of cyclotomic polynomials 円分多項式の一覧

${\large\Phi}_{1}(x)\cdots{\large\Phi}_{20}(x)$${\large\Phi}_{1}(x)\cdots{\large\Phi}_{20}(x)$
$$\begin{eqnarray}{\large\Phi}_{1}(x)&=&x-1\\{\large\Phi}_{2}(x)&=&x+1\\{\large\Phi}_{3}(x)&=&\frac{x^3-1}{x-1}\\&=&x^2+x+1\\{\large\Phi}_{4}(x)&=&x^2+1\\{\large\Phi}_{5}(x)&=&\frac{x^5-1}{x-1}\\&=&x^4+x^3+x^2+x+1\\{\large\Phi}_{6}(x)&=&\frac{x^3+1}{x+1}\\&=&x^2-x+1\\{\large\Phi}_{7}(x)&=&\frac{x^7-1}{x-1}\\&=&x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{8}(x)&=&x^4+1\\{\large\Phi}_{9}(x)&=&\frac{x^9-1}{x^3-1}\\&=&x^6+x^3+1\\{\large\Phi}_{10}(x)&=&\frac{x^5+1}{x+1}\\&=&x^4-x^3+x^2-x+1\\{\large\Phi}_{11}(x)&=&\frac{x^{11}-1}{x-1}\\&=&x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{12}(x)&=&\frac{x^6+1}{x^2+1}\\&=&x^4-x^2+1\\{\large\Phi}_{13}(x)&=&\frac{x^{13}-1}{x-1}\\&=&x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\&&+x^2+x+1\\{\large\Phi}_{14}(x)&=&\frac{x^7+1}{x+1}\\&=&x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{15}(x)&=&\frac{(x-1)(x^{15}-1)}{(x^3-1)(x^5-1)}\\&=&x^8-x^7+x^5-x^4+x^3-x+1\\{\large\Phi}_{16}(x)&=&x^8+1\\{\large\Phi}_{17}(x)&=&\frac{x^{17}-1}{x-1}\\&=&x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\&&+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{18}(x)&=&\frac{x^9+1}{x^3+1}\\&=&x^6-x^3+1\\{\large\Phi}_{19}(x)&=&\frac{x^{19}-1}{x-1}\\&=&x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\&&+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{20}(x)&=&\frac{x^{10}+1}{x^2+1}\\&=&x^8-x^6+x^4-x^2+1\end{eqnarray}$$
${\large\Phi}_{21}(x)\cdots{\large\Phi}_{40}(x)$${\large\Phi}_{21}(x)\cdots{\large\Phi}_{40}(x)$
%%\begin{eqnarray}{\large\Phi}_{21}(x)|=|\frac{(x-1)(x^{21}-1)}{(x^3-1)(x^7-1)}\\|=|x^{12}-x^{11}+x^9-x^8+x^6-x^4+x^3-x+1\\{\large\Phi}_{22}(x)|=|\frac{x^{11}+1}{x+1}\\|=|x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{23}(x)|=|\frac{x^{23}-1}{x-1}\\|=|x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{24}(x)|=|\frac{x^{12}+1}{x^4+1}\\|=|x^8-x^4+1\\{\large\Phi}_{25}(x)|=|\frac{x^{25}-1}{x^5-1}\\|=|x^{20}+x^{15}+x^{10}+x^5+1\\{\large\Phi}_{26}(x)|=|\frac{x^{13}+1}{x+1}\\|=|x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{27}(x)|=|\frac{x^{27}-1}{x^9-1}\\|=|x^{18}+x^9+1\\{\large\Phi}_{28}(x)|=|\frac{x^{14}+1}{x^2+1}\\|=|x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{29}(x)|=|\frac{x^{29}-1}{x-1}\\|=|x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{30}(x)|=|\frac{(x+1)(x^{15}+1)}{(x^3+1)(x^5+1)}\\|=|x^8+x^7-x^5-x^4-x^3+x+1\\{\large\Phi}_{31}(x)|=|\frac{x^{31}-1}{x-1}\\|=|x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{32}(x)|=|x^{16}+1\\{\large\Phi}_{33}(x)|=|\frac{(x-1)(x^{33}-1)}{(x^3-1)(x^{11}-1)}\\|=|x^{20}-x^{19}+x^{17}-x^{16}+x^{14}-x^{13}+x^{11}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{34}(x)|=|\frac{x^{17}+1}{x+1}\\|=|x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{35}(x)|=|\frac{(x-1)(x^{35}-1)}{(x^5-1)(x^7-1)}\\|=|x^{24}-x^{23}+x^{19}-x^{18}+x^{17}-x^{16}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^8+x^7-x^6+x^5-x+1\\{\large\Phi}_{36}(x)|=|\frac{x^{18}+1}{x^6+1}\\|=|x^{12}-x^6+1\\{\large\Phi}_{37}(x)|=|\frac{x^{37}-1}{x-1}\\|=|x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{38}(x)|=|\frac{x^{19}+1}{x+1}\\|=|x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{39}(x)|=|\frac{(x-1)(x^{39}-1)}{(x^3-1)(x^{13}-1)}\\|=|x^{24}-x^{23}+x^{21}-x^{20}+x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{10}\\||+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{40}(x)|=|\frac{x^{20}+1}{x^4+1}\\|=|x^{16}-x^{12}+x^8-x^4+1\end{eqnarray}%%
${\large\Phi}_{41}(x)\cdots{\large\Phi}_{60}(x)$${\large\Phi}_{41}(x)\cdots{\large\Phi}_{60}(x)$
%%\begin{eqnarray}{\large\Phi}_{41}(x)|=|\frac{x^{41}-1}{x-1}\\|=|x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{42}(x)|=|\frac{(x+1)(x^{21}+1)}{(x^3+1)(x^7+1)}\\|=|x^{12}+x^{11}-x^9-x^8+x^6-x^4-x^3+x+1\\{\large\Phi}_{43}(x)|=|\frac{x^{43}-1}{x-1}\\|=|x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{44}(x)|=|\frac{x^{22}+1}{x^2+1}\\|=|x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{45}(x)|=|\frac{(x^3-1)(x^{45}-1)}{(x^9-1)(x^{15}-1)}\\|=|x^{24}-x^{21}+x^{15}-x^{12}+x^9-x^3+1\\{\large\Phi}_{46}(x)|=|\frac{x^{23}+1}{x+1}\\|=|x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{47}(x)|=|\frac{x^{47}-1}{x-1}\\|=|x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{48}(x)|=|\frac{x^{24}+1}{x^8+1}\\|=|x^{16}-x^8+1\\{\large\Phi}_{49}(x)|=|\frac{x^{49}-1}{x^7-1}\\|=|x^{42}+x^{35}+x^{28}+x^{21}+x^{14}+x^7+1\\{\large\Phi}_{50}(x)|=|\frac{x^{25}+1}{x^5+1}\\|=|x^{20}-x^{15}+x^{10}-x^5+1\\{\large\Phi}_{51}(x)|=|\frac{(x-1)(x^{51}-1)}{(x^3-1)(x^{17}-1)}\\|=|x^{32}-x^{31}+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{20}-x^{19}\\||+x^{17}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4\\||+x^3-x+1\\{\large\Phi}_{52}(x)|=|\frac{x^{26}+1}{x^2+1}\\|=|x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{53}(x)|=|\frac{x^{53}-1}{x-1}\\|=|x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{54}(x)|=|\frac{x^{27}+1}{x^9+1}\\|=|x^{18}-x^9+1\\{\large\Phi}_{55}(x)|=|\frac{(x-1)(x^{55}-1)}{(x^5-1)(x^{11}-1)}\\|=|x^{40}-x^{39}+x^{35}-x^{34}+x^{30}-x^{28}+x^{25}-x^{23}+x^{20}-x^{17}\\||+x^{15}-x^{12}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{56}(x)|=|\frac{x^{28}+1}{x^4+1}\\|=|x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{57}(x)|=|\frac{(x-1)(x^{57}-1)}{(x^3-1)(x^{19}-1)}\\|=|x^{36}-x^{35}+x^{33}-x^{32}+x^{30}-x^{29}+x^{27}-x^{26}+x^{24}-x^{23}\\||+x^{21}-x^{20}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{58}(x)|=|\frac{x^{29}+1}{x+1}\\|=|x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{59}(x)|=|\frac{x^{59}-1}{x-1}\\|=|x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{60}(x)|=|\frac{(x^2+1)(x^{30}+1)}{(x^6+1)(x^{10}+1)}\\|=|x^{16}+x^{14}-x^{10}-x^8-x^6+x^2+1\end{eqnarray}%%
${\large\Phi}_{61}(x)\cdots{\large\Phi}_{80}(x)$${\large\Phi}_{61}(x)\cdots{\large\Phi}_{80}(x)$
%%\begin{eqnarray}{\large\Phi}_{61}(x)|=|\frac{x^{61}-1}{x-1}\\|=|x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{62}(x)|=|\frac{x^{31}+1}{x+1}\\|=|x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{63}(x)|=|\frac{(x^3-1)(x^{63}-1)}{(x^9-1)(x^{21}-1)}\\|=|x^{36}-x^{33}+x^{27}-x^{24}+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{64}(x)|=|x^{32}+1\\{\large\Phi}_{65}(x)|=|\frac{(x-1)(x^{65}-1)}{(x^5-1)(x^{13}-1)}\\|=|x^{48}-x^{47}+x^{43}-x^{42}+x^{38}-x^{37}+x^{35}-x^{34}+x^{33}-x^{32}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{25}-x^{24}+x^{23}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{16}+x^{15}-x^{14}+x^{13}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{66}(x)|=|\frac{(x+1)(x^{33}+1)}{(x^3+1)(x^{11}+1)}\\|=|x^{20}+x^{19}-x^{17}-x^{16}+x^{14}+x^{13}-x^{11}-x^{10}-x^9+x^7\\||+x^6-x^4-x^3+x+1\\{\large\Phi}_{67}(x)|=|\frac{x^{67}-1}{x-1}\\|=|x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{68}(x)|=|\frac{x^{34}+1}{x^2+1}\\|=|x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{69}(x)|=|\frac{(x-1)(x^{69}-1)}{(x^3-1)(x^{23}-1)}\\|=|x^{44}-x^{43}+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}\\||+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{70}(x)|=|\frac{(x+1)(x^{35}+1)}{(x^5+1)(x^7+1)}\\|=|x^{24}+x^{23}-x^{19}-x^{18}-x^{17}-x^{16}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}-x^8-x^7-x^6-x^5+x+1\\{\large\Phi}_{71}(x)|=|\frac{x^{71}-1}{x-1}\\|=|x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{72}(x)|=|\frac{x^{36}+1}{x^{12}+1}\\|=|x^{24}-x^{12}+1\\{\large\Phi}_{73}(x)|=|\frac{x^{73}-1}{x-1}\\|=|x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{74}(x)|=|\frac{x^{37}+1}{x+1}\\|=|x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{75}(x)|=|\frac{(x^5-1)(x^{75}-1)}{(x^{15}-1)(x^{25}-1)}\\|=|x^{40}-x^{35}+x^{25}-x^{20}+x^{15}-x^5+1\\{\large\Phi}_{76}(x)|=|\frac{x^{38}+1}{x^2+1}\\|=|x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}\\||+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{77}(x)|=|\frac{(x-1)(x^{77}-1)}{(x^7-1)(x^{11}-1)}\\|=|x^{60}-x^{59}+x^{53}-x^{52}+x^{49}-x^{48}+x^{46}-x^{45}+x^{42}-x^{41}\\||+x^{39}-x^{37}+x^{35}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{25}-x^{23}\\||+x^{21}-x^{19}+x^{18}-x^{15}+x^{14}-x^{12}+x^{11}-x^8+x^7-x+1\\{\large\Phi}_{78}(x)|=|\frac{(x+1)(x^{39}+1)}{(x^3+1)(x^{13}+1)}\\|=|x^{24}+x^{23}-x^{21}-x^{20}+x^{18}+x^{17}-x^{15}-x^{14}+x^{12}-x^{10}\\||-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{79}(x)|=|\frac{x^{79}-1}{x-1}\\|=|x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{80}(x)|=|\frac{x^{40}+1}{x^8+1}\\|=|x^{32}-x^{24}+x^{16}-x^8+1\end{eqnarray}%%
${\large\Phi}_{81}(x)\cdots{\large\Phi}_{100}(x)$${\large\Phi}_{81}(x)\cdots{\large\Phi}_{100}(x)$
%%\begin{eqnarray}{\large\Phi}_{81}(x)|=|\frac{x^{81}-1}{x^{27}-1}\\|=|x^{54}+x^{27}+1\\{\large\Phi}_{82}(x)|=|\frac{x^{41}+1}{x+1}\\|=|x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{83}(x)|=|\frac{x^{83}-1}{x-1}\\|=|x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{84}(x)|=|\frac{(x^2+1)(x^{42}+1)}{(x^6+1)(x^{14}+1)}\\|=|x^{24}+x^{22}-x^{18}-x^{16}+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{85}(x)|=|\frac{(x-1)(x^{85}-1)}{(x^5-1)(x^{17}-1)}\\|=|x^{64}-x^{63}+x^{59}-x^{58}+x^{54}-x^{53}+x^{49}-x^{48}+x^{47}-x^{46}\\||+x^{44}-x^{43}+x^{42}-x^{41}+x^{39}-x^{38}+x^{37}-x^{36}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{28}+x^{27}-x^{26}+x^{25}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{18}+x^{17}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{86}(x)|=|\frac{x^{43}+1}{x+1}\\|=|x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{87}(x)|=|\frac{(x-1)(x^{87}-1)}{(x^3-1)(x^{29}-1)}\\|=|x^{56}-x^{55}+x^{53}-x^{52}+x^{50}-x^{49}+x^{47}-x^{46}+x^{44}-x^{43}\\||+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}+x^{29}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{88}(x)|=|\frac{x^{44}+1}{x^4+1}\\|=|x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{89}(x)|=|\frac{x^{89}-1}{x-1}\\|=|x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{90}(x)|=|\frac{(x^3+1)(x^{45}+1)}{(x^9+1)(x^{15}+1)}\\|=|x^{24}+x^{21}-x^{15}-x^{12}-x^9+x^3+1\\{\large\Phi}_{91}(x)|=|\frac{(x-1)(x^{91}-1)}{(x^7-1)(x^{13}-1)}\\|=|x^{72}-x^{71}+x^{65}-x^{64}+x^{59}-x^{57}+x^{52}-x^{50}+x^{46}-x^{43}\\||+x^{39}-x^{36}+x^{33}-x^{29}+x^{26}-x^{22}+x^{20}-x^{15}+x^{13}-x^8\\||+x^7-x+1\\{\large\Phi}_{92}(x)|=|\frac{x^{46}+1}{x^2+1}\\|=|x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}\\||+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{93}(x)|=|\frac{(x-1)(x^{93}-1)}{(x^3-1)(x^{31}-1)}\\|=|x^{60}-x^{59}+x^{57}-x^{56}+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}\\||+x^{45}-x^{44}+x^{42}-x^{41}+x^{39}-x^{38}+x^{36}-x^{35}+x^{33}-x^{32}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{94}(x)|=|\frac{x^{47}+1}{x+1}\\|=|x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{95}(x)|=|\frac{(x-1)(x^{95}-1)}{(x^5-1)(x^{19}-1)}\\|=|x^{72}-x^{71}+x^{67}-x^{66}+x^{62}-x^{61}+x^{57}-x^{56}+x^{53}-x^{51}\\||+x^{48}-x^{46}+x^{43}-x^{41}+x^{38}-x^{36}+x^{34}-x^{31}+x^{29}-x^{26}\\||+x^{24}-x^{21}+x^{19}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{96}(x)|=|\frac{x^{48}+1}{x^{16}+1}\\|=|x^{32}-x^{16}+1\\{\large\Phi}_{97}(x)|=|\frac{x^{97}-1}{x-1}\\|=|x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{98}(x)|=|\frac{x^{49}+1}{x^7+1}\\|=|x^{42}-x^{35}+x^{28}-x^{21}+x^{14}-x^7+1\\{\large\Phi}_{99}(x)|=|\frac{(x^3-1)(x^{99}-1)}{(x^9-1)(x^{33}-1)}\\|=|x^{60}-x^{57}+x^{51}-x^{48}+x^{42}-x^{39}+x^{33}-x^{30}+x^{27}-x^{21}\\||+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{100}(x)|=|\frac{x^{50}+1}{x^{10}+1}\\|=|x^{40}-x^{30}+x^{20}-x^{10}+1\end{eqnarray}%%
${\large\Phi}_{101}(x)\cdots{\large\Phi}_{120}(x)$${\large\Phi}_{101}(x)\cdots{\large\Phi}_{120}(x)$
%%\begin{eqnarray}{\large\Phi}_{101}(x)|=|\frac{x^{101}-1}{x-1}\\|=|x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{102}(x)|=|\frac{(x+1)(x^{51}+1)}{(x^3+1)(x^{17}+1)}\\|=|x^{32}+x^{31}-x^{29}-x^{28}+x^{26}+x^{25}-x^{23}-x^{22}+x^{20}+x^{19}\\||-x^{17}-x^{16}-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4\\||-x^3+x+1\\{\large\Phi}_{103}(x)|=|\frac{x^{103}-1}{x-1}\\|=|x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{104}(x)|=|\frac{x^{52}+1}{x^4+1}\\|=|x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}\\||+x^8-x^4+1\\{\large\Phi}_{105}(x)|=|\frac{(x^3-1)(x^5-1)(x^7-1)(x^{105}-1)}{(x-1)(x^{15}-1)(x^{21}-1)(x^{35}-1)}\\|=|x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2x^{41}-x^{40}-x^{39}+x^{36}+x^{35}\\||+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{24}-x^{22}-x^{20}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^9-x^8-2x^7-x^6-x^5\\||+x^2+x+1\\{\large\Phi}_{106}(x)|=|\frac{x^{53}+1}{x+1}\\|=|x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{107}(x)|=|\frac{x^{107}-1}{x-1}\\|=|x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{108}(x)|=|\frac{x^{54}+1}{x^{18}+1}\\|=|x^{36}-x^{18}+1\\{\large\Phi}_{109}(x)|=|\frac{x^{109}-1}{x-1}\\|=|x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{110}(x)|=|\frac{(x+1)(x^{55}+1)}{(x^5+1)(x^{11}+1)}\\|=|x^{40}+x^{39}-x^{35}-x^{34}+x^{30}-x^{28}-x^{25}+x^{23}+x^{20}+x^{17}\\||-x^{15}-x^{12}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{111}(x)|=|\frac{(x-1)(x^{111}-1)}{(x^3-1)(x^{37}-1)}\\|=|x^{72}-x^{71}+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}+x^{60}-x^{59}\\||+x^{57}-x^{56}+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}+x^{45}-x^{44}\\||+x^{42}-x^{41}+x^{39}-x^{38}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{112}(x)|=|\frac{x^{56}+1}{x^8+1}\\|=|x^{48}-x^{40}+x^{32}-x^{24}+x^{16}-x^8+1\\{\large\Phi}_{113}(x)|=|\frac{x^{113}-1}{x-1}\\|=|x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{114}(x)|=|\frac{(x+1)(x^{57}+1)}{(x^3+1)(x^{19}+1)}\\|=|x^{36}+x^{35}-x^{33}-x^{32}+x^{30}+x^{29}-x^{27}-x^{26}+x^{24}+x^{23}\\||-x^{21}-x^{20}+x^{18}-x^{16}-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7\\||+x^6-x^4-x^3+x+1\\{\large\Phi}_{115}(x)|=|\frac{(x-1)(x^{115}-1)}{(x^5-1)(x^{23}-1)}\\|=|x^{88}-x^{87}+x^{83}-x^{82}+x^{78}-x^{77}+x^{73}-x^{72}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{63}-x^{62}+x^{60}-x^{59}+x^{58}-x^{57}+x^{55}-x^{54}\\||+x^{53}-x^{52}+x^{50}-x^{49}+x^{48}-x^{47}+x^{45}-x^{44}+x^{43}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{36}+x^{35}-x^{34}+x^{33}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{26}+x^{25}-x^{24}+x^{23}-x^{21}+x^{20}-x^{16}+x^{15}-x^{11}\\||+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{116}(x)|=|\frac{x^{58}+1}{x^2+1}\\|=|x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}\\||+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}\\||+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{117}(x)|=|\frac{(x^3-1)(x^{117}-1)}{(x^9-1)(x^{39}-1)}\\|=|x^{72}-x^{69}+x^{63}-x^{60}+x^{54}-x^{51}+x^{45}-x^{42}+x^{36}-x^{30}\\||+x^{27}-x^{21}+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{118}(x)|=|\frac{x^{59}+1}{x+1}\\|=|x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{119}(x)|=|\frac{(x-1)(x^{119}-1)}{(x^7-1)(x^{17}-1)}\\|=|x^{96}-x^{95}+x^{89}-x^{88}+x^{82}-x^{81}+x^{79}-x^{78}+x^{75}-x^{74}\\||+x^{72}-x^{71}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{60}+x^{58}-x^{57}\\||+x^{55}-x^{53}+x^{51}-x^{50}+x^{48}-x^{46}+x^{45}-x^{43}+x^{41}-x^{39}\\||+x^{38}-x^{36}+x^{34}-x^{32}+x^{31}-x^{29}+x^{28}-x^{25}+x^{24}-x^{22}\\||+x^{21}-x^{18}+x^{17}-x^{15}+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{120}(x)|=|\frac{(x^4+1)(x^{60}+1)}{(x^{12}+1)(x^{20}+1)}\\|=|x^{32}+x^{28}-x^{20}-x^{16}-x^{12}+x^4+1\end{eqnarray}%%
${\large\Phi}_{121}(x)\cdots{\large\Phi}_{140}(x)$${\large\Phi}_{121}(x)\cdots{\large\Phi}_{140}(x)$
%%\begin{eqnarray}{\large\Phi}_{121}(x)|=|\frac{x^{121}-1}{x^{11}-1}\\|=|x^{110}+x^{99}+x^{88}+x^{77}+x^{66}+x^{55}+x^{44}+x^{33}+x^{22}+x^{11}+1\\{\large\Phi}_{122}(x)|=|\frac{x^{61}+1}{x+1}\\|=|x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}\\||+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{123}(x)|=|\frac{(x-1)(x^{123}-1)}{(x^3-1)(x^{41}-1)}\\|=|x^{80}-x^{79}+x^{77}-x^{76}+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{62}-x^{61}+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}\\||+x^{50}-x^{49}+x^{47}-x^{46}+x^{44}-x^{43}+x^{41}-x^{40}+x^{39}-x^{37}\\||+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}\\||+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7\\||+x^6-x^4+x^3-x+1\\{\large\Phi}_{124}(x)|=|\frac{x^{62}+1}{x^2+1}\\|=|x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}\\||+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}\\||+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{125}(x)|=|\frac{x^{125}-1}{x^{25}-1}\\|=|x^{100}+x^{75}+x^{50}+x^{25}+1\\{\large\Phi}_{126}(x)|=|\frac{(x^3+1)(x^{63}+1)}{(x^9+1)(x^{21}+1)}\\|=|x^{36}+x^{33}-x^{27}-x^{24}+x^{18}-x^{12}-x^9+x^3+1\\{\large\Phi}_{127}(x)|=|\frac{x^{127}-1}{x-1}\\|=|x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{128}(x)|=|x^{64}+1\\{\large\Phi}_{129}(x)|=|\frac{(x-1)(x^{129}-1)}{(x^3-1)(x^{43}-1)}\\|=|x^{84}-x^{83}+x^{81}-x^{80}+x^{78}-x^{77}+x^{75}-x^{74}+x^{72}-x^{71}\\||+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}+x^{60}-x^{59}+x^{57}-x^{56}\\||+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}+x^{45}-x^{44}+x^{42}-x^{40}\\||+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}\\||+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}\\||+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{130}(x)|=|\frac{(x+1)(x^{65}+1)}{(x^5+1)(x^{13}+1)}\\|=|x^{48}+x^{47}-x^{43}-x^{42}+x^{38}+x^{37}-x^{35}-x^{34}-x^{33}-x^{32}\\||+x^{30}+x^{29}+x^{28}+x^{27}-x^{25}-x^{24}-x^{23}+x^{21}+x^{20}+x^{19}\\||+x^{18}-x^{16}-x^{15}-x^{14}-x^{13}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{131}(x)|=|\frac{x^{131}-1}{x-1}\\|=|x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{132}(x)|=|\frac{(x^2+1)(x^{66}+1)}{(x^6+1)(x^{22}+1)}\\|=|x^{40}+x^{38}-x^{34}-x^{32}+x^{28}+x^{26}-x^{22}-x^{20}-x^{18}+x^{14}\\||+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{133}(x)|=|\frac{(x-1)(x^{133}-1)}{(x^7-1)(x^{19}-1)}\\|=|x^{108}-x^{107}+x^{101}-x^{100}+x^{94}-x^{93}+x^{89}-x^{88}+x^{87}-x^{86}\\||+x^{82}-x^{81}+x^{80}-x^{79}+x^{75}-x^{74}+x^{73}-x^{72}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{63}-x^{62}+x^{61}-x^{60}+x^{59}-x^{58}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{50}+x^{49}-x^{48}+x^{47}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{36}+x^{35}-x^{34}\\||+x^{33}-x^{29}+x^{28}-x^{27}+x^{26}-x^{22}+x^{21}-x^{20}+x^{19}-x^{15}\\||+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{134}(x)|=|\frac{x^{67}+1}{x+1}\\|=|x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}\\||+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{135}(x)|=|\frac{(x^9-1)(x^{135}-1)}{(x^{27}-1)(x^{45}-1)}\\|=|x^{72}-x^{63}+x^{45}-x^{36}+x^{27}-x^9+1\\{\large\Phi}_{136}(x)|=|\frac{x^{68}+1}{x^4+1}\\|=|x^{64}-x^{60}+x^{56}-x^{52}+x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}\\||+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{137}(x)|=|\frac{x^{137}-1}{x-1}\\|=|x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{138}(x)|=|\frac{(x+1)(x^{69}+1)}{(x^3+1)(x^{23}+1)}\\|=|x^{44}+x^{43}-x^{41}-x^{40}+x^{38}+x^{37}-x^{35}-x^{34}+x^{32}+x^{31}\\||-x^{29}-x^{28}+x^{26}+x^{25}-x^{23}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}\\||-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{139}(x)|=|\frac{x^{139}-1}{x-1}\\|=|x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{140}(x)|=|\frac{(x^2+1)(x^{70}+1)}{(x^{10}+1)(x^{14}+1)}\\|=|x^{48}+x^{46}-x^{38}-x^{36}-x^{34}-x^{32}+x^{28}+x^{26}+x^{24}+x^{22}\\||+x^{20}-x^{16}-x^{14}-x^{12}-x^{10}+x^2+1\end{eqnarray}%%
${\large\Phi}_{141}(x)\cdots{\large\Phi}_{160}(x)$${\large\Phi}_{141}(x)\cdots{\large\Phi}_{160}(x)$
%%\begin{eqnarray}{\large\Phi}_{141}(x)|=|\frac{(x-1)(x^{141}-1)}{(x^3-1)(x^{47}-1)}\\|=|x^{92}-x^{91}+x^{89}-x^{88}+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}\\||+x^{77}-x^{76}+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}\\||+x^{62}-x^{61}+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}+x^{50}-x^{49}\\||+x^{47}-x^{46}+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}\\||+x^{33}-x^{31}+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}\\||+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4\\||+x^3-x+1\\{\large\Phi}_{142}(x)|=|\frac{x^{71}+1}{x+1}\\|=|x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}\\||+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}\\||+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}\\||+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}\\||+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}\\||+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{143}(x)|=|\frac{(x-1)(x^{143}-1)}{(x^{11}-1)(x^{13}-1)}\\|=|x^{120}-x^{119}+x^{109}-x^{108}+x^{107}-x^{106}+x^{98}-x^{97}+x^{96}-x^{95}\\||+x^{94}-x^{93}+x^{87}-x^{86}+x^{85}-x^{84}+x^{83}-x^{82}+x^{81}-x^{80}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}\\||+x^{65}-x^{64}+x^{63}-x^{62}+x^{61}-x^{60}+x^{59}-x^{58}+x^{57}-x^{56}\\||+x^{55}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}\\||+x^{44}-x^{40}+x^{39}-x^{38}+x^{37}-x^{36}+x^{35}-x^{34}+x^{33}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{14}+x^{13}-x^{12}+x^{11}-x+1\\{\large\Phi}_{144}(x)|=|\frac{x^{72}+1}{x^{24}+1}\\|=|x^{48}-x^{24}+1\\{\large\Phi}_{145}(x)|=|\frac{(x-1)(x^{145}-1)}{(x^5-1)(x^{29}-1)}\\|=|x^{112}-x^{111}+x^{107}-x^{106}+x^{102}-x^{101}+x^{97}-x^{96}+x^{92}-x^{91}\\||+x^{87}-x^{86}+x^{83}-x^{81}+x^{78}-x^{76}+x^{73}-x^{71}+x^{68}-x^{66}\\||+x^{63}-x^{61}+x^{58}-x^{56}+x^{54}-x^{51}+x^{49}-x^{46}+x^{44}-x^{41}\\||+x^{39}-x^{36}+x^{34}-x^{31}+x^{29}-x^{26}+x^{25}-x^{21}+x^{20}-x^{16}\\||+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{146}(x)|=|\frac{x^{73}+1}{x+1}\\|=|x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}\\||+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{147}(x)|=|\frac{(x^7-1)(x^{147}-1)}{(x^{21}-1)(x^{49}-1)}\\|=|x^{84}-x^{77}+x^{63}-x^{56}+x^{42}-x^{28}+x^{21}-x^7+1\\{\large\Phi}_{148}(x)|=|\frac{x^{74}+1}{x^2+1}\\|=|x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}\\||+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}\\||+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{149}(x)|=|\frac{x^{149}-1}{x-1}\\|=|x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{150}(x)|=|\frac{(x^5+1)(x^{75}+1)}{(x^{15}+1)(x^{25}+1)}\\|=|x^{40}+x^{35}-x^{25}-x^{20}-x^{15}+x^5+1\\{\large\Phi}_{151}(x)|=|\frac{x^{151}-1}{x-1}\\|=|x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{152}(x)|=|\frac{x^{76}+1}{x^4+1}\\|=|x^{72}-x^{68}+x^{64}-x^{60}+x^{56}-x^{52}+x^{48}-x^{44}+x^{40}-x^{36}\\||+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^8-x^4+1\\{\large\Phi}_{153}(x)|=|\frac{(x^3-1)(x^{153}-1)}{(x^9-1)(x^{51}-1)}\\|=|x^{96}-x^{93}+x^{87}-x^{84}+x^{78}-x^{75}+x^{69}-x^{66}+x^{60}-x^{57}\\||+x^{51}-x^{48}+x^{45}-x^{39}+x^{36}-x^{30}+x^{27}-x^{21}+x^{18}-x^{12}\\||+x^9-x^3+1\\{\large\Phi}_{154}(x)|=|\frac{(x+1)(x^{77}+1)}{(x^7+1)(x^{11}+1)}\\|=|x^{60}+x^{59}-x^{53}-x^{52}-x^{49}-x^{48}+x^{46}+x^{45}+x^{42}+x^{41}\\||-x^{39}+x^{37}-x^{35}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}-x^{25}+x^{23}\\||-x^{21}+x^{19}+x^{18}+x^{15}+x^{14}-x^{12}-x^{11}-x^8-x^7+x+1\\{\large\Phi}_{155}(x)|=|\frac{(x-1)(x^{155}-1)}{(x^5-1)(x^{31}-1)}\\|=|x^{120}-x^{119}+x^{115}-x^{114}+x^{110}-x^{109}+x^{105}-x^{104}+x^{100}-x^{99}\\||+x^{95}-x^{94}+x^{90}-x^{88}+x^{85}-x^{83}+x^{80}-x^{78}+x^{75}-x^{73}\\||+x^{70}-x^{68}+x^{65}-x^{63}+x^{60}-x^{57}+x^{55}-x^{52}+x^{50}-x^{47}\\||+x^{45}-x^{42}+x^{40}-x^{37}+x^{35}-x^{32}+x^{30}-x^{26}+x^{25}-x^{21}\\||+x^{20}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{156}(x)|=|\frac{(x^2+1)(x^{78}+1)}{(x^6+1)(x^{26}+1)}\\|=|x^{48}+x^{46}-x^{42}-x^{40}+x^{36}+x^{34}-x^{30}-x^{28}+x^{24}-x^{20}\\||-x^{18}+x^{14}+x^{12}-x^8-x^6+x^2+1\\{\large\Phi}_{157}(x)|=|\frac{x^{157}-1}{x-1}\\|=|x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{158}(x)|=|\frac{x^{79}+1}{x+1}\\|=|x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}\\||+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{159}(x)|=|\frac{(x-1)(x^{159}-1)}{(x^3-1)(x^{53}-1)}\\|=|x^{104}-x^{103}+x^{101}-x^{100}+x^{98}-x^{97}+x^{95}-x^{94}+x^{92}-x^{91}\\||+x^{89}-x^{88}+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}+x^{77}-x^{76}\\||+x^{74}-x^{73}+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{61}\\||+x^{59}-x^{58}+x^{56}-x^{55}+x^{53}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{160}(x)|=|\frac{x^{80}+1}{x^{16}+1}\\|=|x^{64}-x^{48}+x^{32}-x^{16}+1\end{eqnarray}%%
${\large\Phi}_{161}(x)\cdots{\large\Phi}_{180}(x)$${\large\Phi}_{161}(x)\cdots{\large\Phi}_{180}(x)$
%%\begin{eqnarray}{\large\Phi}_{161}(x)|=|\frac{(x-1)(x^{161}-1)}{(x^7-1)(x^{23}-1)}\\|=|x^{132}-x^{131}+x^{125}-x^{124}+x^{118}-x^{117}+x^{111}-x^{110}+x^{109}-x^{108}\\||+x^{104}-x^{103}+x^{102}-x^{101}+x^{97}-x^{96}+x^{95}-x^{94}+x^{90}-x^{89}\\||+x^{88}-x^{87}+x^{86}-x^{85}+x^{83}-x^{82}+x^{81}-x^{80}+x^{79}-x^{78}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{69}-x^{68}+x^{67}-x^{66}\\||+x^{65}-x^{64}+x^{63}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{54}\\||+x^{53}-x^{52}+x^{51}-x^{50}+x^{49}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{38}+x^{37}-x^{36}+x^{35}-x^{31}+x^{30}-x^{29}+x^{28}-x^{24}\\||+x^{23}-x^{22}+x^{21}-x^{15}+x^{14}-x^8+x^7-x+1\\{\large\Phi}_{162}(x)|=|\frac{x^{81}+1}{x^{27}+1}\\|=|x^{54}-x^{27}+1\\{\large\Phi}_{163}(x)|=|\frac{x^{163}-1}{x-1}\\|=|x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{164}(x)|=|\frac{x^{82}+1}{x^2+1}\\|=|x^{80}-x^{78}+x^{76}-x^{74}+x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}\\||+x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}\\||+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}\\||+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{165}(x)|=|\frac{(x^3-1)(x^5-1)(x^{11}-1)(x^{165}-1)}{(x-1)(x^{15}-1)(x^{33}-1)(x^{55}-1)}\\|=|x^{80}+x^{79}+x^{78}-x^{75}-x^{74}-x^{73}-x^{69}-x^{68}-x^{67}+x^{65}\\||+2x^{64}+2x^{63}+x^{62}-x^{60}-x^{59}-x^{58}-x^{54}-x^{53}-x^{52}+x^{50}\\||+2x^{49}+2x^{48}+2x^{47}+x^{46}-x^{44}-x^{43}-x^{42}-x^{41}-x^{40}-x^{39}\\||-x^{38}-x^{37}-x^{36}+x^{34}+2x^{33}+2x^{32}+2x^{31}+x^{30}-x^{28}-x^{27}\\||-x^{26}-x^{22}-x^{21}-x^{20}+x^{18}+2x^{17}+2x^{16}+x^{15}-x^{13}-x^{12}\\||-x^{11}-x^7-x^6-x^5+x^2+x+1\\{\large\Phi}_{166}(x)|=|\frac{x^{83}+1}{x+1}\\|=|x^{82}-x^{81}+x^{80}-x^{79}+x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}\\||+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}\\||+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}\\||+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}\\||+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}\\||+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}\\||+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7+x^6-x^5+x^4-x^3\\||+x^2-x+1\\{\large\Phi}_{167}(x)|=|\frac{x^{167}-1}{x-1}\\|=|x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}\\||+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{168}(x)|=|\frac{(x^4+1)(x^{84}+1)}{(x^{12}+1)(x^{28}+1)}\\|=|x^{48}+x^{44}-x^{36}-x^{32}+x^{24}-x^{16}-x^{12}+x^4+1\\{\large\Phi}_{169}(x)|=|\frac{x^{169}-1}{x^{13}-1}\\|=|x^{156}+x^{143}+x^{130}+x^{117}+x^{104}+x^{91}+x^{78}+x^{65}+x^{52}+x^{39}\\||+x^{26}+x^{13}+1\\{\large\Phi}_{170}(x)|=|\frac{(x+1)(x^{85}+1)}{(x^5+1)(x^{17}+1)}\\|=|x^{64}+x^{63}-x^{59}-x^{58}+x^{54}+x^{53}-x^{49}-x^{48}-x^{47}-x^{46}\\||+x^{44}+x^{43}+x^{42}+x^{41}-x^{39}-x^{38}-x^{37}-x^{36}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}-x^{28}-x^{27}-x^{26}-x^{25}+x^{23}+x^{22}+x^{21}\\||+x^{20}-x^{18}-x^{17}-x^{16}-x^{15}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{171}(x)|=|\frac{(x^3-1)(x^{171}-1)}{(x^9-1)(x^{57}-1)}\\|=|x^{108}-x^{105}+x^{99}-x^{96}+x^{90}-x^{87}+x^{81}-x^{78}+x^{72}-x^{69}\\||+x^{63}-x^{60}+x^{54}-x^{48}+x^{45}-x^{39}+x^{36}-x^{30}+x^{27}-x^{21}\\||+x^{18}-x^{12}+x^9-x^3+1\\{\large\Phi}_{172}(x)|=|\frac{x^{86}+1}{x^2+1}\\|=|x^{84}-x^{82}+x^{80}-x^{78}+x^{76}-x^{74}+x^{72}-x^{70}+x^{68}-x^{66}\\||+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}+x^{52}-x^{50}+x^{48}-x^{46}\\||+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}\\||+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^8-x^6\\||+x^4-x^2+1\\{\large\Phi}_{173}(x)|=|\frac{x^{173}-1}{x-1}\\|=|x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}\\||+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{174}(x)|=|\frac{(x+1)(x^{87}+1)}{(x^3+1)(x^{29}+1)}\\|=|x^{56}+x^{55}-x^{53}-x^{52}+x^{50}+x^{49}-x^{47}-x^{46}+x^{44}+x^{43}\\||-x^{41}-x^{40}+x^{38}+x^{37}-x^{35}-x^{34}+x^{32}+x^{31}-x^{29}-x^{28}\\||-x^{27}+x^{25}+x^{24}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}-x^{15}+x^{13}\\||+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{175}(x)|=|\frac{(x^5-1)(x^{175}-1)}{(x^{25}-1)(x^{35}-1)}\\|=|x^{120}-x^{115}+x^{95}-x^{90}+x^{85}-x^{80}+x^{70}-x^{65}+x^{60}-x^{55}\\||+x^{50}-x^{40}+x^{35}-x^{30}+x^{25}-x^5+1\\{\large\Phi}_{176}(x)|=|\frac{x^{88}+1}{x^8+1}\\|=|x^{80}-x^{72}+x^{64}-x^{56}+x^{48}-x^{40}+x^{32}-x^{24}+x^{16}-x^8+1\\{\large\Phi}_{177}(x)|=|\frac{(x-1)(x^{177}-1)}{(x^3-1)(x^{59}-1)}\\|=|x^{116}-x^{115}+x^{113}-x^{112}+x^{110}-x^{109}+x^{107}-x^{106}+x^{104}-x^{103}\\||+x^{101}-x^{100}+x^{98}-x^{97}+x^{95}-x^{94}+x^{92}-x^{91}+x^{89}-x^{88}\\||+x^{86}-x^{85}+x^{83}-x^{82}+x^{80}-x^{79}+x^{77}-x^{76}+x^{74}-x^{73}\\||+x^{71}-x^{70}+x^{68}-x^{67}+x^{65}-x^{64}+x^{62}-x^{61}+x^{59}-x^{58}\\||+x^{57}-x^{55}+x^{54}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}+x^{45}-x^{43}\\||+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}+x^{30}-x^{28}\\||+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}\\||+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{178}(x)|=|\frac{x^{89}+1}{x+1}\\|=|x^{88}-x^{87}+x^{86}-x^{85}+x^{84}-x^{83}+x^{82}-x^{81}+x^{80}-x^{79}\\||+x^{78}-x^{77}+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}\\||+x^{68}-x^{67}+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}\\||+x^{58}-x^{57}+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}\\||+x^{48}-x^{47}+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}\\||+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}\\||+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}\\||+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9\\||+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{179}(x)|=|\frac{x^{179}-1}{x-1}\\|=|x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}\\||+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}\\||+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}\\||+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{180}(x)|=|\frac{(x^6+1)(x^{90}+1)}{(x^{18}+1)(x^{30}+1)}\\|=|x^{48}+x^{42}-x^{30}-x^{24}-x^{18}+x^6+1\end{eqnarray}%%
${\large\Phi}_{181}(x)\cdots{\large\Phi}_{200}(x)$${\large\Phi}_{181}(x)\cdots{\large\Phi}_{200}(x)$
%%\begin{eqnarray}{\large\Phi}_{181}(x)|=|\frac{x^{181}-1}{x-1}\\|=|x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}\\||+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}\\||+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}\\||+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{182}(x)|=|\frac{(x+1)(x^{91}+1)}{(x^7+1)(x^{13}+1)}\\|=|x^{72}+x^{71}-x^{65}-x^{64}-x^{59}+x^{57}+x^{52}-x^{50}+x^{46}+x^{43}\\||-x^{39}-x^{36}-x^{33}+x^{29}+x^{26}-x^{22}+x^{20}+x^{15}-x^{13}-x^8\\||-x^7+x+1\\{\large\Phi}_{183}(x)|=|\frac{(x-1)(x^{183}-1)}{(x^3-1)(x^{61}-1)}\\|=|x^{120}-x^{119}+x^{117}-x^{116}+x^{114}-x^{113}+x^{111}-x^{110}+x^{108}-x^{107}\\||+x^{105}-x^{104}+x^{102}-x^{101}+x^{99}-x^{98}+x^{96}-x^{95}+x^{93}-x^{92}\\||+x^{90}-x^{89}+x^{87}-x^{86}+x^{84}-x^{83}+x^{81}-x^{80}+x^{78}-x^{77}\\||+x^{75}-x^{74}+x^{72}-x^{71}+x^{69}-x^{68}+x^{66}-x^{65}+x^{63}-x^{62}\\||+x^{60}-x^{58}+x^{57}-x^{55}+x^{54}-x^{52}+x^{51}-x^{49}+x^{48}-x^{46}\\||+x^{45}-x^{43}+x^{42}-x^{40}+x^{39}-x^{37}+x^{36}-x^{34}+x^{33}-x^{31}\\||+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}\\||+x^{15}-x^{13}+x^{12}-x^{10}+x^9-x^7+x^6-x^4+x^3-x+1\\{\large\Phi}_{184}(x)|=|\frac{x^{92}+1}{x^4+1}\\|=|x^{88}-x^{84}+x^{80}-x^{76}+x^{72}-x^{68}+x^{64}-x^{60}+x^{56}-x^{52}\\||+x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}\\||+x^8-x^4+1\\{\large\Phi}_{185}(x)|=|\frac{(x-1)(x^{185}-1)}{(x^5-1)(x^{37}-1)}\\|=|x^{144}-x^{143}+x^{139}-x^{138}+x^{134}-x^{133}+x^{129}-x^{128}+x^{124}-x^{123}\\||+x^{119}-x^{118}+x^{114}-x^{113}+x^{109}-x^{108}+x^{107}-x^{106}+x^{104}-x^{103}\\||+x^{102}-x^{101}+x^{99}-x^{98}+x^{97}-x^{96}+x^{94}-x^{93}+x^{92}-x^{91}\\||+x^{89}-x^{88}+x^{87}-x^{86}+x^{84}-x^{83}+x^{82}-x^{81}+x^{79}-x^{78}\\||+x^{77}-x^{76}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{68}+x^{67}-x^{66}\\||+x^{65}-x^{63}+x^{62}-x^{61}+x^{60}-x^{58}+x^{57}-x^{56}+x^{55}-x^{53}\\||+x^{52}-x^{51}+x^{50}-x^{48}+x^{47}-x^{46}+x^{45}-x^{43}+x^{42}-x^{41}\\||+x^{40}-x^{38}+x^{37}-x^{36}+x^{35}-x^{31}+x^{30}-x^{26}+x^{25}-x^{21}\\||+x^{20}-x^{16}+x^{15}-x^{11}+x^{10}-x^6+x^5-x+1\\{\large\Phi}_{186}(x)|=|\frac{(x+1)(x^{93}+1)}{(x^3+1)(x^{31}+1)}\\|=|x^{60}+x^{59}-x^{57}-x^{56}+x^{54}+x^{53}-x^{51}-x^{50}+x^{48}+x^{47}\\||-x^{45}-x^{44}+x^{42}+x^{41}-x^{39}-x^{38}+x^{36}+x^{35}-x^{33}-x^{32}\\||+x^{30}-x^{28}-x^{27}+x^{25}+x^{24}-x^{22}-x^{21}+x^{19}+x^{18}-x^{16}\\||-x^{15}+x^{13}+x^{12}-x^{10}-x^9+x^7+x^6-x^4-x^3+x+1\\{\large\Phi}_{187}(x)|=|\frac{(x-1)(x^{187}-1)}{(x^{11}-1)(x^{17}-1)}\\|=|x^{160}-x^{159}+x^{149}-x^{148}+x^{143}-x^{142}+x^{138}-x^{137}+x^{132}-x^{131}\\||+x^{127}-x^{125}+x^{121}-x^{120}+x^{116}-x^{114}+x^{110}-x^{108}+x^{105}-x^{103}\\||+x^{99}-x^{97}+x^{94}-x^{91}+x^{88}-x^{86}+x^{83}-x^{80}+x^{77}-x^{74}\\||+x^{72}-x^{69}+x^{66}-x^{63}+x^{61}-x^{57}+x^{55}-x^{52}+x^{50}-x^{46}\\||+x^{44}-x^{40}+x^{39}-x^{35}+x^{33}-x^{29}+x^{28}-x^{23}+x^{22}-x^{18}\\||+x^{17}-x^{12}+x^{11}-x+1\\{\large\Phi}_{188}(x)|=|\frac{x^{94}+1}{x^2+1}\\|=|x^{92}-x^{90}+x^{88}-x^{86}+x^{84}-x^{82}+x^{80}-x^{78}+x^{76}-x^{74}\\||+x^{72}-x^{70}+x^{68}-x^{66}+x^{64}-x^{62}+x^{60}-x^{58}+x^{56}-x^{54}\\||+x^{52}-x^{50}+x^{48}-x^{46}+x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}\\||+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}\\||+x^{12}-x^{10}+x^8-x^6+x^4-x^2+1\\{\large\Phi}_{189}(x)|=|\frac{(x^9-1)(x^{189}-1)}{(x^{27}-1)(x^{63}-1)}\\|=|x^{108}-x^{99}+x^{81}-x^{72}+x^{54}-x^{36}+x^{27}-x^9+1\\{\large\Phi}_{190}(x)|=|\frac{(x+1)(x^{95}+1)}{(x^5+1)(x^{19}+1)}\\|=|x^{72}+x^{71}-x^{67}-x^{66}+x^{62}+x^{61}-x^{57}-x^{56}-x^{53}+x^{51}\\||+x^{48}-x^{46}-x^{43}+x^{41}+x^{38}-x^{36}+x^{34}+x^{31}-x^{29}-x^{26}\\||+x^{24}+x^{21}-x^{19}-x^{16}-x^{15}+x^{11}+x^{10}-x^6-x^5+x+1\\{\large\Phi}_{191}(x)|=|\frac{x^{191}-1}{x-1}\\|=|x^{190}+x^{189}+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}\\||+x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}\\||+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}\\||+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}\\||+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}\\||+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}\\||+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}\\||+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}\\||+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}\\||+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}\\||+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}\\||+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}\\||+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}\\||+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}\\||+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}\\||+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}\\||+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}\\||+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}\\||+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{192}(x)|=|\frac{x^{96}+1}{x^{32}+1}\\|=|x^{64}-x^{32}+1\\{\large\Phi}_{193}(x)|=|\frac{x^{193}-1}{x-1}\\|=|x^{192}+x^{191}+x^{190}+x^{189}+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}\\||+x^{182}+x^{181}+x^{180}+x^{179}+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}\\||+x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}\\||+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}\\||+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}\\||+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}\\||+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}\\||+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}\\||+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}\\||+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}\\||+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}\\||+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}\\||+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}\\||+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}\\||+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}\\||+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}\\||+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}\\||+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}\\||+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3\\||+x^2+x+1\\{\large\Phi}_{194}(x)|=|\frac{x^{97}+1}{x+1}\\|=|x^{96}-x^{95}+x^{94}-x^{93}+x^{92}-x^{91}+x^{90}-x^{89}+x^{88}-x^{87}\\||+x^{86}-x^{85}+x^{84}-x^{83}+x^{82}-x^{81}+x^{80}-x^{79}+x^{78}-x^{77}\\||+x^{76}-x^{75}+x^{74}-x^{73}+x^{72}-x^{71}+x^{70}-x^{69}+x^{68}-x^{67}\\||+x^{66}-x^{65}+x^{64}-x^{63}+x^{62}-x^{61}+x^{60}-x^{59}+x^{58}-x^{57}\\||+x^{56}-x^{55}+x^{54}-x^{53}+x^{52}-x^{51}+x^{50}-x^{49}+x^{48}-x^{47}\\||+x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}\\||+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}\\||+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}\\||+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^9+x^8-x^7\\||+x^6-x^5+x^4-x^3+x^2-x+1\\{\large\Phi}_{195}(x)|=|\frac{(x^3-1)(x^5-1)(x^{13}-1)(x^{195}-1)}{(x-1)(x^{15}-1)(x^{39}-1)(x^{65}-1)}\\|=|x^{96}+x^{95}+x^{94}-x^{91}-x^{90}-x^{89}-x^{83}-x^{82}+x^{80}+x^{79}\\||+x^{78}+x^{77}-x^{75}-x^{74}-x^{68}-x^{67}+x^{65}+x^{64}+x^{63}+x^{62}\\||-x^{60}-x^{59}+x^{57}+x^{56}+x^{55}-x^{53}-2x^{52}-x^{51}+x^{49}+x^{48}\\||+x^{47}-x^{45}-2x^{44}-x^{43}+x^{41}+x^{40}+x^{39}-x^{37}-x^{36}+x^{34}\\||+x^{33}+x^{32}+x^{31}-x^{29}-x^{28}-x^{22}-x^{21}+x^{19}+x^{18}+x^{17}\\||+x^{16}-x^{14}-x^{13}-x^7-x^6-x^5+x^2+x+1\\{\large\Phi}_{196}(x)|=|\frac{x^{98}+1}{x^{14}+1}\\|=|x^{84}-x^{70}+x^{56}-x^{42}+x^{28}-x^{14}+1\\{\large\Phi}_{197}(x)|=|\frac{x^{197}-1}{x-1}\\|=|x^{196}+x^{195}+x^{194}+x^{193}+x^{192}+x^{191}+x^{190}+x^{189}+x^{188}+x^{187}\\||+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}+x^{180}+x^{179}+x^{178}+x^{177}\\||+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}+x^{168}+x^{167}\\||+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}+x^{158}+x^{157}\\||+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}+x^{148}+x^{147}\\||+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}+x^{138}+x^{137}\\||+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}+x^{128}+x^{127}\\||+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}+x^{118}+x^{117}\\||+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}+x^{108}+x^{107}\\||+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}\\||+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}\\||+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}\\||+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}\\||+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}\\||+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}\\||+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}\\||+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}\\||+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}\\||+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7\\||+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{198}(x)|=|\frac{(x^3+1)(x^{99}+1)}{(x^9+1)(x^{33}+1)}\\|=|x^{60}+x^{57}-x^{51}-x^{48}+x^{42}+x^{39}-x^{33}-x^{30}-x^{27}+x^{21}\\||+x^{18}-x^{12}-x^9+x^3+1\\{\large\Phi}_{199}(x)|=|\frac{x^{199}-1}{x-1}\\|=|x^{198}+x^{197}+x^{196}+x^{195}+x^{194}+x^{193}+x^{192}+x^{191}+x^{190}+x^{189}\\||+x^{188}+x^{187}+x^{186}+x^{185}+x^{184}+x^{183}+x^{182}+x^{181}+x^{180}+x^{179}\\||+x^{178}+x^{177}+x^{176}+x^{175}+x^{174}+x^{173}+x^{172}+x^{171}+x^{170}+x^{169}\\||+x^{168}+x^{167}+x^{166}+x^{165}+x^{164}+x^{163}+x^{162}+x^{161}+x^{160}+x^{159}\\||+x^{158}+x^{157}+x^{156}+x^{155}+x^{154}+x^{153}+x^{152}+x^{151}+x^{150}+x^{149}\\||+x^{148}+x^{147}+x^{146}+x^{145}+x^{144}+x^{143}+x^{142}+x^{141}+x^{140}+x^{139}\\||+x^{138}+x^{137}+x^{136}+x^{135}+x^{134}+x^{133}+x^{132}+x^{131}+x^{130}+x^{129}\\||+x^{128}+x^{127}+x^{126}+x^{125}+x^{124}+x^{123}+x^{122}+x^{121}+x^{120}+x^{119}\\||+x^{118}+x^{117}+x^{116}+x^{115}+x^{114}+x^{113}+x^{112}+x^{111}+x^{110}+x^{109}\\||+x^{108}+x^{107}+x^{106}+x^{105}+x^{104}+x^{103}+x^{102}+x^{101}+x^{100}+x^{99}\\||+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}\\||+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}\\||+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}\\||+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}\\||+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}\\||+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}\\||+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}\\||+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}\\||+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9\\||+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1\\{\large\Phi}_{200}(x)|=|\frac{x^{100}+1}{x^{20}+1}\\|=|x^{80}-x^{60}+x^{40}-x^{20}+1\end{eqnarray}%%

6.4. Links related to cyclotomic polynomials 円分多項式の関連リンク

7. Aurifeuillean factorization of cyclotomic numbers 円分数のオーラフィーユ因数分解

Aurifeuillean is also written as Aurifeuillian. Aurifeuillean は Aurifeuillian とも書く。

7.1. List of Aurifeuillean factorization of cyclotomic numbers 円分数のオーラフィーユ因数分解の一覧

${\large\Phi}_{4}(2^{2k+1})\cdots{\large\Phi}_{20}(10^{2k+1})$${\large\Phi}_{4}(2^{2k+1})\cdots{\large\Phi}_{20}(10^{2k+1})$
$$\begin{eqnarray}{\large\Phi}_{4}(2^{2k+1})&=&2^{4k+2}+1\\&=&(2^{2k+1}-2^{k+1}+1)\\&\times&(2^{2k+1}+2^{k+1}+1)\\{\large\Phi}_{6}(3^{2k+1})&=&3^{4k+2}-3^{2k+1}+1\\&=&(3^{2k+1}-3^{k+1}+1)\\&\times&(3^{2k+1}+3^{k+1}+1)\\{\large\Phi}_{5}(5^{2k+1})&=&5^{8k+4}+5^{6k+3}+5^{4k+2}+5^{2k+1}+1\\&=&(5^{4k+2}-5^{3k+2}+3\cdot 5^{2k+1}-5^{k+1}+1)\\&\times&(5^{4k+2}+5^{3k+2}+3\cdot 5^{2k+1}+5^{k+1}+1)\\{\large\Phi}_{12}(6^{2k+1})&=&6^{8k+4}-6^{4k+2}+1\\&=&(6^{4k+2}-6^{3k+2}+3\cdot 6^{2k+1}-6^{k+1}+1)\\&\times&(6^{4k+2}+6^{3k+2}+3\cdot 6^{2k+1}+6^{k+1}+1)\\{\large\Phi}_{14}(7^{2k+1})&=&7^{12k+6}-7^{10k+5}+7^{8k+4}-7^{6k+3}+7^{4k+2}\\&&-7^{2k+1}+1\\&=&(7^{6k+3}-7^{5k+3}+3\cdot 7^{4k+2}-7^{3k+2}+3\cdot 7^{2k+1}\\&&-7^{k+1}+1)\\&\times&(7^{6k+3}+7^{5k+3}+3\cdot 7^{4k+2}+7^{3k+2}+3\cdot 7^{2k+1}\\&&+7^{k+1}+1)\\{\large\Phi}_{20}(10^{2k+1})&=&10^{16k+8}-10^{12k+6}+10^{8k+4}-10^{4k+2}+1\\&=&(10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}\\&&-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1)\\&\times&(10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}\\&&+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1)\end{eqnarray}$$
${\large\Phi}_{22}(11^{2k+1})\cdots{\large\Phi}_{38}(19^{2k+1})$${\large\Phi}_{22}(11^{2k+1})\cdots{\large\Phi}_{38}(19^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{22}(11^{2k+1})|=|11^{20k+10}-11^{18k+9}+11^{16k+8}-11^{14k+7}+11^{12k+6}\\||-11^{10k+5}+11^{8k+4}-11^{6k+3}+11^{4k+2}-11^{2k+1}+1\\|=|(11^{10k+5}-11^{9k+5}+5\cdot 11^{8k+4}-11^{7k+4}-11^{6k+3}\\||+11^{5k+3}-11^{4k+2}-11^{3k+2}+5\cdot 11^{2k+1}-11^{k+1}+1)\\|\times|(11^{10k+5}+11^{9k+5}+5\cdot 11^{8k+4}+11^{7k+4}-11^{6k+3}\\||-11^{5k+3}-11^{4k+2}+11^{3k+2}+5\cdot 11^{2k+1}+11^{k+1}+1)\\{\large\Phi}_{13}(13^{2k+1})|=|13^{24k+12}+13^{22k+11}+13^{20k+10}+13^{18k+9}+13^{16k+8}\\||+13^{14k+7}+13^{12k+6}+13^{10k+5}+13^{8k+4}+13^{6k+3}\\||+13^{4k+2}+13^{2k+1}+1\\|=|(13^{12k+6}-13^{11k+6}+7\cdot 13^{10k+5}-3\cdot 13^{9k+5}+15\cdot 13^{8k+4}\\||-5\cdot 13^{7k+4}+19\cdot 13^{6k+3}-5\cdot 13^{5k+3}+15\cdot 13^{4k+2}-3\cdot 13^{3k+2}\\||+7\cdot 13^{2k+1}-13^{k+1}+1)\\|\times|(13^{12k+6}+13^{11k+6}+7\cdot 13^{10k+5}+3\cdot 13^{9k+5}+15\cdot 13^{8k+4}\\||+5\cdot 13^{7k+4}+19\cdot 13^{6k+3}+5\cdot 13^{5k+3}+15\cdot 13^{4k+2}+3\cdot 13^{3k+2}\\||+7\cdot 13^{2k+1}+13^{k+1}+1)\\{\large\Phi}_{28}(14^{2k+1})|=|14^{24k+12}-14^{20k+10}+14^{16k+8}-14^{12k+6}+14^{8k+4}\\||-14^{4k+2}+1\\|=|(14^{12k+6}-14^{11k+6}+7\cdot 14^{10k+5}-2\cdot 14^{9k+5}+3\cdot 14^{8k+4}\\||+14^{7k+4}-7\cdot 14^{6k+3}+14^{5k+3}+3\cdot 14^{4k+2}-2\cdot 14^{3k+2}\\||+7\cdot 14^{2k+1}-14^{k+1}+1)\\|\times|(14^{12k+6}+14^{11k+6}+7\cdot 14^{10k+5}+2\cdot 14^{9k+5}+3\cdot 14^{8k+4}\\||-14^{7k+4}-7\cdot 14^{6k+3}-14^{5k+3}+3\cdot 14^{4k+2}+2\cdot 14^{3k+2}\\||+7\cdot 14^{2k+1}+14^{k+1}+1)\\{\large\Phi}_{30}(15^{2k+1})|=|15^{16k+8}+15^{14k+7}-15^{10k+5}-15^{8k+4}-15^{6k+3}\\||+15^{2k+1}+1\\|=|(15^{8k+4}-15^{7k+4}+8\cdot 15^{6k+3}-3\cdot 15^{5k+3}+13\cdot 15^{4k+2}\\||-3\cdot 15^{3k+2}+8\cdot 15^{2k+1}-15^{k+1}+1)\\|\times|(15^{8k+4}+15^{7k+4}+8\cdot 15^{6k+3}+3\cdot 15^{5k+3}+13\cdot 15^{4k+2}\\||+3\cdot 15^{3k+2}+8\cdot 15^{2k+1}+15^{k+1}+1)\\{\large\Phi}_{17}(17^{2k+1})|=|17^{32k+16}+17^{30k+15}+17^{28k+14}+17^{26k+13}+17^{24k+12}\\||+17^{22k+11}+17^{20k+10}+17^{18k+9}+17^{16k+8}+17^{14k+7}\\||+17^{12k+6}+17^{10k+5}+17^{8k+4}+17^{6k+3}+17^{4k+2}\\||+17^{2k+1}+1\\|=|(17^{16k+8}-17^{15k+8}+9\cdot 17^{14k+7}-3\cdot 17^{13k+7}+11\cdot 17^{12k+6}\\||-17^{11k+6}-5\cdot 17^{10k+5}+3\cdot 17^{9k+5}-15\cdot 17^{8k+4}+3\cdot 17^{7k+4}\\||-5\cdot 17^{6k+3}-17^{5k+3}+11\cdot 17^{4k+2}-3\cdot 17^{3k+2}+9\cdot 17^{2k+1}\\||-17^{k+1}+1)\\|\times|(17^{16k+8}+17^{15k+8}+9\cdot 17^{14k+7}+3\cdot 17^{13k+7}+11\cdot 17^{12k+6}\\||+17^{11k+6}-5\cdot 17^{10k+5}-3\cdot 17^{9k+5}-15\cdot 17^{8k+4}-3\cdot 17^{7k+4}\\||-5\cdot 17^{6k+3}+17^{5k+3}+11\cdot 17^{4k+2}+3\cdot 17^{3k+2}+9\cdot 17^{2k+1}\\||+17^{k+1}+1)\\{\large\Phi}_{38}(19^{2k+1})|=|19^{36k+18}-19^{34k+17}+19^{32k+16}-19^{30k+15}+19^{28k+14}\\||-19^{26k+13}+19^{24k+12}-19^{22k+11}+19^{20k+10}-19^{18k+9}\\||+19^{16k+8}-19^{14k+7}+19^{12k+6}-19^{10k+5}+19^{8k+4}\\||-19^{6k+3}+19^{4k+2}-19^{2k+1}+1\\|=|(19^{18k+9}-19^{17k+9}+9\cdot 19^{16k+8}-3\cdot 19^{15k+8}+17\cdot 19^{14k+7}\\||-5\cdot 19^{13k+7}+27\cdot 19^{12k+6}-7\cdot 19^{11k+6}+31\cdot 19^{10k+5}-7\cdot 19^{9k+5}\\||+31\cdot 19^{8k+4}-7\cdot 19^{7k+4}+27\cdot 19^{6k+3}-5\cdot 19^{5k+3}+17\cdot 19^{4k+2}\\||-3\cdot 19^{3k+2}+9\cdot 19^{2k+1}-19^{k+1}+1)\\|\times|(19^{18k+9}+19^{17k+9}+9\cdot 19^{16k+8}+3\cdot 19^{15k+8}+17\cdot 19^{14k+7}\\||+5\cdot 19^{13k+7}+27\cdot 19^{12k+6}+7\cdot 19^{11k+6}+31\cdot 19^{10k+5}+7\cdot 19^{9k+5}\\||+31\cdot 19^{8k+4}+7\cdot 19^{7k+4}+27\cdot 19^{6k+3}+5\cdot 19^{5k+3}+17\cdot 19^{4k+2}\\||+3\cdot 19^{3k+2}+9\cdot 19^{2k+1}+19^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{21}(21^{2k+1})\cdots{\large\Phi}_{60}(30^{2k+1})$${\large\Phi}_{21}(21^{2k+1})\cdots{\large\Phi}_{60}(30^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{21}(21^{2k+1})|=|21^{24k+12}-21^{22k+11}+21^{18k+9}-21^{16k+8}+21^{12k+6}\\||-21^{8k+4}+21^{6k+3}-21^{2k+1}+1\\|=|(21^{12k+6}-21^{11k+6}+10\cdot 21^{10k+5}-3\cdot 21^{9k+5}+13\cdot 21^{8k+4}\\||-2\cdot 21^{7k+4}+7\cdot 21^{6k+3}-2\cdot 21^{5k+3}+13\cdot 21^{4k+2}-3\cdot 21^{3k+2}\\||+10\cdot 21^{2k+1}-21^{k+1}+1)\\|\times|(21^{12k+6}+21^{11k+6}+10\cdot 21^{10k+5}+3\cdot 21^{9k+5}+13\cdot 21^{8k+4}\\||+2\cdot 21^{7k+4}+7\cdot 21^{6k+3}+2\cdot 21^{5k+3}+13\cdot 21^{4k+2}+3\cdot 21^{3k+2}\\||+10\cdot 21^{2k+1}+21^{k+1}+1)\\{\large\Phi}_{44}(22^{2k+1})|=|22^{40k+20}-22^{36k+18}+22^{32k+16}-22^{28k+14}+22^{24k+12}\\||-22^{20k+10}+22^{16k+8}-22^{12k+6}+22^{8k+4}-22^{4k+2}+1\\|=|(22^{20k+10}-22^{19k+10}+11\cdot 22^{18k+9}-4\cdot 22^{17k+9}+27\cdot 22^{16k+8}\\||-7\cdot 22^{15k+8}+33\cdot 22^{14k+7}-6\cdot 22^{13k+7}+21\cdot 22^{12k+6}-3\cdot 22^{11k+6}\\||+11\cdot 22^{10k+5}-3\cdot 22^{9k+5}+21\cdot 22^{8k+4}-6\cdot 22^{7k+4}+33\cdot 22^{6k+3}\\||-7\cdot 22^{5k+3}+27\cdot 22^{4k+2}-4\cdot 22^{3k+2}+11\cdot 22^{2k+1}-22^{k+1}+1)\\|\times|(22^{20k+10}+22^{19k+10}+11\cdot 22^{18k+9}+4\cdot 22^{17k+9}+27\cdot 22^{16k+8}\\||+7\cdot 22^{15k+8}+33\cdot 22^{14k+7}+6\cdot 22^{13k+7}+21\cdot 22^{12k+6}+3\cdot 22^{11k+6}\\||+11\cdot 22^{10k+5}+3\cdot 22^{9k+5}+21\cdot 22^{8k+4}+6\cdot 22^{7k+4}+33\cdot 22^{6k+3}\\||+7\cdot 22^{5k+3}+27\cdot 22^{4k+2}+4\cdot 22^{3k+2}+11\cdot 22^{2k+1}+22^{k+1}+1)\\{\large\Phi}_{46}(23^{2k+1})|=|23^{44k+22}-23^{42k+21}+23^{40k+20}-23^{38k+19}+23^{36k+18}\\||-23^{34k+17}+23^{32k+16}-23^{30k+15}+23^{28k+14}-23^{26k+13}\\||+23^{24k+12}-23^{22k+11}+23^{20k+10}-23^{18k+9}+23^{16k+8}\\||-23^{14k+7}+23^{12k+6}-23^{10k+5}+23^{8k+4}-23^{6k+3}\\||+23^{4k+2}-23^{2k+1}+1\\|=|(23^{22k+11}-23^{21k+11}+11\cdot 23^{20k+10}-3\cdot 23^{19k+10}+9\cdot 23^{18k+9}\\||+23^{17k+9}-19\cdot 23^{16k+8}+5\cdot 23^{15k+8}-15\cdot 23^{14k+7}-23^{13k+7}\\||+25\cdot 23^{12k+6}-7\cdot 23^{11k+6}+25\cdot 23^{10k+5}-23^{9k+5}-15\cdot 23^{8k+4}\\||+5\cdot 23^{7k+4}-19\cdot 23^{6k+3}+23^{5k+3}+9\cdot 23^{4k+2}-3\cdot 23^{3k+2}\\||+11\cdot 23^{2k+1}-23^{k+1}+1)\\|\times|(23^{22k+11}+23^{21k+11}+11\cdot 23^{20k+10}+3\cdot 23^{19k+10}+9\cdot 23^{18k+9}\\||-23^{17k+9}-19\cdot 23^{16k+8}-5\cdot 23^{15k+8}-15\cdot 23^{14k+7}+23^{13k+7}\\||+25\cdot 23^{12k+6}+7\cdot 23^{11k+6}+25\cdot 23^{10k+5}+23^{9k+5}-15\cdot 23^{8k+4}\\||-5\cdot 23^{7k+4}-19\cdot 23^{6k+3}-23^{5k+3}+9\cdot 23^{4k+2}+3\cdot 23^{3k+2}\\||+11\cdot 23^{2k+1}+23^{k+1}+1)\\{\large\Phi}_{52}(26^{2k+1})|=|26^{48k+24}-26^{44k+22}+26^{40k+20}-26^{36k+18}+26^{32k+16}\\||-26^{28k+14}+26^{24k+12}-26^{20k+10}+26^{16k+8}-26^{12k+6}\\||+26^{8k+4}-26^{4k+2}+1\\|=|(26^{24k+12}-26^{23k+12}+13\cdot 26^{22k+11}-4\cdot 26^{21k+11}+19\cdot 26^{20k+10}\\||-26^{19k+10}-13\cdot 26^{18k+9}+4\cdot 26^{17k+9}-11\cdot 26^{16k+8}-26^{15k+8}\\||+13\cdot 26^{14k+7}-2\cdot 26^{13k+7}+7\cdot 26^{12k+6}-2\cdot 26^{11k+6}+13\cdot 26^{10k+5}\\||-26^{9k+5}-11\cdot 26^{8k+4}+4\cdot 26^{7k+4}-13\cdot 26^{6k+3}-26^{5k+3}\\||+19\cdot 26^{4k+2}-4\cdot 26^{3k+2}+13\cdot 26^{2k+1}-26^{k+1}+1)\\|\times|(26^{24k+12}+26^{23k+12}+13\cdot 26^{22k+11}+4\cdot 26^{21k+11}+19\cdot 26^{20k+10}\\||+26^{19k+10}-13\cdot 26^{18k+9}-4\cdot 26^{17k+9}-11\cdot 26^{16k+8}+26^{15k+8}\\||+13\cdot 26^{14k+7}+2\cdot 26^{13k+7}+7\cdot 26^{12k+6}+2\cdot 26^{11k+6}+13\cdot 26^{10k+5}\\||+26^{9k+5}-11\cdot 26^{8k+4}-4\cdot 26^{7k+4}-13\cdot 26^{6k+3}+26^{5k+3}\\||+19\cdot 26^{4k+2}+4\cdot 26^{3k+2}+13\cdot 26^{2k+1}+26^{k+1}+1)\\{\large\Phi}_{29}(29^{2k+1})|=|29^{56k+28}+29^{54k+27}+29^{52k+26}+29^{50k+25}+29^{48k+24}\\||+29^{46k+23}+29^{44k+22}+29^{42k+21}+29^{40k+20}+29^{38k+19}\\||+29^{36k+18}+29^{34k+17}+29^{32k+16}+29^{30k+15}+29^{28k+14}\\||+29^{26k+13}+29^{24k+12}+29^{22k+11}+29^{20k+10}+29^{18k+9}\\||+29^{16k+8}+29^{14k+7}+29^{12k+6}+29^{10k+5}+29^{8k+4}\\||+29^{6k+3}+29^{4k+2}+29^{2k+1}+1\\|=|(29^{28k+14}-29^{27k+14}+15\cdot 29^{26k+13}-5\cdot 29^{25k+13}+33\cdot 29^{24k+12}\\||-5\cdot 29^{23k+12}+13\cdot 29^{22k+11}-29^{21k+11}+15\cdot 29^{20k+10}-7\cdot 29^{19k+10}\\||+57\cdot 29^{18k+9}-11\cdot 29^{17k+9}+45\cdot 29^{16k+8}-5\cdot 29^{15k+8}+19\cdot 29^{14k+7}\\||-5\cdot 29^{13k+7}+45\cdot 29^{12k+6}-11\cdot 29^{11k+6}+57\cdot 29^{10k+5}-7\cdot 29^{9k+5}\\||+15\cdot 29^{8k+4}-29^{7k+4}+13\cdot 29^{6k+3}-5\cdot 29^{5k+3}+33\cdot 29^{4k+2}\\||-5\cdot 29^{3k+2}+15\cdot 29^{2k+1}-29^{k+1}+1)\\|\times|(29^{28k+14}+29^{27k+14}+15\cdot 29^{26k+13}+5\cdot 29^{25k+13}+33\cdot 29^{24k+12}\\||+5\cdot 29^{23k+12}+13\cdot 29^{22k+11}+29^{21k+11}+15\cdot 29^{20k+10}+7\cdot 29^{19k+10}\\||+57\cdot 29^{18k+9}+11\cdot 29^{17k+9}+45\cdot 29^{16k+8}+5\cdot 29^{15k+8}+19\cdot 29^{14k+7}\\||+5\cdot 29^{13k+7}+45\cdot 29^{12k+6}+11\cdot 29^{11k+6}+57\cdot 29^{10k+5}+7\cdot 29^{9k+5}\\||+15\cdot 29^{8k+4}+29^{7k+4}+13\cdot 29^{6k+3}+5\cdot 29^{5k+3}+33\cdot 29^{4k+2}\\||+5\cdot 29^{3k+2}+15\cdot 29^{2k+1}+29^{k+1}+1)\\{\large\Phi}_{60}(30^{2k+1})|=|30^{32k+16}+30^{28k+14}-30^{20k+10}-30^{16k+8}-30^{12k+6}\\||+30^{4k+2}+1\\|=|(30^{16k+8}-30^{15k+8}+15\cdot 30^{14k+7}-5\cdot 30^{13k+7}+38\cdot 30^{12k+6}\\||-8\cdot 30^{11k+6}+45\cdot 30^{10k+5}-8\cdot 30^{9k+5}+43\cdot 30^{8k+4}-8\cdot 30^{7k+4}\\||+45\cdot 30^{6k+3}-8\cdot 30^{5k+3}+38\cdot 30^{4k+2}-5\cdot 30^{3k+2}+15\cdot 30^{2k+1}\\||-30^{k+1}+1)\\|\times|(30^{16k+8}+30^{15k+8}+15\cdot 30^{14k+7}+5\cdot 30^{13k+7}+38\cdot 30^{12k+6}\\||+8\cdot 30^{11k+6}+45\cdot 30^{10k+5}+8\cdot 30^{9k+5}+43\cdot 30^{8k+4}+8\cdot 30^{7k+4}\\||+45\cdot 30^{6k+3}+8\cdot 30^{5k+3}+38\cdot 30^{4k+2}+5\cdot 30^{3k+2}+15\cdot 30^{2k+1}\\||+30^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{62}(31^{2k+1})\cdots{\large\Phi}_{78}(39^{2k+1})$${\large\Phi}_{62}(31^{2k+1})\cdots{\large\Phi}_{78}(39^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{62}(31^{2k+1})|=|31^{60k+30}-31^{58k+29}+31^{56k+28}-31^{54k+27}+31^{52k+26}\\||-31^{50k+25}+31^{48k+24}-31^{46k+23}+31^{44k+22}-31^{42k+21}\\||+31^{40k+20}-31^{38k+19}+31^{36k+18}-31^{34k+17}+31^{32k+16}\\||-31^{30k+15}+31^{28k+14}-31^{26k+13}+31^{24k+12}-31^{22k+11}\\||+31^{20k+10}-31^{18k+9}+31^{16k+8}-31^{14k+7}+31^{12k+6}\\||-31^{10k+5}+31^{8k+4}-31^{6k+3}+31^{4k+2}-31^{2k+1}+1\\|=|(31^{30k+15}-31^{29k+15}+15\cdot 31^{28k+14}-5\cdot 31^{27k+14}+43\cdot 31^{26k+13}\\||-11\cdot 31^{25k+13}+83\cdot 31^{24k+12}-19\cdot 31^{23k+12}+125\cdot 31^{22k+11}-25\cdot 31^{21k+11}\\||+151\cdot 31^{20k+10}-29\cdot 31^{19k+10}+169\cdot 31^{18k+9}-31\cdot 31^{17k+9}+173\cdot 31^{16k+8}\\||-31\cdot 31^{15k+8}+173\cdot 31^{14k+7}-31\cdot 31^{13k+7}+169\cdot 31^{12k+6}-29\cdot 31^{11k+6}\\||+151\cdot 31^{10k+5}-25\cdot 31^{9k+5}+125\cdot 31^{8k+4}-19\cdot 31^{7k+4}+83\cdot 31^{6k+3}\\||-11\cdot 31^{5k+3}+43\cdot 31^{4k+2}-5\cdot 31^{3k+2}+15\cdot 31^{2k+1}-31^{k+1}+1)\\|\times|(31^{30k+15}+31^{29k+15}+15\cdot 31^{28k+14}+5\cdot 31^{27k+14}+43\cdot 31^{26k+13}\\||+11\cdot 31^{25k+13}+83\cdot 31^{24k+12}+19\cdot 31^{23k+12}+125\cdot 31^{22k+11}+25\cdot 31^{21k+11}\\||+151\cdot 31^{20k+10}+29\cdot 31^{19k+10}+169\cdot 31^{18k+9}+31\cdot 31^{17k+9}+173\cdot 31^{16k+8}\\||+31\cdot 31^{15k+8}+173\cdot 31^{14k+7}+31\cdot 31^{13k+7}+169\cdot 31^{12k+6}+29\cdot 31^{11k+6}\\||+151\cdot 31^{10k+5}+25\cdot 31^{9k+5}+125\cdot 31^{8k+4}+19\cdot 31^{7k+4}+83\cdot 31^{6k+3}\\||+11\cdot 31^{5k+3}+43\cdot 31^{4k+2}+5\cdot 31^{3k+2}+15\cdot 31^{2k+1}+31^{k+1}+1)\\{\large\Phi}_{33}(33^{2k+1})|=|33^{40k+20}-33^{38k+19}+33^{34k+17}-33^{32k+16}+33^{28k+14}\\||-33^{26k+13}+33^{22k+11}-33^{20k+10}+33^{18k+9}-33^{14k+7}\\||+33^{12k+6}-33^{8k+4}+33^{6k+3}-33^{2k+1}+1\\|=|(33^{20k+10}-33^{19k+10}+16\cdot 33^{18k+9}-5\cdot 33^{17k+9}+37\cdot 33^{16k+8}\\||-6\cdot 33^{15k+8}+19\cdot 33^{14k+7}+33^{13k+7}-32\cdot 33^{12k+6}+9\cdot 33^{11k+6}\\||-59\cdot 33^{10k+5}+9\cdot 33^{9k+5}-32\cdot 33^{8k+4}+33^{7k+4}+19\cdot 33^{6k+3}\\||-6\cdot 33^{5k+3}+37\cdot 33^{4k+2}-5\cdot 33^{3k+2}+16\cdot 33^{2k+1}-33^{k+1}+1)\\|\times|(33^{20k+10}+33^{19k+10}+16\cdot 33^{18k+9}+5\cdot 33^{17k+9}+37\cdot 33^{16k+8}\\||+6\cdot 33^{15k+8}+19\cdot 33^{14k+7}-33^{13k+7}-32\cdot 33^{12k+6}-9\cdot 33^{11k+6}\\||-59\cdot 33^{10k+5}-9\cdot 33^{9k+5}-32\cdot 33^{8k+4}-33^{7k+4}+19\cdot 33^{6k+3}\\||+6\cdot 33^{5k+3}+37\cdot 33^{4k+2}+5\cdot 33^{3k+2}+16\cdot 33^{2k+1}+33^{k+1}+1)\\{\large\Phi}_{68}(34^{2k+1})|=|34^{64k+32}-34^{60k+30}+34^{56k+28}-34^{52k+26}+34^{48k+24}\\||-34^{44k+22}+34^{40k+20}-34^{36k+18}+34^{32k+16}-34^{28k+14}\\||+34^{24k+12}-34^{20k+10}+34^{16k+8}-34^{12k+6}+34^{8k+4}\\||-34^{4k+2}+1\\|=|(34^{32k+16}-34^{31k+16}+17\cdot 34^{30k+15}-6\cdot 34^{29k+15}+59\cdot 34^{28k+14}\\||-15\cdot 34^{27k+14}+119\cdot 34^{26k+13}-26\cdot 34^{25k+13}+181\cdot 34^{24k+12}-35\cdot 34^{23k+12}\\||+221\cdot 34^{22k+11}-40\cdot 34^{21k+11}+243\cdot 34^{20k+10}-43\cdot 34^{19k+10}+255\cdot 34^{18k+9}\\||-44\cdot 34^{17k+9}+257\cdot 34^{16k+8}-44\cdot 34^{15k+8}+255\cdot 34^{14k+7}-43\cdot 34^{13k+7}\\||+243\cdot 34^{12k+6}-40\cdot 34^{11k+6}+221\cdot 34^{10k+5}-35\cdot 34^{9k+5}+181\cdot 34^{8k+4}\\||-26\cdot 34^{7k+4}+119\cdot 34^{6k+3}-15\cdot 34^{5k+3}+59\cdot 34^{4k+2}-6\cdot 34^{3k+2}\\||+17\cdot 34^{2k+1}-34^{k+1}+1)\\|\times|(34^{32k+16}+34^{31k+16}+17\cdot 34^{30k+15}+6\cdot 34^{29k+15}+59\cdot 34^{28k+14}\\||+15\cdot 34^{27k+14}+119\cdot 34^{26k+13}+26\cdot 34^{25k+13}+181\cdot 34^{24k+12}+35\cdot 34^{23k+12}\\||+221\cdot 34^{22k+11}+40\cdot 34^{21k+11}+243\cdot 34^{20k+10}+43\cdot 34^{19k+10}+255\cdot 34^{18k+9}\\||+44\cdot 34^{17k+9}+257\cdot 34^{16k+8}+44\cdot 34^{15k+8}+255\cdot 34^{14k+7}+43\cdot 34^{13k+7}\\||+243\cdot 34^{12k+6}+40\cdot 34^{11k+6}+221\cdot 34^{10k+5}+35\cdot 34^{9k+5}+181\cdot 34^{8k+4}\\||+26\cdot 34^{7k+4}+119\cdot 34^{6k+3}+15\cdot 34^{5k+3}+59\cdot 34^{4k+2}+6\cdot 34^{3k+2}\\||+17\cdot 34^{2k+1}+34^{k+1}+1)\\{\large\Phi}_{70}(35^{2k+1})|=|35^{48k+24}+35^{46k+23}-35^{38k+19}-35^{36k+18}-35^{34k+17}\\||-35^{32k+16}+35^{28k+14}+35^{26k+13}+35^{24k+12}+35^{22k+11}\\||+35^{20k+10}-35^{16k+8}-35^{14k+7}-35^{12k+6}-35^{10k+5}\\||+35^{2k+1}+1\\|=|(35^{24k+12}-35^{23k+12}+18\cdot 35^{22k+11}-6\cdot 35^{21k+11}+48\cdot 35^{20k+10}\\||-7\cdot 35^{19k+10}+11\cdot 35^{18k+9}+5\cdot 35^{17k+9}-55\cdot 35^{16k+8}+8\cdot 35^{15k+8}\\||-11\cdot 35^{14k+7}-5\cdot 35^{13k+7}+47\cdot 35^{12k+6}-5\cdot 35^{11k+6}-11\cdot 35^{10k+5}\\||+8\cdot 35^{9k+5}-55\cdot 35^{8k+4}+5\cdot 35^{7k+4}+11\cdot 35^{6k+3}-7\cdot 35^{5k+3}\\||+48\cdot 35^{4k+2}-6\cdot 35^{3k+2}+18\cdot 35^{2k+1}-35^{k+1}+1)\\|\times|(35^{24k+12}+35^{23k+12}+18\cdot 35^{22k+11}+6\cdot 35^{21k+11}+48\cdot 35^{20k+10}\\||+7\cdot 35^{19k+10}+11\cdot 35^{18k+9}-5\cdot 35^{17k+9}-55\cdot 35^{16k+8}-8\cdot 35^{15k+8}\\||-11\cdot 35^{14k+7}+5\cdot 35^{13k+7}+47\cdot 35^{12k+6}+5\cdot 35^{11k+6}-11\cdot 35^{10k+5}\\||-8\cdot 35^{9k+5}-55\cdot 35^{8k+4}-5\cdot 35^{7k+4}+11\cdot 35^{6k+3}+7\cdot 35^{5k+3}\\||+48\cdot 35^{4k+2}+6\cdot 35^{3k+2}+18\cdot 35^{2k+1}+35^{k+1}+1)\\{\large\Phi}_{37}(37^{2k+1})|=|37^{72k+36}+37^{70k+35}+37^{68k+34}+37^{66k+33}+37^{64k+32}\\||+37^{62k+31}+37^{60k+30}+37^{58k+29}+37^{56k+28}+37^{54k+27}\\||+37^{52k+26}+37^{50k+25}+37^{48k+24}+37^{46k+23}+37^{44k+22}\\||+37^{42k+21}+37^{40k+20}+37^{38k+19}+37^{36k+18}+37^{34k+17}\\||+37^{32k+16}+37^{30k+15}+37^{28k+14}+37^{26k+13}+37^{24k+12}\\||+37^{22k+11}+37^{20k+10}+37^{18k+9}+37^{16k+8}+37^{14k+7}\\||+37^{12k+6}+37^{10k+5}+37^{8k+4}+37^{6k+3}+37^{4k+2}\\||+37^{2k+1}+1\\|=|(37^{36k+18}-37^{35k+18}+19\cdot 37^{34k+17}-7\cdot 37^{33k+17}+79\cdot 37^{32k+16}\\||-21\cdot 37^{31k+16}+183\cdot 37^{30k+15}-39\cdot 37^{29k+15}+285\cdot 37^{28k+14}-53\cdot 37^{27k+14}\\||+349\cdot 37^{26k+13}-61\cdot 37^{25k+13}+397\cdot 37^{24k+12}-71\cdot 37^{23k+12}+477\cdot 37^{22k+11}\\||-87\cdot 37^{21k+11}+579\cdot 37^{20k+10}-101\cdot 37^{19k+10}+627\cdot 37^{18k+9}-101\cdot 37^{17k+9}\\||+579\cdot 37^{16k+8}-87\cdot 37^{15k+8}+477\cdot 37^{14k+7}-71\cdot 37^{13k+7}+397\cdot 37^{12k+6}\\||-61\cdot 37^{11k+6}+349\cdot 37^{10k+5}-53\cdot 37^{9k+5}+285\cdot 37^{8k+4}-39\cdot 37^{7k+4}\\||+183\cdot 37^{6k+3}-21\cdot 37^{5k+3}+79\cdot 37^{4k+2}-7\cdot 37^{3k+2}+19\cdot 37^{2k+1}\\||-37^{k+1}+1)\\|\times|(37^{36k+18}+37^{35k+18}+19\cdot 37^{34k+17}+7\cdot 37^{33k+17}+79\cdot 37^{32k+16}\\||+21\cdot 37^{31k+16}+183\cdot 37^{30k+15}+39\cdot 37^{29k+15}+285\cdot 37^{28k+14}+53\cdot 37^{27k+14}\\||+349\cdot 37^{26k+13}+61\cdot 37^{25k+13}+397\cdot 37^{24k+12}+71\cdot 37^{23k+12}+477\cdot 37^{22k+11}\\||+87\cdot 37^{21k+11}+579\cdot 37^{20k+10}+101\cdot 37^{19k+10}+627\cdot 37^{18k+9}+101\cdot 37^{17k+9}\\||+579\cdot 37^{16k+8}+87\cdot 37^{15k+8}+477\cdot 37^{14k+7}+71\cdot 37^{13k+7}+397\cdot 37^{12k+6}\\||+61\cdot 37^{11k+6}+349\cdot 37^{10k+5}+53\cdot 37^{9k+5}+285\cdot 37^{8k+4}+39\cdot 37^{7k+4}\\||+183\cdot 37^{6k+3}+21\cdot 37^{5k+3}+79\cdot 37^{4k+2}+7\cdot 37^{3k+2}+19\cdot 37^{2k+1}\\||+37^{k+1}+1)\\{\large\Phi}_{76}(38^{2k+1})|=|38^{72k+36}-38^{68k+34}+38^{64k+32}-38^{60k+30}+38^{56k+28}\\||-38^{52k+26}+38^{48k+24}-38^{44k+22}+38^{40k+20}-38^{36k+18}\\||+38^{32k+16}-38^{28k+14}+38^{24k+12}-38^{20k+10}+38^{16k+8}\\||-38^{12k+6}+38^{8k+4}-38^{4k+2}+1\\|=|(38^{36k+18}-38^{35k+18}+19\cdot 38^{34k+17}-6\cdot 38^{33k+17}+47\cdot 38^{32k+16}\\||-5\cdot 38^{31k+16}-19\cdot 38^{30k+15}+14\cdot 38^{29k+15}-135\cdot 38^{28k+14}+21\cdot 38^{27k+14}\\||-57\cdot 38^{26k+13}-10\cdot 38^{25k+13}+179\cdot 38^{24k+12}-39\cdot 38^{23k+12}+209\cdot 38^{22k+11}\\||-14\cdot 38^{21k+11}-83\cdot 38^{20k+10}+37\cdot 38^{19k+10}-285\cdot 38^{18k+9}+37\cdot 38^{17k+9}\\||-83\cdot 38^{16k+8}-14\cdot 38^{15k+8}+209\cdot 38^{14k+7}-39\cdot 38^{13k+7}+179\cdot 38^{12k+6}\\||-10\cdot 38^{11k+6}-57\cdot 38^{10k+5}+21\cdot 38^{9k+5}-135\cdot 38^{8k+4}+14\cdot 38^{7k+4}\\||-19\cdot 38^{6k+3}-5\cdot 38^{5k+3}+47\cdot 38^{4k+2}-6\cdot 38^{3k+2}+19\cdot 38^{2k+1}\\||-38^{k+1}+1)\\|\times|(38^{36k+18}+38^{35k+18}+19\cdot 38^{34k+17}+6\cdot 38^{33k+17}+47\cdot 38^{32k+16}\\||+5\cdot 38^{31k+16}-19\cdot 38^{30k+15}-14\cdot 38^{29k+15}-135\cdot 38^{28k+14}-21\cdot 38^{27k+14}\\||-57\cdot 38^{26k+13}+10\cdot 38^{25k+13}+179\cdot 38^{24k+12}+39\cdot 38^{23k+12}+209\cdot 38^{22k+11}\\||+14\cdot 38^{21k+11}-83\cdot 38^{20k+10}-37\cdot 38^{19k+10}-285\cdot 38^{18k+9}-37\cdot 38^{17k+9}\\||-83\cdot 38^{16k+8}+14\cdot 38^{15k+8}+209\cdot 38^{14k+7}+39\cdot 38^{13k+7}+179\cdot 38^{12k+6}\\||+10\cdot 38^{11k+6}-57\cdot 38^{10k+5}-21\cdot 38^{9k+5}-135\cdot 38^{8k+4}-14\cdot 38^{7k+4}\\||-19\cdot 38^{6k+3}+5\cdot 38^{5k+3}+47\cdot 38^{4k+2}+6\cdot 38^{3k+2}+19\cdot 38^{2k+1}\\||+38^{k+1}+1)\\{\large\Phi}_{78}(39^{2k+1})|=|39^{48k+24}+39^{46k+23}-39^{42k+21}-39^{40k+20}+39^{36k+18}\\||+39^{34k+17}-39^{30k+15}-39^{28k+14}+39^{24k+12}-39^{20k+10}\\||-39^{18k+9}+39^{14k+7}+39^{12k+6}-39^{8k+4}-39^{6k+3}\\||+39^{2k+1}+1\\|=|(39^{24k+12}-39^{23k+12}+20\cdot 39^{22k+11}-7\cdot 39^{21k+11}+73\cdot 39^{20k+10}\\||-16\cdot 39^{19k+10}+119\cdot 39^{18k+9}-21\cdot 39^{17k+9}+142\cdot 39^{16k+8}-25\cdot 39^{15k+8}\\||+173\cdot 39^{14k+7}-30\cdot 39^{13k+7}+193\cdot 39^{12k+6}-30\cdot 39^{11k+6}+173\cdot 39^{10k+5}\\||-25\cdot 39^{9k+5}+142\cdot 39^{8k+4}-21\cdot 39^{7k+4}+119\cdot 39^{6k+3}-16\cdot 39^{5k+3}\\||+73\cdot 39^{4k+2}-7\cdot 39^{3k+2}+20\cdot 39^{2k+1}-39^{k+1}+1)\\|\times|(39^{24k+12}+39^{23k+12}+20\cdot 39^{22k+11}+7\cdot 39^{21k+11}+73\cdot 39^{20k+10}\\||+16\cdot 39^{19k+10}+119\cdot 39^{18k+9}+21\cdot 39^{17k+9}+142\cdot 39^{16k+8}+25\cdot 39^{15k+8}\\||+173\cdot 39^{14k+7}+30\cdot 39^{13k+7}+193\cdot 39^{12k+6}+30\cdot 39^{11k+6}+173\cdot 39^{10k+5}\\||+25\cdot 39^{9k+5}+142\cdot 39^{8k+4}+21\cdot 39^{7k+4}+119\cdot 39^{6k+3}+16\cdot 39^{5k+3}\\||+73\cdot 39^{4k+2}+7\cdot 39^{3k+2}+20\cdot 39^{2k+1}+39^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{41}(41^{2k+1})\cdots{\large\Phi}_{94}(47^{2k+1})$${\large\Phi}_{41}(41^{2k+1})\cdots{\large\Phi}_{94}(47^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{41}(41^{2k+1})|=|41^{80k+40}+41^{78k+39}+41^{76k+38}+41^{74k+37}+41^{72k+36}\\||+41^{70k+35}+41^{68k+34}+41^{66k+33}+41^{64k+32}+41^{62k+31}\\||+41^{60k+30}+41^{58k+29}+41^{56k+28}+41^{54k+27}+41^{52k+26}\\||+41^{50k+25}+41^{48k+24}+41^{46k+23}+41^{44k+22}+41^{42k+21}\\||+41^{40k+20}+41^{38k+19}+41^{36k+18}+41^{34k+17}+41^{32k+16}\\||+41^{30k+15}+41^{28k+14}+41^{26k+13}+41^{24k+12}+41^{22k+11}\\||+41^{20k+10}+41^{18k+9}+41^{16k+8}+41^{14k+7}+41^{12k+6}\\||+41^{10k+5}+41^{8k+4}+41^{6k+3}+41^{4k+2}+41^{2k+1}+1\\|=|(41^{40k+20}-41^{39k+20}+21\cdot 41^{38k+19}-7\cdot 41^{37k+19}+67\cdot 41^{36k+18}\\||-11\cdot 41^{35k+18}+49\cdot 41^{34k+17}-3\cdot 41^{33k+17}+7\cdot 41^{32k+16}-3\cdot 41^{31k+16}\\||+35\cdot 41^{30k+15}-5\cdot 41^{29k+15}+15\cdot 41^{28k+14}-41^{27k+14}+11\cdot 41^{26k+13}\\||-41^{25k+13}-23\cdot 41^{24k+12}+9\cdot 41^{23k+12}-65\cdot 41^{22k+11}+7\cdot 41^{21k+11}\\||-31\cdot 41^{20k+10}+7\cdot 41^{19k+10}-65\cdot 41^{18k+9}+9\cdot 41^{17k+9}-23\cdot 41^{16k+8}\\||-41^{15k+8}+11\cdot 41^{14k+7}-41^{13k+7}+15\cdot 41^{12k+6}-5\cdot 41^{11k+6}\\||+35\cdot 41^{10k+5}-3\cdot 41^{9k+5}+7\cdot 41^{8k+4}-3\cdot 41^{7k+4}+49\cdot 41^{6k+3}\\||-11\cdot 41^{5k+3}+67\cdot 41^{4k+2}-7\cdot 41^{3k+2}+21\cdot 41^{2k+1}-41^{k+1}+1)\\|\times|(41^{40k+20}+41^{39k+20}+21\cdot 41^{38k+19}+7\cdot 41^{37k+19}+67\cdot 41^{36k+18}\\||+11\cdot 41^{35k+18}+49\cdot 41^{34k+17}+3\cdot 41^{33k+17}+7\cdot 41^{32k+16}+3\cdot 41^{31k+16}\\||+35\cdot 41^{30k+15}+5\cdot 41^{29k+15}+15\cdot 41^{28k+14}+41^{27k+14}+11\cdot 41^{26k+13}\\||+41^{25k+13}-23\cdot 41^{24k+12}-9\cdot 41^{23k+12}-65\cdot 41^{22k+11}-7\cdot 41^{21k+11}\\||-31\cdot 41^{20k+10}-7\cdot 41^{19k+10}-65\cdot 41^{18k+9}-9\cdot 41^{17k+9}-23\cdot 41^{16k+8}\\||+41^{15k+8}+11\cdot 41^{14k+7}+41^{13k+7}+15\cdot 41^{12k+6}+5\cdot 41^{11k+6}\\||+35\cdot 41^{10k+5}+3\cdot 41^{9k+5}+7\cdot 41^{8k+4}+3\cdot 41^{7k+4}+49\cdot 41^{6k+3}\\||+11\cdot 41^{5k+3}+67\cdot 41^{4k+2}+7\cdot 41^{3k+2}+21\cdot 41^{2k+1}+41^{k+1}+1)\\{\large\Phi}_{84}(42^{2k+1})|=|42^{48k+24}+42^{44k+22}-42^{36k+18}-42^{32k+16}+42^{24k+12}\\||-42^{16k+8}-42^{12k+6}+42^{4k+2}+1\\|=|(42^{24k+12}-42^{23k+12}+21\cdot 42^{22k+11}-7\cdot 42^{21k+11}+74\cdot 42^{20k+10}\\||-15\cdot 42^{19k+10}+105\cdot 42^{18k+9}-14\cdot 42^{17k+9}+55\cdot 42^{16k+8}-42^{15k+8}\\||-42\cdot 42^{14k+7}+12\cdot 42^{13k+7}-91\cdot 42^{12k+6}+12\cdot 42^{11k+6}-42\cdot 42^{10k+5}\\||-42^{9k+5}+55\cdot 42^{8k+4}-14\cdot 42^{7k+4}+105\cdot 42^{6k+3}-15\cdot 42^{5k+3}\\||+74\cdot 42^{4k+2}-7\cdot 42^{3k+2}+21\cdot 42^{2k+1}-42^{k+1}+1)\\|\times|(42^{24k+12}+42^{23k+12}+21\cdot 42^{22k+11}+7\cdot 42^{21k+11}+74\cdot 42^{20k+10}\\||+15\cdot 42^{19k+10}+105\cdot 42^{18k+9}+14\cdot 42^{17k+9}+55\cdot 42^{16k+8}+42^{15k+8}\\||-42\cdot 42^{14k+7}-12\cdot 42^{13k+7}-91\cdot 42^{12k+6}-12\cdot 42^{11k+6}-42\cdot 42^{10k+5}\\||+42^{9k+5}+55\cdot 42^{8k+4}+14\cdot 42^{7k+4}+105\cdot 42^{6k+3}+15\cdot 42^{5k+3}\\||+74\cdot 42^{4k+2}+7\cdot 42^{3k+2}+21\cdot 42^{2k+1}+42^{k+1}+1)\\{\large\Phi}_{86}(43^{2k+1})|=|43^{84k+42}-43^{82k+41}+43^{80k+40}-43^{78k+39}+43^{76k+38}\\||-43^{74k+37}+43^{72k+36}-43^{70k+35}+43^{68k+34}-43^{66k+33}\\||+43^{64k+32}-43^{62k+31}+43^{60k+30}-43^{58k+29}+43^{56k+28}\\||-43^{54k+27}+43^{52k+26}-43^{50k+25}+43^{48k+24}-43^{46k+23}\\||+43^{44k+22}-43^{42k+21}+43^{40k+20}-43^{38k+19}+43^{36k+18}\\||-43^{34k+17}+43^{32k+16}-43^{30k+15}+43^{28k+14}-43^{26k+13}\\||+43^{24k+12}-43^{22k+11}+43^{20k+10}-43^{18k+9}+43^{16k+8}\\||-43^{14k+7}+43^{12k+6}-43^{10k+5}+43^{8k+4}-43^{6k+3}\\||+43^{4k+2}-43^{2k+1}+1\\|=|(43^{42k+21}-43^{41k+21}+21\cdot 43^{40k+20}-7\cdot 43^{39k+20}+81\cdot 43^{38k+19}\\||-19\cdot 43^{37k+19}+169\cdot 43^{36k+18}-31\cdot 43^{35k+18}+223\cdot 43^{34k+17}-35\cdot 43^{33k+17}\\||+225\cdot 43^{32k+16}-33\cdot 43^{31k+16}+213\cdot 43^{30k+15}-33\cdot 43^{29k+15}+223\cdot 43^{28k+14}\\||-35\cdot 43^{27k+14}+229\cdot 43^{26k+13}-33\cdot 43^{25k+13}+197\cdot 43^{24k+12}-27\cdot 43^{23k+12}\\||+159\cdot 43^{22k+11}-23\cdot 43^{21k+11}+159\cdot 43^{20k+10}-27\cdot 43^{19k+10}+197\cdot 43^{18k+9}\\||-33\cdot 43^{17k+9}+229\cdot 43^{16k+8}-35\cdot 43^{15k+8}+223\cdot 43^{14k+7}-33\cdot 43^{13k+7}\\||+213\cdot 43^{12k+6}-33\cdot 43^{11k+6}+225\cdot 43^{10k+5}-35\cdot 43^{9k+5}+223\cdot 43^{8k+4}\\||-31\cdot 43^{7k+4}+169\cdot 43^{6k+3}-19\cdot 43^{5k+3}+81\cdot 43^{4k+2}-7\cdot 43^{3k+2}\\||+21\cdot 43^{2k+1}-43^{k+1}+1)\\|\times|(43^{42k+21}+43^{41k+21}+21\cdot 43^{40k+20}+7\cdot 43^{39k+20}+81\cdot 43^{38k+19}\\||+19\cdot 43^{37k+19}+169\cdot 43^{36k+18}+31\cdot 43^{35k+18}+223\cdot 43^{34k+17}+35\cdot 43^{33k+17}\\||+225\cdot 43^{32k+16}+33\cdot 43^{31k+16}+213\cdot 43^{30k+15}+33\cdot 43^{29k+15}+223\cdot 43^{28k+14}\\||+35\cdot 43^{27k+14}+229\cdot 43^{26k+13}+33\cdot 43^{25k+13}+197\cdot 43^{24k+12}+27\cdot 43^{23k+12}\\||+159\cdot 43^{22k+11}+23\cdot 43^{21k+11}+159\cdot 43^{20k+10}+27\cdot 43^{19k+10}+197\cdot 43^{18k+9}\\||+33\cdot 43^{17k+9}+229\cdot 43^{16k+8}+35\cdot 43^{15k+8}+223\cdot 43^{14k+7}+33\cdot 43^{13k+7}\\||+213\cdot 43^{12k+6}+33\cdot 43^{11k+6}+225\cdot 43^{10k+5}+35\cdot 43^{9k+5}+223\cdot 43^{8k+4}\\||+31\cdot 43^{7k+4}+169\cdot 43^{6k+3}+19\cdot 43^{5k+3}+81\cdot 43^{4k+2}+7\cdot 43^{3k+2}\\||+21\cdot 43^{2k+1}+43^{k+1}+1)\\{\large\Phi}_{92}(46^{2k+1})|=|46^{88k+44}-46^{84k+42}+46^{80k+40}-46^{76k+38}+46^{72k+36}\\||-46^{68k+34}+46^{64k+32}-46^{60k+30}+46^{56k+28}-46^{52k+26}\\||+46^{48k+24}-46^{44k+22}+46^{40k+20}-46^{36k+18}+46^{32k+16}\\||-46^{28k+14}+46^{24k+12}-46^{20k+10}+46^{16k+8}-46^{12k+6}\\||+46^{8k+4}-46^{4k+2}+1\\|=|(46^{44k+22}-46^{43k+22}+23\cdot 46^{42k+21}-8\cdot 46^{41k+21}+103\cdot 46^{40k+20}\\||-25\cdot 46^{39k+20}+253\cdot 46^{38k+19}-52\cdot 46^{37k+19}+469\cdot 46^{36k+18}-89\cdot 46^{35k+18}\\||+759\cdot 46^{34k+17}-138\cdot 46^{33k+17}+1131\cdot 46^{32k+16}-197\cdot 46^{31k+16}+1541\cdot 46^{30k+15}\\||-256\cdot 46^{29k+15}+1917\cdot 46^{28k+14}-307\cdot 46^{27k+14}+2231\cdot 46^{26k+13}-348\cdot 46^{25k+13}\\||+2463\cdot 46^{24k+12}-373\cdot 46^{23k+12}+2553\cdot 46^{22k+11}-373\cdot 46^{21k+11}+2463\cdot 46^{20k+10}\\||-348\cdot 46^{19k+10}+2231\cdot 46^{18k+9}-307\cdot 46^{17k+9}+1917\cdot 46^{16k+8}-256\cdot 46^{15k+8}\\||+1541\cdot 46^{14k+7}-197\cdot 46^{13k+7}+1131\cdot 46^{12k+6}-138\cdot 46^{11k+6}+759\cdot 46^{10k+5}\\||-89\cdot 46^{9k+5}+469\cdot 46^{8k+4}-52\cdot 46^{7k+4}+253\cdot 46^{6k+3}-25\cdot 46^{5k+3}\\||+103\cdot 46^{4k+2}-8\cdot 46^{3k+2}+23\cdot 46^{2k+1}-46^{k+1}+1)\\|\times|(46^{44k+22}+46^{43k+22}+23\cdot 46^{42k+21}+8\cdot 46^{41k+21}+103\cdot 46^{40k+20}\\||+25\cdot 46^{39k+20}+253\cdot 46^{38k+19}+52\cdot 46^{37k+19}+469\cdot 46^{36k+18}+89\cdot 46^{35k+18}\\||+759\cdot 46^{34k+17}+138\cdot 46^{33k+17}+1131\cdot 46^{32k+16}+197\cdot 46^{31k+16}+1541\cdot 46^{30k+15}\\||+256\cdot 46^{29k+15}+1917\cdot 46^{28k+14}+307\cdot 46^{27k+14}+2231\cdot 46^{26k+13}+348\cdot 46^{25k+13}\\||+2463\cdot 46^{24k+12}+373\cdot 46^{23k+12}+2553\cdot 46^{22k+11}+373\cdot 46^{21k+11}+2463\cdot 46^{20k+10}\\||+348\cdot 46^{19k+10}+2231\cdot 46^{18k+9}+307\cdot 46^{17k+9}+1917\cdot 46^{16k+8}+256\cdot 46^{15k+8}\\||+1541\cdot 46^{14k+7}+197\cdot 46^{13k+7}+1131\cdot 46^{12k+6}+138\cdot 46^{11k+6}+759\cdot 46^{10k+5}\\||+89\cdot 46^{9k+5}+469\cdot 46^{8k+4}+52\cdot 46^{7k+4}+253\cdot 46^{6k+3}+25\cdot 46^{5k+3}\\||+103\cdot 46^{4k+2}+8\cdot 46^{3k+2}+23\cdot 46^{2k+1}+46^{k+1}+1)\\{\large\Phi}_{94}(47^{2k+1})|=|47^{92k+46}-47^{90k+45}+47^{88k+44}-47^{86k+43}+47^{84k+42}\\||-47^{82k+41}+47^{80k+40}-47^{78k+39}+47^{76k+38}-47^{74k+37}\\||+47^{72k+36}-47^{70k+35}+47^{68k+34}-47^{66k+33}+47^{64k+32}\\||-47^{62k+31}+47^{60k+30}-47^{58k+29}+47^{56k+28}-47^{54k+27}\\||+47^{52k+26}-47^{50k+25}+47^{48k+24}-47^{46k+23}+47^{44k+22}\\||-47^{42k+21}+47^{40k+20}-47^{38k+19}+47^{36k+18}-47^{34k+17}\\||+47^{32k+16}-47^{30k+15}+47^{28k+14}-47^{26k+13}+47^{24k+12}\\||-47^{22k+11}+47^{20k+10}-47^{18k+9}+47^{16k+8}-47^{14k+7}\\||+47^{12k+6}-47^{10k+5}+47^{8k+4}-47^{6k+3}+47^{4k+2}\\||-47^{2k+1}+1\\|=|(47^{46k+23}-47^{45k+23}+23\cdot 47^{44k+22}-7\cdot 47^{43k+22}+65\cdot 47^{42k+21}\\||-7\cdot 47^{41k+21}-15\cdot 47^{40k+20}+15\cdot 47^{39k+20}-169\cdot 47^{38k+19}+25\cdot 47^{37k+19}\\||-97\cdot 47^{36k+18}-5\cdot 47^{35k+18}+179\cdot 47^{34k+17}-41\cdot 47^{33k+17}+287\cdot 47^{32k+16}\\||-25\cdot 47^{31k+16}-37\cdot 47^{30k+15}+37\cdot 47^{29k+15}-375\cdot 47^{28k+14}+49\cdot 47^{27k+14}\\||-149\cdot 47^{26k+13}-15\cdot 47^{25k+13}+311\cdot 47^{24k+12}-57\cdot 47^{23k+12}+311\cdot 47^{22k+11}\\||-15\cdot 47^{21k+11}-149\cdot 47^{20k+10}+49\cdot 47^{19k+10}-375\cdot 47^{18k+9}+37\cdot 47^{17k+9}\\||-37\cdot 47^{16k+8}-25\cdot 47^{15k+8}+287\cdot 47^{14k+7}-41\cdot 47^{13k+7}+179\cdot 47^{12k+6}\\||-5\cdot 47^{11k+6}-97\cdot 47^{10k+5}+25\cdot 47^{9k+5}-169\cdot 47^{8k+4}+15\cdot 47^{7k+4}\\||-15\cdot 47^{6k+3}-7\cdot 47^{5k+3}+65\cdot 47^{4k+2}-7\cdot 47^{3k+2}+23\cdot 47^{2k+1}\\||-47^{k+1}+1)\\|\times|(47^{46k+23}+47^{45k+23}+23\cdot 47^{44k+22}+7\cdot 47^{43k+22}+65\cdot 47^{42k+21}\\||+7\cdot 47^{41k+21}-15\cdot 47^{40k+20}-15\cdot 47^{39k+20}-169\cdot 47^{38k+19}-25\cdot 47^{37k+19}\\||-97\cdot 47^{36k+18}+5\cdot 47^{35k+18}+179\cdot 47^{34k+17}+41\cdot 47^{33k+17}+287\cdot 47^{32k+16}\\||+25\cdot 47^{31k+16}-37\cdot 47^{30k+15}-37\cdot 47^{29k+15}-375\cdot 47^{28k+14}-49\cdot 47^{27k+14}\\||-149\cdot 47^{26k+13}+15\cdot 47^{25k+13}+311\cdot 47^{24k+12}+57\cdot 47^{23k+12}+311\cdot 47^{22k+11}\\||+15\cdot 47^{21k+11}-149\cdot 47^{20k+10}-49\cdot 47^{19k+10}-375\cdot 47^{18k+9}-37\cdot 47^{17k+9}\\||-37\cdot 47^{16k+8}+25\cdot 47^{15k+8}+287\cdot 47^{14k+7}+41\cdot 47^{13k+7}+179\cdot 47^{12k+6}\\||+5\cdot 47^{11k+6}-97\cdot 47^{10k+5}-25\cdot 47^{9k+5}-169\cdot 47^{8k+4}-15\cdot 47^{7k+4}\\||-15\cdot 47^{6k+3}+7\cdot 47^{5k+3}+65\cdot 47^{4k+2}+7\cdot 47^{3k+2}+23\cdot 47^{2k+1}\\||+47^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{102}(51^{2k+1})\cdots{\large\Phi}_{118}(59^{2k+1})$${\large\Phi}_{102}(51^{2k+1})\cdots{\large\Phi}_{118}(59^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{102}(51^{2k+1})|=|51^{64k+32}+51^{62k+31}-51^{58k+29}-51^{56k+28}+51^{52k+26}\\||+51^{50k+25}-51^{46k+23}-51^{44k+22}+51^{40k+20}+51^{38k+19}\\||-51^{34k+17}-51^{32k+16}-51^{30k+15}+51^{26k+13}+51^{24k+12}\\||-51^{20k+10}-51^{18k+9}+51^{14k+7}+51^{12k+6}-51^{8k+4}\\||-51^{6k+3}+51^{2k+1}+1\\|=|(51^{32k+16}-51^{31k+16}+26\cdot 51^{30k+15}-9\cdot 51^{29k+15}+121\cdot 51^{28k+14}\\||-26\cdot 51^{27k+14}+245\cdot 51^{26k+13}-41\cdot 51^{25k+13}+334\cdot 51^{24k+12}-53\cdot 51^{23k+12}\\||+431\cdot 51^{22k+11}-68\cdot 51^{21k+11}+529\cdot 51^{20k+10}-77\cdot 51^{19k+10}+548\cdot 51^{18k+9}\\||-75\cdot 51^{17k+9}+529\cdot 51^{16k+8}-75\cdot 51^{15k+8}+548\cdot 51^{14k+7}-77\cdot 51^{13k+7}\\||+529\cdot 51^{12k+6}-68\cdot 51^{11k+6}+431\cdot 51^{10k+5}-53\cdot 51^{9k+5}+334\cdot 51^{8k+4}\\||-41\cdot 51^{7k+4}+245\cdot 51^{6k+3}-26\cdot 51^{5k+3}+121\cdot 51^{4k+2}-9\cdot 51^{3k+2}\\||+26\cdot 51^{2k+1}-51^{k+1}+1)\\|\times|(51^{32k+16}+51^{31k+16}+26\cdot 51^{30k+15}+9\cdot 51^{29k+15}+121\cdot 51^{28k+14}\\||+26\cdot 51^{27k+14}+245\cdot 51^{26k+13}+41\cdot 51^{25k+13}+334\cdot 51^{24k+12}+53\cdot 51^{23k+12}\\||+431\cdot 51^{22k+11}+68\cdot 51^{21k+11}+529\cdot 51^{20k+10}+77\cdot 51^{19k+10}+548\cdot 51^{18k+9}\\||+75\cdot 51^{17k+9}+529\cdot 51^{16k+8}+75\cdot 51^{15k+8}+548\cdot 51^{14k+7}+77\cdot 51^{13k+7}\\||+529\cdot 51^{12k+6}+68\cdot 51^{11k+6}+431\cdot 51^{10k+5}+53\cdot 51^{9k+5}+334\cdot 51^{8k+4}\\||+41\cdot 51^{7k+4}+245\cdot 51^{6k+3}+26\cdot 51^{5k+3}+121\cdot 51^{4k+2}+9\cdot 51^{3k+2}\\||+26\cdot 51^{2k+1}+51^{k+1}+1)\\{\large\Phi}_{53}(53^{2k+1})|=|53^{104k+52}+53^{102k+51}+53^{100k+50}+53^{98k+49}+53^{96k+48}\\||+53^{94k+47}+53^{92k+46}+53^{90k+45}+53^{88k+44}+53^{86k+43}\\||+53^{84k+42}+53^{82k+41}+53^{80k+40}+53^{78k+39}+53^{76k+38}\\||+53^{74k+37}+53^{72k+36}+53^{70k+35}+53^{68k+34}+53^{66k+33}\\||+53^{64k+32}+53^{62k+31}+53^{60k+30}+53^{58k+29}+53^{56k+28}\\||+53^{54k+27}+53^{52k+26}+53^{50k+25}+53^{48k+24}+53^{46k+23}\\||+53^{44k+22}+53^{42k+21}+53^{40k+20}+53^{38k+19}+53^{36k+18}\\||+53^{34k+17}+53^{32k+16}+53^{30k+15}+53^{28k+14}+53^{26k+13}\\||+53^{24k+12}+53^{22k+11}+53^{20k+10}+53^{18k+9}+53^{16k+8}\\||+53^{14k+7}+53^{12k+6}+53^{10k+5}+53^{8k+4}+53^{6k+3}\\||+53^{4k+2}+53^{2k+1}+1\\|=|(53^{52k+26}-53^{51k+26}+27\cdot 53^{50k+25}-9\cdot 53^{49k+25}+113\cdot 53^{48k+24}\\||-19\cdot 53^{47k+24}+103\cdot 53^{46k+23}+53^{45k+23}-155\cdot 53^{44k+22}+35\cdot 53^{43k+22}\\||-219\cdot 53^{42k+21}+3\cdot 53^{41k+21}+263\cdot 53^{40k+20}-67\cdot 53^{39k+20}+513\cdot 53^{38k+19}\\||-41\cdot 53^{37k+19}-59\cdot 53^{36k+18}+51\cdot 53^{35k+18}-465\cdot 53^{34k+17}+39\cdot 53^{33k+17}\\||+75\cdot 53^{32k+16}-57\cdot 53^{31k+16}+551\cdot 53^{30k+15}-57\cdot 53^{29k+15}+93\cdot 53^{28k+14}\\||+31\cdot 53^{27k+14}-357\cdot 53^{26k+13}+31\cdot 53^{25k+13}+93\cdot 53^{24k+12}-57\cdot 53^{23k+12}\\||+551\cdot 53^{22k+11}-57\cdot 53^{21k+11}+75\cdot 53^{20k+10}+39\cdot 53^{19k+10}-465\cdot 53^{18k+9}\\||+51\cdot 53^{17k+9}-59\cdot 53^{16k+8}-41\cdot 53^{15k+8}+513\cdot 53^{14k+7}-67\cdot 53^{13k+7}\\||+263\cdot 53^{12k+6}+3\cdot 53^{11k+6}-219\cdot 53^{10k+5}+35\cdot 53^{9k+5}-155\cdot 53^{8k+4}\\||+53^{7k+4}+103\cdot 53^{6k+3}-19\cdot 53^{5k+3}+113\cdot 53^{4k+2}-9\cdot 53^{3k+2}\\||+27\cdot 53^{2k+1}-53^{k+1}+1)\\|\times|(53^{52k+26}+53^{51k+26}+27\cdot 53^{50k+25}+9\cdot 53^{49k+25}+113\cdot 53^{48k+24}\\||+19\cdot 53^{47k+24}+103\cdot 53^{46k+23}-53^{45k+23}-155\cdot 53^{44k+22}-35\cdot 53^{43k+22}\\||-219\cdot 53^{42k+21}-3\cdot 53^{41k+21}+263\cdot 53^{40k+20}+67\cdot 53^{39k+20}+513\cdot 53^{38k+19}\\||+41\cdot 53^{37k+19}-59\cdot 53^{36k+18}-51\cdot 53^{35k+18}-465\cdot 53^{34k+17}-39\cdot 53^{33k+17}\\||+75\cdot 53^{32k+16}+57\cdot 53^{31k+16}+551\cdot 53^{30k+15}+57\cdot 53^{29k+15}+93\cdot 53^{28k+14}\\||-31\cdot 53^{27k+14}-357\cdot 53^{26k+13}-31\cdot 53^{25k+13}+93\cdot 53^{24k+12}+57\cdot 53^{23k+12}\\||+551\cdot 53^{22k+11}+57\cdot 53^{21k+11}+75\cdot 53^{20k+10}-39\cdot 53^{19k+10}-465\cdot 53^{18k+9}\\||-51\cdot 53^{17k+9}-59\cdot 53^{16k+8}+41\cdot 53^{15k+8}+513\cdot 53^{14k+7}+67\cdot 53^{13k+7}\\||+263\cdot 53^{12k+6}-3\cdot 53^{11k+6}-219\cdot 53^{10k+5}-35\cdot 53^{9k+5}-155\cdot 53^{8k+4}\\||-53^{7k+4}+103\cdot 53^{6k+3}+19\cdot 53^{5k+3}+113\cdot 53^{4k+2}+9\cdot 53^{3k+2}\\||+27\cdot 53^{2k+1}+53^{k+1}+1)\\{\large\Phi}_{110}(55^{2k+1})|=|55^{80k+40}+55^{78k+39}-55^{70k+35}-55^{68k+34}+55^{60k+30}\\||-55^{56k+28}-55^{50k+25}+55^{46k+23}+55^{40k+20}+55^{34k+17}\\||-55^{30k+15}-55^{24k+12}+55^{20k+10}-55^{12k+6}-55^{10k+5}\\||+55^{2k+1}+1\\|=|(55^{40k+20}-55^{39k+20}+28\cdot 55^{38k+19}-10\cdot 55^{37k+19}+158\cdot 55^{36k+18}\\||-39\cdot 55^{35k+18}+471\cdot 55^{34k+17}-94\cdot 55^{33k+17}+950\cdot 55^{32k+16}-162\cdot 55^{31k+16}\\||+1419\cdot 55^{30k+15}-212\cdot 55^{29k+15}+1637\cdot 55^{28k+14}-216\cdot 55^{27k+14}+1472\cdot 55^{26k+13}\\||-171\cdot 55^{25k+13}+1024\cdot 55^{24k+12}-105\cdot 55^{23k+12}+570\cdot 55^{22k+11}-58\cdot 55^{21k+11}\\||+381\cdot 55^{20k+10}-58\cdot 55^{19k+10}+570\cdot 55^{18k+9}-105\cdot 55^{17k+9}+1024\cdot 55^{16k+8}\\||-171\cdot 55^{15k+8}+1472\cdot 55^{14k+7}-216\cdot 55^{13k+7}+1637\cdot 55^{12k+6}-212\cdot 55^{11k+6}\\||+1419\cdot 55^{10k+5}-162\cdot 55^{9k+5}+950\cdot 55^{8k+4}-94\cdot 55^{7k+4}+471\cdot 55^{6k+3}\\||-39\cdot 55^{5k+3}+158\cdot 55^{4k+2}-10\cdot 55^{3k+2}+28\cdot 55^{2k+1}-55^{k+1}+1)\\|\times|(55^{40k+20}+55^{39k+20}+28\cdot 55^{38k+19}+10\cdot 55^{37k+19}+158\cdot 55^{36k+18}\\||+39\cdot 55^{35k+18}+471\cdot 55^{34k+17}+94\cdot 55^{33k+17}+950\cdot 55^{32k+16}+162\cdot 55^{31k+16}\\||+1419\cdot 55^{30k+15}+212\cdot 55^{29k+15}+1637\cdot 55^{28k+14}+216\cdot 55^{27k+14}+1472\cdot 55^{26k+13}\\||+171\cdot 55^{25k+13}+1024\cdot 55^{24k+12}+105\cdot 55^{23k+12}+570\cdot 55^{22k+11}+58\cdot 55^{21k+11}\\||+381\cdot 55^{20k+10}+58\cdot 55^{19k+10}+570\cdot 55^{18k+9}+105\cdot 55^{17k+9}+1024\cdot 55^{16k+8}\\||+171\cdot 55^{15k+8}+1472\cdot 55^{14k+7}+216\cdot 55^{13k+7}+1637\cdot 55^{12k+6}+212\cdot 55^{11k+6}\\||+1419\cdot 55^{10k+5}+162\cdot 55^{9k+5}+950\cdot 55^{8k+4}+94\cdot 55^{7k+4}+471\cdot 55^{6k+3}\\||+39\cdot 55^{5k+3}+158\cdot 55^{4k+2}+10\cdot 55^{3k+2}+28\cdot 55^{2k+1}+55^{k+1}+1)\\{\large\Phi}_{57}(57^{2k+1})|=|57^{72k+36}-57^{70k+35}+57^{66k+33}-57^{64k+32}+57^{60k+30}\\||-57^{58k+29}+57^{54k+27}-57^{52k+26}+57^{48k+24}-57^{46k+23}\\||+57^{42k+21}-57^{40k+20}+57^{36k+18}-57^{32k+16}+57^{30k+15}\\||-57^{26k+13}+57^{24k+12}-57^{20k+10}+57^{18k+9}-57^{14k+7}\\||+57^{12k+6}-57^{8k+4}+57^{6k+3}-57^{2k+1}+1\\|=|(57^{36k+18}-57^{35k+18}+28\cdot 57^{34k+17}-9\cdot 57^{33k+17}+121\cdot 57^{32k+16}\\||-22\cdot 57^{31k+16}+175\cdot 57^{30k+15}-17\cdot 57^{29k+15}+34\cdot 57^{28k+14}+9\cdot 57^{27k+14}\\||-125\cdot 57^{26k+13}+14\cdot 57^{25k+13}-23\cdot 57^{24k+12}-9\cdot 57^{23k+12}+100\cdot 57^{22k+11}\\||-5\cdot 57^{21k+11}-95\cdot 57^{20k+10}+30\cdot 57^{19k+10}-281\cdot 57^{18k+9}+30\cdot 57^{17k+9}\\||-95\cdot 57^{16k+8}-5\cdot 57^{15k+8}+100\cdot 57^{14k+7}-9\cdot 57^{13k+7}-23\cdot 57^{12k+6}\\||+14\cdot 57^{11k+6}-125\cdot 57^{10k+5}+9\cdot 57^{9k+5}+34\cdot 57^{8k+4}-17\cdot 57^{7k+4}\\||+175\cdot 57^{6k+3}-22\cdot 57^{5k+3}+121\cdot 57^{4k+2}-9\cdot 57^{3k+2}+28\cdot 57^{2k+1}\\||-57^{k+1}+1)\\|\times|(57^{36k+18}+57^{35k+18}+28\cdot 57^{34k+17}+9\cdot 57^{33k+17}+121\cdot 57^{32k+16}\\||+22\cdot 57^{31k+16}+175\cdot 57^{30k+15}+17\cdot 57^{29k+15}+34\cdot 57^{28k+14}-9\cdot 57^{27k+14}\\||-125\cdot 57^{26k+13}-14\cdot 57^{25k+13}-23\cdot 57^{24k+12}+9\cdot 57^{23k+12}+100\cdot 57^{22k+11}\\||+5\cdot 57^{21k+11}-95\cdot 57^{20k+10}-30\cdot 57^{19k+10}-281\cdot 57^{18k+9}-30\cdot 57^{17k+9}\\||-95\cdot 57^{16k+8}+5\cdot 57^{15k+8}+100\cdot 57^{14k+7}+9\cdot 57^{13k+7}-23\cdot 57^{12k+6}\\||-14\cdot 57^{11k+6}-125\cdot 57^{10k+5}-9\cdot 57^{9k+5}+34\cdot 57^{8k+4}+17\cdot 57^{7k+4}\\||+175\cdot 57^{6k+3}+22\cdot 57^{5k+3}+121\cdot 57^{4k+2}+9\cdot 57^{3k+2}+28\cdot 57^{2k+1}\\||+57^{k+1}+1)\\{\large\Phi}_{116}(58^{2k+1})|=|58^{112k+56}-58^{108k+54}+58^{104k+52}-58^{100k+50}+58^{96k+48}\\||-58^{92k+46}+58^{88k+44}-58^{84k+42}+58^{80k+40}-58^{76k+38}\\||+58^{72k+36}-58^{68k+34}+58^{64k+32}-58^{60k+30}+58^{56k+28}\\||-58^{52k+26}+58^{48k+24}-58^{44k+22}+58^{40k+20}-58^{36k+18}\\||+58^{32k+16}-58^{28k+14}+58^{24k+12}-58^{20k+10}+58^{16k+8}\\||-58^{12k+6}+58^{8k+4}-58^{4k+2}+1\\|=|(58^{56k+28}-58^{55k+28}+29\cdot 58^{54k+27}-10\cdot 58^{53k+27}+159\cdot 58^{52k+26}\\||-37\cdot 58^{51k+26}+435\cdot 58^{50k+25}-78\cdot 58^{49k+25}+729\cdot 58^{48k+24}-107\cdot 58^{47k+24}\\||+841\cdot 58^{46k+23}-108\cdot 58^{45k+23}+799\cdot 58^{44k+22}-107\cdot 58^{43k+22}+899\cdot 58^{42k+21}\\||-138\cdot 58^{41k+21}+1233\cdot 58^{40k+20}-181\cdot 58^{39k+20}+1421\cdot 58^{38k+19}-174\cdot 58^{37k+19}\\||+1103\cdot 58^{36k+18}-107\cdot 58^{35k+18}+551\cdot 58^{34k+17}-52\cdot 58^{33k+17}+393\cdot 58^{32k+16}\\||-69\cdot 58^{31k+16}+725\cdot 58^{30k+15}-118\cdot 58^{29k+15}+967\cdot 58^{28k+14}-118\cdot 58^{27k+14}\\||+725\cdot 58^{26k+13}-69\cdot 58^{25k+13}+393\cdot 58^{24k+12}-52\cdot 58^{23k+12}+551\cdot 58^{22k+11}\\||-107\cdot 58^{21k+11}+1103\cdot 58^{20k+10}-174\cdot 58^{19k+10}+1421\cdot 58^{18k+9}-181\cdot 58^{17k+9}\\||+1233\cdot 58^{16k+8}-138\cdot 58^{15k+8}+899\cdot 58^{14k+7}-107\cdot 58^{13k+7}+799\cdot 58^{12k+6}\\||-108\cdot 58^{11k+6}+841\cdot 58^{10k+5}-107\cdot 58^{9k+5}+729\cdot 58^{8k+4}-78\cdot 58^{7k+4}\\||+435\cdot 58^{6k+3}-37\cdot 58^{5k+3}+159\cdot 58^{4k+2}-10\cdot 58^{3k+2}+29\cdot 58^{2k+1}\\||-58^{k+1}+1)\\|\times|(58^{56k+28}+58^{55k+28}+29\cdot 58^{54k+27}+10\cdot 58^{53k+27}+159\cdot 58^{52k+26}\\||+37\cdot 58^{51k+26}+435\cdot 58^{50k+25}+78\cdot 58^{49k+25}+729\cdot 58^{48k+24}+107\cdot 58^{47k+24}\\||+841\cdot 58^{46k+23}+108\cdot 58^{45k+23}+799\cdot 58^{44k+22}+107\cdot 58^{43k+22}+899\cdot 58^{42k+21}\\||+138\cdot 58^{41k+21}+1233\cdot 58^{40k+20}+181\cdot 58^{39k+20}+1421\cdot 58^{38k+19}+174\cdot 58^{37k+19}\\||+1103\cdot 58^{36k+18}+107\cdot 58^{35k+18}+551\cdot 58^{34k+17}+52\cdot 58^{33k+17}+393\cdot 58^{32k+16}\\||+69\cdot 58^{31k+16}+725\cdot 58^{30k+15}+118\cdot 58^{29k+15}+967\cdot 58^{28k+14}+118\cdot 58^{27k+14}\\||+725\cdot 58^{26k+13}+69\cdot 58^{25k+13}+393\cdot 58^{24k+12}+52\cdot 58^{23k+12}+551\cdot 58^{22k+11}\\||+107\cdot 58^{21k+11}+1103\cdot 58^{20k+10}+174\cdot 58^{19k+10}+1421\cdot 58^{18k+9}+181\cdot 58^{17k+9}\\||+1233\cdot 58^{16k+8}+138\cdot 58^{15k+8}+899\cdot 58^{14k+7}+107\cdot 58^{13k+7}+799\cdot 58^{12k+6}\\||+108\cdot 58^{11k+6}+841\cdot 58^{10k+5}+107\cdot 58^{9k+5}+729\cdot 58^{8k+4}+78\cdot 58^{7k+4}\\||+435\cdot 58^{6k+3}+37\cdot 58^{5k+3}+159\cdot 58^{4k+2}+10\cdot 58^{3k+2}+29\cdot 58^{2k+1}\\||+58^{k+1}+1)\\{\large\Phi}_{118}(59^{2k+1})|=|59^{116k+58}-59^{114k+57}+59^{112k+56}-59^{110k+55}+59^{108k+54}\\||-59^{106k+53}+59^{104k+52}-59^{102k+51}+59^{100k+50}-59^{98k+49}\\||+59^{96k+48}-59^{94k+47}+59^{92k+46}-59^{90k+45}+59^{88k+44}\\||-59^{86k+43}+59^{84k+42}-59^{82k+41}+59^{80k+40}-59^{78k+39}\\||+59^{76k+38}-59^{74k+37}+59^{72k+36}-59^{70k+35}+59^{68k+34}\\||-59^{66k+33}+59^{64k+32}-59^{62k+31}+59^{60k+30}-59^{58k+29}\\||+59^{56k+28}-59^{54k+27}+59^{52k+26}-59^{50k+25}+59^{48k+24}\\||-59^{46k+23}+59^{44k+22}-59^{42k+21}+59^{40k+20}-59^{38k+19}\\||+59^{36k+18}-59^{34k+17}+59^{32k+16}-59^{30k+15}+59^{28k+14}\\||-59^{26k+13}+59^{24k+12}-59^{22k+11}+59^{20k+10}-59^{18k+9}\\||+59^{16k+8}-59^{14k+7}+59^{12k+6}-59^{10k+5}+59^{8k+4}\\||-59^{6k+3}+59^{4k+2}-59^{2k+1}+1\\|=|(59^{58k+29}-59^{57k+29}+29\cdot 59^{56k+28}-9\cdot 59^{55k+28}+111\cdot 59^{54k+27}\\||-15\cdot 59^{53k+27}+55\cdot 59^{52k+26}+5\cdot 59^{51k+26}-85\cdot 59^{50k+25}+5\cdot 59^{49k+25}\\||+47\cdot 59^{48k+24}-9\cdot 59^{47k+24}+11\cdot 59^{46k+23}+3\cdot 59^{45k+23}+53\cdot 59^{44k+22}\\||-21\cdot 59^{43k+22}+131\cdot 59^{42k+21}+9\cdot 59^{41k+21}-245\cdot 59^{40k+20}+25\cdot 59^{39k+20}\\||+41\cdot 59^{38k+19}-25\cdot 59^{37k+19}+103\cdot 59^{36k+18}+11\cdot 59^{35k+18}-111\cdot 59^{34k+17}\\||-9\cdot 59^{33k+17}+227\cdot 59^{32k+16}-19\cdot 59^{31k+16}-103\cdot 59^{30k+15}+31\cdot 59^{29k+15}\\||-103\cdot 59^{28k+14}-19\cdot 59^{27k+14}+227\cdot 59^{26k+13}-9\cdot 59^{25k+13}-111\cdot 59^{24k+12}\\||+11\cdot 59^{23k+12}+103\cdot 59^{22k+11}-25\cdot 59^{21k+11}+41\cdot 59^{20k+10}+25\cdot 59^{19k+10}\\||-245\cdot 59^{18k+9}+9\cdot 59^{17k+9}+131\cdot 59^{16k+8}-21\cdot 59^{15k+8}+53\cdot 59^{14k+7}\\||+3\cdot 59^{13k+7}+11\cdot 59^{12k+6}-9\cdot 59^{11k+6}+47\cdot 59^{10k+5}+5\cdot 59^{9k+5}\\||-85\cdot 59^{8k+4}+5\cdot 59^{7k+4}+55\cdot 59^{6k+3}-15\cdot 59^{5k+3}+111\cdot 59^{4k+2}\\||-9\cdot 59^{3k+2}+29\cdot 59^{2k+1}-59^{k+1}+1)\\|\times|(59^{58k+29}+59^{57k+29}+29\cdot 59^{56k+28}+9\cdot 59^{55k+28}+111\cdot 59^{54k+27}\\||+15\cdot 59^{53k+27}+55\cdot 59^{52k+26}-5\cdot 59^{51k+26}-85\cdot 59^{50k+25}-5\cdot 59^{49k+25}\\||+47\cdot 59^{48k+24}+9\cdot 59^{47k+24}+11\cdot 59^{46k+23}-3\cdot 59^{45k+23}+53\cdot 59^{44k+22}\\||+21\cdot 59^{43k+22}+131\cdot 59^{42k+21}-9\cdot 59^{41k+21}-245\cdot 59^{40k+20}-25\cdot 59^{39k+20}\\||+41\cdot 59^{38k+19}+25\cdot 59^{37k+19}+103\cdot 59^{36k+18}-11\cdot 59^{35k+18}-111\cdot 59^{34k+17}\\||+9\cdot 59^{33k+17}+227\cdot 59^{32k+16}+19\cdot 59^{31k+16}-103\cdot 59^{30k+15}-31\cdot 59^{29k+15}\\||-103\cdot 59^{28k+14}+19\cdot 59^{27k+14}+227\cdot 59^{26k+13}+9\cdot 59^{25k+13}-111\cdot 59^{24k+12}\\||-11\cdot 59^{23k+12}+103\cdot 59^{22k+11}+25\cdot 59^{21k+11}+41\cdot 59^{20k+10}-25\cdot 59^{19k+10}\\||-245\cdot 59^{18k+9}-9\cdot 59^{17k+9}+131\cdot 59^{16k+8}+21\cdot 59^{15k+8}+53\cdot 59^{14k+7}\\||-3\cdot 59^{13k+7}+11\cdot 59^{12k+6}+9\cdot 59^{11k+6}+47\cdot 59^{10k+5}-5\cdot 59^{9k+5}\\||-85\cdot 59^{8k+4}-5\cdot 59^{7k+4}+55\cdot 59^{6k+3}+15\cdot 59^{5k+3}+111\cdot 59^{4k+2}\\||+9\cdot 59^{3k+2}+29\cdot 59^{2k+1}+59^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{61}(61^{2k+1})\cdots{\large\Phi}_{140}(70^{2k+1})$${\large\Phi}_{61}(61^{2k+1})\cdots{\large\Phi}_{140}(70^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{61}(61^{2k+1})|=|61^{120k+60}+61^{118k+59}+61^{116k+58}+61^{114k+57}+61^{112k+56}\\||+61^{110k+55}+61^{108k+54}+61^{106k+53}+61^{104k+52}+61^{102k+51}\\||+61^{100k+50}+61^{98k+49}+61^{96k+48}+61^{94k+47}+61^{92k+46}\\||+61^{90k+45}+61^{88k+44}+61^{86k+43}+61^{84k+42}+61^{82k+41}\\||+61^{80k+40}+61^{78k+39}+61^{76k+38}+61^{74k+37}+61^{72k+36}\\||+61^{70k+35}+61^{68k+34}+61^{66k+33}+61^{64k+32}+61^{62k+31}\\||+61^{60k+30}+61^{58k+29}+61^{56k+28}+61^{54k+27}+61^{52k+26}\\||+61^{50k+25}+61^{48k+24}+61^{46k+23}+61^{44k+22}+61^{42k+21}\\||+61^{40k+20}+61^{38k+19}+61^{36k+18}+61^{34k+17}+61^{32k+16}\\||+61^{30k+15}+61^{28k+14}+61^{26k+13}+61^{24k+12}+61^{22k+11}\\||+61^{20k+10}+61^{18k+9}+61^{16k+8}+61^{14k+7}+61^{12k+6}\\||+61^{10k+5}+61^{8k+4}+61^{6k+3}+61^{4k+2}+61^{2k+1}+1\\|=|(61^{60k+30}-61^{59k+30}+31\cdot 61^{58k+29}-11\cdot 61^{57k+29}+191\cdot 61^{56k+28}\\||-47\cdot 61^{55k+28}+637\cdot 61^{54k+27}-131\cdot 61^{53k+27}+1541\cdot 61^{52k+26}-281\cdot 61^{51k+26}\\||+2979\cdot 61^{50k+25}-497\cdot 61^{49k+25}+4881\cdot 61^{48k+24}-761\cdot 61^{47k+24}+7029\cdot 61^{46k+23}\\||-1037\cdot 61^{45k+23}+9125\cdot 61^{44k+22}-1291\cdot 61^{43k+22}+10953\cdot 61^{42k+21}-1501\cdot 61^{41k+21}\\||+12397\cdot 61^{40k+20}-1663\cdot 61^{39k+20}+13511\cdot 61^{38k+19}-1789\cdot 61^{37k+19}+14379\cdot 61^{36k+18}\\||-1887\cdot 61^{35k+18}+15053\cdot 61^{34k+17}-1961\cdot 61^{33k+17}+15511\cdot 61^{32k+16}-2001\cdot 61^{31k+16}\\||+15667\cdot 61^{30k+15}-2001\cdot 61^{29k+15}+15511\cdot 61^{28k+14}-1961\cdot 61^{27k+14}+15053\cdot 61^{26k+13}\\||-1887\cdot 61^{25k+13}+14379\cdot 61^{24k+12}-1789\cdot 61^{23k+12}+13511\cdot 61^{22k+11}-1663\cdot 61^{21k+11}\\||+12397\cdot 61^{20k+10}-1501\cdot 61^{19k+10}+10953\cdot 61^{18k+9}-1291\cdot 61^{17k+9}+9125\cdot 61^{16k+8}\\||-1037\cdot 61^{15k+8}+7029\cdot 61^{14k+7}-761\cdot 61^{13k+7}+4881\cdot 61^{12k+6}-497\cdot 61^{11k+6}\\||+2979\cdot 61^{10k+5}-281\cdot 61^{9k+5}+1541\cdot 61^{8k+4}-131\cdot 61^{7k+4}+637\cdot 61^{6k+3}\\||-47\cdot 61^{5k+3}+191\cdot 61^{4k+2}-11\cdot 61^{3k+2}+31\cdot 61^{2k+1}-61^{k+1}+1)\\|\times|(61^{60k+30}+61^{59k+30}+31\cdot 61^{58k+29}+11\cdot 61^{57k+29}+191\cdot 61^{56k+28}\\||+47\cdot 61^{55k+28}+637\cdot 61^{54k+27}+131\cdot 61^{53k+27}+1541\cdot 61^{52k+26}+281\cdot 61^{51k+26}\\||+2979\cdot 61^{50k+25}+497\cdot 61^{49k+25}+4881\cdot 61^{48k+24}+761\cdot 61^{47k+24}+7029\cdot 61^{46k+23}\\||+1037\cdot 61^{45k+23}+9125\cdot 61^{44k+22}+1291\cdot 61^{43k+22}+10953\cdot 61^{42k+21}+1501\cdot 61^{41k+21}\\||+12397\cdot 61^{40k+20}+1663\cdot 61^{39k+20}+13511\cdot 61^{38k+19}+1789\cdot 61^{37k+19}+14379\cdot 61^{36k+18}\\||+1887\cdot 61^{35k+18}+15053\cdot 61^{34k+17}+1961\cdot 61^{33k+17}+15511\cdot 61^{32k+16}+2001\cdot 61^{31k+16}\\||+15667\cdot 61^{30k+15}+2001\cdot 61^{29k+15}+15511\cdot 61^{28k+14}+1961\cdot 61^{27k+14}+15053\cdot 61^{26k+13}\\||+1887\cdot 61^{25k+13}+14379\cdot 61^{24k+12}+1789\cdot 61^{23k+12}+13511\cdot 61^{22k+11}+1663\cdot 61^{21k+11}\\||+12397\cdot 61^{20k+10}+1501\cdot 61^{19k+10}+10953\cdot 61^{18k+9}+1291\cdot 61^{17k+9}+9125\cdot 61^{16k+8}\\||+1037\cdot 61^{15k+8}+7029\cdot 61^{14k+7}+761\cdot 61^{13k+7}+4881\cdot 61^{12k+6}+497\cdot 61^{11k+6}\\||+2979\cdot 61^{10k+5}+281\cdot 61^{9k+5}+1541\cdot 61^{8k+4}+131\cdot 61^{7k+4}+637\cdot 61^{6k+3}\\||+47\cdot 61^{5k+3}+191\cdot 61^{4k+2}+11\cdot 61^{3k+2}+31\cdot 61^{2k+1}+61^{k+1}+1)\\{\large\Phi}_{124}(62^{2k+1})|=|62^{120k+60}-62^{116k+58}+62^{112k+56}-62^{108k+54}+62^{104k+52}\\||-62^{100k+50}+62^{96k+48}-62^{92k+46}+62^{88k+44}-62^{84k+42}\\||+62^{80k+40}-62^{76k+38}+62^{72k+36}-62^{68k+34}+62^{64k+32}\\||-62^{60k+30}+62^{56k+28}-62^{52k+26}+62^{48k+24}-62^{44k+22}\\||+62^{40k+20}-62^{36k+18}+62^{32k+16}-62^{28k+14}+62^{24k+12}\\||-62^{20k+10}+62^{16k+8}-62^{12k+6}+62^{8k+4}-62^{4k+2}+1\\|=|(62^{60k+30}-62^{59k+30}+31\cdot 62^{58k+29}-10\cdot 62^{57k+29}+139\cdot 62^{56k+28}\\||-21\cdot 62^{55k+28}+93\cdot 62^{54k+27}+14\cdot 62^{53k+27}-391\cdot 62^{52k+26}+77\cdot 62^{51k+26}\\||-589\cdot 62^{50k+25}+32\cdot 62^{49k+25}+331\cdot 62^{48k+24}-117\cdot 62^{47k+24}+1209\cdot 62^{46k+23}\\||-124\cdot 62^{45k+23}+249\cdot 62^{44k+22}+85\cdot 62^{43k+22}-1333\cdot 62^{42k+21}+178\cdot 62^{41k+21}\\||-841\cdot 62^{40k+20}-7\cdot 62^{39k+20}+837\cdot 62^{38k+19}-146\cdot 62^{37k+19}+913\cdot 62^{36k+18}\\||-43\cdot 62^{35k+18}-217\cdot 62^{34k+17}+60\cdot 62^{33k+17}-385\cdot 62^{32k+16}+19\cdot 62^{31k+16}\\||-31\cdot 62^{30k+15}+19\cdot 62^{29k+15}-385\cdot 62^{28k+14}+60\cdot 62^{27k+14}-217\cdot 62^{26k+13}\\||-43\cdot 62^{25k+13}+913\cdot 62^{24k+12}-146\cdot 62^{23k+12}+837\cdot 62^{22k+11}-7\cdot 62^{21k+11}\\||-841\cdot 62^{20k+10}+178\cdot 62^{19k+10}-1333\cdot 62^{18k+9}+85\cdot 62^{17k+9}+249\cdot 62^{16k+8}\\||-124\cdot 62^{15k+8}+1209\cdot 62^{14k+7}-117\cdot 62^{13k+7}+331\cdot 62^{12k+6}+32\cdot 62^{11k+6}\\||-589\cdot 62^{10k+5}+77\cdot 62^{9k+5}-391\cdot 62^{8k+4}+14\cdot 62^{7k+4}+93\cdot 62^{6k+3}\\||-21\cdot 62^{5k+3}+139\cdot 62^{4k+2}-10\cdot 62^{3k+2}+31\cdot 62^{2k+1}-62^{k+1}+1)\\|\times|(62^{60k+30}+62^{59k+30}+31\cdot 62^{58k+29}+10\cdot 62^{57k+29}+139\cdot 62^{56k+28}\\||+21\cdot 62^{55k+28}+93\cdot 62^{54k+27}-14\cdot 62^{53k+27}-391\cdot 62^{52k+26}-77\cdot 62^{51k+26}\\||-589\cdot 62^{50k+25}-32\cdot 62^{49k+25}+331\cdot 62^{48k+24}+117\cdot 62^{47k+24}+1209\cdot 62^{46k+23}\\||+124\cdot 62^{45k+23}+249\cdot 62^{44k+22}-85\cdot 62^{43k+22}-1333\cdot 62^{42k+21}-178\cdot 62^{41k+21}\\||-841\cdot 62^{40k+20}+7\cdot 62^{39k+20}+837\cdot 62^{38k+19}+146\cdot 62^{37k+19}+913\cdot 62^{36k+18}\\||+43\cdot 62^{35k+18}-217\cdot 62^{34k+17}-60\cdot 62^{33k+17}-385\cdot 62^{32k+16}-19\cdot 62^{31k+16}\\||-31\cdot 62^{30k+15}-19\cdot 62^{29k+15}-385\cdot 62^{28k+14}-60\cdot 62^{27k+14}-217\cdot 62^{26k+13}\\||+43\cdot 62^{25k+13}+913\cdot 62^{24k+12}+146\cdot 62^{23k+12}+837\cdot 62^{22k+11}+7\cdot 62^{21k+11}\\||-841\cdot 62^{20k+10}-178\cdot 62^{19k+10}-1333\cdot 62^{18k+9}-85\cdot 62^{17k+9}+249\cdot 62^{16k+8}\\||+124\cdot 62^{15k+8}+1209\cdot 62^{14k+7}+117\cdot 62^{13k+7}+331\cdot 62^{12k+6}-32\cdot 62^{11k+6}\\||-589\cdot 62^{10k+5}-77\cdot 62^{9k+5}-391\cdot 62^{8k+4}-14\cdot 62^{7k+4}+93\cdot 62^{6k+3}\\||+21\cdot 62^{5k+3}+139\cdot 62^{4k+2}+10\cdot 62^{3k+2}+31\cdot 62^{2k+1}+62^{k+1}+1)\\{\large\Phi}_{65}(65^{2k+1})|=|65^{96k+48}-65^{94k+47}+65^{86k+43}-65^{84k+42}+65^{76k+38}\\||-65^{74k+37}+65^{70k+35}-65^{68k+34}+65^{66k+33}-65^{64k+32}\\||+65^{60k+30}-65^{58k+29}+65^{56k+28}-65^{54k+27}+65^{50k+25}\\||-65^{48k+24}+65^{46k+23}-65^{42k+21}+65^{40k+20}-65^{38k+19}\\||+65^{36k+18}-65^{32k+16}+65^{30k+15}-65^{28k+14}+65^{26k+13}\\||-65^{22k+11}+65^{20k+10}-65^{12k+6}+65^{10k+5}-65^{2k+1}+1\\|=|(65^{48k+24}-65^{47k+24}+32\cdot 65^{46k+23}-10\cdot 65^{45k+23}+138\cdot 65^{44k+22}\\||-19\cdot 65^{43k+22}+69\cdot 65^{42k+21}+14\cdot 65^{41k+21}-290\cdot 65^{40k+20}+38\cdot 65^{39k+20}\\||-79\cdot 65^{38k+19}-37\cdot 65^{37k+19}+582\cdot 65^{36k+18}-67\cdot 65^{35k+18}+133\cdot 65^{34k+17}\\||+53\cdot 65^{33k+17}-791\cdot 65^{32k+16}+86\cdot 65^{31k+16}-145\cdot 65^{30k+15}-67\cdot 65^{29k+15}\\||+921\cdot 65^{28k+14}-89\cdot 65^{27k+14}+22\cdot 65^{26k+13}+91\cdot 65^{25k+13}-1057\cdot 65^{24k+12}\\||+91\cdot 65^{23k+12}+22\cdot 65^{22k+11}-89\cdot 65^{21k+11}+921\cdot 65^{20k+10}-67\cdot 65^{19k+10}\\||-145\cdot 65^{18k+9}+86\cdot 65^{17k+9}-791\cdot 65^{16k+8}+53\cdot 65^{15k+8}+133\cdot 65^{14k+7}\\||-67\cdot 65^{13k+7}+582\cdot 65^{12k+6}-37\cdot 65^{11k+6}-79\cdot 65^{10k+5}+38\cdot 65^{9k+5}\\||-290\cdot 65^{8k+4}+14\cdot 65^{7k+4}+69\cdot 65^{6k+3}-19\cdot 65^{5k+3}+138\cdot 65^{4k+2}\\||-10\cdot 65^{3k+2}+32\cdot 65^{2k+1}-65^{k+1}+1)\\|\times|(65^{48k+24}+65^{47k+24}+32\cdot 65^{46k+23}+10\cdot 65^{45k+23}+138\cdot 65^{44k+22}\\||+19\cdot 65^{43k+22}+69\cdot 65^{42k+21}-14\cdot 65^{41k+21}-290\cdot 65^{40k+20}-38\cdot 65^{39k+20}\\||-79\cdot 65^{38k+19}+37\cdot 65^{37k+19}+582\cdot 65^{36k+18}+67\cdot 65^{35k+18}+133\cdot 65^{34k+17}\\||-53\cdot 65^{33k+17}-791\cdot 65^{32k+16}-86\cdot 65^{31k+16}-145\cdot 65^{30k+15}+67\cdot 65^{29k+15}\\||+921\cdot 65^{28k+14}+89\cdot 65^{27k+14}+22\cdot 65^{26k+13}-91\cdot 65^{25k+13}-1057\cdot 65^{24k+12}\\||-91\cdot 65^{23k+12}+22\cdot 65^{22k+11}+89\cdot 65^{21k+11}+921\cdot 65^{20k+10}+67\cdot 65^{19k+10}\\||-145\cdot 65^{18k+9}-86\cdot 65^{17k+9}-791\cdot 65^{16k+8}-53\cdot 65^{15k+8}+133\cdot 65^{14k+7}\\||+67\cdot 65^{13k+7}+582\cdot 65^{12k+6}+37\cdot 65^{11k+6}-79\cdot 65^{10k+5}-38\cdot 65^{9k+5}\\||-290\cdot 65^{8k+4}-14\cdot 65^{7k+4}+69\cdot 65^{6k+3}+19\cdot 65^{5k+3}+138\cdot 65^{4k+2}\\||+10\cdot 65^{3k+2}+32\cdot 65^{2k+1}+65^{k+1}+1)\\{\large\Phi}_{132}(66^{2k+1})|=|66^{80k+40}+66^{76k+38}-66^{68k+34}-66^{64k+32}+66^{56k+28}\\||+66^{52k+26}-66^{44k+22}-66^{40k+20}-66^{36k+18}+66^{28k+14}\\||+66^{24k+12}-66^{16k+8}-66^{12k+6}+66^{4k+2}+1\\|=|(66^{40k+20}-66^{39k+20}+33\cdot 66^{38k+19}-11\cdot 66^{37k+19}+182\cdot 66^{36k+18}\\||-37\cdot 66^{35k+18}+429\cdot 66^{34k+17}-69\cdot 66^{33k+17}+697\cdot 66^{32k+16}-102\cdot 66^{31k+16}\\||+924\cdot 66^{30k+15}-117\cdot 66^{29k+15}+905\cdot 66^{28k+14}-100\cdot 66^{27k+14}+693\cdot 66^{26k+13}\\||-67\cdot 66^{25k+13}+364\cdot 66^{24k+12}-22\cdot 66^{23k+12}+33\cdot 66^{22k+11}+6\cdot 66^{21k+11}\\||-73\cdot 66^{20k+10}+6\cdot 66^{19k+10}+33\cdot 66^{18k+9}-22\cdot 66^{17k+9}+364\cdot 66^{16k+8}\\||-67\cdot 66^{15k+8}+693\cdot 66^{14k+7}-100\cdot 66^{13k+7}+905\cdot 66^{12k+6}-117\cdot 66^{11k+6}\\||+924\cdot 66^{10k+5}-102\cdot 66^{9k+5}+697\cdot 66^{8k+4}-69\cdot 66^{7k+4}+429\cdot 66^{6k+3}\\||-37\cdot 66^{5k+3}+182\cdot 66^{4k+2}-11\cdot 66^{3k+2}+33\cdot 66^{2k+1}-66^{k+1}+1)\\|\times|(66^{40k+20}+66^{39k+20}+33\cdot 66^{38k+19}+11\cdot 66^{37k+19}+182\cdot 66^{36k+18}\\||+37\cdot 66^{35k+18}+429\cdot 66^{34k+17}+69\cdot 66^{33k+17}+697\cdot 66^{32k+16}+102\cdot 66^{31k+16}\\||+924\cdot 66^{30k+15}+117\cdot 66^{29k+15}+905\cdot 66^{28k+14}+100\cdot 66^{27k+14}+693\cdot 66^{26k+13}\\||+67\cdot 66^{25k+13}+364\cdot 66^{24k+12}+22\cdot 66^{23k+12}+33\cdot 66^{22k+11}-6\cdot 66^{21k+11}\\||-73\cdot 66^{20k+10}-6\cdot 66^{19k+10}+33\cdot 66^{18k+9}+22\cdot 66^{17k+9}+364\cdot 66^{16k+8}\\||+67\cdot 66^{15k+8}+693\cdot 66^{14k+7}+100\cdot 66^{13k+7}+905\cdot 66^{12k+6}+117\cdot 66^{11k+6}\\||+924\cdot 66^{10k+5}+102\cdot 66^{9k+5}+697\cdot 66^{8k+4}+69\cdot 66^{7k+4}+429\cdot 66^{6k+3}\\||+37\cdot 66^{5k+3}+182\cdot 66^{4k+2}+11\cdot 66^{3k+2}+33\cdot 66^{2k+1}+66^{k+1}+1)\\{\large\Phi}_{134}(67^{2k+1})|=|67^{132k+66}-67^{130k+65}+67^{128k+64}-67^{126k+63}+67^{124k+62}\\||-67^{122k+61}+67^{120k+60}-67^{118k+59}+67^{116k+58}-67^{114k+57}\\||+67^{112k+56}-67^{110k+55}+67^{108k+54}-67^{106k+53}+67^{104k+52}\\||-67^{102k+51}+67^{100k+50}-67^{98k+49}+67^{96k+48}-67^{94k+47}\\||+67^{92k+46}-67^{90k+45}+67^{88k+44}-67^{86k+43}+67^{84k+42}\\||-67^{82k+41}+67^{80k+40}-67^{78k+39}+67^{76k+38}-67^{74k+37}\\||+67^{72k+36}-67^{70k+35}+67^{68k+34}-67^{66k+33}+67^{64k+32}\\||-67^{62k+31}+67^{60k+30}-67^{58k+29}+67^{56k+28}-67^{54k+27}\\||+67^{52k+26}-67^{50k+25}+67^{48k+24}-67^{46k+23}+67^{44k+22}\\||-67^{42k+21}+67^{40k+20}-67^{38k+19}+67^{36k+18}-67^{34k+17}\\||+67^{32k+16}-67^{30k+15}+67^{28k+14}-67^{26k+13}+67^{24k+12}\\||-67^{22k+11}+67^{20k+10}-67^{18k+9}+67^{16k+8}-67^{14k+7}\\||+67^{12k+6}-67^{10k+5}+67^{8k+4}-67^{6k+3}+67^{4k+2}\\||-67^{2k+1}+1\\|=|(67^{66k+33}-67^{65k+33}+33\cdot 67^{64k+32}-11\cdot 67^{63k+32}+193\cdot 67^{62k+31}\\||-43\cdot 67^{61k+31}+565\cdot 67^{60k+30}-99\cdot 67^{59k+30}+1055\cdot 67^{58k+29}-155\cdot 67^{57k+29}\\||+1429\cdot 67^{56k+28}-187\cdot 67^{55k+28}+1599\cdot 67^{54k+27}-205\cdot 67^{53k+27}+1803\cdot 67^{52k+26}\\||-243\cdot 67^{51k+26}+2225\cdot 67^{50k+25}-301\cdot 67^{49k+25}+2637\cdot 67^{48k+24}-329\cdot 67^{47k+24}\\||+2617\cdot 67^{46k+23}-297\cdot 67^{45k+23}+2195\cdot 67^{44k+22}-243\cdot 67^{43k+22}+1869\cdot 67^{42k+21}\\||-225\cdot 67^{41k+21}+1875\cdot 67^{40k+20}-233\cdot 67^{39k+20}+1865\cdot 67^{38k+19}-209\cdot 67^{37k+19}\\||+1469\cdot 67^{36k+18}-147\cdot 67^{35k+18}+991\cdot 67^{34k+17}-111\cdot 67^{33k+17}+991\cdot 67^{32k+16}\\||-147\cdot 67^{31k+16}+1469\cdot 67^{30k+15}-209\cdot 67^{29k+15}+1865\cdot 67^{28k+14}-233\cdot 67^{27k+14}\\||+1875\cdot 67^{26k+13}-225\cdot 67^{25k+13}+1869\cdot 67^{24k+12}-243\cdot 67^{23k+12}+2195\cdot 67^{22k+11}\\||-297\cdot 67^{21k+11}+2617\cdot 67^{20k+10}-329\cdot 67^{19k+10}+2637\cdot 67^{18k+9}-301\cdot 67^{17k+9}\\||+2225\cdot 67^{16k+8}-243\cdot 67^{15k+8}+1803\cdot 67^{14k+7}-205\cdot 67^{13k+7}+1599\cdot 67^{12k+6}\\||-187\cdot 67^{11k+6}+1429\cdot 67^{10k+5}-155\cdot 67^{9k+5}+1055\cdot 67^{8k+4}-99\cdot 67^{7k+4}\\||+565\cdot 67^{6k+3}-43\cdot 67^{5k+3}+193\cdot 67^{4k+2}-11\cdot 67^{3k+2}+33\cdot 67^{2k+1}\\||-67^{k+1}+1)\\|\times|(67^{66k+33}+67^{65k+33}+33\cdot 67^{64k+32}+11\cdot 67^{63k+32}+193\cdot 67^{62k+31}\\||+43\cdot 67^{61k+31}+565\cdot 67^{60k+30}+99\cdot 67^{59k+30}+1055\cdot 67^{58k+29}+155\cdot 67^{57k+29}\\||+1429\cdot 67^{56k+28}+187\cdot 67^{55k+28}+1599\cdot 67^{54k+27}+205\cdot 67^{53k+27}+1803\cdot 67^{52k+26}\\||+243\cdot 67^{51k+26}+2225\cdot 67^{50k+25}+301\cdot 67^{49k+25}+2637\cdot 67^{48k+24}+329\cdot 67^{47k+24}\\||+2617\cdot 67^{46k+23}+297\cdot 67^{45k+23}+2195\cdot 67^{44k+22}+243\cdot 67^{43k+22}+1869\cdot 67^{42k+21}\\||+225\cdot 67^{41k+21}+1875\cdot 67^{40k+20}+233\cdot 67^{39k+20}+1865\cdot 67^{38k+19}+209\cdot 67^{37k+19}\\||+1469\cdot 67^{36k+18}+147\cdot 67^{35k+18}+991\cdot 67^{34k+17}+111\cdot 67^{33k+17}+991\cdot 67^{32k+16}\\||+147\cdot 67^{31k+16}+1469\cdot 67^{30k+15}+209\cdot 67^{29k+15}+1865\cdot 67^{28k+14}+233\cdot 67^{27k+14}\\||+1875\cdot 67^{26k+13}+225\cdot 67^{25k+13}+1869\cdot 67^{24k+12}+243\cdot 67^{23k+12}+2195\cdot 67^{22k+11}\\||+297\cdot 67^{21k+11}+2617\cdot 67^{20k+10}+329\cdot 67^{19k+10}+2637\cdot 67^{18k+9}+301\cdot 67^{17k+9}\\||+2225\cdot 67^{16k+8}+243\cdot 67^{15k+8}+1803\cdot 67^{14k+7}+205\cdot 67^{13k+7}+1599\cdot 67^{12k+6}\\||+187\cdot 67^{11k+6}+1429\cdot 67^{10k+5}+155\cdot 67^{9k+5}+1055\cdot 67^{8k+4}+99\cdot 67^{7k+4}\\||+565\cdot 67^{6k+3}+43\cdot 67^{5k+3}+193\cdot 67^{4k+2}+11\cdot 67^{3k+2}+33\cdot 67^{2k+1}\\||+67^{k+1}+1)\\{\large\Phi}_{69}(69^{2k+1})|=|69^{88k+44}-69^{86k+43}+69^{82k+41}-69^{80k+40}+69^{76k+38}\\||-69^{74k+37}+69^{70k+35}-69^{68k+34}+69^{64k+32}-69^{62k+31}\\||+69^{58k+29}-69^{56k+28}+69^{52k+26}-69^{50k+25}+69^{46k+23}\\||-69^{44k+22}+69^{42k+21}-69^{38k+19}+69^{36k+18}-69^{32k+16}\\||+69^{30k+15}-69^{26k+13}+69^{24k+12}-69^{20k+10}+69^{18k+9}\\||-69^{14k+7}+69^{12k+6}-69^{8k+4}+69^{6k+3}-69^{2k+1}+1\\|=|(69^{44k+22}-69^{43k+22}+34\cdot 69^{42k+21}-11\cdot 69^{41k+21}+181\cdot 69^{40k+20}\\||-34\cdot 69^{39k+20}+367\cdot 69^{38k+19}-51\cdot 69^{37k+19}+466\cdot 69^{36k+18}-61\cdot 69^{35k+18}\\||+529\cdot 69^{34k+17}-60\cdot 69^{33k+17}+409\cdot 69^{32k+16}-37\cdot 69^{31k+16}+256\cdot 69^{30k+15}\\||-33\cdot 69^{29k+15}+325\cdot 69^{28k+14}-44\cdot 69^{27k+14}+397\cdot 69^{26k+13}-55\cdot 69^{25k+13}\\||+562\cdot 69^{24k+12}-81\cdot 69^{23k+12}+721\cdot 69^{22k+11}-81\cdot 69^{21k+11}+562\cdot 69^{20k+10}\\||-55\cdot 69^{19k+10}+397\cdot 69^{18k+9}-44\cdot 69^{17k+9}+325\cdot 69^{16k+8}-33\cdot 69^{15k+8}\\||+256\cdot 69^{14k+7}-37\cdot 69^{13k+7}+409\cdot 69^{12k+6}-60\cdot 69^{11k+6}+529\cdot 69^{10k+5}\\||-61\cdot 69^{9k+5}+466\cdot 69^{8k+4}-51\cdot 69^{7k+4}+367\cdot 69^{6k+3}-34\cdot 69^{5k+3}\\||+181\cdot 69^{4k+2}-11\cdot 69^{3k+2}+34\cdot 69^{2k+1}-69^{k+1}+1)\\|\times|(69^{44k+22}+69^{43k+22}+34\cdot 69^{42k+21}+11\cdot 69^{41k+21}+181\cdot 69^{40k+20}\\||+34\cdot 69^{39k+20}+367\cdot 69^{38k+19}+51\cdot 69^{37k+19}+466\cdot 69^{36k+18}+61\cdot 69^{35k+18}\\||+529\cdot 69^{34k+17}+60\cdot 69^{33k+17}+409\cdot 69^{32k+16}+37\cdot 69^{31k+16}+256\cdot 69^{30k+15}\\||+33\cdot 69^{29k+15}+325\cdot 69^{28k+14}+44\cdot 69^{27k+14}+397\cdot 69^{26k+13}+55\cdot 69^{25k+13}\\||+562\cdot 69^{24k+12}+81\cdot 69^{23k+12}+721\cdot 69^{22k+11}+81\cdot 69^{21k+11}+562\cdot 69^{20k+10}\\||+55\cdot 69^{19k+10}+397\cdot 69^{18k+9}+44\cdot 69^{17k+9}+325\cdot 69^{16k+8}+33\cdot 69^{15k+8}\\||+256\cdot 69^{14k+7}+37\cdot 69^{13k+7}+409\cdot 69^{12k+6}+60\cdot 69^{11k+6}+529\cdot 69^{10k+5}\\||+61\cdot 69^{9k+5}+466\cdot 69^{8k+4}+51\cdot 69^{7k+4}+367\cdot 69^{6k+3}+34\cdot 69^{5k+3}\\||+181\cdot 69^{4k+2}+11\cdot 69^{3k+2}+34\cdot 69^{2k+1}+69^{k+1}+1)\\{\large\Phi}_{140}(70^{2k+1})|=|70^{96k+48}+70^{92k+46}-70^{76k+38}-70^{72k+36}-70^{68k+34}\\||-70^{64k+32}+70^{56k+28}+70^{52k+26}+70^{48k+24}+70^{44k+22}\\||+70^{40k+20}-70^{32k+16}-70^{28k+14}-70^{24k+12}-70^{20k+10}\\||+70^{4k+2}+1\\|=|(70^{48k+24}-70^{47k+24}+35\cdot 70^{46k+23}-12\cdot 70^{45k+23}+228\cdot 70^{44k+22}\\||-53\cdot 70^{43k+22}+770\cdot 70^{42k+21}-146\cdot 70^{41k+21}+1798\cdot 70^{40k+20}-297\cdot 70^{39k+20}\\||+3255\cdot 70^{38k+19}-487\cdot 70^{37k+19}+4911\cdot 70^{36k+18}-686\cdot 70^{35k+18}+6545\cdot 70^{34k+17}\\||-875\cdot 70^{33k+17}+8065\cdot 70^{32k+16}-1049\cdot 70^{31k+16}+9450\cdot 70^{30k+15}-1204\cdot 70^{29k+15}\\||+10629\cdot 70^{28k+14}-1326\cdot 70^{27k+14}+11445\cdot 70^{26k+13}-1394\cdot 70^{25k+13}+11737\cdot 70^{24k+12}\\||-1394\cdot 70^{23k+12}+11445\cdot 70^{22k+11}-1326\cdot 70^{21k+11}+10629\cdot 70^{20k+10}-1204\cdot 70^{19k+10}\\||+9450\cdot 70^{18k+9}-1049\cdot 70^{17k+9}+8065\cdot 70^{16k+8}-875\cdot 70^{15k+8}+6545\cdot 70^{14k+7}\\||-686\cdot 70^{13k+7}+4911\cdot 70^{12k+6}-487\cdot 70^{11k+6}+3255\cdot 70^{10k+5}-297\cdot 70^{9k+5}\\||+1798\cdot 70^{8k+4}-146\cdot 70^{7k+4}+770\cdot 70^{6k+3}-53\cdot 70^{5k+3}+228\cdot 70^{4k+2}\\||-12\cdot 70^{3k+2}+35\cdot 70^{2k+1}-70^{k+1}+1)\\|\times|(70^{48k+24}+70^{47k+24}+35\cdot 70^{46k+23}+12\cdot 70^{45k+23}+228\cdot 70^{44k+22}\\||+53\cdot 70^{43k+22}+770\cdot 70^{42k+21}+146\cdot 70^{41k+21}+1798\cdot 70^{40k+20}+297\cdot 70^{39k+20}\\||+3255\cdot 70^{38k+19}+487\cdot 70^{37k+19}+4911\cdot 70^{36k+18}+686\cdot 70^{35k+18}+6545\cdot 70^{34k+17}\\||+875\cdot 70^{33k+17}+8065\cdot 70^{32k+16}+1049\cdot 70^{31k+16}+9450\cdot 70^{30k+15}+1204\cdot 70^{29k+15}\\||+10629\cdot 70^{28k+14}+1326\cdot 70^{27k+14}+11445\cdot 70^{26k+13}+1394\cdot 70^{25k+13}+11737\cdot 70^{24k+12}\\||+1394\cdot 70^{23k+12}+11445\cdot 70^{22k+11}+1326\cdot 70^{21k+11}+10629\cdot 70^{20k+10}+1204\cdot 70^{19k+10}\\||+9450\cdot 70^{18k+9}+1049\cdot 70^{17k+9}+8065\cdot 70^{16k+8}+875\cdot 70^{15k+8}+6545\cdot 70^{14k+7}\\||+686\cdot 70^{13k+7}+4911\cdot 70^{12k+6}+487\cdot 70^{11k+6}+3255\cdot 70^{10k+5}+297\cdot 70^{9k+5}\\||+1798\cdot 70^{8k+4}+146\cdot 70^{7k+4}+770\cdot 70^{6k+3}+53\cdot 70^{5k+3}+228\cdot 70^{4k+2}\\||+12\cdot 70^{3k+2}+35\cdot 70^{2k+1}+70^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{142}(71^{2k+1})\cdots{\large\Phi}_{158}(79^{2k+1})$${\large\Phi}_{142}(71^{2k+1})\cdots{\large\Phi}_{158}(79^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{142}(71^{2k+1})|=|71^{140k+70}-71^{138k+69}+71^{136k+68}-71^{134k+67}+71^{132k+66}\\||-71^{130k+65}+71^{128k+64}-71^{126k+63}+71^{124k+62}-71^{122k+61}\\||+71^{120k+60}-71^{118k+59}+71^{116k+58}-71^{114k+57}+71^{112k+56}\\||-71^{110k+55}+71^{108k+54}-71^{106k+53}+71^{104k+52}-71^{102k+51}\\||+71^{100k+50}-71^{98k+49}+71^{96k+48}-71^{94k+47}+71^{92k+46}\\||-71^{90k+45}+71^{88k+44}-71^{86k+43}+71^{84k+42}-71^{82k+41}\\||+71^{80k+40}-71^{78k+39}+71^{76k+38}-71^{74k+37}+71^{72k+36}\\||-71^{70k+35}+71^{68k+34}-71^{66k+33}+71^{64k+32}-71^{62k+31}\\||+71^{60k+30}-71^{58k+29}+71^{56k+28}-71^{54k+27}+71^{52k+26}\\||-71^{50k+25}+71^{48k+24}-71^{46k+23}+71^{44k+22}-71^{42k+21}\\||+71^{40k+20}-71^{38k+19}+71^{36k+18}-71^{34k+17}+71^{32k+16}\\||-71^{30k+15}+71^{28k+14}-71^{26k+13}+71^{24k+12}-71^{22k+11}\\||+71^{20k+10}-71^{18k+9}+71^{16k+8}-71^{14k+7}+71^{12k+6}\\||-71^{10k+5}+71^{8k+4}-71^{6k+3}+71^{4k+2}-71^{2k+1}+1\\|=|(71^{70k+35}-71^{69k+35}+35\cdot 71^{68k+34}-11\cdot 71^{67k+34}+169\cdot 71^{66k+33}\\||-25\cdot 71^{65k+33}+155\cdot 71^{64k+32}-71^{63k+32}-109\cdot 71^{62k+31}+5\cdot 71^{61k+31}\\||+233\cdot 71^{60k+30}-63\cdot 71^{59k+30}+597\cdot 71^{58k+29}-43\cdot 71^{57k+29}+39\cdot 71^{56k+28}\\||+9\cdot 71^{55k+28}+101\cdot 71^{54k+27}-43\cdot 71^{53k+27}+445\cdot 71^{52k+26}-37\cdot 71^{51k+26}\\||+163\cdot 71^{50k+25}-21\cdot 71^{49k+25}+293\cdot 71^{48k+24}-35\cdot 71^{47k+24}+89\cdot 71^{46k+23}\\||+19\cdot 71^{45k+23}-203\cdot 71^{44k+22}-71^{43k+22}+249\cdot 71^{42k+21}-29\cdot 71^{41k+21}\\||-49\cdot 71^{40k+20}+47\cdot 71^{39k+20}-505\cdot 71^{38k+19}+35\cdot 71^{37k+19}+37\cdot 71^{36k+18}\\||-23\cdot 71^{35k+18}+37\cdot 71^{34k+17}+35\cdot 71^{33k+17}-505\cdot 71^{32k+16}+47\cdot 71^{31k+16}\\||-49\cdot 71^{30k+15}-29\cdot 71^{29k+15}+249\cdot 71^{28k+14}-71^{27k+14}-203\cdot 71^{26k+13}\\||+19\cdot 71^{25k+13}+89\cdot 71^{24k+12}-35\cdot 71^{23k+12}+293\cdot 71^{22k+11}-21\cdot 71^{21k+11}\\||+163\cdot 71^{20k+10}-37\cdot 71^{19k+10}+445\cdot 71^{18k+9}-43\cdot 71^{17k+9}+101\cdot 71^{16k+8}\\||+9\cdot 71^{15k+8}+39\cdot 71^{14k+7}-43\cdot 71^{13k+7}+597\cdot 71^{12k+6}-63\cdot 71^{11k+6}\\||+233\cdot 71^{10k+5}+5\cdot 71^{9k+5}-109\cdot 71^{8k+4}-71^{7k+4}+155\cdot 71^{6k+3}\\||-25\cdot 71^{5k+3}+169\cdot 71^{4k+2}-11\cdot 71^{3k+2}+35\cdot 71^{2k+1}-71^{k+1}+1)\\|\times|(71^{70k+35}+71^{69k+35}+35\cdot 71^{68k+34}+11\cdot 71^{67k+34}+169\cdot 71^{66k+33}\\||+25\cdot 71^{65k+33}+155\cdot 71^{64k+32}+71^{63k+32}-109\cdot 71^{62k+31}-5\cdot 71^{61k+31}\\||+233\cdot 71^{60k+30}+63\cdot 71^{59k+30}+597\cdot 71^{58k+29}+43\cdot 71^{57k+29}+39\cdot 71^{56k+28}\\||-9\cdot 71^{55k+28}+101\cdot 71^{54k+27}+43\cdot 71^{53k+27}+445\cdot 71^{52k+26}+37\cdot 71^{51k+26}\\||+163\cdot 71^{50k+25}+21\cdot 71^{49k+25}+293\cdot 71^{48k+24}+35\cdot 71^{47k+24}+89\cdot 71^{46k+23}\\||-19\cdot 71^{45k+23}-203\cdot 71^{44k+22}+71^{43k+22}+249\cdot 71^{42k+21}+29\cdot 71^{41k+21}\\||-49\cdot 71^{40k+20}-47\cdot 71^{39k+20}-505\cdot 71^{38k+19}-35\cdot 71^{37k+19}+37\cdot 71^{36k+18}\\||+23\cdot 71^{35k+18}+37\cdot 71^{34k+17}-35\cdot 71^{33k+17}-505\cdot 71^{32k+16}-47\cdot 71^{31k+16}\\||-49\cdot 71^{30k+15}+29\cdot 71^{29k+15}+249\cdot 71^{28k+14}+71^{27k+14}-203\cdot 71^{26k+13}\\||-19\cdot 71^{25k+13}+89\cdot 71^{24k+12}+35\cdot 71^{23k+12}+293\cdot 71^{22k+11}+21\cdot 71^{21k+11}\\||+163\cdot 71^{20k+10}+37\cdot 71^{19k+10}+445\cdot 71^{18k+9}+43\cdot 71^{17k+9}+101\cdot 71^{16k+8}\\||-9\cdot 71^{15k+8}+39\cdot 71^{14k+7}+43\cdot 71^{13k+7}+597\cdot 71^{12k+6}+63\cdot 71^{11k+6}\\||+233\cdot 71^{10k+5}-5\cdot 71^{9k+5}-109\cdot 71^{8k+4}+71^{7k+4}+155\cdot 71^{6k+3}\\||+25\cdot 71^{5k+3}+169\cdot 71^{4k+2}+11\cdot 71^{3k+2}+35\cdot 71^{2k+1}+71^{k+1}+1)\\{\large\Phi}_{73}(73^{2k+1})|=|73^{144k+72}+73^{142k+71}+73^{140k+70}+73^{138k+69}+73^{136k+68}\\||+73^{134k+67}+73^{132k+66}+73^{130k+65}+73^{128k+64}+73^{126k+63}\\||+73^{124k+62}+73^{122k+61}+73^{120k+60}+73^{118k+59}+73^{116k+58}\\||+73^{114k+57}+73^{112k+56}+73^{110k+55}+73^{108k+54}+73^{106k+53}\\||+73^{104k+52}+73^{102k+51}+73^{100k+50}+73^{98k+49}+73^{96k+48}\\||+73^{94k+47}+73^{92k+46}+73^{90k+45}+73^{88k+44}+73^{86k+43}\\||+73^{84k+42}+73^{82k+41}+73^{80k+40}+73^{78k+39}+73^{76k+38}\\||+73^{74k+37}+73^{72k+36}+73^{70k+35}+73^{68k+34}+73^{66k+33}\\||+73^{64k+32}+73^{62k+31}+73^{60k+30}+73^{58k+29}+73^{56k+28}\\||+73^{54k+27}+73^{52k+26}+73^{50k+25}+73^{48k+24}+73^{46k+23}\\||+73^{44k+22}+73^{42k+21}+73^{40k+20}+73^{38k+19}+73^{36k+18}\\||+73^{34k+17}+73^{32k+16}+73^{30k+15}+73^{28k+14}+73^{26k+13}\\||+73^{24k+12}+73^{22k+11}+73^{20k+10}+73^{18k+9}+73^{16k+8}\\||+73^{14k+7}+73^{12k+6}+73^{10k+5}+73^{8k+4}+73^{6k+3}\\||+73^{4k+2}+73^{2k+1}+1\\|=|(73^{72k+36}-73^{71k+36}+37\cdot 73^{70k+35}-13\cdot 73^{69k+35}+265\cdot 73^{68k+34}\\||-63\cdot 73^{67k+34}+963\cdot 73^{66k+33}-181\cdot 73^{65k+33}+2257\cdot 73^{64k+32}-353\cdot 73^{63k+32}\\||+3703\cdot 73^{62k+31}-489\cdot 73^{61k+31}+4313\cdot 73^{60k+30}-471\cdot 73^{59k+30}+3301\cdot 73^{58k+29}\\||-259\cdot 73^{57k+29}+891\cdot 73^{56k+28}+59\cdot 73^{55k+28}-1823\cdot 73^{54k+27}+347\cdot 73^{53k+27}\\||-3889\cdot 73^{52k+26}+539\cdot 73^{51k+26}-5149\cdot 73^{50k+25}+649\cdot 73^{49k+25}-5777\cdot 73^{48k+24}\\||+677\cdot 73^{47k+24}-5479\cdot 73^{46k+23}+559\cdot 73^{45k+23}-3633\cdot 73^{44k+22}+243\cdot 73^{43k+22}\\||-205\cdot 73^{42k+21}-213\cdot 73^{41k+21}+3805\cdot 73^{40k+20}-651\cdot 73^{39k+20}+6933\cdot 73^{38k+19}\\||-913\cdot 73^{37k+19}+8097\cdot 73^{36k+18}-913\cdot 73^{35k+18}+6933\cdot 73^{34k+17}-651\cdot 73^{33k+17}\\||+3805\cdot 73^{32k+16}-213\cdot 73^{31k+16}-205\cdot 73^{30k+15}+243\cdot 73^{29k+15}-3633\cdot 73^{28k+14}\\||+559\cdot 73^{27k+14}-5479\cdot 73^{26k+13}+677\cdot 73^{25k+13}-5777\cdot 73^{24k+12}+649\cdot 73^{23k+12}\\||-5149\cdot 73^{22k+11}+539\cdot 73^{21k+11}-3889\cdot 73^{20k+10}+347\cdot 73^{19k+10}-1823\cdot 73^{18k+9}\\||+59\cdot 73^{17k+9}+891\cdot 73^{16k+8}-259\cdot 73^{15k+8}+3301\cdot 73^{14k+7}-471\cdot 73^{13k+7}\\||+4313\cdot 73^{12k+6}-489\cdot 73^{11k+6}+3703\cdot 73^{10k+5}-353\cdot 73^{9k+5}+2257\cdot 73^{8k+4}\\||-181\cdot 73^{7k+4}+963\cdot 73^{6k+3}-63\cdot 73^{5k+3}+265\cdot 73^{4k+2}-13\cdot 73^{3k+2}\\||+37\cdot 73^{2k+1}-73^{k+1}+1)\\|\times|(73^{72k+36}+73^{71k+36}+37\cdot 73^{70k+35}+13\cdot 73^{69k+35}+265\cdot 73^{68k+34}\\||+63\cdot 73^{67k+34}+963\cdot 73^{66k+33}+181\cdot 73^{65k+33}+2257\cdot 73^{64k+32}+353\cdot 73^{63k+32}\\||+3703\cdot 73^{62k+31}+489\cdot 73^{61k+31}+4313\cdot 73^{60k+30}+471\cdot 73^{59k+30}+3301\cdot 73^{58k+29}\\||+259\cdot 73^{57k+29}+891\cdot 73^{56k+28}-59\cdot 73^{55k+28}-1823\cdot 73^{54k+27}-347\cdot 73^{53k+27}\\||-3889\cdot 73^{52k+26}-539\cdot 73^{51k+26}-5149\cdot 73^{50k+25}-649\cdot 73^{49k+25}-5777\cdot 73^{48k+24}\\||-677\cdot 73^{47k+24}-5479\cdot 73^{46k+23}-559\cdot 73^{45k+23}-3633\cdot 73^{44k+22}-243\cdot 73^{43k+22}\\||-205\cdot 73^{42k+21}+213\cdot 73^{41k+21}+3805\cdot 73^{40k+20}+651\cdot 73^{39k+20}+6933\cdot 73^{38k+19}\\||+913\cdot 73^{37k+19}+8097\cdot 73^{36k+18}+913\cdot 73^{35k+18}+6933\cdot 73^{34k+17}+651\cdot 73^{33k+17}\\||+3805\cdot 73^{32k+16}+213\cdot 73^{31k+16}-205\cdot 73^{30k+15}-243\cdot 73^{29k+15}-3633\cdot 73^{28k+14}\\||-559\cdot 73^{27k+14}-5479\cdot 73^{26k+13}-677\cdot 73^{25k+13}-5777\cdot 73^{24k+12}-649\cdot 73^{23k+12}\\||-5149\cdot 73^{22k+11}-539\cdot 73^{21k+11}-3889\cdot 73^{20k+10}-347\cdot 73^{19k+10}-1823\cdot 73^{18k+9}\\||-59\cdot 73^{17k+9}+891\cdot 73^{16k+8}+259\cdot 73^{15k+8}+3301\cdot 73^{14k+7}+471\cdot 73^{13k+7}\\||+4313\cdot 73^{12k+6}+489\cdot 73^{11k+6}+3703\cdot 73^{10k+5}+353\cdot 73^{9k+5}+2257\cdot 73^{8k+4}\\||+181\cdot 73^{7k+4}+963\cdot 73^{6k+3}+63\cdot 73^{5k+3}+265\cdot 73^{4k+2}+13\cdot 73^{3k+2}\\||+37\cdot 73^{2k+1}+73^{k+1}+1)\\{\large\Phi}_{148}(74^{2k+1})|=|74^{144k+72}-74^{140k+70}+74^{136k+68}-74^{132k+66}+74^{128k+64}\\||-74^{124k+62}+74^{120k+60}-74^{116k+58}+74^{112k+56}-74^{108k+54}\\||+74^{104k+52}-74^{100k+50}+74^{96k+48}-74^{92k+46}+74^{88k+44}\\||-74^{84k+42}+74^{80k+40}-74^{76k+38}+74^{72k+36}-74^{68k+34}\\||+74^{64k+32}-74^{60k+30}+74^{56k+28}-74^{52k+26}+74^{48k+24}\\||-74^{44k+22}+74^{40k+20}-74^{36k+18}+74^{32k+16}-74^{28k+14}\\||+74^{24k+12}-74^{20k+10}+74^{16k+8}-74^{12k+6}+74^{8k+4}\\||-74^{4k+2}+1\\|=|(74^{72k+36}-74^{71k+36}+37\cdot 74^{70k+35}-12\cdot 74^{69k+35}+203\cdot 74^{68k+34}\\||-33\cdot 74^{67k+34}+259\cdot 74^{66k+33}-10\cdot 74^{65k+33}-143\cdot 74^{64k+32}+25\cdot 74^{63k+32}\\||+37\cdot 74^{62k+31}-62\cdot 74^{61k+31}+927\cdot 74^{60k+30}-99\cdot 74^{59k+30}+259\cdot 74^{58k+29}\\||+54\cdot 74^{57k+29}-751\cdot 74^{56k+28}+35\cdot 74^{55k+28}+629\cdot 74^{54k+27}-158\cdot 74^{53k+27}\\||+1279\cdot 74^{52k+26}-41\cdot 74^{51k+26}-777\cdot 74^{50k+25}+144\cdot 74^{49k+25}-639\cdot 74^{48k+24}\\||-65\cdot 74^{47k+24}+1369\cdot 74^{46k+23}-128\cdot 74^{45k+23}-33\cdot 74^{44k+22}+127\cdot 74^{43k+22}\\||-1221\cdot 74^{42k+21}+44\cdot 74^{41k+21}+653\cdot 74^{40k+20}-113\cdot 74^{39k+20}+333\cdot 74^{38k+19}\\||+78\cdot 74^{37k+19}-1145\cdot 74^{36k+18}+78\cdot 74^{35k+18}+333\cdot 74^{34k+17}-113\cdot 74^{33k+17}\\||+653\cdot 74^{32k+16}+44\cdot 74^{31k+16}-1221\cdot 74^{30k+15}+127\cdot 74^{29k+15}-33\cdot 74^{28k+14}\\||-128\cdot 74^{27k+14}+1369\cdot 74^{26k+13}-65\cdot 74^{25k+13}-639\cdot 74^{24k+12}+144\cdot 74^{23k+12}\\||-777\cdot 74^{22k+11}-41\cdot 74^{21k+11}+1279\cdot 74^{20k+10}-158\cdot 74^{19k+10}+629\cdot 74^{18k+9}\\||+35\cdot 74^{17k+9}-751\cdot 74^{16k+8}+54\cdot 74^{15k+8}+259\cdot 74^{14k+7}-99\cdot 74^{13k+7}\\||+927\cdot 74^{12k+6}-62\cdot 74^{11k+6}+37\cdot 74^{10k+5}+25\cdot 74^{9k+5}-143\cdot 74^{8k+4}\\||-10\cdot 74^{7k+4}+259\cdot 74^{6k+3}-33\cdot 74^{5k+3}+203\cdot 74^{4k+2}-12\cdot 74^{3k+2}\\||+37\cdot 74^{2k+1}-74^{k+1}+1)\\|\times|(74^{72k+36}+74^{71k+36}+37\cdot 74^{70k+35}+12\cdot 74^{69k+35}+203\cdot 74^{68k+34}\\||+33\cdot 74^{67k+34}+259\cdot 74^{66k+33}+10\cdot 74^{65k+33}-143\cdot 74^{64k+32}-25\cdot 74^{63k+32}\\||+37\cdot 74^{62k+31}+62\cdot 74^{61k+31}+927\cdot 74^{60k+30}+99\cdot 74^{59k+30}+259\cdot 74^{58k+29}\\||-54\cdot 74^{57k+29}-751\cdot 74^{56k+28}-35\cdot 74^{55k+28}+629\cdot 74^{54k+27}+158\cdot 74^{53k+27}\\||+1279\cdot 74^{52k+26}+41\cdot 74^{51k+26}-777\cdot 74^{50k+25}-144\cdot 74^{49k+25}-639\cdot 74^{48k+24}\\||+65\cdot 74^{47k+24}+1369\cdot 74^{46k+23}+128\cdot 74^{45k+23}-33\cdot 74^{44k+22}-127\cdot 74^{43k+22}\\||-1221\cdot 74^{42k+21}-44\cdot 74^{41k+21}+653\cdot 74^{40k+20}+113\cdot 74^{39k+20}+333\cdot 74^{38k+19}\\||-78\cdot 74^{37k+19}-1145\cdot 74^{36k+18}-78\cdot 74^{35k+18}+333\cdot 74^{34k+17}+113\cdot 74^{33k+17}\\||+653\cdot 74^{32k+16}-44\cdot 74^{31k+16}-1221\cdot 74^{30k+15}-127\cdot 74^{29k+15}-33\cdot 74^{28k+14}\\||+128\cdot 74^{27k+14}+1369\cdot 74^{26k+13}+65\cdot 74^{25k+13}-639\cdot 74^{24k+12}-144\cdot 74^{23k+12}\\||-777\cdot 74^{22k+11}+41\cdot 74^{21k+11}+1279\cdot 74^{20k+10}+158\cdot 74^{19k+10}+629\cdot 74^{18k+9}\\||-35\cdot 74^{17k+9}-751\cdot 74^{16k+8}-54\cdot 74^{15k+8}+259\cdot 74^{14k+7}+99\cdot 74^{13k+7}\\||+927\cdot 74^{12k+6}+62\cdot 74^{11k+6}+37\cdot 74^{10k+5}-25\cdot 74^{9k+5}-143\cdot 74^{8k+4}\\||+10\cdot 74^{7k+4}+259\cdot 74^{6k+3}+33\cdot 74^{5k+3}+203\cdot 74^{4k+2}+12\cdot 74^{3k+2}\\||+37\cdot 74^{2k+1}+74^{k+1}+1)\\{\large\Phi}_{77}(77^{2k+1})|=|77^{120k+60}-77^{118k+59}+77^{106k+53}-77^{104k+52}+77^{98k+49}\\||-77^{96k+48}+77^{92k+46}-77^{90k+45}+77^{84k+42}-77^{82k+41}\\||+77^{78k+39}-77^{74k+37}+77^{70k+35}-77^{68k+34}+77^{64k+32}\\||-77^{60k+30}+77^{56k+28}-77^{52k+26}+77^{50k+25}-77^{46k+23}\\||+77^{42k+21}-77^{38k+19}+77^{36k+18}-77^{30k+15}+77^{28k+14}\\||-77^{24k+12}+77^{22k+11}-77^{16k+8}+77^{14k+7}-77^{2k+1}+1\\|=|(77^{60k+30}-77^{59k+30}+38\cdot 77^{58k+29}-12\cdot 77^{57k+29}+202\cdot 77^{56k+28}\\||-30\cdot 77^{55k+28}+178\cdot 77^{54k+27}+15\cdot 77^{53k+27}-601\cdot 77^{52k+26}+112\cdot 77^{51k+26}\\||-952\cdot 77^{50k+25}+37\cdot 77^{49k+25}+749\cdot 77^{48k+24}-202\cdot 77^{47k+24}+2129\cdot 77^{46k+23}\\||-165\cdot 77^{45k+23}-102\cdot 77^{44k+22}+206\cdot 77^{43k+22}-2759\cdot 77^{42k+21}+271\cdot 77^{41k+21}\\||-802\cdot 77^{40k+20}-131\cdot 77^{39k+20}+2434\cdot 77^{38k+19}-273\cdot 77^{37k+19}+1146\cdot 77^{36k+18}\\||+59\cdot 77^{35k+18}-1607\cdot 77^{34k+17}+176\cdot 77^{33k+17}-505\cdot 77^{32k+16}-82\cdot 77^{31k+16}\\||+1253\cdot 77^{30k+15}-82\cdot 77^{29k+15}-505\cdot 77^{28k+14}+176\cdot 77^{27k+14}-1607\cdot 77^{26k+13}\\||+59\cdot 77^{25k+13}+1146\cdot 77^{24k+12}-273\cdot 77^{23k+12}+2434\cdot 77^{22k+11}-131\cdot 77^{21k+11}\\||-802\cdot 77^{20k+10}+271\cdot 77^{19k+10}-2759\cdot 77^{18k+9}+206\cdot 77^{17k+9}-102\cdot 77^{16k+8}\\||-165\cdot 77^{15k+8}+2129\cdot 77^{14k+7}-202\cdot 77^{13k+7}+749\cdot 77^{12k+6}+37\cdot 77^{11k+6}\\||-952\cdot 77^{10k+5}+112\cdot 77^{9k+5}-601\cdot 77^{8k+4}+15\cdot 77^{7k+4}+178\cdot 77^{6k+3}\\||-30\cdot 77^{5k+3}+202\cdot 77^{4k+2}-12\cdot 77^{3k+2}+38\cdot 77^{2k+1}-77^{k+1}+1)\\|\times|(77^{60k+30}+77^{59k+30}+38\cdot 77^{58k+29}+12\cdot 77^{57k+29}+202\cdot 77^{56k+28}\\||+30\cdot 77^{55k+28}+178\cdot 77^{54k+27}-15\cdot 77^{53k+27}-601\cdot 77^{52k+26}-112\cdot 77^{51k+26}\\||-952\cdot 77^{50k+25}-37\cdot 77^{49k+25}+749\cdot 77^{48k+24}+202\cdot 77^{47k+24}+2129\cdot 77^{46k+23}\\||+165\cdot 77^{45k+23}-102\cdot 77^{44k+22}-206\cdot 77^{43k+22}-2759\cdot 77^{42k+21}-271\cdot 77^{41k+21}\\||-802\cdot 77^{40k+20}+131\cdot 77^{39k+20}+2434\cdot 77^{38k+19}+273\cdot 77^{37k+19}+1146\cdot 77^{36k+18}\\||-59\cdot 77^{35k+18}-1607\cdot 77^{34k+17}-176\cdot 77^{33k+17}-505\cdot 77^{32k+16}+82\cdot 77^{31k+16}\\||+1253\cdot 77^{30k+15}+82\cdot 77^{29k+15}-505\cdot 77^{28k+14}-176\cdot 77^{27k+14}-1607\cdot 77^{26k+13}\\||-59\cdot 77^{25k+13}+1146\cdot 77^{24k+12}+273\cdot 77^{23k+12}+2434\cdot 77^{22k+11}+131\cdot 77^{21k+11}\\||-802\cdot 77^{20k+10}-271\cdot 77^{19k+10}-2759\cdot 77^{18k+9}-206\cdot 77^{17k+9}-102\cdot 77^{16k+8}\\||+165\cdot 77^{15k+8}+2129\cdot 77^{14k+7}+202\cdot 77^{13k+7}+749\cdot 77^{12k+6}-37\cdot 77^{11k+6}\\||-952\cdot 77^{10k+5}-112\cdot 77^{9k+5}-601\cdot 77^{8k+4}-15\cdot 77^{7k+4}+178\cdot 77^{6k+3}\\||+30\cdot 77^{5k+3}+202\cdot 77^{4k+2}+12\cdot 77^{3k+2}+38\cdot 77^{2k+1}+77^{k+1}+1)\\{\large\Phi}_{156}(78^{2k+1})|=|78^{96k+48}+78^{92k+46}-78^{84k+42}-78^{80k+40}+78^{72k+36}\\||+78^{68k+34}-78^{60k+30}-78^{56k+28}+78^{48k+24}-78^{40k+20}\\||-78^{36k+18}+78^{28k+14}+78^{24k+12}-78^{16k+8}-78^{12k+6}\\||+78^{4k+2}+1\\|=|(78^{48k+24}-78^{47k+24}+39\cdot 78^{46k+23}-13\cdot 78^{45k+23}+254\cdot 78^{44k+22}\\||-51\cdot 78^{43k+22}+663\cdot 78^{42k+21}-93\cdot 78^{41k+21}+853\cdot 78^{40k+20}-82\cdot 78^{39k+20}\\||+468\cdot 78^{38k+19}-20\cdot 78^{37k+19}-37\cdot 78^{36k+18}+10\cdot 78^{35k+18}+39\cdot 78^{34k+17}\\||-32\cdot 78^{33k+17}+532\cdot 78^{32k+16}-77\cdot 78^{31k+16}+663\cdot 78^{30k+15}-54\cdot 78^{29k+15}\\||+173\cdot 78^{28k+14}+19\cdot 78^{27k+14}-468\cdot 78^{26k+13}+76\cdot 78^{25k+13}-743\cdot 78^{24k+12}\\||+76\cdot 78^{23k+12}-468\cdot 78^{22k+11}+19\cdot 78^{21k+11}+173\cdot 78^{20k+10}-54\cdot 78^{19k+10}\\||+663\cdot 78^{18k+9}-77\cdot 78^{17k+9}+532\cdot 78^{16k+8}-32\cdot 78^{15k+8}+39\cdot 78^{14k+7}\\||+10\cdot 78^{13k+7}-37\cdot 78^{12k+6}-20\cdot 78^{11k+6}+468\cdot 78^{10k+5}-82\cdot 78^{9k+5}\\||+853\cdot 78^{8k+4}-93\cdot 78^{7k+4}+663\cdot 78^{6k+3}-51\cdot 78^{5k+3}+254\cdot 78^{4k+2}\\||-13\cdot 78^{3k+2}+39\cdot 78^{2k+1}-78^{k+1}+1)\\|\times|(78^{48k+24}+78^{47k+24}+39\cdot 78^{46k+23}+13\cdot 78^{45k+23}+254\cdot 78^{44k+22}\\||+51\cdot 78^{43k+22}+663\cdot 78^{42k+21}+93\cdot 78^{41k+21}+853\cdot 78^{40k+20}+82\cdot 78^{39k+20}\\||+468\cdot 78^{38k+19}+20\cdot 78^{37k+19}-37\cdot 78^{36k+18}-10\cdot 78^{35k+18}+39\cdot 78^{34k+17}\\||+32\cdot 78^{33k+17}+532\cdot 78^{32k+16}+77\cdot 78^{31k+16}+663\cdot 78^{30k+15}+54\cdot 78^{29k+15}\\||+173\cdot 78^{28k+14}-19\cdot 78^{27k+14}-468\cdot 78^{26k+13}-76\cdot 78^{25k+13}-743\cdot 78^{24k+12}\\||-76\cdot 78^{23k+12}-468\cdot 78^{22k+11}-19\cdot 78^{21k+11}+173\cdot 78^{20k+10}+54\cdot 78^{19k+10}\\||+663\cdot 78^{18k+9}+77\cdot 78^{17k+9}+532\cdot 78^{16k+8}+32\cdot 78^{15k+8}+39\cdot 78^{14k+7}\\||-10\cdot 78^{13k+7}-37\cdot 78^{12k+6}+20\cdot 78^{11k+6}+468\cdot 78^{10k+5}+82\cdot 78^{9k+5}\\||+853\cdot 78^{8k+4}+93\cdot 78^{7k+4}+663\cdot 78^{6k+3}+51\cdot 78^{5k+3}+254\cdot 78^{4k+2}\\||+13\cdot 78^{3k+2}+39\cdot 78^{2k+1}+78^{k+1}+1)\\{\large\Phi}_{158}(79^{2k+1})|=|79^{156k+78}-79^{154k+77}+79^{152k+76}-79^{150k+75}+79^{148k+74}\\||-79^{146k+73}+79^{144k+72}-79^{142k+71}+79^{140k+70}-79^{138k+69}\\||+79^{136k+68}-79^{134k+67}+79^{132k+66}-79^{130k+65}+79^{128k+64}\\||-79^{126k+63}+79^{124k+62}-79^{122k+61}+79^{120k+60}-79^{118k+59}\\||+79^{116k+58}-79^{114k+57}+79^{112k+56}-79^{110k+55}+79^{108k+54}\\||-79^{106k+53}+79^{104k+52}-79^{102k+51}+79^{100k+50}-79^{98k+49}\\||+79^{96k+48}-79^{94k+47}+79^{92k+46}-79^{90k+45}+79^{88k+44}\\||-79^{86k+43}+79^{84k+42}-79^{82k+41}+79^{80k+40}-79^{78k+39}\\||+79^{76k+38}-79^{74k+37}+79^{72k+36}-79^{70k+35}+79^{68k+34}\\||-79^{66k+33}+79^{64k+32}-79^{62k+31}+79^{60k+30}-79^{58k+29}\\||+79^{56k+28}-79^{54k+27}+79^{52k+26}-79^{50k+25}+79^{48k+24}\\||-79^{46k+23}+79^{44k+22}-79^{42k+21}+79^{40k+20}-79^{38k+19}\\||+79^{36k+18}-79^{34k+17}+79^{32k+16}-79^{30k+15}+79^{28k+14}\\||-79^{26k+13}+79^{24k+12}-79^{22k+11}+79^{20k+10}-79^{18k+9}\\||+79^{16k+8}-79^{14k+7}+79^{12k+6}-79^{10k+5}+79^{8k+4}\\||-79^{6k+3}+79^{4k+2}-79^{2k+1}+1\\|=|(79^{78k+39}-79^{77k+39}+39\cdot 79^{76k+38}-13\cdot 79^{75k+38}+267\cdot 79^{74k+37}\\||-59\cdot 79^{73k+37}+923\cdot 79^{72k+36}-169\cdot 79^{71k+36}+2303\cdot 79^{70k+35}-379\cdot 79^{69k+35}\\||+4745\cdot 79^{68k+34}-729\cdot 79^{67k+34}+8613\cdot 79^{66k+33}-1257\cdot 79^{65k+33}+14173\cdot 79^{64k+32}\\||-1983\cdot 79^{63k+32}+21537\cdot 79^{62k+31}-2915\cdot 79^{61k+31}+30733\cdot 79^{60k+30}-4049\cdot 79^{59k+30}\\||+41639\cdot 79^{58k+29}-5359\cdot 79^{57k+29}+53901\cdot 79^{56k+28}-6793\cdot 79^{55k+28}+66993\cdot 79^{54k+27}\\||-8289\cdot 79^{53k+27}+80339\cdot 79^{52k+26}-9777\cdot 79^{51k+26}+93269\cdot 79^{50k+25}-11179\cdot 79^{49k+25}\\||+105099\cdot 79^{48k+24}-12423\cdot 79^{47k+24}+115265\cdot 79^{46k+23}-13455\cdot 79^{45k+23}+123343\cdot 79^{44k+22}\\||-14229\cdot 79^{43k+22}+128931\cdot 79^{42k+21}-14705\cdot 79^{41k+21}+131767\cdot 79^{40k+20}-14865\cdot 79^{39k+20}\\||+131767\cdot 79^{38k+19}-14705\cdot 79^{37k+19}+128931\cdot 79^{36k+18}-14229\cdot 79^{35k+18}+123343\cdot 79^{34k+17}\\||-13455\cdot 79^{33k+17}+115265\cdot 79^{32k+16}-12423\cdot 79^{31k+16}+105099\cdot 79^{30k+15}-11179\cdot 79^{29k+15}\\||+93269\cdot 79^{28k+14}-9777\cdot 79^{27k+14}+80339\cdot 79^{26k+13}-8289\cdot 79^{25k+13}+66993\cdot 79^{24k+12}\\||-6793\cdot 79^{23k+12}+53901\cdot 79^{22k+11}-5359\cdot 79^{21k+11}+41639\cdot 79^{20k+10}-4049\cdot 79^{19k+10}\\||+30733\cdot 79^{18k+9}-2915\cdot 79^{17k+9}+21537\cdot 79^{16k+8}-1983\cdot 79^{15k+8}+14173\cdot 79^{14k+7}\\||-1257\cdot 79^{13k+7}+8613\cdot 79^{12k+6}-729\cdot 79^{11k+6}+4745\cdot 79^{10k+5}-379\cdot 79^{9k+5}\\||+2303\cdot 79^{8k+4}-169\cdot 79^{7k+4}+923\cdot 79^{6k+3}-59\cdot 79^{5k+3}+267\cdot 79^{4k+2}\\||-13\cdot 79^{3k+2}+39\cdot 79^{2k+1}-79^{k+1}+1)\\|\times|(79^{78k+39}+79^{77k+39}+39\cdot 79^{76k+38}+13\cdot 79^{75k+38}+267\cdot 79^{74k+37}\\||+59\cdot 79^{73k+37}+923\cdot 79^{72k+36}+169\cdot 79^{71k+36}+2303\cdot 79^{70k+35}+379\cdot 79^{69k+35}\\||+4745\cdot 79^{68k+34}+729\cdot 79^{67k+34}+8613\cdot 79^{66k+33}+1257\cdot 79^{65k+33}+14173\cdot 79^{64k+32}\\||+1983\cdot 79^{63k+32}+21537\cdot 79^{62k+31}+2915\cdot 79^{61k+31}+30733\cdot 79^{60k+30}+4049\cdot 79^{59k+30}\\||+41639\cdot 79^{58k+29}+5359\cdot 79^{57k+29}+53901\cdot 79^{56k+28}+6793\cdot 79^{55k+28}+66993\cdot 79^{54k+27}\\||+8289\cdot 79^{53k+27}+80339\cdot 79^{52k+26}+9777\cdot 79^{51k+26}+93269\cdot 79^{50k+25}+11179\cdot 79^{49k+25}\\||+105099\cdot 79^{48k+24}+12423\cdot 79^{47k+24}+115265\cdot 79^{46k+23}+13455\cdot 79^{45k+23}+123343\cdot 79^{44k+22}\\||+14229\cdot 79^{43k+22}+128931\cdot 79^{42k+21}+14705\cdot 79^{41k+21}+131767\cdot 79^{40k+20}+14865\cdot 79^{39k+20}\\||+131767\cdot 79^{38k+19}+14705\cdot 79^{37k+19}+128931\cdot 79^{36k+18}+14229\cdot 79^{35k+18}+123343\cdot 79^{34k+17}\\||+13455\cdot 79^{33k+17}+115265\cdot 79^{32k+16}+12423\cdot 79^{31k+16}+105099\cdot 79^{30k+15}+11179\cdot 79^{29k+15}\\||+93269\cdot 79^{28k+14}+9777\cdot 79^{27k+14}+80339\cdot 79^{26k+13}+8289\cdot 79^{25k+13}+66993\cdot 79^{24k+12}\\||+6793\cdot 79^{23k+12}+53901\cdot 79^{22k+11}+5359\cdot 79^{21k+11}+41639\cdot 79^{20k+10}+4049\cdot 79^{19k+10}\\||+30733\cdot 79^{18k+9}+2915\cdot 79^{17k+9}+21537\cdot 79^{16k+8}+1983\cdot 79^{15k+8}+14173\cdot 79^{14k+7}\\||+1257\cdot 79^{13k+7}+8613\cdot 79^{12k+6}+729\cdot 79^{11k+6}+4745\cdot 79^{10k+5}+379\cdot 79^{9k+5}\\||+2303\cdot 79^{8k+4}+169\cdot 79^{7k+4}+923\cdot 79^{6k+3}+59\cdot 79^{5k+3}+267\cdot 79^{4k+2}\\||+13\cdot 79^{3k+2}+39\cdot 79^{2k+1}+79^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{164}(82^{2k+1})\cdots{\large\Phi}_{89}(89^{2k+1})$${\large\Phi}_{164}(82^{2k+1})\cdots{\large\Phi}_{89}(89^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{164}(82^{2k+1})|=|82^{160k+80}-82^{156k+78}+82^{152k+76}-82^{148k+74}+82^{144k+72}\\||-82^{140k+70}+82^{136k+68}-82^{132k+66}+82^{128k+64}-82^{124k+62}\\||+82^{120k+60}-82^{116k+58}+82^{112k+56}-82^{108k+54}+82^{104k+52}\\||-82^{100k+50}+82^{96k+48}-82^{92k+46}+82^{88k+44}-82^{84k+42}\\||+82^{80k+40}-82^{76k+38}+82^{72k+36}-82^{68k+34}+82^{64k+32}\\||-82^{60k+30}+82^{56k+28}-82^{52k+26}+82^{48k+24}-82^{44k+22}\\||+82^{40k+20}-82^{36k+18}+82^{32k+16}-82^{28k+14}+82^{24k+12}\\||-82^{20k+10}+82^{16k+8}-82^{12k+6}+82^{8k+4}-82^{4k+2}+1\\|=|(82^{80k+40}-82^{79k+40}+41\cdot 82^{78k+39}-14\cdot 82^{77k+39}+307\cdot 82^{76k+38}\\||-69\cdot 82^{75k+38}+1107\cdot 82^{74k+37}-192\cdot 82^{73k+37}+2445\cdot 82^{72k+36}-341\cdot 82^{71k+36}\\||+3485\cdot 82^{70k+35}-382\cdot 82^{69k+35}+2903\cdot 82^{68k+34}-203\cdot 82^{67k+34}+451\cdot 82^{66k+33}\\||+102\cdot 82^{65k+33}-1879\cdot 82^{64k+32}+227\cdot 82^{63k+32}-1271\cdot 82^{62k+31}-42\cdot 82^{61k+31}\\||+2507\cdot 82^{60k+30}-497\cdot 82^{59k+30}+5699\cdot 82^{58k+29}-618\cdot 82^{57k+29}+4033\cdot 82^{56k+28}\\||-143\cdot 82^{55k+28}-1927\cdot 82^{54k+27}+520\cdot 82^{53k+27}-6161\cdot 82^{52k+26}+631\cdot 82^{51k+26}\\||-3321\cdot 82^{50k+25}-54\cdot 82^{49k+25}+4733\cdot 82^{48k+24}-911\cdot 82^{47k+24}+10045\cdot 82^{46k+23}\\||-1060\cdot 82^{45k+23}+7035\cdot 82^{44k+22}-343\cdot 82^{43k+22}-1025\cdot 82^{42k+21}+456\cdot 82^{41k+21}\\||-5279\cdot 82^{40k+20}+456\cdot 82^{39k+20}-1025\cdot 82^{38k+19}-343\cdot 82^{37k+19}+7035\cdot 82^{36k+18}\\||-1060\cdot 82^{35k+18}+10045\cdot 82^{34k+17}-911\cdot 82^{33k+17}+4733\cdot 82^{32k+16}-54\cdot 82^{31k+16}\\||-3321\cdot 82^{30k+15}+631\cdot 82^{29k+15}-6161\cdot 82^{28k+14}+520\cdot 82^{27k+14}-1927\cdot 82^{26k+13}\\||-143\cdot 82^{25k+13}+4033\cdot 82^{24k+12}-618\cdot 82^{23k+12}+5699\cdot 82^{22k+11}-497\cdot 82^{21k+11}\\||+2507\cdot 82^{20k+10}-42\cdot 82^{19k+10}-1271\cdot 82^{18k+9}+227\cdot 82^{17k+9}-1879\cdot 82^{16k+8}\\||+102\cdot 82^{15k+8}+451\cdot 82^{14k+7}-203\cdot 82^{13k+7}+2903\cdot 82^{12k+6}-382\cdot 82^{11k+6}\\||+3485\cdot 82^{10k+5}-341\cdot 82^{9k+5}+2445\cdot 82^{8k+4}-192\cdot 82^{7k+4}+1107\cdot 82^{6k+3}\\||-69\cdot 82^{5k+3}+307\cdot 82^{4k+2}-14\cdot 82^{3k+2}+41\cdot 82^{2k+1}-82^{k+1}+1)\\|\times|(82^{80k+40}+82^{79k+40}+41\cdot 82^{78k+39}+14\cdot 82^{77k+39}+307\cdot 82^{76k+38}\\||+69\cdot 82^{75k+38}+1107\cdot 82^{74k+37}+192\cdot 82^{73k+37}+2445\cdot 82^{72k+36}+341\cdot 82^{71k+36}\\||+3485\cdot 82^{70k+35}+382\cdot 82^{69k+35}+2903\cdot 82^{68k+34}+203\cdot 82^{67k+34}+451\cdot 82^{66k+33}\\||-102\cdot 82^{65k+33}-1879\cdot 82^{64k+32}-227\cdot 82^{63k+32}-1271\cdot 82^{62k+31}+42\cdot 82^{61k+31}\\||+2507\cdot 82^{60k+30}+497\cdot 82^{59k+30}+5699\cdot 82^{58k+29}+618\cdot 82^{57k+29}+4033\cdot 82^{56k+28}\\||+143\cdot 82^{55k+28}-1927\cdot 82^{54k+27}-520\cdot 82^{53k+27}-6161\cdot 82^{52k+26}-631\cdot 82^{51k+26}\\||-3321\cdot 82^{50k+25}+54\cdot 82^{49k+25}+4733\cdot 82^{48k+24}+911\cdot 82^{47k+24}+10045\cdot 82^{46k+23}\\||+1060\cdot 82^{45k+23}+7035\cdot 82^{44k+22}+343\cdot 82^{43k+22}-1025\cdot 82^{42k+21}-456\cdot 82^{41k+21}\\||-5279\cdot 82^{40k+20}-456\cdot 82^{39k+20}-1025\cdot 82^{38k+19}+343\cdot 82^{37k+19}+7035\cdot 82^{36k+18}\\||+1060\cdot 82^{35k+18}+10045\cdot 82^{34k+17}+911\cdot 82^{33k+17}+4733\cdot 82^{32k+16}+54\cdot 82^{31k+16}\\||-3321\cdot 82^{30k+15}-631\cdot 82^{29k+15}-6161\cdot 82^{28k+14}-520\cdot 82^{27k+14}-1927\cdot 82^{26k+13}\\||+143\cdot 82^{25k+13}+4033\cdot 82^{24k+12}+618\cdot 82^{23k+12}+5699\cdot 82^{22k+11}+497\cdot 82^{21k+11}\\||+2507\cdot 82^{20k+10}+42\cdot 82^{19k+10}-1271\cdot 82^{18k+9}-227\cdot 82^{17k+9}-1879\cdot 82^{16k+8}\\||-102\cdot 82^{15k+8}+451\cdot 82^{14k+7}+203\cdot 82^{13k+7}+2903\cdot 82^{12k+6}+382\cdot 82^{11k+6}\\||+3485\cdot 82^{10k+5}+341\cdot 82^{9k+5}+2445\cdot 82^{8k+4}+192\cdot 82^{7k+4}+1107\cdot 82^{6k+3}\\||+69\cdot 82^{5k+3}+307\cdot 82^{4k+2}+14\cdot 82^{3k+2}+41\cdot 82^{2k+1}+82^{k+1}+1)\\{\large\Phi}_{166}(83^{2k+1})|=|83^{164k+82}-83^{162k+81}+83^{160k+80}-83^{158k+79}+83^{156k+78}\\||-83^{154k+77}+83^{152k+76}-83^{150k+75}+83^{148k+74}-83^{146k+73}\\||+83^{144k+72}-83^{142k+71}+83^{140k+70}-83^{138k+69}+83^{136k+68}\\||-83^{134k+67}+83^{132k+66}-83^{130k+65}+83^{128k+64}-83^{126k+63}\\||+83^{124k+62}-83^{122k+61}+83^{120k+60}-83^{118k+59}+83^{116k+58}\\||-83^{114k+57}+83^{112k+56}-83^{110k+55}+83^{108k+54}-83^{106k+53}\\||+83^{104k+52}-83^{102k+51}+83^{100k+50}-83^{98k+49}+83^{96k+48}\\||-83^{94k+47}+83^{92k+46}-83^{90k+45}+83^{88k+44}-83^{86k+43}\\||+83^{84k+42}-83^{82k+41}+83^{80k+40}-83^{78k+39}+83^{76k+38}\\||-83^{74k+37}+83^{72k+36}-83^{70k+35}+83^{68k+34}-83^{66k+33}\\||+83^{64k+32}-83^{62k+31}+83^{60k+30}-83^{58k+29}+83^{56k+28}\\||-83^{54k+27}+83^{52k+26}-83^{50k+25}+83^{48k+24}-83^{46k+23}\\||+83^{44k+22}-83^{42k+21}+83^{40k+20}-83^{38k+19}+83^{36k+18}\\||-83^{34k+17}+83^{32k+16}-83^{30k+15}+83^{28k+14}-83^{26k+13}\\||+83^{24k+12}-83^{22k+11}+83^{20k+10}-83^{18k+9}+83^{16k+8}\\||-83^{14k+7}+83^{12k+6}-83^{10k+5}+83^{8k+4}-83^{6k+3}\\||+83^{4k+2}-83^{2k+1}+1\\|=|(83^{82k+41}-83^{81k+41}+41\cdot 83^{80k+40}-13\cdot 83^{79k+40}+239\cdot 83^{78k+39}\\||-37\cdot 83^{77k+39}+285\cdot 83^{76k+38}+3\cdot 83^{75k+38}-571\cdot 83^{74k+37}+123\cdot 83^{73k+37}\\||-1337\cdot 83^{72k+36}+105\cdot 83^{71k+36}+29\cdot 83^{70k+35}-143\cdot 83^{69k+35}+2303\cdot 83^{68k+34}\\||-269\cdot 83^{67k+34}+1467\cdot 83^{66k+33}+41\cdot 83^{65k+33}-2257\cdot 83^{64k+32}+351\cdot 83^{63k+32}\\||-2591\cdot 83^{62k+31}+67\cdot 83^{61k+31}+1813\cdot 83^{60k+30}-377\cdot 83^{59k+30}+3329\cdot 83^{58k+29}\\||-153\cdot 83^{57k+29}-1525\cdot 83^{56k+28}+437\cdot 83^{55k+28}-4627\cdot 83^{54k+27}+323\cdot 83^{53k+27}\\||+403\cdot 83^{52k+26}-419\cdot 83^{51k+26}+5583\cdot 83^{50k+25}-523\cdot 83^{49k+25}+1707\cdot 83^{48k+24}\\||+235\cdot 83^{47k+24}-4945\cdot 83^{46k+23}+589\cdot 83^{45k+23}-3199\cdot 83^{44k+22}-55\cdot 83^{43k+22}\\||+3893\cdot 83^{42k+21}-577\cdot 83^{41k+21}+3893\cdot 83^{40k+20}-55\cdot 83^{39k+20}-3199\cdot 83^{38k+19}\\||+589\cdot 83^{37k+19}-4945\cdot 83^{36k+18}+235\cdot 83^{35k+18}+1707\cdot 83^{34k+17}-523\cdot 83^{33k+17}\\||+5583\cdot 83^{32k+16}-419\cdot 83^{31k+16}+403\cdot 83^{30k+15}+323\cdot 83^{29k+15}-4627\cdot 83^{28k+14}\\||+437\cdot 83^{27k+14}-1525\cdot 83^{26k+13}-153\cdot 83^{25k+13}+3329\cdot 83^{24k+12}-377\cdot 83^{23k+12}\\||+1813\cdot 83^{22k+11}+67\cdot 83^{21k+11}-2591\cdot 83^{20k+10}+351\cdot 83^{19k+10}-2257\cdot 83^{18k+9}\\||+41\cdot 83^{17k+9}+1467\cdot 83^{16k+8}-269\cdot 83^{15k+8}+2303\cdot 83^{14k+7}-143\cdot 83^{13k+7}\\||+29\cdot 83^{12k+6}+105\cdot 83^{11k+6}-1337\cdot 83^{10k+5}+123\cdot 83^{9k+5}-571\cdot 83^{8k+4}\\||+3\cdot 83^{7k+4}+285\cdot 83^{6k+3}-37\cdot 83^{5k+3}+239\cdot 83^{4k+2}-13\cdot 83^{3k+2}\\||+41\cdot 83^{2k+1}-83^{k+1}+1)\\|\times|(83^{82k+41}+83^{81k+41}+41\cdot 83^{80k+40}+13\cdot 83^{79k+40}+239\cdot 83^{78k+39}\\||+37\cdot 83^{77k+39}+285\cdot 83^{76k+38}-3\cdot 83^{75k+38}-571\cdot 83^{74k+37}-123\cdot 83^{73k+37}\\||-1337\cdot 83^{72k+36}-105\cdot 83^{71k+36}+29\cdot 83^{70k+35}+143\cdot 83^{69k+35}+2303\cdot 83^{68k+34}\\||+269\cdot 83^{67k+34}+1467\cdot 83^{66k+33}-41\cdot 83^{65k+33}-2257\cdot 83^{64k+32}-351\cdot 83^{63k+32}\\||-2591\cdot 83^{62k+31}-67\cdot 83^{61k+31}+1813\cdot 83^{60k+30}+377\cdot 83^{59k+30}+3329\cdot 83^{58k+29}\\||+153\cdot 83^{57k+29}-1525\cdot 83^{56k+28}-437\cdot 83^{55k+28}-4627\cdot 83^{54k+27}-323\cdot 83^{53k+27}\\||+403\cdot 83^{52k+26}+419\cdot 83^{51k+26}+5583\cdot 83^{50k+25}+523\cdot 83^{49k+25}+1707\cdot 83^{48k+24}\\||-235\cdot 83^{47k+24}-4945\cdot 83^{46k+23}-589\cdot 83^{45k+23}-3199\cdot 83^{44k+22}+55\cdot 83^{43k+22}\\||+3893\cdot 83^{42k+21}+577\cdot 83^{41k+21}+3893\cdot 83^{40k+20}+55\cdot 83^{39k+20}-3199\cdot 83^{38k+19}\\||-589\cdot 83^{37k+19}-4945\cdot 83^{36k+18}-235\cdot 83^{35k+18}+1707\cdot 83^{34k+17}+523\cdot 83^{33k+17}\\||+5583\cdot 83^{32k+16}+419\cdot 83^{31k+16}+403\cdot 83^{30k+15}-323\cdot 83^{29k+15}-4627\cdot 83^{28k+14}\\||-437\cdot 83^{27k+14}-1525\cdot 83^{26k+13}+153\cdot 83^{25k+13}+3329\cdot 83^{24k+12}+377\cdot 83^{23k+12}\\||+1813\cdot 83^{22k+11}-67\cdot 83^{21k+11}-2591\cdot 83^{20k+10}-351\cdot 83^{19k+10}-2257\cdot 83^{18k+9}\\||-41\cdot 83^{17k+9}+1467\cdot 83^{16k+8}+269\cdot 83^{15k+8}+2303\cdot 83^{14k+7}+143\cdot 83^{13k+7}\\||+29\cdot 83^{12k+6}-105\cdot 83^{11k+6}-1337\cdot 83^{10k+5}-123\cdot 83^{9k+5}-571\cdot 83^{8k+4}\\||-3\cdot 83^{7k+4}+285\cdot 83^{6k+3}+37\cdot 83^{5k+3}+239\cdot 83^{4k+2}+13\cdot 83^{3k+2}\\||+41\cdot 83^{2k+1}+83^{k+1}+1)\\{\large\Phi}_{85}(85^{2k+1})|=|85^{128k+64}-85^{126k+63}+85^{118k+59}-85^{116k+58}+85^{108k+54}\\||-85^{106k+53}+85^{98k+49}-85^{96k+48}+85^{94k+47}-85^{92k+46}\\||+85^{88k+44}-85^{86k+43}+85^{84k+42}-85^{82k+41}+85^{78k+39}\\||-85^{76k+38}+85^{74k+37}-85^{72k+36}+85^{68k+34}-85^{66k+33}\\||+85^{64k+32}-85^{62k+31}+85^{60k+30}-85^{56k+28}+85^{54k+27}\\||-85^{52k+26}+85^{50k+25}-85^{46k+23}+85^{44k+22}-85^{42k+21}\\||+85^{40k+20}-85^{36k+18}+85^{34k+17}-85^{32k+16}+85^{30k+15}\\||-85^{22k+11}+85^{20k+10}-85^{12k+6}+85^{10k+5}-85^{2k+1}+1\\|=|(85^{64k+32}-85^{63k+32}+42\cdot 85^{62k+31}-14\cdot 85^{61k+31}+308\cdot 85^{60k+30}\\||-67\cdot 85^{59k+30}+1089\cdot 85^{58k+29}-188\cdot 85^{57k+29}+2540\cdot 85^{56k+28}-378\cdot 85^{55k+28}\\||+4541\cdot 85^{54k+27}-617\cdot 85^{53k+27}+6922\cdot 85^{52k+26}-894\cdot 85^{51k+26}+9638\cdot 85^{50k+25}\\||-1201\cdot 85^{49k+25}+12479\cdot 85^{48k+24}-1493\cdot 85^{47k+24}+14835\cdot 85^{46k+23}-1694\cdot 85^{45k+23}\\||+16081\cdot 85^{44k+22}-1761\cdot 85^{43k+22}+16127\cdot 85^{42k+21}-1715\cdot 85^{41k+21}+15338\cdot 85^{40k+20}\\||-1599\cdot 85^{39k+20}+14049\cdot 85^{38k+19}-1441\cdot 85^{37k+19}+12495\cdot 85^{36k+18}-1274\cdot 85^{35k+18}\\||+11121\cdot 85^{34k+17}-1161\cdot 85^{33k+17}+10557\cdot 85^{32k+16}-1161\cdot 85^{31k+16}+11121\cdot 85^{30k+15}\\||-1274\cdot 85^{29k+15}+12495\cdot 85^{28k+14}-1441\cdot 85^{27k+14}+14049\cdot 85^{26k+13}-1599\cdot 85^{25k+13}\\||+15338\cdot 85^{24k+12}-1715\cdot 85^{23k+12}+16127\cdot 85^{22k+11}-1761\cdot 85^{21k+11}+16081\cdot 85^{20k+10}\\||-1694\cdot 85^{19k+10}+14835\cdot 85^{18k+9}-1493\cdot 85^{17k+9}+12479\cdot 85^{16k+8}-1201\cdot 85^{15k+8}\\||+9638\cdot 85^{14k+7}-894\cdot 85^{13k+7}+6922\cdot 85^{12k+6}-617\cdot 85^{11k+6}+4541\cdot 85^{10k+5}\\||-378\cdot 85^{9k+5}+2540\cdot 85^{8k+4}-188\cdot 85^{7k+4}+1089\cdot 85^{6k+3}-67\cdot 85^{5k+3}\\||+308\cdot 85^{4k+2}-14\cdot 85^{3k+2}+42\cdot 85^{2k+1}-85^{k+1}+1)\\|\times|(85^{64k+32}+85^{63k+32}+42\cdot 85^{62k+31}+14\cdot 85^{61k+31}+308\cdot 85^{60k+30}\\||+67\cdot 85^{59k+30}+1089\cdot 85^{58k+29}+188\cdot 85^{57k+29}+2540\cdot 85^{56k+28}+378\cdot 85^{55k+28}\\||+4541\cdot 85^{54k+27}+617\cdot 85^{53k+27}+6922\cdot 85^{52k+26}+894\cdot 85^{51k+26}+9638\cdot 85^{50k+25}\\||+1201\cdot 85^{49k+25}+12479\cdot 85^{48k+24}+1493\cdot 85^{47k+24}+14835\cdot 85^{46k+23}+1694\cdot 85^{45k+23}\\||+16081\cdot 85^{44k+22}+1761\cdot 85^{43k+22}+16127\cdot 85^{42k+21}+1715\cdot 85^{41k+21}+15338\cdot 85^{40k+20}\\||+1599\cdot 85^{39k+20}+14049\cdot 85^{38k+19}+1441\cdot 85^{37k+19}+12495\cdot 85^{36k+18}+1274\cdot 85^{35k+18}\\||+11121\cdot 85^{34k+17}+1161\cdot 85^{33k+17}+10557\cdot 85^{32k+16}+1161\cdot 85^{31k+16}+11121\cdot 85^{30k+15}\\||+1274\cdot 85^{29k+15}+12495\cdot 85^{28k+14}+1441\cdot 85^{27k+14}+14049\cdot 85^{26k+13}+1599\cdot 85^{25k+13}\\||+15338\cdot 85^{24k+12}+1715\cdot 85^{23k+12}+16127\cdot 85^{22k+11}+1761\cdot 85^{21k+11}+16081\cdot 85^{20k+10}\\||+1694\cdot 85^{19k+10}+14835\cdot 85^{18k+9}+1493\cdot 85^{17k+9}+12479\cdot 85^{16k+8}+1201\cdot 85^{15k+8}\\||+9638\cdot 85^{14k+7}+894\cdot 85^{13k+7}+6922\cdot 85^{12k+6}+617\cdot 85^{11k+6}+4541\cdot 85^{10k+5}\\||+378\cdot 85^{9k+5}+2540\cdot 85^{8k+4}+188\cdot 85^{7k+4}+1089\cdot 85^{6k+3}+67\cdot 85^{5k+3}\\||+308\cdot 85^{4k+2}+14\cdot 85^{3k+2}+42\cdot 85^{2k+1}+85^{k+1}+1)\\{\large\Phi}_{172}(86^{2k+1})|=|86^{168k+84}-86^{164k+82}+86^{160k+80}-86^{156k+78}+86^{152k+76}\\||-86^{148k+74}+86^{144k+72}-86^{140k+70}+86^{136k+68}-86^{132k+66}\\||+86^{128k+64}-86^{124k+62}+86^{120k+60}-86^{116k+58}+86^{112k+56}\\||-86^{108k+54}+86^{104k+52}-86^{100k+50}+86^{96k+48}-86^{92k+46}\\||+86^{88k+44}-86^{84k+42}+86^{80k+40}-86^{76k+38}+86^{72k+36}\\||-86^{68k+34}+86^{64k+32}-86^{60k+30}+86^{56k+28}-86^{52k+26}\\||+86^{48k+24}-86^{44k+22}+86^{40k+20}-86^{36k+18}+86^{32k+16}\\||-86^{28k+14}+86^{24k+12}-86^{20k+10}+86^{16k+8}-86^{12k+6}\\||+86^{8k+4}-86^{4k+2}+1\\|=|(86^{84k+42}-86^{83k+42}+43\cdot 86^{82k+41}-14\cdot 86^{81k+41}+279\cdot 86^{80k+40}\\||-47\cdot 86^{79k+40}+473\cdot 86^{78k+39}-30\cdot 86^{77k+39}-91\cdot 86^{76k+38}+37\cdot 86^{75k+38}\\||-129\cdot 86^{74k+37}-66\cdot 86^{73k+37}+1459\cdot 86^{72k+36}-189\cdot 86^{71k+36}+1161\cdot 86^{70k+35}\\||-6\cdot 86^{69k+35}-723\cdot 86^{68k+34}+61\cdot 86^{67k+34}+387\cdot 86^{66k+33}-152\cdot 86^{65k+33}\\||+1859\cdot 86^{64k+32}-179\cdot 86^{63k+32}+1161\cdot 86^{62k+31}-68\cdot 86^{61k+31}+41\cdot 86^{60k+30}\\||+67\cdot 86^{59k+30}-989\cdot 86^{58k+29}+54\cdot 86^{57k+29}+911\cdot 86^{56k+28}-259\cdot 86^{55k+28}\\||+2709\cdot 86^{54k+27}-136\cdot 86^{53k+27}-1147\cdot 86^{52k+26}+309\cdot 86^{51k+26}-2709\cdot 86^{50k+25}\\||+98\cdot 86^{49k+25}+1143\cdot 86^{48k+24}-223\cdot 86^{47k+24}+1505\cdot 86^{46k+23}-14\cdot 86^{45k+23}\\||-1131\cdot 86^{44k+22}+197\cdot 86^{43k+22}-2021\cdot 86^{42k+21}+197\cdot 86^{41k+21}-1131\cdot 86^{40k+20}\\||-14\cdot 86^{39k+20}+1505\cdot 86^{38k+19}-223\cdot 86^{37k+19}+1143\cdot 86^{36k+18}+98\cdot 86^{35k+18}\\||-2709\cdot 86^{34k+17}+309\cdot 86^{33k+17}-1147\cdot 86^{32k+16}-136\cdot 86^{31k+16}+2709\cdot 86^{30k+15}\\||-259\cdot 86^{29k+15}+911\cdot 86^{28k+14}+54\cdot 86^{27k+14}-989\cdot 86^{26k+13}+67\cdot 86^{25k+13}\\||+41\cdot 86^{24k+12}-68\cdot 86^{23k+12}+1161\cdot 86^{22k+11}-179\cdot 86^{21k+11}+1859\cdot 86^{20k+10}\\||-152\cdot 86^{19k+10}+387\cdot 86^{18k+9}+61\cdot 86^{17k+9}-723\cdot 86^{16k+8}-6\cdot 86^{15k+8}\\||+1161\cdot 86^{14k+7}-189\cdot 86^{13k+7}+1459\cdot 86^{12k+6}-66\cdot 86^{11k+6}-129\cdot 86^{10k+5}\\||+37\cdot 86^{9k+5}-91\cdot 86^{8k+4}-30\cdot 86^{7k+4}+473\cdot 86^{6k+3}-47\cdot 86^{5k+3}\\||+279\cdot 86^{4k+2}-14\cdot 86^{3k+2}+43\cdot 86^{2k+1}-86^{k+1}+1)\\|\times|(86^{84k+42}+86^{83k+42}+43\cdot 86^{82k+41}+14\cdot 86^{81k+41}+279\cdot 86^{80k+40}\\||+47\cdot 86^{79k+40}+473\cdot 86^{78k+39}+30\cdot 86^{77k+39}-91\cdot 86^{76k+38}-37\cdot 86^{75k+38}\\||-129\cdot 86^{74k+37}+66\cdot 86^{73k+37}+1459\cdot 86^{72k+36}+189\cdot 86^{71k+36}+1161\cdot 86^{70k+35}\\||+6\cdot 86^{69k+35}-723\cdot 86^{68k+34}-61\cdot 86^{67k+34}+387\cdot 86^{66k+33}+152\cdot 86^{65k+33}\\||+1859\cdot 86^{64k+32}+179\cdot 86^{63k+32}+1161\cdot 86^{62k+31}+68\cdot 86^{61k+31}+41\cdot 86^{60k+30}\\||-67\cdot 86^{59k+30}-989\cdot 86^{58k+29}-54\cdot 86^{57k+29}+911\cdot 86^{56k+28}+259\cdot 86^{55k+28}\\||+2709\cdot 86^{54k+27}+136\cdot 86^{53k+27}-1147\cdot 86^{52k+26}-309\cdot 86^{51k+26}-2709\cdot 86^{50k+25}\\||-98\cdot 86^{49k+25}+1143\cdot 86^{48k+24}+223\cdot 86^{47k+24}+1505\cdot 86^{46k+23}+14\cdot 86^{45k+23}\\||-1131\cdot 86^{44k+22}-197\cdot 86^{43k+22}-2021\cdot 86^{42k+21}-197\cdot 86^{41k+21}-1131\cdot 86^{40k+20}\\||+14\cdot 86^{39k+20}+1505\cdot 86^{38k+19}+223\cdot 86^{37k+19}+1143\cdot 86^{36k+18}-98\cdot 86^{35k+18}\\||-2709\cdot 86^{34k+17}-309\cdot 86^{33k+17}-1147\cdot 86^{32k+16}+136\cdot 86^{31k+16}+2709\cdot 86^{30k+15}\\||+259\cdot 86^{29k+15}+911\cdot 86^{28k+14}-54\cdot 86^{27k+14}-989\cdot 86^{26k+13}-67\cdot 86^{25k+13}\\||+41\cdot 86^{24k+12}+68\cdot 86^{23k+12}+1161\cdot 86^{22k+11}+179\cdot 86^{21k+11}+1859\cdot 86^{20k+10}\\||+152\cdot 86^{19k+10}+387\cdot 86^{18k+9}-61\cdot 86^{17k+9}-723\cdot 86^{16k+8}+6\cdot 86^{15k+8}\\||+1161\cdot 86^{14k+7}+189\cdot 86^{13k+7}+1459\cdot 86^{12k+6}+66\cdot 86^{11k+6}-129\cdot 86^{10k+5}\\||-37\cdot 86^{9k+5}-91\cdot 86^{8k+4}+30\cdot 86^{7k+4}+473\cdot 86^{6k+3}+47\cdot 86^{5k+3}\\||+279\cdot 86^{4k+2}+14\cdot 86^{3k+2}+43\cdot 86^{2k+1}+86^{k+1}+1)\\{\large\Phi}_{174}(87^{2k+1})|=|87^{112k+56}+87^{110k+55}-87^{106k+53}-87^{104k+52}+87^{100k+50}\\||+87^{98k+49}-87^{94k+47}-87^{92k+46}+87^{88k+44}+87^{86k+43}\\||-87^{82k+41}-87^{80k+40}+87^{76k+38}+87^{74k+37}-87^{70k+35}\\||-87^{68k+34}+87^{64k+32}+87^{62k+31}-87^{58k+29}-87^{56k+28}\\||-87^{54k+27}+87^{50k+25}+87^{48k+24}-87^{44k+22}-87^{42k+21}\\||+87^{38k+19}+87^{36k+18}-87^{32k+16}-87^{30k+15}+87^{26k+13}\\||+87^{24k+12}-87^{20k+10}-87^{18k+9}+87^{14k+7}+87^{12k+6}\\||-87^{8k+4}-87^{6k+3}+87^{2k+1}+1\\|=|(87^{56k+28}-87^{55k+28}+44\cdot 87^{54k+27}-15\cdot 87^{53k+27}+337\cdot 87^{52k+26}\\||-70\cdot 87^{51k+26}+1049\cdot 87^{50k+25}-151\cdot 87^{49k+25}+1546\cdot 87^{48k+24}-135\cdot 87^{47k+24}\\||+413\cdot 87^{46k+23}+104\cdot 87^{45k+23}-2657\cdot 87^{44k+22}+453\cdot 87^{43k+22}-5164\cdot 87^{42k+21}\\||+539\cdot 87^{41k+21}-3593\cdot 87^{40k+20}+104\cdot 87^{39k+20}+2381\cdot 87^{38k+19}-615\cdot 87^{37k+19}\\||+8284\cdot 87^{36k+18}-1001\cdot 87^{35k+18}+8519\cdot 87^{34k+17}-630\cdot 87^{33k+17}+1879\cdot 87^{32k+16}\\||+287\cdot 87^{31k+16}-6850\cdot 87^{30k+15}+1047\cdot 87^{29k+15}-10811\cdot 87^{28k+14}+1047\cdot 87^{27k+14}\\||-6850\cdot 87^{26k+13}+287\cdot 87^{25k+13}+1879\cdot 87^{24k+12}-630\cdot 87^{23k+12}+8519\cdot 87^{22k+11}\\||-1001\cdot 87^{21k+11}+8284\cdot 87^{20k+10}-615\cdot 87^{19k+10}+2381\cdot 87^{18k+9}+104\cdot 87^{17k+9}\\||-3593\cdot 87^{16k+8}+539\cdot 87^{15k+8}-5164\cdot 87^{14k+7}+453\cdot 87^{13k+7}-2657\cdot 87^{12k+6}\\||+104\cdot 87^{11k+6}+413\cdot 87^{10k+5}-135\cdot 87^{9k+5}+1546\cdot 87^{8k+4}-151\cdot 87^{7k+4}\\||+1049\cdot 87^{6k+3}-70\cdot 87^{5k+3}+337\cdot 87^{4k+2}-15\cdot 87^{3k+2}+44\cdot 87^{2k+1}\\||-87^{k+1}+1)\\|\times|(87^{56k+28}+87^{55k+28}+44\cdot 87^{54k+27}+15\cdot 87^{53k+27}+337\cdot 87^{52k+26}\\||+70\cdot 87^{51k+26}+1049\cdot 87^{50k+25}+151\cdot 87^{49k+25}+1546\cdot 87^{48k+24}+135\cdot 87^{47k+24}\\||+413\cdot 87^{46k+23}-104\cdot 87^{45k+23}-2657\cdot 87^{44k+22}-453\cdot 87^{43k+22}-5164\cdot 87^{42k+21}\\||-539\cdot 87^{41k+21}-3593\cdot 87^{40k+20}-104\cdot 87^{39k+20}+2381\cdot 87^{38k+19}+615\cdot 87^{37k+19}\\||+8284\cdot 87^{36k+18}+1001\cdot 87^{35k+18}+8519\cdot 87^{34k+17}+630\cdot 87^{33k+17}+1879\cdot 87^{32k+16}\\||-287\cdot 87^{31k+16}-6850\cdot 87^{30k+15}-1047\cdot 87^{29k+15}-10811\cdot 87^{28k+14}-1047\cdot 87^{27k+14}\\||-6850\cdot 87^{26k+13}-287\cdot 87^{25k+13}+1879\cdot 87^{24k+12}+630\cdot 87^{23k+12}+8519\cdot 87^{22k+11}\\||+1001\cdot 87^{21k+11}+8284\cdot 87^{20k+10}+615\cdot 87^{19k+10}+2381\cdot 87^{18k+9}-104\cdot 87^{17k+9}\\||-3593\cdot 87^{16k+8}-539\cdot 87^{15k+8}-5164\cdot 87^{14k+7}-453\cdot 87^{13k+7}-2657\cdot 87^{12k+6}\\||-104\cdot 87^{11k+6}+413\cdot 87^{10k+5}+135\cdot 87^{9k+5}+1546\cdot 87^{8k+4}+151\cdot 87^{7k+4}\\||+1049\cdot 87^{6k+3}+70\cdot 87^{5k+3}+337\cdot 87^{4k+2}+15\cdot 87^{3k+2}+44\cdot 87^{2k+1}\\||+87^{k+1}+1)\\{\large\Phi}_{89}(89^{2k+1})|=|89^{176k+88}+89^{174k+87}+89^{172k+86}+89^{170k+85}+89^{168k+84}\\||+89^{166k+83}+89^{164k+82}+89^{162k+81}+89^{160k+80}+89^{158k+79}\\||+89^{156k+78}+89^{154k+77}+89^{152k+76}+89^{150k+75}+89^{148k+74}\\||+89^{146k+73}+89^{144k+72}+89^{142k+71}+89^{140k+70}+89^{138k+69}\\||+89^{136k+68}+89^{134k+67}+89^{132k+66}+89^{130k+65}+89^{128k+64}\\||+89^{126k+63}+89^{124k+62}+89^{122k+61}+89^{120k+60}+89^{118k+59}\\||+89^{116k+58}+89^{114k+57}+89^{112k+56}+89^{110k+55}+89^{108k+54}\\||+89^{106k+53}+89^{104k+52}+89^{102k+51}+89^{100k+50}+89^{98k+49}\\||+89^{96k+48}+89^{94k+47}+89^{92k+46}+89^{90k+45}+89^{88k+44}\\||+89^{86k+43}+89^{84k+42}+89^{82k+41}+89^{80k+40}+89^{78k+39}\\||+89^{76k+38}+89^{74k+37}+89^{72k+36}+89^{70k+35}+89^{68k+34}\\||+89^{66k+33}+89^{64k+32}+89^{62k+31}+89^{60k+30}+89^{58k+29}\\||+89^{56k+28}+89^{54k+27}+89^{52k+26}+89^{50k+25}+89^{48k+24}\\||+89^{46k+23}+89^{44k+22}+89^{42k+21}+89^{40k+20}+89^{38k+19}\\||+89^{36k+18}+89^{34k+17}+89^{32k+16}+89^{30k+15}+89^{28k+14}\\||+89^{26k+13}+89^{24k+12}+89^{22k+11}+89^{20k+10}+89^{18k+9}\\||+89^{16k+8}+89^{14k+7}+89^{12k+6}+89^{10k+5}+89^{8k+4}\\||+89^{6k+3}+89^{4k+2}+89^{2k+1}+1\\|=|(89^{88k+44}-89^{87k+44}+45\cdot 89^{86k+43}-15\cdot 89^{85k+43}+323\cdot 89^{84k+42}\\||-59\cdot 89^{83k+42}+729\cdot 89^{82k+41}-75\cdot 89^{81k+41}+471\cdot 89^{80k+40}-19\cdot 89^{79k+40}\\||+59\cdot 89^{78k+39}-19\cdot 89^{77k+39}+373\cdot 89^{76k+38}-47\cdot 89^{75k+38}+429\cdot 89^{74k+37}\\||-59\cdot 89^{73k+37}+875\cdot 89^{72k+36}-111\cdot 89^{71k+36}+683\cdot 89^{70k+35}+11\cdot 89^{69k+35}\\||-655\cdot 89^{68k+34}+47\cdot 89^{67k+34}+285\cdot 89^{66k+33}-79\cdot 89^{65k+33}+529\cdot 89^{64k+32}\\||-9\cdot 89^{63k+32}+115\cdot 89^{62k+31}-65\cdot 89^{61k+31}+807\cdot 89^{60k+30}-17\cdot 89^{59k+30}\\||-813\cdot 89^{58k+29}+111\cdot 89^{57k+29}-223\cdot 89^{56k+28}-79\cdot 89^{55k+28}+739\cdot 89^{54k+27}\\||+23\cdot 89^{53k+27}-975\cdot 89^{52k+26}+73\cdot 89^{51k+26}+121\cdot 89^{50k+25}-25\cdot 89^{49k+25}\\||-663\cdot 89^{48k+24}+161\cdot 89^{47k+24}-1213\cdot 89^{46k+23}+3\cdot 89^{45k+23}+633\cdot 89^{44k+22}\\||+3\cdot 89^{43k+22}-1213\cdot 89^{42k+21}+161\cdot 89^{41k+21}-663\cdot 89^{40k+20}-25\cdot 89^{39k+20}\\||+121\cdot 89^{38k+19}+73\cdot 89^{37k+19}-975\cdot 89^{36k+18}+23\cdot 89^{35k+18}+739\cdot 89^{34k+17}\\||-79\cdot 89^{33k+17}-223\cdot 89^{32k+16}+111\cdot 89^{31k+16}-813\cdot 89^{30k+15}-17\cdot 89^{29k+15}\\||+807\cdot 89^{28k+14}-65\cdot 89^{27k+14}+115\cdot 89^{26k+13}-9\cdot 89^{25k+13}+529\cdot 89^{24k+12}\\||-79\cdot 89^{23k+12}+285\cdot 89^{22k+11}+47\cdot 89^{21k+11}-655\cdot 89^{20k+10}+11\cdot 89^{19k+10}\\||+683\cdot 89^{18k+9}-111\cdot 89^{17k+9}+875\cdot 89^{16k+8}-59\cdot 89^{15k+8}+429\cdot 89^{14k+7}\\||-47\cdot 89^{13k+7}+373\cdot 89^{12k+6}-19\cdot 89^{11k+6}+59\cdot 89^{10k+5}-19\cdot 89^{9k+5}\\||+471\cdot 89^{8k+4}-75\cdot 89^{7k+4}+729\cdot 89^{6k+3}-59\cdot 89^{5k+3}+323\cdot 89^{4k+2}\\||-15\cdot 89^{3k+2}+45\cdot 89^{2k+1}-89^{k+1}+1)\\|\times|(89^{88k+44}+89^{87k+44}+45\cdot 89^{86k+43}+15\cdot 89^{85k+43}+323\cdot 89^{84k+42}\\||+59\cdot 89^{83k+42}+729\cdot 89^{82k+41}+75\cdot 89^{81k+41}+471\cdot 89^{80k+40}+19\cdot 89^{79k+40}\\||+59\cdot 89^{78k+39}+19\cdot 89^{77k+39}+373\cdot 89^{76k+38}+47\cdot 89^{75k+38}+429\cdot 89^{74k+37}\\||+59\cdot 89^{73k+37}+875\cdot 89^{72k+36}+111\cdot 89^{71k+36}+683\cdot 89^{70k+35}-11\cdot 89^{69k+35}\\||-655\cdot 89^{68k+34}-47\cdot 89^{67k+34}+285\cdot 89^{66k+33}+79\cdot 89^{65k+33}+529\cdot 89^{64k+32}\\||+9\cdot 89^{63k+32}+115\cdot 89^{62k+31}+65\cdot 89^{61k+31}+807\cdot 89^{60k+30}+17\cdot 89^{59k+30}\\||-813\cdot 89^{58k+29}-111\cdot 89^{57k+29}-223\cdot 89^{56k+28}+79\cdot 89^{55k+28}+739\cdot 89^{54k+27}\\||-23\cdot 89^{53k+27}-975\cdot 89^{52k+26}-73\cdot 89^{51k+26}+121\cdot 89^{50k+25}+25\cdot 89^{49k+25}\\||-663\cdot 89^{48k+24}-161\cdot 89^{47k+24}-1213\cdot 89^{46k+23}-3\cdot 89^{45k+23}+633\cdot 89^{44k+22}\\||-3\cdot 89^{43k+22}-1213\cdot 89^{42k+21}-161\cdot 89^{41k+21}-663\cdot 89^{40k+20}+25\cdot 89^{39k+20}\\||+121\cdot 89^{38k+19}-73\cdot 89^{37k+19}-975\cdot 89^{36k+18}-23\cdot 89^{35k+18}+739\cdot 89^{34k+17}\\||+79\cdot 89^{33k+17}-223\cdot 89^{32k+16}-111\cdot 89^{31k+16}-813\cdot 89^{30k+15}+17\cdot 89^{29k+15}\\||+807\cdot 89^{28k+14}+65\cdot 89^{27k+14}+115\cdot 89^{26k+13}+9\cdot 89^{25k+13}+529\cdot 89^{24k+12}\\||+79\cdot 89^{23k+12}+285\cdot 89^{22k+11}-47\cdot 89^{21k+11}-655\cdot 89^{20k+10}-11\cdot 89^{19k+10}\\||+683\cdot 89^{18k+9}+111\cdot 89^{17k+9}+875\cdot 89^{16k+8}+59\cdot 89^{15k+8}+429\cdot 89^{14k+7}\\||+47\cdot 89^{13k+7}+373\cdot 89^{12k+6}+19\cdot 89^{11k+6}+59\cdot 89^{10k+5}+19\cdot 89^{9k+5}\\||+471\cdot 89^{8k+4}+75\cdot 89^{7k+4}+729\cdot 89^{6k+3}+59\cdot 89^{5k+3}+323\cdot 89^{4k+2}\\||+15\cdot 89^{3k+2}+45\cdot 89^{2k+1}+89^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{182}(91^{2k+1})\cdots{\large\Phi}_{97}(97^{2k+1})$${\large\Phi}_{182}(91^{2k+1})\cdots{\large\Phi}_{97}(97^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{182}(91^{2k+1})|=|91^{144k+72}+91^{142k+71}-91^{130k+65}-91^{128k+64}-91^{118k+59}\\||+91^{114k+57}+91^{104k+52}-91^{100k+50}+91^{92k+46}+91^{86k+43}\\||-91^{78k+39}-91^{72k+36}-91^{66k+33}+91^{58k+29}+91^{52k+26}\\||-91^{44k+22}+91^{40k+20}+91^{30k+15}-91^{26k+13}-91^{16k+8}\\||-91^{14k+7}+91^{2k+1}+1\\|=|(91^{72k+36}-91^{71k+36}+46\cdot 91^{70k+35}-16\cdot 91^{69k+35}+398\cdot 91^{68k+34}\\||-92\cdot 91^{67k+34}+1712\cdot 91^{66k+33}-319\cdot 91^{65k+33}+5027\cdot 91^{64k+32}-820\cdot 91^{63k+32}\\||+11578\cdot 91^{62k+31}-1722\cdot 91^{61k+31}+22484\cdot 91^{60k+30}-3129\cdot 91^{59k+30}+38604\cdot 91^{58k+29}\\||-5117\cdot 91^{57k+29}+60518\cdot 91^{56k+28}-7730\cdot 91^{55k+28}+88474\cdot 91^{54k+27}-10974\cdot 91^{53k+27}\\||+122293\cdot 91^{52k+26}-14798\cdot 91^{51k+26}+161111\cdot 91^{50k+25}-19068\cdot 91^{49k+25}+203238\cdot 91^{48k+24}\\||-23566\cdot 91^{47k+24}+246235\cdot 91^{46k+23}-28004\cdot 91^{45k+23}+287132\cdot 91^{44k+22}-32059\cdot 91^{43k+22}\\||+322848\cdot 91^{42k+21}-35418\cdot 91^{41k+21}+350578\cdot 91^{40k+20}-37815\cdot 91^{39k+20}+368130\cdot 91^{38k+19}\\||-39062\cdot 91^{37k+19}+374137\cdot 91^{36k+18}-39062\cdot 91^{35k+18}+368130\cdot 91^{34k+17}-37815\cdot 91^{33k+17}\\||+350578\cdot 91^{32k+16}-35418\cdot 91^{31k+16}+322848\cdot 91^{30k+15}-32059\cdot 91^{29k+15}+287132\cdot 91^{28k+14}\\||-28004\cdot 91^{27k+14}+246235\cdot 91^{26k+13}-23566\cdot 91^{25k+13}+203238\cdot 91^{24k+12}-19068\cdot 91^{23k+12}\\||+161111\cdot 91^{22k+11}-14798\cdot 91^{21k+11}+122293\cdot 91^{20k+10}-10974\cdot 91^{19k+10}+88474\cdot 91^{18k+9}\\||-7730\cdot 91^{17k+9}+60518\cdot 91^{16k+8}-5117\cdot 91^{15k+8}+38604\cdot 91^{14k+7}-3129\cdot 91^{13k+7}\\||+22484\cdot 91^{12k+6}-1722\cdot 91^{11k+6}+11578\cdot 91^{10k+5}-820\cdot 91^{9k+5}+5027\cdot 91^{8k+4}\\||-319\cdot 91^{7k+4}+1712\cdot 91^{6k+3}-92\cdot 91^{5k+3}+398\cdot 91^{4k+2}-16\cdot 91^{3k+2}\\||+46\cdot 91^{2k+1}-91^{k+1}+1)\\|\times|(91^{72k+36}+91^{71k+36}+46\cdot 91^{70k+35}+16\cdot 91^{69k+35}+398\cdot 91^{68k+34}\\||+92\cdot 91^{67k+34}+1712\cdot 91^{66k+33}+319\cdot 91^{65k+33}+5027\cdot 91^{64k+32}+820\cdot 91^{63k+32}\\||+11578\cdot 91^{62k+31}+1722\cdot 91^{61k+31}+22484\cdot 91^{60k+30}+3129\cdot 91^{59k+30}+38604\cdot 91^{58k+29}\\||+5117\cdot 91^{57k+29}+60518\cdot 91^{56k+28}+7730\cdot 91^{55k+28}+88474\cdot 91^{54k+27}+10974\cdot 91^{53k+27}\\||+122293\cdot 91^{52k+26}+14798\cdot 91^{51k+26}+161111\cdot 91^{50k+25}+19068\cdot 91^{49k+25}+203238\cdot 91^{48k+24}\\||+23566\cdot 91^{47k+24}+246235\cdot 91^{46k+23}+28004\cdot 91^{45k+23}+287132\cdot 91^{44k+22}+32059\cdot 91^{43k+22}\\||+322848\cdot 91^{42k+21}+35418\cdot 91^{41k+21}+350578\cdot 91^{40k+20}+37815\cdot 91^{39k+20}+368130\cdot 91^{38k+19}\\||+39062\cdot 91^{37k+19}+374137\cdot 91^{36k+18}+39062\cdot 91^{35k+18}+368130\cdot 91^{34k+17}+37815\cdot 91^{33k+17}\\||+350578\cdot 91^{32k+16}+35418\cdot 91^{31k+16}+322848\cdot 91^{30k+15}+32059\cdot 91^{29k+15}+287132\cdot 91^{28k+14}\\||+28004\cdot 91^{27k+14}+246235\cdot 91^{26k+13}+23566\cdot 91^{25k+13}+203238\cdot 91^{24k+12}+19068\cdot 91^{23k+12}\\||+161111\cdot 91^{22k+11}+14798\cdot 91^{21k+11}+122293\cdot 91^{20k+10}+10974\cdot 91^{19k+10}+88474\cdot 91^{18k+9}\\||+7730\cdot 91^{17k+9}+60518\cdot 91^{16k+8}+5117\cdot 91^{15k+8}+38604\cdot 91^{14k+7}+3129\cdot 91^{13k+7}\\||+22484\cdot 91^{12k+6}+1722\cdot 91^{11k+6}+11578\cdot 91^{10k+5}+820\cdot 91^{9k+5}+5027\cdot 91^{8k+4}\\||+319\cdot 91^{7k+4}+1712\cdot 91^{6k+3}+92\cdot 91^{5k+3}+398\cdot 91^{4k+2}+16\cdot 91^{3k+2}\\||+46\cdot 91^{2k+1}+91^{k+1}+1)\\{\large\Phi}_{93}(93^{2k+1})|=|93^{120k+60}-93^{118k+59}+93^{114k+57}-93^{112k+56}+93^{108k+54}\\||-93^{106k+53}+93^{102k+51}-93^{100k+50}+93^{96k+48}-93^{94k+47}\\||+93^{90k+45}-93^{88k+44}+93^{84k+42}-93^{82k+41}+93^{78k+39}\\||-93^{76k+38}+93^{72k+36}-93^{70k+35}+93^{66k+33}-93^{64k+32}\\||+93^{60k+30}-93^{56k+28}+93^{54k+27}-93^{50k+25}+93^{48k+24}\\||-93^{44k+22}+93^{42k+21}-93^{38k+19}+93^{36k+18}-93^{32k+16}\\||+93^{30k+15}-93^{26k+13}+93^{24k+12}-93^{20k+10}+93^{18k+9}\\||-93^{14k+7}+93^{12k+6}-93^{8k+4}+93^{6k+3}-93^{2k+1}+1\\|=|(93^{60k+30}-93^{59k+30}+46\cdot 93^{58k+29}-15\cdot 93^{57k+29}+337\cdot 93^{56k+28}\\||-64\cdot 93^{55k+28}+913\cdot 93^{54k+27}-113\cdot 93^{53k+27}+1006\cdot 93^{52k+26}-63\cdot 93^{51k+26}\\||+93^{50k+25}+58\cdot 93^{49k+25}-785\cdot 93^{48k+24}+53\cdot 93^{47k+24}+190\cdot 93^{46k+23}\\||-105\cdot 93^{45k+23}+1555\cdot 93^{44k+22}-158\cdot 93^{43k+22}+889\cdot 93^{42k+21}+9\cdot 93^{41k+21}\\||-956\cdot 93^{40k+20}+133\cdot 93^{39k+20}-851\cdot 93^{38k+19}-22\cdot 93^{37k+19}+1471\cdot 93^{36k+18}\\||-245\cdot 93^{35k+18}+2458\cdot 93^{34k+17}-175\cdot 93^{33k+17}+409\cdot 93^{32k+16}+78\cdot 93^{31k+16}\\||-1217\cdot 93^{30k+15}+78\cdot 93^{29k+15}+409\cdot 93^{28k+14}-175\cdot 93^{27k+14}+2458\cdot 93^{26k+13}\\||-245\cdot 93^{25k+13}+1471\cdot 93^{24k+12}-22\cdot 93^{23k+12}-851\cdot 93^{22k+11}+133\cdot 93^{21k+11}\\||-956\cdot 93^{20k+10}+9\cdot 93^{19k+10}+889\cdot 93^{18k+9}-158\cdot 93^{17k+9}+1555\cdot 93^{16k+8}\\||-105\cdot 93^{15k+8}+190\cdot 93^{14k+7}+53\cdot 93^{13k+7}-785\cdot 93^{12k+6}+58\cdot 93^{11k+6}\\||+93^{10k+5}-63\cdot 93^{9k+5}+1006\cdot 93^{8k+4}-113\cdot 93^{7k+4}+913\cdot 93^{6k+3}\\||-64\cdot 93^{5k+3}+337\cdot 93^{4k+2}-15\cdot 93^{3k+2}+46\cdot 93^{2k+1}-93^{k+1}+1)\\|\times|(93^{60k+30}+93^{59k+30}+46\cdot 93^{58k+29}+15\cdot 93^{57k+29}+337\cdot 93^{56k+28}\\||+64\cdot 93^{55k+28}+913\cdot 93^{54k+27}+113\cdot 93^{53k+27}+1006\cdot 93^{52k+26}+63\cdot 93^{51k+26}\\||+93^{50k+25}-58\cdot 93^{49k+25}-785\cdot 93^{48k+24}-53\cdot 93^{47k+24}+190\cdot 93^{46k+23}\\||+105\cdot 93^{45k+23}+1555\cdot 93^{44k+22}+158\cdot 93^{43k+22}+889\cdot 93^{42k+21}-9\cdot 93^{41k+21}\\||-956\cdot 93^{40k+20}-133\cdot 93^{39k+20}-851\cdot 93^{38k+19}+22\cdot 93^{37k+19}+1471\cdot 93^{36k+18}\\||+245\cdot 93^{35k+18}+2458\cdot 93^{34k+17}+175\cdot 93^{33k+17}+409\cdot 93^{32k+16}-78\cdot 93^{31k+16}\\||-1217\cdot 93^{30k+15}-78\cdot 93^{29k+15}+409\cdot 93^{28k+14}+175\cdot 93^{27k+14}+2458\cdot 93^{26k+13}\\||+245\cdot 93^{25k+13}+1471\cdot 93^{24k+12}+22\cdot 93^{23k+12}-851\cdot 93^{22k+11}-133\cdot 93^{21k+11}\\||-956\cdot 93^{20k+10}-9\cdot 93^{19k+10}+889\cdot 93^{18k+9}+158\cdot 93^{17k+9}+1555\cdot 93^{16k+8}\\||+105\cdot 93^{15k+8}+190\cdot 93^{14k+7}-53\cdot 93^{13k+7}-785\cdot 93^{12k+6}-58\cdot 93^{11k+6}\\||+93^{10k+5}+63\cdot 93^{9k+5}+1006\cdot 93^{8k+4}+113\cdot 93^{7k+4}+913\cdot 93^{6k+3}\\||+64\cdot 93^{5k+3}+337\cdot 93^{4k+2}+15\cdot 93^{3k+2}+46\cdot 93^{2k+1}+93^{k+1}+1)\\{\large\Phi}_{188}(94^{2k+1})|=|94^{184k+92}-94^{180k+90}+94^{176k+88}-94^{172k+86}+94^{168k+84}\\||-94^{164k+82}+94^{160k+80}-94^{156k+78}+94^{152k+76}-94^{148k+74}\\||+94^{144k+72}-94^{140k+70}+94^{136k+68}-94^{132k+66}+94^{128k+64}\\||-94^{124k+62}+94^{120k+60}-94^{116k+58}+94^{112k+56}-94^{108k+54}\\||+94^{104k+52}-94^{100k+50}+94^{96k+48}-94^{92k+46}+94^{88k+44}\\||-94^{84k+42}+94^{80k+40}-94^{76k+38}+94^{72k+36}-94^{68k+34}\\||+94^{64k+32}-94^{60k+30}+94^{56k+28}-94^{52k+26}+94^{48k+24}\\||-94^{44k+22}+94^{40k+20}-94^{36k+18}+94^{32k+16}-94^{28k+14}\\||+94^{24k+12}-94^{20k+10}+94^{16k+8}-94^{12k+6}+94^{8k+4}\\||-94^{4k+2}+1\\|=|(94^{92k+46}-94^{91k+46}+47\cdot 94^{90k+45}-16\cdot 94^{89k+45}+399\cdot 94^{88k+44}\\||-89\cdot 94^{87k+44}+1645\cdot 94^{86k+43}-294\cdot 94^{85k+43}+4577\cdot 94^{84k+42}-711\cdot 94^{83k+42}\\||+9823\cdot 94^{82k+41}-1376\cdot 94^{81k+41}+17375\cdot 94^{80k+40}-2249\cdot 94^{79k+40}+26461\cdot 94^{78k+39}\\||-3212\cdot 94^{77k+39}+35645\cdot 94^{76k+38}-4105\cdot 94^{75k+38}+43475\cdot 94^{74k+37}-4806\cdot 94^{73k+37}\\||+49159\cdot 94^{72k+36}-5285\cdot 94^{71k+36}+52969\cdot 94^{70k+35}-5620\cdot 94^{69k+35}+55921\cdot 94^{68k+34}\\||-5917\cdot 94^{67k+34}+58891\cdot 94^{66k+33}-6240\cdot 94^{65k+33}+62139\cdot 94^{64k+32}-6573\cdot 94^{63k+32}\\||+65189\cdot 94^{62k+31}-6856\cdot 94^{61k+31}+67549\cdot 94^{60k+30}-7059\cdot 94^{59k+30}+69231\cdot 94^{58k+29}\\||-7228\cdot 94^{57k+29}+71159\cdot 94^{56k+28}-7491\cdot 94^{55k+28}+74589\cdot 94^{54k+27}-7950\cdot 94^{53k+27}\\||+80033\cdot 94^{52k+26}-8589\cdot 94^{51k+26}+86527\cdot 94^{50k+25}-9230\cdot 94^{49k+25}+91867\cdot 94^{48k+24}\\||-9635\cdot 94^{47k+24}+93953\cdot 94^{46k+23}-9635\cdot 94^{45k+23}+91867\cdot 94^{44k+22}-9230\cdot 94^{43k+22}\\||+86527\cdot 94^{42k+21}-8589\cdot 94^{41k+21}+80033\cdot 94^{40k+20}-7950\cdot 94^{39k+20}+74589\cdot 94^{38k+19}\\||-7491\cdot 94^{37k+19}+71159\cdot 94^{36k+18}-7228\cdot 94^{35k+18}+69231\cdot 94^{34k+17}-7059\cdot 94^{33k+17}\\||+67549\cdot 94^{32k+16}-6856\cdot 94^{31k+16}+65189\cdot 94^{30k+15}-6573\cdot 94^{29k+15}+62139\cdot 94^{28k+14}\\||-6240\cdot 94^{27k+14}+58891\cdot 94^{26k+13}-5917\cdot 94^{25k+13}+55921\cdot 94^{24k+12}-5620\cdot 94^{23k+12}\\||+52969\cdot 94^{22k+11}-5285\cdot 94^{21k+11}+49159\cdot 94^{20k+10}-4806\cdot 94^{19k+10}+43475\cdot 94^{18k+9}\\||-4105\cdot 94^{17k+9}+35645\cdot 94^{16k+8}-3212\cdot 94^{15k+8}+26461\cdot 94^{14k+7}-2249\cdot 94^{13k+7}\\||+17375\cdot 94^{12k+6}-1376\cdot 94^{11k+6}+9823\cdot 94^{10k+5}-711\cdot 94^{9k+5}+4577\cdot 94^{8k+4}\\||-294\cdot 94^{7k+4}+1645\cdot 94^{6k+3}-89\cdot 94^{5k+3}+399\cdot 94^{4k+2}-16\cdot 94^{3k+2}\\||+47\cdot 94^{2k+1}-94^{k+1}+1)\\|\times|(94^{92k+46}+94^{91k+46}+47\cdot 94^{90k+45}+16\cdot 94^{89k+45}+399\cdot 94^{88k+44}\\||+89\cdot 94^{87k+44}+1645\cdot 94^{86k+43}+294\cdot 94^{85k+43}+4577\cdot 94^{84k+42}+711\cdot 94^{83k+42}\\||+9823\cdot 94^{82k+41}+1376\cdot 94^{81k+41}+17375\cdot 94^{80k+40}+2249\cdot 94^{79k+40}+26461\cdot 94^{78k+39}\\||+3212\cdot 94^{77k+39}+35645\cdot 94^{76k+38}+4105\cdot 94^{75k+38}+43475\cdot 94^{74k+37}+4806\cdot 94^{73k+37}\\||+49159\cdot 94^{72k+36}+5285\cdot 94^{71k+36}+52969\cdot 94^{70k+35}+5620\cdot 94^{69k+35}+55921\cdot 94^{68k+34}\\||+5917\cdot 94^{67k+34}+58891\cdot 94^{66k+33}+6240\cdot 94^{65k+33}+62139\cdot 94^{64k+32}+6573\cdot 94^{63k+32}\\||+65189\cdot 94^{62k+31}+6856\cdot 94^{61k+31}+67549\cdot 94^{60k+30}+7059\cdot 94^{59k+30}+69231\cdot 94^{58k+29}\\||+7228\cdot 94^{57k+29}+71159\cdot 94^{56k+28}+7491\cdot 94^{55k+28}+74589\cdot 94^{54k+27}+7950\cdot 94^{53k+27}\\||+80033\cdot 94^{52k+26}+8589\cdot 94^{51k+26}+86527\cdot 94^{50k+25}+9230\cdot 94^{49k+25}+91867\cdot 94^{48k+24}\\||+9635\cdot 94^{47k+24}+93953\cdot 94^{46k+23}+9635\cdot 94^{45k+23}+91867\cdot 94^{44k+22}+9230\cdot 94^{43k+22}\\||+86527\cdot 94^{42k+21}+8589\cdot 94^{41k+21}+80033\cdot 94^{40k+20}+7950\cdot 94^{39k+20}+74589\cdot 94^{38k+19}\\||+7491\cdot 94^{37k+19}+71159\cdot 94^{36k+18}+7228\cdot 94^{35k+18}+69231\cdot 94^{34k+17}+7059\cdot 94^{33k+17}\\||+67549\cdot 94^{32k+16}+6856\cdot 94^{31k+16}+65189\cdot 94^{30k+15}+6573\cdot 94^{29k+15}+62139\cdot 94^{28k+14}\\||+6240\cdot 94^{27k+14}+58891\cdot 94^{26k+13}+5917\cdot 94^{25k+13}+55921\cdot 94^{24k+12}+5620\cdot 94^{23k+12}\\||+52969\cdot 94^{22k+11}+5285\cdot 94^{21k+11}+49159\cdot 94^{20k+10}+4806\cdot 94^{19k+10}+43475\cdot 94^{18k+9}\\||+4105\cdot 94^{17k+9}+35645\cdot 94^{16k+8}+3212\cdot 94^{15k+8}+26461\cdot 94^{14k+7}+2249\cdot 94^{13k+7}\\||+17375\cdot 94^{12k+6}+1376\cdot 94^{11k+6}+9823\cdot 94^{10k+5}+711\cdot 94^{9k+5}+4577\cdot 94^{8k+4}\\||+294\cdot 94^{7k+4}+1645\cdot 94^{6k+3}+89\cdot 94^{5k+3}+399\cdot 94^{4k+2}+16\cdot 94^{3k+2}\\||+47\cdot 94^{2k+1}+94^{k+1}+1)\\{\large\Phi}_{190}(95^{2k+1})|=|95^{144k+72}+95^{142k+71}-95^{134k+67}-95^{132k+66}+95^{124k+62}\\||+95^{122k+61}-95^{114k+57}-95^{112k+56}-95^{106k+53}+95^{102k+51}\\||+95^{96k+48}-95^{92k+46}-95^{86k+43}+95^{82k+41}+95^{76k+38}\\||-95^{72k+36}+95^{68k+34}+95^{62k+31}-95^{58k+29}-95^{52k+26}\\||+95^{48k+24}+95^{42k+21}-95^{38k+19}-95^{32k+16}-95^{30k+15}\\||+95^{22k+11}+95^{20k+10}-95^{12k+6}-95^{10k+5}+95^{2k+1}+1\\|=|(95^{72k+36}-95^{71k+36}+48\cdot 95^{70k+35}-16\cdot 95^{69k+35}+368\cdot 95^{68k+34}\\||-67\cdot 95^{67k+34}+861\cdot 95^{66k+33}-78\cdot 95^{65k+33}+210\cdot 95^{64k+32}+64\cdot 95^{63k+32}\\||-1221\cdot 95^{62k+31}+101\cdot 95^{61k+31}+262\cdot 95^{60k+30}-198\cdot 95^{59k+30}+2862\cdot 95^{58k+29}\\||-215\cdot 95^{57k+29}-281\cdot 95^{56k+28}+296\cdot 95^{55k+28}-3800\cdot 95^{54k+27}+203\cdot 95^{53k+27}\\||+1716\cdot 95^{52k+26}-491\cdot 95^{51k+26}+4758\cdot 95^{50k+25}-118\cdot 95^{49k+25}-3817\cdot 95^{48k+24}\\||+672\cdot 95^{47k+24}-4699\cdot 95^{46k+23}-88\cdot 95^{45k+23}+6320\cdot 95^{44k+22}-777\cdot 95^{43k+22}\\||+3294\cdot 95^{42k+21}+391\cdot 95^{41k+21}-8738\cdot 95^{40k+20}+798\cdot 95^{39k+20}-1343\cdot 95^{38k+19}\\||-632\cdot 95^{37k+19}+9439\cdot 95^{36k+18}-632\cdot 95^{35k+18}-1343\cdot 95^{34k+17}+798\cdot 95^{33k+17}\\||-8738\cdot 95^{32k+16}+391\cdot 95^{31k+16}+3294\cdot 95^{30k+15}-777\cdot 95^{29k+15}+6320\cdot 95^{28k+14}\\||-88\cdot 95^{27k+14}-4699\cdot 95^{26k+13}+672\cdot 95^{25k+13}-3817\cdot 95^{24k+12}-118\cdot 95^{23k+12}\\||+4758\cdot 95^{22k+11}-491\cdot 95^{21k+11}+1716\cdot 95^{20k+10}+203\cdot 95^{19k+10}-3800\cdot 95^{18k+9}\\||+296\cdot 95^{17k+9}-281\cdot 95^{16k+8}-215\cdot 95^{15k+8}+2862\cdot 95^{14k+7}-198\cdot 95^{13k+7}\\||+262\cdot 95^{12k+6}+101\cdot 95^{11k+6}-1221\cdot 95^{10k+5}+64\cdot 95^{9k+5}+210\cdot 95^{8k+4}\\||-78\cdot 95^{7k+4}+861\cdot 95^{6k+3}-67\cdot 95^{5k+3}+368\cdot 95^{4k+2}-16\cdot 95^{3k+2}\\||+48\cdot 95^{2k+1}-95^{k+1}+1)\\|\times|(95^{72k+36}+95^{71k+36}+48\cdot 95^{70k+35}+16\cdot 95^{69k+35}+368\cdot 95^{68k+34}\\||+67\cdot 95^{67k+34}+861\cdot 95^{66k+33}+78\cdot 95^{65k+33}+210\cdot 95^{64k+32}-64\cdot 95^{63k+32}\\||-1221\cdot 95^{62k+31}-101\cdot 95^{61k+31}+262\cdot 95^{60k+30}+198\cdot 95^{59k+30}+2862\cdot 95^{58k+29}\\||+215\cdot 95^{57k+29}-281\cdot 95^{56k+28}-296\cdot 95^{55k+28}-3800\cdot 95^{54k+27}-203\cdot 95^{53k+27}\\||+1716\cdot 95^{52k+26}+491\cdot 95^{51k+26}+4758\cdot 95^{50k+25}+118\cdot 95^{49k+25}-3817\cdot 95^{48k+24}\\||-672\cdot 95^{47k+24}-4699\cdot 95^{46k+23}+88\cdot 95^{45k+23}+6320\cdot 95^{44k+22}+777\cdot 95^{43k+22}\\||+3294\cdot 95^{42k+21}-391\cdot 95^{41k+21}-8738\cdot 95^{40k+20}-798\cdot 95^{39k+20}-1343\cdot 95^{38k+19}\\||+632\cdot 95^{37k+19}+9439\cdot 95^{36k+18}+632\cdot 95^{35k+18}-1343\cdot 95^{34k+17}-798\cdot 95^{33k+17}\\||-8738\cdot 95^{32k+16}-391\cdot 95^{31k+16}+3294\cdot 95^{30k+15}+777\cdot 95^{29k+15}+6320\cdot 95^{28k+14}\\||+88\cdot 95^{27k+14}-4699\cdot 95^{26k+13}-672\cdot 95^{25k+13}-3817\cdot 95^{24k+12}+118\cdot 95^{23k+12}\\||+4758\cdot 95^{22k+11}+491\cdot 95^{21k+11}+1716\cdot 95^{20k+10}-203\cdot 95^{19k+10}-3800\cdot 95^{18k+9}\\||-296\cdot 95^{17k+9}-281\cdot 95^{16k+8}+215\cdot 95^{15k+8}+2862\cdot 95^{14k+7}+198\cdot 95^{13k+7}\\||+262\cdot 95^{12k+6}-101\cdot 95^{11k+6}-1221\cdot 95^{10k+5}-64\cdot 95^{9k+5}+210\cdot 95^{8k+4}\\||+78\cdot 95^{7k+4}+861\cdot 95^{6k+3}+67\cdot 95^{5k+3}+368\cdot 95^{4k+2}+16\cdot 95^{3k+2}\\||+48\cdot 95^{2k+1}+95^{k+1}+1)\\{\large\Phi}_{97}(97^{2k+1})|=|97^{192k+96}+97^{190k+95}+97^{188k+94}+97^{186k+93}+97^{184k+92}\\||+97^{182k+91}+97^{180k+90}+97^{178k+89}+97^{176k+88}+97^{174k+87}\\||+97^{172k+86}+97^{170k+85}+97^{168k+84}+97^{166k+83}+97^{164k+82}\\||+97^{162k+81}+97^{160k+80}+97^{158k+79}+97^{156k+78}+97^{154k+77}\\||+97^{152k+76}+97^{150k+75}+97^{148k+74}+97^{146k+73}+97^{144k+72}\\||+97^{142k+71}+97^{140k+70}+97^{138k+69}+97^{136k+68}+97^{134k+67}\\||+97^{132k+66}+97^{130k+65}+97^{128k+64}+97^{126k+63}+97^{124k+62}\\||+97^{122k+61}+97^{120k+60}+97^{118k+59}+97^{116k+58}+97^{114k+57}\\||+97^{112k+56}+97^{110k+55}+97^{108k+54}+97^{106k+53}+97^{104k+52}\\||+97^{102k+51}+97^{100k+50}+97^{98k+49}+97^{96k+48}+97^{94k+47}\\||+97^{92k+46}+97^{90k+45}+97^{88k+44}+97^{86k+43}+97^{84k+42}\\||+97^{82k+41}+97^{80k+40}+97^{78k+39}+97^{76k+38}+97^{74k+37}\\||+97^{72k+36}+97^{70k+35}+97^{68k+34}+97^{66k+33}+97^{64k+32}\\||+97^{62k+31}+97^{60k+30}+97^{58k+29}+97^{56k+28}+97^{54k+27}\\||+97^{52k+26}+97^{50k+25}+97^{48k+24}+97^{46k+23}+97^{44k+22}\\||+97^{42k+21}+97^{40k+20}+97^{38k+19}+97^{36k+18}+97^{34k+17}\\||+97^{32k+16}+97^{30k+15}+97^{28k+14}+97^{26k+13}+97^{24k+12}\\||+97^{22k+11}+97^{20k+10}+97^{18k+9}+97^{16k+8}+97^{14k+7}\\||+97^{12k+6}+97^{10k+5}+97^{8k+4}+97^{6k+3}+97^{4k+2}\\||+97^{2k+1}+1\\|=|(97^{96k+48}-97^{95k+48}+49\cdot 97^{94k+47}-17\cdot 97^{93k+47}+449\cdot 97^{92k+46}\\||-103\cdot 97^{91k+46}+2007\cdot 97^{90k+45}-361\cdot 97^{89k+45}+5721\cdot 97^{88k+44}-857\cdot 97^{87k+44}\\||+11483\cdot 97^{86k+43}-1467\cdot 97^{85k+43}+16823\cdot 97^{84k+42}-1837\cdot 97^{83k+42}+17887\cdot 97^{82k+41}\\||-1637\cdot 97^{81k+41}+13077\cdot 97^{80k+40}-951\cdot 97^{79k+40}+5803\cdot 97^{78k+39}-321\cdot 97^{77k+39}\\||+1919\cdot 97^{76k+38}-209\cdot 97^{75k+38}+3009\cdot 97^{74k+37}-383\cdot 97^{73k+37}+3211\cdot 97^{72k+36}\\||-43\cdot 97^{71k+36}-4915\cdot 97^{70k+35}+1255\cdot 97^{69k+35}-20741\cdot 97^{68k+34}+2887\cdot 97^{67k+34}\\||-33801\cdot 97^{66k+33}+3621\cdot 97^{65k+33}-33645\cdot 97^{64k+32}+2873\cdot 97^{63k+32}-20927\cdot 97^{62k+31}\\||+1343\cdot 97^{61k+31}-6763\cdot 97^{60k+30}+257\cdot 97^{59k+30}-691\cdot 97^{58k+29}+57\cdot 97^{57k+29}\\||-875\cdot 97^{56k+28}+21\cdot 97^{55k+28}+2557\cdot 97^{54k+27}-797\cdot 97^{53k+27}+15261\cdot 97^{52k+26}\\||-2399\cdot 97^{51k+26}+31337\cdot 97^{50k+25}-3733\cdot 97^{49k+25}+38721\cdot 97^{48k+24}-3733\cdot 97^{47k+24}\\||+31337\cdot 97^{46k+23}-2399\cdot 97^{45k+23}+15261\cdot 97^{44k+22}-797\cdot 97^{43k+22}+2557\cdot 97^{42k+21}\\||+21\cdot 97^{41k+21}-875\cdot 97^{40k+20}+57\cdot 97^{39k+20}-691\cdot 97^{38k+19}+257\cdot 97^{37k+19}\\||-6763\cdot 97^{36k+18}+1343\cdot 97^{35k+18}-20927\cdot 97^{34k+17}+2873\cdot 97^{33k+17}-33645\cdot 97^{32k+16}\\||+3621\cdot 97^{31k+16}-33801\cdot 97^{30k+15}+2887\cdot 97^{29k+15}-20741\cdot 97^{28k+14}+1255\cdot 97^{27k+14}\\||-4915\cdot 97^{26k+13}-43\cdot 97^{25k+13}+3211\cdot 97^{24k+12}-383\cdot 97^{23k+12}+3009\cdot 97^{22k+11}\\||-209\cdot 97^{21k+11}+1919\cdot 97^{20k+10}-321\cdot 97^{19k+10}+5803\cdot 97^{18k+9}-951\cdot 97^{17k+9}\\||+13077\cdot 97^{16k+8}-1637\cdot 97^{15k+8}+17887\cdot 97^{14k+7}-1837\cdot 97^{13k+7}+16823\cdot 97^{12k+6}\\||-1467\cdot 97^{11k+6}+11483\cdot 97^{10k+5}-857\cdot 97^{9k+5}+5721\cdot 97^{8k+4}-361\cdot 97^{7k+4}\\||+2007\cdot 97^{6k+3}-103\cdot 97^{5k+3}+449\cdot 97^{4k+2}-17\cdot 97^{3k+2}+49\cdot 97^{2k+1}\\||-97^{k+1}+1)\\|\times|(97^{96k+48}+97^{95k+48}+49\cdot 97^{94k+47}+17\cdot 97^{93k+47}+449\cdot 97^{92k+46}\\||+103\cdot 97^{91k+46}+2007\cdot 97^{90k+45}+361\cdot 97^{89k+45}+5721\cdot 97^{88k+44}+857\cdot 97^{87k+44}\\||+11483\cdot 97^{86k+43}+1467\cdot 97^{85k+43}+16823\cdot 97^{84k+42}+1837\cdot 97^{83k+42}+17887\cdot 97^{82k+41}\\||+1637\cdot 97^{81k+41}+13077\cdot 97^{80k+40}+951\cdot 97^{79k+40}+5803\cdot 97^{78k+39}+321\cdot 97^{77k+39}\\||+1919\cdot 97^{76k+38}+209\cdot 97^{75k+38}+3009\cdot 97^{74k+37}+383\cdot 97^{73k+37}+3211\cdot 97^{72k+36}\\||+43\cdot 97^{71k+36}-4915\cdot 97^{70k+35}-1255\cdot 97^{69k+35}-20741\cdot 97^{68k+34}-2887\cdot 97^{67k+34}\\||-33801\cdot 97^{66k+33}-3621\cdot 97^{65k+33}-33645\cdot 97^{64k+32}-2873\cdot 97^{63k+32}-20927\cdot 97^{62k+31}\\||-1343\cdot 97^{61k+31}-6763\cdot 97^{60k+30}-257\cdot 97^{59k+30}-691\cdot 97^{58k+29}-57\cdot 97^{57k+29}\\||-875\cdot 97^{56k+28}-21\cdot 97^{55k+28}+2557\cdot 97^{54k+27}+797\cdot 97^{53k+27}+15261\cdot 97^{52k+26}\\||+2399\cdot 97^{51k+26}+31337\cdot 97^{50k+25}+3733\cdot 97^{49k+25}+38721\cdot 97^{48k+24}+3733\cdot 97^{47k+24}\\||+31337\cdot 97^{46k+23}+2399\cdot 97^{45k+23}+15261\cdot 97^{44k+22}+797\cdot 97^{43k+22}+2557\cdot 97^{42k+21}\\||-21\cdot 97^{41k+21}-875\cdot 97^{40k+20}-57\cdot 97^{39k+20}-691\cdot 97^{38k+19}-257\cdot 97^{37k+19}\\||-6763\cdot 97^{36k+18}-1343\cdot 97^{35k+18}-20927\cdot 97^{34k+17}-2873\cdot 97^{33k+17}-33645\cdot 97^{32k+16}\\||-3621\cdot 97^{31k+16}-33801\cdot 97^{30k+15}-2887\cdot 97^{29k+15}-20741\cdot 97^{28k+14}-1255\cdot 97^{27k+14}\\||-4915\cdot 97^{26k+13}+43\cdot 97^{25k+13}+3211\cdot 97^{24k+12}+383\cdot 97^{23k+12}+3009\cdot 97^{22k+11}\\||+209\cdot 97^{21k+11}+1919\cdot 97^{20k+10}+321\cdot 97^{19k+10}+5803\cdot 97^{18k+9}+951\cdot 97^{17k+9}\\||+13077\cdot 97^{16k+8}+1637\cdot 97^{15k+8}+17887\cdot 97^{14k+7}+1837\cdot 97^{13k+7}+16823\cdot 97^{12k+6}\\||+1467\cdot 97^{11k+6}+11483\cdot 97^{10k+5}+857\cdot 97^{9k+5}+5721\cdot 97^{8k+4}+361\cdot 97^{7k+4}\\||+2007\cdot 97^{6k+3}+103\cdot 97^{5k+3}+449\cdot 97^{4k+2}+17\cdot 97^{3k+2}+49\cdot 97^{2k+1}\\||+97^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{101}(101^{2k+1})\cdots{\large\Phi}_{105}(105^{2k+1})$${\large\Phi}_{101}(101^{2k+1})\cdots{\large\Phi}_{105}(105^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{101}(101^{2k+1})|=|101^{200k+100}+101^{198k+99}+101^{196k+98}+101^{194k+97}+101^{192k+96}\\||+101^{190k+95}+101^{188k+94}+101^{186k+93}+101^{184k+92}+101^{182k+91}\\||+101^{180k+90}+101^{178k+89}+101^{176k+88}+101^{174k+87}+101^{172k+86}\\||+101^{170k+85}+101^{168k+84}+101^{166k+83}+101^{164k+82}+101^{162k+81}\\||+101^{160k+80}+101^{158k+79}+101^{156k+78}+101^{154k+77}+101^{152k+76}\\||+101^{150k+75}+101^{148k+74}+101^{146k+73}+101^{144k+72}+101^{142k+71}\\||+101^{140k+70}+101^{138k+69}+101^{136k+68}+101^{134k+67}+101^{132k+66}\\||+101^{130k+65}+101^{128k+64}+101^{126k+63}+101^{124k+62}+101^{122k+61}\\||+101^{120k+60}+101^{118k+59}+101^{116k+58}+101^{114k+57}+101^{112k+56}\\||+101^{110k+55}+101^{108k+54}+101^{106k+53}+101^{104k+52}+101^{102k+51}\\||+101^{100k+50}+101^{98k+49}+101^{96k+48}+101^{94k+47}+101^{92k+46}\\||+101^{90k+45}+101^{88k+44}+101^{86k+43}+101^{84k+42}+101^{82k+41}\\||+101^{80k+40}+101^{78k+39}+101^{76k+38}+101^{74k+37}+101^{72k+36}\\||+101^{70k+35}+101^{68k+34}+101^{66k+33}+101^{64k+32}+101^{62k+31}\\||+101^{60k+30}+101^{58k+29}+101^{56k+28}+101^{54k+27}+101^{52k+26}\\||+101^{50k+25}+101^{48k+24}+101^{46k+23}+101^{44k+22}+101^{42k+21}\\||+101^{40k+20}+101^{38k+19}+101^{36k+18}+101^{34k+17}+101^{32k+16}\\||+101^{30k+15}+101^{28k+14}+101^{26k+13}+101^{24k+12}+101^{22k+11}\\||+101^{20k+10}+101^{18k+9}+101^{16k+8}+101^{14k+7}+101^{12k+6}\\||+101^{10k+5}+101^{8k+4}+101^{6k+3}+101^{4k+2}+101^{2k+1}+1\\|=|(101^{100k+50}-101^{99k+50}+51\cdot 101^{98k+49}-17\cdot 101^{97k+49}+417\cdot 101^{96k+48}\\||-77\cdot 101^{95k+48}+1105\cdot 101^{94k+47}-119\cdot 101^{93k+47}+929\cdot 101^{92k+46}-45\cdot 101^{91k+46}\\||+119\cdot 101^{90k+45}-17\cdot 101^{89k+45}+471\cdot 101^{88k+44}-63\cdot 101^{87k+44}+459\cdot 101^{86k+43}\\||-17\cdot 101^{85k+43}+121\cdot 101^{84k+42}-33\cdot 101^{83k+42}+479\cdot 101^{82k+41}-35\cdot 101^{81k+41}\\||+147\cdot 101^{80k+40}-19\cdot 101^{79k+40}+503\cdot 101^{78k+39}-83\cdot 101^{77k+39}+1067\cdot 101^{76k+38}\\||-131\cdot 101^{75k+38}+1597\cdot 101^{74k+37}-167\cdot 101^{73k+37}+1457\cdot 101^{72k+36}-123\cdot 101^{71k+36}\\||+1331\cdot 101^{70k+35}-151\cdot 101^{69k+35}+1261\cdot 101^{68k+34}-53\cdot 101^{67k+34}+3\cdot 101^{66k+33}\\||-21\cdot 101^{65k+33}+853\cdot 101^{64k+32}-121\cdot 101^{63k+32}+1099\cdot 101^{62k+31}-89\cdot 101^{61k+31}\\||+867\cdot 101^{60k+30}-85\cdot 101^{59k+30}+767\cdot 101^{58k+29}-87\cdot 101^{57k+29}+1289\cdot 101^{56k+28}\\||-157\cdot 101^{55k+28}+1351\cdot 101^{54k+27}-99\cdot 101^{53k+27}+1245\cdot 101^{52k+26}-205\cdot 101^{51k+26}\\||+2523\cdot 101^{50k+25}-205\cdot 101^{49k+25}+1245\cdot 101^{48k+24}-99\cdot 101^{47k+24}+1351\cdot 101^{46k+23}\\||-157\cdot 101^{45k+23}+1289\cdot 101^{44k+22}-87\cdot 101^{43k+22}+767\cdot 101^{42k+21}-85\cdot 101^{41k+21}\\||+867\cdot 101^{40k+20}-89\cdot 101^{39k+20}+1099\cdot 101^{38k+19}-121\cdot 101^{37k+19}+853\cdot 101^{36k+18}\\||-21\cdot 101^{35k+18}+3\cdot 101^{34k+17}-53\cdot 101^{33k+17}+1261\cdot 101^{32k+16}-151\cdot 101^{31k+16}\\||+1331\cdot 101^{30k+15}-123\cdot 101^{29k+15}+1457\cdot 101^{28k+14}-167\cdot 101^{27k+14}+1597\cdot 101^{26k+13}\\||-131\cdot 101^{25k+13}+1067\cdot 101^{24k+12}-83\cdot 101^{23k+12}+503\cdot 101^{22k+11}-19\cdot 101^{21k+11}\\||+147\cdot 101^{20k+10}-35\cdot 101^{19k+10}+479\cdot 101^{18k+9}-33\cdot 101^{17k+9}+121\cdot 101^{16k+8}\\||-17\cdot 101^{15k+8}+459\cdot 101^{14k+7}-63\cdot 101^{13k+7}+471\cdot 101^{12k+6}-17\cdot 101^{11k+6}\\||+119\cdot 101^{10k+5}-45\cdot 101^{9k+5}+929\cdot 101^{8k+4}-119\cdot 101^{7k+4}+1105\cdot 101^{6k+3}\\||-77\cdot 101^{5k+3}+417\cdot 101^{4k+2}-17\cdot 101^{3k+2}+51\cdot 101^{2k+1}-101^{k+1}+1)\\|\times|(101^{100k+50}+101^{99k+50}+51\cdot 101^{98k+49}+17\cdot 101^{97k+49}+417\cdot 101^{96k+48}\\||+77\cdot 101^{95k+48}+1105\cdot 101^{94k+47}+119\cdot 101^{93k+47}+929\cdot 101^{92k+46}+45\cdot 101^{91k+46}\\||+119\cdot 101^{90k+45}+17\cdot 101^{89k+45}+471\cdot 101^{88k+44}+63\cdot 101^{87k+44}+459\cdot 101^{86k+43}\\||+17\cdot 101^{85k+43}+121\cdot 101^{84k+42}+33\cdot 101^{83k+42}+479\cdot 101^{82k+41}+35\cdot 101^{81k+41}\\||+147\cdot 101^{80k+40}+19\cdot 101^{79k+40}+503\cdot 101^{78k+39}+83\cdot 101^{77k+39}+1067\cdot 101^{76k+38}\\||+131\cdot 101^{75k+38}+1597\cdot 101^{74k+37}+167\cdot 101^{73k+37}+1457\cdot 101^{72k+36}+123\cdot 101^{71k+36}\\||+1331\cdot 101^{70k+35}+151\cdot 101^{69k+35}+1261\cdot 101^{68k+34}+53\cdot 101^{67k+34}+3\cdot 101^{66k+33}\\||+21\cdot 101^{65k+33}+853\cdot 101^{64k+32}+121\cdot 101^{63k+32}+1099\cdot 101^{62k+31}+89\cdot 101^{61k+31}\\||+867\cdot 101^{60k+30}+85\cdot 101^{59k+30}+767\cdot 101^{58k+29}+87\cdot 101^{57k+29}+1289\cdot 101^{56k+28}\\||+157\cdot 101^{55k+28}+1351\cdot 101^{54k+27}+99\cdot 101^{53k+27}+1245\cdot 101^{52k+26}+205\cdot 101^{51k+26}\\||+2523\cdot 101^{50k+25}+205\cdot 101^{49k+25}+1245\cdot 101^{48k+24}+99\cdot 101^{47k+24}+1351\cdot 101^{46k+23}\\||+157\cdot 101^{45k+23}+1289\cdot 101^{44k+22}+87\cdot 101^{43k+22}+767\cdot 101^{42k+21}+85\cdot 101^{41k+21}\\||+867\cdot 101^{40k+20}+89\cdot 101^{39k+20}+1099\cdot 101^{38k+19}+121\cdot 101^{37k+19}+853\cdot 101^{36k+18}\\||+21\cdot 101^{35k+18}+3\cdot 101^{34k+17}+53\cdot 101^{33k+17}+1261\cdot 101^{32k+16}+151\cdot 101^{31k+16}\\||+1331\cdot 101^{30k+15}+123\cdot 101^{29k+15}+1457\cdot 101^{28k+14}+167\cdot 101^{27k+14}+1597\cdot 101^{26k+13}\\||+131\cdot 101^{25k+13}+1067\cdot 101^{24k+12}+83\cdot 101^{23k+12}+503\cdot 101^{22k+11}+19\cdot 101^{21k+11}\\||+147\cdot 101^{20k+10}+35\cdot 101^{19k+10}+479\cdot 101^{18k+9}+33\cdot 101^{17k+9}+121\cdot 101^{16k+8}\\||+17\cdot 101^{15k+8}+459\cdot 101^{14k+7}+63\cdot 101^{13k+7}+471\cdot 101^{12k+6}+17\cdot 101^{11k+6}\\||+119\cdot 101^{10k+5}+45\cdot 101^{9k+5}+929\cdot 101^{8k+4}+119\cdot 101^{7k+4}+1105\cdot 101^{6k+3}\\||+77\cdot 101^{5k+3}+417\cdot 101^{4k+2}+17\cdot 101^{3k+2}+51\cdot 101^{2k+1}+101^{k+1}+1)\\{\large\Phi}_{204}(102^{2k+1})|=|102^{128k+64}+102^{124k+62}-102^{116k+58}-102^{112k+56}+102^{104k+52}\\||+102^{100k+50}-102^{92k+46}-102^{88k+44}+102^{80k+40}+102^{76k+38}\\||-102^{68k+34}-102^{64k+32}-102^{60k+30}+102^{52k+26}+102^{48k+24}\\||-102^{40k+20}-102^{36k+18}+102^{28k+14}+102^{24k+12}-102^{16k+8}\\||-102^{12k+6}+102^{4k+2}+1\\|=|(102^{64k+32}-102^{63k+32}+51\cdot 102^{62k+31}-17\cdot 102^{61k+31}+434\cdot 102^{60k+30}\\||-87\cdot 102^{59k+30}+1479\cdot 102^{58k+29}-209\cdot 102^{57k+29}+2569\cdot 102^{56k+28}-262\cdot 102^{55k+28}\\||+2244\cdot 102^{54k+27}-144\cdot 102^{53k+27}+551\cdot 102^{52k+26}+11\cdot 102^{51k+26}-255\cdot 102^{50k+25}\\||-17\cdot 102^{49k+25}+946\cdot 102^{48k+24}-164\cdot 102^{47k+24}+1887\cdot 102^{46k+23}-140\cdot 102^{45k+23}\\||+329\cdot 102^{44k+22}+96\cdot 102^{43k+22}-1938\cdot 102^{42k+21}+211\cdot 102^{41k+21}-1409\cdot 102^{40k+20}\\||+2\cdot 102^{39k+20}+1479\cdot 102^{38k+19}-243\cdot 102^{37k+19}+2486\cdot 102^{36k+18}-156\cdot 102^{35k+18}\\||+153\cdot 102^{34k+17}+110\cdot 102^{33k+17}-1613\cdot 102^{32k+16}+110\cdot 102^{31k+16}+153\cdot 102^{30k+15}\\||-156\cdot 102^{29k+15}+2486\cdot 102^{28k+14}-243\cdot 102^{27k+14}+1479\cdot 102^{26k+13}+2\cdot 102^{25k+13}\\||-1409\cdot 102^{24k+12}+211\cdot 102^{23k+12}-1938\cdot 102^{22k+11}+96\cdot 102^{21k+11}+329\cdot 102^{20k+10}\\||-140\cdot 102^{19k+10}+1887\cdot 102^{18k+9}-164\cdot 102^{17k+9}+946\cdot 102^{16k+8}-17\cdot 102^{15k+8}\\||-255\cdot 102^{14k+7}+11\cdot 102^{13k+7}+551\cdot 102^{12k+6}-144\cdot 102^{11k+6}+2244\cdot 102^{10k+5}\\||-262\cdot 102^{9k+5}+2569\cdot 102^{8k+4}-209\cdot 102^{7k+4}+1479\cdot 102^{6k+3}-87\cdot 102^{5k+3}\\||+434\cdot 102^{4k+2}-17\cdot 102^{3k+2}+51\cdot 102^{2k+1}-102^{k+1}+1)\\|\times|(102^{64k+32}+102^{63k+32}+51\cdot 102^{62k+31}+17\cdot 102^{61k+31}+434\cdot 102^{60k+30}\\||+87\cdot 102^{59k+30}+1479\cdot 102^{58k+29}+209\cdot 102^{57k+29}+2569\cdot 102^{56k+28}+262\cdot 102^{55k+28}\\||+2244\cdot 102^{54k+27}+144\cdot 102^{53k+27}+551\cdot 102^{52k+26}-11\cdot 102^{51k+26}-255\cdot 102^{50k+25}\\||+17\cdot 102^{49k+25}+946\cdot 102^{48k+24}+164\cdot 102^{47k+24}+1887\cdot 102^{46k+23}+140\cdot 102^{45k+23}\\||+329\cdot 102^{44k+22}-96\cdot 102^{43k+22}-1938\cdot 102^{42k+21}-211\cdot 102^{41k+21}-1409\cdot 102^{40k+20}\\||-2\cdot 102^{39k+20}+1479\cdot 102^{38k+19}+243\cdot 102^{37k+19}+2486\cdot 102^{36k+18}+156\cdot 102^{35k+18}\\||+153\cdot 102^{34k+17}-110\cdot 102^{33k+17}-1613\cdot 102^{32k+16}-110\cdot 102^{31k+16}+153\cdot 102^{30k+15}\\||+156\cdot 102^{29k+15}+2486\cdot 102^{28k+14}+243\cdot 102^{27k+14}+1479\cdot 102^{26k+13}-2\cdot 102^{25k+13}\\||-1409\cdot 102^{24k+12}-211\cdot 102^{23k+12}-1938\cdot 102^{22k+11}-96\cdot 102^{21k+11}+329\cdot 102^{20k+10}\\||+140\cdot 102^{19k+10}+1887\cdot 102^{18k+9}+164\cdot 102^{17k+9}+946\cdot 102^{16k+8}+17\cdot 102^{15k+8}\\||-255\cdot 102^{14k+7}-11\cdot 102^{13k+7}+551\cdot 102^{12k+6}+144\cdot 102^{11k+6}+2244\cdot 102^{10k+5}\\||+262\cdot 102^{9k+5}+2569\cdot 102^{8k+4}+209\cdot 102^{7k+4}+1479\cdot 102^{6k+3}+87\cdot 102^{5k+3}\\||+434\cdot 102^{4k+2}+17\cdot 102^{3k+2}+51\cdot 102^{2k+1}+102^{k+1}+1)\\{\large\Phi}_{206}(103^{2k+1})|=|103^{204k+102}-103^{202k+101}+103^{200k+100}-103^{198k+99}+103^{196k+98}\\||-103^{194k+97}+103^{192k+96}-103^{190k+95}+103^{188k+94}-103^{186k+93}\\||+103^{184k+92}-103^{182k+91}+103^{180k+90}-103^{178k+89}+103^{176k+88}\\||-103^{174k+87}+103^{172k+86}-103^{170k+85}+103^{168k+84}-103^{166k+83}\\||+103^{164k+82}-103^{162k+81}+103^{160k+80}-103^{158k+79}+103^{156k+78}\\||-103^{154k+77}+103^{152k+76}-103^{150k+75}+103^{148k+74}-103^{146k+73}\\||+103^{144k+72}-103^{142k+71}+103^{140k+70}-103^{138k+69}+103^{136k+68}\\||-103^{134k+67}+103^{132k+66}-103^{130k+65}+103^{128k+64}-103^{126k+63}\\||+103^{124k+62}-103^{122k+61}+103^{120k+60}-103^{118k+59}+103^{116k+58}\\||-103^{114k+57}+103^{112k+56}-103^{110k+55}+103^{108k+54}-103^{106k+53}\\||+103^{104k+52}-103^{102k+51}+103^{100k+50}-103^{98k+49}+103^{96k+48}\\||-103^{94k+47}+103^{92k+46}-103^{90k+45}+103^{88k+44}-103^{86k+43}\\||+103^{84k+42}-103^{82k+41}+103^{80k+40}-103^{78k+39}+103^{76k+38}\\||-103^{74k+37}+103^{72k+36}-103^{70k+35}+103^{68k+34}-103^{66k+33}\\||+103^{64k+32}-103^{62k+31}+103^{60k+30}-103^{58k+29}+103^{56k+28}\\||-103^{54k+27}+103^{52k+26}-103^{50k+25}+103^{48k+24}-103^{46k+23}\\||+103^{44k+22}-103^{42k+21}+103^{40k+20}-103^{38k+19}+103^{36k+18}\\||-103^{34k+17}+103^{32k+16}-103^{30k+15}+103^{28k+14}-103^{26k+13}\\||+103^{24k+12}-103^{22k+11}+103^{20k+10}-103^{18k+9}+103^{16k+8}\\||-103^{14k+7}+103^{12k+6}-103^{10k+5}+103^{8k+4}-103^{6k+3}\\||+103^{4k+2}-103^{2k+1}+1\\|=|(103^{102k+51}-103^{101k+51}+51\cdot 103^{100k+50}-17\cdot 103^{99k+50}+451\cdot 103^{98k+49}\\||-97\cdot 103^{97k+49}+1873\cdot 103^{96k+48}-313\cdot 103^{95k+48}+4863\cdot 103^{94k+47}-667\cdot 103^{93k+47}\\||+8591\cdot 103^{92k+46}-977\cdot 103^{91k+46}+10313\cdot 103^{90k+45}-933\cdot 103^{89k+45}+7323\cdot 103^{88k+44}\\||-411\cdot 103^{87k+44}+673\cdot 103^{86k+43}+223\cdot 103^{85k+43}-3697\cdot 103^{84k+42}+289\cdot 103^{83k+42}\\||+211\cdot 103^{82k+41}-517\cdot 103^{81k+41}+11049\cdot 103^{80k+40}-1585\cdot 103^{79k+40}+18805\cdot 103^{78k+39}\\||-1781\cdot 103^{77k+39}+13567\cdot 103^{76k+38}-585\cdot 103^{75k+38}-3257\cdot 103^{74k+37}+1173\cdot 103^{73k+37}\\||-17867\cdot 103^{72k+36}+1925\cdot 103^{71k+36}-16279\cdot 103^{70k+35}+851\cdot 103^{69k+35}+1771\cdot 103^{68k+34}\\||-1245\cdot 103^{67k+34}+21519\cdot 103^{66k+33}-2605\cdot 103^{65k+33}+26327\cdot 103^{64k+32}-2097\cdot 103^{63k+32}\\||+12521\cdot 103^{62k+31}-205\cdot 103^{61k+31}-7659\cdot 103^{60k+30}+1429\cdot 103^{59k+30}-16905\cdot 103^{58k+29}\\||+1407\cdot 103^{57k+29}-7101\cdot 103^{56k+28}-317\cdot 103^{55k+28}+14633\cdot 103^{54k+27}-2453\cdot 103^{53k+27}\\||+31987\cdot 103^{52k+26}-3401\cdot 103^{51k+26}+31987\cdot 103^{50k+25}-2453\cdot 103^{49k+25}+14633\cdot 103^{48k+24}\\||-317\cdot 103^{47k+24}-7101\cdot 103^{46k+23}+1407\cdot 103^{45k+23}-16905\cdot 103^{44k+22}+1429\cdot 103^{43k+22}\\||-7659\cdot 103^{42k+21}-205\cdot 103^{41k+21}+12521\cdot 103^{40k+20}-2097\cdot 103^{39k+20}+26327\cdot 103^{38k+19}\\||-2605\cdot 103^{37k+19}+21519\cdot 103^{36k+18}-1245\cdot 103^{35k+18}+1771\cdot 103^{34k+17}+851\cdot 103^{33k+17}\\||-16279\cdot 103^{32k+16}+1925\cdot 103^{31k+16}-17867\cdot 103^{30k+15}+1173\cdot 103^{29k+15}-3257\cdot 103^{28k+14}\\||-585\cdot 103^{27k+14}+13567\cdot 103^{26k+13}-1781\cdot 103^{25k+13}+18805\cdot 103^{24k+12}-1585\cdot 103^{23k+12}\\||+11049\cdot 103^{22k+11}-517\cdot 103^{21k+11}+211\cdot 103^{20k+10}+289\cdot 103^{19k+10}-3697\cdot 103^{18k+9}\\||+223\cdot 103^{17k+9}+673\cdot 103^{16k+8}-411\cdot 103^{15k+8}+7323\cdot 103^{14k+7}-933\cdot 103^{13k+7}\\||+10313\cdot 103^{12k+6}-977\cdot 103^{11k+6}+8591\cdot 103^{10k+5}-667\cdot 103^{9k+5}+4863\cdot 103^{8k+4}\\||-313\cdot 103^{7k+4}+1873\cdot 103^{6k+3}-97\cdot 103^{5k+3}+451\cdot 103^{4k+2}-17\cdot 103^{3k+2}\\||+51\cdot 103^{2k+1}-103^{k+1}+1)\\|\times|(103^{102k+51}+103^{101k+51}+51\cdot 103^{100k+50}+17\cdot 103^{99k+50}+451\cdot 103^{98k+49}\\||+97\cdot 103^{97k+49}+1873\cdot 103^{96k+48}+313\cdot 103^{95k+48}+4863\cdot 103^{94k+47}+667\cdot 103^{93k+47}\\||+8591\cdot 103^{92k+46}+977\cdot 103^{91k+46}+10313\cdot 103^{90k+45}+933\cdot 103^{89k+45}+7323\cdot 103^{88k+44}\\||+411\cdot 103^{87k+44}+673\cdot 103^{86k+43}-223\cdot 103^{85k+43}-3697\cdot 103^{84k+42}-289\cdot 103^{83k+42}\\||+211\cdot 103^{82k+41}+517\cdot 103^{81k+41}+11049\cdot 103^{80k+40}+1585\cdot 103^{79k+40}+18805\cdot 103^{78k+39}\\||+1781\cdot 103^{77k+39}+13567\cdot 103^{76k+38}+585\cdot 103^{75k+38}-3257\cdot 103^{74k+37}-1173\cdot 103^{73k+37}\\||-17867\cdot 103^{72k+36}-1925\cdot 103^{71k+36}-16279\cdot 103^{70k+35}-851\cdot 103^{69k+35}+1771\cdot 103^{68k+34}\\||+1245\cdot 103^{67k+34}+21519\cdot 103^{66k+33}+2605\cdot 103^{65k+33}+26327\cdot 103^{64k+32}+2097\cdot 103^{63k+32}\\||+12521\cdot 103^{62k+31}+205\cdot 103^{61k+31}-7659\cdot 103^{60k+30}-1429\cdot 103^{59k+30}-16905\cdot 103^{58k+29}\\||-1407\cdot 103^{57k+29}-7101\cdot 103^{56k+28}+317\cdot 103^{55k+28}+14633\cdot 103^{54k+27}+2453\cdot 103^{53k+27}\\||+31987\cdot 103^{52k+26}+3401\cdot 103^{51k+26}+31987\cdot 103^{50k+25}+2453\cdot 103^{49k+25}+14633\cdot 103^{48k+24}\\||+317\cdot 103^{47k+24}-7101\cdot 103^{46k+23}-1407\cdot 103^{45k+23}-16905\cdot 103^{44k+22}-1429\cdot 103^{43k+22}\\||-7659\cdot 103^{42k+21}+205\cdot 103^{41k+21}+12521\cdot 103^{40k+20}+2097\cdot 103^{39k+20}+26327\cdot 103^{38k+19}\\||+2605\cdot 103^{37k+19}+21519\cdot 103^{36k+18}+1245\cdot 103^{35k+18}+1771\cdot 103^{34k+17}-851\cdot 103^{33k+17}\\||-16279\cdot 103^{32k+16}-1925\cdot 103^{31k+16}-17867\cdot 103^{30k+15}-1173\cdot 103^{29k+15}-3257\cdot 103^{28k+14}\\||+585\cdot 103^{27k+14}+13567\cdot 103^{26k+13}+1781\cdot 103^{25k+13}+18805\cdot 103^{24k+12}+1585\cdot 103^{23k+12}\\||+11049\cdot 103^{22k+11}+517\cdot 103^{21k+11}+211\cdot 103^{20k+10}-289\cdot 103^{19k+10}-3697\cdot 103^{18k+9}\\||-223\cdot 103^{17k+9}+673\cdot 103^{16k+8}+411\cdot 103^{15k+8}+7323\cdot 103^{14k+7}+933\cdot 103^{13k+7}\\||+10313\cdot 103^{12k+6}+977\cdot 103^{11k+6}+8591\cdot 103^{10k+5}+667\cdot 103^{9k+5}+4863\cdot 103^{8k+4}\\||+313\cdot 103^{7k+4}+1873\cdot 103^{6k+3}+97\cdot 103^{5k+3}+451\cdot 103^{4k+2}+17\cdot 103^{3k+2}\\||+51\cdot 103^{2k+1}+103^{k+1}+1)\\{\large\Phi}_{105}(105^{2k+1})|=|105^{96k+48}+105^{94k+47}+105^{92k+46}-105^{86k+43}-105^{84k+42}\\||-2\cdot 105^{82k+41}-105^{80k+40}-105^{78k+39}+105^{72k+36}+105^{70k+35}\\||+105^{68k+34}+105^{66k+33}+105^{64k+32}+105^{62k+31}-105^{56k+28}\\||-105^{52k+26}-105^{48k+24}-105^{44k+22}-105^{40k+20}+105^{34k+17}\\||+105^{32k+16}+105^{30k+15}+105^{28k+14}+105^{26k+13}+105^{24k+12}\\||-105^{18k+9}-105^{16k+8}-2\cdot 105^{14k+7}-105^{12k+6}-105^{10k+5}\\||+105^{4k+2}+105^{2k+1}+1\\|=|(105^{48k+24}-105^{47k+24}+53\cdot 105^{46k+23}-18\cdot 105^{45k+23}+486\cdot 105^{44k+22}\\||-101\cdot 105^{43k+22}+1857\cdot 105^{42k+21}-282\cdot 105^{41k+21}+3981\cdot 105^{40k+20}-481\cdot 105^{39k+20}\\||+5542\cdot 105^{38k+19}-556\cdot 105^{37k+19}+5363\cdot 105^{36k+18}-447\cdot 105^{35k+18}+3421\cdot 105^{34k+17}\\||-191\cdot 105^{33k+17}+269\cdot 105^{32k+16}+149\cdot 105^{31k+16}-3264\cdot 105^{30k+15}+464\cdot 105^{29k+15}\\||-5849\cdot 105^{28k+14}+634\cdot 105^{27k+14}-6769\cdot 105^{26k+13}+666\cdot 105^{25k+13}-6821\cdot 105^{24k+12}\\||+666\cdot 105^{23k+12}-6769\cdot 105^{22k+11}+634\cdot 105^{21k+11}-5849\cdot 105^{20k+10}+464\cdot 105^{19k+10}\\||-3264\cdot 105^{18k+9}+149\cdot 105^{17k+9}+269\cdot 105^{16k+8}-191\cdot 105^{15k+8}+3421\cdot 105^{14k+7}\\||-447\cdot 105^{13k+7}+5363\cdot 105^{12k+6}-556\cdot 105^{11k+6}+5542\cdot 105^{10k+5}-481\cdot 105^{9k+5}\\||+3981\cdot 105^{8k+4}-282\cdot 105^{7k+4}+1857\cdot 105^{6k+3}-101\cdot 105^{5k+3}+486\cdot 105^{4k+2}\\||-18\cdot 105^{3k+2}+53\cdot 105^{2k+1}-105^{k+1}+1)\\|\times|(105^{48k+24}+105^{47k+24}+53\cdot 105^{46k+23}+18\cdot 105^{45k+23}+486\cdot 105^{44k+22}\\||+101\cdot 105^{43k+22}+1857\cdot 105^{42k+21}+282\cdot 105^{41k+21}+3981\cdot 105^{40k+20}+481\cdot 105^{39k+20}\\||+5542\cdot 105^{38k+19}+556\cdot 105^{37k+19}+5363\cdot 105^{36k+18}+447\cdot 105^{35k+18}+3421\cdot 105^{34k+17}\\||+191\cdot 105^{33k+17}+269\cdot 105^{32k+16}-149\cdot 105^{31k+16}-3264\cdot 105^{30k+15}-464\cdot 105^{29k+15}\\||-5849\cdot 105^{28k+14}-634\cdot 105^{27k+14}-6769\cdot 105^{26k+13}-666\cdot 105^{25k+13}-6821\cdot 105^{24k+12}\\||-666\cdot 105^{23k+12}-6769\cdot 105^{22k+11}-634\cdot 105^{21k+11}-5849\cdot 105^{20k+10}-464\cdot 105^{19k+10}\\||-3264\cdot 105^{18k+9}-149\cdot 105^{17k+9}+269\cdot 105^{16k+8}+191\cdot 105^{15k+8}+3421\cdot 105^{14k+7}\\||+447\cdot 105^{13k+7}+5363\cdot 105^{12k+6}+556\cdot 105^{11k+6}+5542\cdot 105^{10k+5}+481\cdot 105^{9k+5}\\||+3981\cdot 105^{8k+4}+282\cdot 105^{7k+4}+1857\cdot 105^{6k+3}+101\cdot 105^{5k+3}+486\cdot 105^{4k+2}\\||+18\cdot 105^{3k+2}+53\cdot 105^{2k+1}+105^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{212}(106^{2k+1})\cdots{\large\Phi}_{220}(110^{2k+1})$${\large\Phi}_{212}(106^{2k+1})\cdots{\large\Phi}_{220}(110^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{212}(106^{2k+1})|=|106^{208k+104}-106^{204k+102}+106^{200k+100}-106^{196k+98}+106^{192k+96}\\||-106^{188k+94}+106^{184k+92}-106^{180k+90}+106^{176k+88}-106^{172k+86}\\||+106^{168k+84}-106^{164k+82}+106^{160k+80}-106^{156k+78}+106^{152k+76}\\||-106^{148k+74}+106^{144k+72}-106^{140k+70}+106^{136k+68}-106^{132k+66}\\||+106^{128k+64}-106^{124k+62}+106^{120k+60}-106^{116k+58}+106^{112k+56}\\||-106^{108k+54}+106^{104k+52}-106^{100k+50}+106^{96k+48}-106^{92k+46}\\||+106^{88k+44}-106^{84k+42}+106^{80k+40}-106^{76k+38}+106^{72k+36}\\||-106^{68k+34}+106^{64k+32}-106^{60k+30}+106^{56k+28}-106^{52k+26}\\||+106^{48k+24}-106^{44k+22}+106^{40k+20}-106^{36k+18}+106^{32k+16}\\||-106^{28k+14}+106^{24k+12}-106^{20k+10}+106^{16k+8}-106^{12k+6}\\||+106^{8k+4}-106^{4k+2}+1\\|=|(106^{104k+52}-106^{103k+52}+53\cdot 106^{102k+51}-18\cdot 106^{101k+51}+503\cdot 106^{100k+50}\\||-111\cdot 106^{99k+50}+2279\cdot 106^{98k+49}-400\cdot 106^{97k+49}+6897\cdot 106^{96k+48}-1057\cdot 106^{95k+48}\\||+16377\cdot 106^{94k+47}-2304\cdot 106^{93k+47}+33287\cdot 106^{92k+46}-4415\cdot 106^{91k+46}+60579\cdot 106^{90k+45}\\||-7668\cdot 106^{89k+45}+100757\cdot 106^{88k+44}-12249\cdot 106^{87k+44}+155025\cdot 106^{86k+43}-18206\cdot 106^{85k+43}\\||+223243\cdot 106^{84k+42}-25471\cdot 106^{83k+42}+304167\cdot 106^{82k+41}-33866\cdot 106^{81k+41}+395325\cdot 106^{80k+40}\\||-43091\cdot 106^{79k+40}+493165\cdot 106^{78k+39}-52784\cdot 106^{77k+39}+594147\cdot 106^{76k+38}-62651\cdot 106^{75k+38}\\||+695943\cdot 106^{74k+37}-72534\cdot 106^{73k+37}+797485\cdot 106^{72k+36}-82365\cdot 106^{71k+36}+898297\cdot 106^{70k+35}\\||-92114\cdot 106^{69k+35}+998243\cdot 106^{68k+34}-101785\cdot 106^{67k+34}+1097471\cdot 106^{66k+33}-111384\cdot 106^{65k+33}\\||+1195649\cdot 106^{64k+32}-120807\cdot 106^{63k+32}+1290709\cdot 106^{62k+31}-129750\cdot 106^{61k+31}+1378615\cdot 106^{60k+30}\\||-137763\cdot 106^{59k+30}+1454479\cdot 106^{58k+29}-144372\cdot 106^{57k+29}+1513561\cdot 106^{56k+28}-149133\cdot 106^{55k+28}\\||+1551469\cdot 106^{54k+27}-151646\cdot 106^{53k+27}+1564599\cdot 106^{52k+26}-151646\cdot 106^{51k+26}+1551469\cdot 106^{50k+25}\\||-149133\cdot 106^{49k+25}+1513561\cdot 106^{48k+24}-144372\cdot 106^{47k+24}+1454479\cdot 106^{46k+23}-137763\cdot 106^{45k+23}\\||+1378615\cdot 106^{44k+22}-129750\cdot 106^{43k+22}+1290709\cdot 106^{42k+21}-120807\cdot 106^{41k+21}+1195649\cdot 106^{40k+20}\\||-111384\cdot 106^{39k+20}+1097471\cdot 106^{38k+19}-101785\cdot 106^{37k+19}+998243\cdot 106^{36k+18}-92114\cdot 106^{35k+18}\\||+898297\cdot 106^{34k+17}-82365\cdot 106^{33k+17}+797485\cdot 106^{32k+16}-72534\cdot 106^{31k+16}+695943\cdot 106^{30k+15}\\||-62651\cdot 106^{29k+15}+594147\cdot 106^{28k+14}-52784\cdot 106^{27k+14}+493165\cdot 106^{26k+13}-43091\cdot 106^{25k+13}\\||+395325\cdot 106^{24k+12}-33866\cdot 106^{23k+12}+304167\cdot 106^{22k+11}-25471\cdot 106^{21k+11}+223243\cdot 106^{20k+10}\\||-18206\cdot 106^{19k+10}+155025\cdot 106^{18k+9}-12249\cdot 106^{17k+9}+100757\cdot 106^{16k+8}-7668\cdot 106^{15k+8}\\||+60579\cdot 106^{14k+7}-4415\cdot 106^{13k+7}+33287\cdot 106^{12k+6}-2304\cdot 106^{11k+6}+16377\cdot 106^{10k+5}\\||-1057\cdot 106^{9k+5}+6897\cdot 106^{8k+4}-400\cdot 106^{7k+4}+2279\cdot 106^{6k+3}-111\cdot 106^{5k+3}\\||+503\cdot 106^{4k+2}-18\cdot 106^{3k+2}+53\cdot 106^{2k+1}-106^{k+1}+1)\\|\times|(106^{104k+52}+106^{103k+52}+53\cdot 106^{102k+51}+18\cdot 106^{101k+51}+503\cdot 106^{100k+50}\\||+111\cdot 106^{99k+50}+2279\cdot 106^{98k+49}+400\cdot 106^{97k+49}+6897\cdot 106^{96k+48}+1057\cdot 106^{95k+48}\\||+16377\cdot 106^{94k+47}+2304\cdot 106^{93k+47}+33287\cdot 106^{92k+46}+4415\cdot 106^{91k+46}+60579\cdot 106^{90k+45}\\||+7668\cdot 106^{89k+45}+100757\cdot 106^{88k+44}+12249\cdot 106^{87k+44}+155025\cdot 106^{86k+43}+18206\cdot 106^{85k+43}\\||+223243\cdot 106^{84k+42}+25471\cdot 106^{83k+42}+304167\cdot 106^{82k+41}+33866\cdot 106^{81k+41}+395325\cdot 106^{80k+40}\\||+43091\cdot 106^{79k+40}+493165\cdot 106^{78k+39}+52784\cdot 106^{77k+39}+594147\cdot 106^{76k+38}+62651\cdot 106^{75k+38}\\||+695943\cdot 106^{74k+37}+72534\cdot 106^{73k+37}+797485\cdot 106^{72k+36}+82365\cdot 106^{71k+36}+898297\cdot 106^{70k+35}\\||+92114\cdot 106^{69k+35}+998243\cdot 106^{68k+34}+101785\cdot 106^{67k+34}+1097471\cdot 106^{66k+33}+111384\cdot 106^{65k+33}\\||+1195649\cdot 106^{64k+32}+120807\cdot 106^{63k+32}+1290709\cdot 106^{62k+31}+129750\cdot 106^{61k+31}+1378615\cdot 106^{60k+30}\\||+137763\cdot 106^{59k+30}+1454479\cdot 106^{58k+29}+144372\cdot 106^{57k+29}+1513561\cdot 106^{56k+28}+149133\cdot 106^{55k+28}\\||+1551469\cdot 106^{54k+27}+151646\cdot 106^{53k+27}+1564599\cdot 106^{52k+26}+151646\cdot 106^{51k+26}+1551469\cdot 106^{50k+25}\\||+149133\cdot 106^{49k+25}+1513561\cdot 106^{48k+24}+144372\cdot 106^{47k+24}+1454479\cdot 106^{46k+23}+137763\cdot 106^{45k+23}\\||+1378615\cdot 106^{44k+22}+129750\cdot 106^{43k+22}+1290709\cdot 106^{42k+21}+120807\cdot 106^{41k+21}+1195649\cdot 106^{40k+20}\\||+111384\cdot 106^{39k+20}+1097471\cdot 106^{38k+19}+101785\cdot 106^{37k+19}+998243\cdot 106^{36k+18}+92114\cdot 106^{35k+18}\\||+898297\cdot 106^{34k+17}+82365\cdot 106^{33k+17}+797485\cdot 106^{32k+16}+72534\cdot 106^{31k+16}+695943\cdot 106^{30k+15}\\||+62651\cdot 106^{29k+15}+594147\cdot 106^{28k+14}+52784\cdot 106^{27k+14}+493165\cdot 106^{26k+13}+43091\cdot 106^{25k+13}\\||+395325\cdot 106^{24k+12}+33866\cdot 106^{23k+12}+304167\cdot 106^{22k+11}+25471\cdot 106^{21k+11}+223243\cdot 106^{20k+10}\\||+18206\cdot 106^{19k+10}+155025\cdot 106^{18k+9}+12249\cdot 106^{17k+9}+100757\cdot 106^{16k+8}+7668\cdot 106^{15k+8}\\||+60579\cdot 106^{14k+7}+4415\cdot 106^{13k+7}+33287\cdot 106^{12k+6}+2304\cdot 106^{11k+6}+16377\cdot 106^{10k+5}\\||+1057\cdot 106^{9k+5}+6897\cdot 106^{8k+4}+400\cdot 106^{7k+4}+2279\cdot 106^{6k+3}+111\cdot 106^{5k+3}\\||+503\cdot 106^{4k+2}+18\cdot 106^{3k+2}+53\cdot 106^{2k+1}+106^{k+1}+1)\\{\large\Phi}_{214}(107^{2k+1})|=|107^{212k+106}-107^{210k+105}+107^{208k+104}-107^{206k+103}+107^{204k+102}\\||-107^{202k+101}+107^{200k+100}-107^{198k+99}+107^{196k+98}-107^{194k+97}\\||+107^{192k+96}-107^{190k+95}+107^{188k+94}-107^{186k+93}+107^{184k+92}\\||-107^{182k+91}+107^{180k+90}-107^{178k+89}+107^{176k+88}-107^{174k+87}\\||+107^{172k+86}-107^{170k+85}+107^{168k+84}-107^{166k+83}+107^{164k+82}\\||-107^{162k+81}+107^{160k+80}-107^{158k+79}+107^{156k+78}-107^{154k+77}\\||+107^{152k+76}-107^{150k+75}+107^{148k+74}-107^{146k+73}+107^{144k+72}\\||-107^{142k+71}+107^{140k+70}-107^{138k+69}+107^{136k+68}-107^{134k+67}\\||+107^{132k+66}-107^{130k+65}+107^{128k+64}-107^{126k+63}+107^{124k+62}\\||-107^{122k+61}+107^{120k+60}-107^{118k+59}+107^{116k+58}-107^{114k+57}\\||+107^{112k+56}-107^{110k+55}+107^{108k+54}-107^{106k+53}+107^{104k+52}\\||-107^{102k+51}+107^{100k+50}-107^{98k+49}+107^{96k+48}-107^{94k+47}\\||+107^{92k+46}-107^{90k+45}+107^{88k+44}-107^{86k+43}+107^{84k+42}\\||-107^{82k+41}+107^{80k+40}-107^{78k+39}+107^{76k+38}-107^{74k+37}\\||+107^{72k+36}-107^{70k+35}+107^{68k+34}-107^{66k+33}+107^{64k+32}\\||-107^{62k+31}+107^{60k+30}-107^{58k+29}+107^{56k+28}-107^{54k+27}\\||+107^{52k+26}-107^{50k+25}+107^{48k+24}-107^{46k+23}+107^{44k+22}\\||-107^{42k+21}+107^{40k+20}-107^{38k+19}+107^{36k+18}-107^{34k+17}\\||+107^{32k+16}-107^{30k+15}+107^{28k+14}-107^{26k+13}+107^{24k+12}\\||-107^{22k+11}+107^{20k+10}-107^{18k+9}+107^{16k+8}-107^{14k+7}\\||+107^{12k+6}-107^{10k+5}+107^{8k+4}-107^{6k+3}+107^{4k+2}\\||-107^{2k+1}+1\\|=|(107^{106k+53}-107^{105k+53}+53\cdot 107^{104k+52}-17\cdot 107^{103k+52}+415\cdot 107^{102k+51}\\||-69\cdot 107^{101k+51}+849\cdot 107^{100k+50}-47\cdot 107^{99k+50}-569\cdot 107^{98k+49}+197\cdot 107^{97k+49}\\||-3051\cdot 107^{96k+48}+243\cdot 107^{95k+48}+95\cdot 107^{94k+47}-383\cdot 107^{93k+47}+6905\cdot 107^{92k+46}\\||-623\cdot 107^{91k+46}+1585\cdot 107^{90k+45}+565\cdot 107^{89k+45}-11549\cdot 107^{88k+44}+1077\cdot 107^{87k+44}\\||-3329\cdot 107^{86k+43}-801\cdot 107^{85k+43}+16577\cdot 107^{84k+42}-1469\cdot 107^{83k+42}+3289\cdot 107^{82k+41}\\||+1235\cdot 107^{81k+41}-22583\cdot 107^{80k+40}+1775\cdot 107^{79k+40}-919\cdot 107^{78k+39}-1893\cdot 107^{77k+39}\\||+29411\cdot 107^{76k+38}-1973\cdot 107^{75k+38}-3591\cdot 107^{74k+37}+2703\cdot 107^{73k+37}-36177\cdot 107^{72k+36}\\||+2033\cdot 107^{71k+36}+9501\cdot 107^{70k+35}-3509\cdot 107^{69k+35}+41177\cdot 107^{68k+34}-1865\cdot 107^{67k+34}\\||-16637\cdot 107^{66k+33}+4225\cdot 107^{65k+33}-43539\cdot 107^{64k+32}+1433\cdot 107^{63k+32}+24965\cdot 107^{62k+31}\\||-4859\cdot 107^{61k+31}+43967\cdot 107^{60k+30}-871\cdot 107^{59k+30}-32915\cdot 107^{58k+29}+5315\cdot 107^{57k+29}\\||-42547\cdot 107^{56k+28}+281\cdot 107^{55k+28}+39097\cdot 107^{54k+27}-5497\cdot 107^{53k+27}+39097\cdot 107^{52k+26}\\||+281\cdot 107^{51k+26}-42547\cdot 107^{50k+25}+5315\cdot 107^{49k+25}-32915\cdot 107^{48k+24}-871\cdot 107^{47k+24}\\||+43967\cdot 107^{46k+23}-4859\cdot 107^{45k+23}+24965\cdot 107^{44k+22}+1433\cdot 107^{43k+22}-43539\cdot 107^{42k+21}\\||+4225\cdot 107^{41k+21}-16637\cdot 107^{40k+20}-1865\cdot 107^{39k+20}+41177\cdot 107^{38k+19}-3509\cdot 107^{37k+19}\\||+9501\cdot 107^{36k+18}+2033\cdot 107^{35k+18}-36177\cdot 107^{34k+17}+2703\cdot 107^{33k+17}-3591\cdot 107^{32k+16}\\||-1973\cdot 107^{31k+16}+29411\cdot 107^{30k+15}-1893\cdot 107^{29k+15}-919\cdot 107^{28k+14}+1775\cdot 107^{27k+14}\\||-22583\cdot 107^{26k+13}+1235\cdot 107^{25k+13}+3289\cdot 107^{24k+12}-1469\cdot 107^{23k+12}+16577\cdot 107^{22k+11}\\||-801\cdot 107^{21k+11}-3329\cdot 107^{20k+10}+1077\cdot 107^{19k+10}-11549\cdot 107^{18k+9}+565\cdot 107^{17k+9}\\||+1585\cdot 107^{16k+8}-623\cdot 107^{15k+8}+6905\cdot 107^{14k+7}-383\cdot 107^{13k+7}+95\cdot 107^{12k+6}\\||+243\cdot 107^{11k+6}-3051\cdot 107^{10k+5}+197\cdot 107^{9k+5}-569\cdot 107^{8k+4}-47\cdot 107^{7k+4}\\||+849\cdot 107^{6k+3}-69\cdot 107^{5k+3}+415\cdot 107^{4k+2}-17\cdot 107^{3k+2}+53\cdot 107^{2k+1}\\||-107^{k+1}+1)\\|\times|(107^{106k+53}+107^{105k+53}+53\cdot 107^{104k+52}+17\cdot 107^{103k+52}+415\cdot 107^{102k+51}\\||+69\cdot 107^{101k+51}+849\cdot 107^{100k+50}+47\cdot 107^{99k+50}-569\cdot 107^{98k+49}-197\cdot 107^{97k+49}\\||-3051\cdot 107^{96k+48}-243\cdot 107^{95k+48}+95\cdot 107^{94k+47}+383\cdot 107^{93k+47}+6905\cdot 107^{92k+46}\\||+623\cdot 107^{91k+46}+1585\cdot 107^{90k+45}-565\cdot 107^{89k+45}-11549\cdot 107^{88k+44}-1077\cdot 107^{87k+44}\\||-3329\cdot 107^{86k+43}+801\cdot 107^{85k+43}+16577\cdot 107^{84k+42}+1469\cdot 107^{83k+42}+3289\cdot 107^{82k+41}\\||-1235\cdot 107^{81k+41}-22583\cdot 107^{80k+40}-1775\cdot 107^{79k+40}-919\cdot 107^{78k+39}+1893\cdot 107^{77k+39}\\||+29411\cdot 107^{76k+38}+1973\cdot 107^{75k+38}-3591\cdot 107^{74k+37}-2703\cdot 107^{73k+37}-36177\cdot 107^{72k+36}\\||-2033\cdot 107^{71k+36}+9501\cdot 107^{70k+35}+3509\cdot 107^{69k+35}+41177\cdot 107^{68k+34}+1865\cdot 107^{67k+34}\\||-16637\cdot 107^{66k+33}-4225\cdot 107^{65k+33}-43539\cdot 107^{64k+32}-1433\cdot 107^{63k+32}+24965\cdot 107^{62k+31}\\||+4859\cdot 107^{61k+31}+43967\cdot 107^{60k+30}+871\cdot 107^{59k+30}-32915\cdot 107^{58k+29}-5315\cdot 107^{57k+29}\\||-42547\cdot 107^{56k+28}-281\cdot 107^{55k+28}+39097\cdot 107^{54k+27}+5497\cdot 107^{53k+27}+39097\cdot 107^{52k+26}\\||-281\cdot 107^{51k+26}-42547\cdot 107^{50k+25}-5315\cdot 107^{49k+25}-32915\cdot 107^{48k+24}+871\cdot 107^{47k+24}\\||+43967\cdot 107^{46k+23}+4859\cdot 107^{45k+23}+24965\cdot 107^{44k+22}-1433\cdot 107^{43k+22}-43539\cdot 107^{42k+21}\\||-4225\cdot 107^{41k+21}-16637\cdot 107^{40k+20}+1865\cdot 107^{39k+20}+41177\cdot 107^{38k+19}+3509\cdot 107^{37k+19}\\||+9501\cdot 107^{36k+18}-2033\cdot 107^{35k+18}-36177\cdot 107^{34k+17}-2703\cdot 107^{33k+17}-3591\cdot 107^{32k+16}\\||+1973\cdot 107^{31k+16}+29411\cdot 107^{30k+15}+1893\cdot 107^{29k+15}-919\cdot 107^{28k+14}-1775\cdot 107^{27k+14}\\||-22583\cdot 107^{26k+13}-1235\cdot 107^{25k+13}+3289\cdot 107^{24k+12}+1469\cdot 107^{23k+12}+16577\cdot 107^{22k+11}\\||+801\cdot 107^{21k+11}-3329\cdot 107^{20k+10}-1077\cdot 107^{19k+10}-11549\cdot 107^{18k+9}-565\cdot 107^{17k+9}\\||+1585\cdot 107^{16k+8}+623\cdot 107^{15k+8}+6905\cdot 107^{14k+7}+383\cdot 107^{13k+7}+95\cdot 107^{12k+6}\\||-243\cdot 107^{11k+6}-3051\cdot 107^{10k+5}-197\cdot 107^{9k+5}-569\cdot 107^{8k+4}+47\cdot 107^{7k+4}\\||+849\cdot 107^{6k+3}+69\cdot 107^{5k+3}+415\cdot 107^{4k+2}+17\cdot 107^{3k+2}+53\cdot 107^{2k+1}\\||+107^{k+1}+1)\\{\large\Phi}_{109}(109^{2k+1})|=|109^{216k+108}+109^{214k+107}+109^{212k+106}+109^{210k+105}+109^{208k+104}\\||+109^{206k+103}+109^{204k+102}+109^{202k+101}+109^{200k+100}+109^{198k+99}\\||+109^{196k+98}+109^{194k+97}+109^{192k+96}+109^{190k+95}+109^{188k+94}\\||+109^{186k+93}+109^{184k+92}+109^{182k+91}+109^{180k+90}+109^{178k+89}\\||+109^{176k+88}+109^{174k+87}+109^{172k+86}+109^{170k+85}+109^{168k+84}\\||+109^{166k+83}+109^{164k+82}+109^{162k+81}+109^{160k+80}+109^{158k+79}\\||+109^{156k+78}+109^{154k+77}+109^{152k+76}+109^{150k+75}+109^{148k+74}\\||+109^{146k+73}+109^{144k+72}+109^{142k+71}+109^{140k+70}+109^{138k+69}\\||+109^{136k+68}+109^{134k+67}+109^{132k+66}+109^{130k+65}+109^{128k+64}\\||+109^{126k+63}+109^{124k+62}+109^{122k+61}+109^{120k+60}+109^{118k+59}\\||+109^{116k+58}+109^{114k+57}+109^{112k+56}+109^{110k+55}+109^{108k+54}\\||+109^{106k+53}+109^{104k+52}+109^{102k+51}+109^{100k+50}+109^{98k+49}\\||+109^{96k+48}+109^{94k+47}+109^{92k+46}+109^{90k+45}+109^{88k+44}\\||+109^{86k+43}+109^{84k+42}+109^{82k+41}+109^{80k+40}+109^{78k+39}\\||+109^{76k+38}+109^{74k+37}+109^{72k+36}+109^{70k+35}+109^{68k+34}\\||+109^{66k+33}+109^{64k+32}+109^{62k+31}+109^{60k+30}+109^{58k+29}\\||+109^{56k+28}+109^{54k+27}+109^{52k+26}+109^{50k+25}+109^{48k+24}\\||+109^{46k+23}+109^{44k+22}+109^{42k+21}+109^{40k+20}+109^{38k+19}\\||+109^{36k+18}+109^{34k+17}+109^{32k+16}+109^{30k+15}+109^{28k+14}\\||+109^{26k+13}+109^{24k+12}+109^{22k+11}+109^{20k+10}+109^{18k+9}\\||+109^{16k+8}+109^{14k+7}+109^{12k+6}+109^{10k+5}+109^{8k+4}\\||+109^{6k+3}+109^{4k+2}+109^{2k+1}+1\\|=|(109^{108k+54}-109^{107k+54}+55\cdot 109^{106k+53}-19\cdot 109^{105k+53}+559\cdot 109^{104k+52}\\||-127\cdot 109^{103k+52}+2773\cdot 109^{102k+51}-505\cdot 109^{101k+51}+9307\cdot 109^{100k+50}-1483\cdot 109^{99k+50}\\||+24541\cdot 109^{98k+49}-3579\cdot 109^{97k+49}+54987\cdot 109^{96k+48}-7525\cdot 109^{95k+48}+109351\cdot 109^{94k+47}\\||-14239\cdot 109^{93k+47}+197803\cdot 109^{92k+46}-24717\cdot 109^{91k+46}+330591\cdot 109^{90k+45}-39889\cdot 109^{89k+45}\\||+516469\cdot 109^{88k+44}-60457\cdot 109^{87k+44}+760821\cdot 109^{86k+43}-86699\cdot 109^{85k+43}+1063573\cdot 109^{84k+42}\\||-118285\cdot 109^{83k+42}+1417653\cdot 109^{82k+41}-154181\cdot 109^{81k+41}+1808601\cdot 109^{80k+40}-192669\cdot 109^{79k+40}\\||+2215303\cdot 109^{78k+39}-231463\cdot 109^{77k+39}+2611733\cdot 109^{76k+38}-267939\cdot 109^{75k+38}+2970087\cdot 109^{74k+37}\\||-299495\cdot 109^{73k+37}+3264879\cdot 109^{72k+36}-323945\cdot 109^{71k+36}+3476861\cdot 109^{70k+35}-339867\cdot 109^{69k+35}\\||+3596301\cdot 109^{68k+34}-346871\cdot 109^{67k+34}+3625117\cdot 109^{66k+33}-345721\cdot 109^{65k+33}+3577115\cdot 109^{64k+32}\\||-338247\cdot 109^{63k+32}+3475919\cdot 109^{62k+31}-327053\cdot 109^{61k+31}+3351209\cdot 109^{60k+30}-315109\cdot 109^{59k+30}\\||+3234047\cdot 109^{58k+29}-305265\cdot 109^{57k+29}+3151519\cdot 109^{56k+28}-299741\cdot 109^{55k+28}+3121875\cdot 109^{54k+27}\\||-299741\cdot 109^{53k+27}+3151519\cdot 109^{52k+26}-305265\cdot 109^{51k+26}+3234047\cdot 109^{50k+25}-315109\cdot 109^{49k+25}\\||+3351209\cdot 109^{48k+24}-327053\cdot 109^{47k+24}+3475919\cdot 109^{46k+23}-338247\cdot 109^{45k+23}+3577115\cdot 109^{44k+22}\\||-345721\cdot 109^{43k+22}+3625117\cdot 109^{42k+21}-346871\cdot 109^{41k+21}+3596301\cdot 109^{40k+20}-339867\cdot 109^{39k+20}\\||+3476861\cdot 109^{38k+19}-323945\cdot 109^{37k+19}+3264879\cdot 109^{36k+18}-299495\cdot 109^{35k+18}+2970087\cdot 109^{34k+17}\\||-267939\cdot 109^{33k+17}+2611733\cdot 109^{32k+16}-231463\cdot 109^{31k+16}+2215303\cdot 109^{30k+15}-192669\cdot 109^{29k+15}\\||+1808601\cdot 109^{28k+14}-154181\cdot 109^{27k+14}+1417653\cdot 109^{26k+13}-118285\cdot 109^{25k+13}+1063573\cdot 109^{24k+12}\\||-86699\cdot 109^{23k+12}+760821\cdot 109^{22k+11}-60457\cdot 109^{21k+11}+516469\cdot 109^{20k+10}-39889\cdot 109^{19k+10}\\||+330591\cdot 109^{18k+9}-24717\cdot 109^{17k+9}+197803\cdot 109^{16k+8}-14239\cdot 109^{15k+8}+109351\cdot 109^{14k+7}\\||-7525\cdot 109^{13k+7}+54987\cdot 109^{12k+6}-3579\cdot 109^{11k+6}+24541\cdot 109^{10k+5}-1483\cdot 109^{9k+5}\\||+9307\cdot 109^{8k+4}-505\cdot 109^{7k+4}+2773\cdot 109^{6k+3}-127\cdot 109^{5k+3}+559\cdot 109^{4k+2}\\||-19\cdot 109^{3k+2}+55\cdot 109^{2k+1}-109^{k+1}+1)\\|\times|(109^{108k+54}+109^{107k+54}+55\cdot 109^{106k+53}+19\cdot 109^{105k+53}+559\cdot 109^{104k+52}\\||+127\cdot 109^{103k+52}+2773\cdot 109^{102k+51}+505\cdot 109^{101k+51}+9307\cdot 109^{100k+50}+1483\cdot 109^{99k+50}\\||+24541\cdot 109^{98k+49}+3579\cdot 109^{97k+49}+54987\cdot 109^{96k+48}+7525\cdot 109^{95k+48}+109351\cdot 109^{94k+47}\\||+14239\cdot 109^{93k+47}+197803\cdot 109^{92k+46}+24717\cdot 109^{91k+46}+330591\cdot 109^{90k+45}+39889\cdot 109^{89k+45}\\||+516469\cdot 109^{88k+44}+60457\cdot 109^{87k+44}+760821\cdot 109^{86k+43}+86699\cdot 109^{85k+43}+1063573\cdot 109^{84k+42}\\||+118285\cdot 109^{83k+42}+1417653\cdot 109^{82k+41}+154181\cdot 109^{81k+41}+1808601\cdot 109^{80k+40}+192669\cdot 109^{79k+40}\\||+2215303\cdot 109^{78k+39}+231463\cdot 109^{77k+39}+2611733\cdot 109^{76k+38}+267939\cdot 109^{75k+38}+2970087\cdot 109^{74k+37}\\||+299495\cdot 109^{73k+37}+3264879\cdot 109^{72k+36}+323945\cdot 109^{71k+36}+3476861\cdot 109^{70k+35}+339867\cdot 109^{69k+35}\\||+3596301\cdot 109^{68k+34}+346871\cdot 109^{67k+34}+3625117\cdot 109^{66k+33}+345721\cdot 109^{65k+33}+3577115\cdot 109^{64k+32}\\||+338247\cdot 109^{63k+32}+3475919\cdot 109^{62k+31}+327053\cdot 109^{61k+31}+3351209\cdot 109^{60k+30}+315109\cdot 109^{59k+30}\\||+3234047\cdot 109^{58k+29}+305265\cdot 109^{57k+29}+3151519\cdot 109^{56k+28}+299741\cdot 109^{55k+28}+3121875\cdot 109^{54k+27}\\||+299741\cdot 109^{53k+27}+3151519\cdot 109^{52k+26}+305265\cdot 109^{51k+26}+3234047\cdot 109^{50k+25}+315109\cdot 109^{49k+25}\\||+3351209\cdot 109^{48k+24}+327053\cdot 109^{47k+24}+3475919\cdot 109^{46k+23}+338247\cdot 109^{45k+23}+3577115\cdot 109^{44k+22}\\||+345721\cdot 109^{43k+22}+3625117\cdot 109^{42k+21}+346871\cdot 109^{41k+21}+3596301\cdot 109^{40k+20}+339867\cdot 109^{39k+20}\\||+3476861\cdot 109^{38k+19}+323945\cdot 109^{37k+19}+3264879\cdot 109^{36k+18}+299495\cdot 109^{35k+18}+2970087\cdot 109^{34k+17}\\||+267939\cdot 109^{33k+17}+2611733\cdot 109^{32k+16}+231463\cdot 109^{31k+16}+2215303\cdot 109^{30k+15}+192669\cdot 109^{29k+15}\\||+1808601\cdot 109^{28k+14}+154181\cdot 109^{27k+14}+1417653\cdot 109^{26k+13}+118285\cdot 109^{25k+13}+1063573\cdot 109^{24k+12}\\||+86699\cdot 109^{23k+12}+760821\cdot 109^{22k+11}+60457\cdot 109^{21k+11}+516469\cdot 109^{20k+10}+39889\cdot 109^{19k+10}\\||+330591\cdot 109^{18k+9}+24717\cdot 109^{17k+9}+197803\cdot 109^{16k+8}+14239\cdot 109^{15k+8}+109351\cdot 109^{14k+7}\\||+7525\cdot 109^{13k+7}+54987\cdot 109^{12k+6}+3579\cdot 109^{11k+6}+24541\cdot 109^{10k+5}+1483\cdot 109^{9k+5}\\||+9307\cdot 109^{8k+4}+505\cdot 109^{7k+4}+2773\cdot 109^{6k+3}+127\cdot 109^{5k+3}+559\cdot 109^{4k+2}\\||+19\cdot 109^{3k+2}+55\cdot 109^{2k+1}+109^{k+1}+1)\\{\large\Phi}_{220}(110^{2k+1})|=|110^{160k+80}+110^{156k+78}-110^{140k+70}-110^{136k+68}+110^{120k+60}\\||-110^{112k+56}-110^{100k+50}+110^{92k+46}+110^{80k+40}+110^{68k+34}\\||-110^{60k+30}-110^{48k+24}+110^{40k+20}-110^{24k+12}-110^{20k+10}\\||+110^{4k+2}+1\\|=|(110^{80k+40}-110^{79k+40}+55\cdot 110^{78k+39}-18\cdot 110^{77k+39}+468\cdot 110^{76k+38}\\||-83\cdot 110^{75k+38}+1210\cdot 110^{74k+37}-111\cdot 110^{73k+37}+488\cdot 110^{72k+36}+68\cdot 110^{71k+36}\\||-1925\cdot 110^{70k+35}+240\cdot 110^{69k+35}-2169\cdot 110^{68k+34}+99\cdot 110^{67k+34}+440\cdot 110^{66k+33}\\||-174\cdot 110^{65k+33}+2710\cdot 110^{64k+32}-254\cdot 110^{63k+32}+1430\cdot 110^{62k+31}+62\cdot 110^{61k+31}\\||-2541\cdot 110^{60k+30}+298\cdot 110^{59k+30}-2090\cdot 110^{58k+29}+18\cdot 110^{57k+29}+1417\cdot 110^{56k+28}\\||-197\cdot 110^{55k+28}+1870\cdot 110^{54k+27}-120\cdot 110^{53k+27}+482\cdot 110^{52k+26}+37\cdot 110^{51k+26}\\||-1155\cdot 110^{50k+25}+138\cdot 110^{49k+25}-1066\cdot 110^{48k+24}+28\cdot 110^{47k+24}+275\cdot 110^{46k+23}\\||-26\cdot 110^{45k+23}-90\cdot 110^{44k+22}+24\cdot 110^{43k+22}+110\cdot 110^{42k+21}-70\cdot 110^{41k+21}\\||+1041\cdot 110^{40k+20}-70\cdot 110^{39k+20}+110\cdot 110^{38k+19}+24\cdot 110^{37k+19}-90\cdot 110^{36k+18}\\||-26\cdot 110^{35k+18}+275\cdot 110^{34k+17}+28\cdot 110^{33k+17}-1066\cdot 110^{32k+16}+138\cdot 110^{31k+16}\\||-1155\cdot 110^{30k+15}+37\cdot 110^{29k+15}+482\cdot 110^{28k+14}-120\cdot 110^{27k+14}+1870\cdot 110^{26k+13}\\||-197\cdot 110^{25k+13}+1417\cdot 110^{24k+12}+18\cdot 110^{23k+12}-2090\cdot 110^{22k+11}+298\cdot 110^{21k+11}\\||-2541\cdot 110^{20k+10}+62\cdot 110^{19k+10}+1430\cdot 110^{18k+9}-254\cdot 110^{17k+9}+2710\cdot 110^{16k+8}\\||-174\cdot 110^{15k+8}+440\cdot 110^{14k+7}+99\cdot 110^{13k+7}-2169\cdot 110^{12k+6}+240\cdot 110^{11k+6}\\||-1925\cdot 110^{10k+5}+68\cdot 110^{9k+5}+488\cdot 110^{8k+4}-111\cdot 110^{7k+4}+1210\cdot 110^{6k+3}\\||-83\cdot 110^{5k+3}+468\cdot 110^{4k+2}-18\cdot 110^{3k+2}+55\cdot 110^{2k+1}-110^{k+1}+1)\\|\times|(110^{80k+40}+110^{79k+40}+55\cdot 110^{78k+39}+18\cdot 110^{77k+39}+468\cdot 110^{76k+38}\\||+83\cdot 110^{75k+38}+1210\cdot 110^{74k+37}+111\cdot 110^{73k+37}+488\cdot 110^{72k+36}-68\cdot 110^{71k+36}\\||-1925\cdot 110^{70k+35}-240\cdot 110^{69k+35}-2169\cdot 110^{68k+34}-99\cdot 110^{67k+34}+440\cdot 110^{66k+33}\\||+174\cdot 110^{65k+33}+2710\cdot 110^{64k+32}+254\cdot 110^{63k+32}+1430\cdot 110^{62k+31}-62\cdot 110^{61k+31}\\||-2541\cdot 110^{60k+30}-298\cdot 110^{59k+30}-2090\cdot 110^{58k+29}-18\cdot 110^{57k+29}+1417\cdot 110^{56k+28}\\||+197\cdot 110^{55k+28}+1870\cdot 110^{54k+27}+120\cdot 110^{53k+27}+482\cdot 110^{52k+26}-37\cdot 110^{51k+26}\\||-1155\cdot 110^{50k+25}-138\cdot 110^{49k+25}-1066\cdot 110^{48k+24}-28\cdot 110^{47k+24}+275\cdot 110^{46k+23}\\||+26\cdot 110^{45k+23}-90\cdot 110^{44k+22}-24\cdot 110^{43k+22}+110\cdot 110^{42k+21}+70\cdot 110^{41k+21}\\||+1041\cdot 110^{40k+20}+70\cdot 110^{39k+20}+110\cdot 110^{38k+19}-24\cdot 110^{37k+19}-90\cdot 110^{36k+18}\\||+26\cdot 110^{35k+18}+275\cdot 110^{34k+17}-28\cdot 110^{33k+17}-1066\cdot 110^{32k+16}-138\cdot 110^{31k+16}\\||-1155\cdot 110^{30k+15}-37\cdot 110^{29k+15}+482\cdot 110^{28k+14}+120\cdot 110^{27k+14}+1870\cdot 110^{26k+13}\\||+197\cdot 110^{25k+13}+1417\cdot 110^{24k+12}-18\cdot 110^{23k+12}-2090\cdot 110^{22k+11}-298\cdot 110^{21k+11}\\||-2541\cdot 110^{20k+10}-62\cdot 110^{19k+10}+1430\cdot 110^{18k+9}+254\cdot 110^{17k+9}+2710\cdot 110^{16k+8}\\||+174\cdot 110^{15k+8}+440\cdot 110^{14k+7}-99\cdot 110^{13k+7}-2169\cdot 110^{12k+6}-240\cdot 110^{11k+6}\\||-1925\cdot 110^{10k+5}-68\cdot 110^{9k+5}+488\cdot 110^{8k+4}+111\cdot 110^{7k+4}+1210\cdot 110^{6k+3}\\||+83\cdot 110^{5k+3}+468\cdot 110^{4k+2}+18\cdot 110^{3k+2}+55\cdot 110^{2k+1}+110^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{222}(111^{2k+1})\cdots{\large\Phi}_{230}(115^{2k+1})$${\large\Phi}_{222}(111^{2k+1})\cdots{\large\Phi}_{230}(115^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{222}(111^{2k+1})|=|111^{144k+72}+111^{142k+71}-111^{138k+69}-111^{136k+68}+111^{132k+66}\\||+111^{130k+65}-111^{126k+63}-111^{124k+62}+111^{120k+60}+111^{118k+59}\\||-111^{114k+57}-111^{112k+56}+111^{108k+54}+111^{106k+53}-111^{102k+51}\\||-111^{100k+50}+111^{96k+48}+111^{94k+47}-111^{90k+45}-111^{88k+44}\\||+111^{84k+42}+111^{82k+41}-111^{78k+39}-111^{76k+38}+111^{72k+36}\\||-111^{68k+34}-111^{66k+33}+111^{62k+31}+111^{60k+30}-111^{56k+28}\\||-111^{54k+27}+111^{50k+25}+111^{48k+24}-111^{44k+22}-111^{42k+21}\\||+111^{38k+19}+111^{36k+18}-111^{32k+16}-111^{30k+15}+111^{26k+13}\\||+111^{24k+12}-111^{20k+10}-111^{18k+9}+111^{14k+7}+111^{12k+6}\\||-111^{8k+4}-111^{6k+3}+111^{2k+1}+1\\|=|(111^{72k+36}-111^{71k+36}+56\cdot 111^{70k+35}-19\cdot 111^{69k+35}+541\cdot 111^{68k+34}\\||-112\cdot 111^{67k+34}+2171\cdot 111^{66k+33}-331\cdot 111^{65k+33}+5032\cdot 111^{64k+32}-633\cdot 111^{63k+32}\\||+8231\cdot 111^{62k+31}-902\cdot 111^{61k+31}+10243\cdot 111^{60k+30}-975\cdot 111^{59k+30}+9584\cdot 111^{58k+29}\\||-793\cdot 111^{57k+29}+6835\cdot 111^{56k+28}-496\cdot 111^{55k+28}+3665\cdot 111^{54k+27}-219\cdot 111^{53k+27}\\||+1354\cdot 111^{52k+26}-91\cdot 111^{51k+26}+1109\cdot 111^{50k+25}-156\cdot 111^{49k+25}+2407\cdot 111^{48k+24}\\||-319\cdot 111^{47k+24}+4514\cdot 111^{46k+23}-547\cdot 111^{45k+23}+6859\cdot 111^{44k+22}-718\cdot 111^{43k+22}\\||+7823\cdot 111^{42k+21}-735\cdot 111^{41k+21}+7444\cdot 111^{40k+20}-661\cdot 111^{39k+20}+6359\cdot 111^{38k+19}\\||-552\cdot 111^{37k+19}+5593\cdot 111^{36k+18}-552\cdot 111^{35k+18}+6359\cdot 111^{34k+17}-661\cdot 111^{33k+17}\\||+7444\cdot 111^{32k+16}-735\cdot 111^{31k+16}+7823\cdot 111^{30k+15}-718\cdot 111^{29k+15}+6859\cdot 111^{28k+14}\\||-547\cdot 111^{27k+14}+4514\cdot 111^{26k+13}-319\cdot 111^{25k+13}+2407\cdot 111^{24k+12}-156\cdot 111^{23k+12}\\||+1109\cdot 111^{22k+11}-91\cdot 111^{21k+11}+1354\cdot 111^{20k+10}-219\cdot 111^{19k+10}+3665\cdot 111^{18k+9}\\||-496\cdot 111^{17k+9}+6835\cdot 111^{16k+8}-793\cdot 111^{15k+8}+9584\cdot 111^{14k+7}-975\cdot 111^{13k+7}\\||+10243\cdot 111^{12k+6}-902\cdot 111^{11k+6}+8231\cdot 111^{10k+5}-633\cdot 111^{9k+5}+5032\cdot 111^{8k+4}\\||-331\cdot 111^{7k+4}+2171\cdot 111^{6k+3}-112\cdot 111^{5k+3}+541\cdot 111^{4k+2}-19\cdot 111^{3k+2}\\||+56\cdot 111^{2k+1}-111^{k+1}+1)\\|\times|(111^{72k+36}+111^{71k+36}+56\cdot 111^{70k+35}+19\cdot 111^{69k+35}+541\cdot 111^{68k+34}\\||+112\cdot 111^{67k+34}+2171\cdot 111^{66k+33}+331\cdot 111^{65k+33}+5032\cdot 111^{64k+32}+633\cdot 111^{63k+32}\\||+8231\cdot 111^{62k+31}+902\cdot 111^{61k+31}+10243\cdot 111^{60k+30}+975\cdot 111^{59k+30}+9584\cdot 111^{58k+29}\\||+793\cdot 111^{57k+29}+6835\cdot 111^{56k+28}+496\cdot 111^{55k+28}+3665\cdot 111^{54k+27}+219\cdot 111^{53k+27}\\||+1354\cdot 111^{52k+26}+91\cdot 111^{51k+26}+1109\cdot 111^{50k+25}+156\cdot 111^{49k+25}+2407\cdot 111^{48k+24}\\||+319\cdot 111^{47k+24}+4514\cdot 111^{46k+23}+547\cdot 111^{45k+23}+6859\cdot 111^{44k+22}+718\cdot 111^{43k+22}\\||+7823\cdot 111^{42k+21}+735\cdot 111^{41k+21}+7444\cdot 111^{40k+20}+661\cdot 111^{39k+20}+6359\cdot 111^{38k+19}\\||+552\cdot 111^{37k+19}+5593\cdot 111^{36k+18}+552\cdot 111^{35k+18}+6359\cdot 111^{34k+17}+661\cdot 111^{33k+17}\\||+7444\cdot 111^{32k+16}+735\cdot 111^{31k+16}+7823\cdot 111^{30k+15}+718\cdot 111^{29k+15}+6859\cdot 111^{28k+14}\\||+547\cdot 111^{27k+14}+4514\cdot 111^{26k+13}+319\cdot 111^{25k+13}+2407\cdot 111^{24k+12}+156\cdot 111^{23k+12}\\||+1109\cdot 111^{22k+11}+91\cdot 111^{21k+11}+1354\cdot 111^{20k+10}+219\cdot 111^{19k+10}+3665\cdot 111^{18k+9}\\||+496\cdot 111^{17k+9}+6835\cdot 111^{16k+8}+793\cdot 111^{15k+8}+9584\cdot 111^{14k+7}+975\cdot 111^{13k+7}\\||+10243\cdot 111^{12k+6}+902\cdot 111^{11k+6}+8231\cdot 111^{10k+5}+633\cdot 111^{9k+5}+5032\cdot 111^{8k+4}\\||+331\cdot 111^{7k+4}+2171\cdot 111^{6k+3}+112\cdot 111^{5k+3}+541\cdot 111^{4k+2}+19\cdot 111^{3k+2}\\||+56\cdot 111^{2k+1}+111^{k+1}+1)\\{\large\Phi}_{113}(113^{2k+1})|=|113^{224k+112}+113^{222k+111}+113^{220k+110}+113^{218k+109}+113^{216k+108}\\||+113^{214k+107}+113^{212k+106}+113^{210k+105}+113^{208k+104}+113^{206k+103}\\||+113^{204k+102}+113^{202k+101}+113^{200k+100}+113^{198k+99}+113^{196k+98}\\||+113^{194k+97}+113^{192k+96}+113^{190k+95}+113^{188k+94}+113^{186k+93}\\||+113^{184k+92}+113^{182k+91}+113^{180k+90}+113^{178k+89}+113^{176k+88}\\||+113^{174k+87}+113^{172k+86}+113^{170k+85}+113^{168k+84}+113^{166k+83}\\||+113^{164k+82}+113^{162k+81}+113^{160k+80}+113^{158k+79}+113^{156k+78}\\||+113^{154k+77}+113^{152k+76}+113^{150k+75}+113^{148k+74}+113^{146k+73}\\||+113^{144k+72}+113^{142k+71}+113^{140k+70}+113^{138k+69}+113^{136k+68}\\||+113^{134k+67}+113^{132k+66}+113^{130k+65}+113^{128k+64}+113^{126k+63}\\||+113^{124k+62}+113^{122k+61}+113^{120k+60}+113^{118k+59}+113^{116k+58}\\||+113^{114k+57}+113^{112k+56}+113^{110k+55}+113^{108k+54}+113^{106k+53}\\||+113^{104k+52}+113^{102k+51}+113^{100k+50}+113^{98k+49}+113^{96k+48}\\||+113^{94k+47}+113^{92k+46}+113^{90k+45}+113^{88k+44}+113^{86k+43}\\||+113^{84k+42}+113^{82k+41}+113^{80k+40}+113^{78k+39}+113^{76k+38}\\||+113^{74k+37}+113^{72k+36}+113^{70k+35}+113^{68k+34}+113^{66k+33}\\||+113^{64k+32}+113^{62k+31}+113^{60k+30}+113^{58k+29}+113^{56k+28}\\||+113^{54k+27}+113^{52k+26}+113^{50k+25}+113^{48k+24}+113^{46k+23}\\||+113^{44k+22}+113^{42k+21}+113^{40k+20}+113^{38k+19}+113^{36k+18}\\||+113^{34k+17}+113^{32k+16}+113^{30k+15}+113^{28k+14}+113^{26k+13}\\||+113^{24k+12}+113^{22k+11}+113^{20k+10}+113^{18k+9}+113^{16k+8}\\||+113^{14k+7}+113^{12k+6}+113^{10k+5}+113^{8k+4}+113^{6k+3}\\||+113^{4k+2}+113^{2k+1}+1\\|=|(113^{112k+56}-113^{111k+56}+57\cdot 113^{110k+55}-19\cdot 113^{109k+55}+523\cdot 113^{108k+54}\\||-97\cdot 113^{107k+54}+1547\cdot 113^{106k+53}-155\cdot 113^{105k+53}+831\cdot 113^{104k+52}+101\cdot 113^{103k+52}\\||-3467\cdot 113^{102k+51}+463\cdot 113^{101k+51}-3809\cdot 113^{100k+50}-51\cdot 113^{99k+50}+6851\cdot 113^{98k+49}\\||-1123\cdot 113^{97k+49}+12207\cdot 113^{96k+48}-561\cdot 113^{95k+48}-4875\cdot 113^{94k+47}+1417\cdot 113^{93k+47}\\||-18615\cdot 113^{92k+46}+1169\cdot 113^{91k+46}+1323\cdot 113^{90k+45}-1485\cdot 113^{89k+45}+23091\cdot 113^{88k+44}\\||-1787\cdot 113^{87k+44}+5631\cdot 113^{86k+43}+899\cdot 113^{85k+43}-18175\cdot 113^{84k+42}+1497\cdot 113^{83k+42}\\||-5045\cdot 113^{82k+41}-675\cdot 113^{81k+41}+13175\cdot 113^{80k+40}-921\cdot 113^{79k+40}+75\cdot 113^{78k+39}\\||+835\cdot 113^{77k+39}-10615\cdot 113^{76k+38}+333\cdot 113^{75k+38}+8009\cdot 113^{74k+37}-1543\cdot 113^{73k+37}\\||+15473\cdot 113^{72k+36}-421\cdot 113^{71k+36}-11141\cdot 113^{70k+35}+2131\cdot 113^{69k+35}-23043\cdot 113^{68k+34}\\||+1053\cdot 113^{67k+34}+7145\cdot 113^{66k+33}-2095\cdot 113^{65k+33}+25813\cdot 113^{64k+32}-1457\cdot 113^{63k+32}\\||-3403\cdot 113^{62k+31}+1947\cdot 113^{61k+31}-26935\cdot 113^{60k+30}+1759\cdot 113^{59k+30}-645\cdot 113^{58k+29}\\||-1601\cdot 113^{57k+29}+24281\cdot 113^{56k+28}-1601\cdot 113^{55k+28}-645\cdot 113^{54k+27}+1759\cdot 113^{53k+27}\\||-26935\cdot 113^{52k+26}+1947\cdot 113^{51k+26}-3403\cdot 113^{50k+25}-1457\cdot 113^{49k+25}+25813\cdot 113^{48k+24}\\||-2095\cdot 113^{47k+24}+7145\cdot 113^{46k+23}+1053\cdot 113^{45k+23}-23043\cdot 113^{44k+22}+2131\cdot 113^{43k+22}\\||-11141\cdot 113^{42k+21}-421\cdot 113^{41k+21}+15473\cdot 113^{40k+20}-1543\cdot 113^{39k+20}+8009\cdot 113^{38k+19}\\||+333\cdot 113^{37k+19}-10615\cdot 113^{36k+18}+835\cdot 113^{35k+18}+75\cdot 113^{34k+17}-921\cdot 113^{33k+17}\\||+13175\cdot 113^{32k+16}-675\cdot 113^{31k+16}-5045\cdot 113^{30k+15}+1497\cdot 113^{29k+15}-18175\cdot 113^{28k+14}\\||+899\cdot 113^{27k+14}+5631\cdot 113^{26k+13}-1787\cdot 113^{25k+13}+23091\cdot 113^{24k+12}-1485\cdot 113^{23k+12}\\||+1323\cdot 113^{22k+11}+1169\cdot 113^{21k+11}-18615\cdot 113^{20k+10}+1417\cdot 113^{19k+10}-4875\cdot 113^{18k+9}\\||-561\cdot 113^{17k+9}+12207\cdot 113^{16k+8}-1123\cdot 113^{15k+8}+6851\cdot 113^{14k+7}-51\cdot 113^{13k+7}\\||-3809\cdot 113^{12k+6}+463\cdot 113^{11k+6}-3467\cdot 113^{10k+5}+101\cdot 113^{9k+5}+831\cdot 113^{8k+4}\\||-155\cdot 113^{7k+4}+1547\cdot 113^{6k+3}-97\cdot 113^{5k+3}+523\cdot 113^{4k+2}-19\cdot 113^{3k+2}\\||+57\cdot 113^{2k+1}-113^{k+1}+1)\\|\times|(113^{112k+56}+113^{111k+56}+57\cdot 113^{110k+55}+19\cdot 113^{109k+55}+523\cdot 113^{108k+54}\\||+97\cdot 113^{107k+54}+1547\cdot 113^{106k+53}+155\cdot 113^{105k+53}+831\cdot 113^{104k+52}-101\cdot 113^{103k+52}\\||-3467\cdot 113^{102k+51}-463\cdot 113^{101k+51}-3809\cdot 113^{100k+50}+51\cdot 113^{99k+50}+6851\cdot 113^{98k+49}\\||+1123\cdot 113^{97k+49}+12207\cdot 113^{96k+48}+561\cdot 113^{95k+48}-4875\cdot 113^{94k+47}-1417\cdot 113^{93k+47}\\||-18615\cdot 113^{92k+46}-1169\cdot 113^{91k+46}+1323\cdot 113^{90k+45}+1485\cdot 113^{89k+45}+23091\cdot 113^{88k+44}\\||+1787\cdot 113^{87k+44}+5631\cdot 113^{86k+43}-899\cdot 113^{85k+43}-18175\cdot 113^{84k+42}-1497\cdot 113^{83k+42}\\||-5045\cdot 113^{82k+41}+675\cdot 113^{81k+41}+13175\cdot 113^{80k+40}+921\cdot 113^{79k+40}+75\cdot 113^{78k+39}\\||-835\cdot 113^{77k+39}-10615\cdot 113^{76k+38}-333\cdot 113^{75k+38}+8009\cdot 113^{74k+37}+1543\cdot 113^{73k+37}\\||+15473\cdot 113^{72k+36}+421\cdot 113^{71k+36}-11141\cdot 113^{70k+35}-2131\cdot 113^{69k+35}-23043\cdot 113^{68k+34}\\||-1053\cdot 113^{67k+34}+7145\cdot 113^{66k+33}+2095\cdot 113^{65k+33}+25813\cdot 113^{64k+32}+1457\cdot 113^{63k+32}\\||-3403\cdot 113^{62k+31}-1947\cdot 113^{61k+31}-26935\cdot 113^{60k+30}-1759\cdot 113^{59k+30}-645\cdot 113^{58k+29}\\||+1601\cdot 113^{57k+29}+24281\cdot 113^{56k+28}+1601\cdot 113^{55k+28}-645\cdot 113^{54k+27}-1759\cdot 113^{53k+27}\\||-26935\cdot 113^{52k+26}-1947\cdot 113^{51k+26}-3403\cdot 113^{50k+25}+1457\cdot 113^{49k+25}+25813\cdot 113^{48k+24}\\||+2095\cdot 113^{47k+24}+7145\cdot 113^{46k+23}-1053\cdot 113^{45k+23}-23043\cdot 113^{44k+22}-2131\cdot 113^{43k+22}\\||-11141\cdot 113^{42k+21}+421\cdot 113^{41k+21}+15473\cdot 113^{40k+20}+1543\cdot 113^{39k+20}+8009\cdot 113^{38k+19}\\||-333\cdot 113^{37k+19}-10615\cdot 113^{36k+18}-835\cdot 113^{35k+18}+75\cdot 113^{34k+17}+921\cdot 113^{33k+17}\\||+13175\cdot 113^{32k+16}+675\cdot 113^{31k+16}-5045\cdot 113^{30k+15}-1497\cdot 113^{29k+15}-18175\cdot 113^{28k+14}\\||-899\cdot 113^{27k+14}+5631\cdot 113^{26k+13}+1787\cdot 113^{25k+13}+23091\cdot 113^{24k+12}+1485\cdot 113^{23k+12}\\||+1323\cdot 113^{22k+11}-1169\cdot 113^{21k+11}-18615\cdot 113^{20k+10}-1417\cdot 113^{19k+10}-4875\cdot 113^{18k+9}\\||+561\cdot 113^{17k+9}+12207\cdot 113^{16k+8}+1123\cdot 113^{15k+8}+6851\cdot 113^{14k+7}+51\cdot 113^{13k+7}\\||-3809\cdot 113^{12k+6}-463\cdot 113^{11k+6}-3467\cdot 113^{10k+5}-101\cdot 113^{9k+5}+831\cdot 113^{8k+4}\\||+155\cdot 113^{7k+4}+1547\cdot 113^{6k+3}+97\cdot 113^{5k+3}+523\cdot 113^{4k+2}+19\cdot 113^{3k+2}\\||+57\cdot 113^{2k+1}+113^{k+1}+1)\\{\large\Phi}_{228}(114^{2k+1})|=|114^{144k+72}+114^{140k+70}-114^{132k+66}-114^{128k+64}+114^{120k+60}\\||+114^{116k+58}-114^{108k+54}-114^{104k+52}+114^{96k+48}+114^{92k+46}\\||-114^{84k+42}-114^{80k+40}+114^{72k+36}-114^{64k+32}-114^{60k+30}\\||+114^{52k+26}+114^{48k+24}-114^{40k+20}-114^{36k+18}+114^{28k+14}\\||+114^{24k+12}-114^{16k+8}-114^{12k+6}+114^{4k+2}+1\\|=|(114^{72k+36}-114^{71k+36}+57\cdot 114^{70k+35}-19\cdot 114^{69k+35}+542\cdot 114^{68k+34}\\||-109\cdot 114^{67k+34}+2109\cdot 114^{66k+33}-315\cdot 114^{65k+33}+4909\cdot 114^{64k+32}-636\cdot 114^{63k+32}\\||+9120\cdot 114^{62k+31}-1124\cdot 114^{61k+31}+15443\cdot 114^{60k+30}-1813\cdot 114^{59k+30}+23655\cdot 114^{58k+29}\\||-2655\cdot 114^{57k+29}+33550\cdot 114^{56k+28}-3687\cdot 114^{55k+28}+45771\cdot 114^{54k+27}-4926\cdot 114^{53k+27}\\||+59633\cdot 114^{52k+26}-6253\cdot 114^{51k+26}+73986\cdot 114^{50k+25}-7618\cdot 114^{49k+25}+88783\cdot 114^{48k+24}\\||-9006\cdot 114^{47k+24}+103227\cdot 114^{46k+23}-10284\cdot 114^{45k+23}+115838\cdot 114^{44k+22}-11371\cdot 114^{43k+22}\\||+126597\cdot 114^{42k+21}-12302\cdot 114^{41k+21}+135451\cdot 114^{40k+20}-12985\cdot 114^{39k+20}+140790\cdot 114^{38k+19}\\||-13296\cdot 114^{37k+19}+142325\cdot 114^{36k+18}-13296\cdot 114^{35k+18}+140790\cdot 114^{34k+17}-12985\cdot 114^{33k+17}\\||+135451\cdot 114^{32k+16}-12302\cdot 114^{31k+16}+126597\cdot 114^{30k+15}-11371\cdot 114^{29k+15}+115838\cdot 114^{28k+14}\\||-10284\cdot 114^{27k+14}+103227\cdot 114^{26k+13}-9006\cdot 114^{25k+13}+88783\cdot 114^{24k+12}-7618\cdot 114^{23k+12}\\||+73986\cdot 114^{22k+11}-6253\cdot 114^{21k+11}+59633\cdot 114^{20k+10}-4926\cdot 114^{19k+10}+45771\cdot 114^{18k+9}\\||-3687\cdot 114^{17k+9}+33550\cdot 114^{16k+8}-2655\cdot 114^{15k+8}+23655\cdot 114^{14k+7}-1813\cdot 114^{13k+7}\\||+15443\cdot 114^{12k+6}-1124\cdot 114^{11k+6}+9120\cdot 114^{10k+5}-636\cdot 114^{9k+5}+4909\cdot 114^{8k+4}\\||-315\cdot 114^{7k+4}+2109\cdot 114^{6k+3}-109\cdot 114^{5k+3}+542\cdot 114^{4k+2}-19\cdot 114^{3k+2}\\||+57\cdot 114^{2k+1}-114^{k+1}+1)\\|\times|(114^{72k+36}+114^{71k+36}+57\cdot 114^{70k+35}+19\cdot 114^{69k+35}+542\cdot 114^{68k+34}\\||+109\cdot 114^{67k+34}+2109\cdot 114^{66k+33}+315\cdot 114^{65k+33}+4909\cdot 114^{64k+32}+636\cdot 114^{63k+32}\\||+9120\cdot 114^{62k+31}+1124\cdot 114^{61k+31}+15443\cdot 114^{60k+30}+1813\cdot 114^{59k+30}+23655\cdot 114^{58k+29}\\||+2655\cdot 114^{57k+29}+33550\cdot 114^{56k+28}+3687\cdot 114^{55k+28}+45771\cdot 114^{54k+27}+4926\cdot 114^{53k+27}\\||+59633\cdot 114^{52k+26}+6253\cdot 114^{51k+26}+73986\cdot 114^{50k+25}+7618\cdot 114^{49k+25}+88783\cdot 114^{48k+24}\\||+9006\cdot 114^{47k+24}+103227\cdot 114^{46k+23}+10284\cdot 114^{45k+23}+115838\cdot 114^{44k+22}+11371\cdot 114^{43k+22}\\||+126597\cdot 114^{42k+21}+12302\cdot 114^{41k+21}+135451\cdot 114^{40k+20}+12985\cdot 114^{39k+20}+140790\cdot 114^{38k+19}\\||+13296\cdot 114^{37k+19}+142325\cdot 114^{36k+18}+13296\cdot 114^{35k+18}+140790\cdot 114^{34k+17}+12985\cdot 114^{33k+17}\\||+135451\cdot 114^{32k+16}+12302\cdot 114^{31k+16}+126597\cdot 114^{30k+15}+11371\cdot 114^{29k+15}+115838\cdot 114^{28k+14}\\||+10284\cdot 114^{27k+14}+103227\cdot 114^{26k+13}+9006\cdot 114^{25k+13}+88783\cdot 114^{24k+12}+7618\cdot 114^{23k+12}\\||+73986\cdot 114^{22k+11}+6253\cdot 114^{21k+11}+59633\cdot 114^{20k+10}+4926\cdot 114^{19k+10}+45771\cdot 114^{18k+9}\\||+3687\cdot 114^{17k+9}+33550\cdot 114^{16k+8}+2655\cdot 114^{15k+8}+23655\cdot 114^{14k+7}+1813\cdot 114^{13k+7}\\||+15443\cdot 114^{12k+6}+1124\cdot 114^{11k+6}+9120\cdot 114^{10k+5}+636\cdot 114^{9k+5}+4909\cdot 114^{8k+4}\\||+315\cdot 114^{7k+4}+2109\cdot 114^{6k+3}+109\cdot 114^{5k+3}+542\cdot 114^{4k+2}+19\cdot 114^{3k+2}\\||+57\cdot 114^{2k+1}+114^{k+1}+1)\\{\large\Phi}_{230}(115^{2k+1})|=|115^{176k+88}+115^{174k+87}-115^{166k+83}-115^{164k+82}+115^{156k+78}\\||+115^{154k+77}-115^{146k+73}-115^{144k+72}+115^{136k+68}+115^{134k+67}\\||-115^{130k+65}-115^{128k+64}-115^{126k+63}-115^{124k+62}+115^{120k+60}\\||+115^{118k+59}+115^{116k+58}+115^{114k+57}-115^{110k+55}-115^{108k+54}\\||-115^{106k+53}-115^{104k+52}+115^{100k+50}+115^{98k+49}+115^{96k+48}\\||+115^{94k+47}-115^{90k+45}-115^{88k+44}-115^{86k+43}+115^{82k+41}\\||+115^{80k+40}+115^{78k+39}+115^{76k+38}-115^{72k+36}-115^{70k+35}\\||-115^{68k+34}-115^{66k+33}+115^{62k+31}+115^{60k+30}+115^{58k+29}\\||+115^{56k+28}-115^{52k+26}-115^{50k+25}-115^{48k+24}-115^{46k+23}\\||+115^{42k+21}+115^{40k+20}-115^{32k+16}-115^{30k+15}+115^{22k+11}\\||+115^{20k+10}-115^{12k+6}-115^{10k+5}+115^{2k+1}+1\\|=|(115^{88k+44}-115^{87k+44}+58\cdot 115^{86k+43}-20\cdot 115^{85k+43}+618\cdot 115^{84k+42}\\||-139\cdot 115^{83k+42}+3141\cdot 115^{82k+41}-554\cdot 115^{81k+41}+10270\cdot 115^{80k+40}-1532\cdot 115^{79k+40}\\||+24539\cdot 115^{78k+39}-3213\cdot 115^{77k+39}+45722\cdot 115^{76k+38}-5370\cdot 115^{75k+38}+69092\cdot 115^{74k+37}\\||-7387\cdot 115^{73k+37}+87049\cdot 115^{72k+36}-8574\cdot 115^{71k+36}+93640\cdot 115^{70k+35}-8604\cdot 115^{69k+35}\\||+88321\cdot 115^{68k+34}-7697\cdot 115^{67k+34}+75788\cdot 115^{66k+33}-6427\cdot 115^{65k+33}+62713\cdot 115^{64k+32}\\||-5389\cdot 115^{63k+32}+54621\cdot 115^{62k+31}-4988\cdot 115^{61k+31}+54485\cdot 115^{60k+30}-5359\cdot 115^{59k+30}\\||+62069\cdot 115^{58k+29}-6313\cdot 115^{57k+29}+73632\cdot 115^{56k+28}-7377\cdot 115^{55k+28}+83487\cdot 115^{54k+27}\\||-8053\cdot 115^{53k+27}+87629\cdot 115^{52k+26}-8160\cdot 115^{51k+26}+86415\cdot 115^{50k+25}-7913\cdot 115^{49k+25}\\||+83281\cdot 115^{48k+24}-7645\cdot 115^{47k+24}+81088\cdot 115^{46k+23}-7515\cdot 115^{45k+23}+80433\cdot 115^{44k+22}\\||-7515\cdot 115^{43k+22}+81088\cdot 115^{42k+21}-7645\cdot 115^{41k+21}+83281\cdot 115^{40k+20}-7913\cdot 115^{39k+20}\\||+86415\cdot 115^{38k+19}-8160\cdot 115^{37k+19}+87629\cdot 115^{36k+18}-8053\cdot 115^{35k+18}+83487\cdot 115^{34k+17}\\||-7377\cdot 115^{33k+17}+73632\cdot 115^{32k+16}-6313\cdot 115^{31k+16}+62069\cdot 115^{30k+15}-5359\cdot 115^{29k+15}\\||+54485\cdot 115^{28k+14}-4988\cdot 115^{27k+14}+54621\cdot 115^{26k+13}-5389\cdot 115^{25k+13}+62713\cdot 115^{24k+12}\\||-6427\cdot 115^{23k+12}+75788\cdot 115^{22k+11}-7697\cdot 115^{21k+11}+88321\cdot 115^{20k+10}-8604\cdot 115^{19k+10}\\||+93640\cdot 115^{18k+9}-8574\cdot 115^{17k+9}+87049\cdot 115^{16k+8}-7387\cdot 115^{15k+8}+69092\cdot 115^{14k+7}\\||-5370\cdot 115^{13k+7}+45722\cdot 115^{12k+6}-3213\cdot 115^{11k+6}+24539\cdot 115^{10k+5}-1532\cdot 115^{9k+5}\\||+10270\cdot 115^{8k+4}-554\cdot 115^{7k+4}+3141\cdot 115^{6k+3}-139\cdot 115^{5k+3}+618\cdot 115^{4k+2}\\||-20\cdot 115^{3k+2}+58\cdot 115^{2k+1}-115^{k+1}+1)\\|\times|(115^{88k+44}+115^{87k+44}+58\cdot 115^{86k+43}+20\cdot 115^{85k+43}+618\cdot 115^{84k+42}\\||+139\cdot 115^{83k+42}+3141\cdot 115^{82k+41}+554\cdot 115^{81k+41}+10270\cdot 115^{80k+40}+1532\cdot 115^{79k+40}\\||+24539\cdot 115^{78k+39}+3213\cdot 115^{77k+39}+45722\cdot 115^{76k+38}+5370\cdot 115^{75k+38}+69092\cdot 115^{74k+37}\\||+7387\cdot 115^{73k+37}+87049\cdot 115^{72k+36}+8574\cdot 115^{71k+36}+93640\cdot 115^{70k+35}+8604\cdot 115^{69k+35}\\||+88321\cdot 115^{68k+34}+7697\cdot 115^{67k+34}+75788\cdot 115^{66k+33}+6427\cdot 115^{65k+33}+62713\cdot 115^{64k+32}\\||+5389\cdot 115^{63k+32}+54621\cdot 115^{62k+31}+4988\cdot 115^{61k+31}+54485\cdot 115^{60k+30}+5359\cdot 115^{59k+30}\\||+62069\cdot 115^{58k+29}+6313\cdot 115^{57k+29}+73632\cdot 115^{56k+28}+7377\cdot 115^{55k+28}+83487\cdot 115^{54k+27}\\||+8053\cdot 115^{53k+27}+87629\cdot 115^{52k+26}+8160\cdot 115^{51k+26}+86415\cdot 115^{50k+25}+7913\cdot 115^{49k+25}\\||+83281\cdot 115^{48k+24}+7645\cdot 115^{47k+24}+81088\cdot 115^{46k+23}+7515\cdot 115^{45k+23}+80433\cdot 115^{44k+22}\\||+7515\cdot 115^{43k+22}+81088\cdot 115^{42k+21}+7645\cdot 115^{41k+21}+83281\cdot 115^{40k+20}+7913\cdot 115^{39k+20}\\||+86415\cdot 115^{38k+19}+8160\cdot 115^{37k+19}+87629\cdot 115^{36k+18}+8053\cdot 115^{35k+18}+83487\cdot 115^{34k+17}\\||+7377\cdot 115^{33k+17}+73632\cdot 115^{32k+16}+6313\cdot 115^{31k+16}+62069\cdot 115^{30k+15}+5359\cdot 115^{29k+15}\\||+54485\cdot 115^{28k+14}+4988\cdot 115^{27k+14}+54621\cdot 115^{26k+13}+5389\cdot 115^{25k+13}+62713\cdot 115^{24k+12}\\||+6427\cdot 115^{23k+12}+75788\cdot 115^{22k+11}+7697\cdot 115^{21k+11}+88321\cdot 115^{20k+10}+8604\cdot 115^{19k+10}\\||+93640\cdot 115^{18k+9}+8574\cdot 115^{17k+9}+87049\cdot 115^{16k+8}+7387\cdot 115^{15k+8}+69092\cdot 115^{14k+7}\\||+5370\cdot 115^{13k+7}+45722\cdot 115^{12k+6}+3213\cdot 115^{11k+6}+24539\cdot 115^{10k+5}+1532\cdot 115^{9k+5}\\||+10270\cdot 115^{8k+4}+554\cdot 115^{7k+4}+3141\cdot 115^{6k+3}+139\cdot 115^{5k+3}+618\cdot 115^{4k+2}\\||+20\cdot 115^{3k+2}+58\cdot 115^{2k+1}+115^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{236}(118^{2k+1})\cdots{\large\Phi}_{238}(119^{2k+1})$${\large\Phi}_{236}(118^{2k+1})\cdots{\large\Phi}_{238}(119^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{236}(118^{2k+1})|=|118^{232k+116}-118^{228k+114}+118^{224k+112}-118^{220k+110}+118^{216k+108}\\||-118^{212k+106}+118^{208k+104}-118^{204k+102}+118^{200k+100}-118^{196k+98}\\||+118^{192k+96}-118^{188k+94}+118^{184k+92}-118^{180k+90}+118^{176k+88}\\||-118^{172k+86}+118^{168k+84}-118^{164k+82}+118^{160k+80}-118^{156k+78}\\||+118^{152k+76}-118^{148k+74}+118^{144k+72}-118^{140k+70}+118^{136k+68}\\||-118^{132k+66}+118^{128k+64}-118^{124k+62}+118^{120k+60}-118^{116k+58}\\||+118^{112k+56}-118^{108k+54}+118^{104k+52}-118^{100k+50}+118^{96k+48}\\||-118^{92k+46}+118^{88k+44}-118^{84k+42}+118^{80k+40}-118^{76k+38}\\||+118^{72k+36}-118^{68k+34}+118^{64k+32}-118^{60k+30}+118^{56k+28}\\||-118^{52k+26}+118^{48k+24}-118^{44k+22}+118^{40k+20}-118^{36k+18}\\||+118^{32k+16}-118^{28k+14}+118^{24k+12}-118^{20k+10}+118^{16k+8}\\||-118^{12k+6}+118^{8k+4}-118^{4k+2}+1\\|=|(118^{116k+58}-118^{115k+58}+59\cdot 118^{114k+57}-20\cdot 118^{113k+57}+619\cdot 118^{112k+56}\\||-135\cdot 118^{111k+56}+3009\cdot 118^{110k+55}-504\cdot 118^{109k+55}+8961\cdot 118^{108k+54}-1225\cdot 118^{107k+54}\\||+17995\cdot 118^{106k+53}-2038\cdot 118^{105k+53}+24599\cdot 118^{104k+52}-2231\cdot 118^{103k+52}+20237\cdot 118^{102k+51}\\||-1148\cdot 118^{101k+51}+1685\cdot 118^{100k+50}+967\cdot 118^{99k+50}-21889\cdot 118^{98k+49}+2776\cdot 118^{97k+49}\\||-33465\cdot 118^{96k+48}+2849\cdot 118^{95k+48}-22951\cdot 118^{94k+47}+1010\cdot 118^{93k+47}+2725\cdot 118^{92k+46}\\||-1443\cdot 118^{91k+46}+25783\cdot 118^{90k+45}-2922\cdot 118^{89k+45}+33211\cdot 118^{88k+44}-2829\cdot 118^{87k+44}\\||+25429\cdot 118^{86k+43}-1720\cdot 118^{85k+43}+11813\cdot 118^{84k+42}-539\cdot 118^{83k+42}+1475\cdot 118^{82k+41}\\||+98\cdot 118^{81k+41}-1897\cdot 118^{80k+40}+137\cdot 118^{79k+40}-531\cdot 118^{78k+39}-18\cdot 118^{77k+39}\\||+41\cdot 118^{76k+38}+117\cdot 118^{75k+38}-3481\cdot 118^{74k+37}+532\cdot 118^{73k+37}-6977\cdot 118^{72k+36}\\||+541\cdot 118^{71k+36}-1711\cdot 118^{70k+35}-506\cdot 118^{69k+35}+14757\cdot 118^{68k+34}-2231\cdot 118^{67k+34}\\||+31683\cdot 118^{66k+33}-3226\cdot 118^{65k+33}+33031\cdot 118^{64k+32}-2353\cdot 118^{63k+32}+13865\cdot 118^{62k+31}\\||-24\cdot 118^{61k+31}-12375\cdot 118^{60k+30}+1959\cdot 118^{59k+30}-24485\cdot 118^{58k+29}+1959\cdot 118^{57k+29}\\||-12375\cdot 118^{56k+28}-24\cdot 118^{55k+28}+13865\cdot 118^{54k+27}-2353\cdot 118^{53k+27}+33031\cdot 118^{52k+26}\\||-3226\cdot 118^{51k+26}+31683\cdot 118^{50k+25}-2231\cdot 118^{49k+25}+14757\cdot 118^{48k+24}-506\cdot 118^{47k+24}\\||-1711\cdot 118^{46k+23}+541\cdot 118^{45k+23}-6977\cdot 118^{44k+22}+532\cdot 118^{43k+22}-3481\cdot 118^{42k+21}\\||+117\cdot 118^{41k+21}+41\cdot 118^{40k+20}-18\cdot 118^{39k+20}-531\cdot 118^{38k+19}+137\cdot 118^{37k+19}\\||-1897\cdot 118^{36k+18}+98\cdot 118^{35k+18}+1475\cdot 118^{34k+17}-539\cdot 118^{33k+17}+11813\cdot 118^{32k+16}\\||-1720\cdot 118^{31k+16}+25429\cdot 118^{30k+15}-2829\cdot 118^{29k+15}+33211\cdot 118^{28k+14}-2922\cdot 118^{27k+14}\\||+25783\cdot 118^{26k+13}-1443\cdot 118^{25k+13}+2725\cdot 118^{24k+12}+1010\cdot 118^{23k+12}-22951\cdot 118^{22k+11}\\||+2849\cdot 118^{21k+11}-33465\cdot 118^{20k+10}+2776\cdot 118^{19k+10}-21889\cdot 118^{18k+9}+967\cdot 118^{17k+9}\\||+1685\cdot 118^{16k+8}-1148\cdot 118^{15k+8}+20237\cdot 118^{14k+7}-2231\cdot 118^{13k+7}+24599\cdot 118^{12k+6}\\||-2038\cdot 118^{11k+6}+17995\cdot 118^{10k+5}-1225\cdot 118^{9k+5}+8961\cdot 118^{8k+4}-504\cdot 118^{7k+4}\\||+3009\cdot 118^{6k+3}-135\cdot 118^{5k+3}+619\cdot 118^{4k+2}-20\cdot 118^{3k+2}+59\cdot 118^{2k+1}\\||-118^{k+1}+1)\\|\times|(118^{116k+58}+118^{115k+58}+59\cdot 118^{114k+57}+20\cdot 118^{113k+57}+619\cdot 118^{112k+56}\\||+135\cdot 118^{111k+56}+3009\cdot 118^{110k+55}+504\cdot 118^{109k+55}+8961\cdot 118^{108k+54}+1225\cdot 118^{107k+54}\\||+17995\cdot 118^{106k+53}+2038\cdot 118^{105k+53}+24599\cdot 118^{104k+52}+2231\cdot 118^{103k+52}+20237\cdot 118^{102k+51}\\||+1148\cdot 118^{101k+51}+1685\cdot 118^{100k+50}-967\cdot 118^{99k+50}-21889\cdot 118^{98k+49}-2776\cdot 118^{97k+49}\\||-33465\cdot 118^{96k+48}-2849\cdot 118^{95k+48}-22951\cdot 118^{94k+47}-1010\cdot 118^{93k+47}+2725\cdot 118^{92k+46}\\||+1443\cdot 118^{91k+46}+25783\cdot 118^{90k+45}+2922\cdot 118^{89k+45}+33211\cdot 118^{88k+44}+2829\cdot 118^{87k+44}\\||+25429\cdot 118^{86k+43}+1720\cdot 118^{85k+43}+11813\cdot 118^{84k+42}+539\cdot 118^{83k+42}+1475\cdot 118^{82k+41}\\||-98\cdot 118^{81k+41}-1897\cdot 118^{80k+40}-137\cdot 118^{79k+40}-531\cdot 118^{78k+39}+18\cdot 118^{77k+39}\\||+41\cdot 118^{76k+38}-117\cdot 118^{75k+38}-3481\cdot 118^{74k+37}-532\cdot 118^{73k+37}-6977\cdot 118^{72k+36}\\||-541\cdot 118^{71k+36}-1711\cdot 118^{70k+35}+506\cdot 118^{69k+35}+14757\cdot 118^{68k+34}+2231\cdot 118^{67k+34}\\||+31683\cdot 118^{66k+33}+3226\cdot 118^{65k+33}+33031\cdot 118^{64k+32}+2353\cdot 118^{63k+32}+13865\cdot 118^{62k+31}\\||+24\cdot 118^{61k+31}-12375\cdot 118^{60k+30}-1959\cdot 118^{59k+30}-24485\cdot 118^{58k+29}-1959\cdot 118^{57k+29}\\||-12375\cdot 118^{56k+28}+24\cdot 118^{55k+28}+13865\cdot 118^{54k+27}+2353\cdot 118^{53k+27}+33031\cdot 118^{52k+26}\\||+3226\cdot 118^{51k+26}+31683\cdot 118^{50k+25}+2231\cdot 118^{49k+25}+14757\cdot 118^{48k+24}+506\cdot 118^{47k+24}\\||-1711\cdot 118^{46k+23}-541\cdot 118^{45k+23}-6977\cdot 118^{44k+22}-532\cdot 118^{43k+22}-3481\cdot 118^{42k+21}\\||-117\cdot 118^{41k+21}+41\cdot 118^{40k+20}+18\cdot 118^{39k+20}-531\cdot 118^{38k+19}-137\cdot 118^{37k+19}\\||-1897\cdot 118^{36k+18}-98\cdot 118^{35k+18}+1475\cdot 118^{34k+17}+539\cdot 118^{33k+17}+11813\cdot 118^{32k+16}\\||+1720\cdot 118^{31k+16}+25429\cdot 118^{30k+15}+2829\cdot 118^{29k+15}+33211\cdot 118^{28k+14}+2922\cdot 118^{27k+14}\\||+25783\cdot 118^{26k+13}+1443\cdot 118^{25k+13}+2725\cdot 118^{24k+12}-1010\cdot 118^{23k+12}-22951\cdot 118^{22k+11}\\||-2849\cdot 118^{21k+11}-33465\cdot 118^{20k+10}-2776\cdot 118^{19k+10}-21889\cdot 118^{18k+9}-967\cdot 118^{17k+9}\\||+1685\cdot 118^{16k+8}+1148\cdot 118^{15k+8}+20237\cdot 118^{14k+7}+2231\cdot 118^{13k+7}+24599\cdot 118^{12k+6}\\||+2038\cdot 118^{11k+6}+17995\cdot 118^{10k+5}+1225\cdot 118^{9k+5}+8961\cdot 118^{8k+4}+504\cdot 118^{7k+4}\\||+3009\cdot 118^{6k+3}+135\cdot 118^{5k+3}+619\cdot 118^{4k+2}+20\cdot 118^{3k+2}+59\cdot 118^{2k+1}\\||+118^{k+1}+1)\\{\large\Phi}_{238}(119^{2k+1})|=|119^{192k+96}+119^{190k+95}-119^{178k+89}-119^{176k+88}+119^{164k+82}\\||+119^{162k+81}-119^{158k+79}-119^{156k+78}-119^{150k+75}-119^{148k+74}\\||+119^{144k+72}+119^{142k+71}+119^{136k+68}+119^{134k+67}-119^{130k+65}\\||-119^{128k+64}+119^{124k+62}-119^{120k+60}+119^{116k+58}+119^{114k+57}\\||-119^{110k+55}+119^{106k+53}-119^{102k+51}-119^{100k+50}+119^{96k+48}\\||-119^{92k+46}-119^{90k+45}+119^{86k+43}-119^{82k+41}+119^{78k+39}\\||+119^{76k+38}-119^{72k+36}+119^{68k+34}-119^{64k+32}-119^{62k+31}\\||+119^{58k+29}+119^{56k+28}+119^{50k+25}+119^{48k+24}-119^{44k+22}\\||-119^{42k+21}-119^{36k+18}-119^{34k+17}+119^{30k+15}+119^{28k+14}\\||-119^{16k+8}-119^{14k+7}+119^{2k+1}+1\\|=|(119^{96k+48}-119^{95k+48}+60\cdot 119^{94k+47}-20\cdot 119^{93k+47}+580\cdot 119^{92k+46}\\||-108\cdot 119^{91k+46}+1852\cdot 119^{90k+45}-203\cdot 119^{89k+45}+1877\cdot 119^{88k+44}-80\cdot 119^{87k+44}\\||-112\cdot 119^{86k+43}+10\cdot 119^{85k+43}+1274\cdot 119^{84k+42}-302\cdot 119^{83k+42}+4549\cdot 119^{82k+41}\\||-387\cdot 119^{81k+41}+2852\cdot 119^{80k+40}-155\cdot 119^{79k+40}+1275\cdot 119^{78k+39}-84\cdot 119^{77k+39}\\||-144\cdot 119^{76k+38}+117\cdot 119^{75k+38}-743\cdot 119^{74k+37}-200\cdot 119^{73k+37}+5649\cdot 119^{72k+36}\\||-593\cdot 119^{71k+36}+3290\cdot 119^{70k+35}+154\cdot 119^{69k+35}-4563\cdot 119^{68k+34}+321\cdot 119^{67k+34}\\||-220\cdot 119^{66k+33}-197\cdot 119^{65k+33}+2393\cdot 119^{64k+32}-180\cdot 119^{63k+32}+2555\cdot 119^{62k+31}\\||-334\cdot 119^{61k+31}+3009\cdot 119^{60k+30}+36\cdot 119^{59k+30}-4651\cdot 119^{58k+29}+587\cdot 119^{57k+29}\\||-4090\cdot 119^{56k+28}-43\cdot 119^{55k+28}+3726\cdot 119^{54k+27}-321\cdot 119^{53k+27}+528\cdot 119^{52k+26}\\||+249\cdot 119^{51k+26}-4381\cdot 119^{50k+25}+414\cdot 119^{49k+25}-4333\cdot 119^{48k+24}+414\cdot 119^{47k+24}\\||-4381\cdot 119^{46k+23}+249\cdot 119^{45k+23}+528\cdot 119^{44k+22}-321\cdot 119^{43k+22}+3726\cdot 119^{42k+21}\\||-43\cdot 119^{41k+21}-4090\cdot 119^{40k+20}+587\cdot 119^{39k+20}-4651\cdot 119^{38k+19}+36\cdot 119^{37k+19}\\||+3009\cdot 119^{36k+18}-334\cdot 119^{35k+18}+2555\cdot 119^{34k+17}-180\cdot 119^{33k+17}+2393\cdot 119^{32k+16}\\||-197\cdot 119^{31k+16}-220\cdot 119^{30k+15}+321\cdot 119^{29k+15}-4563\cdot 119^{28k+14}+154\cdot 119^{27k+14}\\||+3290\cdot 119^{26k+13}-593\cdot 119^{25k+13}+5649\cdot 119^{24k+12}-200\cdot 119^{23k+12}-743\cdot 119^{22k+11}\\||+117\cdot 119^{21k+11}-144\cdot 119^{20k+10}-84\cdot 119^{19k+10}+1275\cdot 119^{18k+9}-155\cdot 119^{17k+9}\\||+2852\cdot 119^{16k+8}-387\cdot 119^{15k+8}+4549\cdot 119^{14k+7}-302\cdot 119^{13k+7}+1274\cdot 119^{12k+6}\\||+10\cdot 119^{11k+6}-112\cdot 119^{10k+5}-80\cdot 119^{9k+5}+1877\cdot 119^{8k+4}-203\cdot 119^{7k+4}\\||+1852\cdot 119^{6k+3}-108\cdot 119^{5k+3}+580\cdot 119^{4k+2}-20\cdot 119^{3k+2}+60\cdot 119^{2k+1}\\||-119^{k+1}+1)\\|\times|(119^{96k+48}+119^{95k+48}+60\cdot 119^{94k+47}+20\cdot 119^{93k+47}+580\cdot 119^{92k+46}\\||+108\cdot 119^{91k+46}+1852\cdot 119^{90k+45}+203\cdot 119^{89k+45}+1877\cdot 119^{88k+44}+80\cdot 119^{87k+44}\\||-112\cdot 119^{86k+43}-10\cdot 119^{85k+43}+1274\cdot 119^{84k+42}+302\cdot 119^{83k+42}+4549\cdot 119^{82k+41}\\||+387\cdot 119^{81k+41}+2852\cdot 119^{80k+40}+155\cdot 119^{79k+40}+1275\cdot 119^{78k+39}+84\cdot 119^{77k+39}\\||-144\cdot 119^{76k+38}-117\cdot 119^{75k+38}-743\cdot 119^{74k+37}+200\cdot 119^{73k+37}+5649\cdot 119^{72k+36}\\||+593\cdot 119^{71k+36}+3290\cdot 119^{70k+35}-154\cdot 119^{69k+35}-4563\cdot 119^{68k+34}-321\cdot 119^{67k+34}\\||-220\cdot 119^{66k+33}+197\cdot 119^{65k+33}+2393\cdot 119^{64k+32}+180\cdot 119^{63k+32}+2555\cdot 119^{62k+31}\\||+334\cdot 119^{61k+31}+3009\cdot 119^{60k+30}-36\cdot 119^{59k+30}-4651\cdot 119^{58k+29}-587\cdot 119^{57k+29}\\||-4090\cdot 119^{56k+28}+43\cdot 119^{55k+28}+3726\cdot 119^{54k+27}+321\cdot 119^{53k+27}+528\cdot 119^{52k+26}\\||-249\cdot 119^{51k+26}-4381\cdot 119^{50k+25}-414\cdot 119^{49k+25}-4333\cdot 119^{48k+24}-414\cdot 119^{47k+24}\\||-4381\cdot 119^{46k+23}-249\cdot 119^{45k+23}+528\cdot 119^{44k+22}+321\cdot 119^{43k+22}+3726\cdot 119^{42k+21}\\||+43\cdot 119^{41k+21}-4090\cdot 119^{40k+20}-587\cdot 119^{39k+20}-4651\cdot 119^{38k+19}-36\cdot 119^{37k+19}\\||+3009\cdot 119^{36k+18}+334\cdot 119^{35k+18}+2555\cdot 119^{34k+17}+180\cdot 119^{33k+17}+2393\cdot 119^{32k+16}\\||+197\cdot 119^{31k+16}-220\cdot 119^{30k+15}-321\cdot 119^{29k+15}-4563\cdot 119^{28k+14}-154\cdot 119^{27k+14}\\||+3290\cdot 119^{26k+13}+593\cdot 119^{25k+13}+5649\cdot 119^{24k+12}+200\cdot 119^{23k+12}-743\cdot 119^{22k+11}\\||-117\cdot 119^{21k+11}-144\cdot 119^{20k+10}+84\cdot 119^{19k+10}+1275\cdot 119^{18k+9}+155\cdot 119^{17k+9}\\||+2852\cdot 119^{16k+8}+387\cdot 119^{15k+8}+4549\cdot 119^{14k+7}+302\cdot 119^{13k+7}+1274\cdot 119^{12k+6}\\||-10\cdot 119^{11k+6}-112\cdot 119^{10k+5}+80\cdot 119^{9k+5}+1877\cdot 119^{8k+4}+203\cdot 119^{7k+4}\\||+1852\cdot 119^{6k+3}+108\cdot 119^{5k+3}+580\cdot 119^{4k+2}+20\cdot 119^{3k+2}+60\cdot 119^{2k+1}\\||+119^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{244}(122^{2k+1})\cdots{\large\Phi}_{246}(123^{2k+1})$${\large\Phi}_{244}(122^{2k+1})\cdots{\large\Phi}_{246}(123^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{244}(122^{2k+1})|=|122^{240k+120}-122^{236k+118}+122^{232k+116}-122^{228k+114}+122^{224k+112}\\||-122^{220k+110}+122^{216k+108}-122^{212k+106}+122^{208k+104}-122^{204k+102}\\||+122^{200k+100}-122^{196k+98}+122^{192k+96}-122^{188k+94}+122^{184k+92}\\||-122^{180k+90}+122^{176k+88}-122^{172k+86}+122^{168k+84}-122^{164k+82}\\||+122^{160k+80}-122^{156k+78}+122^{152k+76}-122^{148k+74}+122^{144k+72}\\||-122^{140k+70}+122^{136k+68}-122^{132k+66}+122^{128k+64}-122^{124k+62}\\||+122^{120k+60}-122^{116k+58}+122^{112k+56}-122^{108k+54}+122^{104k+52}\\||-122^{100k+50}+122^{96k+48}-122^{92k+46}+122^{88k+44}-122^{84k+42}\\||+122^{80k+40}-122^{76k+38}+122^{72k+36}-122^{68k+34}+122^{64k+32}\\||-122^{60k+30}+122^{56k+28}-122^{52k+26}+122^{48k+24}-122^{44k+22}\\||+122^{40k+20}-122^{36k+18}+122^{32k+16}-122^{28k+14}+122^{24k+12}\\||-122^{20k+10}+122^{16k+8}-122^{12k+6}+122^{8k+4}-122^{4k+2}+1\\|=|(122^{120k+60}-122^{119k+60}+61\cdot 122^{118k+59}-20\cdot 122^{117k+59}+579\cdot 122^{116k+58}\\||-103\cdot 122^{115k+58}+1647\cdot 122^{114k+57}-138\cdot 122^{113k+57}+69\cdot 122^{112k+56}+269\cdot 122^{111k+56}\\||-6771\cdot 122^{110k+55}+840\cdot 122^{109k+55}-7957\cdot 122^{108k+54}+117\cdot 122^{107k+54}+9699\cdot 122^{106k+53}\\||-1896\cdot 122^{105k+53}+26429\cdot 122^{104k+52}-1891\cdot 122^{103k+52}+2989\cdot 122^{102k+51}+2038\cdot 122^{101k+51}\\||-45313\cdot 122^{100k+50}+4833\cdot 122^{99k+50}-38857\cdot 122^{98k+49}+294\cdot 122^{97k+49}+41237\cdot 122^{96k+48}\\||-6859\cdot 122^{95k+48}+83021\cdot 122^{94k+47}-5050\cdot 122^{93k+47}+1511\cdot 122^{92k+46}+5377\cdot 122^{91k+46}\\||-101565\cdot 122^{90k+45}+9562\cdot 122^{89k+45}-67247\cdot 122^{88k+44}+15\cdot 122^{87k+44}+69113\cdot 122^{86k+43}\\||-10190\cdot 122^{85k+43}+112755\cdot 122^{84k+42}-6359\cdot 122^{83k+42}+2623\cdot 122^{82k+41}+5736\cdot 122^{81k+41}\\||-103015\cdot 122^{80k+40}+9343\cdot 122^{79k+40}-66551\cdot 122^{78k+39}+850\cdot 122^{77k+39}+45659\cdot 122^{76k+38}\\||-7149\cdot 122^{75k+38}+81191\cdot 122^{74k+37}-5034\cdot 122^{73k+37}+14989\cdot 122^{72k+36}+2221\cdot 122^{71k+36}\\||-49715\cdot 122^{70k+35}+4904\cdot 122^{69k+35}-39453\cdot 122^{68k+34}+1235\cdot 122^{67k+34}+12139\cdot 122^{66k+33}\\||-2544\cdot 122^{65k+33}+29541\cdot 122^{64k+32}-1653\cdot 122^{63k+32}+1037\cdot 122^{62k+31}+1242\cdot 122^{61k+31}\\||-19449\cdot 122^{60k+30}+1242\cdot 122^{59k+30}+1037\cdot 122^{58k+29}-1653\cdot 122^{57k+29}+29541\cdot 122^{56k+28}\\||-2544\cdot 122^{55k+28}+12139\cdot 122^{54k+27}+1235\cdot 122^{53k+27}-39453\cdot 122^{52k+26}+4904\cdot 122^{51k+26}\\||-49715\cdot 122^{50k+25}+2221\cdot 122^{49k+25}+14989\cdot 122^{48k+24}-5034\cdot 122^{47k+24}+81191\cdot 122^{46k+23}\\||-7149\cdot 122^{45k+23}+45659\cdot 122^{44k+22}+850\cdot 122^{43k+22}-66551\cdot 122^{42k+21}+9343\cdot 122^{41k+21}\\||-103015\cdot 122^{40k+20}+5736\cdot 122^{39k+20}+2623\cdot 122^{38k+19}-6359\cdot 122^{37k+19}+112755\cdot 122^{36k+18}\\||-10190\cdot 122^{35k+18}+69113\cdot 122^{34k+17}+15\cdot 122^{33k+17}-67247\cdot 122^{32k+16}+9562\cdot 122^{31k+16}\\||-101565\cdot 122^{30k+15}+5377\cdot 122^{29k+15}+1511\cdot 122^{28k+14}-5050\cdot 122^{27k+14}+83021\cdot 122^{26k+13}\\||-6859\cdot 122^{25k+13}+41237\cdot 122^{24k+12}+294\cdot 122^{23k+12}-38857\cdot 122^{22k+11}+4833\cdot 122^{21k+11}\\||-45313\cdot 122^{20k+10}+2038\cdot 122^{19k+10}+2989\cdot 122^{18k+9}-1891\cdot 122^{17k+9}+26429\cdot 122^{16k+8}\\||-1896\cdot 122^{15k+8}+9699\cdot 122^{14k+7}+117\cdot 122^{13k+7}-7957\cdot 122^{12k+6}+840\cdot 122^{11k+6}\\||-6771\cdot 122^{10k+5}+269\cdot 122^{9k+5}+69\cdot 122^{8k+4}-138\cdot 122^{7k+4}+1647\cdot 122^{6k+3}\\||-103\cdot 122^{5k+3}+579\cdot 122^{4k+2}-20\cdot 122^{3k+2}+61\cdot 122^{2k+1}-122^{k+1}+1)\\|\times|(122^{120k+60}+122^{119k+60}+61\cdot 122^{118k+59}+20\cdot 122^{117k+59}+579\cdot 122^{116k+58}\\||+103\cdot 122^{115k+58}+1647\cdot 122^{114k+57}+138\cdot 122^{113k+57}+69\cdot 122^{112k+56}-269\cdot 122^{111k+56}\\||-6771\cdot 122^{110k+55}-840\cdot 122^{109k+55}-7957\cdot 122^{108k+54}-117\cdot 122^{107k+54}+9699\cdot 122^{106k+53}\\||+1896\cdot 122^{105k+53}+26429\cdot 122^{104k+52}+1891\cdot 122^{103k+52}+2989\cdot 122^{102k+51}-2038\cdot 122^{101k+51}\\||-45313\cdot 122^{100k+50}-4833\cdot 122^{99k+50}-38857\cdot 122^{98k+49}-294\cdot 122^{97k+49}+41237\cdot 122^{96k+48}\\||+6859\cdot 122^{95k+48}+83021\cdot 122^{94k+47}+5050\cdot 122^{93k+47}+1511\cdot 122^{92k+46}-5377\cdot 122^{91k+46}\\||-101565\cdot 122^{90k+45}-9562\cdot 122^{89k+45}-67247\cdot 122^{88k+44}-15\cdot 122^{87k+44}+69113\cdot 122^{86k+43}\\||+10190\cdot 122^{85k+43}+112755\cdot 122^{84k+42}+6359\cdot 122^{83k+42}+2623\cdot 122^{82k+41}-5736\cdot 122^{81k+41}\\||-103015\cdot 122^{80k+40}-9343\cdot 122^{79k+40}-66551\cdot 122^{78k+39}-850\cdot 122^{77k+39}+45659\cdot 122^{76k+38}\\||+7149\cdot 122^{75k+38}+81191\cdot 122^{74k+37}+5034\cdot 122^{73k+37}+14989\cdot 122^{72k+36}-2221\cdot 122^{71k+36}\\||-49715\cdot 122^{70k+35}-4904\cdot 122^{69k+35}-39453\cdot 122^{68k+34}-1235\cdot 122^{67k+34}+12139\cdot 122^{66k+33}\\||+2544\cdot 122^{65k+33}+29541\cdot 122^{64k+32}+1653\cdot 122^{63k+32}+1037\cdot 122^{62k+31}-1242\cdot 122^{61k+31}\\||-19449\cdot 122^{60k+30}-1242\cdot 122^{59k+30}+1037\cdot 122^{58k+29}+1653\cdot 122^{57k+29}+29541\cdot 122^{56k+28}\\||+2544\cdot 122^{55k+28}+12139\cdot 122^{54k+27}-1235\cdot 122^{53k+27}-39453\cdot 122^{52k+26}-4904\cdot 122^{51k+26}\\||-49715\cdot 122^{50k+25}-2221\cdot 122^{49k+25}+14989\cdot 122^{48k+24}+5034\cdot 122^{47k+24}+81191\cdot 122^{46k+23}\\||+7149\cdot 122^{45k+23}+45659\cdot 122^{44k+22}-850\cdot 122^{43k+22}-66551\cdot 122^{42k+21}-9343\cdot 122^{41k+21}\\||-103015\cdot 122^{40k+20}-5736\cdot 122^{39k+20}+2623\cdot 122^{38k+19}+6359\cdot 122^{37k+19}+112755\cdot 122^{36k+18}\\||+10190\cdot 122^{35k+18}+69113\cdot 122^{34k+17}-15\cdot 122^{33k+17}-67247\cdot 122^{32k+16}-9562\cdot 122^{31k+16}\\||-101565\cdot 122^{30k+15}-5377\cdot 122^{29k+15}+1511\cdot 122^{28k+14}+5050\cdot 122^{27k+14}+83021\cdot 122^{26k+13}\\||+6859\cdot 122^{25k+13}+41237\cdot 122^{24k+12}-294\cdot 122^{23k+12}-38857\cdot 122^{22k+11}-4833\cdot 122^{21k+11}\\||-45313\cdot 122^{20k+10}-2038\cdot 122^{19k+10}+2989\cdot 122^{18k+9}+1891\cdot 122^{17k+9}+26429\cdot 122^{16k+8}\\||+1896\cdot 122^{15k+8}+9699\cdot 122^{14k+7}-117\cdot 122^{13k+7}-7957\cdot 122^{12k+6}-840\cdot 122^{11k+6}\\||-6771\cdot 122^{10k+5}-269\cdot 122^{9k+5}+69\cdot 122^{8k+4}+138\cdot 122^{7k+4}+1647\cdot 122^{6k+3}\\||+103\cdot 122^{5k+3}+579\cdot 122^{4k+2}+20\cdot 122^{3k+2}+61\cdot 122^{2k+1}+122^{k+1}+1)\\{\large\Phi}_{246}(123^{2k+1})|=|123^{160k+80}+123^{158k+79}-123^{154k+77}-123^{152k+76}+123^{148k+74}\\||+123^{146k+73}-123^{142k+71}-123^{140k+70}+123^{136k+68}+123^{134k+67}\\||-123^{130k+65}-123^{128k+64}+123^{124k+62}+123^{122k+61}-123^{118k+59}\\||-123^{116k+58}+123^{112k+56}+123^{110k+55}-123^{106k+53}-123^{104k+52}\\||+123^{100k+50}+123^{98k+49}-123^{94k+47}-123^{92k+46}+123^{88k+44}\\||+123^{86k+43}-123^{82k+41}-123^{80k+40}-123^{78k+39}+123^{74k+37}\\||+123^{72k+36}-123^{68k+34}-123^{66k+33}+123^{62k+31}+123^{60k+30}\\||-123^{56k+28}-123^{54k+27}+123^{50k+25}+123^{48k+24}-123^{44k+22}\\||-123^{42k+21}+123^{38k+19}+123^{36k+18}-123^{32k+16}-123^{30k+15}\\||+123^{26k+13}+123^{24k+12}-123^{20k+10}-123^{18k+9}+123^{14k+7}\\||+123^{12k+6}-123^{8k+4}-123^{6k+3}+123^{2k+1}+1\\|=|(123^{80k+40}-123^{79k+40}+62\cdot 123^{78k+39}-21\cdot 123^{77k+39}+661\cdot 123^{76k+38}\\||-136\cdot 123^{75k+38}+2867\cdot 123^{74k+37}-417\cdot 123^{73k+37}+6364\cdot 123^{72k+36}-667\cdot 123^{71k+36}\\||+7001\cdot 123^{70k+35}-432\cdot 123^{69k+35}+1063\cdot 123^{68k+34}+283\cdot 123^{67k+34}-6358\cdot 123^{66k+33}\\||+667\cdot 123^{65k+33}-5999\cdot 123^{64k+32}+282\cdot 123^{63k+32}-595\cdot 123^{62k+31}+11\cdot 123^{61k+31}\\||-2294\cdot 123^{60k+30}+543\cdot 123^{59k+30}-8917\cdot 123^{58k+29}+766\cdot 123^{57k+29}-3629\cdot 123^{56k+28}\\||-413\cdot 123^{55k+28}+13082\cdot 123^{54k+27}-1649\cdot 123^{53k+27}+17935\cdot 123^{52k+26}-1116\cdot 123^{51k+26}\\||+4541\cdot 123^{50k+25}+139\cdot 123^{49k+25}-2894\cdot 123^{48k+24}-65\cdot 123^{47k+24}+6563\cdot 123^{46k+23}\\||-932\cdot 123^{45k+23}+8557\cdot 123^{44k+22}-53\cdot 123^{43k+22}-10804\cdot 123^{42k+21}+1869\cdot 123^{41k+21}\\||-24647\cdot 123^{40k+20}+1869\cdot 123^{39k+20}-10804\cdot 123^{38k+19}-53\cdot 123^{37k+19}+8557\cdot 123^{36k+18}\\||-932\cdot 123^{35k+18}+6563\cdot 123^{34k+17}-65\cdot 123^{33k+17}-2894\cdot 123^{32k+16}+139\cdot 123^{31k+16}\\||+4541\cdot 123^{30k+15}-1116\cdot 123^{29k+15}+17935\cdot 123^{28k+14}-1649\cdot 123^{27k+14}+13082\cdot 123^{26k+13}\\||-413\cdot 123^{25k+13}-3629\cdot 123^{24k+12}+766\cdot 123^{23k+12}-8917\cdot 123^{22k+11}+543\cdot 123^{21k+11}\\||-2294\cdot 123^{20k+10}+11\cdot 123^{19k+10}-595\cdot 123^{18k+9}+282\cdot 123^{17k+9}-5999\cdot 123^{16k+8}\\||+667\cdot 123^{15k+8}-6358\cdot 123^{14k+7}+283\cdot 123^{13k+7}+1063\cdot 123^{12k+6}-432\cdot 123^{11k+6}\\||+7001\cdot 123^{10k+5}-667\cdot 123^{9k+5}+6364\cdot 123^{8k+4}-417\cdot 123^{7k+4}+2867\cdot 123^{6k+3}\\||-136\cdot 123^{5k+3}+661\cdot 123^{4k+2}-21\cdot 123^{3k+2}+62\cdot 123^{2k+1}-123^{k+1}+1)\\|\times|(123^{80k+40}+123^{79k+40}+62\cdot 123^{78k+39}+21\cdot 123^{77k+39}+661\cdot 123^{76k+38}\\||+136\cdot 123^{75k+38}+2867\cdot 123^{74k+37}+417\cdot 123^{73k+37}+6364\cdot 123^{72k+36}+667\cdot 123^{71k+36}\\||+7001\cdot 123^{70k+35}+432\cdot 123^{69k+35}+1063\cdot 123^{68k+34}-283\cdot 123^{67k+34}-6358\cdot 123^{66k+33}\\||-667\cdot 123^{65k+33}-5999\cdot 123^{64k+32}-282\cdot 123^{63k+32}-595\cdot 123^{62k+31}-11\cdot 123^{61k+31}\\||-2294\cdot 123^{60k+30}-543\cdot 123^{59k+30}-8917\cdot 123^{58k+29}-766\cdot 123^{57k+29}-3629\cdot 123^{56k+28}\\||+413\cdot 123^{55k+28}+13082\cdot 123^{54k+27}+1649\cdot 123^{53k+27}+17935\cdot 123^{52k+26}+1116\cdot 123^{51k+26}\\||+4541\cdot 123^{50k+25}-139\cdot 123^{49k+25}-2894\cdot 123^{48k+24}+65\cdot 123^{47k+24}+6563\cdot 123^{46k+23}\\||+932\cdot 123^{45k+23}+8557\cdot 123^{44k+22}+53\cdot 123^{43k+22}-10804\cdot 123^{42k+21}-1869\cdot 123^{41k+21}\\||-24647\cdot 123^{40k+20}-1869\cdot 123^{39k+20}-10804\cdot 123^{38k+19}+53\cdot 123^{37k+19}+8557\cdot 123^{36k+18}\\||+932\cdot 123^{35k+18}+6563\cdot 123^{34k+17}+65\cdot 123^{33k+17}-2894\cdot 123^{32k+16}-139\cdot 123^{31k+16}\\||+4541\cdot 123^{30k+15}+1116\cdot 123^{29k+15}+17935\cdot 123^{28k+14}+1649\cdot 123^{27k+14}+13082\cdot 123^{26k+13}\\||+413\cdot 123^{25k+13}-3629\cdot 123^{24k+12}-766\cdot 123^{23k+12}-8917\cdot 123^{22k+11}-543\cdot 123^{21k+11}\\||-2294\cdot 123^{20k+10}-11\cdot 123^{19k+10}-595\cdot 123^{18k+9}-282\cdot 123^{17k+9}-5999\cdot 123^{16k+8}\\||-667\cdot 123^{15k+8}-6358\cdot 123^{14k+7}-283\cdot 123^{13k+7}+1063\cdot 123^{12k+6}+432\cdot 123^{11k+6}\\||+7001\cdot 123^{10k+5}+667\cdot 123^{9k+5}+6364\cdot 123^{8k+4}+417\cdot 123^{7k+4}+2867\cdot 123^{6k+3}\\||+136\cdot 123^{5k+3}+661\cdot 123^{4k+2}+21\cdot 123^{3k+2}+62\cdot 123^{2k+1}+123^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{254}(127^{2k+1})\cdots{\large\Phi}_{260}(130^{2k+1})$${\large\Phi}_{254}(127^{2k+1})\cdots{\large\Phi}_{260}(130^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{254}(127^{2k+1})|=|127^{252k+126}-127^{250k+125}+127^{248k+124}-127^{246k+123}+127^{244k+122}\\||-127^{242k+121}+127^{240k+120}-127^{238k+119}+127^{236k+118}-127^{234k+117}\\||+127^{232k+116}-127^{230k+115}+127^{228k+114}-127^{226k+113}+127^{224k+112}\\||-127^{222k+111}+127^{220k+110}-127^{218k+109}+127^{216k+108}-127^{214k+107}\\||+127^{212k+106}-127^{210k+105}+127^{208k+104}-127^{206k+103}+127^{204k+102}\\||-127^{202k+101}+127^{200k+100}-127^{198k+99}+127^{196k+98}-127^{194k+97}\\||+127^{192k+96}-127^{190k+95}+127^{188k+94}-127^{186k+93}+127^{184k+92}\\||-127^{182k+91}+127^{180k+90}-127^{178k+89}+127^{176k+88}-127^{174k+87}\\||+127^{172k+86}-127^{170k+85}+127^{168k+84}-127^{166k+83}+127^{164k+82}\\||-127^{162k+81}+127^{160k+80}-127^{158k+79}+127^{156k+78}-127^{154k+77}\\||+127^{152k+76}-127^{150k+75}+127^{148k+74}-127^{146k+73}+127^{144k+72}\\||-127^{142k+71}+127^{140k+70}-127^{138k+69}+127^{136k+68}-127^{134k+67}\\||+127^{132k+66}-127^{130k+65}+127^{128k+64}-127^{126k+63}+127^{124k+62}\\||-127^{122k+61}+127^{120k+60}-127^{118k+59}+127^{116k+58}-127^{114k+57}\\||+127^{112k+56}-127^{110k+55}+127^{108k+54}-127^{106k+53}+127^{104k+52}\\||-127^{102k+51}+127^{100k+50}-127^{98k+49}+127^{96k+48}-127^{94k+47}\\||+127^{92k+46}-127^{90k+45}+127^{88k+44}-127^{86k+43}+127^{84k+42}\\||-127^{82k+41}+127^{80k+40}-127^{78k+39}+127^{76k+38}-127^{74k+37}\\||+127^{72k+36}-127^{70k+35}+127^{68k+34}-127^{66k+33}+127^{64k+32}\\||-127^{62k+31}+127^{60k+30}-127^{58k+29}+127^{56k+28}-127^{54k+27}\\||+127^{52k+26}-127^{50k+25}+127^{48k+24}-127^{46k+23}+127^{44k+22}\\||-127^{42k+21}+127^{40k+20}-127^{38k+19}+127^{36k+18}-127^{34k+17}\\||+127^{32k+16}-127^{30k+15}+127^{28k+14}-127^{26k+13}+127^{24k+12}\\||-127^{22k+11}+127^{20k+10}-127^{18k+9}+127^{16k+8}-127^{14k+7}\\||+127^{12k+6}-127^{10k+5}+127^{8k+4}-127^{6k+3}+127^{4k+2}\\||-127^{2k+1}+1\\|=|(127^{126k+63}-127^{125k+63}+63\cdot 127^{124k+62}-21\cdot 127^{123k+62}+683\cdot 127^{122k+61}\\||-145\cdot 127^{121k+61}+3389\cdot 127^{120k+60}-555\cdot 127^{119k+60}+10449\cdot 127^{118k+59}-1421\cdot 127^{117k+59}\\||+22765\cdot 127^{116k+58}-2689\cdot 127^{115k+58}+38113\cdot 127^{114k+57}-4057\cdot 127^{113k+57}+52829\cdot 127^{112k+56}\\||-5269\cdot 127^{111k+56}+65511\cdot 127^{110k+55}-6339\cdot 127^{109k+55}+77257\cdot 127^{108k+54}-7353\cdot 127^{107k+54}\\||+87953\cdot 127^{106k+53}-8173\cdot 127^{105k+53}+94959\cdot 127^{104k+52}-8553\cdot 127^{103k+52}+96529\cdot 127^{102k+51}\\||-8493\cdot 127^{101k+51}+94367\cdot 127^{100k+50}-8245\cdot 127^{99k+50}+91661\cdot 127^{98k+49}-8059\cdot 127^{97k+49}\\||+90621\cdot 127^{96k+48}-8101\cdot 127^{95k+48}+93047\cdot 127^{94k+47}-8521\cdot 127^{93k+47}+100171\cdot 127^{92k+46}\\||-9327\cdot 127^{91k+46}+110253\cdot 127^{90k+45}-10197\cdot 127^{89k+45}+118431\cdot 127^{88k+44}-10681\cdot 127^{87k+44}\\||+120645\cdot 127^{86k+43}-10597\cdot 127^{85k+43}+116987\cdot 127^{84k+42}-10089\cdot 127^{83k+42}+109847\cdot 127^{82k+41}\\||-9369\cdot 127^{81k+41}+101017\cdot 127^{80k+40}-8545\cdot 127^{79k+40}+91569\cdot 127^{78k+39}-7721\cdot 127^{77k+39}\\||+82863\cdot 127^{76k+38}-7037\cdot 127^{75k+38}+76423\cdot 127^{74k+37}-6597\cdot 127^{73k+37}+73213\cdot 127^{72k+36}\\||-6491\cdot 127^{71k+36}+74319\cdot 127^{70k+35}-6821\cdot 127^{69k+35}+80709\cdot 127^{68k+34}-7583\cdot 127^{67k+34}\\||+90505\cdot 127^{66k+33}-8433\cdot 127^{65k+33}+98163\cdot 127^{64k+32}-8809\cdot 127^{63k+32}+98163\cdot 127^{62k+31}\\||-8433\cdot 127^{61k+31}+90505\cdot 127^{60k+30}-7583\cdot 127^{59k+30}+80709\cdot 127^{58k+29}-6821\cdot 127^{57k+29}\\||+74319\cdot 127^{56k+28}-6491\cdot 127^{55k+28}+73213\cdot 127^{54k+27}-6597\cdot 127^{53k+27}+76423\cdot 127^{52k+26}\\||-7037\cdot 127^{51k+26}+82863\cdot 127^{50k+25}-7721\cdot 127^{49k+25}+91569\cdot 127^{48k+24}-8545\cdot 127^{47k+24}\\||+101017\cdot 127^{46k+23}-9369\cdot 127^{45k+23}+109847\cdot 127^{44k+22}-10089\cdot 127^{43k+22}+116987\cdot 127^{42k+21}\\||-10597\cdot 127^{41k+21}+120645\cdot 127^{40k+20}-10681\cdot 127^{39k+20}+118431\cdot 127^{38k+19}-10197\cdot 127^{37k+19}\\||+110253\cdot 127^{36k+18}-9327\cdot 127^{35k+18}+100171\cdot 127^{34k+17}-8521\cdot 127^{33k+17}+93047\cdot 127^{32k+16}\\||-8101\cdot 127^{31k+16}+90621\cdot 127^{30k+15}-8059\cdot 127^{29k+15}+91661\cdot 127^{28k+14}-8245\cdot 127^{27k+14}\\||+94367\cdot 127^{26k+13}-8493\cdot 127^{25k+13}+96529\cdot 127^{24k+12}-8553\cdot 127^{23k+12}+94959\cdot 127^{22k+11}\\||-8173\cdot 127^{21k+11}+87953\cdot 127^{20k+10}-7353\cdot 127^{19k+10}+77257\cdot 127^{18k+9}-6339\cdot 127^{17k+9}\\||+65511\cdot 127^{16k+8}-5269\cdot 127^{15k+8}+52829\cdot 127^{14k+7}-4057\cdot 127^{13k+7}+38113\cdot 127^{12k+6}\\||-2689\cdot 127^{11k+6}+22765\cdot 127^{10k+5}-1421\cdot 127^{9k+5}+10449\cdot 127^{8k+4}-555\cdot 127^{7k+4}\\||+3389\cdot 127^{6k+3}-145\cdot 127^{5k+3}+683\cdot 127^{4k+2}-21\cdot 127^{3k+2}+63\cdot 127^{2k+1}\\||-127^{k+1}+1)\\|\times|(127^{126k+63}+127^{125k+63}+63\cdot 127^{124k+62}+21\cdot 127^{123k+62}+683\cdot 127^{122k+61}\\||+145\cdot 127^{121k+61}+3389\cdot 127^{120k+60}+555\cdot 127^{119k+60}+10449\cdot 127^{118k+59}+1421\cdot 127^{117k+59}\\||+22765\cdot 127^{116k+58}+2689\cdot 127^{115k+58}+38113\cdot 127^{114k+57}+4057\cdot 127^{113k+57}+52829\cdot 127^{112k+56}\\||+5269\cdot 127^{111k+56}+65511\cdot 127^{110k+55}+6339\cdot 127^{109k+55}+77257\cdot 127^{108k+54}+7353\cdot 127^{107k+54}\\||+87953\cdot 127^{106k+53}+8173\cdot 127^{105k+53}+94959\cdot 127^{104k+52}+8553\cdot 127^{103k+52}+96529\cdot 127^{102k+51}\\||+8493\cdot 127^{101k+51}+94367\cdot 127^{100k+50}+8245\cdot 127^{99k+50}+91661\cdot 127^{98k+49}+8059\cdot 127^{97k+49}\\||+90621\cdot 127^{96k+48}+8101\cdot 127^{95k+48}+93047\cdot 127^{94k+47}+8521\cdot 127^{93k+47}+100171\cdot 127^{92k+46}\\||+9327\cdot 127^{91k+46}+110253\cdot 127^{90k+45}+10197\cdot 127^{89k+45}+118431\cdot 127^{88k+44}+10681\cdot 127^{87k+44}\\||+120645\cdot 127^{86k+43}+10597\cdot 127^{85k+43}+116987\cdot 127^{84k+42}+10089\cdot 127^{83k+42}+109847\cdot 127^{82k+41}\\||+9369\cdot 127^{81k+41}+101017\cdot 127^{80k+40}+8545\cdot 127^{79k+40}+91569\cdot 127^{78k+39}+7721\cdot 127^{77k+39}\\||+82863\cdot 127^{76k+38}+7037\cdot 127^{75k+38}+76423\cdot 127^{74k+37}+6597\cdot 127^{73k+37}+73213\cdot 127^{72k+36}\\||+6491\cdot 127^{71k+36}+74319\cdot 127^{70k+35}+6821\cdot 127^{69k+35}+80709\cdot 127^{68k+34}+7583\cdot 127^{67k+34}\\||+90505\cdot 127^{66k+33}+8433\cdot 127^{65k+33}+98163\cdot 127^{64k+32}+8809\cdot 127^{63k+32}+98163\cdot 127^{62k+31}\\||+8433\cdot 127^{61k+31}+90505\cdot 127^{60k+30}+7583\cdot 127^{59k+30}+80709\cdot 127^{58k+29}+6821\cdot 127^{57k+29}\\||+74319\cdot 127^{56k+28}+6491\cdot 127^{55k+28}+73213\cdot 127^{54k+27}+6597\cdot 127^{53k+27}+76423\cdot 127^{52k+26}\\||+7037\cdot 127^{51k+26}+82863\cdot 127^{50k+25}+7721\cdot 127^{49k+25}+91569\cdot 127^{48k+24}+8545\cdot 127^{47k+24}\\||+101017\cdot 127^{46k+23}+9369\cdot 127^{45k+23}+109847\cdot 127^{44k+22}+10089\cdot 127^{43k+22}+116987\cdot 127^{42k+21}\\||+10597\cdot 127^{41k+21}+120645\cdot 127^{40k+20}+10681\cdot 127^{39k+20}+118431\cdot 127^{38k+19}+10197\cdot 127^{37k+19}\\||+110253\cdot 127^{36k+18}+9327\cdot 127^{35k+18}+100171\cdot 127^{34k+17}+8521\cdot 127^{33k+17}+93047\cdot 127^{32k+16}\\||+8101\cdot 127^{31k+16}+90621\cdot 127^{30k+15}+8059\cdot 127^{29k+15}+91661\cdot 127^{28k+14}+8245\cdot 127^{27k+14}\\||+94367\cdot 127^{26k+13}+8493\cdot 127^{25k+13}+96529\cdot 127^{24k+12}+8553\cdot 127^{23k+12}+94959\cdot 127^{22k+11}\\||+8173\cdot 127^{21k+11}+87953\cdot 127^{20k+10}+7353\cdot 127^{19k+10}+77257\cdot 127^{18k+9}+6339\cdot 127^{17k+9}\\||+65511\cdot 127^{16k+8}+5269\cdot 127^{15k+8}+52829\cdot 127^{14k+7}+4057\cdot 127^{13k+7}+38113\cdot 127^{12k+6}\\||+2689\cdot 127^{11k+6}+22765\cdot 127^{10k+5}+1421\cdot 127^{9k+5}+10449\cdot 127^{8k+4}+555\cdot 127^{7k+4}\\||+3389\cdot 127^{6k+3}+145\cdot 127^{5k+3}+683\cdot 127^{4k+2}+21\cdot 127^{3k+2}+63\cdot 127^{2k+1}\\||+127^{k+1}+1)\\{\large\Phi}_{129}(129^{2k+1})|=|129^{168k+84}-129^{166k+83}+129^{162k+81}-129^{160k+80}+129^{156k+78}\\||-129^{154k+77}+129^{150k+75}-129^{148k+74}+129^{144k+72}-129^{142k+71}\\||+129^{138k+69}-129^{136k+68}+129^{132k+66}-129^{130k+65}+129^{126k+63}\\||-129^{124k+62}+129^{120k+60}-129^{118k+59}+129^{114k+57}-129^{112k+56}\\||+129^{108k+54}-129^{106k+53}+129^{102k+51}-129^{100k+50}+129^{96k+48}\\||-129^{94k+47}+129^{90k+45}-129^{88k+44}+129^{84k+42}-129^{80k+40}\\||+129^{78k+39}-129^{74k+37}+129^{72k+36}-129^{68k+34}+129^{66k+33}\\||-129^{62k+31}+129^{60k+30}-129^{56k+28}+129^{54k+27}-129^{50k+25}\\||+129^{48k+24}-129^{44k+22}+129^{42k+21}-129^{38k+19}+129^{36k+18}\\||-129^{32k+16}+129^{30k+15}-129^{26k+13}+129^{24k+12}-129^{20k+10}\\||+129^{18k+9}-129^{14k+7}+129^{12k+6}-129^{8k+4}+129^{6k+3}\\||-129^{2k+1}+1\\|=|(129^{84k+42}-129^{83k+42}+64\cdot 129^{82k+41}-21\cdot 129^{81k+41}+661\cdot 129^{80k+40}\\||-128\cdot 129^{79k+40}+2653\cdot 129^{78k+39}-367\cdot 129^{77k+39}+5842\cdot 129^{76k+38}-665\cdot 129^{75k+38}\\||+9235\cdot 129^{74k+37}-948\cdot 129^{73k+37}+11875\cdot 129^{72k+36}-1075\cdot 129^{71k+36}+11566\cdot 129^{70k+35}\\||-881\cdot 129^{69k+35}+7759\cdot 129^{68k+34}-444\cdot 129^{67k+34}+2035\cdot 129^{66k+33}+91\cdot 129^{65k+33}\\||-3866\cdot 129^{64k+32}+549\cdot 129^{63k+32}-8081\cdot 129^{62k+31}+830\cdot 129^{61k+31}-10271\cdot 129^{60k+30}\\||+937\cdot 129^{59k+30}-10742\cdot 129^{58k+29}+959\cdot 129^{57k+29}-11267\cdot 129^{56k+28}+1032\cdot 129^{55k+28}\\||-11939\cdot 129^{54k+27}+1031\cdot 129^{53k+27}-10988\cdot 129^{52k+26}+855\cdot 129^{51k+26}-7685\cdot 129^{50k+25}\\||+416\cdot 129^{49k+25}-881\cdot 129^{48k+24}-309\cdot 129^{47k+24}+7972\cdot 129^{46k+23}-1061\cdot 129^{45k+23}\\||+15349\cdot 129^{44k+22}-1542\cdot 129^{43k+22}+18271\cdot 129^{42k+21}-1542\cdot 129^{41k+21}+15349\cdot 129^{40k+20}\\||-1061\cdot 129^{39k+20}+7972\cdot 129^{38k+19}-309\cdot 129^{37k+19}-881\cdot 129^{36k+18}+416\cdot 129^{35k+18}\\||-7685\cdot 129^{34k+17}+855\cdot 129^{33k+17}-10988\cdot 129^{32k+16}+1031\cdot 129^{31k+16}-11939\cdot 129^{30k+15}\\||+1032\cdot 129^{29k+15}-11267\cdot 129^{28k+14}+959\cdot 129^{27k+14}-10742\cdot 129^{26k+13}+937\cdot 129^{25k+13}\\||-10271\cdot 129^{24k+12}+830\cdot 129^{23k+12}-8081\cdot 129^{22k+11}+549\cdot 129^{21k+11}-3866\cdot 129^{20k+10}\\||+91\cdot 129^{19k+10}+2035\cdot 129^{18k+9}-444\cdot 129^{17k+9}+7759\cdot 129^{16k+8}-881\cdot 129^{15k+8}\\||+11566\cdot 129^{14k+7}-1075\cdot 129^{13k+7}+11875\cdot 129^{12k+6}-948\cdot 129^{11k+6}+9235\cdot 129^{10k+5}\\||-665\cdot 129^{9k+5}+5842\cdot 129^{8k+4}-367\cdot 129^{7k+4}+2653\cdot 129^{6k+3}-128\cdot 129^{5k+3}\\||+661\cdot 129^{4k+2}-21\cdot 129^{3k+2}+64\cdot 129^{2k+1}-129^{k+1}+1)\\|\times|(129^{84k+42}+129^{83k+42}+64\cdot 129^{82k+41}+21\cdot 129^{81k+41}+661\cdot 129^{80k+40}\\||+128\cdot 129^{79k+40}+2653\cdot 129^{78k+39}+367\cdot 129^{77k+39}+5842\cdot 129^{76k+38}+665\cdot 129^{75k+38}\\||+9235\cdot 129^{74k+37}+948\cdot 129^{73k+37}+11875\cdot 129^{72k+36}+1075\cdot 129^{71k+36}+11566\cdot 129^{70k+35}\\||+881\cdot 129^{69k+35}+7759\cdot 129^{68k+34}+444\cdot 129^{67k+34}+2035\cdot 129^{66k+33}-91\cdot 129^{65k+33}\\||-3866\cdot 129^{64k+32}-549\cdot 129^{63k+32}-8081\cdot 129^{62k+31}-830\cdot 129^{61k+31}-10271\cdot 129^{60k+30}\\||-937\cdot 129^{59k+30}-10742\cdot 129^{58k+29}-959\cdot 129^{57k+29}-11267\cdot 129^{56k+28}-1032\cdot 129^{55k+28}\\||-11939\cdot 129^{54k+27}-1031\cdot 129^{53k+27}-10988\cdot 129^{52k+26}-855\cdot 129^{51k+26}-7685\cdot 129^{50k+25}\\||-416\cdot 129^{49k+25}-881\cdot 129^{48k+24}+309\cdot 129^{47k+24}+7972\cdot 129^{46k+23}+1061\cdot 129^{45k+23}\\||+15349\cdot 129^{44k+22}+1542\cdot 129^{43k+22}+18271\cdot 129^{42k+21}+1542\cdot 129^{41k+21}+15349\cdot 129^{40k+20}\\||+1061\cdot 129^{39k+20}+7972\cdot 129^{38k+19}+309\cdot 129^{37k+19}-881\cdot 129^{36k+18}-416\cdot 129^{35k+18}\\||-7685\cdot 129^{34k+17}-855\cdot 129^{33k+17}-10988\cdot 129^{32k+16}-1031\cdot 129^{31k+16}-11939\cdot 129^{30k+15}\\||-1032\cdot 129^{29k+15}-11267\cdot 129^{28k+14}-959\cdot 129^{27k+14}-10742\cdot 129^{26k+13}-937\cdot 129^{25k+13}\\||-10271\cdot 129^{24k+12}-830\cdot 129^{23k+12}-8081\cdot 129^{22k+11}-549\cdot 129^{21k+11}-3866\cdot 129^{20k+10}\\||-91\cdot 129^{19k+10}+2035\cdot 129^{18k+9}+444\cdot 129^{17k+9}+7759\cdot 129^{16k+8}+881\cdot 129^{15k+8}\\||+11566\cdot 129^{14k+7}+1075\cdot 129^{13k+7}+11875\cdot 129^{12k+6}+948\cdot 129^{11k+6}+9235\cdot 129^{10k+5}\\||+665\cdot 129^{9k+5}+5842\cdot 129^{8k+4}+367\cdot 129^{7k+4}+2653\cdot 129^{6k+3}+128\cdot 129^{5k+3}\\||+661\cdot 129^{4k+2}+21\cdot 129^{3k+2}+64\cdot 129^{2k+1}+129^{k+1}+1)\\{\large\Phi}_{260}(130^{2k+1})|=|130^{192k+96}+130^{188k+94}-130^{172k+86}-130^{168k+84}+130^{152k+76}\\||+130^{148k+74}-130^{140k+70}-130^{136k+68}-130^{132k+66}-130^{128k+64}\\||+130^{120k+60}+130^{116k+58}+130^{112k+56}+130^{108k+54}-130^{100k+50}\\||-130^{96k+48}-130^{92k+46}+130^{84k+42}+130^{80k+40}+130^{76k+38}\\||+130^{72k+36}-130^{64k+32}-130^{60k+30}-130^{56k+28}-130^{52k+26}\\||+130^{44k+22}+130^{40k+20}-130^{24k+12}-130^{20k+10}+130^{4k+2}+1\\|=|(130^{96k+48}-130^{95k+48}+65\cdot 130^{94k+47}-22\cdot 130^{93k+47}+748\cdot 130^{92k+46}\\||-163\cdot 130^{91k+46}+4030\cdot 130^{90k+45}-689\cdot 130^{89k+45}+14048\cdot 130^{88k+44}-2052\cdot 130^{87k+44}\\||+36725\cdot 130^{86k+43}-4811\cdot 130^{85k+43}+78581\cdot 130^{84k+42}-9533\cdot 130^{83k+42}+145990\cdot 130^{82k+41}\\||-16779\cdot 130^{81k+41}+245540\cdot 130^{80k+40}-27154\cdot 130^{79k+40}+384410\cdot 130^{78k+39}-41290\cdot 130^{77k+39}\\||+569349\cdot 130^{76k+38}-59685\cdot 130^{75k+38}+804375\cdot 130^{74k+37}-82509\cdot 130^{73k+37}+1089202\cdot 130^{72k+36}\\||-109556\cdot 130^{71k+36}+1419795\cdot 130^{70k+35}-140360\cdot 130^{69k+35}+1789837\cdot 130^{68k+34}-174284\cdot 130^{67k+34}\\||+2190955\cdot 130^{66k+33}-210470\cdot 130^{65k+33}+2611689\cdot 130^{64k+32}-247758\cdot 130^{63k+32}+3037190\cdot 130^{62k+31}\\||-284735\cdot 130^{61k+31}+3450605\cdot 130^{60k+30}-319907\cdot 130^{59k+30}+3835195\cdot 130^{58k+29}-351860\cdot 130^{57k+29}\\||+4175611\cdot 130^{56k+28}-379317\cdot 130^{55k+28}+4458025\cdot 130^{54k+27}-401127\cdot 130^{53k+27}+4670098\cdot 130^{52k+26}\\||-416294\cdot 130^{51k+26}+4801745\cdot 130^{50k+25}-424074\cdot 130^{49k+25}+4846383\cdot 130^{48k+24}-424074\cdot 130^{47k+24}\\||+4801745\cdot 130^{46k+23}-416294\cdot 130^{45k+23}+4670098\cdot 130^{44k+22}-401127\cdot 130^{43k+22}+4458025\cdot 130^{42k+21}\\||-379317\cdot 130^{41k+21}+4175611\cdot 130^{40k+20}-351860\cdot 130^{39k+20}+3835195\cdot 130^{38k+19}-319907\cdot 130^{37k+19}\\||+3450605\cdot 130^{36k+18}-284735\cdot 130^{35k+18}+3037190\cdot 130^{34k+17}-247758\cdot 130^{33k+17}+2611689\cdot 130^{32k+16}\\||-210470\cdot 130^{31k+16}+2190955\cdot 130^{30k+15}-174284\cdot 130^{29k+15}+1789837\cdot 130^{28k+14}-140360\cdot 130^{27k+14}\\||+1419795\cdot 130^{26k+13}-109556\cdot 130^{25k+13}+1089202\cdot 130^{24k+12}-82509\cdot 130^{23k+12}+804375\cdot 130^{22k+11}\\||-59685\cdot 130^{21k+11}+569349\cdot 130^{20k+10}-41290\cdot 130^{19k+10}+384410\cdot 130^{18k+9}-27154\cdot 130^{17k+9}\\||+245540\cdot 130^{16k+8}-16779\cdot 130^{15k+8}+145990\cdot 130^{14k+7}-9533\cdot 130^{13k+7}+78581\cdot 130^{12k+6}\\||-4811\cdot 130^{11k+6}+36725\cdot 130^{10k+5}-2052\cdot 130^{9k+5}+14048\cdot 130^{8k+4}-689\cdot 130^{7k+4}\\||+4030\cdot 130^{6k+3}-163\cdot 130^{5k+3}+748\cdot 130^{4k+2}-22\cdot 130^{3k+2}+65\cdot 130^{2k+1}\\||-130^{k+1}+1)\\|\times|(130^{96k+48}+130^{95k+48}+65\cdot 130^{94k+47}+22\cdot 130^{93k+47}+748\cdot 130^{92k+46}\\||+163\cdot 130^{91k+46}+4030\cdot 130^{90k+45}+689\cdot 130^{89k+45}+14048\cdot 130^{88k+44}+2052\cdot 130^{87k+44}\\||+36725\cdot 130^{86k+43}+4811\cdot 130^{85k+43}+78581\cdot 130^{84k+42}+9533\cdot 130^{83k+42}+145990\cdot 130^{82k+41}\\||+16779\cdot 130^{81k+41}+245540\cdot 130^{80k+40}+27154\cdot 130^{79k+40}+384410\cdot 130^{78k+39}+41290\cdot 130^{77k+39}\\||+569349\cdot 130^{76k+38}+59685\cdot 130^{75k+38}+804375\cdot 130^{74k+37}+82509\cdot 130^{73k+37}+1089202\cdot 130^{72k+36}\\||+109556\cdot 130^{71k+36}+1419795\cdot 130^{70k+35}+140360\cdot 130^{69k+35}+1789837\cdot 130^{68k+34}+174284\cdot 130^{67k+34}\\||+2190955\cdot 130^{66k+33}+210470\cdot 130^{65k+33}+2611689\cdot 130^{64k+32}+247758\cdot 130^{63k+32}+3037190\cdot 130^{62k+31}\\||+284735\cdot 130^{61k+31}+3450605\cdot 130^{60k+30}+319907\cdot 130^{59k+30}+3835195\cdot 130^{58k+29}+351860\cdot 130^{57k+29}\\||+4175611\cdot 130^{56k+28}+379317\cdot 130^{55k+28}+4458025\cdot 130^{54k+27}+401127\cdot 130^{53k+27}+4670098\cdot 130^{52k+26}\\||+416294\cdot 130^{51k+26}+4801745\cdot 130^{50k+25}+424074\cdot 130^{49k+25}+4846383\cdot 130^{48k+24}+424074\cdot 130^{47k+24}\\||+4801745\cdot 130^{46k+23}+416294\cdot 130^{45k+23}+4670098\cdot 130^{44k+22}+401127\cdot 130^{43k+22}+4458025\cdot 130^{42k+21}\\||+379317\cdot 130^{41k+21}+4175611\cdot 130^{40k+20}+351860\cdot 130^{39k+20}+3835195\cdot 130^{38k+19}+319907\cdot 130^{37k+19}\\||+3450605\cdot 130^{36k+18}+284735\cdot 130^{35k+18}+3037190\cdot 130^{34k+17}+247758\cdot 130^{33k+17}+2611689\cdot 130^{32k+16}\\||+210470\cdot 130^{31k+16}+2190955\cdot 130^{30k+15}+174284\cdot 130^{29k+15}+1789837\cdot 130^{28k+14}+140360\cdot 130^{27k+14}\\||+1419795\cdot 130^{26k+13}+109556\cdot 130^{25k+13}+1089202\cdot 130^{24k+12}+82509\cdot 130^{23k+12}+804375\cdot 130^{22k+11}\\||+59685\cdot 130^{21k+11}+569349\cdot 130^{20k+10}+41290\cdot 130^{19k+10}+384410\cdot 130^{18k+9}+27154\cdot 130^{17k+9}\\||+245540\cdot 130^{16k+8}+16779\cdot 130^{15k+8}+145990\cdot 130^{14k+7}+9533\cdot 130^{13k+7}+78581\cdot 130^{12k+6}\\||+4811\cdot 130^{11k+6}+36725\cdot 130^{10k+5}+2052\cdot 130^{9k+5}+14048\cdot 130^{8k+4}+689\cdot 130^{7k+4}\\||+4030\cdot 130^{6k+3}+163\cdot 130^{5k+3}+748\cdot 130^{4k+2}+22\cdot 130^{3k+2}+65\cdot 130^{2k+1}\\||+130^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{262}(131^{2k+1})\cdots{\large\Phi}_{268}(134^{2k+1})$${\large\Phi}_{262}(131^{2k+1})\cdots{\large\Phi}_{268}(134^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{262}(131^{2k+1})|=|131^{260k+130}-131^{258k+129}+131^{256k+128}-131^{254k+127}+131^{252k+126}\\||-131^{250k+125}+131^{248k+124}-131^{246k+123}+131^{244k+122}-131^{242k+121}\\||+131^{240k+120}-131^{238k+119}+131^{236k+118}-131^{234k+117}+131^{232k+116}\\||-131^{230k+115}+131^{228k+114}-131^{226k+113}+131^{224k+112}-131^{222k+111}\\||+131^{220k+110}-131^{218k+109}+131^{216k+108}-131^{214k+107}+131^{212k+106}\\||-131^{210k+105}+131^{208k+104}-131^{206k+103}+131^{204k+102}-131^{202k+101}\\||+131^{200k+100}-131^{198k+99}+131^{196k+98}-131^{194k+97}+131^{192k+96}\\||-131^{190k+95}+131^{188k+94}-131^{186k+93}+131^{184k+92}-131^{182k+91}\\||+131^{180k+90}-131^{178k+89}+131^{176k+88}-131^{174k+87}+131^{172k+86}\\||-131^{170k+85}+131^{168k+84}-131^{166k+83}+131^{164k+82}-131^{162k+81}\\||+131^{160k+80}-131^{158k+79}+131^{156k+78}-131^{154k+77}+131^{152k+76}\\||-131^{150k+75}+131^{148k+74}-131^{146k+73}+131^{144k+72}-131^{142k+71}\\||+131^{140k+70}-131^{138k+69}+131^{136k+68}-131^{134k+67}+131^{132k+66}\\||-131^{130k+65}+131^{128k+64}-131^{126k+63}+131^{124k+62}-131^{122k+61}\\||+131^{120k+60}-131^{118k+59}+131^{116k+58}-131^{114k+57}+131^{112k+56}\\||-131^{110k+55}+131^{108k+54}-131^{106k+53}+131^{104k+52}-131^{102k+51}\\||+131^{100k+50}-131^{98k+49}+131^{96k+48}-131^{94k+47}+131^{92k+46}\\||-131^{90k+45}+131^{88k+44}-131^{86k+43}+131^{84k+42}-131^{82k+41}\\||+131^{80k+40}-131^{78k+39}+131^{76k+38}-131^{74k+37}+131^{72k+36}\\||-131^{70k+35}+131^{68k+34}-131^{66k+33}+131^{64k+32}-131^{62k+31}\\||+131^{60k+30}-131^{58k+29}+131^{56k+28}-131^{54k+27}+131^{52k+26}\\||-131^{50k+25}+131^{48k+24}-131^{46k+23}+131^{44k+22}-131^{42k+21}\\||+131^{40k+20}-131^{38k+19}+131^{36k+18}-131^{34k+17}+131^{32k+16}\\||-131^{30k+15}+131^{28k+14}-131^{26k+13}+131^{24k+12}-131^{22k+11}\\||+131^{20k+10}-131^{18k+9}+131^{16k+8}-131^{14k+7}+131^{12k+6}\\||-131^{10k+5}+131^{8k+4}-131^{6k+3}+131^{4k+2}-131^{2k+1}+1\\|=|(131^{130k+65}-131^{129k+65}+65\cdot 131^{128k+64}-21\cdot 131^{127k+64}+639\cdot 131^{126k+63}\\||-111\cdot 131^{125k+63}+1891\cdot 131^{124k+62}-175\cdot 131^{123k+62}+1211\cdot 131^{122k+61}+21\cdot 131^{121k+61}\\||-1365\cdot 131^{120k+60}+105\cdot 131^{119k+60}+105\cdot 131^{118k+59}-105\cdot 131^{117k+59}+885\cdot 131^{116k+58}\\||+39\cdot 131^{115k+58}-1149\cdot 131^{114k+57}+31\cdot 131^{113k+57}+845\cdot 131^{112k+56}-67\cdot 131^{111k+56}\\||-639\cdot 131^{110k+55}+155\cdot 131^{109k+55}-1623\cdot 131^{108k+54}+81\cdot 131^{107k+54}-557\cdot 131^{106k+53}\\||-15\cdot 131^{105k+53}+2163\cdot 131^{104k+52}-359\cdot 131^{103k+52}+3449\cdot 131^{102k+51}-23\cdot 131^{101k+51}\\||-1845\cdot 131^{100k+50}+31\cdot 131^{99k+50}+2209\cdot 131^{98k+49}-125\cdot 131^{97k+49}-2433\cdot 131^{96k+48}\\||+365\cdot 131^{95k+48}-855\cdot 131^{94k+47}-327\cdot 131^{93k+47}+4173\cdot 131^{92k+46}-65\cdot 131^{91k+46}\\||-1655\cdot 131^{90k+45}+103\cdot 131^{89k+45}-1151\cdot 131^{88k+44}+315\cdot 131^{87k+44}-5053\cdot 131^{86k+43}\\||+165\cdot 131^{85k+43}+2981\cdot 131^{84k+42}-311\cdot 131^{83k+42}-187\cdot 131^{82k+41}+159\cdot 131^{81k+41}\\||+1957\cdot 131^{80k+40}-523\cdot 131^{79k+40}+4089\cdot 131^{78k+39}+155\cdot 131^{77k+39}-4399\cdot 131^{76k+38}\\||+143\cdot 131^{75k+38}+1525\cdot 131^{74k+37}-123\cdot 131^{73k+37}+717\cdot 131^{72k+36}-233\cdot 131^{71k+36}\\||+4607\cdot 131^{70k+35}-183\cdot 131^{69k+35}-3191\cdot 131^{68k+34}+443\cdot 131^{67k+34}-2105\cdot 131^{66k+33}\\||-15\cdot 131^{65k+33}-2105\cdot 131^{64k+32}+443\cdot 131^{63k+32}-3191\cdot 131^{62k+31}-183\cdot 131^{61k+31}\\||+4607\cdot 131^{60k+30}-233\cdot 131^{59k+30}+717\cdot 131^{58k+29}-123\cdot 131^{57k+29}+1525\cdot 131^{56k+28}\\||+143\cdot 131^{55k+28}-4399\cdot 131^{54k+27}+155\cdot 131^{53k+27}+4089\cdot 131^{52k+26}-523\cdot 131^{51k+26}\\||+1957\cdot 131^{50k+25}+159\cdot 131^{49k+25}-187\cdot 131^{48k+24}-311\cdot 131^{47k+24}+2981\cdot 131^{46k+23}\\||+165\cdot 131^{45k+23}-5053\cdot 131^{44k+22}+315\cdot 131^{43k+22}-1151\cdot 131^{42k+21}+103\cdot 131^{41k+21}\\||-1655\cdot 131^{40k+20}-65\cdot 131^{39k+20}+4173\cdot 131^{38k+19}-327\cdot 131^{37k+19}-855\cdot 131^{36k+18}\\||+365\cdot 131^{35k+18}-2433\cdot 131^{34k+17}-125\cdot 131^{33k+17}+2209\cdot 131^{32k+16}+31\cdot 131^{31k+16}\\||-1845\cdot 131^{30k+15}-23\cdot 131^{29k+15}+3449\cdot 131^{28k+14}-359\cdot 131^{27k+14}+2163\cdot 131^{26k+13}\\||-15\cdot 131^{25k+13}-557\cdot 131^{24k+12}+81\cdot 131^{23k+12}-1623\cdot 131^{22k+11}+155\cdot 131^{21k+11}\\||-639\cdot 131^{20k+10}-67\cdot 131^{19k+10}+845\cdot 131^{18k+9}+31\cdot 131^{17k+9}-1149\cdot 131^{16k+8}\\||+39\cdot 131^{15k+8}+885\cdot 131^{14k+7}-105\cdot 131^{13k+7}+105\cdot 131^{12k+6}+105\cdot 131^{11k+6}\\||-1365\cdot 131^{10k+5}+21\cdot 131^{9k+5}+1211\cdot 131^{8k+4}-175\cdot 131^{7k+4}+1891\cdot 131^{6k+3}\\||-111\cdot 131^{5k+3}+639\cdot 131^{4k+2}-21\cdot 131^{3k+2}+65\cdot 131^{2k+1}-131^{k+1}+1)\\|\times|(131^{130k+65}+131^{129k+65}+65\cdot 131^{128k+64}+21\cdot 131^{127k+64}+639\cdot 131^{126k+63}\\||+111\cdot 131^{125k+63}+1891\cdot 131^{124k+62}+175\cdot 131^{123k+62}+1211\cdot 131^{122k+61}-21\cdot 131^{121k+61}\\||-1365\cdot 131^{120k+60}-105\cdot 131^{119k+60}+105\cdot 131^{118k+59}+105\cdot 131^{117k+59}+885\cdot 131^{116k+58}\\||-39\cdot 131^{115k+58}-1149\cdot 131^{114k+57}-31\cdot 131^{113k+57}+845\cdot 131^{112k+56}+67\cdot 131^{111k+56}\\||-639\cdot 131^{110k+55}-155\cdot 131^{109k+55}-1623\cdot 131^{108k+54}-81\cdot 131^{107k+54}-557\cdot 131^{106k+53}\\||+15\cdot 131^{105k+53}+2163\cdot 131^{104k+52}+359\cdot 131^{103k+52}+3449\cdot 131^{102k+51}+23\cdot 131^{101k+51}\\||-1845\cdot 131^{100k+50}-31\cdot 131^{99k+50}+2209\cdot 131^{98k+49}+125\cdot 131^{97k+49}-2433\cdot 131^{96k+48}\\||-365\cdot 131^{95k+48}-855\cdot 131^{94k+47}+327\cdot 131^{93k+47}+4173\cdot 131^{92k+46}+65\cdot 131^{91k+46}\\||-1655\cdot 131^{90k+45}-103\cdot 131^{89k+45}-1151\cdot 131^{88k+44}-315\cdot 131^{87k+44}-5053\cdot 131^{86k+43}\\||-165\cdot 131^{85k+43}+2981\cdot 131^{84k+42}+311\cdot 131^{83k+42}-187\cdot 131^{82k+41}-159\cdot 131^{81k+41}\\||+1957\cdot 131^{80k+40}+523\cdot 131^{79k+40}+4089\cdot 131^{78k+39}-155\cdot 131^{77k+39}-4399\cdot 131^{76k+38}\\||-143\cdot 131^{75k+38}+1525\cdot 131^{74k+37}+123\cdot 131^{73k+37}+717\cdot 131^{72k+36}+233\cdot 131^{71k+36}\\||+4607\cdot 131^{70k+35}+183\cdot 131^{69k+35}-3191\cdot 131^{68k+34}-443\cdot 131^{67k+34}-2105\cdot 131^{66k+33}\\||+15\cdot 131^{65k+33}-2105\cdot 131^{64k+32}-443\cdot 131^{63k+32}-3191\cdot 131^{62k+31}+183\cdot 131^{61k+31}\\||+4607\cdot 131^{60k+30}+233\cdot 131^{59k+30}+717\cdot 131^{58k+29}+123\cdot 131^{57k+29}+1525\cdot 131^{56k+28}\\||-143\cdot 131^{55k+28}-4399\cdot 131^{54k+27}-155\cdot 131^{53k+27}+4089\cdot 131^{52k+26}+523\cdot 131^{51k+26}\\||+1957\cdot 131^{50k+25}-159\cdot 131^{49k+25}-187\cdot 131^{48k+24}+311\cdot 131^{47k+24}+2981\cdot 131^{46k+23}\\||-165\cdot 131^{45k+23}-5053\cdot 131^{44k+22}-315\cdot 131^{43k+22}-1151\cdot 131^{42k+21}-103\cdot 131^{41k+21}\\||-1655\cdot 131^{40k+20}+65\cdot 131^{39k+20}+4173\cdot 131^{38k+19}+327\cdot 131^{37k+19}-855\cdot 131^{36k+18}\\||-365\cdot 131^{35k+18}-2433\cdot 131^{34k+17}+125\cdot 131^{33k+17}+2209\cdot 131^{32k+16}-31\cdot 131^{31k+16}\\||-1845\cdot 131^{30k+15}+23\cdot 131^{29k+15}+3449\cdot 131^{28k+14}+359\cdot 131^{27k+14}+2163\cdot 131^{26k+13}\\||+15\cdot 131^{25k+13}-557\cdot 131^{24k+12}-81\cdot 131^{23k+12}-1623\cdot 131^{22k+11}-155\cdot 131^{21k+11}\\||-639\cdot 131^{20k+10}+67\cdot 131^{19k+10}+845\cdot 131^{18k+9}-31\cdot 131^{17k+9}-1149\cdot 131^{16k+8}\\||-39\cdot 131^{15k+8}+885\cdot 131^{14k+7}+105\cdot 131^{13k+7}+105\cdot 131^{12k+6}-105\cdot 131^{11k+6}\\||-1365\cdot 131^{10k+5}-21\cdot 131^{9k+5}+1211\cdot 131^{8k+4}+175\cdot 131^{7k+4}+1891\cdot 131^{6k+3}\\||+111\cdot 131^{5k+3}+639\cdot 131^{4k+2}+21\cdot 131^{3k+2}+65\cdot 131^{2k+1}+131^{k+1}+1)\\{\large\Phi}_{133}(133^{2k+1})|=|133^{216k+108}-133^{214k+107}+133^{202k+101}-133^{200k+100}+133^{188k+94}\\||-133^{186k+93}+133^{178k+89}-133^{176k+88}+133^{174k+87}-133^{172k+86}\\||+133^{164k+82}-133^{162k+81}+133^{160k+80}-133^{158k+79}+133^{150k+75}\\||-133^{148k+74}+133^{146k+73}-133^{144k+72}+133^{140k+70}-133^{138k+69}\\||+133^{136k+68}-133^{134k+67}+133^{132k+66}-133^{130k+65}+133^{126k+63}\\||-133^{124k+62}+133^{122k+61}-133^{120k+60}+133^{118k+59}-133^{116k+58}\\||+133^{112k+56}-133^{110k+55}+133^{108k+54}-133^{106k+53}+133^{104k+52}\\||-133^{100k+50}+133^{98k+49}-133^{96k+48}+133^{94k+47}-133^{92k+46}\\||+133^{90k+45}-133^{86k+43}+133^{84k+42}-133^{82k+41}+133^{80k+40}\\||-133^{78k+39}+133^{76k+38}-133^{72k+36}+133^{70k+35}-133^{68k+34}\\||+133^{66k+33}-133^{58k+29}+133^{56k+28}-133^{54k+27}+133^{52k+26}\\||-133^{44k+22}+133^{42k+21}-133^{40k+20}+133^{38k+19}-133^{30k+15}\\||+133^{28k+14}-133^{16k+8}+133^{14k+7}-133^{2k+1}+1\\|=|(133^{108k+54}-133^{107k+54}+66\cdot 133^{106k+53}-22\cdot 133^{105k+53}+748\cdot 133^{104k+52}\\||-158\cdot 133^{103k+52}+3832\cdot 133^{102k+51}-619\cdot 133^{101k+51}+11971\cdot 133^{100k+50}-1584\cdot 133^{99k+50}\\||+25550\cdot 133^{98k+49}-2852\cdot 133^{97k+49}+39046\cdot 133^{96k+48}-3708\cdot 133^{95k+48}+43191\cdot 133^{94k+47}\\||-3493\cdot 133^{93k+47}+35038\cdot 133^{92k+46}-2552\cdot 133^{91k+46}+25976\cdot 133^{90k+45}-2341\cdot 133^{89k+45}\\||+33799\cdot 133^{88k+44}-3987\cdot 133^{87k+44}+61209\cdot 133^{86k+43}-6556\cdot 133^{85k+43}+84728\cdot 133^{84k+42}\\||-7362\cdot 133^{83k+42}+74585\cdot 133^{82k+41}-4787\cdot 133^{81k+41}+31193\cdot 133^{80k+40}-783\cdot 133^{79k+40}\\||-4470\cdot 133^{78k+39}+368\cdot 133^{77k+39}+11248\cdot 133^{76k+38}-3395\cdot 133^{75k+38}+72621\cdot 133^{74k+37}\\||-8887\cdot 133^{73k+37}+119869\cdot 133^{72k+36}-10308\cdot 133^{71k+36}+98697\cdot 133^{70k+35}-5571\cdot 133^{69k+35}\\||+25163\cdot 133^{68k+34}+587\cdot 133^{67k+34}-21003\cdot 133^{66k+33}+995\cdot 133^{65k+33}+21302\cdot 133^{64k+32}\\||-6071\cdot 133^{63k+32}+122363\cdot 133^{62k+31}-14261\cdot 133^{61k+31}+184873\cdot 133^{60k+30}-15435\cdot 133^{59k+30}\\||+145951\cdot 133^{58k+29}-8500\cdot 133^{57k+29}+48171\cdot 133^{56k+28}-947\cdot 133^{55k+28}-2837\cdot 133^{54k+27}\\||-947\cdot 133^{53k+27}+48171\cdot 133^{52k+26}-8500\cdot 133^{51k+26}+145951\cdot 133^{50k+25}-15435\cdot 133^{49k+25}\\||+184873\cdot 133^{48k+24}-14261\cdot 133^{47k+24}+122363\cdot 133^{46k+23}-6071\cdot 133^{45k+23}+21302\cdot 133^{44k+22}\\||+995\cdot 133^{43k+22}-21003\cdot 133^{42k+21}+587\cdot 133^{41k+21}+25163\cdot 133^{40k+20}-5571\cdot 133^{39k+20}\\||+98697\cdot 133^{38k+19}-10308\cdot 133^{37k+19}+119869\cdot 133^{36k+18}-8887\cdot 133^{35k+18}+72621\cdot 133^{34k+17}\\||-3395\cdot 133^{33k+17}+11248\cdot 133^{32k+16}+368\cdot 133^{31k+16}-4470\cdot 133^{30k+15}-783\cdot 133^{29k+15}\\||+31193\cdot 133^{28k+14}-4787\cdot 133^{27k+14}+74585\cdot 133^{26k+13}-7362\cdot 133^{25k+13}+84728\cdot 133^{24k+12}\\||-6556\cdot 133^{23k+12}+61209\cdot 133^{22k+11}-3987\cdot 133^{21k+11}+33799\cdot 133^{20k+10}-2341\cdot 133^{19k+10}\\||+25976\cdot 133^{18k+9}-2552\cdot 133^{17k+9}+35038\cdot 133^{16k+8}-3493\cdot 133^{15k+8}+43191\cdot 133^{14k+7}\\||-3708\cdot 133^{13k+7}+39046\cdot 133^{12k+6}-2852\cdot 133^{11k+6}+25550\cdot 133^{10k+5}-1584\cdot 133^{9k+5}\\||+11971\cdot 133^{8k+4}-619\cdot 133^{7k+4}+3832\cdot 133^{6k+3}-158\cdot 133^{5k+3}+748\cdot 133^{4k+2}\\||-22\cdot 133^{3k+2}+66\cdot 133^{2k+1}-133^{k+1}+1)\\|\times|(133^{108k+54}+133^{107k+54}+66\cdot 133^{106k+53}+22\cdot 133^{105k+53}+748\cdot 133^{104k+52}\\||+158\cdot 133^{103k+52}+3832\cdot 133^{102k+51}+619\cdot 133^{101k+51}+11971\cdot 133^{100k+50}+1584\cdot 133^{99k+50}\\||+25550\cdot 133^{98k+49}+2852\cdot 133^{97k+49}+39046\cdot 133^{96k+48}+3708\cdot 133^{95k+48}+43191\cdot 133^{94k+47}\\||+3493\cdot 133^{93k+47}+35038\cdot 133^{92k+46}+2552\cdot 133^{91k+46}+25976\cdot 133^{90k+45}+2341\cdot 133^{89k+45}\\||+33799\cdot 133^{88k+44}+3987\cdot 133^{87k+44}+61209\cdot 133^{86k+43}+6556\cdot 133^{85k+43}+84728\cdot 133^{84k+42}\\||+7362\cdot 133^{83k+42}+74585\cdot 133^{82k+41}+4787\cdot 133^{81k+41}+31193\cdot 133^{80k+40}+783\cdot 133^{79k+40}\\||-4470\cdot 133^{78k+39}-368\cdot 133^{77k+39}+11248\cdot 133^{76k+38}+3395\cdot 133^{75k+38}+72621\cdot 133^{74k+37}\\||+8887\cdot 133^{73k+37}+119869\cdot 133^{72k+36}+10308\cdot 133^{71k+36}+98697\cdot 133^{70k+35}+5571\cdot 133^{69k+35}\\||+25163\cdot 133^{68k+34}-587\cdot 133^{67k+34}-21003\cdot 133^{66k+33}-995\cdot 133^{65k+33}+21302\cdot 133^{64k+32}\\||+6071\cdot 133^{63k+32}+122363\cdot 133^{62k+31}+14261\cdot 133^{61k+31}+184873\cdot 133^{60k+30}+15435\cdot 133^{59k+30}\\||+145951\cdot 133^{58k+29}+8500\cdot 133^{57k+29}+48171\cdot 133^{56k+28}+947\cdot 133^{55k+28}-2837\cdot 133^{54k+27}\\||+947\cdot 133^{53k+27}+48171\cdot 133^{52k+26}+8500\cdot 133^{51k+26}+145951\cdot 133^{50k+25}+15435\cdot 133^{49k+25}\\||+184873\cdot 133^{48k+24}+14261\cdot 133^{47k+24}+122363\cdot 133^{46k+23}+6071\cdot 133^{45k+23}+21302\cdot 133^{44k+22}\\||-995\cdot 133^{43k+22}-21003\cdot 133^{42k+21}-587\cdot 133^{41k+21}+25163\cdot 133^{40k+20}+5571\cdot 133^{39k+20}\\||+98697\cdot 133^{38k+19}+10308\cdot 133^{37k+19}+119869\cdot 133^{36k+18}+8887\cdot 133^{35k+18}+72621\cdot 133^{34k+17}\\||+3395\cdot 133^{33k+17}+11248\cdot 133^{32k+16}-368\cdot 133^{31k+16}-4470\cdot 133^{30k+15}+783\cdot 133^{29k+15}\\||+31193\cdot 133^{28k+14}+4787\cdot 133^{27k+14}+74585\cdot 133^{26k+13}+7362\cdot 133^{25k+13}+84728\cdot 133^{24k+12}\\||+6556\cdot 133^{23k+12}+61209\cdot 133^{22k+11}+3987\cdot 133^{21k+11}+33799\cdot 133^{20k+10}+2341\cdot 133^{19k+10}\\||+25976\cdot 133^{18k+9}+2552\cdot 133^{17k+9}+35038\cdot 133^{16k+8}+3493\cdot 133^{15k+8}+43191\cdot 133^{14k+7}\\||+3708\cdot 133^{13k+7}+39046\cdot 133^{12k+6}+2852\cdot 133^{11k+6}+25550\cdot 133^{10k+5}+1584\cdot 133^{9k+5}\\||+11971\cdot 133^{8k+4}+619\cdot 133^{7k+4}+3832\cdot 133^{6k+3}+158\cdot 133^{5k+3}+748\cdot 133^{4k+2}\\||+22\cdot 133^{3k+2}+66\cdot 133^{2k+1}+133^{k+1}+1)\\{\large\Phi}_{268}(134^{2k+1})|=|134^{264k+132}-134^{260k+130}+134^{256k+128}-134^{252k+126}+134^{248k+124}\\||-134^{244k+122}+134^{240k+120}-134^{236k+118}+134^{232k+116}-134^{228k+114}\\||+134^{224k+112}-134^{220k+110}+134^{216k+108}-134^{212k+106}+134^{208k+104}\\||-134^{204k+102}+134^{200k+100}-134^{196k+98}+134^{192k+96}-134^{188k+94}\\||+134^{184k+92}-134^{180k+90}+134^{176k+88}-134^{172k+86}+134^{168k+84}\\||-134^{164k+82}+134^{160k+80}-134^{156k+78}+134^{152k+76}-134^{148k+74}\\||+134^{144k+72}-134^{140k+70}+134^{136k+68}-134^{132k+66}+134^{128k+64}\\||-134^{124k+62}+134^{120k+60}-134^{116k+58}+134^{112k+56}-134^{108k+54}\\||+134^{104k+52}-134^{100k+50}+134^{96k+48}-134^{92k+46}+134^{88k+44}\\||-134^{84k+42}+134^{80k+40}-134^{76k+38}+134^{72k+36}-134^{68k+34}\\||+134^{64k+32}-134^{60k+30}+134^{56k+28}-134^{52k+26}+134^{48k+24}\\||-134^{44k+22}+134^{40k+20}-134^{36k+18}+134^{32k+16}-134^{28k+14}\\||+134^{24k+12}-134^{20k+10}+134^{16k+8}-134^{12k+6}+134^{8k+4}\\||-134^{4k+2}+1\\|=|(134^{132k+66}-134^{131k+66}+67\cdot 134^{130k+65}-22\cdot 134^{129k+65}+703\cdot 134^{128k+64}\\||-127\cdot 134^{127k+64}+2345\cdot 134^{126k+63}-238\cdot 134^{125k+63}+2069\cdot 134^{124k+62}-27\cdot 134^{123k+62}\\||-1273\cdot 134^{122k+61}+60\cdot 134^{121k+61}+3111\cdot 134^{120k+60}-741\cdot 134^{119k+60}+11725\cdot 134^{118k+59}\\||-778\cdot 134^{117k+59}+921\cdot 134^{116k+58}+605\cdot 134^{115k+58}-7705\cdot 134^{114k+57}-130\cdot 134^{113k+57}\\||+15499\cdot 134^{112k+56}-2077\cdot 134^{111k+56}+19497\cdot 134^{110k+55}-318\cdot 134^{109k+55}-12203\cdot 134^{108k+54}\\||+1349\cdot 134^{107k+54}-2881\cdot 134^{106k+53}-1468\cdot 134^{105k+53}+28871\cdot 134^{104k+52}-2043\cdot 134^{103k+52}\\||+5829\cdot 134^{102k+51}+890\cdot 134^{101k+51}-12783\cdot 134^{100k+50}+153\cdot 134^{99k+50}+11591\cdot 134^{98k+49}\\||-1374\cdot 134^{97k+49}+9739\cdot 134^{96k+48}-161\cdot 134^{95k+48}+1541\cdot 134^{94k+47}-734\cdot 134^{93k+47}\\||+12801\cdot 134^{92k+46}-469\cdot 134^{91k+46}-10653\cdot 134^{90k+45}+1790\cdot 134^{89k+45}-11473\cdot 134^{88k+44}\\||-1243\cdot 134^{87k+44}+36917\cdot 134^{86k+43}-2984\cdot 134^{85k+43}+4013\cdot 134^{84k+42}+2907\cdot 134^{83k+42}\\||-48441\cdot 134^{82k+41}+2274\cdot 134^{81k+41}+17419\cdot 134^{80k+40}-4235\cdot 134^{79k+40}+43349\cdot 134^{78k+39}\\||-408\cdot 134^{77k+39}-36459\cdot 134^{76k+38}+4221\cdot 134^{75k+38}-25661\cdot 134^{74k+37}-982\cdot 134^{73k+37}\\||+31887\cdot 134^{72k+36}-1967\cdot 134^{71k+36}-3015\cdot 134^{70k+35}+1802\cdot 134^{69k+35}-17635\cdot 134^{68k+34}\\||+173\cdot 134^{67k+34}+6499\cdot 134^{66k+33}+173\cdot 134^{65k+33}-17635\cdot 134^{64k+32}+1802\cdot 134^{63k+32}\\||-3015\cdot 134^{62k+31}-1967\cdot 134^{61k+31}+31887\cdot 134^{60k+30}-982\cdot 134^{59k+30}-25661\cdot 134^{58k+29}\\||+4221\cdot 134^{57k+29}-36459\cdot 134^{56k+28}-408\cdot 134^{55k+28}+43349\cdot 134^{54k+27}-4235\cdot 134^{53k+27}\\||+17419\cdot 134^{52k+26}+2274\cdot 134^{51k+26}-48441\cdot 134^{50k+25}+2907\cdot 134^{49k+25}+4013\cdot 134^{48k+24}\\||-2984\cdot 134^{47k+24}+36917\cdot 134^{46k+23}-1243\cdot 134^{45k+23}-11473\cdot 134^{44k+22}+1790\cdot 134^{43k+22}\\||-10653\cdot 134^{42k+21}-469\cdot 134^{41k+21}+12801\cdot 134^{40k+20}-734\cdot 134^{39k+20}+1541\cdot 134^{38k+19}\\||-161\cdot 134^{37k+19}+9739\cdot 134^{36k+18}-1374\cdot 134^{35k+18}+11591\cdot 134^{34k+17}+153\cdot 134^{33k+17}\\||-12783\cdot 134^{32k+16}+890\cdot 134^{31k+16}+5829\cdot 134^{30k+15}-2043\cdot 134^{29k+15}+28871\cdot 134^{28k+14}\\||-1468\cdot 134^{27k+14}-2881\cdot 134^{26k+13}+1349\cdot 134^{25k+13}-12203\cdot 134^{24k+12}-318\cdot 134^{23k+12}\\||+19497\cdot 134^{22k+11}-2077\cdot 134^{21k+11}+15499\cdot 134^{20k+10}-130\cdot 134^{19k+10}-7705\cdot 134^{18k+9}\\||+605\cdot 134^{17k+9}+921\cdot 134^{16k+8}-778\cdot 134^{15k+8}+11725\cdot 134^{14k+7}-741\cdot 134^{13k+7}\\||+3111\cdot 134^{12k+6}+60\cdot 134^{11k+6}-1273\cdot 134^{10k+5}-27\cdot 134^{9k+5}+2069\cdot 134^{8k+4}\\||-238\cdot 134^{7k+4}+2345\cdot 134^{6k+3}-127\cdot 134^{5k+3}+703\cdot 134^{4k+2}-22\cdot 134^{3k+2}\\||+67\cdot 134^{2k+1}-134^{k+1}+1)\\|\times|(134^{132k+66}+134^{131k+66}+67\cdot 134^{130k+65}+22\cdot 134^{129k+65}+703\cdot 134^{128k+64}\\||+127\cdot 134^{127k+64}+2345\cdot 134^{126k+63}+238\cdot 134^{125k+63}+2069\cdot 134^{124k+62}+27\cdot 134^{123k+62}\\||-1273\cdot 134^{122k+61}-60\cdot 134^{121k+61}+3111\cdot 134^{120k+60}+741\cdot 134^{119k+60}+11725\cdot 134^{118k+59}\\||+778\cdot 134^{117k+59}+921\cdot 134^{116k+58}-605\cdot 134^{115k+58}-7705\cdot 134^{114k+57}+130\cdot 134^{113k+57}\\||+15499\cdot 134^{112k+56}+2077\cdot 134^{111k+56}+19497\cdot 134^{110k+55}+318\cdot 134^{109k+55}-12203\cdot 134^{108k+54}\\||-1349\cdot 134^{107k+54}-2881\cdot 134^{106k+53}+1468\cdot 134^{105k+53}+28871\cdot 134^{104k+52}+2043\cdot 134^{103k+52}\\||+5829\cdot 134^{102k+51}-890\cdot 134^{101k+51}-12783\cdot 134^{100k+50}-153\cdot 134^{99k+50}+11591\cdot 134^{98k+49}\\||+1374\cdot 134^{97k+49}+9739\cdot 134^{96k+48}+161\cdot 134^{95k+48}+1541\cdot 134^{94k+47}+734\cdot 134^{93k+47}\\||+12801\cdot 134^{92k+46}+469\cdot 134^{91k+46}-10653\cdot 134^{90k+45}-1790\cdot 134^{89k+45}-11473\cdot 134^{88k+44}\\||+1243\cdot 134^{87k+44}+36917\cdot 134^{86k+43}+2984\cdot 134^{85k+43}+4013\cdot 134^{84k+42}-2907\cdot 134^{83k+42}\\||-48441\cdot 134^{82k+41}-2274\cdot 134^{81k+41}+17419\cdot 134^{80k+40}+4235\cdot 134^{79k+40}+43349\cdot 134^{78k+39}\\||+408\cdot 134^{77k+39}-36459\cdot 134^{76k+38}-4221\cdot 134^{75k+38}-25661\cdot 134^{74k+37}+982\cdot 134^{73k+37}\\||+31887\cdot 134^{72k+36}+1967\cdot 134^{71k+36}-3015\cdot 134^{70k+35}-1802\cdot 134^{69k+35}-17635\cdot 134^{68k+34}\\||-173\cdot 134^{67k+34}+6499\cdot 134^{66k+33}-173\cdot 134^{65k+33}-17635\cdot 134^{64k+32}-1802\cdot 134^{63k+32}\\||-3015\cdot 134^{62k+31}+1967\cdot 134^{61k+31}+31887\cdot 134^{60k+30}+982\cdot 134^{59k+30}-25661\cdot 134^{58k+29}\\||-4221\cdot 134^{57k+29}-36459\cdot 134^{56k+28}+408\cdot 134^{55k+28}+43349\cdot 134^{54k+27}+4235\cdot 134^{53k+27}\\||+17419\cdot 134^{52k+26}-2274\cdot 134^{51k+26}-48441\cdot 134^{50k+25}-2907\cdot 134^{49k+25}+4013\cdot 134^{48k+24}\\||+2984\cdot 134^{47k+24}+36917\cdot 134^{46k+23}+1243\cdot 134^{45k+23}-11473\cdot 134^{44k+22}-1790\cdot 134^{43k+22}\\||-10653\cdot 134^{42k+21}+469\cdot 134^{41k+21}+12801\cdot 134^{40k+20}+734\cdot 134^{39k+20}+1541\cdot 134^{38k+19}\\||+161\cdot 134^{37k+19}+9739\cdot 134^{36k+18}+1374\cdot 134^{35k+18}+11591\cdot 134^{34k+17}-153\cdot 134^{33k+17}\\||-12783\cdot 134^{32k+16}-890\cdot 134^{31k+16}+5829\cdot 134^{30k+15}+2043\cdot 134^{29k+15}+28871\cdot 134^{28k+14}\\||+1468\cdot 134^{27k+14}-2881\cdot 134^{26k+13}-1349\cdot 134^{25k+13}-12203\cdot 134^{24k+12}+318\cdot 134^{23k+12}\\||+19497\cdot 134^{22k+11}+2077\cdot 134^{21k+11}+15499\cdot 134^{20k+10}+130\cdot 134^{19k+10}-7705\cdot 134^{18k+9}\\||-605\cdot 134^{17k+9}+921\cdot 134^{16k+8}+778\cdot 134^{15k+8}+11725\cdot 134^{14k+7}+741\cdot 134^{13k+7}\\||+3111\cdot 134^{12k+6}-60\cdot 134^{11k+6}-1273\cdot 134^{10k+5}+27\cdot 134^{9k+5}+2069\cdot 134^{8k+4}\\||+238\cdot 134^{7k+4}+2345\cdot 134^{6k+3}+127\cdot 134^{5k+3}+703\cdot 134^{4k+2}+22\cdot 134^{3k+2}\\||+67\cdot 134^{2k+1}+134^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{137}(137^{2k+1})\cdots{\large\Phi}_{278}(139^{2k+1})$${\large\Phi}_{137}(137^{2k+1})\cdots{\large\Phi}_{278}(139^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{137}(137^{2k+1})|=|137^{272k+136}+137^{270k+135}+137^{268k+134}+137^{266k+133}+137^{264k+132}\\||+137^{262k+131}+137^{260k+130}+137^{258k+129}+137^{256k+128}+137^{254k+127}\\||+137^{252k+126}+137^{250k+125}+137^{248k+124}+137^{246k+123}+137^{244k+122}\\||+137^{242k+121}+137^{240k+120}+137^{238k+119}+137^{236k+118}+137^{234k+117}\\||+137^{232k+116}+137^{230k+115}+137^{228k+114}+137^{226k+113}+137^{224k+112}\\||+137^{222k+111}+137^{220k+110}+137^{218k+109}+137^{216k+108}+137^{214k+107}\\||+137^{212k+106}+137^{210k+105}+137^{208k+104}+137^{206k+103}+137^{204k+102}\\||+137^{202k+101}+137^{200k+100}+137^{198k+99}+137^{196k+98}+137^{194k+97}\\||+137^{192k+96}+137^{190k+95}+137^{188k+94}+137^{186k+93}+137^{184k+92}\\||+137^{182k+91}+137^{180k+90}+137^{178k+89}+137^{176k+88}+137^{174k+87}\\||+137^{172k+86}+137^{170k+85}+137^{168k+84}+137^{166k+83}+137^{164k+82}\\||+137^{162k+81}+137^{160k+80}+137^{158k+79}+137^{156k+78}+137^{154k+77}\\||+137^{152k+76}+137^{150k+75}+137^{148k+74}+137^{146k+73}+137^{144k+72}\\||+137^{142k+71}+137^{140k+70}+137^{138k+69}+137^{136k+68}+137^{134k+67}\\||+137^{132k+66}+137^{130k+65}+137^{128k+64}+137^{126k+63}+137^{124k+62}\\||+137^{122k+61}+137^{120k+60}+137^{118k+59}+137^{116k+58}+137^{114k+57}\\||+137^{112k+56}+137^{110k+55}+137^{108k+54}+137^{106k+53}+137^{104k+52}\\||+137^{102k+51}+137^{100k+50}+137^{98k+49}+137^{96k+48}+137^{94k+47}\\||+137^{92k+46}+137^{90k+45}+137^{88k+44}+137^{86k+43}+137^{84k+42}\\||+137^{82k+41}+137^{80k+40}+137^{78k+39}+137^{76k+38}+137^{74k+37}\\||+137^{72k+36}+137^{70k+35}+137^{68k+34}+137^{66k+33}+137^{64k+32}\\||+137^{62k+31}+137^{60k+30}+137^{58k+29}+137^{56k+28}+137^{54k+27}\\||+137^{52k+26}+137^{50k+25}+137^{48k+24}+137^{46k+23}+137^{44k+22}\\||+137^{42k+21}+137^{40k+20}+137^{38k+19}+137^{36k+18}+137^{34k+17}\\||+137^{32k+16}+137^{30k+15}+137^{28k+14}+137^{26k+13}+137^{24k+12}\\||+137^{22k+11}+137^{20k+10}+137^{18k+9}+137^{16k+8}+137^{14k+7}\\||+137^{12k+6}+137^{10k+5}+137^{8k+4}+137^{6k+3}+137^{4k+2}\\||+137^{2k+1}+1\\|=|(137^{136k+68}-137^{135k+68}+69\cdot 137^{134k+67}-23\cdot 137^{133k+67}+771\cdot 137^{132k+66}\\||-145\cdot 137^{131k+66}+2903\cdot 137^{130k+65}-319\cdot 137^{129k+65}+3071\cdot 137^{128k+64}+5\cdot 137^{127k+64}\\||-5415\cdot 137^{126k+63}+915\cdot 137^{125k+63}-11985\cdot 137^{124k+62}+487\cdot 137^{123k+62}+8237\cdot 137^{122k+61}\\||-2093\cdot 137^{121k+61}+33521\cdot 137^{120k+60}-2253\cdot 137^{119k+60}+1161\cdot 137^{118k+59}+2819\cdot 137^{117k+59}\\||-58129\cdot 137^{116k+58}+4795\cdot 137^{115k+58}-20147\cdot 137^{114k+57}-3239\cdot 137^{113k+57}+89773\cdot 137^{112k+56}\\||-8869\cdot 137^{111k+56}+63183\cdot 137^{110k+55}+1783\cdot 137^{109k+55}-109663\cdot 137^{108k+54}+13157\cdot 137^{107k+54}\\||-120525\cdot 137^{106k+53}+1179\cdot 137^{105k+53}+119545\cdot 137^{104k+52}-17943\cdot 137^{103k+52}+200699\cdot 137^{102k+51}\\||-6941\cdot 137^{101k+51}-99171\cdot 137^{100k+50}+21399\cdot 137^{99k+50}-286007\cdot 137^{98k+49}+14623\cdot 137^{97k+49}\\||+50659\cdot 137^{96k+48}-23249\cdot 137^{95k+48}+373435\cdot 137^{94k+47}-24493\cdot 137^{93k+47}+38673\cdot 137^{92k+46}\\||+21693\cdot 137^{91k+46}-439163\cdot 137^{90k+45}+34945\cdot 137^{89k+45}-161411\cdot 137^{88k+44}-16229\cdot 137^{87k+44}\\||+467625\cdot 137^{86k+43}-44475\cdot 137^{85k+43}+306333\cdot 137^{84k+42}+6797\cdot 137^{83k+42}-445967\cdot 137^{82k+41}\\||+51401\cdot 137^{81k+41}-455713\cdot 137^{80k+40}+5999\cdot 137^{79k+40}+365695\cdot 137^{78k+39}-53767\cdot 137^{77k+39}\\||+579291\cdot 137^{76k+38}-19807\cdot 137^{75k+38}-242827\cdot 137^{74k+37}+51663\cdot 137^{73k+37}-666719\cdot 137^{72k+36}\\||+33539\cdot 137^{71k+36}+82147\cdot 137^{70k+35}-44225\cdot 137^{69k+35}+692513\cdot 137^{68k+34}-44225\cdot 137^{67k+34}\\||+82147\cdot 137^{66k+33}+33539\cdot 137^{65k+33}-666719\cdot 137^{64k+32}+51663\cdot 137^{63k+32}-242827\cdot 137^{62k+31}\\||-19807\cdot 137^{61k+31}+579291\cdot 137^{60k+30}-53767\cdot 137^{59k+30}+365695\cdot 137^{58k+29}+5999\cdot 137^{57k+29}\\||-455713\cdot 137^{56k+28}+51401\cdot 137^{55k+28}-445967\cdot 137^{54k+27}+6797\cdot 137^{53k+27}+306333\cdot 137^{52k+26}\\||-44475\cdot 137^{51k+26}+467625\cdot 137^{50k+25}-16229\cdot 137^{49k+25}-161411\cdot 137^{48k+24}+34945\cdot 137^{47k+24}\\||-439163\cdot 137^{46k+23}+21693\cdot 137^{45k+23}+38673\cdot 137^{44k+22}-24493\cdot 137^{43k+22}+373435\cdot 137^{42k+21}\\||-23249\cdot 137^{41k+21}+50659\cdot 137^{40k+20}+14623\cdot 137^{39k+20}-286007\cdot 137^{38k+19}+21399\cdot 137^{37k+19}\\||-99171\cdot 137^{36k+18}-6941\cdot 137^{35k+18}+200699\cdot 137^{34k+17}-17943\cdot 137^{33k+17}+119545\cdot 137^{32k+16}\\||+1179\cdot 137^{31k+16}-120525\cdot 137^{30k+15}+13157\cdot 137^{29k+15}-109663\cdot 137^{28k+14}+1783\cdot 137^{27k+14}\\||+63183\cdot 137^{26k+13}-8869\cdot 137^{25k+13}+89773\cdot 137^{24k+12}-3239\cdot 137^{23k+12}-20147\cdot 137^{22k+11}\\||+4795\cdot 137^{21k+11}-58129\cdot 137^{20k+10}+2819\cdot 137^{19k+10}+1161\cdot 137^{18k+9}-2253\cdot 137^{17k+9}\\||+33521\cdot 137^{16k+8}-2093\cdot 137^{15k+8}+8237\cdot 137^{14k+7}+487\cdot 137^{13k+7}-11985\cdot 137^{12k+6}\\||+915\cdot 137^{11k+6}-5415\cdot 137^{10k+5}+5\cdot 137^{9k+5}+3071\cdot 137^{8k+4}-319\cdot 137^{7k+4}\\||+2903\cdot 137^{6k+3}-145\cdot 137^{5k+3}+771\cdot 137^{4k+2}-23\cdot 137^{3k+2}+69\cdot 137^{2k+1}\\||-137^{k+1}+1)\\|\times|(137^{136k+68}+137^{135k+68}+69\cdot 137^{134k+67}+23\cdot 137^{133k+67}+771\cdot 137^{132k+66}\\||+145\cdot 137^{131k+66}+2903\cdot 137^{130k+65}+319\cdot 137^{129k+65}+3071\cdot 137^{128k+64}-5\cdot 137^{127k+64}\\||-5415\cdot 137^{126k+63}-915\cdot 137^{125k+63}-11985\cdot 137^{124k+62}-487\cdot 137^{123k+62}+8237\cdot 137^{122k+61}\\||+2093\cdot 137^{121k+61}+33521\cdot 137^{120k+60}+2253\cdot 137^{119k+60}+1161\cdot 137^{118k+59}-2819\cdot 137^{117k+59}\\||-58129\cdot 137^{116k+58}-4795\cdot 137^{115k+58}-20147\cdot 137^{114k+57}+3239\cdot 137^{113k+57}+89773\cdot 137^{112k+56}\\||+8869\cdot 137^{111k+56}+63183\cdot 137^{110k+55}-1783\cdot 137^{109k+55}-109663\cdot 137^{108k+54}-13157\cdot 137^{107k+54}\\||-120525\cdot 137^{106k+53}-1179\cdot 137^{105k+53}+119545\cdot 137^{104k+52}+17943\cdot 137^{103k+52}+200699\cdot 137^{102k+51}\\||+6941\cdot 137^{101k+51}-99171\cdot 137^{100k+50}-21399\cdot 137^{99k+50}-286007\cdot 137^{98k+49}-14623\cdot 137^{97k+49}\\||+50659\cdot 137^{96k+48}+23249\cdot 137^{95k+48}+373435\cdot 137^{94k+47}+24493\cdot 137^{93k+47}+38673\cdot 137^{92k+46}\\||-21693\cdot 137^{91k+46}-439163\cdot 137^{90k+45}-34945\cdot 137^{89k+45}-161411\cdot 137^{88k+44}+16229\cdot 137^{87k+44}\\||+467625\cdot 137^{86k+43}+44475\cdot 137^{85k+43}+306333\cdot 137^{84k+42}-6797\cdot 137^{83k+42}-445967\cdot 137^{82k+41}\\||-51401\cdot 137^{81k+41}-455713\cdot 137^{80k+40}-5999\cdot 137^{79k+40}+365695\cdot 137^{78k+39}+53767\cdot 137^{77k+39}\\||+579291\cdot 137^{76k+38}+19807\cdot 137^{75k+38}-242827\cdot 137^{74k+37}-51663\cdot 137^{73k+37}-666719\cdot 137^{72k+36}\\||-33539\cdot 137^{71k+36}+82147\cdot 137^{70k+35}+44225\cdot 137^{69k+35}+692513\cdot 137^{68k+34}+44225\cdot 137^{67k+34}\\||+82147\cdot 137^{66k+33}-33539\cdot 137^{65k+33}-666719\cdot 137^{64k+32}-51663\cdot 137^{63k+32}-242827\cdot 137^{62k+31}\\||+19807\cdot 137^{61k+31}+579291\cdot 137^{60k+30}+53767\cdot 137^{59k+30}+365695\cdot 137^{58k+29}-5999\cdot 137^{57k+29}\\||-455713\cdot 137^{56k+28}-51401\cdot 137^{55k+28}-445967\cdot 137^{54k+27}-6797\cdot 137^{53k+27}+306333\cdot 137^{52k+26}\\||+44475\cdot 137^{51k+26}+467625\cdot 137^{50k+25}+16229\cdot 137^{49k+25}-161411\cdot 137^{48k+24}-34945\cdot 137^{47k+24}\\||-439163\cdot 137^{46k+23}-21693\cdot 137^{45k+23}+38673\cdot 137^{44k+22}+24493\cdot 137^{43k+22}+373435\cdot 137^{42k+21}\\||+23249\cdot 137^{41k+21}+50659\cdot 137^{40k+20}-14623\cdot 137^{39k+20}-286007\cdot 137^{38k+19}-21399\cdot 137^{37k+19}\\||-99171\cdot 137^{36k+18}+6941\cdot 137^{35k+18}+200699\cdot 137^{34k+17}+17943\cdot 137^{33k+17}+119545\cdot 137^{32k+16}\\||-1179\cdot 137^{31k+16}-120525\cdot 137^{30k+15}-13157\cdot 137^{29k+15}-109663\cdot 137^{28k+14}-1783\cdot 137^{27k+14}\\||+63183\cdot 137^{26k+13}+8869\cdot 137^{25k+13}+89773\cdot 137^{24k+12}+3239\cdot 137^{23k+12}-20147\cdot 137^{22k+11}\\||-4795\cdot 137^{21k+11}-58129\cdot 137^{20k+10}-2819\cdot 137^{19k+10}+1161\cdot 137^{18k+9}+2253\cdot 137^{17k+9}\\||+33521\cdot 137^{16k+8}+2093\cdot 137^{15k+8}+8237\cdot 137^{14k+7}-487\cdot 137^{13k+7}-11985\cdot 137^{12k+6}\\||-915\cdot 137^{11k+6}-5415\cdot 137^{10k+5}-5\cdot 137^{9k+5}+3071\cdot 137^{8k+4}+319\cdot 137^{7k+4}\\||+2903\cdot 137^{6k+3}+145\cdot 137^{5k+3}+771\cdot 137^{4k+2}+23\cdot 137^{3k+2}+69\cdot 137^{2k+1}\\||+137^{k+1}+1)\\{\large\Phi}_{276}(138^{2k+1})|=|138^{176k+88}+138^{172k+86}-138^{164k+82}-138^{160k+80}+138^{152k+76}\\||+138^{148k+74}-138^{140k+70}-138^{136k+68}+138^{128k+64}+138^{124k+62}\\||-138^{116k+58}-138^{112k+56}+138^{104k+52}+138^{100k+50}-138^{92k+46}\\||-138^{88k+44}-138^{84k+42}+138^{76k+38}+138^{72k+36}-138^{64k+32}\\||-138^{60k+30}+138^{52k+26}+138^{48k+24}-138^{40k+20}-138^{36k+18}\\||+138^{28k+14}+138^{24k+12}-138^{16k+8}-138^{12k+6}+138^{4k+2}+1\\|=|(138^{88k+44}-138^{87k+44}+69\cdot 138^{86k+43}-23\cdot 138^{85k+43}+794\cdot 138^{84k+42}\\||-159\cdot 138^{83k+42}+3657\cdot 138^{82k+41}-519\cdot 138^{81k+41}+8737\cdot 138^{80k+40}-910\cdot 138^{79k+40}\\||+10764\cdot 138^{78k+39}-664\cdot 138^{77k+39}+1151\cdot 138^{76k+38}+755\cdot 138^{75k+38}-20769\cdot 138^{74k+37}\\||+2729\cdot 138^{73k+37}-39830\cdot 138^{72k+36}+3539\cdot 138^{71k+36}-35949\cdot 138^{70k+35}+1977\cdot 138^{69k+35}\\||-5221\cdot 138^{68k+34}-1296\cdot 138^{67k+34}+35052\cdot 138^{66k+33}-4401\cdot 138^{65k+33}+63475\cdot 138^{64k+32}\\||-5914\cdot 138^{63k+32}+69207\cdot 138^{62k+31}-5297\cdot 138^{61k+31}+48044\cdot 138^{60k+30}-2254\cdot 138^{59k+30}\\||-1725\cdot 138^{58k+29}+2920\cdot 138^{57k+29}-67295\cdot 138^{56k+28}+8132\cdot 138^{55k+28}-113712\cdot 138^{54k+27}\\||+10029\cdot 138^{53k+27}-106243\cdot 138^{52k+26}+6840\cdot 138^{51k+26}-44091\cdot 138^{50k+25}+251\cdot 138^{49k+25}\\||+37408\cdot 138^{48k+24}-6154\cdot 138^{47k+24}+98601\cdot 138^{46k+23}-9768\cdot 138^{45k+23}+120167\cdot 138^{44k+22}\\||-9768\cdot 138^{43k+22}+98601\cdot 138^{42k+21}-6154\cdot 138^{41k+21}+37408\cdot 138^{40k+20}+251\cdot 138^{39k+20}\\||-44091\cdot 138^{38k+19}+6840\cdot 138^{37k+19}-106243\cdot 138^{36k+18}+10029\cdot 138^{35k+18}-113712\cdot 138^{34k+17}\\||+8132\cdot 138^{33k+17}-67295\cdot 138^{32k+16}+2920\cdot 138^{31k+16}-1725\cdot 138^{30k+15}-2254\cdot 138^{29k+15}\\||+48044\cdot 138^{28k+14}-5297\cdot 138^{27k+14}+69207\cdot 138^{26k+13}-5914\cdot 138^{25k+13}+63475\cdot 138^{24k+12}\\||-4401\cdot 138^{23k+12}+35052\cdot 138^{22k+11}-1296\cdot 138^{21k+11}-5221\cdot 138^{20k+10}+1977\cdot 138^{19k+10}\\||-35949\cdot 138^{18k+9}+3539\cdot 138^{17k+9}-39830\cdot 138^{16k+8}+2729\cdot 138^{15k+8}-20769\cdot 138^{14k+7}\\||+755\cdot 138^{13k+7}+1151\cdot 138^{12k+6}-664\cdot 138^{11k+6}+10764\cdot 138^{10k+5}-910\cdot 138^{9k+5}\\||+8737\cdot 138^{8k+4}-519\cdot 138^{7k+4}+3657\cdot 138^{6k+3}-159\cdot 138^{5k+3}+794\cdot 138^{4k+2}\\||-23\cdot 138^{3k+2}+69\cdot 138^{2k+1}-138^{k+1}+1)\\|\times|(138^{88k+44}+138^{87k+44}+69\cdot 138^{86k+43}+23\cdot 138^{85k+43}+794\cdot 138^{84k+42}\\||+159\cdot 138^{83k+42}+3657\cdot 138^{82k+41}+519\cdot 138^{81k+41}+8737\cdot 138^{80k+40}+910\cdot 138^{79k+40}\\||+10764\cdot 138^{78k+39}+664\cdot 138^{77k+39}+1151\cdot 138^{76k+38}-755\cdot 138^{75k+38}-20769\cdot 138^{74k+37}\\||-2729\cdot 138^{73k+37}-39830\cdot 138^{72k+36}-3539\cdot 138^{71k+36}-35949\cdot 138^{70k+35}-1977\cdot 138^{69k+35}\\||-5221\cdot 138^{68k+34}+1296\cdot 138^{67k+34}+35052\cdot 138^{66k+33}+4401\cdot 138^{65k+33}+63475\cdot 138^{64k+32}\\||+5914\cdot 138^{63k+32}+69207\cdot 138^{62k+31}+5297\cdot 138^{61k+31}+48044\cdot 138^{60k+30}+2254\cdot 138^{59k+30}\\||-1725\cdot 138^{58k+29}-2920\cdot 138^{57k+29}-67295\cdot 138^{56k+28}-8132\cdot 138^{55k+28}-113712\cdot 138^{54k+27}\\||-10029\cdot 138^{53k+27}-106243\cdot 138^{52k+26}-6840\cdot 138^{51k+26}-44091\cdot 138^{50k+25}-251\cdot 138^{49k+25}\\||+37408\cdot 138^{48k+24}+6154\cdot 138^{47k+24}+98601\cdot 138^{46k+23}+9768\cdot 138^{45k+23}+120167\cdot 138^{44k+22}\\||+9768\cdot 138^{43k+22}+98601\cdot 138^{42k+21}+6154\cdot 138^{41k+21}+37408\cdot 138^{40k+20}-251\cdot 138^{39k+20}\\||-44091\cdot 138^{38k+19}-6840\cdot 138^{37k+19}-106243\cdot 138^{36k+18}-10029\cdot 138^{35k+18}-113712\cdot 138^{34k+17}\\||-8132\cdot 138^{33k+17}-67295\cdot 138^{32k+16}-2920\cdot 138^{31k+16}-1725\cdot 138^{30k+15}+2254\cdot 138^{29k+15}\\||+48044\cdot 138^{28k+14}+5297\cdot 138^{27k+14}+69207\cdot 138^{26k+13}+5914\cdot 138^{25k+13}+63475\cdot 138^{24k+12}\\||+4401\cdot 138^{23k+12}+35052\cdot 138^{22k+11}+1296\cdot 138^{21k+11}-5221\cdot 138^{20k+10}-1977\cdot 138^{19k+10}\\||-35949\cdot 138^{18k+9}-3539\cdot 138^{17k+9}-39830\cdot 138^{16k+8}-2729\cdot 138^{15k+8}-20769\cdot 138^{14k+7}\\||-755\cdot 138^{13k+7}+1151\cdot 138^{12k+6}+664\cdot 138^{11k+6}+10764\cdot 138^{10k+5}+910\cdot 138^{9k+5}\\||+8737\cdot 138^{8k+4}+519\cdot 138^{7k+4}+3657\cdot 138^{6k+3}+159\cdot 138^{5k+3}+794\cdot 138^{4k+2}\\||+23\cdot 138^{3k+2}+69\cdot 138^{2k+1}+138^{k+1}+1)\\{\large\Phi}_{278}(139^{2k+1})|=|139^{276k+138}-139^{274k+137}+139^{272k+136}-139^{270k+135}+139^{268k+134}\\||-139^{266k+133}+139^{264k+132}-139^{262k+131}+139^{260k+130}-139^{258k+129}\\||+139^{256k+128}-139^{254k+127}+139^{252k+126}-139^{250k+125}+139^{248k+124}\\||-139^{246k+123}+139^{244k+122}-139^{242k+121}+139^{240k+120}-139^{238k+119}\\||+139^{236k+118}-139^{234k+117}+139^{232k+116}-139^{230k+115}+139^{228k+114}\\||-139^{226k+113}+139^{224k+112}-139^{222k+111}+139^{220k+110}-139^{218k+109}\\||+139^{216k+108}-139^{214k+107}+139^{212k+106}-139^{210k+105}+139^{208k+104}\\||-139^{206k+103}+139^{204k+102}-139^{202k+101}+139^{200k+100}-139^{198k+99}\\||+139^{196k+98}-139^{194k+97}+139^{192k+96}-139^{190k+95}+139^{188k+94}\\||-139^{186k+93}+139^{184k+92}-139^{182k+91}+139^{180k+90}-139^{178k+89}\\||+139^{176k+88}-139^{174k+87}+139^{172k+86}-139^{170k+85}+139^{168k+84}\\||-139^{166k+83}+139^{164k+82}-139^{162k+81}+139^{160k+80}-139^{158k+79}\\||+139^{156k+78}-139^{154k+77}+139^{152k+76}-139^{150k+75}+139^{148k+74}\\||-139^{146k+73}+139^{144k+72}-139^{142k+71}+139^{140k+70}-139^{138k+69}\\||+139^{136k+68}-139^{134k+67}+139^{132k+66}-139^{130k+65}+139^{128k+64}\\||-139^{126k+63}+139^{124k+62}-139^{122k+61}+139^{120k+60}-139^{118k+59}\\||+139^{116k+58}-139^{114k+57}+139^{112k+56}-139^{110k+55}+139^{108k+54}\\||-139^{106k+53}+139^{104k+52}-139^{102k+51}+139^{100k+50}-139^{98k+49}\\||+139^{96k+48}-139^{94k+47}+139^{92k+46}-139^{90k+45}+139^{88k+44}\\||-139^{86k+43}+139^{84k+42}-139^{82k+41}+139^{80k+40}-139^{78k+39}\\||+139^{76k+38}-139^{74k+37}+139^{72k+36}-139^{70k+35}+139^{68k+34}\\||-139^{66k+33}+139^{64k+32}-139^{62k+31}+139^{60k+30}-139^{58k+29}\\||+139^{56k+28}-139^{54k+27}+139^{52k+26}-139^{50k+25}+139^{48k+24}\\||-139^{46k+23}+139^{44k+22}-139^{42k+21}+139^{40k+20}-139^{38k+19}\\||+139^{36k+18}-139^{34k+17}+139^{32k+16}-139^{30k+15}+139^{28k+14}\\||-139^{26k+13}+139^{24k+12}-139^{22k+11}+139^{20k+10}-139^{18k+9}\\||+139^{16k+8}-139^{14k+7}+139^{12k+6}-139^{10k+5}+139^{8k+4}\\||-139^{6k+3}+139^{4k+2}-139^{2k+1}+1\\|=|(139^{138k+69}-139^{137k+69}+69\cdot 139^{136k+68}-23\cdot 139^{135k+68}+817\cdot 139^{134k+67}\\||-173\cdot 139^{133k+67}+4439\cdot 139^{132k+66}-739\cdot 139^{131k+66}+15767\cdot 139^{130k+65}-2263\cdot 139^{129k+65}\\||+42619\cdot 139^{128k+64}-5491\cdot 139^{127k+64}+94083\cdot 139^{126k+63}-11151\cdot 139^{125k+63}+177323\cdot 139^{124k+62}\\||-19641\cdot 139^{123k+62}+293563\cdot 139^{122k+61}-30721\cdot 139^{121k+61}+435901\cdot 139^{120k+60}-43491\cdot 139^{119k+60}\\||+590593\cdot 139^{118k+59}-56599\cdot 139^{117k+59}+740963\cdot 139^{116k+58}-68709\cdot 139^{115k+58}+873439\cdot 139^{114k+57}\\||-78911\cdot 139^{113k+57}+980579\cdot 139^{112k+56}-86889\cdot 139^{111k+56}+1062391\cdot 139^{110k+55}-92895\cdot 139^{109k+55}\\||+1123681\cdot 139^{108k+54}-97437\cdot 139^{107k+54}+1171561\cdot 139^{106k+53}-101199\cdot 139^{105k+53}+1214421\cdot 139^{104k+52}\\||-104881\cdot 139^{103k+52}+1260651\cdot 139^{102k+51}-109243\cdot 139^{101k+51}+1319293\cdot 139^{100k+50}-114939\cdot 139^{99k+50}\\||+1395531\cdot 139^{98k+49}-122163\cdot 139^{97k+49}+1488437\cdot 139^{96k+48}-130479\cdot 139^{95k+48}+1587801\cdot 139^{94k+47}\\||-138653\cdot 139^{93k+47}+1677019\cdot 139^{92k+46}-145295\cdot 139^{91k+46}+1741315\cdot 139^{90k+45}-149411\cdot 139^{89k+45}\\||+1774391\cdot 139^{88k+44}-151111\cdot 139^{87k+44}+1785229\cdot 139^{86k+43}-151639\cdot 139^{85k+43}+1791973\cdot 139^{84k+42}\\||-152709\cdot 139^{83k+42}+1815109\cdot 139^{82k+41}-155809\cdot 139^{81k+41}+1865897\cdot 139^{80k+40}-161259\cdot 139^{79k+40}\\||+1941639\cdot 139^{78k+39}-168381\cdot 139^{77k+39}+2029357\cdot 139^{76k+38}-175725\cdot 139^{75k+38}+2110551\cdot 139^{74k+37}\\||-181875\cdot 139^{73k+37}+2171649\cdot 139^{72k+36}-185889\cdot 139^{71k+36}+2203573\cdot 139^{70k+35}-187241\cdot 139^{69k+35}\\||+2203573\cdot 139^{68k+34}-185889\cdot 139^{67k+34}+2171649\cdot 139^{66k+33}-181875\cdot 139^{65k+33}+2110551\cdot 139^{64k+32}\\||-175725\cdot 139^{63k+32}+2029357\cdot 139^{62k+31}-168381\cdot 139^{61k+31}+1941639\cdot 139^{60k+30}-161259\cdot 139^{59k+30}\\||+1865897\cdot 139^{58k+29}-155809\cdot 139^{57k+29}+1815109\cdot 139^{56k+28}-152709\cdot 139^{55k+28}+1791973\cdot 139^{54k+27}\\||-151639\cdot 139^{53k+27}+1785229\cdot 139^{52k+26}-151111\cdot 139^{51k+26}+1774391\cdot 139^{50k+25}-149411\cdot 139^{49k+25}\\||+1741315\cdot 139^{48k+24}-145295\cdot 139^{47k+24}+1677019\cdot 139^{46k+23}-138653\cdot 139^{45k+23}+1587801\cdot 139^{44k+22}\\||-130479\cdot 139^{43k+22}+1488437\cdot 139^{42k+21}-122163\cdot 139^{41k+21}+1395531\cdot 139^{40k+20}-114939\cdot 139^{39k+20}\\||+1319293\cdot 139^{38k+19}-109243\cdot 139^{37k+19}+1260651\cdot 139^{36k+18}-104881\cdot 139^{35k+18}+1214421\cdot 139^{34k+17}\\||-101199\cdot 139^{33k+17}+1171561\cdot 139^{32k+16}-97437\cdot 139^{31k+16}+1123681\cdot 139^{30k+15}-92895\cdot 139^{29k+15}\\||+1062391\cdot 139^{28k+14}-86889\cdot 139^{27k+14}+980579\cdot 139^{26k+13}-78911\cdot 139^{25k+13}+873439\cdot 139^{24k+12}\\||-68709\cdot 139^{23k+12}+740963\cdot 139^{22k+11}-56599\cdot 139^{21k+11}+590593\cdot 139^{20k+10}-43491\cdot 139^{19k+10}\\||+435901\cdot 139^{18k+9}-30721\cdot 139^{17k+9}+293563\cdot 139^{16k+8}-19641\cdot 139^{15k+8}+177323\cdot 139^{14k+7}\\||-11151\cdot 139^{13k+7}+94083\cdot 139^{12k+6}-5491\cdot 139^{11k+6}+42619\cdot 139^{10k+5}-2263\cdot 139^{9k+5}\\||+15767\cdot 139^{8k+4}-739\cdot 139^{7k+4}+4439\cdot 139^{6k+3}-173\cdot 139^{5k+3}+817\cdot 139^{4k+2}\\||-23\cdot 139^{3k+2}+69\cdot 139^{2k+1}-139^{k+1}+1)\\|\times|(139^{138k+69}+139^{137k+69}+69\cdot 139^{136k+68}+23\cdot 139^{135k+68}+817\cdot 139^{134k+67}\\||+173\cdot 139^{133k+67}+4439\cdot 139^{132k+66}+739\cdot 139^{131k+66}+15767\cdot 139^{130k+65}+2263\cdot 139^{129k+65}\\||+42619\cdot 139^{128k+64}+5491\cdot 139^{127k+64}+94083\cdot 139^{126k+63}+11151\cdot 139^{125k+63}+177323\cdot 139^{124k+62}\\||+19641\cdot 139^{123k+62}+293563\cdot 139^{122k+61}+30721\cdot 139^{121k+61}+435901\cdot 139^{120k+60}+43491\cdot 139^{119k+60}\\||+590593\cdot 139^{118k+59}+56599\cdot 139^{117k+59}+740963\cdot 139^{116k+58}+68709\cdot 139^{115k+58}+873439\cdot 139^{114k+57}\\||+78911\cdot 139^{113k+57}+980579\cdot 139^{112k+56}+86889\cdot 139^{111k+56}+1062391\cdot 139^{110k+55}+92895\cdot 139^{109k+55}\\||+1123681\cdot 139^{108k+54}+97437\cdot 139^{107k+54}+1171561\cdot 139^{106k+53}+101199\cdot 139^{105k+53}+1214421\cdot 139^{104k+52}\\||+104881\cdot 139^{103k+52}+1260651\cdot 139^{102k+51}+109243\cdot 139^{101k+51}+1319293\cdot 139^{100k+50}+114939\cdot 139^{99k+50}\\||+1395531\cdot 139^{98k+49}+122163\cdot 139^{97k+49}+1488437\cdot 139^{96k+48}+130479\cdot 139^{95k+48}+1587801\cdot 139^{94k+47}\\||+138653\cdot 139^{93k+47}+1677019\cdot 139^{92k+46}+145295\cdot 139^{91k+46}+1741315\cdot 139^{90k+45}+149411\cdot 139^{89k+45}\\||+1774391\cdot 139^{88k+44}+151111\cdot 139^{87k+44}+1785229\cdot 139^{86k+43}+151639\cdot 139^{85k+43}+1791973\cdot 139^{84k+42}\\||+152709\cdot 139^{83k+42}+1815109\cdot 139^{82k+41}+155809\cdot 139^{81k+41}+1865897\cdot 139^{80k+40}+161259\cdot 139^{79k+40}\\||+1941639\cdot 139^{78k+39}+168381\cdot 139^{77k+39}+2029357\cdot 139^{76k+38}+175725\cdot 139^{75k+38}+2110551\cdot 139^{74k+37}\\||+181875\cdot 139^{73k+37}+2171649\cdot 139^{72k+36}+185889\cdot 139^{71k+36}+2203573\cdot 139^{70k+35}+187241\cdot 139^{69k+35}\\||+2203573\cdot 139^{68k+34}+185889\cdot 139^{67k+34}+2171649\cdot 139^{66k+33}+181875\cdot 139^{65k+33}+2110551\cdot 139^{64k+32}\\||+175725\cdot 139^{63k+32}+2029357\cdot 139^{62k+31}+168381\cdot 139^{61k+31}+1941639\cdot 139^{60k+30}+161259\cdot 139^{59k+30}\\||+1865897\cdot 139^{58k+29}+155809\cdot 139^{57k+29}+1815109\cdot 139^{56k+28}+152709\cdot 139^{55k+28}+1791973\cdot 139^{54k+27}\\||+151639\cdot 139^{53k+27}+1785229\cdot 139^{52k+26}+151111\cdot 139^{51k+26}+1774391\cdot 139^{50k+25}+149411\cdot 139^{49k+25}\\||+1741315\cdot 139^{48k+24}+145295\cdot 139^{47k+24}+1677019\cdot 139^{46k+23}+138653\cdot 139^{45k+23}+1587801\cdot 139^{44k+22}\\||+130479\cdot 139^{43k+22}+1488437\cdot 139^{42k+21}+122163\cdot 139^{41k+21}+1395531\cdot 139^{40k+20}+114939\cdot 139^{39k+20}\\||+1319293\cdot 139^{38k+19}+109243\cdot 139^{37k+19}+1260651\cdot 139^{36k+18}+104881\cdot 139^{35k+18}+1214421\cdot 139^{34k+17}\\||+101199\cdot 139^{33k+17}+1171561\cdot 139^{32k+16}+97437\cdot 139^{31k+16}+1123681\cdot 139^{30k+15}+92895\cdot 139^{29k+15}\\||+1062391\cdot 139^{28k+14}+86889\cdot 139^{27k+14}+980579\cdot 139^{26k+13}+78911\cdot 139^{25k+13}+873439\cdot 139^{24k+12}\\||+68709\cdot 139^{23k+12}+740963\cdot 139^{22k+11}+56599\cdot 139^{21k+11}+590593\cdot 139^{20k+10}+43491\cdot 139^{19k+10}\\||+435901\cdot 139^{18k+9}+30721\cdot 139^{17k+9}+293563\cdot 139^{16k+8}+19641\cdot 139^{15k+8}+177323\cdot 139^{14k+7}\\||+11151\cdot 139^{13k+7}+94083\cdot 139^{12k+6}+5491\cdot 139^{11k+6}+42619\cdot 139^{10k+5}+2263\cdot 139^{9k+5}\\||+15767\cdot 139^{8k+4}+739\cdot 139^{7k+4}+4439\cdot 139^{6k+3}+173\cdot 139^{5k+3}+817\cdot 139^{4k+2}\\||+23\cdot 139^{3k+2}+69\cdot 139^{2k+1}+139^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{141}(141^{2k+1})\cdots{\large\Phi}_{145}(145^{2k+1})$${\large\Phi}_{141}(141^{2k+1})\cdots{\large\Phi}_{145}(145^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{141}(141^{2k+1})|=|141^{184k+92}-141^{182k+91}+141^{178k+89}-141^{176k+88}+141^{172k+86}\\||-141^{170k+85}+141^{166k+83}-141^{164k+82}+141^{160k+80}-141^{158k+79}\\||+141^{154k+77}-141^{152k+76}+141^{148k+74}-141^{146k+73}+141^{142k+71}\\||-141^{140k+70}+141^{136k+68}-141^{134k+67}+141^{130k+65}-141^{128k+64}\\||+141^{124k+62}-141^{122k+61}+141^{118k+59}-141^{116k+58}+141^{112k+56}\\||-141^{110k+55}+141^{106k+53}-141^{104k+52}+141^{100k+50}-141^{98k+49}\\||+141^{94k+47}-141^{92k+46}+141^{90k+45}-141^{86k+43}+141^{84k+42}\\||-141^{80k+40}+141^{78k+39}-141^{74k+37}+141^{72k+36}-141^{68k+34}\\||+141^{66k+33}-141^{62k+31}+141^{60k+30}-141^{56k+28}+141^{54k+27}\\||-141^{50k+25}+141^{48k+24}-141^{44k+22}+141^{42k+21}-141^{38k+19}\\||+141^{36k+18}-141^{32k+16}+141^{30k+15}-141^{26k+13}+141^{24k+12}\\||-141^{20k+10}+141^{18k+9}-141^{14k+7}+141^{12k+6}-141^{8k+4}\\||+141^{6k+3}-141^{2k+1}+1\\|=|(141^{92k+46}-141^{91k+46}+70\cdot 141^{90k+45}-23\cdot 141^{89k+45}+793\cdot 141^{88k+44}\\||-154\cdot 141^{87k+44}+3499\cdot 141^{86k+43}-485\cdot 141^{85k+43}+8452\cdot 141^{84k+42}-969\cdot 141^{83k+42}\\||+15115\cdot 141^{82k+41}-1658\cdot 141^{81k+41}+25549\cdot 141^{80k+40}-2749\cdot 141^{79k+40}+40558\cdot 141^{78k+39}\\||-4119\cdot 141^{77k+39}+57709\cdot 141^{76k+38}-5668\cdot 141^{75k+38}+77917\cdot 141^{74k+37}-7515\cdot 141^{73k+37}\\||+100522\cdot 141^{72k+36}-9361\cdot 141^{71k+36}+121033\cdot 141^{70k+35}-10980\cdot 141^{69k+35}+139189\cdot 141^{68k+34}\\||-12373\cdot 141^{67k+34}+152848\cdot 141^{66k+33}-13193\cdot 141^{65k+33}+158641\cdot 141^{64k+32}-13408\cdot 141^{63k+32}\\||+158305\cdot 141^{62k+31}-13083\cdot 141^{61k+31}+149896\cdot 141^{60k+30}-11975\cdot 141^{59k+30}+133123\cdot 141^{58k+29}\\||-10396\cdot 141^{57k+29}+113251\cdot 141^{56k+28}-8603\cdot 141^{55k+28}+90076\cdot 141^{54k+27}-6547\cdot 141^{53k+27}\\||+66361\cdot 141^{52k+26}-4782\cdot 141^{51k+26}+48991\cdot 141^{50k+25}-3575\cdot 141^{49k+25}+36940\cdot 141^{48k+24}\\||-2779\cdot 141^{47k+24}+31537\cdot 141^{46k+23}-2779\cdot 141^{45k+23}+36940\cdot 141^{44k+22}-3575\cdot 141^{43k+22}\\||+48991\cdot 141^{42k+21}-4782\cdot 141^{41k+21}+66361\cdot 141^{40k+20}-6547\cdot 141^{39k+20}+90076\cdot 141^{38k+19}\\||-8603\cdot 141^{37k+19}+113251\cdot 141^{36k+18}-10396\cdot 141^{35k+18}+133123\cdot 141^{34k+17}-11975\cdot 141^{33k+17}\\||+149896\cdot 141^{32k+16}-13083\cdot 141^{31k+16}+158305\cdot 141^{30k+15}-13408\cdot 141^{29k+15}+158641\cdot 141^{28k+14}\\||-13193\cdot 141^{27k+14}+152848\cdot 141^{26k+13}-12373\cdot 141^{25k+13}+139189\cdot 141^{24k+12}-10980\cdot 141^{23k+12}\\||+121033\cdot 141^{22k+11}-9361\cdot 141^{21k+11}+100522\cdot 141^{20k+10}-7515\cdot 141^{19k+10}+77917\cdot 141^{18k+9}\\||-5668\cdot 141^{17k+9}+57709\cdot 141^{16k+8}-4119\cdot 141^{15k+8}+40558\cdot 141^{14k+7}-2749\cdot 141^{13k+7}\\||+25549\cdot 141^{12k+6}-1658\cdot 141^{11k+6}+15115\cdot 141^{10k+5}-969\cdot 141^{9k+5}+8452\cdot 141^{8k+4}\\||-485\cdot 141^{7k+4}+3499\cdot 141^{6k+3}-154\cdot 141^{5k+3}+793\cdot 141^{4k+2}-23\cdot 141^{3k+2}\\||+70\cdot 141^{2k+1}-141^{k+1}+1)\\|\times|(141^{92k+46}+141^{91k+46}+70\cdot 141^{90k+45}+23\cdot 141^{89k+45}+793\cdot 141^{88k+44}\\||+154\cdot 141^{87k+44}+3499\cdot 141^{86k+43}+485\cdot 141^{85k+43}+8452\cdot 141^{84k+42}+969\cdot 141^{83k+42}\\||+15115\cdot 141^{82k+41}+1658\cdot 141^{81k+41}+25549\cdot 141^{80k+40}+2749\cdot 141^{79k+40}+40558\cdot 141^{78k+39}\\||+4119\cdot 141^{77k+39}+57709\cdot 141^{76k+38}+5668\cdot 141^{75k+38}+77917\cdot 141^{74k+37}+7515\cdot 141^{73k+37}\\||+100522\cdot 141^{72k+36}+9361\cdot 141^{71k+36}+121033\cdot 141^{70k+35}+10980\cdot 141^{69k+35}+139189\cdot 141^{68k+34}\\||+12373\cdot 141^{67k+34}+152848\cdot 141^{66k+33}+13193\cdot 141^{65k+33}+158641\cdot 141^{64k+32}+13408\cdot 141^{63k+32}\\||+158305\cdot 141^{62k+31}+13083\cdot 141^{61k+31}+149896\cdot 141^{60k+30}+11975\cdot 141^{59k+30}+133123\cdot 141^{58k+29}\\||+10396\cdot 141^{57k+29}+113251\cdot 141^{56k+28}+8603\cdot 141^{55k+28}+90076\cdot 141^{54k+27}+6547\cdot 141^{53k+27}\\||+66361\cdot 141^{52k+26}+4782\cdot 141^{51k+26}+48991\cdot 141^{50k+25}+3575\cdot 141^{49k+25}+36940\cdot 141^{48k+24}\\||+2779\cdot 141^{47k+24}+31537\cdot 141^{46k+23}+2779\cdot 141^{45k+23}+36940\cdot 141^{44k+22}+3575\cdot 141^{43k+22}\\||+48991\cdot 141^{42k+21}+4782\cdot 141^{41k+21}+66361\cdot 141^{40k+20}+6547\cdot 141^{39k+20}+90076\cdot 141^{38k+19}\\||+8603\cdot 141^{37k+19}+113251\cdot 141^{36k+18}+10396\cdot 141^{35k+18}+133123\cdot 141^{34k+17}+11975\cdot 141^{33k+17}\\||+149896\cdot 141^{32k+16}+13083\cdot 141^{31k+16}+158305\cdot 141^{30k+15}+13408\cdot 141^{29k+15}+158641\cdot 141^{28k+14}\\||+13193\cdot 141^{27k+14}+152848\cdot 141^{26k+13}+12373\cdot 141^{25k+13}+139189\cdot 141^{24k+12}+10980\cdot 141^{23k+12}\\||+121033\cdot 141^{22k+11}+9361\cdot 141^{21k+11}+100522\cdot 141^{20k+10}+7515\cdot 141^{19k+10}+77917\cdot 141^{18k+9}\\||+5668\cdot 141^{17k+9}+57709\cdot 141^{16k+8}+4119\cdot 141^{15k+8}+40558\cdot 141^{14k+7}+2749\cdot 141^{13k+7}\\||+25549\cdot 141^{12k+6}+1658\cdot 141^{11k+6}+15115\cdot 141^{10k+5}+969\cdot 141^{9k+5}+8452\cdot 141^{8k+4}\\||+485\cdot 141^{7k+4}+3499\cdot 141^{6k+3}+154\cdot 141^{5k+3}+793\cdot 141^{4k+2}+23\cdot 141^{3k+2}\\||+70\cdot 141^{2k+1}+141^{k+1}+1)\\{\large\Phi}_{284}(142^{2k+1})|=|142^{280k+140}-142^{276k+138}+142^{272k+136}-142^{268k+134}+142^{264k+132}\\||-142^{260k+130}+142^{256k+128}-142^{252k+126}+142^{248k+124}-142^{244k+122}\\||+142^{240k+120}-142^{236k+118}+142^{232k+116}-142^{228k+114}+142^{224k+112}\\||-142^{220k+110}+142^{216k+108}-142^{212k+106}+142^{208k+104}-142^{204k+102}\\||+142^{200k+100}-142^{196k+98}+142^{192k+96}-142^{188k+94}+142^{184k+92}\\||-142^{180k+90}+142^{176k+88}-142^{172k+86}+142^{168k+84}-142^{164k+82}\\||+142^{160k+80}-142^{156k+78}+142^{152k+76}-142^{148k+74}+142^{144k+72}\\||-142^{140k+70}+142^{136k+68}-142^{132k+66}+142^{128k+64}-142^{124k+62}\\||+142^{120k+60}-142^{116k+58}+142^{112k+56}-142^{108k+54}+142^{104k+52}\\||-142^{100k+50}+142^{96k+48}-142^{92k+46}+142^{88k+44}-142^{84k+42}\\||+142^{80k+40}-142^{76k+38}+142^{72k+36}-142^{68k+34}+142^{64k+32}\\||-142^{60k+30}+142^{56k+28}-142^{52k+26}+142^{48k+24}-142^{44k+22}\\||+142^{40k+20}-142^{36k+18}+142^{32k+16}-142^{28k+14}+142^{24k+12}\\||-142^{20k+10}+142^{16k+8}-142^{12k+6}+142^{8k+4}-142^{4k+2}+1\\|=|(142^{140k+70}-142^{139k+70}+71\cdot 142^{138k+69}-24\cdot 142^{137k+69}+887\cdot 142^{136k+68}\\||-191\cdot 142^{135k+68}+5041\cdot 142^{134k+67}-830\cdot 142^{133k+67}+17493\cdot 142^{132k+66}-2371\cdot 142^{131k+66}\\||+42103\cdot 142^{130k+65}-4900\cdot 142^{129k+65}+75983\cdot 142^{128k+64}-7853\cdot 142^{127k+64}+110121\cdot 142^{126k+63}\\||-10502\cdot 142^{125k+63}+138909\cdot 142^{124k+62}-12769\cdot 142^{123k+62}+165643\cdot 142^{122k+61}-15068\cdot 142^{121k+61}\\||+193211\cdot 142^{120k+60}-17209\cdot 142^{119k+60}+213213\cdot 142^{118k+59}-18132\cdot 142^{117k+59}+213029\cdot 142^{116k+58}\\||-17185\cdot 142^{115k+58}+193191\cdot 142^{114k+57}-15168\cdot 142^{113k+57}+169871\cdot 142^{112k+56}-13623\cdot 142^{111k+56}\\||+158969\cdot 142^{110k+55}-13398\cdot 142^{109k+55}+163685\cdot 142^{108k+54}-14281\cdot 142^{107k+54}+178423\cdot 142^{106k+53}\\||-15786\cdot 142^{105k+53}+199387\cdot 142^{104k+52}-17845\cdot 142^{103k+52}+228265\cdot 142^{102k+51}-20668\cdot 142^{101k+51}\\||+266129\cdot 142^{100k+50}-24035\cdot 142^{99k+50}+305087\cdot 142^{98k+49}-26834\cdot 142^{97k+49}+328171\cdot 142^{96k+48}\\||-27589\cdot 142^{95k+48}+321133\cdot 142^{94k+47}-25688\cdot 142^{93k+47}+285509\cdot 142^{92k+46}-21957\cdot 142^{91k+46}\\||+236643\cdot 142^{90k+45}-17786\cdot 142^{89k+45}+188231\cdot 142^{88k+44}-13899\cdot 142^{87k+44}+144201\cdot 142^{86k+43}\\||-10450\cdot 142^{85k+43}+107885\cdot 142^{84k+42}-8063\cdot 142^{83k+42}+90951\cdot 142^{82k+41}-7864\cdot 142^{81k+41}\\||+104463\cdot 142^{80k+40}-10249\cdot 142^{79k+40}+144769\cdot 142^{78k+39}-14272\cdot 142^{77k+39}+195881\cdot 142^{76k+38}\\||-18503\cdot 142^{75k+38}+242607\cdot 142^{74k+37}-21920\cdot 142^{73k+37}+275375\cdot 142^{72k+36}-23857\cdot 142^{71k+36}\\||+287337\cdot 142^{70k+35}-23857\cdot 142^{69k+35}+275375\cdot 142^{68k+34}-21920\cdot 142^{67k+34}+242607\cdot 142^{66k+33}\\||-18503\cdot 142^{65k+33}+195881\cdot 142^{64k+32}-14272\cdot 142^{63k+32}+144769\cdot 142^{62k+31}-10249\cdot 142^{61k+31}\\||+104463\cdot 142^{60k+30}-7864\cdot 142^{59k+30}+90951\cdot 142^{58k+29}-8063\cdot 142^{57k+29}+107885\cdot 142^{56k+28}\\||-10450\cdot 142^{55k+28}+144201\cdot 142^{54k+27}-13899\cdot 142^{53k+27}+188231\cdot 142^{52k+26}-17786\cdot 142^{51k+26}\\||+236643\cdot 142^{50k+25}-21957\cdot 142^{49k+25}+285509\cdot 142^{48k+24}-25688\cdot 142^{47k+24}+321133\cdot 142^{46k+23}\\||-27589\cdot 142^{45k+23}+328171\cdot 142^{44k+22}-26834\cdot 142^{43k+22}+305087\cdot 142^{42k+21}-24035\cdot 142^{41k+21}\\||+266129\cdot 142^{40k+20}-20668\cdot 142^{39k+20}+228265\cdot 142^{38k+19}-17845\cdot 142^{37k+19}+199387\cdot 142^{36k+18}\\||-15786\cdot 142^{35k+18}+178423\cdot 142^{34k+17}-14281\cdot 142^{33k+17}+163685\cdot 142^{32k+16}-13398\cdot 142^{31k+16}\\||+158969\cdot 142^{30k+15}-13623\cdot 142^{29k+15}+169871\cdot 142^{28k+14}-15168\cdot 142^{27k+14}+193191\cdot 142^{26k+13}\\||-17185\cdot 142^{25k+13}+213029\cdot 142^{24k+12}-18132\cdot 142^{23k+12}+213213\cdot 142^{22k+11}-17209\cdot 142^{21k+11}\\||+193211\cdot 142^{20k+10}-15068\cdot 142^{19k+10}+165643\cdot 142^{18k+9}-12769\cdot 142^{17k+9}+138909\cdot 142^{16k+8}\\||-10502\cdot 142^{15k+8}+110121\cdot 142^{14k+7}-7853\cdot 142^{13k+7}+75983\cdot 142^{12k+6}-4900\cdot 142^{11k+6}\\||+42103\cdot 142^{10k+5}-2371\cdot 142^{9k+5}+17493\cdot 142^{8k+4}-830\cdot 142^{7k+4}+5041\cdot 142^{6k+3}\\||-191\cdot 142^{5k+3}+887\cdot 142^{4k+2}-24\cdot 142^{3k+2}+71\cdot 142^{2k+1}-142^{k+1}+1)\\|\times|(142^{140k+70}+142^{139k+70}+71\cdot 142^{138k+69}+24\cdot 142^{137k+69}+887\cdot 142^{136k+68}\\||+191\cdot 142^{135k+68}+5041\cdot 142^{134k+67}+830\cdot 142^{133k+67}+17493\cdot 142^{132k+66}+2371\cdot 142^{131k+66}\\||+42103\cdot 142^{130k+65}+4900\cdot 142^{129k+65}+75983\cdot 142^{128k+64}+7853\cdot 142^{127k+64}+110121\cdot 142^{126k+63}\\||+10502\cdot 142^{125k+63}+138909\cdot 142^{124k+62}+12769\cdot 142^{123k+62}+165643\cdot 142^{122k+61}+15068\cdot 142^{121k+61}\\||+193211\cdot 142^{120k+60}+17209\cdot 142^{119k+60}+213213\cdot 142^{118k+59}+18132\cdot 142^{117k+59}+213029\cdot 142^{116k+58}\\||+17185\cdot 142^{115k+58}+193191\cdot 142^{114k+57}+15168\cdot 142^{113k+57}+169871\cdot 142^{112k+56}+13623\cdot 142^{111k+56}\\||+158969\cdot 142^{110k+55}+13398\cdot 142^{109k+55}+163685\cdot 142^{108k+54}+14281\cdot 142^{107k+54}+178423\cdot 142^{106k+53}\\||+15786\cdot 142^{105k+53}+199387\cdot 142^{104k+52}+17845\cdot 142^{103k+52}+228265\cdot 142^{102k+51}+20668\cdot 142^{101k+51}\\||+266129\cdot 142^{100k+50}+24035\cdot 142^{99k+50}+305087\cdot 142^{98k+49}+26834\cdot 142^{97k+49}+328171\cdot 142^{96k+48}\\||+27589\cdot 142^{95k+48}+321133\cdot 142^{94k+47}+25688\cdot 142^{93k+47}+285509\cdot 142^{92k+46}+21957\cdot 142^{91k+46}\\||+236643\cdot 142^{90k+45}+17786\cdot 142^{89k+45}+188231\cdot 142^{88k+44}+13899\cdot 142^{87k+44}+144201\cdot 142^{86k+43}\\||+10450\cdot 142^{85k+43}+107885\cdot 142^{84k+42}+8063\cdot 142^{83k+42}+90951\cdot 142^{82k+41}+7864\cdot 142^{81k+41}\\||+104463\cdot 142^{80k+40}+10249\cdot 142^{79k+40}+144769\cdot 142^{78k+39}+14272\cdot 142^{77k+39}+195881\cdot 142^{76k+38}\\||+18503\cdot 142^{75k+38}+242607\cdot 142^{74k+37}+21920\cdot 142^{73k+37}+275375\cdot 142^{72k+36}+23857\cdot 142^{71k+36}\\||+287337\cdot 142^{70k+35}+23857\cdot 142^{69k+35}+275375\cdot 142^{68k+34}+21920\cdot 142^{67k+34}+242607\cdot 142^{66k+33}\\||+18503\cdot 142^{65k+33}+195881\cdot 142^{64k+32}+14272\cdot 142^{63k+32}+144769\cdot 142^{62k+31}+10249\cdot 142^{61k+31}\\||+104463\cdot 142^{60k+30}+7864\cdot 142^{59k+30}+90951\cdot 142^{58k+29}+8063\cdot 142^{57k+29}+107885\cdot 142^{56k+28}\\||+10450\cdot 142^{55k+28}+144201\cdot 142^{54k+27}+13899\cdot 142^{53k+27}+188231\cdot 142^{52k+26}+17786\cdot 142^{51k+26}\\||+236643\cdot 142^{50k+25}+21957\cdot 142^{49k+25}+285509\cdot 142^{48k+24}+25688\cdot 142^{47k+24}+321133\cdot 142^{46k+23}\\||+27589\cdot 142^{45k+23}+328171\cdot 142^{44k+22}+26834\cdot 142^{43k+22}+305087\cdot 142^{42k+21}+24035\cdot 142^{41k+21}\\||+266129\cdot 142^{40k+20}+20668\cdot 142^{39k+20}+228265\cdot 142^{38k+19}+17845\cdot 142^{37k+19}+199387\cdot 142^{36k+18}\\||+15786\cdot 142^{35k+18}+178423\cdot 142^{34k+17}+14281\cdot 142^{33k+17}+163685\cdot 142^{32k+16}+13398\cdot 142^{31k+16}\\||+158969\cdot 142^{30k+15}+13623\cdot 142^{29k+15}+169871\cdot 142^{28k+14}+15168\cdot 142^{27k+14}+193191\cdot 142^{26k+13}\\||+17185\cdot 142^{25k+13}+213029\cdot 142^{24k+12}+18132\cdot 142^{23k+12}+213213\cdot 142^{22k+11}+17209\cdot 142^{21k+11}\\||+193211\cdot 142^{20k+10}+15068\cdot 142^{19k+10}+165643\cdot 142^{18k+9}+12769\cdot 142^{17k+9}+138909\cdot 142^{16k+8}\\||+10502\cdot 142^{15k+8}+110121\cdot 142^{14k+7}+7853\cdot 142^{13k+7}+75983\cdot 142^{12k+6}+4900\cdot 142^{11k+6}\\||+42103\cdot 142^{10k+5}+2371\cdot 142^{9k+5}+17493\cdot 142^{8k+4}+830\cdot 142^{7k+4}+5041\cdot 142^{6k+3}\\||+191\cdot 142^{5k+3}+887\cdot 142^{4k+2}+24\cdot 142^{3k+2}+71\cdot 142^{2k+1}+142^{k+1}+1)\\{\large\Phi}_{286}(143^{2k+1})|=|143^{240k+120}+143^{238k+119}-143^{218k+109}-143^{216k+108}-143^{214k+107}\\||-143^{212k+106}+143^{196k+98}+143^{194k+97}+143^{192k+96}+143^{190k+95}\\||+143^{188k+94}+143^{186k+93}-143^{174k+87}-143^{172k+86}-143^{170k+85}\\||-143^{168k+84}-143^{166k+83}-143^{164k+82}-143^{162k+81}-143^{160k+80}\\||+143^{152k+76}+143^{150k+75}+143^{148k+74}+143^{146k+73}+143^{144k+72}\\||+143^{142k+71}+143^{140k+70}+143^{138k+69}+143^{136k+68}+143^{134k+67}\\||-143^{130k+65}-143^{128k+64}-143^{126k+63}-143^{124k+62}-143^{122k+61}\\||-143^{120k+60}-143^{118k+59}-143^{116k+58}-143^{114k+57}-143^{112k+56}\\||-143^{110k+55}+143^{106k+53}+143^{104k+52}+143^{102k+51}+143^{100k+50}\\||+143^{98k+49}+143^{96k+48}+143^{94k+47}+143^{92k+46}+143^{90k+45}\\||+143^{88k+44}-143^{80k+40}-143^{78k+39}-143^{76k+38}-143^{74k+37}\\||-143^{72k+36}-143^{70k+35}-143^{68k+34}-143^{66k+33}+143^{54k+27}\\||+143^{52k+26}+143^{50k+25}+143^{48k+24}+143^{46k+23}+143^{44k+22}\\||-143^{28k+14}-143^{26k+13}-143^{24k+12}-143^{22k+11}+143^{2k+1}+1\\|=|(143^{120k+60}-143^{119k+60}+72\cdot 143^{118k+59}-24\cdot 143^{117k+59}+840\cdot 143^{116k+58}\\||-158\cdot 143^{115k+58}+3298\cdot 143^{114k+57}-360\cdot 143^{113k+57}+3480\cdot 143^{112k+56}+56\cdot 143^{111k+56}\\||-8442\cdot 143^{110k+55}+1479\cdot 143^{109k+55}-23627\cdot 143^{108k+54}+1717\cdot 143^{107k+54}-4939\cdot 143^{106k+53}\\||-1762\cdot 143^{105k+53}+48620\cdot 143^{104k+52}-5380\cdot 143^{103k+52}+56056\cdot 143^{102k+51}-1654\cdot 143^{101k+51}\\||-35750\cdot 143^{100k+50}+7532\cdot 143^{99k+50}-118515\cdot 143^{98k+49}+8655\cdot 143^{97k+49}-44171\cdot 143^{96k+48}\\||-3415\cdot 143^{95k+48}+119725\cdot 143^{94k+47}-13419\cdot 143^{93k+47}+144594\cdot 143^{92k+46}-6312\cdot 143^{91k+46}\\||-22600\cdot 143^{90k+45}+9554\cdot 143^{89k+45}-167128\cdot 143^{88k+44}+13735\cdot 143^{87k+44}-109167\cdot 143^{86k+43}\\||+1889\cdot 143^{85k+43}+66987\cdot 143^{84k+42}-11167\cdot 143^{83k+42}+160517\cdot 143^{82k+41}-11975\cdot 143^{81k+41}\\||+87593\cdot 143^{80k+40}-660\cdot 143^{79k+40}-76362\cdot 143^{78k+39}+12000\cdot 143^{77k+39}-173821\cdot 143^{76k+38}\\||+12939\cdot 143^{75k+38}-85981\cdot 143^{74k+37}-1419\cdot 143^{73k+37}+124277\cdot 143^{72k+36}-16671\cdot 143^{71k+36}\\||+211707\cdot 143^{70k+35}-12563\cdot 143^{69k+35}+30651\cdot 143^{68k+34}+8991\cdot 143^{67k+34}-214336\cdot 143^{66k+33}\\||+20763\cdot 143^{65k+33}-193095\cdot 143^{64k+32}+5485\cdot 143^{63k+32}+89039\cdot 143^{62k+31}-17867\cdot 143^{61k+31}\\||+261241\cdot 143^{60k+30}-17867\cdot 143^{59k+30}+89039\cdot 143^{58k+29}+5485\cdot 143^{57k+29}-193095\cdot 143^{56k+28}\\||+20763\cdot 143^{55k+28}-214336\cdot 143^{54k+27}+8991\cdot 143^{53k+27}+30651\cdot 143^{52k+26}-12563\cdot 143^{51k+26}\\||+211707\cdot 143^{50k+25}-16671\cdot 143^{49k+25}+124277\cdot 143^{48k+24}-1419\cdot 143^{47k+24}-85981\cdot 143^{46k+23}\\||+12939\cdot 143^{45k+23}-173821\cdot 143^{44k+22}+12000\cdot 143^{43k+22}-76362\cdot 143^{42k+21}-660\cdot 143^{41k+21}\\||+87593\cdot 143^{40k+20}-11975\cdot 143^{39k+20}+160517\cdot 143^{38k+19}-11167\cdot 143^{37k+19}+66987\cdot 143^{36k+18}\\||+1889\cdot 143^{35k+18}-109167\cdot 143^{34k+17}+13735\cdot 143^{33k+17}-167128\cdot 143^{32k+16}+9554\cdot 143^{31k+16}\\||-22600\cdot 143^{30k+15}-6312\cdot 143^{29k+15}+144594\cdot 143^{28k+14}-13419\cdot 143^{27k+14}+119725\cdot 143^{26k+13}\\||-3415\cdot 143^{25k+13}-44171\cdot 143^{24k+12}+8655\cdot 143^{23k+12}-118515\cdot 143^{22k+11}+7532\cdot 143^{21k+11}\\||-35750\cdot 143^{20k+10}-1654\cdot 143^{19k+10}+56056\cdot 143^{18k+9}-5380\cdot 143^{17k+9}+48620\cdot 143^{16k+8}\\||-1762\cdot 143^{15k+8}-4939\cdot 143^{14k+7}+1717\cdot 143^{13k+7}-23627\cdot 143^{12k+6}+1479\cdot 143^{11k+6}\\||-8442\cdot 143^{10k+5}+56\cdot 143^{9k+5}+3480\cdot 143^{8k+4}-360\cdot 143^{7k+4}+3298\cdot 143^{6k+3}\\||-158\cdot 143^{5k+3}+840\cdot 143^{4k+2}-24\cdot 143^{3k+2}+72\cdot 143^{2k+1}-143^{k+1}+1)\\|\times|(143^{120k+60}+143^{119k+60}+72\cdot 143^{118k+59}+24\cdot 143^{117k+59}+840\cdot 143^{116k+58}\\||+158\cdot 143^{115k+58}+3298\cdot 143^{114k+57}+360\cdot 143^{113k+57}+3480\cdot 143^{112k+56}-56\cdot 143^{111k+56}\\||-8442\cdot 143^{110k+55}-1479\cdot 143^{109k+55}-23627\cdot 143^{108k+54}-1717\cdot 143^{107k+54}-4939\cdot 143^{106k+53}\\||+1762\cdot 143^{105k+53}+48620\cdot 143^{104k+52}+5380\cdot 143^{103k+52}+56056\cdot 143^{102k+51}+1654\cdot 143^{101k+51}\\||-35750\cdot 143^{100k+50}-7532\cdot 143^{99k+50}-118515\cdot 143^{98k+49}-8655\cdot 143^{97k+49}-44171\cdot 143^{96k+48}\\||+3415\cdot 143^{95k+48}+119725\cdot 143^{94k+47}+13419\cdot 143^{93k+47}+144594\cdot 143^{92k+46}+6312\cdot 143^{91k+46}\\||-22600\cdot 143^{90k+45}-9554\cdot 143^{89k+45}-167128\cdot 143^{88k+44}-13735\cdot 143^{87k+44}-109167\cdot 143^{86k+43}\\||-1889\cdot 143^{85k+43}+66987\cdot 143^{84k+42}+11167\cdot 143^{83k+42}+160517\cdot 143^{82k+41}+11975\cdot 143^{81k+41}\\||+87593\cdot 143^{80k+40}+660\cdot 143^{79k+40}-76362\cdot 143^{78k+39}-12000\cdot 143^{77k+39}-173821\cdot 143^{76k+38}\\||-12939\cdot 143^{75k+38}-85981\cdot 143^{74k+37}+1419\cdot 143^{73k+37}+124277\cdot 143^{72k+36}+16671\cdot 143^{71k+36}\\||+211707\cdot 143^{70k+35}+12563\cdot 143^{69k+35}+30651\cdot 143^{68k+34}-8991\cdot 143^{67k+34}-214336\cdot 143^{66k+33}\\||-20763\cdot 143^{65k+33}-193095\cdot 143^{64k+32}-5485\cdot 143^{63k+32}+89039\cdot 143^{62k+31}+17867\cdot 143^{61k+31}\\||+261241\cdot 143^{60k+30}+17867\cdot 143^{59k+30}+89039\cdot 143^{58k+29}-5485\cdot 143^{57k+29}-193095\cdot 143^{56k+28}\\||-20763\cdot 143^{55k+28}-214336\cdot 143^{54k+27}-8991\cdot 143^{53k+27}+30651\cdot 143^{52k+26}+12563\cdot 143^{51k+26}\\||+211707\cdot 143^{50k+25}+16671\cdot 143^{49k+25}+124277\cdot 143^{48k+24}+1419\cdot 143^{47k+24}-85981\cdot 143^{46k+23}\\||-12939\cdot 143^{45k+23}-173821\cdot 143^{44k+22}-12000\cdot 143^{43k+22}-76362\cdot 143^{42k+21}+660\cdot 143^{41k+21}\\||+87593\cdot 143^{40k+20}+11975\cdot 143^{39k+20}+160517\cdot 143^{38k+19}+11167\cdot 143^{37k+19}+66987\cdot 143^{36k+18}\\||-1889\cdot 143^{35k+18}-109167\cdot 143^{34k+17}-13735\cdot 143^{33k+17}-167128\cdot 143^{32k+16}-9554\cdot 143^{31k+16}\\||-22600\cdot 143^{30k+15}+6312\cdot 143^{29k+15}+144594\cdot 143^{28k+14}+13419\cdot 143^{27k+14}+119725\cdot 143^{26k+13}\\||+3415\cdot 143^{25k+13}-44171\cdot 143^{24k+12}-8655\cdot 143^{23k+12}-118515\cdot 143^{22k+11}-7532\cdot 143^{21k+11}\\||-35750\cdot 143^{20k+10}+1654\cdot 143^{19k+10}+56056\cdot 143^{18k+9}+5380\cdot 143^{17k+9}+48620\cdot 143^{16k+8}\\||+1762\cdot 143^{15k+8}-4939\cdot 143^{14k+7}-1717\cdot 143^{13k+7}-23627\cdot 143^{12k+6}-1479\cdot 143^{11k+6}\\||-8442\cdot 143^{10k+5}-56\cdot 143^{9k+5}+3480\cdot 143^{8k+4}+360\cdot 143^{7k+4}+3298\cdot 143^{6k+3}\\||+158\cdot 143^{5k+3}+840\cdot 143^{4k+2}+24\cdot 143^{3k+2}+72\cdot 143^{2k+1}+143^{k+1}+1)\\{\large\Phi}_{145}(145^{2k+1})|=|145^{224k+112}-145^{222k+111}+145^{214k+107}-145^{212k+106}+145^{204k+102}\\||-145^{202k+101}+145^{194k+97}-145^{192k+96}+145^{184k+92}-145^{182k+91}\\||+145^{174k+87}-145^{172k+86}+145^{166k+83}-145^{162k+81}+145^{156k+78}\\||-145^{152k+76}+145^{146k+73}-145^{142k+71}+145^{136k+68}-145^{132k+66}\\||+145^{126k+63}-145^{122k+61}+145^{116k+58}-145^{112k+56}+145^{108k+54}\\||-145^{102k+51}+145^{98k+49}-145^{92k+46}+145^{88k+44}-145^{82k+41}\\||+145^{78k+39}-145^{72k+36}+145^{68k+34}-145^{62k+31}+145^{58k+29}\\||-145^{52k+26}+145^{50k+25}-145^{42k+21}+145^{40k+20}-145^{32k+16}\\||+145^{30k+15}-145^{22k+11}+145^{20k+10}-145^{12k+6}+145^{10k+5}\\||-145^{2k+1}+1\\|=|(145^{112k+56}-145^{111k+56}+72\cdot 145^{110k+55}-24\cdot 145^{109k+55}+888\cdot 145^{108k+54}\\||-187\cdot 145^{107k+54}+4939\cdot 145^{106k+53}-802\cdot 145^{105k+53}+17170\cdot 145^{104k+52}-2336\cdot 145^{103k+52}\\||+42861\cdot 145^{102k+51}-5079\cdot 145^{101k+51}+82152\cdot 145^{100k+50}-8660\cdot 145^{99k+50}+125408\cdot 145^{98k+49}\\||-11881\cdot 145^{97k+49}+154789\cdot 145^{96k+48}-13160\cdot 145^{95k+48}+152640\cdot 145^{94k+47}-11350\cdot 145^{93k+47}\\||+110821\cdot 145^{92k+46}-6329\cdot 145^{91k+46}+34732\cdot 145^{90k+45}+924\cdot 145^{89k+45}-58472\cdot 145^{88k+44}\\||+8657\cdot 145^{87k+44}-145491\cdot 145^{86k+43}+14922\cdot 145^{85k+43}-205030\cdot 145^{84k+42}+18327\cdot 145^{83k+42}\\||-226824\cdot 145^{82k+41}+18643\cdot 145^{81k+41}-215308\cdot 145^{80k+40}+16696\cdot 145^{79k+40}-183227\cdot 145^{78k+39}\\||+13524\cdot 145^{77k+39}-140351\cdot 145^{76k+38}+9614\cdot 145^{75k+38}-89050\cdot 145^{74k+37}+5013\cdot 145^{73k+37}\\||-30304\cdot 145^{72k+36}-7\cdot 145^{71k+36}+29452\cdot 145^{70k+35}-4684\cdot 145^{69k+35}+79733\cdot 145^{68k+34}\\||-8186\cdot 145^{67k+34}+112399\cdot 145^{66k+33}-10046\cdot 145^{65k+33}+124250\cdot 145^{64k+32}-10165\cdot 145^{63k+32}\\||+115876\cdot 145^{62k+31}-8765\cdot 145^{61k+31}+92812\cdot 145^{60k+30}-6608\cdot 145^{59k+30}+67973\cdot 145^{58k+29}\\||-4986\cdot 145^{57k+29}+57219\cdot 145^{56k+28}-4986\cdot 145^{55k+28}+67973\cdot 145^{54k+27}-6608\cdot 145^{53k+27}\\||+92812\cdot 145^{52k+26}-8765\cdot 145^{51k+26}+115876\cdot 145^{50k+25}-10165\cdot 145^{49k+25}+124250\cdot 145^{48k+24}\\||-10046\cdot 145^{47k+24}+112399\cdot 145^{46k+23}-8186\cdot 145^{45k+23}+79733\cdot 145^{44k+22}-4684\cdot 145^{43k+22}\\||+29452\cdot 145^{42k+21}-7\cdot 145^{41k+21}-30304\cdot 145^{40k+20}+5013\cdot 145^{39k+20}-89050\cdot 145^{38k+19}\\||+9614\cdot 145^{37k+19}-140351\cdot 145^{36k+18}+13524\cdot 145^{35k+18}-183227\cdot 145^{34k+17}+16696\cdot 145^{33k+17}\\||-215308\cdot 145^{32k+16}+18643\cdot 145^{31k+16}-226824\cdot 145^{30k+15}+18327\cdot 145^{29k+15}-205030\cdot 145^{28k+14}\\||+14922\cdot 145^{27k+14}-145491\cdot 145^{26k+13}+8657\cdot 145^{25k+13}-58472\cdot 145^{24k+12}+924\cdot 145^{23k+12}\\||+34732\cdot 145^{22k+11}-6329\cdot 145^{21k+11}+110821\cdot 145^{20k+10}-11350\cdot 145^{19k+10}+152640\cdot 145^{18k+9}\\||-13160\cdot 145^{17k+9}+154789\cdot 145^{16k+8}-11881\cdot 145^{15k+8}+125408\cdot 145^{14k+7}-8660\cdot 145^{13k+7}\\||+82152\cdot 145^{12k+6}-5079\cdot 145^{11k+6}+42861\cdot 145^{10k+5}-2336\cdot 145^{9k+5}+17170\cdot 145^{8k+4}\\||-802\cdot 145^{7k+4}+4939\cdot 145^{6k+3}-187\cdot 145^{5k+3}+888\cdot 145^{4k+2}-24\cdot 145^{3k+2}\\||+72\cdot 145^{2k+1}-145^{k+1}+1)\\|\times|(145^{112k+56}+145^{111k+56}+72\cdot 145^{110k+55}+24\cdot 145^{109k+55}+888\cdot 145^{108k+54}\\||+187\cdot 145^{107k+54}+4939\cdot 145^{106k+53}+802\cdot 145^{105k+53}+17170\cdot 145^{104k+52}+2336\cdot 145^{103k+52}\\||+42861\cdot 145^{102k+51}+5079\cdot 145^{101k+51}+82152\cdot 145^{100k+50}+8660\cdot 145^{99k+50}+125408\cdot 145^{98k+49}\\||+11881\cdot 145^{97k+49}+154789\cdot 145^{96k+48}+13160\cdot 145^{95k+48}+152640\cdot 145^{94k+47}+11350\cdot 145^{93k+47}\\||+110821\cdot 145^{92k+46}+6329\cdot 145^{91k+46}+34732\cdot 145^{90k+45}-924\cdot 145^{89k+45}-58472\cdot 145^{88k+44}\\||-8657\cdot 145^{87k+44}-145491\cdot 145^{86k+43}-14922\cdot 145^{85k+43}-205030\cdot 145^{84k+42}-18327\cdot 145^{83k+42}\\||-226824\cdot 145^{82k+41}-18643\cdot 145^{81k+41}-215308\cdot 145^{80k+40}-16696\cdot 145^{79k+40}-183227\cdot 145^{78k+39}\\||-13524\cdot 145^{77k+39}-140351\cdot 145^{76k+38}-9614\cdot 145^{75k+38}-89050\cdot 145^{74k+37}-5013\cdot 145^{73k+37}\\||-30304\cdot 145^{72k+36}+7\cdot 145^{71k+36}+29452\cdot 145^{70k+35}+4684\cdot 145^{69k+35}+79733\cdot 145^{68k+34}\\||+8186\cdot 145^{67k+34}+112399\cdot 145^{66k+33}+10046\cdot 145^{65k+33}+124250\cdot 145^{64k+32}+10165\cdot 145^{63k+32}\\||+115876\cdot 145^{62k+31}+8765\cdot 145^{61k+31}+92812\cdot 145^{60k+30}+6608\cdot 145^{59k+30}+67973\cdot 145^{58k+29}\\||+4986\cdot 145^{57k+29}+57219\cdot 145^{56k+28}+4986\cdot 145^{55k+28}+67973\cdot 145^{54k+27}+6608\cdot 145^{53k+27}\\||+92812\cdot 145^{52k+26}+8765\cdot 145^{51k+26}+115876\cdot 145^{50k+25}+10165\cdot 145^{49k+25}+124250\cdot 145^{48k+24}\\||+10046\cdot 145^{47k+24}+112399\cdot 145^{46k+23}+8186\cdot 145^{45k+23}+79733\cdot 145^{44k+22}+4684\cdot 145^{43k+22}\\||+29452\cdot 145^{42k+21}+7\cdot 145^{41k+21}-30304\cdot 145^{40k+20}-5013\cdot 145^{39k+20}-89050\cdot 145^{38k+19}\\||-9614\cdot 145^{37k+19}-140351\cdot 145^{36k+18}-13524\cdot 145^{35k+18}-183227\cdot 145^{34k+17}-16696\cdot 145^{33k+17}\\||-215308\cdot 145^{32k+16}-18643\cdot 145^{31k+16}-226824\cdot 145^{30k+15}-18327\cdot 145^{29k+15}-205030\cdot 145^{28k+14}\\||-14922\cdot 145^{27k+14}-145491\cdot 145^{26k+13}-8657\cdot 145^{25k+13}-58472\cdot 145^{24k+12}-924\cdot 145^{23k+12}\\||+34732\cdot 145^{22k+11}+6329\cdot 145^{21k+11}+110821\cdot 145^{20k+10}+11350\cdot 145^{19k+10}+152640\cdot 145^{18k+9}\\||+13160\cdot 145^{17k+9}+154789\cdot 145^{16k+8}+11881\cdot 145^{15k+8}+125408\cdot 145^{14k+7}+8660\cdot 145^{13k+7}\\||+82152\cdot 145^{12k+6}+5079\cdot 145^{11k+6}+42861\cdot 145^{10k+5}+2336\cdot 145^{9k+5}+17170\cdot 145^{8k+4}\\||+802\cdot 145^{7k+4}+4939\cdot 145^{6k+3}+187\cdot 145^{5k+3}+888\cdot 145^{4k+2}+24\cdot 145^{3k+2}\\||+72\cdot 145^{2k+1}+145^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{292}(146^{2k+1})\cdots{\large\Phi}_{149}(149^{2k+1})$${\large\Phi}_{292}(146^{2k+1})\cdots{\large\Phi}_{149}(149^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{292}(146^{2k+1})|=|146^{288k+144}-146^{284k+142}+146^{280k+140}-146^{276k+138}+146^{272k+136}\\||-146^{268k+134}+146^{264k+132}-146^{260k+130}+146^{256k+128}-146^{252k+126}\\||+146^{248k+124}-146^{244k+122}+146^{240k+120}-146^{236k+118}+146^{232k+116}\\||-146^{228k+114}+146^{224k+112}-146^{220k+110}+146^{216k+108}-146^{212k+106}\\||+146^{208k+104}-146^{204k+102}+146^{200k+100}-146^{196k+98}+146^{192k+96}\\||-146^{188k+94}+146^{184k+92}-146^{180k+90}+146^{176k+88}-146^{172k+86}\\||+146^{168k+84}-146^{164k+82}+146^{160k+80}-146^{156k+78}+146^{152k+76}\\||-146^{148k+74}+146^{144k+72}-146^{140k+70}+146^{136k+68}-146^{132k+66}\\||+146^{128k+64}-146^{124k+62}+146^{120k+60}-146^{116k+58}+146^{112k+56}\\||-146^{108k+54}+146^{104k+52}-146^{100k+50}+146^{96k+48}-146^{92k+46}\\||+146^{88k+44}-146^{84k+42}+146^{80k+40}-146^{76k+38}+146^{72k+36}\\||-146^{68k+34}+146^{64k+32}-146^{60k+30}+146^{56k+28}-146^{52k+26}\\||+146^{48k+24}-146^{44k+22}+146^{40k+20}-146^{36k+18}+146^{32k+16}\\||-146^{28k+14}+146^{24k+12}-146^{20k+10}+146^{16k+8}-146^{12k+6}\\||+146^{8k+4}-146^{4k+2}+1\\|=|(146^{144k+72}-146^{143k+72}+73\cdot 146^{142k+71}-24\cdot 146^{141k+71}+839\cdot 146^{140k+70}\\||-153\cdot 146^{139k+70}+3139\cdot 146^{138k+69}-332\cdot 146^{137k+69}+3477\cdot 146^{136k+68}-89\cdot 146^{135k+68}\\||-2263\cdot 146^{134k+67}+362\cdot 146^{133k+67}-3445\cdot 146^{132k+66}-15\cdot 146^{131k+66}+4015\cdot 146^{130k+65}\\||-474\cdot 146^{129k+65}+5469\cdot 146^{128k+64}-441\cdot 146^{127k+64}+6205\cdot 146^{126k+63}-492\cdot 146^{125k+63}\\||+1699\cdot 146^{124k+62}+479\cdot 146^{123k+62}-11461\cdot 146^{122k+61}+878\cdot 146^{121k+61}-3863\cdot 146^{120k+60}\\||-295\cdot 146^{119k+60}+7665\cdot 146^{118k+59}-770\cdot 146^{117k+59}+11299\cdot 146^{116k+58}-1083\cdot 146^{115k+58}\\||+10439\cdot 146^{114k+57}-86\cdot 146^{113k+57}-11227\cdot 146^{112k+56}+1571\cdot 146^{111k+56}-18031\cdot 146^{110k+55}\\||+852\cdot 146^{109k+55}-513\cdot 146^{108k+54}-683\cdot 146^{107k+54}+15111\cdot 146^{106k+53}-1566\cdot 146^{105k+53}\\||+17573\cdot 146^{104k+52}-839\cdot 146^{103k+52}-1387\cdot 146^{102k+51}+1092\cdot 146^{101k+51}-21861\cdot 146^{100k+50}\\||+2063\cdot 146^{99k+50}-20513\cdot 146^{98k+49}+696\cdot 146^{97k+49}+7801\cdot 146^{96k+48}-1753\cdot 146^{95k+48}\\||+25769\cdot 146^{94k+47}-1726\cdot 146^{93k+47}+10443\cdot 146^{92k+46}+105\cdot 146^{91k+46}-12629\cdot 146^{90k+45}\\||+1860\cdot 146^{89k+45}-27139\cdot 146^{88k+44}+1823\cdot 146^{87k+44}-6935\cdot 146^{86k+43}-958\cdot 146^{85k+43}\\||+24587\cdot 146^{84k+42}-2285\cdot 146^{83k+42}+22411\cdot 146^{82k+41}-1064\cdot 146^{81k+41}+885\cdot 146^{80k+40}\\||+1035\cdot 146^{79k+40}-23871\cdot 146^{78k+39}+2276\cdot 146^{77k+39}-20073\cdot 146^{76k+38}+357\cdot 146^{75k+38}\\||+12775\cdot 146^{74k+37}-2060\cdot 146^{73k+37}+29121\cdot 146^{72k+36}-2060\cdot 146^{71k+36}+12775\cdot 146^{70k+35}\\||+357\cdot 146^{69k+35}-20073\cdot 146^{68k+34}+2276\cdot 146^{67k+34}-23871\cdot 146^{66k+33}+1035\cdot 146^{65k+33}\\||+885\cdot 146^{64k+32}-1064\cdot 146^{63k+32}+22411\cdot 146^{62k+31}-2285\cdot 146^{61k+31}+24587\cdot 146^{60k+30}\\||-958\cdot 146^{59k+30}-6935\cdot 146^{58k+29}+1823\cdot 146^{57k+29}-27139\cdot 146^{56k+28}+1860\cdot 146^{55k+28}\\||-12629\cdot 146^{54k+27}+105\cdot 146^{53k+27}+10443\cdot 146^{52k+26}-1726\cdot 146^{51k+26}+25769\cdot 146^{50k+25}\\||-1753\cdot 146^{49k+25}+7801\cdot 146^{48k+24}+696\cdot 146^{47k+24}-20513\cdot 146^{46k+23}+2063\cdot 146^{45k+23}\\||-21861\cdot 146^{44k+22}+1092\cdot 146^{43k+22}-1387\cdot 146^{42k+21}-839\cdot 146^{41k+21}+17573\cdot 146^{40k+20}\\||-1566\cdot 146^{39k+20}+15111\cdot 146^{38k+19}-683\cdot 146^{37k+19}-513\cdot 146^{36k+18}+852\cdot 146^{35k+18}\\||-18031\cdot 146^{34k+17}+1571\cdot 146^{33k+17}-11227\cdot 146^{32k+16}-86\cdot 146^{31k+16}+10439\cdot 146^{30k+15}\\||-1083\cdot 146^{29k+15}+11299\cdot 146^{28k+14}-770\cdot 146^{27k+14}+7665\cdot 146^{26k+13}-295\cdot 146^{25k+13}\\||-3863\cdot 146^{24k+12}+878\cdot 146^{23k+12}-11461\cdot 146^{22k+11}+479\cdot 146^{21k+11}+1699\cdot 146^{20k+10}\\||-492\cdot 146^{19k+10}+6205\cdot 146^{18k+9}-441\cdot 146^{17k+9}+5469\cdot 146^{16k+8}-474\cdot 146^{15k+8}\\||+4015\cdot 146^{14k+7}-15\cdot 146^{13k+7}-3445\cdot 146^{12k+6}+362\cdot 146^{11k+6}-2263\cdot 146^{10k+5}\\||-89\cdot 146^{9k+5}+3477\cdot 146^{8k+4}-332\cdot 146^{7k+4}+3139\cdot 146^{6k+3}-153\cdot 146^{5k+3}\\||+839\cdot 146^{4k+2}-24\cdot 146^{3k+2}+73\cdot 146^{2k+1}-146^{k+1}+1)\\|\times|(146^{144k+72}+146^{143k+72}+73\cdot 146^{142k+71}+24\cdot 146^{141k+71}+839\cdot 146^{140k+70}\\||+153\cdot 146^{139k+70}+3139\cdot 146^{138k+69}+332\cdot 146^{137k+69}+3477\cdot 146^{136k+68}+89\cdot 146^{135k+68}\\||-2263\cdot 146^{134k+67}-362\cdot 146^{133k+67}-3445\cdot 146^{132k+66}+15\cdot 146^{131k+66}+4015\cdot 146^{130k+65}\\||+474\cdot 146^{129k+65}+5469\cdot 146^{128k+64}+441\cdot 146^{127k+64}+6205\cdot 146^{126k+63}+492\cdot 146^{125k+63}\\||+1699\cdot 146^{124k+62}-479\cdot 146^{123k+62}-11461\cdot 146^{122k+61}-878\cdot 146^{121k+61}-3863\cdot 146^{120k+60}\\||+295\cdot 146^{119k+60}+7665\cdot 146^{118k+59}+770\cdot 146^{117k+59}+11299\cdot 146^{116k+58}+1083\cdot 146^{115k+58}\\||+10439\cdot 146^{114k+57}+86\cdot 146^{113k+57}-11227\cdot 146^{112k+56}-1571\cdot 146^{111k+56}-18031\cdot 146^{110k+55}\\||-852\cdot 146^{109k+55}-513\cdot 146^{108k+54}+683\cdot 146^{107k+54}+15111\cdot 146^{106k+53}+1566\cdot 146^{105k+53}\\||+17573\cdot 146^{104k+52}+839\cdot 146^{103k+52}-1387\cdot 146^{102k+51}-1092\cdot 146^{101k+51}-21861\cdot 146^{100k+50}\\||-2063\cdot 146^{99k+50}-20513\cdot 146^{98k+49}-696\cdot 146^{97k+49}+7801\cdot 146^{96k+48}+1753\cdot 146^{95k+48}\\||+25769\cdot 146^{94k+47}+1726\cdot 146^{93k+47}+10443\cdot 146^{92k+46}-105\cdot 146^{91k+46}-12629\cdot 146^{90k+45}\\||-1860\cdot 146^{89k+45}-27139\cdot 146^{88k+44}-1823\cdot 146^{87k+44}-6935\cdot 146^{86k+43}+958\cdot 146^{85k+43}\\||+24587\cdot 146^{84k+42}+2285\cdot 146^{83k+42}+22411\cdot 146^{82k+41}+1064\cdot 146^{81k+41}+885\cdot 146^{80k+40}\\||-1035\cdot 146^{79k+40}-23871\cdot 146^{78k+39}-2276\cdot 146^{77k+39}-20073\cdot 146^{76k+38}-357\cdot 146^{75k+38}\\||+12775\cdot 146^{74k+37}+2060\cdot 146^{73k+37}+29121\cdot 146^{72k+36}+2060\cdot 146^{71k+36}+12775\cdot 146^{70k+35}\\||-357\cdot 146^{69k+35}-20073\cdot 146^{68k+34}-2276\cdot 146^{67k+34}-23871\cdot 146^{66k+33}-1035\cdot 146^{65k+33}\\||+885\cdot 146^{64k+32}+1064\cdot 146^{63k+32}+22411\cdot 146^{62k+31}+2285\cdot 146^{61k+31}+24587\cdot 146^{60k+30}\\||+958\cdot 146^{59k+30}-6935\cdot 146^{58k+29}-1823\cdot 146^{57k+29}-27139\cdot 146^{56k+28}-1860\cdot 146^{55k+28}\\||-12629\cdot 146^{54k+27}-105\cdot 146^{53k+27}+10443\cdot 146^{52k+26}+1726\cdot 146^{51k+26}+25769\cdot 146^{50k+25}\\||+1753\cdot 146^{49k+25}+7801\cdot 146^{48k+24}-696\cdot 146^{47k+24}-20513\cdot 146^{46k+23}-2063\cdot 146^{45k+23}\\||-21861\cdot 146^{44k+22}-1092\cdot 146^{43k+22}-1387\cdot 146^{42k+21}+839\cdot 146^{41k+21}+17573\cdot 146^{40k+20}\\||+1566\cdot 146^{39k+20}+15111\cdot 146^{38k+19}+683\cdot 146^{37k+19}-513\cdot 146^{36k+18}-852\cdot 146^{35k+18}\\||-18031\cdot 146^{34k+17}-1571\cdot 146^{33k+17}-11227\cdot 146^{32k+16}+86\cdot 146^{31k+16}+10439\cdot 146^{30k+15}\\||+1083\cdot 146^{29k+15}+11299\cdot 146^{28k+14}+770\cdot 146^{27k+14}+7665\cdot 146^{26k+13}+295\cdot 146^{25k+13}\\||-3863\cdot 146^{24k+12}-878\cdot 146^{23k+12}-11461\cdot 146^{22k+11}-479\cdot 146^{21k+11}+1699\cdot 146^{20k+10}\\||+492\cdot 146^{19k+10}+6205\cdot 146^{18k+9}+441\cdot 146^{17k+9}+5469\cdot 146^{16k+8}+474\cdot 146^{15k+8}\\||+4015\cdot 146^{14k+7}+15\cdot 146^{13k+7}-3445\cdot 146^{12k+6}-362\cdot 146^{11k+6}-2263\cdot 146^{10k+5}\\||+89\cdot 146^{9k+5}+3477\cdot 146^{8k+4}+332\cdot 146^{7k+4}+3139\cdot 146^{6k+3}+153\cdot 146^{5k+3}\\||+839\cdot 146^{4k+2}+24\cdot 146^{3k+2}+73\cdot 146^{2k+1}+146^{k+1}+1)\\{\large\Phi}_{149}(149^{2k+1})|=|149^{296k+148}+149^{294k+147}+149^{292k+146}+149^{290k+145}+149^{288k+144}\\||+149^{286k+143}+149^{284k+142}+149^{282k+141}+149^{280k+140}+149^{278k+139}\\||+149^{276k+138}+149^{274k+137}+149^{272k+136}+149^{270k+135}+149^{268k+134}\\||+149^{266k+133}+149^{264k+132}+149^{262k+131}+149^{260k+130}+149^{258k+129}\\||+149^{256k+128}+149^{254k+127}+149^{252k+126}+149^{250k+125}+149^{248k+124}\\||+149^{246k+123}+149^{244k+122}+149^{242k+121}+149^{240k+120}+149^{238k+119}\\||+149^{236k+118}+149^{234k+117}+149^{232k+116}+149^{230k+115}+149^{228k+114}\\||+149^{226k+113}+149^{224k+112}+149^{222k+111}+149^{220k+110}+149^{218k+109}\\||+149^{216k+108}+149^{214k+107}+149^{212k+106}+149^{210k+105}+149^{208k+104}\\||+149^{206k+103}+149^{204k+102}+149^{202k+101}+149^{200k+100}+149^{198k+99}\\||+149^{196k+98}+149^{194k+97}+149^{192k+96}+149^{190k+95}+149^{188k+94}\\||+149^{186k+93}+149^{184k+92}+149^{182k+91}+149^{180k+90}+149^{178k+89}\\||+149^{176k+88}+149^{174k+87}+149^{172k+86}+149^{170k+85}+149^{168k+84}\\||+149^{166k+83}+149^{164k+82}+149^{162k+81}+149^{160k+80}+149^{158k+79}\\||+149^{156k+78}+149^{154k+77}+149^{152k+76}+149^{150k+75}+149^{148k+74}\\||+149^{146k+73}+149^{144k+72}+149^{142k+71}+149^{140k+70}+149^{138k+69}\\||+149^{136k+68}+149^{134k+67}+149^{132k+66}+149^{130k+65}+149^{128k+64}\\||+149^{126k+63}+149^{124k+62}+149^{122k+61}+149^{120k+60}+149^{118k+59}\\||+149^{116k+58}+149^{114k+57}+149^{112k+56}+149^{110k+55}+149^{108k+54}\\||+149^{106k+53}+149^{104k+52}+149^{102k+51}+149^{100k+50}+149^{98k+49}\\||+149^{96k+48}+149^{94k+47}+149^{92k+46}+149^{90k+45}+149^{88k+44}\\||+149^{86k+43}+149^{84k+42}+149^{82k+41}+149^{80k+40}+149^{78k+39}\\||+149^{76k+38}+149^{74k+37}+149^{72k+36}+149^{70k+35}+149^{68k+34}\\||+149^{66k+33}+149^{64k+32}+149^{62k+31}+149^{60k+30}+149^{58k+29}\\||+149^{56k+28}+149^{54k+27}+149^{52k+26}+149^{50k+25}+149^{48k+24}\\||+149^{46k+23}+149^{44k+22}+149^{42k+21}+149^{40k+20}+149^{38k+19}\\||+149^{36k+18}+149^{34k+17}+149^{32k+16}+149^{30k+15}+149^{28k+14}\\||+149^{26k+13}+149^{24k+12}+149^{22k+11}+149^{20k+10}+149^{18k+9}\\||+149^{16k+8}+149^{14k+7}+149^{12k+6}+149^{10k+5}+149^{8k+4}\\||+149^{6k+3}+149^{4k+2}+149^{2k+1}+1\\|=|(149^{148k+74}-149^{147k+74}+75\cdot 149^{146k+73}-25\cdot 149^{145k+73}+913\cdot 149^{144k+72}\\||-173\cdot 149^{143k+72}+3865\cdot 149^{142k+71}-461\cdot 149^{141k+71}+6455\cdot 149^{140k+70}-471\cdot 149^{139k+70}\\||+4245\cdot 149^{138k+69}-343\cdot 149^{137k+69}+7877\cdot 149^{136k+68}-1251\cdot 149^{135k+68}+22821\cdot 149^{134k+67}\\||-2083\cdot 149^{133k+67}+20659\cdot 149^{132k+66}-963\cdot 149^{131k+66}+6093\cdot 149^{130k+65}-789\cdot 149^{129k+65}\\||+21709\cdot 149^{128k+64}-2855\cdot 149^{127k+64}+40099\cdot 149^{126k+63}-2761\cdot 149^{125k+63}+19797\cdot 149^{124k+62}\\||-589\cdot 149^{123k+62}+3041\cdot 149^{122k+61}-687\cdot 149^{121k+61}+18455\cdot 149^{120k+60}-2191\cdot 149^{119k+60}\\||+29139\cdot 149^{118k+59}-2059\cdot 149^{117k+59}+16341\cdot 149^{116k+58}-401\cdot 149^{115k+58}-6345\cdot 149^{114k+57}\\||+1053\cdot 149^{113k+57}-9633\cdot 149^{112k+56}-379\cdot 149^{111k+56}+23773\cdot 149^{110k+55}-2929\cdot 149^{109k+55}\\||+30543\cdot 149^{108k+54}-737\cdot 149^{107k+54}-15427\cdot 149^{106k+53}+2057\cdot 149^{105k+53}-11199\cdot 149^{104k+52}\\||-1577\cdot 149^{103k+52}+47961\cdot 149^{102k+51}-4785\cdot 149^{101k+51}+47027\cdot 149^{100k+50}-2007\cdot 149^{99k+50}\\||+7117\cdot 149^{98k+49}-455\cdot 149^{97k+49}+19201\cdot 149^{96k+48}-3189\cdot 149^{95k+48}+54553\cdot 149^{94k+47}\\||-4979\cdot 149^{93k+47}+57977\cdot 149^{92k+46}-4039\cdot 149^{91k+46}+38021\cdot 149^{90k+45}-2243\cdot 149^{89k+45}\\||+21417\cdot 149^{88k+44}-1949\cdot 149^{87k+44}+34359\cdot 149^{86k+43}-3855\cdot 149^{85k+43}+52659\cdot 149^{84k+42}\\||-3729\cdot 149^{83k+42}+28651\cdot 149^{82k+41}-991\cdot 149^{81k+41}+5299\cdot 149^{80k+40}-811\cdot 149^{79k+40}\\||+19125\cdot 149^{78k+39}-1971\cdot 149^{77k+39}+21113\cdot 149^{76k+38}-1173\cdot 149^{75k+38}+10891\cdot 149^{74k+37}\\||-1173\cdot 149^{73k+37}+21113\cdot 149^{72k+36}-1971\cdot 149^{71k+36}+19125\cdot 149^{70k+35}-811\cdot 149^{69k+35}\\||+5299\cdot 149^{68k+34}-991\cdot 149^{67k+34}+28651\cdot 149^{66k+33}-3729\cdot 149^{65k+33}+52659\cdot 149^{64k+32}\\||-3855\cdot 149^{63k+32}+34359\cdot 149^{62k+31}-1949\cdot 149^{61k+31}+21417\cdot 149^{60k+30}-2243\cdot 149^{59k+30}\\||+38021\cdot 149^{58k+29}-4039\cdot 149^{57k+29}+57977\cdot 149^{56k+28}-4979\cdot 149^{55k+28}+54553\cdot 149^{54k+27}\\||-3189\cdot 149^{53k+27}+19201\cdot 149^{52k+26}-455\cdot 149^{51k+26}+7117\cdot 149^{50k+25}-2007\cdot 149^{49k+25}\\||+47027\cdot 149^{48k+24}-4785\cdot 149^{47k+24}+47961\cdot 149^{46k+23}-1577\cdot 149^{45k+23}-11199\cdot 149^{44k+22}\\||+2057\cdot 149^{43k+22}-15427\cdot 149^{42k+21}-737\cdot 149^{41k+21}+30543\cdot 149^{40k+20}-2929\cdot 149^{39k+20}\\||+23773\cdot 149^{38k+19}-379\cdot 149^{37k+19}-9633\cdot 149^{36k+18}+1053\cdot 149^{35k+18}-6345\cdot 149^{34k+17}\\||-401\cdot 149^{33k+17}+16341\cdot 149^{32k+16}-2059\cdot 149^{31k+16}+29139\cdot 149^{30k+15}-2191\cdot 149^{29k+15}\\||+18455\cdot 149^{28k+14}-687\cdot 149^{27k+14}+3041\cdot 149^{26k+13}-589\cdot 149^{25k+13}+19797\cdot 149^{24k+12}\\||-2761\cdot 149^{23k+12}+40099\cdot 149^{22k+11}-2855\cdot 149^{21k+11}+21709\cdot 149^{20k+10}-789\cdot 149^{19k+10}\\||+6093\cdot 149^{18k+9}-963\cdot 149^{17k+9}+20659\cdot 149^{16k+8}-2083\cdot 149^{15k+8}+22821\cdot 149^{14k+7}\\||-1251\cdot 149^{13k+7}+7877\cdot 149^{12k+6}-343\cdot 149^{11k+6}+4245\cdot 149^{10k+5}-471\cdot 149^{9k+5}\\||+6455\cdot 149^{8k+4}-461\cdot 149^{7k+4}+3865\cdot 149^{6k+3}-173\cdot 149^{5k+3}+913\cdot 149^{4k+2}\\||-25\cdot 149^{3k+2}+75\cdot 149^{2k+1}-149^{k+1}+1)\\|\times|(149^{148k+74}+149^{147k+74}+75\cdot 149^{146k+73}+25\cdot 149^{145k+73}+913\cdot 149^{144k+72}\\||+173\cdot 149^{143k+72}+3865\cdot 149^{142k+71}+461\cdot 149^{141k+71}+6455\cdot 149^{140k+70}+471\cdot 149^{139k+70}\\||+4245\cdot 149^{138k+69}+343\cdot 149^{137k+69}+7877\cdot 149^{136k+68}+1251\cdot 149^{135k+68}+22821\cdot 149^{134k+67}\\||+2083\cdot 149^{133k+67}+20659\cdot 149^{132k+66}+963\cdot 149^{131k+66}+6093\cdot 149^{130k+65}+789\cdot 149^{129k+65}\\||+21709\cdot 149^{128k+64}+2855\cdot 149^{127k+64}+40099\cdot 149^{126k+63}+2761\cdot 149^{125k+63}+19797\cdot 149^{124k+62}\\||+589\cdot 149^{123k+62}+3041\cdot 149^{122k+61}+687\cdot 149^{121k+61}+18455\cdot 149^{120k+60}+2191\cdot 149^{119k+60}\\||+29139\cdot 149^{118k+59}+2059\cdot 149^{117k+59}+16341\cdot 149^{116k+58}+401\cdot 149^{115k+58}-6345\cdot 149^{114k+57}\\||-1053\cdot 149^{113k+57}-9633\cdot 149^{112k+56}+379\cdot 149^{111k+56}+23773\cdot 149^{110k+55}+2929\cdot 149^{109k+55}\\||+30543\cdot 149^{108k+54}+737\cdot 149^{107k+54}-15427\cdot 149^{106k+53}-2057\cdot 149^{105k+53}-11199\cdot 149^{104k+52}\\||+1577\cdot 149^{103k+52}+47961\cdot 149^{102k+51}+4785\cdot 149^{101k+51}+47027\cdot 149^{100k+50}+2007\cdot 149^{99k+50}\\||+7117\cdot 149^{98k+49}+455\cdot 149^{97k+49}+19201\cdot 149^{96k+48}+3189\cdot 149^{95k+48}+54553\cdot 149^{94k+47}\\||+4979\cdot 149^{93k+47}+57977\cdot 149^{92k+46}+4039\cdot 149^{91k+46}+38021\cdot 149^{90k+45}+2243\cdot 149^{89k+45}\\||+21417\cdot 149^{88k+44}+1949\cdot 149^{87k+44}+34359\cdot 149^{86k+43}+3855\cdot 149^{85k+43}+52659\cdot 149^{84k+42}\\||+3729\cdot 149^{83k+42}+28651\cdot 149^{82k+41}+991\cdot 149^{81k+41}+5299\cdot 149^{80k+40}+811\cdot 149^{79k+40}\\||+19125\cdot 149^{78k+39}+1971\cdot 149^{77k+39}+21113\cdot 149^{76k+38}+1173\cdot 149^{75k+38}+10891\cdot 149^{74k+37}\\||+1173\cdot 149^{73k+37}+21113\cdot 149^{72k+36}+1971\cdot 149^{71k+36}+19125\cdot 149^{70k+35}+811\cdot 149^{69k+35}\\||+5299\cdot 149^{68k+34}+991\cdot 149^{67k+34}+28651\cdot 149^{66k+33}+3729\cdot 149^{65k+33}+52659\cdot 149^{64k+32}\\||+3855\cdot 149^{63k+32}+34359\cdot 149^{62k+31}+1949\cdot 149^{61k+31}+21417\cdot 149^{60k+30}+2243\cdot 149^{59k+30}\\||+38021\cdot 149^{58k+29}+4039\cdot 149^{57k+29}+57977\cdot 149^{56k+28}+4979\cdot 149^{55k+28}+54553\cdot 149^{54k+27}\\||+3189\cdot 149^{53k+27}+19201\cdot 149^{52k+26}+455\cdot 149^{51k+26}+7117\cdot 149^{50k+25}+2007\cdot 149^{49k+25}\\||+47027\cdot 149^{48k+24}+4785\cdot 149^{47k+24}+47961\cdot 149^{46k+23}+1577\cdot 149^{45k+23}-11199\cdot 149^{44k+22}\\||-2057\cdot 149^{43k+22}-15427\cdot 149^{42k+21}+737\cdot 149^{41k+21}+30543\cdot 149^{40k+20}+2929\cdot 149^{39k+20}\\||+23773\cdot 149^{38k+19}+379\cdot 149^{37k+19}-9633\cdot 149^{36k+18}-1053\cdot 149^{35k+18}-6345\cdot 149^{34k+17}\\||+401\cdot 149^{33k+17}+16341\cdot 149^{32k+16}+2059\cdot 149^{31k+16}+29139\cdot 149^{30k+15}+2191\cdot 149^{29k+15}\\||+18455\cdot 149^{28k+14}+687\cdot 149^{27k+14}+3041\cdot 149^{26k+13}+589\cdot 149^{25k+13}+19797\cdot 149^{24k+12}\\||+2761\cdot 149^{23k+12}+40099\cdot 149^{22k+11}+2855\cdot 149^{21k+11}+21709\cdot 149^{20k+10}+789\cdot 149^{19k+10}\\||+6093\cdot 149^{18k+9}+963\cdot 149^{17k+9}+20659\cdot 149^{16k+8}+2083\cdot 149^{15k+8}+22821\cdot 149^{14k+7}\\||+1251\cdot 149^{13k+7}+7877\cdot 149^{12k+6}+343\cdot 149^{11k+6}+4245\cdot 149^{10k+5}+471\cdot 149^{9k+5}\\||+6455\cdot 149^{8k+4}+461\cdot 149^{7k+4}+3865\cdot 149^{6k+3}+173\cdot 149^{5k+3}+913\cdot 149^{4k+2}\\||+25\cdot 149^{3k+2}+75\cdot 149^{2k+1}+149^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{302}(151^{2k+1})\cdots{\large\Phi}_{310}(155^{2k+1})$${\large\Phi}_{302}(151^{2k+1})\cdots{\large\Phi}_{310}(155^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{302}(151^{2k+1})|=|151^{300k+150}-151^{298k+149}+151^{296k+148}-151^{294k+147}+151^{292k+146}\\||-151^{290k+145}+151^{288k+144}-151^{286k+143}+151^{284k+142}-151^{282k+141}\\||+151^{280k+140}-151^{278k+139}+151^{276k+138}-151^{274k+137}+151^{272k+136}\\||-151^{270k+135}+151^{268k+134}-151^{266k+133}+151^{264k+132}-151^{262k+131}\\||+151^{260k+130}-151^{258k+129}+151^{256k+128}-151^{254k+127}+151^{252k+126}\\||-151^{250k+125}+151^{248k+124}-151^{246k+123}+151^{244k+122}-151^{242k+121}\\||+151^{240k+120}-151^{238k+119}+151^{236k+118}-151^{234k+117}+151^{232k+116}\\||-151^{230k+115}+151^{228k+114}-151^{226k+113}+151^{224k+112}-151^{222k+111}\\||+151^{220k+110}-151^{218k+109}+151^{216k+108}-151^{214k+107}+151^{212k+106}\\||-151^{210k+105}+151^{208k+104}-151^{206k+103}+151^{204k+102}-151^{202k+101}\\||+151^{200k+100}-151^{198k+99}+151^{196k+98}-151^{194k+97}+151^{192k+96}\\||-151^{190k+95}+151^{188k+94}-151^{186k+93}+151^{184k+92}-151^{182k+91}\\||+151^{180k+90}-151^{178k+89}+151^{176k+88}-151^{174k+87}+151^{172k+86}\\||-151^{170k+85}+151^{168k+84}-151^{166k+83}+151^{164k+82}-151^{162k+81}\\||+151^{160k+80}-151^{158k+79}+151^{156k+78}-151^{154k+77}+151^{152k+76}\\||-151^{150k+75}+151^{148k+74}-151^{146k+73}+151^{144k+72}-151^{142k+71}\\||+151^{140k+70}-151^{138k+69}+151^{136k+68}-151^{134k+67}+151^{132k+66}\\||-151^{130k+65}+151^{128k+64}-151^{126k+63}+151^{124k+62}-151^{122k+61}\\||+151^{120k+60}-151^{118k+59}+151^{116k+58}-151^{114k+57}+151^{112k+56}\\||-151^{110k+55}+151^{108k+54}-151^{106k+53}+151^{104k+52}-151^{102k+51}\\||+151^{100k+50}-151^{98k+49}+151^{96k+48}-151^{94k+47}+151^{92k+46}\\||-151^{90k+45}+151^{88k+44}-151^{86k+43}+151^{84k+42}-151^{82k+41}\\||+151^{80k+40}-151^{78k+39}+151^{76k+38}-151^{74k+37}+151^{72k+36}\\||-151^{70k+35}+151^{68k+34}-151^{66k+33}+151^{64k+32}-151^{62k+31}\\||+151^{60k+30}-151^{58k+29}+151^{56k+28}-151^{54k+27}+151^{52k+26}\\||-151^{50k+25}+151^{48k+24}-151^{46k+23}+151^{44k+22}-151^{42k+21}\\||+151^{40k+20}-151^{38k+19}+151^{36k+18}-151^{34k+17}+151^{32k+16}\\||-151^{30k+15}+151^{28k+14}-151^{26k+13}+151^{24k+12}-151^{22k+11}\\||+151^{20k+10}-151^{18k+9}+151^{16k+8}-151^{14k+7}+151^{12k+6}\\||-151^{10k+5}+151^{8k+4}-151^{6k+3}+151^{4k+2}-151^{2k+1}+1\\|=|(151^{150k+75}-151^{149k+75}+75\cdot 151^{148k+74}-25\cdot 151^{147k+74}+963\cdot 151^{146k+73}\\||-203\cdot 151^{145k+73}+5615\cdot 151^{144k+72}-925\cdot 151^{143k+72}+21191\cdot 151^{142k+71}-3011\cdot 151^{141k+71}\\||+61245\cdot 151^{140k+70}-7893\cdot 151^{139k+70}+147973\cdot 151^{138k+69}-17791\cdot 151^{137k+69}+314011\cdot 151^{136k+68}\\||-35789\cdot 151^{135k+68}+601979\cdot 151^{134k+67}-65663\cdot 151^{133k+67}+1060813\cdot 151^{132k+66}-111485\cdot 151^{131k+66}\\||+1740103\cdot 151^{130k+65}-177119\cdot 151^{129k+65}+2683393\cdot 151^{128k+64}-265623\cdot 151^{127k+64}+3920163\cdot 151^{126k+63}\\||-378575\cdot 151^{125k+63}+5458147\cdot 151^{124k+62}-515581\cdot 151^{123k+62}+7279769\cdot 151^{122k+61}-674221\cdot 151^{121k+61}\\||+9344281\cdot 151^{120k+60}-850409\cdot 151^{119k+60}+11593887\cdot 151^{118k+59}-1039009\cdot 151^{117k+59}+13962915\cdot 151^{116k+58}\\||-1234729\cdot 151^{115k+58}+16390403\cdot 151^{114k+57}-1433207\cdot 151^{113k+57}+18832893\cdot 151^{112k+56}-1631893\cdot 151^{111k+56}\\||+21272247\cdot 151^{110k+55}-1830405\cdot 151^{109k+55}+23716775\cdot 151^{108k+54}-2030391\cdot 151^{107k+54}+26196933\cdot 151^{106k+53}\\||-2234957\cdot 151^{105k+53}+28755337\cdot 151^{104k+52}-2447617\cdot 151^{103k+52}+31431557\cdot 151^{102k+51}-2670969\cdot 151^{101k+51}\\||+34246343\cdot 151^{100k+50}-2905561\cdot 151^{99k+50}+37190305\cdot 151^{98k+49}-3149207\cdot 151^{97k+49}+40218599\cdot 151^{96k+48}\\||-3396831\cdot 151^{95k+48}+43252851\cdot 151^{94k+47}-3640969\cdot 151^{93k+47}+46191639\cdot 151^{92k+46}-3872927\cdot 151^{91k+46}\\||+48927227\cdot 151^{90k+45}-4084221\cdot 151^{89k+45}+51362931\cdot 151^{88k+44}-4267901\cdot 151^{87k+44}+53427867\cdot 151^{86k+43}\\||-4419589\cdot 151^{85k+43}+55086933\cdot 151^{84k+42}-4537979\cdot 151^{83k+42}+56342085\cdot 151^{82k+41}-4624505\cdot 151^{81k+41}\\||+57223357\cdot 151^{80k+40}-4682319\cdot 151^{79k+40}+57774333\cdot 151^{78k+39}-4715051\cdot 151^{77k+39}+58036881\cdot 151^{76k+38}\\||-4725591\cdot 151^{75k+38}+58036881\cdot 151^{74k+37}-4715051\cdot 151^{73k+37}+57774333\cdot 151^{72k+36}-4682319\cdot 151^{71k+36}\\||+57223357\cdot 151^{70k+35}-4624505\cdot 151^{69k+35}+56342085\cdot 151^{68k+34}-4537979\cdot 151^{67k+34}+55086933\cdot 151^{66k+33}\\||-4419589\cdot 151^{65k+33}+53427867\cdot 151^{64k+32}-4267901\cdot 151^{63k+32}+51362931\cdot 151^{62k+31}-4084221\cdot 151^{61k+31}\\||+48927227\cdot 151^{60k+30}-3872927\cdot 151^{59k+30}+46191639\cdot 151^{58k+29}-3640969\cdot 151^{57k+29}+43252851\cdot 151^{56k+28}\\||-3396831\cdot 151^{55k+28}+40218599\cdot 151^{54k+27}-3149207\cdot 151^{53k+27}+37190305\cdot 151^{52k+26}-2905561\cdot 151^{51k+26}\\||+34246343\cdot 151^{50k+25}-2670969\cdot 151^{49k+25}+31431557\cdot 151^{48k+24}-2447617\cdot 151^{47k+24}+28755337\cdot 151^{46k+23}\\||-2234957\cdot 151^{45k+23}+26196933\cdot 151^{44k+22}-2030391\cdot 151^{43k+22}+23716775\cdot 151^{42k+21}-1830405\cdot 151^{41k+21}\\||+21272247\cdot 151^{40k+20}-1631893\cdot 151^{39k+20}+18832893\cdot 151^{38k+19}-1433207\cdot 151^{37k+19}+16390403\cdot 151^{36k+18}\\||-1234729\cdot 151^{35k+18}+13962915\cdot 151^{34k+17}-1039009\cdot 151^{33k+17}+11593887\cdot 151^{32k+16}-850409\cdot 151^{31k+16}\\||+9344281\cdot 151^{30k+15}-674221\cdot 151^{29k+15}+7279769\cdot 151^{28k+14}-515581\cdot 151^{27k+14}+5458147\cdot 151^{26k+13}\\||-378575\cdot 151^{25k+13}+3920163\cdot 151^{24k+12}-265623\cdot 151^{23k+12}+2683393\cdot 151^{22k+11}-177119\cdot 151^{21k+11}\\||+1740103\cdot 151^{20k+10}-111485\cdot 151^{19k+10}+1060813\cdot 151^{18k+9}-65663\cdot 151^{17k+9}+601979\cdot 151^{16k+8}\\||-35789\cdot 151^{15k+8}+314011\cdot 151^{14k+7}-17791\cdot 151^{13k+7}+147973\cdot 151^{12k+6}-7893\cdot 151^{11k+6}\\||+61245\cdot 151^{10k+5}-3011\cdot 151^{9k+5}+21191\cdot 151^{8k+4}-925\cdot 151^{7k+4}+5615\cdot 151^{6k+3}\\||-203\cdot 151^{5k+3}+963\cdot 151^{4k+2}-25\cdot 151^{3k+2}+75\cdot 151^{2k+1}-151^{k+1}+1)\\|\times|(151^{150k+75}+151^{149k+75}+75\cdot 151^{148k+74}+25\cdot 151^{147k+74}+963\cdot 151^{146k+73}\\||+203\cdot 151^{145k+73}+5615\cdot 151^{144k+72}+925\cdot 151^{143k+72}+21191\cdot 151^{142k+71}+3011\cdot 151^{141k+71}\\||+61245\cdot 151^{140k+70}+7893\cdot 151^{139k+70}+147973\cdot 151^{138k+69}+17791\cdot 151^{137k+69}+314011\cdot 151^{136k+68}\\||+35789\cdot 151^{135k+68}+601979\cdot 151^{134k+67}+65663\cdot 151^{133k+67}+1060813\cdot 151^{132k+66}+111485\cdot 151^{131k+66}\\||+1740103\cdot 151^{130k+65}+177119\cdot 151^{129k+65}+2683393\cdot 151^{128k+64}+265623\cdot 151^{127k+64}+3920163\cdot 151^{126k+63}\\||+378575\cdot 151^{125k+63}+5458147\cdot 151^{124k+62}+515581\cdot 151^{123k+62}+7279769\cdot 151^{122k+61}+674221\cdot 151^{121k+61}\\||+9344281\cdot 151^{120k+60}+850409\cdot 151^{119k+60}+11593887\cdot 151^{118k+59}+1039009\cdot 151^{117k+59}+13962915\cdot 151^{116k+58}\\||+1234729\cdot 151^{115k+58}+16390403\cdot 151^{114k+57}+1433207\cdot 151^{113k+57}+18832893\cdot 151^{112k+56}+1631893\cdot 151^{111k+56}\\||+21272247\cdot 151^{110k+55}+1830405\cdot 151^{109k+55}+23716775\cdot 151^{108k+54}+2030391\cdot 151^{107k+54}+26196933\cdot 151^{106k+53}\\||+2234957\cdot 151^{105k+53}+28755337\cdot 151^{104k+52}+2447617\cdot 151^{103k+52}+31431557\cdot 151^{102k+51}+2670969\cdot 151^{101k+51}\\||+34246343\cdot 151^{100k+50}+2905561\cdot 151^{99k+50}+37190305\cdot 151^{98k+49}+3149207\cdot 151^{97k+49}+40218599\cdot 151^{96k+48}\\||+3396831\cdot 151^{95k+48}+43252851\cdot 151^{94k+47}+3640969\cdot 151^{93k+47}+46191639\cdot 151^{92k+46}+3872927\cdot 151^{91k+46}\\||+48927227\cdot 151^{90k+45}+4084221\cdot 151^{89k+45}+51362931\cdot 151^{88k+44}+4267901\cdot 151^{87k+44}+53427867\cdot 151^{86k+43}\\||+4419589\cdot 151^{85k+43}+55086933\cdot 151^{84k+42}+4537979\cdot 151^{83k+42}+56342085\cdot 151^{82k+41}+4624505\cdot 151^{81k+41}\\||+57223357\cdot 151^{80k+40}+4682319\cdot 151^{79k+40}+57774333\cdot 151^{78k+39}+4715051\cdot 151^{77k+39}+58036881\cdot 151^{76k+38}\\||+4725591\cdot 151^{75k+38}+58036881\cdot 151^{74k+37}+4715051\cdot 151^{73k+37}+57774333\cdot 151^{72k+36}+4682319\cdot 151^{71k+36}\\||+57223357\cdot 151^{70k+35}+4624505\cdot 151^{69k+35}+56342085\cdot 151^{68k+34}+4537979\cdot 151^{67k+34}+55086933\cdot 151^{66k+33}\\||+4419589\cdot 151^{65k+33}+53427867\cdot 151^{64k+32}+4267901\cdot 151^{63k+32}+51362931\cdot 151^{62k+31}+4084221\cdot 151^{61k+31}\\||+48927227\cdot 151^{60k+30}+3872927\cdot 151^{59k+30}+46191639\cdot 151^{58k+29}+3640969\cdot 151^{57k+29}+43252851\cdot 151^{56k+28}\\||+3396831\cdot 151^{55k+28}+40218599\cdot 151^{54k+27}+3149207\cdot 151^{53k+27}+37190305\cdot 151^{52k+26}+2905561\cdot 151^{51k+26}\\||+34246343\cdot 151^{50k+25}+2670969\cdot 151^{49k+25}+31431557\cdot 151^{48k+24}+2447617\cdot 151^{47k+24}+28755337\cdot 151^{46k+23}\\||+2234957\cdot 151^{45k+23}+26196933\cdot 151^{44k+22}+2030391\cdot 151^{43k+22}+23716775\cdot 151^{42k+21}+1830405\cdot 151^{41k+21}\\||+21272247\cdot 151^{40k+20}+1631893\cdot 151^{39k+20}+18832893\cdot 151^{38k+19}+1433207\cdot 151^{37k+19}+16390403\cdot 151^{36k+18}\\||+1234729\cdot 151^{35k+18}+13962915\cdot 151^{34k+17}+1039009\cdot 151^{33k+17}+11593887\cdot 151^{32k+16}+850409\cdot 151^{31k+16}\\||+9344281\cdot 151^{30k+15}+674221\cdot 151^{29k+15}+7279769\cdot 151^{28k+14}+515581\cdot 151^{27k+14}+5458147\cdot 151^{26k+13}\\||+378575\cdot 151^{25k+13}+3920163\cdot 151^{24k+12}+265623\cdot 151^{23k+12}+2683393\cdot 151^{22k+11}+177119\cdot 151^{21k+11}\\||+1740103\cdot 151^{20k+10}+111485\cdot 151^{19k+10}+1060813\cdot 151^{18k+9}+65663\cdot 151^{17k+9}+601979\cdot 151^{16k+8}\\||+35789\cdot 151^{15k+8}+314011\cdot 151^{14k+7}+17791\cdot 151^{13k+7}+147973\cdot 151^{12k+6}+7893\cdot 151^{11k+6}\\||+61245\cdot 151^{10k+5}+3011\cdot 151^{9k+5}+21191\cdot 151^{8k+4}+925\cdot 151^{7k+4}+5615\cdot 151^{6k+3}\\||+203\cdot 151^{5k+3}+963\cdot 151^{4k+2}+25\cdot 151^{3k+2}+75\cdot 151^{2k+1}+151^{k+1}+1)\\{\large\Phi}_{308}(154^{2k+1})|=|154^{240k+120}+154^{236k+118}-154^{212k+106}-154^{208k+104}-154^{196k+98}\\||-154^{192k+96}+154^{184k+92}+154^{180k+90}+154^{168k+84}+154^{164k+82}\\||-154^{156k+78}+154^{148k+74}-154^{140k+70}-154^{136k+68}+154^{128k+64}\\||-154^{120k+60}+154^{112k+56}-154^{104k+52}-154^{100k+50}+154^{92k+46}\\||-154^{84k+42}+154^{76k+38}+154^{72k+36}+154^{60k+30}+154^{56k+28}\\||-154^{48k+24}-154^{44k+22}-154^{32k+16}-154^{28k+14}+154^{4k+2}+1\\|=|(154^{120k+60}-154^{119k+60}+77\cdot 154^{118k+59}-26\cdot 154^{117k+59}+1040\cdot 154^{116k+58}\\||-224\cdot 154^{115k+58}+6468\cdot 154^{114k+57}-1091\cdot 154^{113k+57}+26074\cdot 154^{112k+56}-3781\cdot 154^{111k+56}\\||+79772\cdot 154^{110k+55}-10411\cdot 154^{109k+55}+200638\cdot 154^{108k+54}-24203\cdot 154^{107k+54}+435281\cdot 154^{106k+53}\\||-49385\cdot 154^{105k+53}+840701\cdot 154^{104k+52}-90766\cdot 154^{103k+52}+1477014\cdot 154^{102k+51}-153026\cdot 154^{101k+51}\\||+2397654\cdot 154^{100k+50}-239886\cdot 154^{99k+50}+3639097\cdot 154^{98k+49}-353337\cdot 154^{97k+49}+5212725\cdot 154^{96k+48}\\||-493141\cdot 154^{95k+48}+7100786\cdot 154^{94k+47}-656685\cdot 154^{93k+47}+9256967\cdot 154^{92k+46}-839238\cdot 154^{91k+46}\\||+11612293\cdot 154^{90k+45}-1034627\cdot 154^{89k+45}+14085508\cdot 154^{88k+44}-1236186\cdot 154^{87k+44}+16595656\cdot 154^{86k+43}\\||-1437781\cdot 154^{85k+43}+19074119\cdot 154^{84k+42}-1634656\cdot 154^{83k+42}+21472913\cdot 154^{82k+41}-1823893\cdot 154^{81k+41}\\||+23767558\cdot 154^{80k+40}-2004393\cdot 154^{79k+40}+25953543\cdot 154^{78k+39}-2176335\cdot 154^{77k+39}+28036962\cdot 154^{76k+38}\\||-2340273\cdot 154^{75k+38}+30022377\cdot 154^{74k+37}-2496158\cdot 154^{73k+37}+31901630\cdot 154^{72k+36}-2642586\cdot 154^{71k+36}\\||+33647075\cdot 154^{70k+35}-2776490\cdot 154^{69k+35}+35210781\cdot 154^{68k+34}-2893314\cdot 154^{67k+34}+36529570\cdot 154^{66k+33}\\||-2987640\cdot 154^{65k+33}+37535147\cdot 154^{64k+32}-3054135\cdot 154^{63k+32}+38166590\cdot 154^{62k+31}-3088552\cdot 154^{61k+31}\\||+38382015\cdot 154^{60k+30}-3088552\cdot 154^{59k+30}+38166590\cdot 154^{58k+29}-3054135\cdot 154^{57k+29}+37535147\cdot 154^{56k+28}\\||-2987640\cdot 154^{55k+28}+36529570\cdot 154^{54k+27}-2893314\cdot 154^{53k+27}+35210781\cdot 154^{52k+26}-2776490\cdot 154^{51k+26}\\||+33647075\cdot 154^{50k+25}-2642586\cdot 154^{49k+25}+31901630\cdot 154^{48k+24}-2496158\cdot 154^{47k+24}+30022377\cdot 154^{46k+23}\\||-2340273\cdot 154^{45k+23}+28036962\cdot 154^{44k+22}-2176335\cdot 154^{43k+22}+25953543\cdot 154^{42k+21}-2004393\cdot 154^{41k+21}\\||+23767558\cdot 154^{40k+20}-1823893\cdot 154^{39k+20}+21472913\cdot 154^{38k+19}-1634656\cdot 154^{37k+19}+19074119\cdot 154^{36k+18}\\||-1437781\cdot 154^{35k+18}+16595656\cdot 154^{34k+17}-1236186\cdot 154^{33k+17}+14085508\cdot 154^{32k+16}-1034627\cdot 154^{31k+16}\\||+11612293\cdot 154^{30k+15}-839238\cdot 154^{29k+15}+9256967\cdot 154^{28k+14}-656685\cdot 154^{27k+14}+7100786\cdot 154^{26k+13}\\||-493141\cdot 154^{25k+13}+5212725\cdot 154^{24k+12}-353337\cdot 154^{23k+12}+3639097\cdot 154^{22k+11}-239886\cdot 154^{21k+11}\\||+2397654\cdot 154^{20k+10}-153026\cdot 154^{19k+10}+1477014\cdot 154^{18k+9}-90766\cdot 154^{17k+9}+840701\cdot 154^{16k+8}\\||-49385\cdot 154^{15k+8}+435281\cdot 154^{14k+7}-24203\cdot 154^{13k+7}+200638\cdot 154^{12k+6}-10411\cdot 154^{11k+6}\\||+79772\cdot 154^{10k+5}-3781\cdot 154^{9k+5}+26074\cdot 154^{8k+4}-1091\cdot 154^{7k+4}+6468\cdot 154^{6k+3}\\||-224\cdot 154^{5k+3}+1040\cdot 154^{4k+2}-26\cdot 154^{3k+2}+77\cdot 154^{2k+1}-154^{k+1}+1)\\|\times|(154^{120k+60}+154^{119k+60}+77\cdot 154^{118k+59}+26\cdot 154^{117k+59}+1040\cdot 154^{116k+58}\\||+224\cdot 154^{115k+58}+6468\cdot 154^{114k+57}+1091\cdot 154^{113k+57}+26074\cdot 154^{112k+56}+3781\cdot 154^{111k+56}\\||+79772\cdot 154^{110k+55}+10411\cdot 154^{109k+55}+200638\cdot 154^{108k+54}+24203\cdot 154^{107k+54}+435281\cdot 154^{106k+53}\\||+49385\cdot 154^{105k+53}+840701\cdot 154^{104k+52}+90766\cdot 154^{103k+52}+1477014\cdot 154^{102k+51}+153026\cdot 154^{101k+51}\\||+2397654\cdot 154^{100k+50}+239886\cdot 154^{99k+50}+3639097\cdot 154^{98k+49}+353337\cdot 154^{97k+49}+5212725\cdot 154^{96k+48}\\||+493141\cdot 154^{95k+48}+7100786\cdot 154^{94k+47}+656685\cdot 154^{93k+47}+9256967\cdot 154^{92k+46}+839238\cdot 154^{91k+46}\\||+11612293\cdot 154^{90k+45}+1034627\cdot 154^{89k+45}+14085508\cdot 154^{88k+44}+1236186\cdot 154^{87k+44}+16595656\cdot 154^{86k+43}\\||+1437781\cdot 154^{85k+43}+19074119\cdot 154^{84k+42}+1634656\cdot 154^{83k+42}+21472913\cdot 154^{82k+41}+1823893\cdot 154^{81k+41}\\||+23767558\cdot 154^{80k+40}+2004393\cdot 154^{79k+40}+25953543\cdot 154^{78k+39}+2176335\cdot 154^{77k+39}+28036962\cdot 154^{76k+38}\\||+2340273\cdot 154^{75k+38}+30022377\cdot 154^{74k+37}+2496158\cdot 154^{73k+37}+31901630\cdot 154^{72k+36}+2642586\cdot 154^{71k+36}\\||+33647075\cdot 154^{70k+35}+2776490\cdot 154^{69k+35}+35210781\cdot 154^{68k+34}+2893314\cdot 154^{67k+34}+36529570\cdot 154^{66k+33}\\||+2987640\cdot 154^{65k+33}+37535147\cdot 154^{64k+32}+3054135\cdot 154^{63k+32}+38166590\cdot 154^{62k+31}+3088552\cdot 154^{61k+31}\\||+38382015\cdot 154^{60k+30}+3088552\cdot 154^{59k+30}+38166590\cdot 154^{58k+29}+3054135\cdot 154^{57k+29}+37535147\cdot 154^{56k+28}\\||+2987640\cdot 154^{55k+28}+36529570\cdot 154^{54k+27}+2893314\cdot 154^{53k+27}+35210781\cdot 154^{52k+26}+2776490\cdot 154^{51k+26}\\||+33647075\cdot 154^{50k+25}+2642586\cdot 154^{49k+25}+31901630\cdot 154^{48k+24}+2496158\cdot 154^{47k+24}+30022377\cdot 154^{46k+23}\\||+2340273\cdot 154^{45k+23}+28036962\cdot 154^{44k+22}+2176335\cdot 154^{43k+22}+25953543\cdot 154^{42k+21}+2004393\cdot 154^{41k+21}\\||+23767558\cdot 154^{40k+20}+1823893\cdot 154^{39k+20}+21472913\cdot 154^{38k+19}+1634656\cdot 154^{37k+19}+19074119\cdot 154^{36k+18}\\||+1437781\cdot 154^{35k+18}+16595656\cdot 154^{34k+17}+1236186\cdot 154^{33k+17}+14085508\cdot 154^{32k+16}+1034627\cdot 154^{31k+16}\\||+11612293\cdot 154^{30k+15}+839238\cdot 154^{29k+15}+9256967\cdot 154^{28k+14}+656685\cdot 154^{27k+14}+7100786\cdot 154^{26k+13}\\||+493141\cdot 154^{25k+13}+5212725\cdot 154^{24k+12}+353337\cdot 154^{23k+12}+3639097\cdot 154^{22k+11}+239886\cdot 154^{21k+11}\\||+2397654\cdot 154^{20k+10}+153026\cdot 154^{19k+10}+1477014\cdot 154^{18k+9}+90766\cdot 154^{17k+9}+840701\cdot 154^{16k+8}\\||+49385\cdot 154^{15k+8}+435281\cdot 154^{14k+7}+24203\cdot 154^{13k+7}+200638\cdot 154^{12k+6}+10411\cdot 154^{11k+6}\\||+79772\cdot 154^{10k+5}+3781\cdot 154^{9k+5}+26074\cdot 154^{8k+4}+1091\cdot 154^{7k+4}+6468\cdot 154^{6k+3}\\||+224\cdot 154^{5k+3}+1040\cdot 154^{4k+2}+26\cdot 154^{3k+2}+77\cdot 154^{2k+1}+154^{k+1}+1)\\{\large\Phi}_{310}(155^{2k+1})|=|155^{240k+120}+155^{238k+119}-155^{230k+115}-155^{228k+114}+155^{220k+110}\\||+155^{218k+109}-155^{210k+105}-155^{208k+104}+155^{200k+100}+155^{198k+99}\\||-155^{190k+95}-155^{188k+94}+155^{180k+90}-155^{176k+88}-155^{170k+85}\\||+155^{166k+83}+155^{160k+80}-155^{156k+78}-155^{150k+75}+155^{146k+73}\\||+155^{140k+70}-155^{136k+68}-155^{130k+65}+155^{126k+63}+155^{120k+60}\\||+155^{114k+57}-155^{110k+55}-155^{104k+52}+155^{100k+50}+155^{94k+47}\\||-155^{90k+45}-155^{84k+42}+155^{80k+40}+155^{74k+37}-155^{70k+35}\\||-155^{64k+32}+155^{60k+30}-155^{52k+26}-155^{50k+25}+155^{42k+21}\\||+155^{40k+20}-155^{32k+16}-155^{30k+15}+155^{22k+11}+155^{20k+10}\\||-155^{12k+6}-155^{10k+5}+155^{2k+1}+1\\|=|(155^{120k+60}-155^{119k+60}+78\cdot 155^{118k+59}-26\cdot 155^{117k+59}+988\cdot 155^{116k+58}\\||-187\cdot 155^{115k+58}+4311\cdot 155^{114k+57}-498\cdot 155^{113k+57}+6470\cdot 155^{112k+56}-286\cdot 155^{111k+56}\\||-2561\cdot 155^{110k+55}+729\cdot 155^{109k+55}-10848\cdot 155^{108k+54}+286\cdot 155^{107k+54}+12062\cdot 155^{106k+53}\\||-2281\cdot 155^{105k+53}+34259\cdot 155^{104k+52}-1812\cdot 155^{103k+52}-2800\cdot 155^{102k+51}+2164\cdot 155^{101k+51}\\||-32759\cdot 155^{100k+50}+1065\cdot 155^{99k+50}+21698\cdot 155^{98k+49}-4052\cdot 155^{97k+49}+53898\cdot 155^{96k+48}\\||-2341\cdot 155^{95k+48}-7959\cdot 155^{94k+47}+2692\cdot 155^{93k+47}-31810\cdot 155^{92k+46}+426\cdot 155^{91k+46}\\||+28299\cdot 155^{90k+45}-3914\cdot 155^{89k+45}+45827\cdot 155^{88k+44}-1916\cdot 155^{87k+44}-3648\cdot 155^{86k+43}\\||+1841\cdot 155^{85k+43}-26466\cdot 155^{84k+42}+1161\cdot 155^{83k+42}+7110\cdot 155^{82k+41}-2314\cdot 155^{81k+41}\\||+40381\cdot 155^{80k+40}-2774\cdot 155^{79k+40}+11613\cdot 155^{78k+39}+1464\cdot 155^{77k+39}-38872\cdot 155^{76k+38}\\||+3031\cdot 155^{75k+38}-14904\cdot 155^{74k+37}-1239\cdot 155^{73k+37}+33630\cdot 155^{72k+36}-2242\cdot 155^{71k+36}\\||+2379\cdot 155^{70k+35}+2104\cdot 155^{69k+35}-40343\cdot 155^{68k+34}+2692\cdot 155^{67k+34}-13068\cdot 155^{66k+33}\\||-513\cdot 155^{65k+33}+13214\cdot 155^{64k+32}-409\cdot 155^{63k+32}-11610\cdot 155^{62k+31}+2170\cdot 155^{61k+31}\\||-33139\cdot 155^{60k+30}+2170\cdot 155^{59k+30}-11610\cdot 155^{58k+29}-409\cdot 155^{57k+29}+13214\cdot 155^{56k+28}\\||-513\cdot 155^{55k+28}-13068\cdot 155^{54k+27}+2692\cdot 155^{53k+27}-40343\cdot 155^{52k+26}+2104\cdot 155^{51k+26}\\||+2379\cdot 155^{50k+25}-2242\cdot 155^{49k+25}+33630\cdot 155^{48k+24}-1239\cdot 155^{47k+24}-14904\cdot 155^{46k+23}\\||+3031\cdot 155^{45k+23}-38872\cdot 155^{44k+22}+1464\cdot 155^{43k+22}+11613\cdot 155^{42k+21}-2774\cdot 155^{41k+21}\\||+40381\cdot 155^{40k+20}-2314\cdot 155^{39k+20}+7110\cdot 155^{38k+19}+1161\cdot 155^{37k+19}-26466\cdot 155^{36k+18}\\||+1841\cdot 155^{35k+18}-3648\cdot 155^{34k+17}-1916\cdot 155^{33k+17}+45827\cdot 155^{32k+16}-3914\cdot 155^{31k+16}\\||+28299\cdot 155^{30k+15}+426\cdot 155^{29k+15}-31810\cdot 155^{28k+14}+2692\cdot 155^{27k+14}-7959\cdot 155^{26k+13}\\||-2341\cdot 155^{25k+13}+53898\cdot 155^{24k+12}-4052\cdot 155^{23k+12}+21698\cdot 155^{22k+11}+1065\cdot 155^{21k+11}\\||-32759\cdot 155^{20k+10}+2164\cdot 155^{19k+10}-2800\cdot 155^{18k+9}-1812\cdot 155^{17k+9}+34259\cdot 155^{16k+8}\\||-2281\cdot 155^{15k+8}+12062\cdot 155^{14k+7}+286\cdot 155^{13k+7}-10848\cdot 155^{12k+6}+729\cdot 155^{11k+6}\\||-2561\cdot 155^{10k+5}-286\cdot 155^{9k+5}+6470\cdot 155^{8k+4}-498\cdot 155^{7k+4}+4311\cdot 155^{6k+3}\\||-187\cdot 155^{5k+3}+988\cdot 155^{4k+2}-26\cdot 155^{3k+2}+78\cdot 155^{2k+1}-155^{k+1}+1)\\|\times|(155^{120k+60}+155^{119k+60}+78\cdot 155^{118k+59}+26\cdot 155^{117k+59}+988\cdot 155^{116k+58}\\||+187\cdot 155^{115k+58}+4311\cdot 155^{114k+57}+498\cdot 155^{113k+57}+6470\cdot 155^{112k+56}+286\cdot 155^{111k+56}\\||-2561\cdot 155^{110k+55}-729\cdot 155^{109k+55}-10848\cdot 155^{108k+54}-286\cdot 155^{107k+54}+12062\cdot 155^{106k+53}\\||+2281\cdot 155^{105k+53}+34259\cdot 155^{104k+52}+1812\cdot 155^{103k+52}-2800\cdot 155^{102k+51}-2164\cdot 155^{101k+51}\\||-32759\cdot 155^{100k+50}-1065\cdot 155^{99k+50}+21698\cdot 155^{98k+49}+4052\cdot 155^{97k+49}+53898\cdot 155^{96k+48}\\||+2341\cdot 155^{95k+48}-7959\cdot 155^{94k+47}-2692\cdot 155^{93k+47}-31810\cdot 155^{92k+46}-426\cdot 155^{91k+46}\\||+28299\cdot 155^{90k+45}+3914\cdot 155^{89k+45}+45827\cdot 155^{88k+44}+1916\cdot 155^{87k+44}-3648\cdot 155^{86k+43}\\||-1841\cdot 155^{85k+43}-26466\cdot 155^{84k+42}-1161\cdot 155^{83k+42}+7110\cdot 155^{82k+41}+2314\cdot 155^{81k+41}\\||+40381\cdot 155^{80k+40}+2774\cdot 155^{79k+40}+11613\cdot 155^{78k+39}-1464\cdot 155^{77k+39}-38872\cdot 155^{76k+38}\\||-3031\cdot 155^{75k+38}-14904\cdot 155^{74k+37}+1239\cdot 155^{73k+37}+33630\cdot 155^{72k+36}+2242\cdot 155^{71k+36}\\||+2379\cdot 155^{70k+35}-2104\cdot 155^{69k+35}-40343\cdot 155^{68k+34}-2692\cdot 155^{67k+34}-13068\cdot 155^{66k+33}\\||+513\cdot 155^{65k+33}+13214\cdot 155^{64k+32}+409\cdot 155^{63k+32}-11610\cdot 155^{62k+31}-2170\cdot 155^{61k+31}\\||-33139\cdot 155^{60k+30}-2170\cdot 155^{59k+30}-11610\cdot 155^{58k+29}+409\cdot 155^{57k+29}+13214\cdot 155^{56k+28}\\||+513\cdot 155^{55k+28}-13068\cdot 155^{54k+27}-2692\cdot 155^{53k+27}-40343\cdot 155^{52k+26}-2104\cdot 155^{51k+26}\\||+2379\cdot 155^{50k+25}+2242\cdot 155^{49k+25}+33630\cdot 155^{48k+24}+1239\cdot 155^{47k+24}-14904\cdot 155^{46k+23}\\||-3031\cdot 155^{45k+23}-38872\cdot 155^{44k+22}-1464\cdot 155^{43k+22}+11613\cdot 155^{42k+21}+2774\cdot 155^{41k+21}\\||+40381\cdot 155^{40k+20}+2314\cdot 155^{39k+20}+7110\cdot 155^{38k+19}-1161\cdot 155^{37k+19}-26466\cdot 155^{36k+18}\\||-1841\cdot 155^{35k+18}-3648\cdot 155^{34k+17}+1916\cdot 155^{33k+17}+45827\cdot 155^{32k+16}+3914\cdot 155^{31k+16}\\||+28299\cdot 155^{30k+15}-426\cdot 155^{29k+15}-31810\cdot 155^{28k+14}-2692\cdot 155^{27k+14}-7959\cdot 155^{26k+13}\\||+2341\cdot 155^{25k+13}+53898\cdot 155^{24k+12}+4052\cdot 155^{23k+12}+21698\cdot 155^{22k+11}-1065\cdot 155^{21k+11}\\||-32759\cdot 155^{20k+10}-2164\cdot 155^{19k+10}-2800\cdot 155^{18k+9}+1812\cdot 155^{17k+9}+34259\cdot 155^{16k+8}\\||+2281\cdot 155^{15k+8}+12062\cdot 155^{14k+7}-286\cdot 155^{13k+7}-10848\cdot 155^{12k+6}-729\cdot 155^{11k+6}\\||-2561\cdot 155^{10k+5}+286\cdot 155^{9k+5}+6470\cdot 155^{8k+4}+498\cdot 155^{7k+4}+4311\cdot 155^{6k+3}\\||+187\cdot 155^{5k+3}+988\cdot 155^{4k+2}+26\cdot 155^{3k+2}+78\cdot 155^{2k+1}+155^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{157}(157^{2k+1})\cdots{\large\Phi}_{318}(159^{2k+1})$${\large\Phi}_{157}(157^{2k+1})\cdots{\large\Phi}_{318}(159^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{157}(157^{2k+1})|=|157^{312k+156}+157^{310k+155}+157^{308k+154}+157^{306k+153}+157^{304k+152}\\||+157^{302k+151}+157^{300k+150}+157^{298k+149}+157^{296k+148}+157^{294k+147}\\||+157^{292k+146}+157^{290k+145}+157^{288k+144}+157^{286k+143}+157^{284k+142}\\||+157^{282k+141}+157^{280k+140}+157^{278k+139}+157^{276k+138}+157^{274k+137}\\||+157^{272k+136}+157^{270k+135}+157^{268k+134}+157^{266k+133}+157^{264k+132}\\||+157^{262k+131}+157^{260k+130}+157^{258k+129}+157^{256k+128}+157^{254k+127}\\||+157^{252k+126}+157^{250k+125}+157^{248k+124}+157^{246k+123}+157^{244k+122}\\||+157^{242k+121}+157^{240k+120}+157^{238k+119}+157^{236k+118}+157^{234k+117}\\||+157^{232k+116}+157^{230k+115}+157^{228k+114}+157^{226k+113}+157^{224k+112}\\||+157^{222k+111}+157^{220k+110}+157^{218k+109}+157^{216k+108}+157^{214k+107}\\||+157^{212k+106}+157^{210k+105}+157^{208k+104}+157^{206k+103}+157^{204k+102}\\||+157^{202k+101}+157^{200k+100}+157^{198k+99}+157^{196k+98}+157^{194k+97}\\||+157^{192k+96}+157^{190k+95}+157^{188k+94}+157^{186k+93}+157^{184k+92}\\||+157^{182k+91}+157^{180k+90}+157^{178k+89}+157^{176k+88}+157^{174k+87}\\||+157^{172k+86}+157^{170k+85}+157^{168k+84}+157^{166k+83}+157^{164k+82}\\||+157^{162k+81}+157^{160k+80}+157^{158k+79}+157^{156k+78}+157^{154k+77}\\||+157^{152k+76}+157^{150k+75}+157^{148k+74}+157^{146k+73}+157^{144k+72}\\||+157^{142k+71}+157^{140k+70}+157^{138k+69}+157^{136k+68}+157^{134k+67}\\||+157^{132k+66}+157^{130k+65}+157^{128k+64}+157^{126k+63}+157^{124k+62}\\||+157^{122k+61}+157^{120k+60}+157^{118k+59}+157^{116k+58}+157^{114k+57}\\||+157^{112k+56}+157^{110k+55}+157^{108k+54}+157^{106k+53}+157^{104k+52}\\||+157^{102k+51}+157^{100k+50}+157^{98k+49}+157^{96k+48}+157^{94k+47}\\||+157^{92k+46}+157^{90k+45}+157^{88k+44}+157^{86k+43}+157^{84k+42}\\||+157^{82k+41}+157^{80k+40}+157^{78k+39}+157^{76k+38}+157^{74k+37}\\||+157^{72k+36}+157^{70k+35}+157^{68k+34}+157^{66k+33}+157^{64k+32}\\||+157^{62k+31}+157^{60k+30}+157^{58k+29}+157^{56k+28}+157^{54k+27}\\||+157^{52k+26}+157^{50k+25}+157^{48k+24}+157^{46k+23}+157^{44k+22}\\||+157^{42k+21}+157^{40k+20}+157^{38k+19}+157^{36k+18}+157^{34k+17}\\||+157^{32k+16}+157^{30k+15}+157^{28k+14}+157^{26k+13}+157^{24k+12}\\||+157^{22k+11}+157^{20k+10}+157^{18k+9}+157^{16k+8}+157^{14k+7}\\||+157^{12k+6}+157^{10k+5}+157^{8k+4}+157^{6k+3}+157^{4k+2}\\||+157^{2k+1}+1\\|=|(157^{156k+78}-157^{155k+78}+79\cdot 157^{154k+77}-27\cdot 157^{153k+77}+1119\cdot 157^{152k+76}\\||-245\cdot 157^{151k+76}+7291\cdot 157^{150k+75}-1229\cdot 157^{149k+75}+29439\cdot 157^{148k+74}-4115\cdot 157^{147k+74}\\||+83439\cdot 157^{146k+73}-10015\cdot 157^{145k+73}+176063\cdot 157^{144k+72}-18431\cdot 157^{143k+72}+283379\cdot 157^{142k+71}\\||-25941\cdot 157^{141k+71}+347769\cdot 157^{140k+70}-27613\cdot 157^{139k+70}+319107\cdot 157^{138k+69}-21799\cdot 157^{137k+69}\\||+220813\cdot 157^{136k+68}-14335\cdot 157^{135k+68}+167965\cdot 157^{134k+67}-15975\cdot 157^{133k+67}+281549\cdot 157^{132k+66}\\||-32345\cdot 157^{131k+66}+552191\cdot 157^{130k+65}-55399\cdot 157^{129k+65}+800553\cdot 157^{128k+64}-67551\cdot 157^{127k+64}\\||+819759\cdot 157^{126k+63}-57955\cdot 157^{125k+63}+588761\cdot 157^{124k+62}-35373\cdot 157^{123k+62}+329115\cdot 157^{122k+61}\\||-22315\cdot 157^{121k+61}+312607\cdot 157^{120k+60}-33987\cdot 157^{119k+60}+597421\cdot 157^{118k+59}-63169\cdot 157^{117k+59}\\||+967893\cdot 157^{116k+58}-87179\cdot 157^{115k+58}+1145079\cdot 157^{114k+57}-89785\cdot 157^{113k+57}+1048929\cdot 157^{112k+56}\\||-75511\cdot 157^{111k+56}+850235\cdot 157^{110k+55}-63079\cdot 157^{109k+55}+784555\cdot 157^{108k+54}-66723\cdot 157^{107k+54}\\||+933761\cdot 157^{106k+53}-84285\cdot 157^{105k+53}+1176729\cdot 157^{104k+52}-101463\cdot 157^{103k+52}+1323233\cdot 157^{102k+51}\\||-105931\cdot 157^{101k+51}+1291095\cdot 157^{100k+50}-98407\cdot 157^{99k+50}+1178151\cdot 157^{98k+49}-91925\cdot 157^{97k+49}\\||+1172967\cdot 157^{96k+48}-99621\cdot 157^{95k+48}+1368771\cdot 157^{94k+47}-120569\cdot 157^{93k+47}+1640265\cdot 157^{92k+46}\\||-137427\cdot 157^{91k+46}+1728845\cdot 157^{90k+45}-131797\cdot 157^{89k+45}+1502537\cdot 157^{88k+44}-105067\cdot 157^{87k+44}\\||+1141461\cdot 157^{86k+43}-81985\cdot 157^{85k+43}+1011331\cdot 157^{84k+42}-88357\cdot 157^{83k+42}+1298627\cdot 157^{82k+41}\\||-123155\cdot 157^{81k+41}+1781591\cdot 157^{80k+40}-155973\cdot 157^{79k+40}+2017315\cdot 157^{78k+39}-155973\cdot 157^{77k+39}\\||+1781591\cdot 157^{76k+38}-123155\cdot 157^{75k+38}+1298627\cdot 157^{74k+37}-88357\cdot 157^{73k+37}+1011331\cdot 157^{72k+36}\\||-81985\cdot 157^{71k+36}+1141461\cdot 157^{70k+35}-105067\cdot 157^{69k+35}+1502537\cdot 157^{68k+34}-131797\cdot 157^{67k+34}\\||+1728845\cdot 157^{66k+33}-137427\cdot 157^{65k+33}+1640265\cdot 157^{64k+32}-120569\cdot 157^{63k+32}+1368771\cdot 157^{62k+31}\\||-99621\cdot 157^{61k+31}+1172967\cdot 157^{60k+30}-91925\cdot 157^{59k+30}+1178151\cdot 157^{58k+29}-98407\cdot 157^{57k+29}\\||+1291095\cdot 157^{56k+28}-105931\cdot 157^{55k+28}+1323233\cdot 157^{54k+27}-101463\cdot 157^{53k+27}+1176729\cdot 157^{52k+26}\\||-84285\cdot 157^{51k+26}+933761\cdot 157^{50k+25}-66723\cdot 157^{49k+25}+784555\cdot 157^{48k+24}-63079\cdot 157^{47k+24}\\||+850235\cdot 157^{46k+23}-75511\cdot 157^{45k+23}+1048929\cdot 157^{44k+22}-89785\cdot 157^{43k+22}+1145079\cdot 157^{42k+21}\\||-87179\cdot 157^{41k+21}+967893\cdot 157^{40k+20}-63169\cdot 157^{39k+20}+597421\cdot 157^{38k+19}-33987\cdot 157^{37k+19}\\||+312607\cdot 157^{36k+18}-22315\cdot 157^{35k+18}+329115\cdot 157^{34k+17}-35373\cdot 157^{33k+17}+588761\cdot 157^{32k+16}\\||-57955\cdot 157^{31k+16}+819759\cdot 157^{30k+15}-67551\cdot 157^{29k+15}+800553\cdot 157^{28k+14}-55399\cdot 157^{27k+14}\\||+552191\cdot 157^{26k+13}-32345\cdot 157^{25k+13}+281549\cdot 157^{24k+12}-15975\cdot 157^{23k+12}+167965\cdot 157^{22k+11}\\||-14335\cdot 157^{21k+11}+220813\cdot 157^{20k+10}-21799\cdot 157^{19k+10}+319107\cdot 157^{18k+9}-27613\cdot 157^{17k+9}\\||+347769\cdot 157^{16k+8}-25941\cdot 157^{15k+8}+283379\cdot 157^{14k+7}-18431\cdot 157^{13k+7}+176063\cdot 157^{12k+6}\\||-10015\cdot 157^{11k+6}+83439\cdot 157^{10k+5}-4115\cdot 157^{9k+5}+29439\cdot 157^{8k+4}-1229\cdot 157^{7k+4}\\||+7291\cdot 157^{6k+3}-245\cdot 157^{5k+3}+1119\cdot 157^{4k+2}-27\cdot 157^{3k+2}+79\cdot 157^{2k+1}\\||-157^{k+1}+1)\\|\times|(157^{156k+78}+157^{155k+78}+79\cdot 157^{154k+77}+27\cdot 157^{153k+77}+1119\cdot 157^{152k+76}\\||+245\cdot 157^{151k+76}+7291\cdot 157^{150k+75}+1229\cdot 157^{149k+75}+29439\cdot 157^{148k+74}+4115\cdot 157^{147k+74}\\||+83439\cdot 157^{146k+73}+10015\cdot 157^{145k+73}+176063\cdot 157^{144k+72}+18431\cdot 157^{143k+72}+283379\cdot 157^{142k+71}\\||+25941\cdot 157^{141k+71}+347769\cdot 157^{140k+70}+27613\cdot 157^{139k+70}+319107\cdot 157^{138k+69}+21799\cdot 157^{137k+69}\\||+220813\cdot 157^{136k+68}+14335\cdot 157^{135k+68}+167965\cdot 157^{134k+67}+15975\cdot 157^{133k+67}+281549\cdot 157^{132k+66}\\||+32345\cdot 157^{131k+66}+552191\cdot 157^{130k+65}+55399\cdot 157^{129k+65}+800553\cdot 157^{128k+64}+67551\cdot 157^{127k+64}\\||+819759\cdot 157^{126k+63}+57955\cdot 157^{125k+63}+588761\cdot 157^{124k+62}+35373\cdot 157^{123k+62}+329115\cdot 157^{122k+61}\\||+22315\cdot 157^{121k+61}+312607\cdot 157^{120k+60}+33987\cdot 157^{119k+60}+597421\cdot 157^{118k+59}+63169\cdot 157^{117k+59}\\||+967893\cdot 157^{116k+58}+87179\cdot 157^{115k+58}+1145079\cdot 157^{114k+57}+89785\cdot 157^{113k+57}+1048929\cdot 157^{112k+56}\\||+75511\cdot 157^{111k+56}+850235\cdot 157^{110k+55}+63079\cdot 157^{109k+55}+784555\cdot 157^{108k+54}+66723\cdot 157^{107k+54}\\||+933761\cdot 157^{106k+53}+84285\cdot 157^{105k+53}+1176729\cdot 157^{104k+52}+101463\cdot 157^{103k+52}+1323233\cdot 157^{102k+51}\\||+105931\cdot 157^{101k+51}+1291095\cdot 157^{100k+50}+98407\cdot 157^{99k+50}+1178151\cdot 157^{98k+49}+91925\cdot 157^{97k+49}\\||+1172967\cdot 157^{96k+48}+99621\cdot 157^{95k+48}+1368771\cdot 157^{94k+47}+120569\cdot 157^{93k+47}+1640265\cdot 157^{92k+46}\\||+137427\cdot 157^{91k+46}+1728845\cdot 157^{90k+45}+131797\cdot 157^{89k+45}+1502537\cdot 157^{88k+44}+105067\cdot 157^{87k+44}\\||+1141461\cdot 157^{86k+43}+81985\cdot 157^{85k+43}+1011331\cdot 157^{84k+42}+88357\cdot 157^{83k+42}+1298627\cdot 157^{82k+41}\\||+123155\cdot 157^{81k+41}+1781591\cdot 157^{80k+40}+155973\cdot 157^{79k+40}+2017315\cdot 157^{78k+39}+155973\cdot 157^{77k+39}\\||+1781591\cdot 157^{76k+38}+123155\cdot 157^{75k+38}+1298627\cdot 157^{74k+37}+88357\cdot 157^{73k+37}+1011331\cdot 157^{72k+36}\\||+81985\cdot 157^{71k+36}+1141461\cdot 157^{70k+35}+105067\cdot 157^{69k+35}+1502537\cdot 157^{68k+34}+131797\cdot 157^{67k+34}\\||+1728845\cdot 157^{66k+33}+137427\cdot 157^{65k+33}+1640265\cdot 157^{64k+32}+120569\cdot 157^{63k+32}+1368771\cdot 157^{62k+31}\\||+99621\cdot 157^{61k+31}+1172967\cdot 157^{60k+30}+91925\cdot 157^{59k+30}+1178151\cdot 157^{58k+29}+98407\cdot 157^{57k+29}\\||+1291095\cdot 157^{56k+28}+105931\cdot 157^{55k+28}+1323233\cdot 157^{54k+27}+101463\cdot 157^{53k+27}+1176729\cdot 157^{52k+26}\\||+84285\cdot 157^{51k+26}+933761\cdot 157^{50k+25}+66723\cdot 157^{49k+25}+784555\cdot 157^{48k+24}+63079\cdot 157^{47k+24}\\||+850235\cdot 157^{46k+23}+75511\cdot 157^{45k+23}+1048929\cdot 157^{44k+22}+89785\cdot 157^{43k+22}+1145079\cdot 157^{42k+21}\\||+87179\cdot 157^{41k+21}+967893\cdot 157^{40k+20}+63169\cdot 157^{39k+20}+597421\cdot 157^{38k+19}+33987\cdot 157^{37k+19}\\||+312607\cdot 157^{36k+18}+22315\cdot 157^{35k+18}+329115\cdot 157^{34k+17}+35373\cdot 157^{33k+17}+588761\cdot 157^{32k+16}\\||+57955\cdot 157^{31k+16}+819759\cdot 157^{30k+15}+67551\cdot 157^{29k+15}+800553\cdot 157^{28k+14}+55399\cdot 157^{27k+14}\\||+552191\cdot 157^{26k+13}+32345\cdot 157^{25k+13}+281549\cdot 157^{24k+12}+15975\cdot 157^{23k+12}+167965\cdot 157^{22k+11}\\||+14335\cdot 157^{21k+11}+220813\cdot 157^{20k+10}+21799\cdot 157^{19k+10}+319107\cdot 157^{18k+9}+27613\cdot 157^{17k+9}\\||+347769\cdot 157^{16k+8}+25941\cdot 157^{15k+8}+283379\cdot 157^{14k+7}+18431\cdot 157^{13k+7}+176063\cdot 157^{12k+6}\\||+10015\cdot 157^{11k+6}+83439\cdot 157^{10k+5}+4115\cdot 157^{9k+5}+29439\cdot 157^{8k+4}+1229\cdot 157^{7k+4}\\||+7291\cdot 157^{6k+3}+245\cdot 157^{5k+3}+1119\cdot 157^{4k+2}+27\cdot 157^{3k+2}+79\cdot 157^{2k+1}\\||+157^{k+1}+1)\\{\large\Phi}_{316}(158^{2k+1})|=|158^{312k+156}-158^{308k+154}+158^{304k+152}-158^{300k+150}+158^{296k+148}\\||-158^{292k+146}+158^{288k+144}-158^{284k+142}+158^{280k+140}-158^{276k+138}\\||+158^{272k+136}-158^{268k+134}+158^{264k+132}-158^{260k+130}+158^{256k+128}\\||-158^{252k+126}+158^{248k+124}-158^{244k+122}+158^{240k+120}-158^{236k+118}\\||+158^{232k+116}-158^{228k+114}+158^{224k+112}-158^{220k+110}+158^{216k+108}\\||-158^{212k+106}+158^{208k+104}-158^{204k+102}+158^{200k+100}-158^{196k+98}\\||+158^{192k+96}-158^{188k+94}+158^{184k+92}-158^{180k+90}+158^{176k+88}\\||-158^{172k+86}+158^{168k+84}-158^{164k+82}+158^{160k+80}-158^{156k+78}\\||+158^{152k+76}-158^{148k+74}+158^{144k+72}-158^{140k+70}+158^{136k+68}\\||-158^{132k+66}+158^{128k+64}-158^{124k+62}+158^{120k+60}-158^{116k+58}\\||+158^{112k+56}-158^{108k+54}+158^{104k+52}-158^{100k+50}+158^{96k+48}\\||-158^{92k+46}+158^{88k+44}-158^{84k+42}+158^{80k+40}-158^{76k+38}\\||+158^{72k+36}-158^{68k+34}+158^{64k+32}-158^{60k+30}+158^{56k+28}\\||-158^{52k+26}+158^{48k+24}-158^{44k+22}+158^{40k+20}-158^{36k+18}\\||+158^{32k+16}-158^{28k+14}+158^{24k+12}-158^{20k+10}+158^{16k+8}\\||-158^{12k+6}+158^{8k+4}-158^{4k+2}+1\\|=|(158^{156k+78}-158^{155k+78}+79\cdot 158^{154k+77}-26\cdot 158^{153k+77}+987\cdot 158^{152k+76}\\||-181\cdot 158^{151k+76}+4029\cdot 158^{150k+75}-416\cdot 158^{149k+75}+3901\cdot 158^{148k+74}+155\cdot 158^{147k+74}\\||-12245\cdot 158^{146k+73}+1808\cdot 158^{145k+73}-24989\cdot 158^{144k+72}+837\cdot 158^{143k+72}+22041\cdot 158^{142k+71}\\||-4834\cdot 158^{141k+71}+81461\cdot 158^{140k+70}-4717\cdot 158^{139k+70}-12877\cdot 158^{138k+69}+8784\cdot 158^{137k+69}\\||-179957\cdot 158^{136k+68}+13093\cdot 158^{135k+68}-41475\cdot 158^{134k+67}-11936\cdot 158^{133k+67}+313237\cdot 158^{132k+66}\\||-26949\cdot 158^{131k+66}+171035\cdot 158^{130k+65}+11238\cdot 158^{129k+65}-448609\cdot 158^{128k+64}+45221\cdot 158^{127k+64}\\||-389075\cdot 158^{126k+63}-3776\cdot 158^{125k+63}+540093\cdot 158^{124k+62}-65067\cdot 158^{123k+62}+686747\cdot 158^{122k+61}\\||-12328\cdot 158^{121k+61}-540437\cdot 158^{120k+60}+82435\cdot 158^{119k+60}-1032135\cdot 158^{118k+59}+37284\cdot 158^{117k+59}\\||+411201\cdot 158^{116k+58}-92563\cdot 158^{115k+58}+1368675\cdot 158^{114k+57}-68832\cdot 158^{113k+57}-138701\cdot 158^{112k+56}\\||+91341\cdot 158^{111k+56}-1628427\cdot 158^{110k+55}+102722\cdot 158^{109k+55}-264807\cdot 158^{108k+54}-75663\cdot 158^{107k+54}\\||+1733339\cdot 158^{106k+53}-132106\cdot 158^{105k+53}+742359\cdot 158^{104k+52}+45605\cdot 158^{103k+52}-1624635\cdot 158^{102k+51}\\||+149352\cdot 158^{101k+51}-1201067\cdot 158^{100k+50}-5059\cdot 158^{99k+50}+1283355\cdot 158^{98k+49}-147864\cdot 158^{97k+49}\\||+1525203\cdot 158^{96k+48}-37845\cdot 158^{95k+48}-755319\cdot 158^{94k+47}+125116\cdot 158^{93k+47}-1615783\cdot 158^{92k+46}\\||+72971\cdot 158^{91k+46}+144491\cdot 158^{90k+45}-84064\cdot 158^{89k+45}+1426843\cdot 158^{88k+44}-91501\cdot 158^{87k+44}\\||+419253\cdot 158^{86k+43}+32208\cdot 158^{85k+43}-976595\cdot 158^{84k+42}+88131\cdot 158^{83k+42}-811409\cdot 158^{82k+41}\\||+20058\cdot 158^{81k+41}+347595\cdot 158^{80k+40}-62939\cdot 158^{79k+40}+952977\cdot 158^{78k+39}-62939\cdot 158^{77k+39}\\||+347595\cdot 158^{76k+38}+20058\cdot 158^{75k+38}-811409\cdot 158^{74k+37}+88131\cdot 158^{73k+37}-976595\cdot 158^{72k+36}\\||+32208\cdot 158^{71k+36}+419253\cdot 158^{70k+35}-91501\cdot 158^{69k+35}+1426843\cdot 158^{68k+34}-84064\cdot 158^{67k+34}\\||+144491\cdot 158^{66k+33}+72971\cdot 158^{65k+33}-1615783\cdot 158^{64k+32}+125116\cdot 158^{63k+32}-755319\cdot 158^{62k+31}\\||-37845\cdot 158^{61k+31}+1525203\cdot 158^{60k+30}-147864\cdot 158^{59k+30}+1283355\cdot 158^{58k+29}-5059\cdot 158^{57k+29}\\||-1201067\cdot 158^{56k+28}+149352\cdot 158^{55k+28}-1624635\cdot 158^{54k+27}+45605\cdot 158^{53k+27}+742359\cdot 158^{52k+26}\\||-132106\cdot 158^{51k+26}+1733339\cdot 158^{50k+25}-75663\cdot 158^{49k+25}-264807\cdot 158^{48k+24}+102722\cdot 158^{47k+24}\\||-1628427\cdot 158^{46k+23}+91341\cdot 158^{45k+23}-138701\cdot 158^{44k+22}-68832\cdot 158^{43k+22}+1368675\cdot 158^{42k+21}\\||-92563\cdot 158^{41k+21}+411201\cdot 158^{40k+20}+37284\cdot 158^{39k+20}-1032135\cdot 158^{38k+19}+82435\cdot 158^{37k+19}\\||-540437\cdot 158^{36k+18}-12328\cdot 158^{35k+18}+686747\cdot 158^{34k+17}-65067\cdot 158^{33k+17}+540093\cdot 158^{32k+16}\\||-3776\cdot 158^{31k+16}-389075\cdot 158^{30k+15}+45221\cdot 158^{29k+15}-448609\cdot 158^{28k+14}+11238\cdot 158^{27k+14}\\||+171035\cdot 158^{26k+13}-26949\cdot 158^{25k+13}+313237\cdot 158^{24k+12}-11936\cdot 158^{23k+12}-41475\cdot 158^{22k+11}\\||+13093\cdot 158^{21k+11}-179957\cdot 158^{20k+10}+8784\cdot 158^{19k+10}-12877\cdot 158^{18k+9}-4717\cdot 158^{17k+9}\\||+81461\cdot 158^{16k+8}-4834\cdot 158^{15k+8}+22041\cdot 158^{14k+7}+837\cdot 158^{13k+7}-24989\cdot 158^{12k+6}\\||+1808\cdot 158^{11k+6}-12245\cdot 158^{10k+5}+155\cdot 158^{9k+5}+3901\cdot 158^{8k+4}-416\cdot 158^{7k+4}\\||+4029\cdot 158^{6k+3}-181\cdot 158^{5k+3}+987\cdot 158^{4k+2}-26\cdot 158^{3k+2}+79\cdot 158^{2k+1}\\||-158^{k+1}+1)\\|\times|(158^{156k+78}+158^{155k+78}+79\cdot 158^{154k+77}+26\cdot 158^{153k+77}+987\cdot 158^{152k+76}\\||+181\cdot 158^{151k+76}+4029\cdot 158^{150k+75}+416\cdot 158^{149k+75}+3901\cdot 158^{148k+74}-155\cdot 158^{147k+74}\\||-12245\cdot 158^{146k+73}-1808\cdot 158^{145k+73}-24989\cdot 158^{144k+72}-837\cdot 158^{143k+72}+22041\cdot 158^{142k+71}\\||+4834\cdot 158^{141k+71}+81461\cdot 158^{140k+70}+4717\cdot 158^{139k+70}-12877\cdot 158^{138k+69}-8784\cdot 158^{137k+69}\\||-179957\cdot 158^{136k+68}-13093\cdot 158^{135k+68}-41475\cdot 158^{134k+67}+11936\cdot 158^{133k+67}+313237\cdot 158^{132k+66}\\||+26949\cdot 158^{131k+66}+171035\cdot 158^{130k+65}-11238\cdot 158^{129k+65}-448609\cdot 158^{128k+64}-45221\cdot 158^{127k+64}\\||-389075\cdot 158^{126k+63}+3776\cdot 158^{125k+63}+540093\cdot 158^{124k+62}+65067\cdot 158^{123k+62}+686747\cdot 158^{122k+61}\\||+12328\cdot 158^{121k+61}-540437\cdot 158^{120k+60}-82435\cdot 158^{119k+60}-1032135\cdot 158^{118k+59}-37284\cdot 158^{117k+59}\\||+411201\cdot 158^{116k+58}+92563\cdot 158^{115k+58}+1368675\cdot 158^{114k+57}+68832\cdot 158^{113k+57}-138701\cdot 158^{112k+56}\\||-91341\cdot 158^{111k+56}-1628427\cdot 158^{110k+55}-102722\cdot 158^{109k+55}-264807\cdot 158^{108k+54}+75663\cdot 158^{107k+54}\\||+1733339\cdot 158^{106k+53}+132106\cdot 158^{105k+53}+742359\cdot 158^{104k+52}-45605\cdot 158^{103k+52}-1624635\cdot 158^{102k+51}\\||-149352\cdot 158^{101k+51}-1201067\cdot 158^{100k+50}+5059\cdot 158^{99k+50}+1283355\cdot 158^{98k+49}+147864\cdot 158^{97k+49}\\||+1525203\cdot 158^{96k+48}+37845\cdot 158^{95k+48}-755319\cdot 158^{94k+47}-125116\cdot 158^{93k+47}-1615783\cdot 158^{92k+46}\\||-72971\cdot 158^{91k+46}+144491\cdot 158^{90k+45}+84064\cdot 158^{89k+45}+1426843\cdot 158^{88k+44}+91501\cdot 158^{87k+44}\\||+419253\cdot 158^{86k+43}-32208\cdot 158^{85k+43}-976595\cdot 158^{84k+42}-88131\cdot 158^{83k+42}-811409\cdot 158^{82k+41}\\||-20058\cdot 158^{81k+41}+347595\cdot 158^{80k+40}+62939\cdot 158^{79k+40}+952977\cdot 158^{78k+39}+62939\cdot 158^{77k+39}\\||+347595\cdot 158^{76k+38}-20058\cdot 158^{75k+38}-811409\cdot 158^{74k+37}-88131\cdot 158^{73k+37}-976595\cdot 158^{72k+36}\\||-32208\cdot 158^{71k+36}+419253\cdot 158^{70k+35}+91501\cdot 158^{69k+35}+1426843\cdot 158^{68k+34}+84064\cdot 158^{67k+34}\\||+144491\cdot 158^{66k+33}-72971\cdot 158^{65k+33}-1615783\cdot 158^{64k+32}-125116\cdot 158^{63k+32}-755319\cdot 158^{62k+31}\\||+37845\cdot 158^{61k+31}+1525203\cdot 158^{60k+30}+147864\cdot 158^{59k+30}+1283355\cdot 158^{58k+29}+5059\cdot 158^{57k+29}\\||-1201067\cdot 158^{56k+28}-149352\cdot 158^{55k+28}-1624635\cdot 158^{54k+27}-45605\cdot 158^{53k+27}+742359\cdot 158^{52k+26}\\||+132106\cdot 158^{51k+26}+1733339\cdot 158^{50k+25}+75663\cdot 158^{49k+25}-264807\cdot 158^{48k+24}-102722\cdot 158^{47k+24}\\||-1628427\cdot 158^{46k+23}-91341\cdot 158^{45k+23}-138701\cdot 158^{44k+22}+68832\cdot 158^{43k+22}+1368675\cdot 158^{42k+21}\\||+92563\cdot 158^{41k+21}+411201\cdot 158^{40k+20}-37284\cdot 158^{39k+20}-1032135\cdot 158^{38k+19}-82435\cdot 158^{37k+19}\\||-540437\cdot 158^{36k+18}+12328\cdot 158^{35k+18}+686747\cdot 158^{34k+17}+65067\cdot 158^{33k+17}+540093\cdot 158^{32k+16}\\||+3776\cdot 158^{31k+16}-389075\cdot 158^{30k+15}-45221\cdot 158^{29k+15}-448609\cdot 158^{28k+14}-11238\cdot 158^{27k+14}\\||+171035\cdot 158^{26k+13}+26949\cdot 158^{25k+13}+313237\cdot 158^{24k+12}+11936\cdot 158^{23k+12}-41475\cdot 158^{22k+11}\\||-13093\cdot 158^{21k+11}-179957\cdot 158^{20k+10}-8784\cdot 158^{19k+10}-12877\cdot 158^{18k+9}+4717\cdot 158^{17k+9}\\||+81461\cdot 158^{16k+8}+4834\cdot 158^{15k+8}+22041\cdot 158^{14k+7}-837\cdot 158^{13k+7}-24989\cdot 158^{12k+6}\\||-1808\cdot 158^{11k+6}-12245\cdot 158^{10k+5}-155\cdot 158^{9k+5}+3901\cdot 158^{8k+4}+416\cdot 158^{7k+4}\\||+4029\cdot 158^{6k+3}+181\cdot 158^{5k+3}+987\cdot 158^{4k+2}+26\cdot 158^{3k+2}+79\cdot 158^{2k+1}\\||+158^{k+1}+1)\\{\large\Phi}_{318}(159^{2k+1})|=|159^{208k+104}+159^{206k+103}-159^{202k+101}-159^{200k+100}+159^{196k+98}\\||+159^{194k+97}-159^{190k+95}-159^{188k+94}+159^{184k+92}+159^{182k+91}\\||-159^{178k+89}-159^{176k+88}+159^{172k+86}+159^{170k+85}-159^{166k+83}\\||-159^{164k+82}+159^{160k+80}+159^{158k+79}-159^{154k+77}-159^{152k+76}\\||+159^{148k+74}+159^{146k+73}-159^{142k+71}-159^{140k+70}+159^{136k+68}\\||+159^{134k+67}-159^{130k+65}-159^{128k+64}+159^{124k+62}+159^{122k+61}\\||-159^{118k+59}-159^{116k+58}+159^{112k+56}+159^{110k+55}-159^{106k+53}\\||-159^{104k+52}-159^{102k+51}+159^{98k+49}+159^{96k+48}-159^{92k+46}\\||-159^{90k+45}+159^{86k+43}+159^{84k+42}-159^{80k+40}-159^{78k+39}\\||+159^{74k+37}+159^{72k+36}-159^{68k+34}-159^{66k+33}+159^{62k+31}\\||+159^{60k+30}-159^{56k+28}-159^{54k+27}+159^{50k+25}+159^{48k+24}\\||-159^{44k+22}-159^{42k+21}+159^{38k+19}+159^{36k+18}-159^{32k+16}\\||-159^{30k+15}+159^{26k+13}+159^{24k+12}-159^{20k+10}-159^{18k+9}\\||+159^{14k+7}+159^{12k+6}-159^{8k+4}-159^{6k+3}+159^{2k+1}+1\\|=|(159^{104k+52}-159^{103k+52}+80\cdot 159^{102k+51}-27\cdot 159^{101k+51}+1093\cdot 159^{100k+50}\\||-224\cdot 159^{99k+50}+6131\cdot 159^{98k+49}-915\cdot 159^{97k+49}+19312\cdot 159^{96k+48}-2329\cdot 159^{95k+48}\\||+41255\cdot 159^{94k+47}-4294\cdot 159^{93k+47}+66787\cdot 159^{92k+46}-6153\cdot 159^{91k+46}+84974\cdot 159^{90k+45}\\||-6977\cdot 159^{89k+45}+86653\cdot 159^{88k+44}-6512\cdot 159^{87k+44}+76187\cdot 159^{86k+43}-5633\cdot 159^{85k+43}\\||+68794\cdot 159^{84k+42}-5649\cdot 159^{83k+42}+79115\cdot 159^{82k+41}-7276\cdot 159^{81k+41}+106945\cdot 159^{80k+40}\\||-9645\cdot 159^{79k+40}+132596\cdot 159^{78k+39}-10891\cdot 159^{77k+39}+134437\cdot 159^{76k+38}-9846\cdot 159^{75k+38}\\||+108569\cdot 159^{74k+37}-7237\cdot 159^{73k+37}+76216\cdot 159^{72k+36}-5287\cdot 159^{71k+36}+64283\cdot 159^{70k+35}\\||-5478\cdot 159^{69k+35}+79507\cdot 159^{68k+34}-7345\cdot 159^{67k+34}+104396\cdot 159^{66k+33}-8787\cdot 159^{65k+33}\\||+109165\cdot 159^{64k+32}-7868\cdot 159^{63k+32}+83003\cdot 159^{62k+31}-5079\cdot 159^{61k+31}+46234\cdot 159^{60k+30}\\||-2627\cdot 159^{59k+30}+27347\cdot 159^{58k+29}-2376\cdot 159^{57k+29}+39925\cdot 159^{56k+28}-4297\cdot 159^{55k+28}\\||+68552\cdot 159^{54k+27}-6267\cdot 159^{53k+27}+82837\cdot 159^{52k+26}-6267\cdot 159^{51k+26}+68552\cdot 159^{50k+25}\\||-4297\cdot 159^{49k+25}+39925\cdot 159^{48k+24}-2376\cdot 159^{47k+24}+27347\cdot 159^{46k+23}-2627\cdot 159^{45k+23}\\||+46234\cdot 159^{44k+22}-5079\cdot 159^{43k+22}+83003\cdot 159^{42k+21}-7868\cdot 159^{41k+21}+109165\cdot 159^{40k+20}\\||-8787\cdot 159^{39k+20}+104396\cdot 159^{38k+19}-7345\cdot 159^{37k+19}+79507\cdot 159^{36k+18}-5478\cdot 159^{35k+18}\\||+64283\cdot 159^{34k+17}-5287\cdot 159^{33k+17}+76216\cdot 159^{32k+16}-7237\cdot 159^{31k+16}+108569\cdot 159^{30k+15}\\||-9846\cdot 159^{29k+15}+134437\cdot 159^{28k+14}-10891\cdot 159^{27k+14}+132596\cdot 159^{26k+13}-9645\cdot 159^{25k+13}\\||+106945\cdot 159^{24k+12}-7276\cdot 159^{23k+12}+79115\cdot 159^{22k+11}-5649\cdot 159^{21k+11}+68794\cdot 159^{20k+10}\\||-5633\cdot 159^{19k+10}+76187\cdot 159^{18k+9}-6512\cdot 159^{17k+9}+86653\cdot 159^{16k+8}-6977\cdot 159^{15k+8}\\||+84974\cdot 159^{14k+7}-6153\cdot 159^{13k+7}+66787\cdot 159^{12k+6}-4294\cdot 159^{11k+6}+41255\cdot 159^{10k+5}\\||-2329\cdot 159^{9k+5}+19312\cdot 159^{8k+4}-915\cdot 159^{7k+4}+6131\cdot 159^{6k+3}-224\cdot 159^{5k+3}\\||+1093\cdot 159^{4k+2}-27\cdot 159^{3k+2}+80\cdot 159^{2k+1}-159^{k+1}+1)\\|\times|(159^{104k+52}+159^{103k+52}+80\cdot 159^{102k+51}+27\cdot 159^{101k+51}+1093\cdot 159^{100k+50}\\||+224\cdot 159^{99k+50}+6131\cdot 159^{98k+49}+915\cdot 159^{97k+49}+19312\cdot 159^{96k+48}+2329\cdot 159^{95k+48}\\||+41255\cdot 159^{94k+47}+4294\cdot 159^{93k+47}+66787\cdot 159^{92k+46}+6153\cdot 159^{91k+46}+84974\cdot 159^{90k+45}\\||+6977\cdot 159^{89k+45}+86653\cdot 159^{88k+44}+6512\cdot 159^{87k+44}+76187\cdot 159^{86k+43}+5633\cdot 159^{85k+43}\\||+68794\cdot 159^{84k+42}+5649\cdot 159^{83k+42}+79115\cdot 159^{82k+41}+7276\cdot 159^{81k+41}+106945\cdot 159^{80k+40}\\||+9645\cdot 159^{79k+40}+132596\cdot 159^{78k+39}+10891\cdot 159^{77k+39}+134437\cdot 159^{76k+38}+9846\cdot 159^{75k+38}\\||+108569\cdot 159^{74k+37}+7237\cdot 159^{73k+37}+76216\cdot 159^{72k+36}+5287\cdot 159^{71k+36}+64283\cdot 159^{70k+35}\\||+5478\cdot 159^{69k+35}+79507\cdot 159^{68k+34}+7345\cdot 159^{67k+34}+104396\cdot 159^{66k+33}+8787\cdot 159^{65k+33}\\||+109165\cdot 159^{64k+32}+7868\cdot 159^{63k+32}+83003\cdot 159^{62k+31}+5079\cdot 159^{61k+31}+46234\cdot 159^{60k+30}\\||+2627\cdot 159^{59k+30}+27347\cdot 159^{58k+29}+2376\cdot 159^{57k+29}+39925\cdot 159^{56k+28}+4297\cdot 159^{55k+28}\\||+68552\cdot 159^{54k+27}+6267\cdot 159^{53k+27}+82837\cdot 159^{52k+26}+6267\cdot 159^{51k+26}+68552\cdot 159^{50k+25}\\||+4297\cdot 159^{49k+25}+39925\cdot 159^{48k+24}+2376\cdot 159^{47k+24}+27347\cdot 159^{46k+23}+2627\cdot 159^{45k+23}\\||+46234\cdot 159^{44k+22}+5079\cdot 159^{43k+22}+83003\cdot 159^{42k+21}+7868\cdot 159^{41k+21}+109165\cdot 159^{40k+20}\\||+8787\cdot 159^{39k+20}+104396\cdot 159^{38k+19}+7345\cdot 159^{37k+19}+79507\cdot 159^{36k+18}+5478\cdot 159^{35k+18}\\||+64283\cdot 159^{34k+17}+5287\cdot 159^{33k+17}+76216\cdot 159^{32k+16}+7237\cdot 159^{31k+16}+108569\cdot 159^{30k+15}\\||+9846\cdot 159^{29k+15}+134437\cdot 159^{28k+14}+10891\cdot 159^{27k+14}+132596\cdot 159^{26k+13}+9645\cdot 159^{25k+13}\\||+106945\cdot 159^{24k+12}+7276\cdot 159^{23k+12}+79115\cdot 159^{22k+11}+5649\cdot 159^{21k+11}+68794\cdot 159^{20k+10}\\||+5633\cdot 159^{19k+10}+76187\cdot 159^{18k+9}+6512\cdot 159^{17k+9}+86653\cdot 159^{16k+8}+6977\cdot 159^{15k+8}\\||+84974\cdot 159^{14k+7}+6153\cdot 159^{13k+7}+66787\cdot 159^{12k+6}+4294\cdot 159^{11k+6}+41255\cdot 159^{10k+5}\\||+2329\cdot 159^{9k+5}+19312\cdot 159^{8k+4}+915\cdot 159^{7k+4}+6131\cdot 159^{6k+3}+224\cdot 159^{5k+3}\\||+1093\cdot 159^{4k+2}+27\cdot 159^{3k+2}+80\cdot 159^{2k+1}+159^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{161}(161^{2k+1})\cdots{\large\Phi}_{165}(165^{2k+1})$${\large\Phi}_{161}(161^{2k+1})\cdots{\large\Phi}_{165}(165^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{161}(161^{2k+1})|=|161^{264k+132}-161^{262k+131}+161^{250k+125}-161^{248k+124}+161^{236k+118}\\||-161^{234k+117}+161^{222k+111}-161^{220k+110}+161^{218k+109}-161^{216k+108}\\||+161^{208k+104}-161^{206k+103}+161^{204k+102}-161^{202k+101}+161^{194k+97}\\||-161^{192k+96}+161^{190k+95}-161^{188k+94}+161^{180k+90}-161^{178k+89}\\||+161^{176k+88}-161^{174k+87}+161^{172k+86}-161^{170k+85}+161^{166k+83}\\||-161^{164k+82}+161^{162k+81}-161^{160k+80}+161^{158k+79}-161^{156k+78}\\||+161^{152k+76}-161^{150k+75}+161^{148k+74}-161^{146k+73}+161^{144k+72}\\||-161^{142k+71}+161^{138k+69}-161^{136k+68}+161^{134k+67}-161^{132k+66}\\||+161^{130k+65}-161^{128k+64}+161^{126k+63}-161^{122k+61}+161^{120k+60}\\||-161^{118k+59}+161^{116k+58}-161^{114k+57}+161^{112k+56}-161^{108k+54}\\||+161^{106k+53}-161^{104k+52}+161^{102k+51}-161^{100k+50}+161^{98k+49}\\||-161^{94k+47}+161^{92k+46}-161^{90k+45}+161^{88k+44}-161^{86k+43}\\||+161^{84k+42}-161^{76k+38}+161^{74k+37}-161^{72k+36}+161^{70k+35}\\||-161^{62k+31}+161^{60k+30}-161^{58k+29}+161^{56k+28}-161^{48k+24}\\||+161^{46k+23}-161^{44k+22}+161^{42k+21}-161^{30k+15}+161^{28k+14}\\||-161^{16k+8}+161^{14k+7}-161^{2k+1}+1\\|=|(161^{132k+66}-161^{131k+66}+80\cdot 161^{130k+65}-26\cdot 161^{129k+65}+986\cdot 161^{128k+64}\\||-176\cdot 161^{127k+64}+3874\cdot 161^{126k+63}-395\cdot 161^{125k+63}+4313\cdot 161^{124k+62}-92\cdot 161^{123k+62}\\||-2954\cdot 161^{122k+61}+364\cdot 161^{121k+61}-1008\cdot 161^{120k+60}-526\cdot 161^{119k+60}+12629\cdot 161^{118k+59}\\||-843\cdot 161^{117k+59}+374\cdot 161^{116k+58}+906\cdot 161^{115k+58}-16080\cdot 161^{114k+57}+812\cdot 161^{113k+57}\\||+738\cdot 161^{112k+56}-705\cdot 161^{111k+56}+10137\cdot 161^{110k+55}-453\cdot 161^{109k+55}-763\cdot 161^{108k+54}\\||+558\cdot 161^{107k+54}-11452\cdot 161^{106k+53}+892\cdot 161^{105k+53}-4941\cdot 161^{104k+52}-439\cdot 161^{103k+52}\\||+14549\cdot 161^{102k+51}-1337\cdot 161^{101k+51}+11892\cdot 161^{100k+50}-160\cdot 161^{99k+50}-8502\cdot 161^{98k+49}\\||+1181\cdot 161^{97k+49}-12893\cdot 161^{96k+48}+107\cdot 161^{95k+48}+13377\cdot 161^{94k+47}-1634\cdot 161^{93k+47}\\||+14756\cdot 161^{92k+46}-4\cdot 161^{91k+46}-12767\cdot 161^{90k+45}+1351\cdot 161^{89k+45}-14403\cdot 161^{88k+44}\\||+655\cdot 161^{87k+44}+241\cdot 161^{86k+43}-833\cdot 161^{85k+43}+17102\cdot 161^{84k+42}-979\cdot 161^{83k+42}\\||-2873\cdot 161^{82k+41}+1343\cdot 161^{81k+41}-17789\cdot 161^{80k+40}+423\cdot 161^{79k+40}+7977\cdot 161^{78k+39}\\||-928\cdot 161^{77k+39}+7421\cdot 161^{76k+38}-251\cdot 161^{75k+38}+2551\cdot 161^{74k+37}-121\cdot 161^{73k+37}\\||-3259\cdot 161^{72k+36}+681\cdot 161^{71k+36}-9148\cdot 161^{70k+35}+357\cdot 161^{69k+35}+417\cdot 161^{68k+34}\\||-191\cdot 161^{67k+34}+2609\cdot 161^{66k+33}-191\cdot 161^{65k+33}+417\cdot 161^{64k+32}+357\cdot 161^{63k+32}\\||-9148\cdot 161^{62k+31}+681\cdot 161^{61k+31}-3259\cdot 161^{60k+30}-121\cdot 161^{59k+30}+2551\cdot 161^{58k+29}\\||-251\cdot 161^{57k+29}+7421\cdot 161^{56k+28}-928\cdot 161^{55k+28}+7977\cdot 161^{54k+27}+423\cdot 161^{53k+27}\\||-17789\cdot 161^{52k+26}+1343\cdot 161^{51k+26}-2873\cdot 161^{50k+25}-979\cdot 161^{49k+25}+17102\cdot 161^{48k+24}\\||-833\cdot 161^{47k+24}+241\cdot 161^{46k+23}+655\cdot 161^{45k+23}-14403\cdot 161^{44k+22}+1351\cdot 161^{43k+22}\\||-12767\cdot 161^{42k+21}-4\cdot 161^{41k+21}+14756\cdot 161^{40k+20}-1634\cdot 161^{39k+20}+13377\cdot 161^{38k+19}\\||+107\cdot 161^{37k+19}-12893\cdot 161^{36k+18}+1181\cdot 161^{35k+18}-8502\cdot 161^{34k+17}-160\cdot 161^{33k+17}\\||+11892\cdot 161^{32k+16}-1337\cdot 161^{31k+16}+14549\cdot 161^{30k+15}-439\cdot 161^{29k+15}-4941\cdot 161^{28k+14}\\||+892\cdot 161^{27k+14}-11452\cdot 161^{26k+13}+558\cdot 161^{25k+13}-763\cdot 161^{24k+12}-453\cdot 161^{23k+12}\\||+10137\cdot 161^{22k+11}-705\cdot 161^{21k+11}+738\cdot 161^{20k+10}+812\cdot 161^{19k+10}-16080\cdot 161^{18k+9}\\||+906\cdot 161^{17k+9}+374\cdot 161^{16k+8}-843\cdot 161^{15k+8}+12629\cdot 161^{14k+7}-526\cdot 161^{13k+7}\\||-1008\cdot 161^{12k+6}+364\cdot 161^{11k+6}-2954\cdot 161^{10k+5}-92\cdot 161^{9k+5}+4313\cdot 161^{8k+4}\\||-395\cdot 161^{7k+4}+3874\cdot 161^{6k+3}-176\cdot 161^{5k+3}+986\cdot 161^{4k+2}-26\cdot 161^{3k+2}\\||+80\cdot 161^{2k+1}-161^{k+1}+1)\\|\times|(161^{132k+66}+161^{131k+66}+80\cdot 161^{130k+65}+26\cdot 161^{129k+65}+986\cdot 161^{128k+64}\\||+176\cdot 161^{127k+64}+3874\cdot 161^{126k+63}+395\cdot 161^{125k+63}+4313\cdot 161^{124k+62}+92\cdot 161^{123k+62}\\||-2954\cdot 161^{122k+61}-364\cdot 161^{121k+61}-1008\cdot 161^{120k+60}+526\cdot 161^{119k+60}+12629\cdot 161^{118k+59}\\||+843\cdot 161^{117k+59}+374\cdot 161^{116k+58}-906\cdot 161^{115k+58}-16080\cdot 161^{114k+57}-812\cdot 161^{113k+57}\\||+738\cdot 161^{112k+56}+705\cdot 161^{111k+56}+10137\cdot 161^{110k+55}+453\cdot 161^{109k+55}-763\cdot 161^{108k+54}\\||-558\cdot 161^{107k+54}-11452\cdot 161^{106k+53}-892\cdot 161^{105k+53}-4941\cdot 161^{104k+52}+439\cdot 161^{103k+52}\\||+14549\cdot 161^{102k+51}+1337\cdot 161^{101k+51}+11892\cdot 161^{100k+50}+160\cdot 161^{99k+50}-8502\cdot 161^{98k+49}\\||-1181\cdot 161^{97k+49}-12893\cdot 161^{96k+48}-107\cdot 161^{95k+48}+13377\cdot 161^{94k+47}+1634\cdot 161^{93k+47}\\||+14756\cdot 161^{92k+46}+4\cdot 161^{91k+46}-12767\cdot 161^{90k+45}-1351\cdot 161^{89k+45}-14403\cdot 161^{88k+44}\\||-655\cdot 161^{87k+44}+241\cdot 161^{86k+43}+833\cdot 161^{85k+43}+17102\cdot 161^{84k+42}+979\cdot 161^{83k+42}\\||-2873\cdot 161^{82k+41}-1343\cdot 161^{81k+41}-17789\cdot 161^{80k+40}-423\cdot 161^{79k+40}+7977\cdot 161^{78k+39}\\||+928\cdot 161^{77k+39}+7421\cdot 161^{76k+38}+251\cdot 161^{75k+38}+2551\cdot 161^{74k+37}+121\cdot 161^{73k+37}\\||-3259\cdot 161^{72k+36}-681\cdot 161^{71k+36}-9148\cdot 161^{70k+35}-357\cdot 161^{69k+35}+417\cdot 161^{68k+34}\\||+191\cdot 161^{67k+34}+2609\cdot 161^{66k+33}+191\cdot 161^{65k+33}+417\cdot 161^{64k+32}-357\cdot 161^{63k+32}\\||-9148\cdot 161^{62k+31}-681\cdot 161^{61k+31}-3259\cdot 161^{60k+30}+121\cdot 161^{59k+30}+2551\cdot 161^{58k+29}\\||+251\cdot 161^{57k+29}+7421\cdot 161^{56k+28}+928\cdot 161^{55k+28}+7977\cdot 161^{54k+27}-423\cdot 161^{53k+27}\\||-17789\cdot 161^{52k+26}-1343\cdot 161^{51k+26}-2873\cdot 161^{50k+25}+979\cdot 161^{49k+25}+17102\cdot 161^{48k+24}\\||+833\cdot 161^{47k+24}+241\cdot 161^{46k+23}-655\cdot 161^{45k+23}-14403\cdot 161^{44k+22}-1351\cdot 161^{43k+22}\\||-12767\cdot 161^{42k+21}+4\cdot 161^{41k+21}+14756\cdot 161^{40k+20}+1634\cdot 161^{39k+20}+13377\cdot 161^{38k+19}\\||-107\cdot 161^{37k+19}-12893\cdot 161^{36k+18}-1181\cdot 161^{35k+18}-8502\cdot 161^{34k+17}+160\cdot 161^{33k+17}\\||+11892\cdot 161^{32k+16}+1337\cdot 161^{31k+16}+14549\cdot 161^{30k+15}+439\cdot 161^{29k+15}-4941\cdot 161^{28k+14}\\||-892\cdot 161^{27k+14}-11452\cdot 161^{26k+13}-558\cdot 161^{25k+13}-763\cdot 161^{24k+12}+453\cdot 161^{23k+12}\\||+10137\cdot 161^{22k+11}+705\cdot 161^{21k+11}+738\cdot 161^{20k+10}-812\cdot 161^{19k+10}-16080\cdot 161^{18k+9}\\||-906\cdot 161^{17k+9}+374\cdot 161^{16k+8}+843\cdot 161^{15k+8}+12629\cdot 161^{14k+7}+526\cdot 161^{13k+7}\\||-1008\cdot 161^{12k+6}-364\cdot 161^{11k+6}-2954\cdot 161^{10k+5}+92\cdot 161^{9k+5}+4313\cdot 161^{8k+4}\\||+395\cdot 161^{7k+4}+3874\cdot 161^{6k+3}+176\cdot 161^{5k+3}+986\cdot 161^{4k+2}+26\cdot 161^{3k+2}\\||+80\cdot 161^{2k+1}+161^{k+1}+1)\\{\large\Phi}_{326}(163^{2k+1})|=|163^{324k+162}-163^{322k+161}+163^{320k+160}-163^{318k+159}+163^{316k+158}\\||-163^{314k+157}+163^{312k+156}-163^{310k+155}+163^{308k+154}-163^{306k+153}\\||+163^{304k+152}-163^{302k+151}+163^{300k+150}-163^{298k+149}+163^{296k+148}\\||-163^{294k+147}+163^{292k+146}-163^{290k+145}+163^{288k+144}-163^{286k+143}\\||+163^{284k+142}-163^{282k+141}+163^{280k+140}-163^{278k+139}+163^{276k+138}\\||-163^{274k+137}+163^{272k+136}-163^{270k+135}+163^{268k+134}-163^{266k+133}\\||+163^{264k+132}-163^{262k+131}+163^{260k+130}-163^{258k+129}+163^{256k+128}\\||-163^{254k+127}+163^{252k+126}-163^{250k+125}+163^{248k+124}-163^{246k+123}\\||+163^{244k+122}-163^{242k+121}+163^{240k+120}-163^{238k+119}+163^{236k+118}\\||-163^{234k+117}+163^{232k+116}-163^{230k+115}+163^{228k+114}-163^{226k+113}\\||+163^{224k+112}-163^{222k+111}+163^{220k+110}-163^{218k+109}+163^{216k+108}\\||-163^{214k+107}+163^{212k+106}-163^{210k+105}+163^{208k+104}-163^{206k+103}\\||+163^{204k+102}-163^{202k+101}+163^{200k+100}-163^{198k+99}+163^{196k+98}\\||-163^{194k+97}+163^{192k+96}-163^{190k+95}+163^{188k+94}-163^{186k+93}\\||+163^{184k+92}-163^{182k+91}+163^{180k+90}-163^{178k+89}+163^{176k+88}\\||-163^{174k+87}+163^{172k+86}-163^{170k+85}+163^{168k+84}-163^{166k+83}\\||+163^{164k+82}-163^{162k+81}+163^{160k+80}-163^{158k+79}+163^{156k+78}\\||-163^{154k+77}+163^{152k+76}-163^{150k+75}+163^{148k+74}-163^{146k+73}\\||+163^{144k+72}-163^{142k+71}+163^{140k+70}-163^{138k+69}+163^{136k+68}\\||-163^{134k+67}+163^{132k+66}-163^{130k+65}+163^{128k+64}-163^{126k+63}\\||+163^{124k+62}-163^{122k+61}+163^{120k+60}-163^{118k+59}+163^{116k+58}\\||-163^{114k+57}+163^{112k+56}-163^{110k+55}+163^{108k+54}-163^{106k+53}\\||+163^{104k+52}-163^{102k+51}+163^{100k+50}-163^{98k+49}+163^{96k+48}\\||-163^{94k+47}+163^{92k+46}-163^{90k+45}+163^{88k+44}-163^{86k+43}\\||+163^{84k+42}-163^{82k+41}+163^{80k+40}-163^{78k+39}+163^{76k+38}\\||-163^{74k+37}+163^{72k+36}-163^{70k+35}+163^{68k+34}-163^{66k+33}\\||+163^{64k+32}-163^{62k+31}+163^{60k+30}-163^{58k+29}+163^{56k+28}\\||-163^{54k+27}+163^{52k+26}-163^{50k+25}+163^{48k+24}-163^{46k+23}\\||+163^{44k+22}-163^{42k+21}+163^{40k+20}-163^{38k+19}+163^{36k+18}\\||-163^{34k+17}+163^{32k+16}-163^{30k+15}+163^{28k+14}-163^{26k+13}\\||+163^{24k+12}-163^{22k+11}+163^{20k+10}-163^{18k+9}+163^{16k+8}\\||-163^{14k+7}+163^{12k+6}-163^{10k+5}+163^{8k+4}-163^{6k+3}\\||+163^{4k+2}-163^{2k+1}+1\\|=|(163^{162k+81}-163^{161k+81}+81\cdot 163^{160k+80}-27\cdot 163^{159k+80}+1121\cdot 163^{158k+79}\\||-235\cdot 163^{157k+79}+6917\cdot 163^{156k+78}-1107\cdot 163^{155k+78}+26079\cdot 163^{154k+77}-3451\cdot 163^{153k+77}\\||+68901\cdot 163^{152k+76}-7883\cdot 163^{151k+76}+138431\cdot 163^{150k+75}-14157\cdot 163^{149k+75}+225947\cdot 163^{148k+74}\\||-21379\cdot 163^{147k+74}+321745\cdot 163^{146k+73}-29259\cdot 163^{145k+73}+430327\cdot 163^{144k+72}-38669\cdot 163^{143k+72}\\||+563737\cdot 163^{142k+71}-49981\cdot 163^{141k+71}+711927\cdot 163^{140k+70}-60989\cdot 163^{139k+70}+832027\cdot 163^{138k+69}\\||-67999\cdot 163^{137k+69}+887093\cdot 163^{136k+68}-69959\cdot 163^{135k+68}+893771\cdot 163^{134k+67}-70237\cdot 163^{133k+67}\\||+907413\cdot 163^{132k+66}-72575\cdot 163^{131k+66}+949931\cdot 163^{130k+65}-75963\cdot 163^{129k+65}+978545\cdot 163^{128k+64}\\||-76133\cdot 163^{127k+64}+952427\cdot 163^{126k+63}-72741\cdot 163^{125k+63}+914035\cdot 163^{124k+62}-72199\cdot 163^{123k+62}\\||+960557\cdot 163^{122k+61}-80741\cdot 163^{121k+61}+1124081\cdot 163^{120k+60}-95965\cdot 163^{119k+60}+1317293\cdot 163^{118k+59}\\||-108655\cdot 163^{117k+59}+1429833\cdot 163^{116k+58}-113529\cdot 163^{115k+58}+1457661\cdot 163^{114k+57}-115025\cdot 163^{113k+57}\\||+1492625\cdot 163^{112k+56}-120009\cdot 163^{111k+56}+1579305\cdot 163^{110k+55}-126725\cdot 163^{109k+55}+1628867\cdot 163^{108k+54}\\||-125063\cdot 163^{107k+54}+1515473\cdot 163^{106k+53}-109005\cdot 163^{105k+53}+1243067\cdot 163^{104k+52}-85653\cdot 163^{103k+52}\\||+965847\cdot 163^{102k+51}-68491\cdot 163^{101k+51}+821181\cdot 163^{100k+50}-62299\cdot 163^{99k+50}+778213\cdot 163^{98k+49}\\||-58765\cdot 163^{97k+49}+699405\cdot 163^{96k+48}-49043\cdot 163^{95k+48}+544275\cdot 163^{94k+47}-37331\cdot 163^{93k+47}\\||+446891\cdot 163^{92k+46}-36879\cdot 163^{91k+46}+549611\cdot 163^{90k+45}-52341\cdot 163^{89k+45}+799815\cdot 163^{88k+44}\\||-71585\cdot 163^{87k+44}+986729\cdot 163^{86k+43}-79001\cdot 163^{85k+43}+986989\cdot 163^{84k+42}-73839\cdot 163^{83k+42}\\||+901839\cdot 163^{82k+41}-69359\cdot 163^{81k+41}+901839\cdot 163^{80k+40}-73839\cdot 163^{79k+40}+986989\cdot 163^{78k+39}\\||-79001\cdot 163^{77k+39}+986729\cdot 163^{76k+38}-71585\cdot 163^{75k+38}+799815\cdot 163^{74k+37}-52341\cdot 163^{73k+37}\\||+549611\cdot 163^{72k+36}-36879\cdot 163^{71k+36}+446891\cdot 163^{70k+35}-37331\cdot 163^{69k+35}+544275\cdot 163^{68k+34}\\||-49043\cdot 163^{67k+34}+699405\cdot 163^{66k+33}-58765\cdot 163^{65k+33}+778213\cdot 163^{64k+32}-62299\cdot 163^{63k+32}\\||+821181\cdot 163^{62k+31}-68491\cdot 163^{61k+31}+965847\cdot 163^{60k+30}-85653\cdot 163^{59k+30}+1243067\cdot 163^{58k+29}\\||-109005\cdot 163^{57k+29}+1515473\cdot 163^{56k+28}-125063\cdot 163^{55k+28}+1628867\cdot 163^{54k+27}-126725\cdot 163^{53k+27}\\||+1579305\cdot 163^{52k+26}-120009\cdot 163^{51k+26}+1492625\cdot 163^{50k+25}-115025\cdot 163^{49k+25}+1457661\cdot 163^{48k+24}\\||-113529\cdot 163^{47k+24}+1429833\cdot 163^{46k+23}-108655\cdot 163^{45k+23}+1317293\cdot 163^{44k+22}-95965\cdot 163^{43k+22}\\||+1124081\cdot 163^{42k+21}-80741\cdot 163^{41k+21}+960557\cdot 163^{40k+20}-72199\cdot 163^{39k+20}+914035\cdot 163^{38k+19}\\||-72741\cdot 163^{37k+19}+952427\cdot 163^{36k+18}-76133\cdot 163^{35k+18}+978545\cdot 163^{34k+17}-75963\cdot 163^{33k+17}\\||+949931\cdot 163^{32k+16}-72575\cdot 163^{31k+16}+907413\cdot 163^{30k+15}-70237\cdot 163^{29k+15}+893771\cdot 163^{28k+14}\\||-69959\cdot 163^{27k+14}+887093\cdot 163^{26k+13}-67999\cdot 163^{25k+13}+832027\cdot 163^{24k+12}-60989\cdot 163^{23k+12}\\||+711927\cdot 163^{22k+11}-49981\cdot 163^{21k+11}+563737\cdot 163^{20k+10}-38669\cdot 163^{19k+10}+430327\cdot 163^{18k+9}\\||-29259\cdot 163^{17k+9}+321745\cdot 163^{16k+8}-21379\cdot 163^{15k+8}+225947\cdot 163^{14k+7}-14157\cdot 163^{13k+7}\\||+138431\cdot 163^{12k+6}-7883\cdot 163^{11k+6}+68901\cdot 163^{10k+5}-3451\cdot 163^{9k+5}+26079\cdot 163^{8k+4}\\||-1107\cdot 163^{7k+4}+6917\cdot 163^{6k+3}-235\cdot 163^{5k+3}+1121\cdot 163^{4k+2}-27\cdot 163^{3k+2}\\||+81\cdot 163^{2k+1}-163^{k+1}+1)\\|\times|(163^{162k+81}+163^{161k+81}+81\cdot 163^{160k+80}+27\cdot 163^{159k+80}+1121\cdot 163^{158k+79}\\||+235\cdot 163^{157k+79}+6917\cdot 163^{156k+78}+1107\cdot 163^{155k+78}+26079\cdot 163^{154k+77}+3451\cdot 163^{153k+77}\\||+68901\cdot 163^{152k+76}+7883\cdot 163^{151k+76}+138431\cdot 163^{150k+75}+14157\cdot 163^{149k+75}+225947\cdot 163^{148k+74}\\||+21379\cdot 163^{147k+74}+321745\cdot 163^{146k+73}+29259\cdot 163^{145k+73}+430327\cdot 163^{144k+72}+38669\cdot 163^{143k+72}\\||+563737\cdot 163^{142k+71}+49981\cdot 163^{141k+71}+711927\cdot 163^{140k+70}+60989\cdot 163^{139k+70}+832027\cdot 163^{138k+69}\\||+67999\cdot 163^{137k+69}+887093\cdot 163^{136k+68}+69959\cdot 163^{135k+68}+893771\cdot 163^{134k+67}+70237\cdot 163^{133k+67}\\||+907413\cdot 163^{132k+66}+72575\cdot 163^{131k+66}+949931\cdot 163^{130k+65}+75963\cdot 163^{129k+65}+978545\cdot 163^{128k+64}\\||+76133\cdot 163^{127k+64}+952427\cdot 163^{126k+63}+72741\cdot 163^{125k+63}+914035\cdot 163^{124k+62}+72199\cdot 163^{123k+62}\\||+960557\cdot 163^{122k+61}+80741\cdot 163^{121k+61}+1124081\cdot 163^{120k+60}+95965\cdot 163^{119k+60}+1317293\cdot 163^{118k+59}\\||+108655\cdot 163^{117k+59}+1429833\cdot 163^{116k+58}+113529\cdot 163^{115k+58}+1457661\cdot 163^{114k+57}+115025\cdot 163^{113k+57}\\||+1492625\cdot 163^{112k+56}+120009\cdot 163^{111k+56}+1579305\cdot 163^{110k+55}+126725\cdot 163^{109k+55}+1628867\cdot 163^{108k+54}\\||+125063\cdot 163^{107k+54}+1515473\cdot 163^{106k+53}+109005\cdot 163^{105k+53}+1243067\cdot 163^{104k+52}+85653\cdot 163^{103k+52}\\||+965847\cdot 163^{102k+51}+68491\cdot 163^{101k+51}+821181\cdot 163^{100k+50}+62299\cdot 163^{99k+50}+778213\cdot 163^{98k+49}\\||+58765\cdot 163^{97k+49}+699405\cdot 163^{96k+48}+49043\cdot 163^{95k+48}+544275\cdot 163^{94k+47}+37331\cdot 163^{93k+47}\\||+446891\cdot 163^{92k+46}+36879\cdot 163^{91k+46}+549611\cdot 163^{90k+45}+52341\cdot 163^{89k+45}+799815\cdot 163^{88k+44}\\||+71585\cdot 163^{87k+44}+986729\cdot 163^{86k+43}+79001\cdot 163^{85k+43}+986989\cdot 163^{84k+42}+73839\cdot 163^{83k+42}\\||+901839\cdot 163^{82k+41}+69359\cdot 163^{81k+41}+901839\cdot 163^{80k+40}+73839\cdot 163^{79k+40}+986989\cdot 163^{78k+39}\\||+79001\cdot 163^{77k+39}+986729\cdot 163^{76k+38}+71585\cdot 163^{75k+38}+799815\cdot 163^{74k+37}+52341\cdot 163^{73k+37}\\||+549611\cdot 163^{72k+36}+36879\cdot 163^{71k+36}+446891\cdot 163^{70k+35}+37331\cdot 163^{69k+35}+544275\cdot 163^{68k+34}\\||+49043\cdot 163^{67k+34}+699405\cdot 163^{66k+33}+58765\cdot 163^{65k+33}+778213\cdot 163^{64k+32}+62299\cdot 163^{63k+32}\\||+821181\cdot 163^{62k+31}+68491\cdot 163^{61k+31}+965847\cdot 163^{60k+30}+85653\cdot 163^{59k+30}+1243067\cdot 163^{58k+29}\\||+109005\cdot 163^{57k+29}+1515473\cdot 163^{56k+28}+125063\cdot 163^{55k+28}+1628867\cdot 163^{54k+27}+126725\cdot 163^{53k+27}\\||+1579305\cdot 163^{52k+26}+120009\cdot 163^{51k+26}+1492625\cdot 163^{50k+25}+115025\cdot 163^{49k+25}+1457661\cdot 163^{48k+24}\\||+113529\cdot 163^{47k+24}+1429833\cdot 163^{46k+23}+108655\cdot 163^{45k+23}+1317293\cdot 163^{44k+22}+95965\cdot 163^{43k+22}\\||+1124081\cdot 163^{42k+21}+80741\cdot 163^{41k+21}+960557\cdot 163^{40k+20}+72199\cdot 163^{39k+20}+914035\cdot 163^{38k+19}\\||+72741\cdot 163^{37k+19}+952427\cdot 163^{36k+18}+76133\cdot 163^{35k+18}+978545\cdot 163^{34k+17}+75963\cdot 163^{33k+17}\\||+949931\cdot 163^{32k+16}+72575\cdot 163^{31k+16}+907413\cdot 163^{30k+15}+70237\cdot 163^{29k+15}+893771\cdot 163^{28k+14}\\||+69959\cdot 163^{27k+14}+887093\cdot 163^{26k+13}+67999\cdot 163^{25k+13}+832027\cdot 163^{24k+12}+60989\cdot 163^{23k+12}\\||+711927\cdot 163^{22k+11}+49981\cdot 163^{21k+11}+563737\cdot 163^{20k+10}+38669\cdot 163^{19k+10}+430327\cdot 163^{18k+9}\\||+29259\cdot 163^{17k+9}+321745\cdot 163^{16k+8}+21379\cdot 163^{15k+8}+225947\cdot 163^{14k+7}+14157\cdot 163^{13k+7}\\||+138431\cdot 163^{12k+6}+7883\cdot 163^{11k+6}+68901\cdot 163^{10k+5}+3451\cdot 163^{9k+5}+26079\cdot 163^{8k+4}\\||+1107\cdot 163^{7k+4}+6917\cdot 163^{6k+3}+235\cdot 163^{5k+3}+1121\cdot 163^{4k+2}+27\cdot 163^{3k+2}\\||+81\cdot 163^{2k+1}+163^{k+1}+1)\\{\large\Phi}_{165}(165^{2k+1})|=|165^{160k+80}+165^{158k+79}+165^{156k+78}-165^{150k+75}-165^{148k+74}\\||-165^{146k+73}-165^{138k+69}-165^{136k+68}-165^{134k+67}+165^{130k+65}\\||+2\cdot 165^{128k+64}+2\cdot 165^{126k+63}+165^{124k+62}-165^{120k+60}-165^{118k+59}\\||-165^{116k+58}-165^{108k+54}-165^{106k+53}-165^{104k+52}+165^{100k+50}\\||+2\cdot 165^{98k+49}+2\cdot 165^{96k+48}+2\cdot 165^{94k+47}+165^{92k+46}-165^{88k+44}\\||-165^{86k+43}-165^{84k+42}-165^{82k+41}-165^{80k+40}-165^{78k+39}\\||-165^{76k+38}-165^{74k+37}-165^{72k+36}+165^{68k+34}+2\cdot 165^{66k+33}\\||+2\cdot 165^{64k+32}+2\cdot 165^{62k+31}+165^{60k+30}-165^{56k+28}-165^{54k+27}\\||-165^{52k+26}-165^{44k+22}-165^{42k+21}-165^{40k+20}+165^{36k+18}\\||+2\cdot 165^{34k+17}+2\cdot 165^{32k+16}+165^{30k+15}-165^{26k+13}-165^{24k+12}\\||-165^{22k+11}-165^{14k+7}-165^{12k+6}-165^{10k+5}+165^{4k+2}\\||+165^{2k+1}+1\\|=|(165^{80k+40}-165^{79k+40}+83\cdot 165^{78k+39}-28\cdot 165^{77k+39}+1176\cdot 165^{76k+38}\\||-241\cdot 165^{75k+38}+6837\cdot 165^{74k+37}-1015\cdot 165^{73k+37}+21936\cdot 165^{72k+36}-2580\cdot 165^{71k+36}\\||+45682\cdot 165^{70k+35}-4545\cdot 165^{69k+35}+70373\cdot 165^{68k+34}-6341\cdot 165^{67k+34}+92004\cdot 165^{66k+33}\\||-7983\cdot 165^{65k+33}+113178\cdot 165^{64k+32}-9608\cdot 165^{63k+32}+132489\cdot 165^{62k+31}-10894\cdot 165^{61k+31}\\||+145987\cdot 165^{60k+30}-11781\cdot 165^{59k+30}+156351\cdot 165^{58k+29}-12486\cdot 165^{57k+29}+161606\cdot 165^{56k+28}\\||-12284\cdot 165^{55k+28}+147567\cdot 165^{54k+27}-10223\cdot 165^{53k+27}+111099\cdot 165^{52k+26}-6974\cdot 165^{51k+26}\\||+68683\cdot 165^{50k+25}-3800\cdot 165^{49k+25}+29232\cdot 165^{48k+24}-718\cdot 165^{47k+24}-10813\cdot 165^{46k+23}\\||+2268\cdot 165^{45k+23}-43515\cdot 165^{44k+22}+4095\cdot 165^{43k+22}-56763\cdot 165^{42k+21}+4503\cdot 165^{41k+21}\\||-57905\cdot 165^{40k+20}+4503\cdot 165^{39k+20}-56763\cdot 165^{38k+19}+4095\cdot 165^{37k+19}-43515\cdot 165^{36k+18}\\||+2268\cdot 165^{35k+18}-10813\cdot 165^{34k+17}-718\cdot 165^{33k+17}+29232\cdot 165^{32k+16}-3800\cdot 165^{31k+16}\\||+68683\cdot 165^{30k+15}-6974\cdot 165^{29k+15}+111099\cdot 165^{28k+14}-10223\cdot 165^{27k+14}+147567\cdot 165^{26k+13}\\||-12284\cdot 165^{25k+13}+161606\cdot 165^{24k+12}-12486\cdot 165^{23k+12}+156351\cdot 165^{22k+11}-11781\cdot 165^{21k+11}\\||+145987\cdot 165^{20k+10}-10894\cdot 165^{19k+10}+132489\cdot 165^{18k+9}-9608\cdot 165^{17k+9}+113178\cdot 165^{16k+8}\\||-7983\cdot 165^{15k+8}+92004\cdot 165^{14k+7}-6341\cdot 165^{13k+7}+70373\cdot 165^{12k+6}-4545\cdot 165^{11k+6}\\||+45682\cdot 165^{10k+5}-2580\cdot 165^{9k+5}+21936\cdot 165^{8k+4}-1015\cdot 165^{7k+4}+6837\cdot 165^{6k+3}\\||-241\cdot 165^{5k+3}+1176\cdot 165^{4k+2}-28\cdot 165^{3k+2}+83\cdot 165^{2k+1}-165^{k+1}+1)\\|\times|(165^{80k+40}+165^{79k+40}+83\cdot 165^{78k+39}+28\cdot 165^{77k+39}+1176\cdot 165^{76k+38}\\||+241\cdot 165^{75k+38}+6837\cdot 165^{74k+37}+1015\cdot 165^{73k+37}+21936\cdot 165^{72k+36}+2580\cdot 165^{71k+36}\\||+45682\cdot 165^{70k+35}+4545\cdot 165^{69k+35}+70373\cdot 165^{68k+34}+6341\cdot 165^{67k+34}+92004\cdot 165^{66k+33}\\||+7983\cdot 165^{65k+33}+113178\cdot 165^{64k+32}+9608\cdot 165^{63k+32}+132489\cdot 165^{62k+31}+10894\cdot 165^{61k+31}\\||+145987\cdot 165^{60k+30}+11781\cdot 165^{59k+30}+156351\cdot 165^{58k+29}+12486\cdot 165^{57k+29}+161606\cdot 165^{56k+28}\\||+12284\cdot 165^{55k+28}+147567\cdot 165^{54k+27}+10223\cdot 165^{53k+27}+111099\cdot 165^{52k+26}+6974\cdot 165^{51k+26}\\||+68683\cdot 165^{50k+25}+3800\cdot 165^{49k+25}+29232\cdot 165^{48k+24}+718\cdot 165^{47k+24}-10813\cdot 165^{46k+23}\\||-2268\cdot 165^{45k+23}-43515\cdot 165^{44k+22}-4095\cdot 165^{43k+22}-56763\cdot 165^{42k+21}-4503\cdot 165^{41k+21}\\||-57905\cdot 165^{40k+20}-4503\cdot 165^{39k+20}-56763\cdot 165^{38k+19}-4095\cdot 165^{37k+19}-43515\cdot 165^{36k+18}\\||-2268\cdot 165^{35k+18}-10813\cdot 165^{34k+17}+718\cdot 165^{33k+17}+29232\cdot 165^{32k+16}+3800\cdot 165^{31k+16}\\||+68683\cdot 165^{30k+15}+6974\cdot 165^{29k+15}+111099\cdot 165^{28k+14}+10223\cdot 165^{27k+14}+147567\cdot 165^{26k+13}\\||+12284\cdot 165^{25k+13}+161606\cdot 165^{24k+12}+12486\cdot 165^{23k+12}+156351\cdot 165^{22k+11}+11781\cdot 165^{21k+11}\\||+145987\cdot 165^{20k+10}+10894\cdot 165^{19k+10}+132489\cdot 165^{18k+9}+9608\cdot 165^{17k+9}+113178\cdot 165^{16k+8}\\||+7983\cdot 165^{15k+8}+92004\cdot 165^{14k+7}+6341\cdot 165^{13k+7}+70373\cdot 165^{12k+6}+4545\cdot 165^{11k+6}\\||+45682\cdot 165^{10k+5}+2580\cdot 165^{9k+5}+21936\cdot 165^{8k+4}+1015\cdot 165^{7k+4}+6837\cdot 165^{6k+3}\\||+241\cdot 165^{5k+3}+1176\cdot 165^{4k+2}+28\cdot 165^{3k+2}+83\cdot 165^{2k+1}+165^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{332}(166^{2k+1})\cdots{\large\Phi}_{340}(170^{2k+1})$${\large\Phi}_{332}(166^{2k+1})\cdots{\large\Phi}_{340}(170^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{332}(166^{2k+1})|=|166^{328k+164}-166^{324k+162}+166^{320k+160}-166^{316k+158}+166^{312k+156}\\||-166^{308k+154}+166^{304k+152}-166^{300k+150}+166^{296k+148}-166^{292k+146}\\||+166^{288k+144}-166^{284k+142}+166^{280k+140}-166^{276k+138}+166^{272k+136}\\||-166^{268k+134}+166^{264k+132}-166^{260k+130}+166^{256k+128}-166^{252k+126}\\||+166^{248k+124}-166^{244k+122}+166^{240k+120}-166^{236k+118}+166^{232k+116}\\||-166^{228k+114}+166^{224k+112}-166^{220k+110}+166^{216k+108}-166^{212k+106}\\||+166^{208k+104}-166^{204k+102}+166^{200k+100}-166^{196k+98}+166^{192k+96}\\||-166^{188k+94}+166^{184k+92}-166^{180k+90}+166^{176k+88}-166^{172k+86}\\||+166^{168k+84}-166^{164k+82}+166^{160k+80}-166^{156k+78}+166^{152k+76}\\||-166^{148k+74}+166^{144k+72}-166^{140k+70}+166^{136k+68}-166^{132k+66}\\||+166^{128k+64}-166^{124k+62}+166^{120k+60}-166^{116k+58}+166^{112k+56}\\||-166^{108k+54}+166^{104k+52}-166^{100k+50}+166^{96k+48}-166^{92k+46}\\||+166^{88k+44}-166^{84k+42}+166^{80k+40}-166^{76k+38}+166^{72k+36}\\||-166^{68k+34}+166^{64k+32}-166^{60k+30}+166^{56k+28}-166^{52k+26}\\||+166^{48k+24}-166^{44k+22}+166^{40k+20}-166^{36k+18}+166^{32k+16}\\||-166^{28k+14}+166^{24k+12}-166^{20k+10}+166^{16k+8}-166^{12k+6}\\||+166^{8k+4}-166^{4k+2}+1\\|=|(166^{164k+82}-166^{163k+82}+83\cdot 166^{162k+81}-28\cdot 166^{161k+81}+1203\cdot 166^{160k+80}\\||-257\cdot 166^{159k+80}+7885\cdot 166^{158k+79}-1302\cdot 166^{157k+79}+32609\cdot 166^{156k+78}-4567\cdot 166^{155k+78}\\||+99683\cdot 166^{154k+77}-12410\cdot 166^{153k+77}+244471\cdot 166^{152k+76}-27811\cdot 166^{151k+76}+505885\cdot 166^{150k+75}\\||-53622\cdot 166^{149k+75}+916081\cdot 166^{148k+74}-91855\cdot 166^{147k+74}+1494415\cdot 166^{146k+73}-143600\cdot 166^{145k+73}\\||+2252279\cdot 166^{144k+72}-209807\cdot 166^{143k+72}+3206373\cdot 166^{142k+71}-292348\cdot 166^{141k+71}+4389733\cdot 166^{140k+70}\\||-394425\cdot 166^{139k+70}+5848595\cdot 166^{138k+69}-519588\cdot 166^{137k+69}+7621371\cdot 166^{136k+68}-669711\cdot 166^{135k+68}\\||+9712245\cdot 166^{134k+67}-843324\cdot 166^{133k+67}+12079461\cdot 166^{132k+66}-1035729\cdot 166^{131k+66}+14650911\cdot 166^{130k+65}\\||-1241130\cdot 166^{129k+65}+17358355\cdot 166^{128k+64}-1455277\cdot 166^{127k+64}+20163937\cdot 166^{126k+63}-1676452\cdot 166^{125k+63}\\||+23055473\cdot 166^{124k+62}-1903757\cdot 166^{123k+62}+26010955\cdot 166^{122k+61}-2133866\cdot 166^{121k+61}+28959351\cdot 166^{120k+60}\\||-2358899\cdot 166^{119k+60}+31772317\cdot 166^{118k+59}-2567542\cdot 166^{117k+59}+34300257\cdot 166^{116k+58}-2749079\cdot 166^{115k+58}\\||+36430775\cdot 166^{114k+57}-2897558\cdot 166^{113k+57}+38126683\cdot 166^{112k+56}-3012899\cdot 166^{111k+56}+39413297\cdot 166^{110k+55}\\||-3098010\cdot 166^{109k+55}+40324741\cdot 166^{108k+54}-3154245\cdot 166^{107k+54}+40853679\cdot 166^{106k+53}-3179044\cdot 166^{105k+53}\\||+40948287\cdot 166^{104k+52}-3167947\cdot 166^{103k+52}+40562349\cdot 166^{102k+51}-3119560\cdot 166^{101k+51}+39719589\cdot 166^{100k+50}\\||-3039485\cdot 166^{99k+50}+38538975\cdot 166^{98k+49}-2939806\cdot 166^{97k+49}+37196331\cdot 166^{96k+48}-2834193\cdot 166^{95k+48}\\||+35848945\cdot 166^{94k+47}-2732256\cdot 166^{93k+47}+34579993\cdot 166^{92k+46}-2637431\cdot 166^{91k+46}+33404927\cdot 166^{90k+45}\\||-2549918\cdot 166^{89k+45}+32331443\cdot 166^{88k+44}-2471945\cdot 166^{87k+44}+31419401\cdot 166^{86k+43}-2410728\cdot 166^{85k+43}\\||+30787929\cdot 166^{84k+42}-2376409\cdot 166^{83k+42}+30560019\cdot 166^{82k+41}-2376409\cdot 166^{81k+41}+30787929\cdot 166^{80k+40}\\||-2410728\cdot 166^{79k+40}+31419401\cdot 166^{78k+39}-2471945\cdot 166^{77k+39}+32331443\cdot 166^{76k+38}-2549918\cdot 166^{75k+38}\\||+33404927\cdot 166^{74k+37}-2637431\cdot 166^{73k+37}+34579993\cdot 166^{72k+36}-2732256\cdot 166^{71k+36}+35848945\cdot 166^{70k+35}\\||-2834193\cdot 166^{69k+35}+37196331\cdot 166^{68k+34}-2939806\cdot 166^{67k+34}+38538975\cdot 166^{66k+33}-3039485\cdot 166^{65k+33}\\||+39719589\cdot 166^{64k+32}-3119560\cdot 166^{63k+32}+40562349\cdot 166^{62k+31}-3167947\cdot 166^{61k+31}+40948287\cdot 166^{60k+30}\\||-3179044\cdot 166^{59k+30}+40853679\cdot 166^{58k+29}-3154245\cdot 166^{57k+29}+40324741\cdot 166^{56k+28}-3098010\cdot 166^{55k+28}\\||+39413297\cdot 166^{54k+27}-3012899\cdot 166^{53k+27}+38126683\cdot 166^{52k+26}-2897558\cdot 166^{51k+26}+36430775\cdot 166^{50k+25}\\||-2749079\cdot 166^{49k+25}+34300257\cdot 166^{48k+24}-2567542\cdot 166^{47k+24}+31772317\cdot 166^{46k+23}-2358899\cdot 166^{45k+23}\\||+28959351\cdot 166^{44k+22}-2133866\cdot 166^{43k+22}+26010955\cdot 166^{42k+21}-1903757\cdot 166^{41k+21}+23055473\cdot 166^{40k+20}\\||-1676452\cdot 166^{39k+20}+20163937\cdot 166^{38k+19}-1455277\cdot 166^{37k+19}+17358355\cdot 166^{36k+18}-1241130\cdot 166^{35k+18}\\||+14650911\cdot 166^{34k+17}-1035729\cdot 166^{33k+17}+12079461\cdot 166^{32k+16}-843324\cdot 166^{31k+16}+9712245\cdot 166^{30k+15}\\||-669711\cdot 166^{29k+15}+7621371\cdot 166^{28k+14}-519588\cdot 166^{27k+14}+5848595\cdot 166^{26k+13}-394425\cdot 166^{25k+13}\\||+4389733\cdot 166^{24k+12}-292348\cdot 166^{23k+12}+3206373\cdot 166^{22k+11}-209807\cdot 166^{21k+11}+2252279\cdot 166^{20k+10}\\||-143600\cdot 166^{19k+10}+1494415\cdot 166^{18k+9}-91855\cdot 166^{17k+9}+916081\cdot 166^{16k+8}-53622\cdot 166^{15k+8}\\||+505885\cdot 166^{14k+7}-27811\cdot 166^{13k+7}+244471\cdot 166^{12k+6}-12410\cdot 166^{11k+6}+99683\cdot 166^{10k+5}\\||-4567\cdot 166^{9k+5}+32609\cdot 166^{8k+4}-1302\cdot 166^{7k+4}+7885\cdot 166^{6k+3}-257\cdot 166^{5k+3}\\||+1203\cdot 166^{4k+2}-28\cdot 166^{3k+2}+83\cdot 166^{2k+1}-166^{k+1}+1)\\|\times|(166^{164k+82}+166^{163k+82}+83\cdot 166^{162k+81}+28\cdot 166^{161k+81}+1203\cdot 166^{160k+80}\\||+257\cdot 166^{159k+80}+7885\cdot 166^{158k+79}+1302\cdot 166^{157k+79}+32609\cdot 166^{156k+78}+4567\cdot 166^{155k+78}\\||+99683\cdot 166^{154k+77}+12410\cdot 166^{153k+77}+244471\cdot 166^{152k+76}+27811\cdot 166^{151k+76}+505885\cdot 166^{150k+75}\\||+53622\cdot 166^{149k+75}+916081\cdot 166^{148k+74}+91855\cdot 166^{147k+74}+1494415\cdot 166^{146k+73}+143600\cdot 166^{145k+73}\\||+2252279\cdot 166^{144k+72}+209807\cdot 166^{143k+72}+3206373\cdot 166^{142k+71}+292348\cdot 166^{141k+71}+4389733\cdot 166^{140k+70}\\||+394425\cdot 166^{139k+70}+5848595\cdot 166^{138k+69}+519588\cdot 166^{137k+69}+7621371\cdot 166^{136k+68}+669711\cdot 166^{135k+68}\\||+9712245\cdot 166^{134k+67}+843324\cdot 166^{133k+67}+12079461\cdot 166^{132k+66}+1035729\cdot 166^{131k+66}+14650911\cdot 166^{130k+65}\\||+1241130\cdot 166^{129k+65}+17358355\cdot 166^{128k+64}+1455277\cdot 166^{127k+64}+20163937\cdot 166^{126k+63}+1676452\cdot 166^{125k+63}\\||+23055473\cdot 166^{124k+62}+1903757\cdot 166^{123k+62}+26010955\cdot 166^{122k+61}+2133866\cdot 166^{121k+61}+28959351\cdot 166^{120k+60}\\||+2358899\cdot 166^{119k+60}+31772317\cdot 166^{118k+59}+2567542\cdot 166^{117k+59}+34300257\cdot 166^{116k+58}+2749079\cdot 166^{115k+58}\\||+36430775\cdot 166^{114k+57}+2897558\cdot 166^{113k+57}+38126683\cdot 166^{112k+56}+3012899\cdot 166^{111k+56}+39413297\cdot 166^{110k+55}\\||+3098010\cdot 166^{109k+55}+40324741\cdot 166^{108k+54}+3154245\cdot 166^{107k+54}+40853679\cdot 166^{106k+53}+3179044\cdot 166^{105k+53}\\||+40948287\cdot 166^{104k+52}+3167947\cdot 166^{103k+52}+40562349\cdot 166^{102k+51}+3119560\cdot 166^{101k+51}+39719589\cdot 166^{100k+50}\\||+3039485\cdot 166^{99k+50}+38538975\cdot 166^{98k+49}+2939806\cdot 166^{97k+49}+37196331\cdot 166^{96k+48}+2834193\cdot 166^{95k+48}\\||+35848945\cdot 166^{94k+47}+2732256\cdot 166^{93k+47}+34579993\cdot 166^{92k+46}+2637431\cdot 166^{91k+46}+33404927\cdot 166^{90k+45}\\||+2549918\cdot 166^{89k+45}+32331443\cdot 166^{88k+44}+2471945\cdot 166^{87k+44}+31419401\cdot 166^{86k+43}+2410728\cdot 166^{85k+43}\\||+30787929\cdot 166^{84k+42}+2376409\cdot 166^{83k+42}+30560019\cdot 166^{82k+41}+2376409\cdot 166^{81k+41}+30787929\cdot 166^{80k+40}\\||+2410728\cdot 166^{79k+40}+31419401\cdot 166^{78k+39}+2471945\cdot 166^{77k+39}+32331443\cdot 166^{76k+38}+2549918\cdot 166^{75k+38}\\||+33404927\cdot 166^{74k+37}+2637431\cdot 166^{73k+37}+34579993\cdot 166^{72k+36}+2732256\cdot 166^{71k+36}+35848945\cdot 166^{70k+35}\\||+2834193\cdot 166^{69k+35}+37196331\cdot 166^{68k+34}+2939806\cdot 166^{67k+34}+38538975\cdot 166^{66k+33}+3039485\cdot 166^{65k+33}\\||+39719589\cdot 166^{64k+32}+3119560\cdot 166^{63k+32}+40562349\cdot 166^{62k+31}+3167947\cdot 166^{61k+31}+40948287\cdot 166^{60k+30}\\||+3179044\cdot 166^{59k+30}+40853679\cdot 166^{58k+29}+3154245\cdot 166^{57k+29}+40324741\cdot 166^{56k+28}+3098010\cdot 166^{55k+28}\\||+39413297\cdot 166^{54k+27}+3012899\cdot 166^{53k+27}+38126683\cdot 166^{52k+26}+2897558\cdot 166^{51k+26}+36430775\cdot 166^{50k+25}\\||+2749079\cdot 166^{49k+25}+34300257\cdot 166^{48k+24}+2567542\cdot 166^{47k+24}+31772317\cdot 166^{46k+23}+2358899\cdot 166^{45k+23}\\||+28959351\cdot 166^{44k+22}+2133866\cdot 166^{43k+22}+26010955\cdot 166^{42k+21}+1903757\cdot 166^{41k+21}+23055473\cdot 166^{40k+20}\\||+1676452\cdot 166^{39k+20}+20163937\cdot 166^{38k+19}+1455277\cdot 166^{37k+19}+17358355\cdot 166^{36k+18}+1241130\cdot 166^{35k+18}\\||+14650911\cdot 166^{34k+17}+1035729\cdot 166^{33k+17}+12079461\cdot 166^{32k+16}+843324\cdot 166^{31k+16}+9712245\cdot 166^{30k+15}\\||+669711\cdot 166^{29k+15}+7621371\cdot 166^{28k+14}+519588\cdot 166^{27k+14}+5848595\cdot 166^{26k+13}+394425\cdot 166^{25k+13}\\||+4389733\cdot 166^{24k+12}+292348\cdot 166^{23k+12}+3206373\cdot 166^{22k+11}+209807\cdot 166^{21k+11}+2252279\cdot 166^{20k+10}\\||+143600\cdot 166^{19k+10}+1494415\cdot 166^{18k+9}+91855\cdot 166^{17k+9}+916081\cdot 166^{16k+8}+53622\cdot 166^{15k+8}\\||+505885\cdot 166^{14k+7}+27811\cdot 166^{13k+7}+244471\cdot 166^{12k+6}+12410\cdot 166^{11k+6}+99683\cdot 166^{10k+5}\\||+4567\cdot 166^{9k+5}+32609\cdot 166^{8k+4}+1302\cdot 166^{7k+4}+7885\cdot 166^{6k+3}+257\cdot 166^{5k+3}\\||+1203\cdot 166^{4k+2}+28\cdot 166^{3k+2}+83\cdot 166^{2k+1}+166^{k+1}+1)\\{\large\Phi}_{334}(167^{2k+1})|=|167^{332k+166}-167^{330k+165}+167^{328k+164}-167^{326k+163}+167^{324k+162}\\||-167^{322k+161}+167^{320k+160}-167^{318k+159}+167^{316k+158}-167^{314k+157}\\||+167^{312k+156}-167^{310k+155}+167^{308k+154}-167^{306k+153}+167^{304k+152}\\||-167^{302k+151}+167^{300k+150}-167^{298k+149}+167^{296k+148}-167^{294k+147}\\||+167^{292k+146}-167^{290k+145}+167^{288k+144}-167^{286k+143}+167^{284k+142}\\||-167^{282k+141}+167^{280k+140}-167^{278k+139}+167^{276k+138}-167^{274k+137}\\||+167^{272k+136}-167^{270k+135}+167^{268k+134}-167^{266k+133}+167^{264k+132}\\||-167^{262k+131}+167^{260k+130}-167^{258k+129}+167^{256k+128}-167^{254k+127}\\||+167^{252k+126}-167^{250k+125}+167^{248k+124}-167^{246k+123}+167^{244k+122}\\||-167^{242k+121}+167^{240k+120}-167^{238k+119}+167^{236k+118}-167^{234k+117}\\||+167^{232k+116}-167^{230k+115}+167^{228k+114}-167^{226k+113}+167^{224k+112}\\||-167^{222k+111}+167^{220k+110}-167^{218k+109}+167^{216k+108}-167^{214k+107}\\||+167^{212k+106}-167^{210k+105}+167^{208k+104}-167^{206k+103}+167^{204k+102}\\||-167^{202k+101}+167^{200k+100}-167^{198k+99}+167^{196k+98}-167^{194k+97}\\||+167^{192k+96}-167^{190k+95}+167^{188k+94}-167^{186k+93}+167^{184k+92}\\||-167^{182k+91}+167^{180k+90}-167^{178k+89}+167^{176k+88}-167^{174k+87}\\||+167^{172k+86}-167^{170k+85}+167^{168k+84}-167^{166k+83}+167^{164k+82}\\||-167^{162k+81}+167^{160k+80}-167^{158k+79}+167^{156k+78}-167^{154k+77}\\||+167^{152k+76}-167^{150k+75}+167^{148k+74}-167^{146k+73}+167^{144k+72}\\||-167^{142k+71}+167^{140k+70}-167^{138k+69}+167^{136k+68}-167^{134k+67}\\||+167^{132k+66}-167^{130k+65}+167^{128k+64}-167^{126k+63}+167^{124k+62}\\||-167^{122k+61}+167^{120k+60}-167^{118k+59}+167^{116k+58}-167^{114k+57}\\||+167^{112k+56}-167^{110k+55}+167^{108k+54}-167^{106k+53}+167^{104k+52}\\||-167^{102k+51}+167^{100k+50}-167^{98k+49}+167^{96k+48}-167^{94k+47}\\||+167^{92k+46}-167^{90k+45}+167^{88k+44}-167^{86k+43}+167^{84k+42}\\||-167^{82k+41}+167^{80k+40}-167^{78k+39}+167^{76k+38}-167^{74k+37}\\||+167^{72k+36}-167^{70k+35}+167^{68k+34}-167^{66k+33}+167^{64k+32}\\||-167^{62k+31}+167^{60k+30}-167^{58k+29}+167^{56k+28}-167^{54k+27}\\||+167^{52k+26}-167^{50k+25}+167^{48k+24}-167^{46k+23}+167^{44k+22}\\||-167^{42k+21}+167^{40k+20}-167^{38k+19}+167^{36k+18}-167^{34k+17}\\||+167^{32k+16}-167^{30k+15}+167^{28k+14}-167^{26k+13}+167^{24k+12}\\||-167^{22k+11}+167^{20k+10}-167^{18k+9}+167^{16k+8}-167^{14k+7}\\||+167^{12k+6}-167^{10k+5}+167^{8k+4}-167^{6k+3}+167^{4k+2}\\||-167^{2k+1}+1\\|=|(167^{166k+83}-167^{165k+83}+83\cdot 167^{164k+82}-27\cdot 167^{163k+82}+1065\cdot 167^{162k+81}\\||-191\cdot 167^{161k+81}+4373\cdot 167^{160k+80}-437\cdot 167^{159k+80}+4127\cdot 167^{158k+79}+185\cdot 167^{157k+79}\\||-14085\cdot 167^{156k+78}+2101\cdot 167^{155k+78}-33807\cdot 167^{154k+77}+1969\cdot 167^{153k+77}+1869\cdot 167^{152k+76}\\||-3279\cdot 167^{151k+76}+79629\cdot 167^{150k+75}-7107\cdot 167^{149k+75}+62709\cdot 167^{148k+74}+531\cdot 167^{147k+74}\\||-93199\cdot 167^{146k+73}+12095\cdot 167^{145k+73}-158129\cdot 167^{144k+72}+6551\cdot 167^{143k+72}+41035\cdot 167^{142k+71}\\||-12731\cdot 167^{141k+71}+224551\cdot 167^{140k+70}-14315\cdot 167^{139k+70}+56961\cdot 167^{138k+69}+7927\cdot 167^{137k+69}\\||-216735\cdot 167^{136k+68}+17771\cdot 167^{135k+68}-136349\cdot 167^{134k+67}-971\cdot 167^{133k+67}+138503\cdot 167^{132k+66}\\||-13893\cdot 167^{131k+66}+125303\cdot 167^{130k+65}-1625\cdot 167^{129k+65}-62681\cdot 167^{128k+64}+5803\cdot 167^{127k+64}\\||-17447\cdot 167^{126k+63}-4459\cdot 167^{125k+63}+82261\cdot 167^{124k+62}-1591\cdot 167^{123k+62}-101627\cdot 167^{122k+61}\\||+15969\cdot 167^{121k+61}-210429\cdot 167^{120k+60}+6345\cdot 167^{119k+60}+129653\cdot 167^{118k+59}-24297\cdot 167^{117k+59}\\||+360383\cdot 167^{116k+58}-17409\cdot 167^{115k+58}-37723\cdot 167^{114k+57}+23137\cdot 167^{113k+57}-423843\cdot 167^{112k+56}\\||+26697\cdot 167^{111k+56}-101363\cdot 167^{110k+55}-14069\cdot 167^{109k+55}+360979\cdot 167^{108k+54}-27281\cdot 167^{107k+54}\\||+176217\cdot 167^{106k+53}+4743\cdot 167^{105k+53}-230777\cdot 167^{104k+52}+19613\cdot 167^{103k+52}-139647\cdot 167^{102k+51}\\||-2017\cdot 167^{101k+51}+139983\cdot 167^{100k+50}-10857\cdot 167^{99k+50}+39545\cdot 167^{98k+49}+6793\cdot 167^{97k+49}\\||-153053\cdot 167^{96k+48}+8367\cdot 167^{95k+48}+25443\cdot 167^{94k+47}-13117\cdot 167^{93k+47}+235897\cdot 167^{92k+46}\\||-13757\cdot 167^{91k+46}+16127\cdot 167^{90k+45}+13285\cdot 167^{89k+45}-292089\cdot 167^{88k+44}+21835\cdot 167^{87k+44}\\||-140487\cdot 167^{86k+43}-5521\cdot 167^{85k+43}+256857\cdot 167^{84k+42}-25543\cdot 167^{83k+42}+256857\cdot 167^{82k+41}\\||-5521\cdot 167^{81k+41}-140487\cdot 167^{80k+40}+21835\cdot 167^{79k+40}-292089\cdot 167^{78k+39}+13285\cdot 167^{77k+39}\\||+16127\cdot 167^{76k+38}-13757\cdot 167^{75k+38}+235897\cdot 167^{74k+37}-13117\cdot 167^{73k+37}+25443\cdot 167^{72k+36}\\||+8367\cdot 167^{71k+36}-153053\cdot 167^{70k+35}+6793\cdot 167^{69k+35}+39545\cdot 167^{68k+34}-10857\cdot 167^{67k+34}\\||+139983\cdot 167^{66k+33}-2017\cdot 167^{65k+33}-139647\cdot 167^{64k+32}+19613\cdot 167^{63k+32}-230777\cdot 167^{62k+31}\\||+4743\cdot 167^{61k+31}+176217\cdot 167^{60k+30}-27281\cdot 167^{59k+30}+360979\cdot 167^{58k+29}-14069\cdot 167^{57k+29}\\||-101363\cdot 167^{56k+28}+26697\cdot 167^{55k+28}-423843\cdot 167^{54k+27}+23137\cdot 167^{53k+27}-37723\cdot 167^{52k+26}\\||-17409\cdot 167^{51k+26}+360383\cdot 167^{50k+25}-24297\cdot 167^{49k+25}+129653\cdot 167^{48k+24}+6345\cdot 167^{47k+24}\\||-210429\cdot 167^{46k+23}+15969\cdot 167^{45k+23}-101627\cdot 167^{44k+22}-1591\cdot 167^{43k+22}+82261\cdot 167^{42k+21}\\||-4459\cdot 167^{41k+21}-17447\cdot 167^{40k+20}+5803\cdot 167^{39k+20}-62681\cdot 167^{38k+19}-1625\cdot 167^{37k+19}\\||+125303\cdot 167^{36k+18}-13893\cdot 167^{35k+18}+138503\cdot 167^{34k+17}-971\cdot 167^{33k+17}-136349\cdot 167^{32k+16}\\||+17771\cdot 167^{31k+16}-216735\cdot 167^{30k+15}+7927\cdot 167^{29k+15}+56961\cdot 167^{28k+14}-14315\cdot 167^{27k+14}\\||+224551\cdot 167^{26k+13}-12731\cdot 167^{25k+13}+41035\cdot 167^{24k+12}+6551\cdot 167^{23k+12}-158129\cdot 167^{22k+11}\\||+12095\cdot 167^{21k+11}-93199\cdot 167^{20k+10}+531\cdot 167^{19k+10}+62709\cdot 167^{18k+9}-7107\cdot 167^{17k+9}\\||+79629\cdot 167^{16k+8}-3279\cdot 167^{15k+8}+1869\cdot 167^{14k+7}+1969\cdot 167^{13k+7}-33807\cdot 167^{12k+6}\\||+2101\cdot 167^{11k+6}-14085\cdot 167^{10k+5}+185\cdot 167^{9k+5}+4127\cdot 167^{8k+4}-437\cdot 167^{7k+4}\\||+4373\cdot 167^{6k+3}-191\cdot 167^{5k+3}+1065\cdot 167^{4k+2}-27\cdot 167^{3k+2}+83\cdot 167^{2k+1}\\||-167^{k+1}+1)\\|\times|(167^{166k+83}+167^{165k+83}+83\cdot 167^{164k+82}+27\cdot 167^{163k+82}+1065\cdot 167^{162k+81}\\||+191\cdot 167^{161k+81}+4373\cdot 167^{160k+80}+437\cdot 167^{159k+80}+4127\cdot 167^{158k+79}-185\cdot 167^{157k+79}\\||-14085\cdot 167^{156k+78}-2101\cdot 167^{155k+78}-33807\cdot 167^{154k+77}-1969\cdot 167^{153k+77}+1869\cdot 167^{152k+76}\\||+3279\cdot 167^{151k+76}+79629\cdot 167^{150k+75}+7107\cdot 167^{149k+75}+62709\cdot 167^{148k+74}-531\cdot 167^{147k+74}\\||-93199\cdot 167^{146k+73}-12095\cdot 167^{145k+73}-158129\cdot 167^{144k+72}-6551\cdot 167^{143k+72}+41035\cdot 167^{142k+71}\\||+12731\cdot 167^{141k+71}+224551\cdot 167^{140k+70}+14315\cdot 167^{139k+70}+56961\cdot 167^{138k+69}-7927\cdot 167^{137k+69}\\||-216735\cdot 167^{136k+68}-17771\cdot 167^{135k+68}-136349\cdot 167^{134k+67}+971\cdot 167^{133k+67}+138503\cdot 167^{132k+66}\\||+13893\cdot 167^{131k+66}+125303\cdot 167^{130k+65}+1625\cdot 167^{129k+65}-62681\cdot 167^{128k+64}-5803\cdot 167^{127k+64}\\||-17447\cdot 167^{126k+63}+4459\cdot 167^{125k+63}+82261\cdot 167^{124k+62}+1591\cdot 167^{123k+62}-101627\cdot 167^{122k+61}\\||-15969\cdot 167^{121k+61}-210429\cdot 167^{120k+60}-6345\cdot 167^{119k+60}+129653\cdot 167^{118k+59}+24297\cdot 167^{117k+59}\\||+360383\cdot 167^{116k+58}+17409\cdot 167^{115k+58}-37723\cdot 167^{114k+57}-23137\cdot 167^{113k+57}-423843\cdot 167^{112k+56}\\||-26697\cdot 167^{111k+56}-101363\cdot 167^{110k+55}+14069\cdot 167^{109k+55}+360979\cdot 167^{108k+54}+27281\cdot 167^{107k+54}\\||+176217\cdot 167^{106k+53}-4743\cdot 167^{105k+53}-230777\cdot 167^{104k+52}-19613\cdot 167^{103k+52}-139647\cdot 167^{102k+51}\\||+2017\cdot 167^{101k+51}+139983\cdot 167^{100k+50}+10857\cdot 167^{99k+50}+39545\cdot 167^{98k+49}-6793\cdot 167^{97k+49}\\||-153053\cdot 167^{96k+48}-8367\cdot 167^{95k+48}+25443\cdot 167^{94k+47}+13117\cdot 167^{93k+47}+235897\cdot 167^{92k+46}\\||+13757\cdot 167^{91k+46}+16127\cdot 167^{90k+45}-13285\cdot 167^{89k+45}-292089\cdot 167^{88k+44}-21835\cdot 167^{87k+44}\\||-140487\cdot 167^{86k+43}+5521\cdot 167^{85k+43}+256857\cdot 167^{84k+42}+25543\cdot 167^{83k+42}+256857\cdot 167^{82k+41}\\||+5521\cdot 167^{81k+41}-140487\cdot 167^{80k+40}-21835\cdot 167^{79k+40}-292089\cdot 167^{78k+39}-13285\cdot 167^{77k+39}\\||+16127\cdot 167^{76k+38}+13757\cdot 167^{75k+38}+235897\cdot 167^{74k+37}+13117\cdot 167^{73k+37}+25443\cdot 167^{72k+36}\\||-8367\cdot 167^{71k+36}-153053\cdot 167^{70k+35}-6793\cdot 167^{69k+35}+39545\cdot 167^{68k+34}+10857\cdot 167^{67k+34}\\||+139983\cdot 167^{66k+33}+2017\cdot 167^{65k+33}-139647\cdot 167^{64k+32}-19613\cdot 167^{63k+32}-230777\cdot 167^{62k+31}\\||-4743\cdot 167^{61k+31}+176217\cdot 167^{60k+30}+27281\cdot 167^{59k+30}+360979\cdot 167^{58k+29}+14069\cdot 167^{57k+29}\\||-101363\cdot 167^{56k+28}-26697\cdot 167^{55k+28}-423843\cdot 167^{54k+27}-23137\cdot 167^{53k+27}-37723\cdot 167^{52k+26}\\||+17409\cdot 167^{51k+26}+360383\cdot 167^{50k+25}+24297\cdot 167^{49k+25}+129653\cdot 167^{48k+24}-6345\cdot 167^{47k+24}\\||-210429\cdot 167^{46k+23}-15969\cdot 167^{45k+23}-101627\cdot 167^{44k+22}+1591\cdot 167^{43k+22}+82261\cdot 167^{42k+21}\\||+4459\cdot 167^{41k+21}-17447\cdot 167^{40k+20}-5803\cdot 167^{39k+20}-62681\cdot 167^{38k+19}+1625\cdot 167^{37k+19}\\||+125303\cdot 167^{36k+18}+13893\cdot 167^{35k+18}+138503\cdot 167^{34k+17}+971\cdot 167^{33k+17}-136349\cdot 167^{32k+16}\\||-17771\cdot 167^{31k+16}-216735\cdot 167^{30k+15}-7927\cdot 167^{29k+15}+56961\cdot 167^{28k+14}+14315\cdot 167^{27k+14}\\||+224551\cdot 167^{26k+13}+12731\cdot 167^{25k+13}+41035\cdot 167^{24k+12}-6551\cdot 167^{23k+12}-158129\cdot 167^{22k+11}\\||-12095\cdot 167^{21k+11}-93199\cdot 167^{20k+10}-531\cdot 167^{19k+10}+62709\cdot 167^{18k+9}+7107\cdot 167^{17k+9}\\||+79629\cdot 167^{16k+8}+3279\cdot 167^{15k+8}+1869\cdot 167^{14k+7}-1969\cdot 167^{13k+7}-33807\cdot 167^{12k+6}\\||-2101\cdot 167^{11k+6}-14085\cdot 167^{10k+5}-185\cdot 167^{9k+5}+4127\cdot 167^{8k+4}+437\cdot 167^{7k+4}\\||+4373\cdot 167^{6k+3}+191\cdot 167^{5k+3}+1065\cdot 167^{4k+2}+27\cdot 167^{3k+2}+83\cdot 167^{2k+1}\\||+167^{k+1}+1)\\{\large\Phi}_{340}(170^{2k+1})|=|170^{256k+128}+170^{252k+126}-170^{236k+118}-170^{232k+116}+170^{216k+108}\\||+170^{212k+106}-170^{196k+98}-170^{192k+96}-170^{188k+94}-170^{184k+92}\\||+170^{176k+88}+170^{172k+86}+170^{168k+84}+170^{164k+82}-170^{156k+78}\\||-170^{152k+76}-170^{148k+74}-170^{144k+72}+170^{136k+68}+170^{132k+66}\\||+170^{128k+64}+170^{124k+62}+170^{120k+60}-170^{112k+56}-170^{108k+54}\\||-170^{104k+52}-170^{100k+50}+170^{92k+46}+170^{88k+44}+170^{84k+42}\\||+170^{80k+40}-170^{72k+36}-170^{68k+34}-170^{64k+32}-170^{60k+30}\\||+170^{44k+22}+170^{40k+20}-170^{24k+12}-170^{20k+10}+170^{4k+2}+1\\|=|(170^{128k+64}-170^{127k+64}+85\cdot 170^{126k+63}-28\cdot 170^{125k+63}+1148\cdot 170^{124k+62}\\||-213\cdot 170^{123k+62}+5270\cdot 170^{122k+61}-597\cdot 170^{121k+61}+8468\cdot 170^{120k+60}-412\cdot 170^{119k+60}\\||-1615\cdot 170^{118k+59}+701\cdot 170^{117k+59}-11119\cdot 170^{116k+58}+200\cdot 170^{115k+58}+15300\cdot 170^{114k+57}\\||-2590\cdot 170^{113k+57}+40620\cdot 170^{112k+56}-2223\cdot 170^{111k+56}+3910\cdot 170^{110k+55}+1473\cdot 170^{109k+55}\\||-24601\cdot 170^{108k+54}+587\cdot 170^{107k+54}+21165\cdot 170^{106k+53}-3338\cdot 170^{105k+53}+46362\cdot 170^{104k+52}\\||-2361\cdot 170^{103k+52}+10030\cdot 170^{102k+51}+86\cdot 170^{101k+51}+3282\cdot 170^{100k+50}-1369\cdot 170^{99k+50}\\||+31535\cdot 170^{98k+49}-2733\cdot 170^{97k+49}+28119\cdot 170^{96k+48}-1004\cdot 170^{95k+48}-1955\cdot 170^{94k+47}\\||+675\cdot 170^{93k+47}-1575\cdot 170^{92k+46}-1465\cdot 170^{91k+46}+43350\cdot 170^{90k+45}-4238\cdot 170^{89k+45}\\||+43111\cdot 170^{88k+44}-780\cdot 170^{87k+44}-24225\cdot 170^{86k+43}+2854\cdot 170^{85k+43}-20377\cdot 170^{84k+42}\\||-930\cdot 170^{83k+42}+33915\cdot 170^{82k+41}-2132\cdot 170^{81k+41}+38\cdot 170^{80k+40}+1951\cdot 170^{79k+40}\\||-28135\cdot 170^{78k+39}+665\cdot 170^{77k+39}+12641\cdot 170^{76k+38}-1114\cdot 170^{75k+38}-6545\cdot 170^{74k+37}\\||+2627\cdot 170^{73k+37}-47685\cdot 170^{72k+36}+2999\cdot 170^{71k+36}-18530\cdot 170^{70k+35}+230\cdot 170^{69k+35}\\||-2111\cdot 170^{68k+34}+990\cdot 170^{67k+34}-26095\cdot 170^{66k+33}+2676\cdot 170^{65k+33}-37723\cdot 170^{64k+32}\\||+2676\cdot 170^{63k+32}-26095\cdot 170^{62k+31}+990\cdot 170^{61k+31}-2111\cdot 170^{60k+30}+230\cdot 170^{59k+30}\\||-18530\cdot 170^{58k+29}+2999\cdot 170^{57k+29}-47685\cdot 170^{56k+28}+2627\cdot 170^{55k+28}-6545\cdot 170^{54k+27}\\||-1114\cdot 170^{53k+27}+12641\cdot 170^{52k+26}+665\cdot 170^{51k+26}-28135\cdot 170^{50k+25}+1951\cdot 170^{49k+25}\\||+38\cdot 170^{48k+24}-2132\cdot 170^{47k+24}+33915\cdot 170^{46k+23}-930\cdot 170^{45k+23}-20377\cdot 170^{44k+22}\\||+2854\cdot 170^{43k+22}-24225\cdot 170^{42k+21}-780\cdot 170^{41k+21}+43111\cdot 170^{40k+20}-4238\cdot 170^{39k+20}\\||+43350\cdot 170^{38k+19}-1465\cdot 170^{37k+19}-1575\cdot 170^{36k+18}+675\cdot 170^{35k+18}-1955\cdot 170^{34k+17}\\||-1004\cdot 170^{33k+17}+28119\cdot 170^{32k+16}-2733\cdot 170^{31k+16}+31535\cdot 170^{30k+15}-1369\cdot 170^{29k+15}\\||+3282\cdot 170^{28k+14}+86\cdot 170^{27k+14}+10030\cdot 170^{26k+13}-2361\cdot 170^{25k+13}+46362\cdot 170^{24k+12}\\||-3338\cdot 170^{23k+12}+21165\cdot 170^{22k+11}+587\cdot 170^{21k+11}-24601\cdot 170^{20k+10}+1473\cdot 170^{19k+10}\\||+3910\cdot 170^{18k+9}-2223\cdot 170^{17k+9}+40620\cdot 170^{16k+8}-2590\cdot 170^{15k+8}+15300\cdot 170^{14k+7}\\||+200\cdot 170^{13k+7}-11119\cdot 170^{12k+6}+701\cdot 170^{11k+6}-1615\cdot 170^{10k+5}-412\cdot 170^{9k+5}\\||+8468\cdot 170^{8k+4}-597\cdot 170^{7k+4}+5270\cdot 170^{6k+3}-213\cdot 170^{5k+3}+1148\cdot 170^{4k+2}\\||-28\cdot 170^{3k+2}+85\cdot 170^{2k+1}-170^{k+1}+1)\\|\times|(170^{128k+64}+170^{127k+64}+85\cdot 170^{126k+63}+28\cdot 170^{125k+63}+1148\cdot 170^{124k+62}\\||+213\cdot 170^{123k+62}+5270\cdot 170^{122k+61}+597\cdot 170^{121k+61}+8468\cdot 170^{120k+60}+412\cdot 170^{119k+60}\\||-1615\cdot 170^{118k+59}-701\cdot 170^{117k+59}-11119\cdot 170^{116k+58}-200\cdot 170^{115k+58}+15300\cdot 170^{114k+57}\\||+2590\cdot 170^{113k+57}+40620\cdot 170^{112k+56}+2223\cdot 170^{111k+56}+3910\cdot 170^{110k+55}-1473\cdot 170^{109k+55}\\||-24601\cdot 170^{108k+54}-587\cdot 170^{107k+54}+21165\cdot 170^{106k+53}+3338\cdot 170^{105k+53}+46362\cdot 170^{104k+52}\\||+2361\cdot 170^{103k+52}+10030\cdot 170^{102k+51}-86\cdot 170^{101k+51}+3282\cdot 170^{100k+50}+1369\cdot 170^{99k+50}\\||+31535\cdot 170^{98k+49}+2733\cdot 170^{97k+49}+28119\cdot 170^{96k+48}+1004\cdot 170^{95k+48}-1955\cdot 170^{94k+47}\\||-675\cdot 170^{93k+47}-1575\cdot 170^{92k+46}+1465\cdot 170^{91k+46}+43350\cdot 170^{90k+45}+4238\cdot 170^{89k+45}\\||+43111\cdot 170^{88k+44}+780\cdot 170^{87k+44}-24225\cdot 170^{86k+43}-2854\cdot 170^{85k+43}-20377\cdot 170^{84k+42}\\||+930\cdot 170^{83k+42}+33915\cdot 170^{82k+41}+2132\cdot 170^{81k+41}+38\cdot 170^{80k+40}-1951\cdot 170^{79k+40}\\||-28135\cdot 170^{78k+39}-665\cdot 170^{77k+39}+12641\cdot 170^{76k+38}+1114\cdot 170^{75k+38}-6545\cdot 170^{74k+37}\\||-2627\cdot 170^{73k+37}-47685\cdot 170^{72k+36}-2999\cdot 170^{71k+36}-18530\cdot 170^{70k+35}-230\cdot 170^{69k+35}\\||-2111\cdot 170^{68k+34}-990\cdot 170^{67k+34}-26095\cdot 170^{66k+33}-2676\cdot 170^{65k+33}-37723\cdot 170^{64k+32}\\||-2676\cdot 170^{63k+32}-26095\cdot 170^{62k+31}-990\cdot 170^{61k+31}-2111\cdot 170^{60k+30}-230\cdot 170^{59k+30}\\||-18530\cdot 170^{58k+29}-2999\cdot 170^{57k+29}-47685\cdot 170^{56k+28}-2627\cdot 170^{55k+28}-6545\cdot 170^{54k+27}\\||+1114\cdot 170^{53k+27}+12641\cdot 170^{52k+26}-665\cdot 170^{51k+26}-28135\cdot 170^{50k+25}-1951\cdot 170^{49k+25}\\||+38\cdot 170^{48k+24}+2132\cdot 170^{47k+24}+33915\cdot 170^{46k+23}+930\cdot 170^{45k+23}-20377\cdot 170^{44k+22}\\||-2854\cdot 170^{43k+22}-24225\cdot 170^{42k+21}+780\cdot 170^{41k+21}+43111\cdot 170^{40k+20}+4238\cdot 170^{39k+20}\\||+43350\cdot 170^{38k+19}+1465\cdot 170^{37k+19}-1575\cdot 170^{36k+18}-675\cdot 170^{35k+18}-1955\cdot 170^{34k+17}\\||+1004\cdot 170^{33k+17}+28119\cdot 170^{32k+16}+2733\cdot 170^{31k+16}+31535\cdot 170^{30k+15}+1369\cdot 170^{29k+15}\\||+3282\cdot 170^{28k+14}-86\cdot 170^{27k+14}+10030\cdot 170^{26k+13}+2361\cdot 170^{25k+13}+46362\cdot 170^{24k+12}\\||+3338\cdot 170^{23k+12}+21165\cdot 170^{22k+11}-587\cdot 170^{21k+11}-24601\cdot 170^{20k+10}-1473\cdot 170^{19k+10}\\||+3910\cdot 170^{18k+9}+2223\cdot 170^{17k+9}+40620\cdot 170^{16k+8}+2590\cdot 170^{15k+8}+15300\cdot 170^{14k+7}\\||-200\cdot 170^{13k+7}-11119\cdot 170^{12k+6}-701\cdot 170^{11k+6}-1615\cdot 170^{10k+5}+412\cdot 170^{9k+5}\\||+8468\cdot 170^{8k+4}+597\cdot 170^{7k+4}+5270\cdot 170^{6k+3}+213\cdot 170^{5k+3}+1148\cdot 170^{4k+2}\\||+28\cdot 170^{3k+2}+85\cdot 170^{2k+1}+170^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{173}(173^{2k+1})\cdots{\large\Phi}_{348}(174^{2k+1})$${\large\Phi}_{173}(173^{2k+1})\cdots{\large\Phi}_{348}(174^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{173}(173^{2k+1})|=|173^{344k+172}+173^{342k+171}+173^{340k+170}+173^{338k+169}+173^{336k+168}\\||+173^{334k+167}+173^{332k+166}+173^{330k+165}+173^{328k+164}+173^{326k+163}\\||+173^{324k+162}+173^{322k+161}+173^{320k+160}+173^{318k+159}+173^{316k+158}\\||+173^{314k+157}+173^{312k+156}+173^{310k+155}+173^{308k+154}+173^{306k+153}\\||+173^{304k+152}+173^{302k+151}+173^{300k+150}+173^{298k+149}+173^{296k+148}\\||+173^{294k+147}+173^{292k+146}+173^{290k+145}+173^{288k+144}+173^{286k+143}\\||+173^{284k+142}+173^{282k+141}+173^{280k+140}+173^{278k+139}+173^{276k+138}\\||+173^{274k+137}+173^{272k+136}+173^{270k+135}+173^{268k+134}+173^{266k+133}\\||+173^{264k+132}+173^{262k+131}+173^{260k+130}+173^{258k+129}+173^{256k+128}\\||+173^{254k+127}+173^{252k+126}+173^{250k+125}+173^{248k+124}+173^{246k+123}\\||+173^{244k+122}+173^{242k+121}+173^{240k+120}+173^{238k+119}+173^{236k+118}\\||+173^{234k+117}+173^{232k+116}+173^{230k+115}+173^{228k+114}+173^{226k+113}\\||+173^{224k+112}+173^{222k+111}+173^{220k+110}+173^{218k+109}+173^{216k+108}\\||+173^{214k+107}+173^{212k+106}+173^{210k+105}+173^{208k+104}+173^{206k+103}\\||+173^{204k+102}+173^{202k+101}+173^{200k+100}+173^{198k+99}+173^{196k+98}\\||+173^{194k+97}+173^{192k+96}+173^{190k+95}+173^{188k+94}+173^{186k+93}\\||+173^{184k+92}+173^{182k+91}+173^{180k+90}+173^{178k+89}+173^{176k+88}\\||+173^{174k+87}+173^{172k+86}+173^{170k+85}+173^{168k+84}+173^{166k+83}\\||+173^{164k+82}+173^{162k+81}+173^{160k+80}+173^{158k+79}+173^{156k+78}\\||+173^{154k+77}+173^{152k+76}+173^{150k+75}+173^{148k+74}+173^{146k+73}\\||+173^{144k+72}+173^{142k+71}+173^{140k+70}+173^{138k+69}+173^{136k+68}\\||+173^{134k+67}+173^{132k+66}+173^{130k+65}+173^{128k+64}+173^{126k+63}\\||+173^{124k+62}+173^{122k+61}+173^{120k+60}+173^{118k+59}+173^{116k+58}\\||+173^{114k+57}+173^{112k+56}+173^{110k+55}+173^{108k+54}+173^{106k+53}\\||+173^{104k+52}+173^{102k+51}+173^{100k+50}+173^{98k+49}+173^{96k+48}\\||+173^{94k+47}+173^{92k+46}+173^{90k+45}+173^{88k+44}+173^{86k+43}\\||+173^{84k+42}+173^{82k+41}+173^{80k+40}+173^{78k+39}+173^{76k+38}\\||+173^{74k+37}+173^{72k+36}+173^{70k+35}+173^{68k+34}+173^{66k+33}\\||+173^{64k+32}+173^{62k+31}+173^{60k+30}+173^{58k+29}+173^{56k+28}\\||+173^{54k+27}+173^{52k+26}+173^{50k+25}+173^{48k+24}+173^{46k+23}\\||+173^{44k+22}+173^{42k+21}+173^{40k+20}+173^{38k+19}+173^{36k+18}\\||+173^{34k+17}+173^{32k+16}+173^{30k+15}+173^{28k+14}+173^{26k+13}\\||+173^{24k+12}+173^{22k+11}+173^{20k+10}+173^{18k+9}+173^{16k+8}\\||+173^{14k+7}+173^{12k+6}+173^{10k+5}+173^{8k+4}+173^{6k+3}\\||+173^{4k+2}+173^{2k+1}+1\\|=|(173^{172k+86}-173^{171k+86}+87\cdot 173^{170k+85}-29\cdot 173^{169k+85}+1233\cdot 173^{168k+84}\\||-235\cdot 173^{167k+84}+6131\cdot 173^{166k+83}-725\cdot 173^{165k+83}+10879\cdot 173^{164k+82}-491\cdot 173^{163k+82}\\||-6765\cdot 173^{162k+81}+2131\cdot 173^{161k+81}-50273\cdot 173^{160k+80}+4617\cdot 173^{159k+80}-45953\cdot 173^{158k+79}\\||+5\cdot 173^{157k+79}+67931\cdot 173^{156k+78}-10101\cdot 173^{155k+78}+161335\cdot 173^{154k+77}-9689\cdot 173^{153k+77}\\||+29011\cdot 173^{152k+76}+7981\cdot 173^{151k+76}-222505\cdot 173^{150k+75}+20569\cdot 173^{149k+75}-220709\cdot 173^{148k+74}\\||+6457\cdot 173^{147k+74}+88181\cdot 173^{146k+73}-17867\cdot 173^{145k+73}+305341\cdot 173^{144k+72}-21469\cdot 173^{143k+72}\\||+184195\cdot 173^{142k+71}-3655\cdot 173^{141k+71}-90495\cdot 173^{140k+70}+15955\cdot 173^{139k+70}-298583\cdot 173^{138k+69}\\||+26039\cdot 173^{137k+69}-316907\cdot 173^{136k+68}+14895\cdot 173^{135k+68}+23233\cdot 173^{134k+67}-22559\cdot 173^{133k+67}\\||+532747\cdot 173^{132k+66}-47331\cdot 173^{131k+66}+493713\cdot 173^{130k+65}-12021\cdot 173^{129k+65}-276329\cdot 173^{128k+64}\\||+48915\cdot 173^{127k+64}-791537\cdot 173^{126k+63}+49849\cdot 173^{125k+63}-288531\cdot 173^{124k+62}-12545\cdot 173^{123k+62}\\||+536751\cdot 173^{122k+61}-53895\cdot 173^{121k+61}+654379\cdot 173^{120k+60}-32561\cdot 173^{119k+60}+123373\cdot 173^{118k+59}\\||+13467\cdot 173^{117k+59}-422047\cdot 173^{116k+58}+44363\cdot 173^{115k+58}-635229\cdot 173^{114k+57}+41391\cdot 173^{113k+57}\\||-290847\cdot 173^{112k+56}-7447\cdot 173^{111k+56}+524949\cdot 173^{110k+55}-63959\cdot 173^{109k+55}+904983\cdot 173^{108k+54}\\||-49725\cdot 173^{107k+54}+150839\cdot 173^{106k+53}+32749\cdot 173^{105k+53}-875267\cdot 173^{104k+52}+77425\cdot 173^{103k+52}\\||-815507\cdot 173^{102k+51}+26889\cdot 173^{101k+51}+194993\cdot 173^{100k+50}-49313\cdot 173^{99k+50}+880919\cdot 173^{98k+49}\\||-64649\cdot 173^{97k+49}+591515\cdot 173^{96k+48}-14255\cdot 173^{95k+48}-257525\cdot 173^{94k+47}+48339\cdot 173^{93k+47}\\||-849653\cdot 173^{92k+46}+63149\cdot 173^{91k+46}-564983\cdot 173^{90k+45}+8651\cdot 173^{89k+45}+391721\cdot 173^{88k+44}\\||-59873\cdot 173^{87k+44}+937115\cdot 173^{86k+43}-59873\cdot 173^{85k+43}+391721\cdot 173^{84k+42}+8651\cdot 173^{83k+42}\\||-564983\cdot 173^{82k+41}+63149\cdot 173^{81k+41}-849653\cdot 173^{80k+40}+48339\cdot 173^{79k+40}-257525\cdot 173^{78k+39}\\||-14255\cdot 173^{77k+39}+591515\cdot 173^{76k+38}-64649\cdot 173^{75k+38}+880919\cdot 173^{74k+37}-49313\cdot 173^{73k+37}\\||+194993\cdot 173^{72k+36}+26889\cdot 173^{71k+36}-815507\cdot 173^{70k+35}+77425\cdot 173^{69k+35}-875267\cdot 173^{68k+34}\\||+32749\cdot 173^{67k+34}+150839\cdot 173^{66k+33}-49725\cdot 173^{65k+33}+904983\cdot 173^{64k+32}-63959\cdot 173^{63k+32}\\||+524949\cdot 173^{62k+31}-7447\cdot 173^{61k+31}-290847\cdot 173^{60k+30}+41391\cdot 173^{59k+30}-635229\cdot 173^{58k+29}\\||+44363\cdot 173^{57k+29}-422047\cdot 173^{56k+28}+13467\cdot 173^{55k+28}+123373\cdot 173^{54k+27}-32561\cdot 173^{53k+27}\\||+654379\cdot 173^{52k+26}-53895\cdot 173^{51k+26}+536751\cdot 173^{50k+25}-12545\cdot 173^{49k+25}-288531\cdot 173^{48k+24}\\||+49849\cdot 173^{47k+24}-791537\cdot 173^{46k+23}+48915\cdot 173^{45k+23}-276329\cdot 173^{44k+22}-12021\cdot 173^{43k+22}\\||+493713\cdot 173^{42k+21}-47331\cdot 173^{41k+21}+532747\cdot 173^{40k+20}-22559\cdot 173^{39k+20}+23233\cdot 173^{38k+19}\\||+14895\cdot 173^{37k+19}-316907\cdot 173^{36k+18}+26039\cdot 173^{35k+18}-298583\cdot 173^{34k+17}+15955\cdot 173^{33k+17}\\||-90495\cdot 173^{32k+16}-3655\cdot 173^{31k+16}+184195\cdot 173^{30k+15}-21469\cdot 173^{29k+15}+305341\cdot 173^{28k+14}\\||-17867\cdot 173^{27k+14}+88181\cdot 173^{26k+13}+6457\cdot 173^{25k+13}-220709\cdot 173^{24k+12}+20569\cdot 173^{23k+12}\\||-222505\cdot 173^{22k+11}+7981\cdot 173^{21k+11}+29011\cdot 173^{20k+10}-9689\cdot 173^{19k+10}+161335\cdot 173^{18k+9}\\||-10101\cdot 173^{17k+9}+67931\cdot 173^{16k+8}+5\cdot 173^{15k+8}-45953\cdot 173^{14k+7}+4617\cdot 173^{13k+7}\\||-50273\cdot 173^{12k+6}+2131\cdot 173^{11k+6}-6765\cdot 173^{10k+5}-491\cdot 173^{9k+5}+10879\cdot 173^{8k+4}\\||-725\cdot 173^{7k+4}+6131\cdot 173^{6k+3}-235\cdot 173^{5k+3}+1233\cdot 173^{4k+2}-29\cdot 173^{3k+2}\\||+87\cdot 173^{2k+1}-173^{k+1}+1)\\|\times|(173^{172k+86}+173^{171k+86}+87\cdot 173^{170k+85}+29\cdot 173^{169k+85}+1233\cdot 173^{168k+84}\\||+235\cdot 173^{167k+84}+6131\cdot 173^{166k+83}+725\cdot 173^{165k+83}+10879\cdot 173^{164k+82}+491\cdot 173^{163k+82}\\||-6765\cdot 173^{162k+81}-2131\cdot 173^{161k+81}-50273\cdot 173^{160k+80}-4617\cdot 173^{159k+80}-45953\cdot 173^{158k+79}\\||-5\cdot 173^{157k+79}+67931\cdot 173^{156k+78}+10101\cdot 173^{155k+78}+161335\cdot 173^{154k+77}+9689\cdot 173^{153k+77}\\||+29011\cdot 173^{152k+76}-7981\cdot 173^{151k+76}-222505\cdot 173^{150k+75}-20569\cdot 173^{149k+75}-220709\cdot 173^{148k+74}\\||-6457\cdot 173^{147k+74}+88181\cdot 173^{146k+73}+17867\cdot 173^{145k+73}+305341\cdot 173^{144k+72}+21469\cdot 173^{143k+72}\\||+184195\cdot 173^{142k+71}+3655\cdot 173^{141k+71}-90495\cdot 173^{140k+70}-15955\cdot 173^{139k+70}-298583\cdot 173^{138k+69}\\||-26039\cdot 173^{137k+69}-316907\cdot 173^{136k+68}-14895\cdot 173^{135k+68}+23233\cdot 173^{134k+67}+22559\cdot 173^{133k+67}\\||+532747\cdot 173^{132k+66}+47331\cdot 173^{131k+66}+493713\cdot 173^{130k+65}+12021\cdot 173^{129k+65}-276329\cdot 173^{128k+64}\\||-48915\cdot 173^{127k+64}-791537\cdot 173^{126k+63}-49849\cdot 173^{125k+63}-288531\cdot 173^{124k+62}+12545\cdot 173^{123k+62}\\||+536751\cdot 173^{122k+61}+53895\cdot 173^{121k+61}+654379\cdot 173^{120k+60}+32561\cdot 173^{119k+60}+123373\cdot 173^{118k+59}\\||-13467\cdot 173^{117k+59}-422047\cdot 173^{116k+58}-44363\cdot 173^{115k+58}-635229\cdot 173^{114k+57}-41391\cdot 173^{113k+57}\\||-290847\cdot 173^{112k+56}+7447\cdot 173^{111k+56}+524949\cdot 173^{110k+55}+63959\cdot 173^{109k+55}+904983\cdot 173^{108k+54}\\||+49725\cdot 173^{107k+54}+150839\cdot 173^{106k+53}-32749\cdot 173^{105k+53}-875267\cdot 173^{104k+52}-77425\cdot 173^{103k+52}\\||-815507\cdot 173^{102k+51}-26889\cdot 173^{101k+51}+194993\cdot 173^{100k+50}+49313\cdot 173^{99k+50}+880919\cdot 173^{98k+49}\\||+64649\cdot 173^{97k+49}+591515\cdot 173^{96k+48}+14255\cdot 173^{95k+48}-257525\cdot 173^{94k+47}-48339\cdot 173^{93k+47}\\||-849653\cdot 173^{92k+46}-63149\cdot 173^{91k+46}-564983\cdot 173^{90k+45}-8651\cdot 173^{89k+45}+391721\cdot 173^{88k+44}\\||+59873\cdot 173^{87k+44}+937115\cdot 173^{86k+43}+59873\cdot 173^{85k+43}+391721\cdot 173^{84k+42}-8651\cdot 173^{83k+42}\\||-564983\cdot 173^{82k+41}-63149\cdot 173^{81k+41}-849653\cdot 173^{80k+40}-48339\cdot 173^{79k+40}-257525\cdot 173^{78k+39}\\||+14255\cdot 173^{77k+39}+591515\cdot 173^{76k+38}+64649\cdot 173^{75k+38}+880919\cdot 173^{74k+37}+49313\cdot 173^{73k+37}\\||+194993\cdot 173^{72k+36}-26889\cdot 173^{71k+36}-815507\cdot 173^{70k+35}-77425\cdot 173^{69k+35}-875267\cdot 173^{68k+34}\\||-32749\cdot 173^{67k+34}+150839\cdot 173^{66k+33}+49725\cdot 173^{65k+33}+904983\cdot 173^{64k+32}+63959\cdot 173^{63k+32}\\||+524949\cdot 173^{62k+31}+7447\cdot 173^{61k+31}-290847\cdot 173^{60k+30}-41391\cdot 173^{59k+30}-635229\cdot 173^{58k+29}\\||-44363\cdot 173^{57k+29}-422047\cdot 173^{56k+28}-13467\cdot 173^{55k+28}+123373\cdot 173^{54k+27}+32561\cdot 173^{53k+27}\\||+654379\cdot 173^{52k+26}+53895\cdot 173^{51k+26}+536751\cdot 173^{50k+25}+12545\cdot 173^{49k+25}-288531\cdot 173^{48k+24}\\||-49849\cdot 173^{47k+24}-791537\cdot 173^{46k+23}-48915\cdot 173^{45k+23}-276329\cdot 173^{44k+22}+12021\cdot 173^{43k+22}\\||+493713\cdot 173^{42k+21}+47331\cdot 173^{41k+21}+532747\cdot 173^{40k+20}+22559\cdot 173^{39k+20}+23233\cdot 173^{38k+19}\\||-14895\cdot 173^{37k+19}-316907\cdot 173^{36k+18}-26039\cdot 173^{35k+18}-298583\cdot 173^{34k+17}-15955\cdot 173^{33k+17}\\||-90495\cdot 173^{32k+16}+3655\cdot 173^{31k+16}+184195\cdot 173^{30k+15}+21469\cdot 173^{29k+15}+305341\cdot 173^{28k+14}\\||+17867\cdot 173^{27k+14}+88181\cdot 173^{26k+13}-6457\cdot 173^{25k+13}-220709\cdot 173^{24k+12}-20569\cdot 173^{23k+12}\\||-222505\cdot 173^{22k+11}-7981\cdot 173^{21k+11}+29011\cdot 173^{20k+10}+9689\cdot 173^{19k+10}+161335\cdot 173^{18k+9}\\||+10101\cdot 173^{17k+9}+67931\cdot 173^{16k+8}-5\cdot 173^{15k+8}-45953\cdot 173^{14k+7}-4617\cdot 173^{13k+7}\\||-50273\cdot 173^{12k+6}-2131\cdot 173^{11k+6}-6765\cdot 173^{10k+5}+491\cdot 173^{9k+5}+10879\cdot 173^{8k+4}\\||+725\cdot 173^{7k+4}+6131\cdot 173^{6k+3}+235\cdot 173^{5k+3}+1233\cdot 173^{4k+2}+29\cdot 173^{3k+2}\\||+87\cdot 173^{2k+1}+173^{k+1}+1)\\{\large\Phi}_{348}(174^{2k+1})|=|174^{224k+112}+174^{220k+110}-174^{212k+106}-174^{208k+104}+174^{200k+100}\\||+174^{196k+98}-174^{188k+94}-174^{184k+92}+174^{176k+88}+174^{172k+86}\\||-174^{164k+82}-174^{160k+80}+174^{152k+76}+174^{148k+74}-174^{140k+70}\\||-174^{136k+68}+174^{128k+64}+174^{124k+62}-174^{116k+58}-174^{112k+56}\\||-174^{108k+54}+174^{100k+50}+174^{96k+48}-174^{88k+44}-174^{84k+42}\\||+174^{76k+38}+174^{72k+36}-174^{64k+32}-174^{60k+30}+174^{52k+26}\\||+174^{48k+24}-174^{40k+20}-174^{36k+18}+174^{28k+14}+174^{24k+12}\\||-174^{16k+8}-174^{12k+6}+174^{4k+2}+1\\|=|(174^{112k+56}-174^{111k+56}+87\cdot 174^{110k+55}-29\cdot 174^{109k+55}+1262\cdot 174^{108k+54}\\||-253\cdot 174^{107k+54}+7395\cdot 174^{106k+53}-1077\cdot 174^{105k+53}+24349\cdot 174^{104k+52}-2892\cdot 174^{103k+52}\\||+55680\cdot 174^{102k+51}-5810\cdot 174^{101k+51}+100055\cdot 174^{100k+50}-9413\cdot 174^{99k+50}+146769\cdot 174^{98k+49}\\||-12575\cdot 174^{97k+49}+180070\cdot 174^{96k+48}-14271\cdot 174^{95k+48}+189225\cdot 174^{94k+47}-13797\cdot 174^{93k+47}\\||+166583\cdot 174^{92k+46}-10954\cdot 174^{91k+46}+117972\cdot 174^{90k+45}-6728\cdot 174^{89k+45}+57721\cdot 174^{88k+44}\\||-1971\cdot 174^{87k+44}-4089\cdot 174^{86k+43}+2241\cdot 174^{85k+43}-48490\cdot 174^{84k+42}+4608\cdot 174^{83k+42}\\||-66903\cdot 174^{82k+41}+5006\cdot 174^{81k+41}-56141\cdot 174^{80k+40}+2738\cdot 174^{79k+40}-7482\cdot 174^{78k+39}\\||-2013\cdot 174^{77k+39}+63629\cdot 174^{76k+38}-7824\cdot 174^{75k+38}+144681\cdot 174^{74k+37}-14029\cdot 174^{73k+37}\\||+219346\cdot 174^{72k+36}-18470\cdot 174^{71k+36}+257259\cdot 174^{70k+35}-19828\cdot 174^{69k+35}+256817\cdot 174^{68k+34}\\||-18306\cdot 174^{67k+34}+214542\cdot 174^{66k+33}-13527\cdot 174^{65k+33}+138295\cdot 174^{64k+32}-7462\cdot 174^{63k+32}\\||+59943\cdot 174^{62k+31}-1693\cdot 174^{61k+31}-13114\cdot 174^{60k+30}+3224\cdot 174^{59k+30}-62379\cdot 174^{58k+29}\\||+5496\cdot 174^{57k+29}-75365\cdot 174^{56k+28}+5496\cdot 174^{55k+28}-62379\cdot 174^{54k+27}+3224\cdot 174^{53k+27}\\||-13114\cdot 174^{52k+26}-1693\cdot 174^{51k+26}+59943\cdot 174^{50k+25}-7462\cdot 174^{49k+25}+138295\cdot 174^{48k+24}\\||-13527\cdot 174^{47k+24}+214542\cdot 174^{46k+23}-18306\cdot 174^{45k+23}+256817\cdot 174^{44k+22}-19828\cdot 174^{43k+22}\\||+257259\cdot 174^{42k+21}-18470\cdot 174^{41k+21}+219346\cdot 174^{40k+20}-14029\cdot 174^{39k+20}+144681\cdot 174^{38k+19}\\||-7824\cdot 174^{37k+19}+63629\cdot 174^{36k+18}-2013\cdot 174^{35k+18}-7482\cdot 174^{34k+17}+2738\cdot 174^{33k+17}\\||-56141\cdot 174^{32k+16}+5006\cdot 174^{31k+16}-66903\cdot 174^{30k+15}+4608\cdot 174^{29k+15}-48490\cdot 174^{28k+14}\\||+2241\cdot 174^{27k+14}-4089\cdot 174^{26k+13}-1971\cdot 174^{25k+13}+57721\cdot 174^{24k+12}-6728\cdot 174^{23k+12}\\||+117972\cdot 174^{22k+11}-10954\cdot 174^{21k+11}+166583\cdot 174^{20k+10}-13797\cdot 174^{19k+10}+189225\cdot 174^{18k+9}\\||-14271\cdot 174^{17k+9}+180070\cdot 174^{16k+8}-12575\cdot 174^{15k+8}+146769\cdot 174^{14k+7}-9413\cdot 174^{13k+7}\\||+100055\cdot 174^{12k+6}-5810\cdot 174^{11k+6}+55680\cdot 174^{10k+5}-2892\cdot 174^{9k+5}+24349\cdot 174^{8k+4}\\||-1077\cdot 174^{7k+4}+7395\cdot 174^{6k+3}-253\cdot 174^{5k+3}+1262\cdot 174^{4k+2}-29\cdot 174^{3k+2}\\||+87\cdot 174^{2k+1}-174^{k+1}+1)\\|\times|(174^{112k+56}+174^{111k+56}+87\cdot 174^{110k+55}+29\cdot 174^{109k+55}+1262\cdot 174^{108k+54}\\||+253\cdot 174^{107k+54}+7395\cdot 174^{106k+53}+1077\cdot 174^{105k+53}+24349\cdot 174^{104k+52}+2892\cdot 174^{103k+52}\\||+55680\cdot 174^{102k+51}+5810\cdot 174^{101k+51}+100055\cdot 174^{100k+50}+9413\cdot 174^{99k+50}+146769\cdot 174^{98k+49}\\||+12575\cdot 174^{97k+49}+180070\cdot 174^{96k+48}+14271\cdot 174^{95k+48}+189225\cdot 174^{94k+47}+13797\cdot 174^{93k+47}\\||+166583\cdot 174^{92k+46}+10954\cdot 174^{91k+46}+117972\cdot 174^{90k+45}+6728\cdot 174^{89k+45}+57721\cdot 174^{88k+44}\\||+1971\cdot 174^{87k+44}-4089\cdot 174^{86k+43}-2241\cdot 174^{85k+43}-48490\cdot 174^{84k+42}-4608\cdot 174^{83k+42}\\||-66903\cdot 174^{82k+41}-5006\cdot 174^{81k+41}-56141\cdot 174^{80k+40}-2738\cdot 174^{79k+40}-7482\cdot 174^{78k+39}\\||+2013\cdot 174^{77k+39}+63629\cdot 174^{76k+38}+7824\cdot 174^{75k+38}+144681\cdot 174^{74k+37}+14029\cdot 174^{73k+37}\\||+219346\cdot 174^{72k+36}+18470\cdot 174^{71k+36}+257259\cdot 174^{70k+35}+19828\cdot 174^{69k+35}+256817\cdot 174^{68k+34}\\||+18306\cdot 174^{67k+34}+214542\cdot 174^{66k+33}+13527\cdot 174^{65k+33}+138295\cdot 174^{64k+32}+7462\cdot 174^{63k+32}\\||+59943\cdot 174^{62k+31}+1693\cdot 174^{61k+31}-13114\cdot 174^{60k+30}-3224\cdot 174^{59k+30}-62379\cdot 174^{58k+29}\\||-5496\cdot 174^{57k+29}-75365\cdot 174^{56k+28}-5496\cdot 174^{55k+28}-62379\cdot 174^{54k+27}-3224\cdot 174^{53k+27}\\||-13114\cdot 174^{52k+26}+1693\cdot 174^{51k+26}+59943\cdot 174^{50k+25}+7462\cdot 174^{49k+25}+138295\cdot 174^{48k+24}\\||+13527\cdot 174^{47k+24}+214542\cdot 174^{46k+23}+18306\cdot 174^{45k+23}+256817\cdot 174^{44k+22}+19828\cdot 174^{43k+22}\\||+257259\cdot 174^{42k+21}+18470\cdot 174^{41k+21}+219346\cdot 174^{40k+20}+14029\cdot 174^{39k+20}+144681\cdot 174^{38k+19}\\||+7824\cdot 174^{37k+19}+63629\cdot 174^{36k+18}+2013\cdot 174^{35k+18}-7482\cdot 174^{34k+17}-2738\cdot 174^{33k+17}\\||-56141\cdot 174^{32k+16}-5006\cdot 174^{31k+16}-66903\cdot 174^{30k+15}-4608\cdot 174^{29k+15}-48490\cdot 174^{28k+14}\\||-2241\cdot 174^{27k+14}-4089\cdot 174^{26k+13}+1971\cdot 174^{25k+13}+57721\cdot 174^{24k+12}+6728\cdot 174^{23k+12}\\||+117972\cdot 174^{22k+11}+10954\cdot 174^{21k+11}+166583\cdot 174^{20k+10}+13797\cdot 174^{19k+10}+189225\cdot 174^{18k+9}\\||+14271\cdot 174^{17k+9}+180070\cdot 174^{16k+8}+12575\cdot 174^{15k+8}+146769\cdot 174^{14k+7}+9413\cdot 174^{13k+7}\\||+100055\cdot 174^{12k+6}+5810\cdot 174^{11k+6}+55680\cdot 174^{10k+5}+2892\cdot 174^{9k+5}+24349\cdot 174^{8k+4}\\||+1077\cdot 174^{7k+4}+7395\cdot 174^{6k+3}+253\cdot 174^{5k+3}+1262\cdot 174^{4k+2}+29\cdot 174^{3k+2}\\||+87\cdot 174^{2k+1}+174^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{177}(177^{2k+1})\cdots{\large\Phi}_{358}(179^{2k+1})$${\large\Phi}_{177}(177^{2k+1})\cdots{\large\Phi}_{358}(179^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{177}(177^{2k+1})|=|177^{232k+116}-177^{230k+115}+177^{226k+113}-177^{224k+112}+177^{220k+110}\\||-177^{218k+109}+177^{214k+107}-177^{212k+106}+177^{208k+104}-177^{206k+103}\\||+177^{202k+101}-177^{200k+100}+177^{196k+98}-177^{194k+97}+177^{190k+95}\\||-177^{188k+94}+177^{184k+92}-177^{182k+91}+177^{178k+89}-177^{176k+88}\\||+177^{172k+86}-177^{170k+85}+177^{166k+83}-177^{164k+82}+177^{160k+80}\\||-177^{158k+79}+177^{154k+77}-177^{152k+76}+177^{148k+74}-177^{146k+73}\\||+177^{142k+71}-177^{140k+70}+177^{136k+68}-177^{134k+67}+177^{130k+65}\\||-177^{128k+64}+177^{124k+62}-177^{122k+61}+177^{118k+59}-177^{116k+58}\\||+177^{114k+57}-177^{110k+55}+177^{108k+54}-177^{104k+52}+177^{102k+51}\\||-177^{98k+49}+177^{96k+48}-177^{92k+46}+177^{90k+45}-177^{86k+43}\\||+177^{84k+42}-177^{80k+40}+177^{78k+39}-177^{74k+37}+177^{72k+36}\\||-177^{68k+34}+177^{66k+33}-177^{62k+31}+177^{60k+30}-177^{56k+28}\\||+177^{54k+27}-177^{50k+25}+177^{48k+24}-177^{44k+22}+177^{42k+21}\\||-177^{38k+19}+177^{36k+18}-177^{32k+16}+177^{30k+15}-177^{26k+13}\\||+177^{24k+12}-177^{20k+10}+177^{18k+9}-177^{14k+7}+177^{12k+6}\\||-177^{8k+4}+177^{6k+3}-177^{2k+1}+1\\|=|(177^{116k+58}-177^{115k+58}+88\cdot 177^{114k+57}-29\cdot 177^{113k+57}+1261\cdot 177^{112k+56}\\||-246\cdot 177^{111k+56}+7003\cdot 177^{110k+55}-949\cdot 177^{109k+55}+19366\cdot 177^{108k+54}-1895\cdot 177^{107k+54}\\||+27307\cdot 177^{106k+53}-1744\cdot 177^{105k+53}+12535\cdot 177^{104k+52}+135\cdot 177^{103k+52}-13970\cdot 177^{102k+51}\\||+1313\cdot 177^{101k+51}-8447\cdot 177^{100k+50}-860\cdot 177^{99k+50}+34585\cdot 177^{98k+49}-3765\cdot 177^{97k+49}\\||+48706\cdot 177^{96k+48}-2083\cdot 177^{95k+48}-6779\cdot 177^{94k+47}+3126\cdot 177^{93k+47}-61817\cdot 177^{92k+46}\\||+4319\cdot 177^{91k+46}-28256\cdot 177^{90k+45}-1169\cdot 177^{89k+45}+57049\cdot 177^{88k+44}-5982\cdot 177^{87k+44}\\||+73879\cdot 177^{86k+43}-3167\cdot 177^{85k+43}-2708\cdot 177^{84k+42}+3185\cdot 177^{83k+42}-61043\cdot 177^{82k+41}\\||+3916\cdot 177^{81k+41}-20759\cdot 177^{80k+40}-1399\cdot 177^{79k+40}+49150\cdot 177^{78k+39}-4425\cdot 177^{77k+39}\\||+45361\cdot 177^{76k+38}-1186\cdot 177^{75k+38}-17429\cdot 177^{74k+37}+3201\cdot 177^{73k+37}-53480\cdot 177^{72k+36}\\||+3809\cdot 177^{71k+36}-39497\cdot 177^{70k+35}+1980\cdot 177^{69k+35}-15533\cdot 177^{68k+34}+617\cdot 177^{67k+34}\\||-3320\cdot 177^{66k+33}-35\cdot 177^{65k+33}+3385\cdot 177^{64k+32}-336\cdot 177^{63k+32}+2533\cdot 177^{62k+31}\\||+193\cdot 177^{61k+31}-9314\cdot 177^{60k+30}+1131\cdot 177^{59k+30}-17291\cdot 177^{58k+29}+1131\cdot 177^{57k+29}\\||-9314\cdot 177^{56k+28}+193\cdot 177^{55k+28}+2533\cdot 177^{54k+27}-336\cdot 177^{53k+27}+3385\cdot 177^{52k+26}\\||-35\cdot 177^{51k+26}-3320\cdot 177^{50k+25}+617\cdot 177^{49k+25}-15533\cdot 177^{48k+24}+1980\cdot 177^{47k+24}\\||-39497\cdot 177^{46k+23}+3809\cdot 177^{45k+23}-53480\cdot 177^{44k+22}+3201\cdot 177^{43k+22}-17429\cdot 177^{42k+21}\\||-1186\cdot 177^{41k+21}+45361\cdot 177^{40k+20}-4425\cdot 177^{39k+20}+49150\cdot 177^{38k+19}-1399\cdot 177^{37k+19}\\||-20759\cdot 177^{36k+18}+3916\cdot 177^{35k+18}-61043\cdot 177^{34k+17}+3185\cdot 177^{33k+17}-2708\cdot 177^{32k+16}\\||-3167\cdot 177^{31k+16}+73879\cdot 177^{30k+15}-5982\cdot 177^{29k+15}+57049\cdot 177^{28k+14}-1169\cdot 177^{27k+14}\\||-28256\cdot 177^{26k+13}+4319\cdot 177^{25k+13}-61817\cdot 177^{24k+12}+3126\cdot 177^{23k+12}-6779\cdot 177^{22k+11}\\||-2083\cdot 177^{21k+11}+48706\cdot 177^{20k+10}-3765\cdot 177^{19k+10}+34585\cdot 177^{18k+9}-860\cdot 177^{17k+9}\\||-8447\cdot 177^{16k+8}+1313\cdot 177^{15k+8}-13970\cdot 177^{14k+7}+135\cdot 177^{13k+7}+12535\cdot 177^{12k+6}\\||-1744\cdot 177^{11k+6}+27307\cdot 177^{10k+5}-1895\cdot 177^{9k+5}+19366\cdot 177^{8k+4}-949\cdot 177^{7k+4}\\||+7003\cdot 177^{6k+3}-246\cdot 177^{5k+3}+1261\cdot 177^{4k+2}-29\cdot 177^{3k+2}+88\cdot 177^{2k+1}\\||-177^{k+1}+1)\\|\times|(177^{116k+58}+177^{115k+58}+88\cdot 177^{114k+57}+29\cdot 177^{113k+57}+1261\cdot 177^{112k+56}\\||+246\cdot 177^{111k+56}+7003\cdot 177^{110k+55}+949\cdot 177^{109k+55}+19366\cdot 177^{108k+54}+1895\cdot 177^{107k+54}\\||+27307\cdot 177^{106k+53}+1744\cdot 177^{105k+53}+12535\cdot 177^{104k+52}-135\cdot 177^{103k+52}-13970\cdot 177^{102k+51}\\||-1313\cdot 177^{101k+51}-8447\cdot 177^{100k+50}+860\cdot 177^{99k+50}+34585\cdot 177^{98k+49}+3765\cdot 177^{97k+49}\\||+48706\cdot 177^{96k+48}+2083\cdot 177^{95k+48}-6779\cdot 177^{94k+47}-3126\cdot 177^{93k+47}-61817\cdot 177^{92k+46}\\||-4319\cdot 177^{91k+46}-28256\cdot 177^{90k+45}+1169\cdot 177^{89k+45}+57049\cdot 177^{88k+44}+5982\cdot 177^{87k+44}\\||+73879\cdot 177^{86k+43}+3167\cdot 177^{85k+43}-2708\cdot 177^{84k+42}-3185\cdot 177^{83k+42}-61043\cdot 177^{82k+41}\\||-3916\cdot 177^{81k+41}-20759\cdot 177^{80k+40}+1399\cdot 177^{79k+40}+49150\cdot 177^{78k+39}+4425\cdot 177^{77k+39}\\||+45361\cdot 177^{76k+38}+1186\cdot 177^{75k+38}-17429\cdot 177^{74k+37}-3201\cdot 177^{73k+37}-53480\cdot 177^{72k+36}\\||-3809\cdot 177^{71k+36}-39497\cdot 177^{70k+35}-1980\cdot 177^{69k+35}-15533\cdot 177^{68k+34}-617\cdot 177^{67k+34}\\||-3320\cdot 177^{66k+33}+35\cdot 177^{65k+33}+3385\cdot 177^{64k+32}+336\cdot 177^{63k+32}+2533\cdot 177^{62k+31}\\||-193\cdot 177^{61k+31}-9314\cdot 177^{60k+30}-1131\cdot 177^{59k+30}-17291\cdot 177^{58k+29}-1131\cdot 177^{57k+29}\\||-9314\cdot 177^{56k+28}-193\cdot 177^{55k+28}+2533\cdot 177^{54k+27}+336\cdot 177^{53k+27}+3385\cdot 177^{52k+26}\\||+35\cdot 177^{51k+26}-3320\cdot 177^{50k+25}-617\cdot 177^{49k+25}-15533\cdot 177^{48k+24}-1980\cdot 177^{47k+24}\\||-39497\cdot 177^{46k+23}-3809\cdot 177^{45k+23}-53480\cdot 177^{44k+22}-3201\cdot 177^{43k+22}-17429\cdot 177^{42k+21}\\||+1186\cdot 177^{41k+21}+45361\cdot 177^{40k+20}+4425\cdot 177^{39k+20}+49150\cdot 177^{38k+19}+1399\cdot 177^{37k+19}\\||-20759\cdot 177^{36k+18}-3916\cdot 177^{35k+18}-61043\cdot 177^{34k+17}-3185\cdot 177^{33k+17}-2708\cdot 177^{32k+16}\\||+3167\cdot 177^{31k+16}+73879\cdot 177^{30k+15}+5982\cdot 177^{29k+15}+57049\cdot 177^{28k+14}+1169\cdot 177^{27k+14}\\||-28256\cdot 177^{26k+13}-4319\cdot 177^{25k+13}-61817\cdot 177^{24k+12}-3126\cdot 177^{23k+12}-6779\cdot 177^{22k+11}\\||+2083\cdot 177^{21k+11}+48706\cdot 177^{20k+10}+3765\cdot 177^{19k+10}+34585\cdot 177^{18k+9}+860\cdot 177^{17k+9}\\||-8447\cdot 177^{16k+8}-1313\cdot 177^{15k+8}-13970\cdot 177^{14k+7}-135\cdot 177^{13k+7}+12535\cdot 177^{12k+6}\\||+1744\cdot 177^{11k+6}+27307\cdot 177^{10k+5}+1895\cdot 177^{9k+5}+19366\cdot 177^{8k+4}+949\cdot 177^{7k+4}\\||+7003\cdot 177^{6k+3}+246\cdot 177^{5k+3}+1261\cdot 177^{4k+2}+29\cdot 177^{3k+2}+88\cdot 177^{2k+1}\\||+177^{k+1}+1)\\{\large\Phi}_{356}(178^{2k+1})|=|178^{352k+176}-178^{348k+174}+178^{344k+172}-178^{340k+170}+178^{336k+168}\\||-178^{332k+166}+178^{328k+164}-178^{324k+162}+178^{320k+160}-178^{316k+158}\\||+178^{312k+156}-178^{308k+154}+178^{304k+152}-178^{300k+150}+178^{296k+148}\\||-178^{292k+146}+178^{288k+144}-178^{284k+142}+178^{280k+140}-178^{276k+138}\\||+178^{272k+136}-178^{268k+134}+178^{264k+132}-178^{260k+130}+178^{256k+128}\\||-178^{252k+126}+178^{248k+124}-178^{244k+122}+178^{240k+120}-178^{236k+118}\\||+178^{232k+116}-178^{228k+114}+178^{224k+112}-178^{220k+110}+178^{216k+108}\\||-178^{212k+106}+178^{208k+104}-178^{204k+102}+178^{200k+100}-178^{196k+98}\\||+178^{192k+96}-178^{188k+94}+178^{184k+92}-178^{180k+90}+178^{176k+88}\\||-178^{172k+86}+178^{168k+84}-178^{164k+82}+178^{160k+80}-178^{156k+78}\\||+178^{152k+76}-178^{148k+74}+178^{144k+72}-178^{140k+70}+178^{136k+68}\\||-178^{132k+66}+178^{128k+64}-178^{124k+62}+178^{120k+60}-178^{116k+58}\\||+178^{112k+56}-178^{108k+54}+178^{104k+52}-178^{100k+50}+178^{96k+48}\\||-178^{92k+46}+178^{88k+44}-178^{84k+42}+178^{80k+40}-178^{76k+38}\\||+178^{72k+36}-178^{68k+34}+178^{64k+32}-178^{60k+30}+178^{56k+28}\\||-178^{52k+26}+178^{48k+24}-178^{44k+22}+178^{40k+20}-178^{36k+18}\\||+178^{32k+16}-178^{28k+14}+178^{24k+12}-178^{20k+10}+178^{16k+8}\\||-178^{12k+6}+178^{8k+4}-178^{4k+2}+1\\|=|(178^{176k+88}-178^{175k+88}+89\cdot 178^{174k+87}-30\cdot 178^{173k+87}+1379\cdot 178^{172k+86}\\||-293\cdot 178^{171k+86}+9523\cdot 178^{170k+85}-1536\cdot 178^{169k+85}+39661\cdot 178^{168k+84}-5237\cdot 178^{167k+84}\\||+112941\cdot 178^{166k+83}-12616\cdot 178^{165k+83}+231739\cdot 178^{164k+82}-22069\cdot 178^{163k+82}+343451\cdot 178^{162k+81}\\||-27240\cdot 178^{161k+81}+339917\cdot 178^{160k+80}-19757\cdot 178^{159k+80}+134301\cdot 178^{158k+79}+2722\cdot 178^{157k+79}\\||-224873\cdot 178^{156k+78}+29943\cdot 178^{155k+78}-525901\cdot 178^{154k+77}+43108\cdot 178^{153k+77}-530779\cdot 178^{152k+76}\\||+29519\cdot 178^{151k+76}-183607\cdot 178^{150k+75}-4918\cdot 178^{149k+75}+311427\cdot 178^{148k+74}-38367\cdot 178^{147k+74}\\||+633591\cdot 178^{146k+73}-49290\cdot 178^{145k+73}+582045\cdot 178^{144k+72}-31585\cdot 178^{143k+72}+203365\cdot 178^{142k+71}\\||+2686\cdot 178^{141k+71}-256825\cdot 178^{140k+70}+31673\cdot 178^{139k+70}-503829\cdot 178^{138k+69}+36300\cdot 178^{137k+69}\\||-364843\cdot 178^{136k+68}+12401\cdot 178^{135k+68}+76273\cdot 178^{134k+67}-23312\cdot 178^{133k+67}+487791\cdot 178^{132k+66}\\||-42431\cdot 178^{131k+66}+527147\cdot 178^{130k+65}-28508\cdot 178^{129k+65}+162509\cdot 178^{128k+64}+5319\cdot 178^{127k+64}\\||-260859\cdot 178^{126k+63}+27022\cdot 178^{125k+63}-348817\cdot 178^{124k+62}+17651\cdot 178^{123k+62}-57049\cdot 178^{122k+61}\\||-10138\cdot 178^{121k+61}+291125\cdot 178^{120k+60}-28139\cdot 178^{119k+60}+376381\cdot 178^{118k+59}-22912\cdot 178^{117k+59}\\||+191451\cdot 178^{116k+58}-5061\cdot 178^{115k+58}-36757\cdot 178^{114k+57}+7704\cdot 178^{113k+57}-123755\cdot 178^{112k+56}\\||+7629\cdot 178^{111k+56}-43699\cdot 178^{110k+55}-3138\cdot 178^{109k+55}+144687\cdot 178^{108k+54}-18821\cdot 178^{107k+54}\\||+342383\cdot 178^{106k+53}-29658\cdot 178^{105k+53}+388845\cdot 178^{104k+52}-23091\cdot 178^{103k+52}+155661\cdot 178^{102k+51}\\||+3456\cdot 178^{101k+51}-257509\cdot 178^{100k+50}+32283\cdot 178^{99k+50}-523409\cdot 178^{98k+49}+38374\cdot 178^{97k+49}\\||-399027\cdot 178^{96k+48}+15925\cdot 178^{95k+48}+4005\cdot 178^{94k+47}-15392\cdot 178^{93k+47}+359171\cdot 178^{92k+46}\\||-34011\cdot 178^{91k+46}+497599\cdot 178^{90k+45}-38284\cdot 178^{89k+45}+512561\cdot 178^{88k+44}-38284\cdot 178^{87k+44}\\||+497599\cdot 178^{86k+43}-34011\cdot 178^{85k+43}+359171\cdot 178^{84k+42}-15392\cdot 178^{83k+42}+4005\cdot 178^{82k+41}\\||+15925\cdot 178^{81k+41}-399027\cdot 178^{80k+40}+38374\cdot 178^{79k+40}-523409\cdot 178^{78k+39}+32283\cdot 178^{77k+39}\\||-257509\cdot 178^{76k+38}+3456\cdot 178^{75k+38}+155661\cdot 178^{74k+37}-23091\cdot 178^{73k+37}+388845\cdot 178^{72k+36}\\||-29658\cdot 178^{71k+36}+342383\cdot 178^{70k+35}-18821\cdot 178^{69k+35}+144687\cdot 178^{68k+34}-3138\cdot 178^{67k+34}\\||-43699\cdot 178^{66k+33}+7629\cdot 178^{65k+33}-123755\cdot 178^{64k+32}+7704\cdot 178^{63k+32}-36757\cdot 178^{62k+31}\\||-5061\cdot 178^{61k+31}+191451\cdot 178^{60k+30}-22912\cdot 178^{59k+30}+376381\cdot 178^{58k+29}-28139\cdot 178^{57k+29}\\||+291125\cdot 178^{56k+28}-10138\cdot 178^{55k+28}-57049\cdot 178^{54k+27}+17651\cdot 178^{53k+27}-348817\cdot 178^{52k+26}\\||+27022\cdot 178^{51k+26}-260859\cdot 178^{50k+25}+5319\cdot 178^{49k+25}+162509\cdot 178^{48k+24}-28508\cdot 178^{47k+24}\\||+527147\cdot 178^{46k+23}-42431\cdot 178^{45k+23}+487791\cdot 178^{44k+22}-23312\cdot 178^{43k+22}+76273\cdot 178^{42k+21}\\||+12401\cdot 178^{41k+21}-364843\cdot 178^{40k+20}+36300\cdot 178^{39k+20}-503829\cdot 178^{38k+19}+31673\cdot 178^{37k+19}\\||-256825\cdot 178^{36k+18}+2686\cdot 178^{35k+18}+203365\cdot 178^{34k+17}-31585\cdot 178^{33k+17}+582045\cdot 178^{32k+16}\\||-49290\cdot 178^{31k+16}+633591\cdot 178^{30k+15}-38367\cdot 178^{29k+15}+311427\cdot 178^{28k+14}-4918\cdot 178^{27k+14}\\||-183607\cdot 178^{26k+13}+29519\cdot 178^{25k+13}-530779\cdot 178^{24k+12}+43108\cdot 178^{23k+12}-525901\cdot 178^{22k+11}\\||+29943\cdot 178^{21k+11}-224873\cdot 178^{20k+10}+2722\cdot 178^{19k+10}+134301\cdot 178^{18k+9}-19757\cdot 178^{17k+9}\\||+339917\cdot 178^{16k+8}-27240\cdot 178^{15k+8}+343451\cdot 178^{14k+7}-22069\cdot 178^{13k+7}+231739\cdot 178^{12k+6}\\||-12616\cdot 178^{11k+6}+112941\cdot 178^{10k+5}-5237\cdot 178^{9k+5}+39661\cdot 178^{8k+4}-1536\cdot 178^{7k+4}\\||+9523\cdot 178^{6k+3}-293\cdot 178^{5k+3}+1379\cdot 178^{4k+2}-30\cdot 178^{3k+2}+89\cdot 178^{2k+1}\\||-178^{k+1}+1)\\|\times|(178^{176k+88}+178^{175k+88}+89\cdot 178^{174k+87}+30\cdot 178^{173k+87}+1379\cdot 178^{172k+86}\\||+293\cdot 178^{171k+86}+9523\cdot 178^{170k+85}+1536\cdot 178^{169k+85}+39661\cdot 178^{168k+84}+5237\cdot 178^{167k+84}\\||+112941\cdot 178^{166k+83}+12616\cdot 178^{165k+83}+231739\cdot 178^{164k+82}+22069\cdot 178^{163k+82}+343451\cdot 178^{162k+81}\\||+27240\cdot 178^{161k+81}+339917\cdot 178^{160k+80}+19757\cdot 178^{159k+80}+134301\cdot 178^{158k+79}-2722\cdot 178^{157k+79}\\||-224873\cdot 178^{156k+78}-29943\cdot 178^{155k+78}-525901\cdot 178^{154k+77}-43108\cdot 178^{153k+77}-530779\cdot 178^{152k+76}\\||-29519\cdot 178^{151k+76}-183607\cdot 178^{150k+75}+4918\cdot 178^{149k+75}+311427\cdot 178^{148k+74}+38367\cdot 178^{147k+74}\\||+633591\cdot 178^{146k+73}+49290\cdot 178^{145k+73}+582045\cdot 178^{144k+72}+31585\cdot 178^{143k+72}+203365\cdot 178^{142k+71}\\||-2686\cdot 178^{141k+71}-256825\cdot 178^{140k+70}-31673\cdot 178^{139k+70}-503829\cdot 178^{138k+69}-36300\cdot 178^{137k+69}\\||-364843\cdot 178^{136k+68}-12401\cdot 178^{135k+68}+76273\cdot 178^{134k+67}+23312\cdot 178^{133k+67}+487791\cdot 178^{132k+66}\\||+42431\cdot 178^{131k+66}+527147\cdot 178^{130k+65}+28508\cdot 178^{129k+65}+162509\cdot 178^{128k+64}-5319\cdot 178^{127k+64}\\||-260859\cdot 178^{126k+63}-27022\cdot 178^{125k+63}-348817\cdot 178^{124k+62}-17651\cdot 178^{123k+62}-57049\cdot 178^{122k+61}\\||+10138\cdot 178^{121k+61}+291125\cdot 178^{120k+60}+28139\cdot 178^{119k+60}+376381\cdot 178^{118k+59}+22912\cdot 178^{117k+59}\\||+191451\cdot 178^{116k+58}+5061\cdot 178^{115k+58}-36757\cdot 178^{114k+57}-7704\cdot 178^{113k+57}-123755\cdot 178^{112k+56}\\||-7629\cdot 178^{111k+56}-43699\cdot 178^{110k+55}+3138\cdot 178^{109k+55}+144687\cdot 178^{108k+54}+18821\cdot 178^{107k+54}\\||+342383\cdot 178^{106k+53}+29658\cdot 178^{105k+53}+388845\cdot 178^{104k+52}+23091\cdot 178^{103k+52}+155661\cdot 178^{102k+51}\\||-3456\cdot 178^{101k+51}-257509\cdot 178^{100k+50}-32283\cdot 178^{99k+50}-523409\cdot 178^{98k+49}-38374\cdot 178^{97k+49}\\||-399027\cdot 178^{96k+48}-15925\cdot 178^{95k+48}+4005\cdot 178^{94k+47}+15392\cdot 178^{93k+47}+359171\cdot 178^{92k+46}\\||+34011\cdot 178^{91k+46}+497599\cdot 178^{90k+45}+38284\cdot 178^{89k+45}+512561\cdot 178^{88k+44}+38284\cdot 178^{87k+44}\\||+497599\cdot 178^{86k+43}+34011\cdot 178^{85k+43}+359171\cdot 178^{84k+42}+15392\cdot 178^{83k+42}+4005\cdot 178^{82k+41}\\||-15925\cdot 178^{81k+41}-399027\cdot 178^{80k+40}-38374\cdot 178^{79k+40}-523409\cdot 178^{78k+39}-32283\cdot 178^{77k+39}\\||-257509\cdot 178^{76k+38}-3456\cdot 178^{75k+38}+155661\cdot 178^{74k+37}+23091\cdot 178^{73k+37}+388845\cdot 178^{72k+36}\\||+29658\cdot 178^{71k+36}+342383\cdot 178^{70k+35}+18821\cdot 178^{69k+35}+144687\cdot 178^{68k+34}+3138\cdot 178^{67k+34}\\||-43699\cdot 178^{66k+33}-7629\cdot 178^{65k+33}-123755\cdot 178^{64k+32}-7704\cdot 178^{63k+32}-36757\cdot 178^{62k+31}\\||+5061\cdot 178^{61k+31}+191451\cdot 178^{60k+30}+22912\cdot 178^{59k+30}+376381\cdot 178^{58k+29}+28139\cdot 178^{57k+29}\\||+291125\cdot 178^{56k+28}+10138\cdot 178^{55k+28}-57049\cdot 178^{54k+27}-17651\cdot 178^{53k+27}-348817\cdot 178^{52k+26}\\||-27022\cdot 178^{51k+26}-260859\cdot 178^{50k+25}-5319\cdot 178^{49k+25}+162509\cdot 178^{48k+24}+28508\cdot 178^{47k+24}\\||+527147\cdot 178^{46k+23}+42431\cdot 178^{45k+23}+487791\cdot 178^{44k+22}+23312\cdot 178^{43k+22}+76273\cdot 178^{42k+21}\\||-12401\cdot 178^{41k+21}-364843\cdot 178^{40k+20}-36300\cdot 178^{39k+20}-503829\cdot 178^{38k+19}-31673\cdot 178^{37k+19}\\||-256825\cdot 178^{36k+18}-2686\cdot 178^{35k+18}+203365\cdot 178^{34k+17}+31585\cdot 178^{33k+17}+582045\cdot 178^{32k+16}\\||+49290\cdot 178^{31k+16}+633591\cdot 178^{30k+15}+38367\cdot 178^{29k+15}+311427\cdot 178^{28k+14}+4918\cdot 178^{27k+14}\\||-183607\cdot 178^{26k+13}-29519\cdot 178^{25k+13}-530779\cdot 178^{24k+12}-43108\cdot 178^{23k+12}-525901\cdot 178^{22k+11}\\||-29943\cdot 178^{21k+11}-224873\cdot 178^{20k+10}-2722\cdot 178^{19k+10}+134301\cdot 178^{18k+9}+19757\cdot 178^{17k+9}\\||+339917\cdot 178^{16k+8}+27240\cdot 178^{15k+8}+343451\cdot 178^{14k+7}+22069\cdot 178^{13k+7}+231739\cdot 178^{12k+6}\\||+12616\cdot 178^{11k+6}+112941\cdot 178^{10k+5}+5237\cdot 178^{9k+5}+39661\cdot 178^{8k+4}+1536\cdot 178^{7k+4}\\||+9523\cdot 178^{6k+3}+293\cdot 178^{5k+3}+1379\cdot 178^{4k+2}+30\cdot 178^{3k+2}+89\cdot 178^{2k+1}\\||+178^{k+1}+1)\\{\large\Phi}_{358}(179^{2k+1})|=|179^{356k+178}-179^{354k+177}+179^{352k+176}-179^{350k+175}+179^{348k+174}\\||-179^{346k+173}+179^{344k+172}-179^{342k+171}+179^{340k+170}-179^{338k+169}\\||+179^{336k+168}-179^{334k+167}+179^{332k+166}-179^{330k+165}+179^{328k+164}\\||-179^{326k+163}+179^{324k+162}-179^{322k+161}+179^{320k+160}-179^{318k+159}\\||+179^{316k+158}-179^{314k+157}+179^{312k+156}-179^{310k+155}+179^{308k+154}\\||-179^{306k+153}+179^{304k+152}-179^{302k+151}+179^{300k+150}-179^{298k+149}\\||+179^{296k+148}-179^{294k+147}+179^{292k+146}-179^{290k+145}+179^{288k+144}\\||-179^{286k+143}+179^{284k+142}-179^{282k+141}+179^{280k+140}-179^{278k+139}\\||+179^{276k+138}-179^{274k+137}+179^{272k+136}-179^{270k+135}+179^{268k+134}\\||-179^{266k+133}+179^{264k+132}-179^{262k+131}+179^{260k+130}-179^{258k+129}\\||+179^{256k+128}-179^{254k+127}+179^{252k+126}-179^{250k+125}+179^{248k+124}\\||-179^{246k+123}+179^{244k+122}-179^{242k+121}+179^{240k+120}-179^{238k+119}\\||+179^{236k+118}-179^{234k+117}+179^{232k+116}-179^{230k+115}+179^{228k+114}\\||-179^{226k+113}+179^{224k+112}-179^{222k+111}+179^{220k+110}-179^{218k+109}\\||+179^{216k+108}-179^{214k+107}+179^{212k+106}-179^{210k+105}+179^{208k+104}\\||-179^{206k+103}+179^{204k+102}-179^{202k+101}+179^{200k+100}-179^{198k+99}\\||+179^{196k+98}-179^{194k+97}+179^{192k+96}-179^{190k+95}+179^{188k+94}\\||-179^{186k+93}+179^{184k+92}-179^{182k+91}+179^{180k+90}-179^{178k+89}\\||+179^{176k+88}-179^{174k+87}+179^{172k+86}-179^{170k+85}+179^{168k+84}\\||-179^{166k+83}+179^{164k+82}-179^{162k+81}+179^{160k+80}-179^{158k+79}\\||+179^{156k+78}-179^{154k+77}+179^{152k+76}-179^{150k+75}+179^{148k+74}\\||-179^{146k+73}+179^{144k+72}-179^{142k+71}+179^{140k+70}-179^{138k+69}\\||+179^{136k+68}-179^{134k+67}+179^{132k+66}-179^{130k+65}+179^{128k+64}\\||-179^{126k+63}+179^{124k+62}-179^{122k+61}+179^{120k+60}-179^{118k+59}\\||+179^{116k+58}-179^{114k+57}+179^{112k+56}-179^{110k+55}+179^{108k+54}\\||-179^{106k+53}+179^{104k+52}-179^{102k+51}+179^{100k+50}-179^{98k+49}\\||+179^{96k+48}-179^{94k+47}+179^{92k+46}-179^{90k+45}+179^{88k+44}\\||-179^{86k+43}+179^{84k+42}-179^{82k+41}+179^{80k+40}-179^{78k+39}\\||+179^{76k+38}-179^{74k+37}+179^{72k+36}-179^{70k+35}+179^{68k+34}\\||-179^{66k+33}+179^{64k+32}-179^{62k+31}+179^{60k+30}-179^{58k+29}\\||+179^{56k+28}-179^{54k+27}+179^{52k+26}-179^{50k+25}+179^{48k+24}\\||-179^{46k+23}+179^{44k+22}-179^{42k+21}+179^{40k+20}-179^{38k+19}\\||+179^{36k+18}-179^{34k+17}+179^{32k+16}-179^{30k+15}+179^{28k+14}\\||-179^{26k+13}+179^{24k+12}-179^{22k+11}+179^{20k+10}-179^{18k+9}\\||+179^{16k+8}-179^{14k+7}+179^{12k+6}-179^{10k+5}+179^{8k+4}\\||-179^{6k+3}+179^{4k+2}-179^{2k+1}+1\\|=|(179^{178k+89}-179^{177k+89}+89\cdot 179^{176k+88}-29\cdot 179^{175k+88}+1231\cdot 179^{174k+87}\\||-223\cdot 179^{173k+87}+5627\cdot 179^{172k+86}-613\cdot 179^{171k+86}+8837\cdot 179^{170k+85}-457\cdot 179^{169k+85}\\||+1301\cdot 179^{168k+84}+57\cdot 179^{167k+84}+5505\cdot 179^{166k+83}-1545\cdot 179^{165k+83}+36787\cdot 179^{164k+82}\\||-3115\cdot 179^{163k+82}+29941\cdot 179^{162k+81}-829\cdot 179^{161k+81}+4549\cdot 179^{160k+80}-1693\cdot 179^{159k+80}\\||+56619\cdot 179^{158k+79}-6077\cdot 179^{157k+79}+77723\cdot 179^{156k+78}-3953\cdot 179^{155k+78}+35593\cdot 179^{154k+77}\\||-3673\cdot 179^{153k+77}+86897\cdot 179^{152k+76}-8745\cdot 179^{151k+76}+114417\cdot 179^{150k+75}-6621\cdot 179^{149k+75}\\||+75897\cdot 179^{148k+74}-7577\cdot 179^{147k+74}+148597\cdot 179^{146k+73}-12923\cdot 179^{145k+73}+148707\cdot 179^{144k+72}\\||-7641\cdot 179^{143k+72}+90227\cdot 179^{142k+71}-10525\cdot 179^{141k+71}+217121\cdot 179^{140k+70}-18513\cdot 179^{139k+70}\\||+199385\cdot 179^{138k+69}-8851\cdot 179^{137k+69}+90505\cdot 179^{136k+68}-11489\cdot 179^{135k+68}+252909\cdot 179^{134k+67}\\||-21641\cdot 179^{133k+67}+222787\cdot 179^{132k+66}-8827\cdot 179^{131k+66}+85733\cdot 179^{130k+65}-12397\cdot 179^{129k+65}\\||+279613\cdot 179^{128k+64}-22769\cdot 179^{127k+64}+203615\cdot 179^{126k+63}-5321\cdot 179^{125k+63}+42041\cdot 179^{124k+62}\\||-11143\cdot 179^{123k+62}+280849\cdot 179^{122k+61}-21745\cdot 179^{121k+61}+152189\cdot 179^{120k+60}+499\cdot 179^{119k+60}\\||-28741\cdot 179^{118k+59}-7919\cdot 179^{117k+59}+251655\cdot 179^{116k+58}-18145\cdot 179^{115k+58}+68131\cdot 179^{114k+57}\\||+8209\cdot 179^{113k+57}-118827\cdot 179^{112k+56}-3157\cdot 179^{111k+56}+195779\cdot 179^{110k+55}-12425\cdot 179^{109k+55}\\||-35209\cdot 179^{108k+54}+16211\cdot 179^{107k+54}-203263\cdot 179^{106k+53}+1481\cdot 179^{105k+53}+129325\cdot 179^{104k+52}\\||-5433\cdot 179^{103k+52}-146953\cdot 179^{102k+51}+23425\cdot 179^{101k+51}-262117\cdot 179^{100k+50}+4143\cdot 179^{99k+50}\\||+78639\cdot 179^{98k+49}+1157\cdot 179^{97k+49}-254019\cdot 179^{96k+48}+29631\cdot 179^{95k+48}-295703\cdot 179^{94k+47}\\||+4171\cdot 179^{93k+47}+71389\cdot 179^{92k+46}+4003\cdot 179^{91k+46}-310273\cdot 179^{90k+45}+32865\cdot 179^{89k+45}\\||-310273\cdot 179^{88k+44}+4003\cdot 179^{87k+44}+71389\cdot 179^{86k+43}+4171\cdot 179^{85k+43}-295703\cdot 179^{84k+42}\\||+29631\cdot 179^{83k+42}-254019\cdot 179^{82k+41}+1157\cdot 179^{81k+41}+78639\cdot 179^{80k+40}+4143\cdot 179^{79k+40}\\||-262117\cdot 179^{78k+39}+23425\cdot 179^{77k+39}-146953\cdot 179^{76k+38}-5433\cdot 179^{75k+38}+129325\cdot 179^{74k+37}\\||+1481\cdot 179^{73k+37}-203263\cdot 179^{72k+36}+16211\cdot 179^{71k+36}-35209\cdot 179^{70k+35}-12425\cdot 179^{69k+35}\\||+195779\cdot 179^{68k+34}-3157\cdot 179^{67k+34}-118827\cdot 179^{66k+33}+8209\cdot 179^{65k+33}+68131\cdot 179^{64k+32}\\||-18145\cdot 179^{63k+32}+251655\cdot 179^{62k+31}-7919\cdot 179^{61k+31}-28741\cdot 179^{60k+30}+499\cdot 179^{59k+30}\\||+152189\cdot 179^{58k+29}-21745\cdot 179^{57k+29}+280849\cdot 179^{56k+28}-11143\cdot 179^{55k+28}+42041\cdot 179^{54k+27}\\||-5321\cdot 179^{53k+27}+203615\cdot 179^{52k+26}-22769\cdot 179^{51k+26}+279613\cdot 179^{50k+25}-12397\cdot 179^{49k+25}\\||+85733\cdot 179^{48k+24}-8827\cdot 179^{47k+24}+222787\cdot 179^{46k+23}-21641\cdot 179^{45k+23}+252909\cdot 179^{44k+22}\\||-11489\cdot 179^{43k+22}+90505\cdot 179^{42k+21}-8851\cdot 179^{41k+21}+199385\cdot 179^{40k+20}-18513\cdot 179^{39k+20}\\||+217121\cdot 179^{38k+19}-10525\cdot 179^{37k+19}+90227\cdot 179^{36k+18}-7641\cdot 179^{35k+18}+148707\cdot 179^{34k+17}\\||-12923\cdot 179^{33k+17}+148597\cdot 179^{32k+16}-7577\cdot 179^{31k+16}+75897\cdot 179^{30k+15}-6621\cdot 179^{29k+15}\\||+114417\cdot 179^{28k+14}-8745\cdot 179^{27k+14}+86897\cdot 179^{26k+13}-3673\cdot 179^{25k+13}+35593\cdot 179^{24k+12}\\||-3953\cdot 179^{23k+12}+77723\cdot 179^{22k+11}-6077\cdot 179^{21k+11}+56619\cdot 179^{20k+10}-1693\cdot 179^{19k+10}\\||+4549\cdot 179^{18k+9}-829\cdot 179^{17k+9}+29941\cdot 179^{16k+8}-3115\cdot 179^{15k+8}+36787\cdot 179^{14k+7}\\||-1545\cdot 179^{13k+7}+5505\cdot 179^{12k+6}+57\cdot 179^{11k+6}+1301\cdot 179^{10k+5}-457\cdot 179^{9k+5}\\||+8837\cdot 179^{8k+4}-613\cdot 179^{7k+4}+5627\cdot 179^{6k+3}-223\cdot 179^{5k+3}+1231\cdot 179^{4k+2}\\||-29\cdot 179^{3k+2}+89\cdot 179^{2k+1}-179^{k+1}+1)\\|\times|(179^{178k+89}+179^{177k+89}+89\cdot 179^{176k+88}+29\cdot 179^{175k+88}+1231\cdot 179^{174k+87}\\||+223\cdot 179^{173k+87}+5627\cdot 179^{172k+86}+613\cdot 179^{171k+86}+8837\cdot 179^{170k+85}+457\cdot 179^{169k+85}\\||+1301\cdot 179^{168k+84}-57\cdot 179^{167k+84}+5505\cdot 179^{166k+83}+1545\cdot 179^{165k+83}+36787\cdot 179^{164k+82}\\||+3115\cdot 179^{163k+82}+29941\cdot 179^{162k+81}+829\cdot 179^{161k+81}+4549\cdot 179^{160k+80}+1693\cdot 179^{159k+80}\\||+56619\cdot 179^{158k+79}+6077\cdot 179^{157k+79}+77723\cdot 179^{156k+78}+3953\cdot 179^{155k+78}+35593\cdot 179^{154k+77}\\||+3673\cdot 179^{153k+77}+86897\cdot 179^{152k+76}+8745\cdot 179^{151k+76}+114417\cdot 179^{150k+75}+6621\cdot 179^{149k+75}\\||+75897\cdot 179^{148k+74}+7577\cdot 179^{147k+74}+148597\cdot 179^{146k+73}+12923\cdot 179^{145k+73}+148707\cdot 179^{144k+72}\\||+7641\cdot 179^{143k+72}+90227\cdot 179^{142k+71}+10525\cdot 179^{141k+71}+217121\cdot 179^{140k+70}+18513\cdot 179^{139k+70}\\||+199385\cdot 179^{138k+69}+8851\cdot 179^{137k+69}+90505\cdot 179^{136k+68}+11489\cdot 179^{135k+68}+252909\cdot 179^{134k+67}\\||+21641\cdot 179^{133k+67}+222787\cdot 179^{132k+66}+8827\cdot 179^{131k+66}+85733\cdot 179^{130k+65}+12397\cdot 179^{129k+65}\\||+279613\cdot 179^{128k+64}+22769\cdot 179^{127k+64}+203615\cdot 179^{126k+63}+5321\cdot 179^{125k+63}+42041\cdot 179^{124k+62}\\||+11143\cdot 179^{123k+62}+280849\cdot 179^{122k+61}+21745\cdot 179^{121k+61}+152189\cdot 179^{120k+60}-499\cdot 179^{119k+60}\\||-28741\cdot 179^{118k+59}+7919\cdot 179^{117k+59}+251655\cdot 179^{116k+58}+18145\cdot 179^{115k+58}+68131\cdot 179^{114k+57}\\||-8209\cdot 179^{113k+57}-118827\cdot 179^{112k+56}+3157\cdot 179^{111k+56}+195779\cdot 179^{110k+55}+12425\cdot 179^{109k+55}\\||-35209\cdot 179^{108k+54}-16211\cdot 179^{107k+54}-203263\cdot 179^{106k+53}-1481\cdot 179^{105k+53}+129325\cdot 179^{104k+52}\\||+5433\cdot 179^{103k+52}-146953\cdot 179^{102k+51}-23425\cdot 179^{101k+51}-262117\cdot 179^{100k+50}-4143\cdot 179^{99k+50}\\||+78639\cdot 179^{98k+49}-1157\cdot 179^{97k+49}-254019\cdot 179^{96k+48}-29631\cdot 179^{95k+48}-295703\cdot 179^{94k+47}\\||-4171\cdot 179^{93k+47}+71389\cdot 179^{92k+46}-4003\cdot 179^{91k+46}-310273\cdot 179^{90k+45}-32865\cdot 179^{89k+45}\\||-310273\cdot 179^{88k+44}-4003\cdot 179^{87k+44}+71389\cdot 179^{86k+43}-4171\cdot 179^{85k+43}-295703\cdot 179^{84k+42}\\||-29631\cdot 179^{83k+42}-254019\cdot 179^{82k+41}-1157\cdot 179^{81k+41}+78639\cdot 179^{80k+40}-4143\cdot 179^{79k+40}\\||-262117\cdot 179^{78k+39}-23425\cdot 179^{77k+39}-146953\cdot 179^{76k+38}+5433\cdot 179^{75k+38}+129325\cdot 179^{74k+37}\\||-1481\cdot 179^{73k+37}-203263\cdot 179^{72k+36}-16211\cdot 179^{71k+36}-35209\cdot 179^{70k+35}+12425\cdot 179^{69k+35}\\||+195779\cdot 179^{68k+34}+3157\cdot 179^{67k+34}-118827\cdot 179^{66k+33}-8209\cdot 179^{65k+33}+68131\cdot 179^{64k+32}\\||+18145\cdot 179^{63k+32}+251655\cdot 179^{62k+31}+7919\cdot 179^{61k+31}-28741\cdot 179^{60k+30}-499\cdot 179^{59k+30}\\||+152189\cdot 179^{58k+29}+21745\cdot 179^{57k+29}+280849\cdot 179^{56k+28}+11143\cdot 179^{55k+28}+42041\cdot 179^{54k+27}\\||+5321\cdot 179^{53k+27}+203615\cdot 179^{52k+26}+22769\cdot 179^{51k+26}+279613\cdot 179^{50k+25}+12397\cdot 179^{49k+25}\\||+85733\cdot 179^{48k+24}+8827\cdot 179^{47k+24}+222787\cdot 179^{46k+23}+21641\cdot 179^{45k+23}+252909\cdot 179^{44k+22}\\||+11489\cdot 179^{43k+22}+90505\cdot 179^{42k+21}+8851\cdot 179^{41k+21}+199385\cdot 179^{40k+20}+18513\cdot 179^{39k+20}\\||+217121\cdot 179^{38k+19}+10525\cdot 179^{37k+19}+90227\cdot 179^{36k+18}+7641\cdot 179^{35k+18}+148707\cdot 179^{34k+17}\\||+12923\cdot 179^{33k+17}+148597\cdot 179^{32k+16}+7577\cdot 179^{31k+16}+75897\cdot 179^{30k+15}+6621\cdot 179^{29k+15}\\||+114417\cdot 179^{28k+14}+8745\cdot 179^{27k+14}+86897\cdot 179^{26k+13}+3673\cdot 179^{25k+13}+35593\cdot 179^{24k+12}\\||+3953\cdot 179^{23k+12}+77723\cdot 179^{22k+11}+6077\cdot 179^{21k+11}+56619\cdot 179^{20k+10}+1693\cdot 179^{19k+10}\\||+4549\cdot 179^{18k+9}+829\cdot 179^{17k+9}+29941\cdot 179^{16k+8}+3115\cdot 179^{15k+8}+36787\cdot 179^{14k+7}\\||+1545\cdot 179^{13k+7}+5505\cdot 179^{12k+6}-57\cdot 179^{11k+6}+1301\cdot 179^{10k+5}+457\cdot 179^{9k+5}\\||+8837\cdot 179^{8k+4}+613\cdot 179^{7k+4}+5627\cdot 179^{6k+3}+223\cdot 179^{5k+3}+1231\cdot 179^{4k+2}\\||+29\cdot 179^{3k+2}+89\cdot 179^{2k+1}+179^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{181}(181^{2k+1})\cdots{\large\Phi}_{185}(185^{2k+1})$${\large\Phi}_{181}(181^{2k+1})\cdots{\large\Phi}_{185}(185^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{181}(181^{2k+1})|=|181^{360k+180}+181^{358k+179}+181^{356k+178}+181^{354k+177}+181^{352k+176}\\||+181^{350k+175}+181^{348k+174}+181^{346k+173}+181^{344k+172}+181^{342k+171}\\||+181^{340k+170}+181^{338k+169}+181^{336k+168}+181^{334k+167}+181^{332k+166}\\||+181^{330k+165}+181^{328k+164}+181^{326k+163}+181^{324k+162}+181^{322k+161}\\||+181^{320k+160}+181^{318k+159}+181^{316k+158}+181^{314k+157}+181^{312k+156}\\||+181^{310k+155}+181^{308k+154}+181^{306k+153}+181^{304k+152}+181^{302k+151}\\||+181^{300k+150}+181^{298k+149}+181^{296k+148}+181^{294k+147}+181^{292k+146}\\||+181^{290k+145}+181^{288k+144}+181^{286k+143}+181^{284k+142}+181^{282k+141}\\||+181^{280k+140}+181^{278k+139}+181^{276k+138}+181^{274k+137}+181^{272k+136}\\||+181^{270k+135}+181^{268k+134}+181^{266k+133}+181^{264k+132}+181^{262k+131}\\||+181^{260k+130}+181^{258k+129}+181^{256k+128}+181^{254k+127}+181^{252k+126}\\||+181^{250k+125}+181^{248k+124}+181^{246k+123}+181^{244k+122}+181^{242k+121}\\||+181^{240k+120}+181^{238k+119}+181^{236k+118}+181^{234k+117}+181^{232k+116}\\||+181^{230k+115}+181^{228k+114}+181^{226k+113}+181^{224k+112}+181^{222k+111}\\||+181^{220k+110}+181^{218k+109}+181^{216k+108}+181^{214k+107}+181^{212k+106}\\||+181^{210k+105}+181^{208k+104}+181^{206k+103}+181^{204k+102}+181^{202k+101}\\||+181^{200k+100}+181^{198k+99}+181^{196k+98}+181^{194k+97}+181^{192k+96}\\||+181^{190k+95}+181^{188k+94}+181^{186k+93}+181^{184k+92}+181^{182k+91}\\||+181^{180k+90}+181^{178k+89}+181^{176k+88}+181^{174k+87}+181^{172k+86}\\||+181^{170k+85}+181^{168k+84}+181^{166k+83}+181^{164k+82}+181^{162k+81}\\||+181^{160k+80}+181^{158k+79}+181^{156k+78}+181^{154k+77}+181^{152k+76}\\||+181^{150k+75}+181^{148k+74}+181^{146k+73}+181^{144k+72}+181^{142k+71}\\||+181^{140k+70}+181^{138k+69}+181^{136k+68}+181^{134k+67}+181^{132k+66}\\||+181^{130k+65}+181^{128k+64}+181^{126k+63}+181^{124k+62}+181^{122k+61}\\||+181^{120k+60}+181^{118k+59}+181^{116k+58}+181^{114k+57}+181^{112k+56}\\||+181^{110k+55}+181^{108k+54}+181^{106k+53}+181^{104k+52}+181^{102k+51}\\||+181^{100k+50}+181^{98k+49}+181^{96k+48}+181^{94k+47}+181^{92k+46}\\||+181^{90k+45}+181^{88k+44}+181^{86k+43}+181^{84k+42}+181^{82k+41}\\||+181^{80k+40}+181^{78k+39}+181^{76k+38}+181^{74k+37}+181^{72k+36}\\||+181^{70k+35}+181^{68k+34}+181^{66k+33}+181^{64k+32}+181^{62k+31}\\||+181^{60k+30}+181^{58k+29}+181^{56k+28}+181^{54k+27}+181^{52k+26}\\||+181^{50k+25}+181^{48k+24}+181^{46k+23}+181^{44k+22}+181^{42k+21}\\||+181^{40k+20}+181^{38k+19}+181^{36k+18}+181^{34k+17}+181^{32k+16}\\||+181^{30k+15}+181^{28k+14}+181^{26k+13}+181^{24k+12}+181^{22k+11}\\||+181^{20k+10}+181^{18k+9}+181^{16k+8}+181^{14k+7}+181^{12k+6}\\||+181^{10k+5}+181^{8k+4}+181^{6k+3}+181^{4k+2}+181^{2k+1}+1\\|=|(181^{180k+90}-181^{179k+90}+91\cdot 181^{178k+89}-31\cdot 181^{177k+89}+1471\cdot 181^{176k+88}\\||-319\cdot 181^{175k+88}+10849\cdot 181^{174k+87}-1823\cdot 181^{173k+87}+50693\cdot 181^{172k+86}-7233\cdot 181^{171k+86}\\||+175455\cdot 181^{170k+85}-22275\cdot 181^{169k+85}+488127\cdot 181^{168k+84}-56667\cdot 181^{167k+84}+1146995\cdot 181^{166k+83}\\||-124043\cdot 181^{165k+83}+2356143\cdot 181^{164k+82}-240665\cdot 181^{163k+82}+4342735\cdot 181^{162k+81}-423641\cdot 181^{161k+81}\\||+7336493\cdot 181^{160k+80}-689935\cdot 181^{159k+80}+11565409\cdot 181^{158k+79}-1056695\cdot 181^{157k+79}+17266213\cdot 181^{156k+78}\\||-1542093\cdot 181^{155k+78}+24689187\cdot 181^{154k+77}-2164643\cdot 181^{153k+77}+34069917\cdot 181^{152k+76}-2939613\cdot 181^{151k+76}\\||+45564415\cdot 181^{150k+75}-3873513\cdot 181^{149k+75}+59176395\cdot 181^{148k+74}-4959751\cdot 181^{147k+74}+74725283\cdot 181^{146k+73}\\||-6178801\cdot 181^{145k+73}+91883601\cdot 181^{144k+72}-7503129\cdot 181^{143k+72}+110260249\cdot 181^{142k+71}-8903485\cdot 181^{141k+71}\\||+129469491\cdot 181^{140k+70}-10351773\cdot 181^{139k+70}+149131357\cdot 181^{138k+69}-11818397\cdot 181^{137k+69}+168811581\cdot 181^{136k+68}\\||-13267353\cdot 181^{135k+68}+187970873\cdot 181^{134k+67}-14655111\cdot 181^{133k+67}+206000539\cdot 181^{132k+66}-15937367\cdot 181^{131k+66}\\||+222359661\cdot 181^{130k+65}-17081123\cdot 181^{129k+65}+236734871\cdot 181^{128k+64}-18074189\cdot 181^{127k+64}+249111207\cdot 181^{126k+63}\\||-18925035\cdot 181^{125k+63}+259695447\cdot 181^{124k+62}-19652629\cdot 181^{123k+62}+268747811\cdot 181^{122k+61}-20274195\cdot 181^{121k+61}\\||+276454539\cdot 181^{120k+60}-20800417\cdot 181^{119k+60}+282938957\cdot 181^{118k+59}-21241583\cdot 181^{117k+59}+288393919\cdot 181^{116k+58}\\||-21618479\cdot 181^{115k+58}+293201889\cdot 181^{114k+57}-21966721\cdot 181^{113k+57}+297909063\cdot 181^{112k+56}-22328189\cdot 181^{111k+56}\\||+303034457\cdot 181^{110k+55}-22733571\cdot 181^{109k+55}+308835561\cdot 181^{108k+54}-23188473\cdot 181^{107k+54}+315206759\cdot 181^{106k+53}\\||-23673703\cdot 181^{105k+53}+321787617\cdot 181^{104k+52}-24159499\cdot 181^{103k+52}+328199001\cdot 181^{102k+51}-24622773\cdot 181^{101k+51}\\||+334222425\cdot 181^{100k+50}-25053845\cdot 181^{99k+50}+339786913\cdot 181^{98k+49}-25448387\cdot 181^{97k+49}+344794341\cdot 181^{96k+48}\\||-25792751\cdot 181^{95k+48}+348949301\cdot 181^{94k+47}-26056749\cdot 181^{93k+47}+351764987\cdot 181^{92k+46}-26202217\cdot 181^{91k+46}\\||+352769163\cdot 181^{90k+45}-26202217\cdot 181^{89k+45}+351764987\cdot 181^{88k+44}-26056749\cdot 181^{87k+44}+348949301\cdot 181^{86k+43}\\||-25792751\cdot 181^{85k+43}+344794341\cdot 181^{84k+42}-25448387\cdot 181^{83k+42}+339786913\cdot 181^{82k+41}-25053845\cdot 181^{81k+41}\\||+334222425\cdot 181^{80k+40}-24622773\cdot 181^{79k+40}+328199001\cdot 181^{78k+39}-24159499\cdot 181^{77k+39}+321787617\cdot 181^{76k+38}\\||-23673703\cdot 181^{75k+38}+315206759\cdot 181^{74k+37}-23188473\cdot 181^{73k+37}+308835561\cdot 181^{72k+36}-22733571\cdot 181^{71k+36}\\||+303034457\cdot 181^{70k+35}-22328189\cdot 181^{69k+35}+297909063\cdot 181^{68k+34}-21966721\cdot 181^{67k+34}+293201889\cdot 181^{66k+33}\\||-21618479\cdot 181^{65k+33}+288393919\cdot 181^{64k+32}-21241583\cdot 181^{63k+32}+282938957\cdot 181^{62k+31}-20800417\cdot 181^{61k+31}\\||+276454539\cdot 181^{60k+30}-20274195\cdot 181^{59k+30}+268747811\cdot 181^{58k+29}-19652629\cdot 181^{57k+29}+259695447\cdot 181^{56k+28}\\||-18925035\cdot 181^{55k+28}+249111207\cdot 181^{54k+27}-18074189\cdot 181^{53k+27}+236734871\cdot 181^{52k+26}-17081123\cdot 181^{51k+26}\\||+222359661\cdot 181^{50k+25}-15937367\cdot 181^{49k+25}+206000539\cdot 181^{48k+24}-14655111\cdot 181^{47k+24}+187970873\cdot 181^{46k+23}\\||-13267353\cdot 181^{45k+23}+168811581\cdot 181^{44k+22}-11818397\cdot 181^{43k+22}+149131357\cdot 181^{42k+21}-10351773\cdot 181^{41k+21}\\||+129469491\cdot 181^{40k+20}-8903485\cdot 181^{39k+20}+110260249\cdot 181^{38k+19}-7503129\cdot 181^{37k+19}+91883601\cdot 181^{36k+18}\\||-6178801\cdot 181^{35k+18}+74725283\cdot 181^{34k+17}-4959751\cdot 181^{33k+17}+59176395\cdot 181^{32k+16}-3873513\cdot 181^{31k+16}\\||+45564415\cdot 181^{30k+15}-2939613\cdot 181^{29k+15}+34069917\cdot 181^{28k+14}-2164643\cdot 181^{27k+14}+24689187\cdot 181^{26k+13}\\||-1542093\cdot 181^{25k+13}+17266213\cdot 181^{24k+12}-1056695\cdot 181^{23k+12}+11565409\cdot 181^{22k+11}-689935\cdot 181^{21k+11}\\||+7336493\cdot 181^{20k+10}-423641\cdot 181^{19k+10}+4342735\cdot 181^{18k+9}-240665\cdot 181^{17k+9}+2356143\cdot 181^{16k+8}\\||-124043\cdot 181^{15k+8}+1146995\cdot 181^{14k+7}-56667\cdot 181^{13k+7}+488127\cdot 181^{12k+6}-22275\cdot 181^{11k+6}\\||+175455\cdot 181^{10k+5}-7233\cdot 181^{9k+5}+50693\cdot 181^{8k+4}-1823\cdot 181^{7k+4}+10849\cdot 181^{6k+3}\\||-319\cdot 181^{5k+3}+1471\cdot 181^{4k+2}-31\cdot 181^{3k+2}+91\cdot 181^{2k+1}-181^{k+1}+1)\\|\times|(181^{180k+90}+181^{179k+90}+91\cdot 181^{178k+89}+31\cdot 181^{177k+89}+1471\cdot 181^{176k+88}\\||+319\cdot 181^{175k+88}+10849\cdot 181^{174k+87}+1823\cdot 181^{173k+87}+50693\cdot 181^{172k+86}+7233\cdot 181^{171k+86}\\||+175455\cdot 181^{170k+85}+22275\cdot 181^{169k+85}+488127\cdot 181^{168k+84}+56667\cdot 181^{167k+84}+1146995\cdot 181^{166k+83}\\||+124043\cdot 181^{165k+83}+2356143\cdot 181^{164k+82}+240665\cdot 181^{163k+82}+4342735\cdot 181^{162k+81}+423641\cdot 181^{161k+81}\\||+7336493\cdot 181^{160k+80}+689935\cdot 181^{159k+80}+11565409\cdot 181^{158k+79}+1056695\cdot 181^{157k+79}+17266213\cdot 181^{156k+78}\\||+1542093\cdot 181^{155k+78}+24689187\cdot 181^{154k+77}+2164643\cdot 181^{153k+77}+34069917\cdot 181^{152k+76}+2939613\cdot 181^{151k+76}\\||+45564415\cdot 181^{150k+75}+3873513\cdot 181^{149k+75}+59176395\cdot 181^{148k+74}+4959751\cdot 181^{147k+74}+74725283\cdot 181^{146k+73}\\||+6178801\cdot 181^{145k+73}+91883601\cdot 181^{144k+72}+7503129\cdot 181^{143k+72}+110260249\cdot 181^{142k+71}+8903485\cdot 181^{141k+71}\\||+129469491\cdot 181^{140k+70}+10351773\cdot 181^{139k+70}+149131357\cdot 181^{138k+69}+11818397\cdot 181^{137k+69}+168811581\cdot 181^{136k+68}\\||+13267353\cdot 181^{135k+68}+187970873\cdot 181^{134k+67}+14655111\cdot 181^{133k+67}+206000539\cdot 181^{132k+66}+15937367\cdot 181^{131k+66}\\||+222359661\cdot 181^{130k+65}+17081123\cdot 181^{129k+65}+236734871\cdot 181^{128k+64}+18074189\cdot 181^{127k+64}+249111207\cdot 181^{126k+63}\\||+18925035\cdot 181^{125k+63}+259695447\cdot 181^{124k+62}+19652629\cdot 181^{123k+62}+268747811\cdot 181^{122k+61}+20274195\cdot 181^{121k+61}\\||+276454539\cdot 181^{120k+60}+20800417\cdot 181^{119k+60}+282938957\cdot 181^{118k+59}+21241583\cdot 181^{117k+59}+288393919\cdot 181^{116k+58}\\||+21618479\cdot 181^{115k+58}+293201889\cdot 181^{114k+57}+21966721\cdot 181^{113k+57}+297909063\cdot 181^{112k+56}+22328189\cdot 181^{111k+56}\\||+303034457\cdot 181^{110k+55}+22733571\cdot 181^{109k+55}+308835561\cdot 181^{108k+54}+23188473\cdot 181^{107k+54}+315206759\cdot 181^{106k+53}\\||+23673703\cdot 181^{105k+53}+321787617\cdot 181^{104k+52}+24159499\cdot 181^{103k+52}+328199001\cdot 181^{102k+51}+24622773\cdot 181^{101k+51}\\||+334222425\cdot 181^{100k+50}+25053845\cdot 181^{99k+50}+339786913\cdot 181^{98k+49}+25448387\cdot 181^{97k+49}+344794341\cdot 181^{96k+48}\\||+25792751\cdot 181^{95k+48}+348949301\cdot 181^{94k+47}+26056749\cdot 181^{93k+47}+351764987\cdot 181^{92k+46}+26202217\cdot 181^{91k+46}\\||+352769163\cdot 181^{90k+45}+26202217\cdot 181^{89k+45}+351764987\cdot 181^{88k+44}+26056749\cdot 181^{87k+44}+348949301\cdot 181^{86k+43}\\||+25792751\cdot 181^{85k+43}+344794341\cdot 181^{84k+42}+25448387\cdot 181^{83k+42}+339786913\cdot 181^{82k+41}+25053845\cdot 181^{81k+41}\\||+334222425\cdot 181^{80k+40}+24622773\cdot 181^{79k+40}+328199001\cdot 181^{78k+39}+24159499\cdot 181^{77k+39}+321787617\cdot 181^{76k+38}\\||+23673703\cdot 181^{75k+38}+315206759\cdot 181^{74k+37}+23188473\cdot 181^{73k+37}+308835561\cdot 181^{72k+36}+22733571\cdot 181^{71k+36}\\||+303034457\cdot 181^{70k+35}+22328189\cdot 181^{69k+35}+297909063\cdot 181^{68k+34}+21966721\cdot 181^{67k+34}+293201889\cdot 181^{66k+33}\\||+21618479\cdot 181^{65k+33}+288393919\cdot 181^{64k+32}+21241583\cdot 181^{63k+32}+282938957\cdot 181^{62k+31}+20800417\cdot 181^{61k+31}\\||+276454539\cdot 181^{60k+30}+20274195\cdot 181^{59k+30}+268747811\cdot 181^{58k+29}+19652629\cdot 181^{57k+29}+259695447\cdot 181^{56k+28}\\||+18925035\cdot 181^{55k+28}+249111207\cdot 181^{54k+27}+18074189\cdot 181^{53k+27}+236734871\cdot 181^{52k+26}+17081123\cdot 181^{51k+26}\\||+222359661\cdot 181^{50k+25}+15937367\cdot 181^{49k+25}+206000539\cdot 181^{48k+24}+14655111\cdot 181^{47k+24}+187970873\cdot 181^{46k+23}\\||+13267353\cdot 181^{45k+23}+168811581\cdot 181^{44k+22}+11818397\cdot 181^{43k+22}+149131357\cdot 181^{42k+21}+10351773\cdot 181^{41k+21}\\||+129469491\cdot 181^{40k+20}+8903485\cdot 181^{39k+20}+110260249\cdot 181^{38k+19}+7503129\cdot 181^{37k+19}+91883601\cdot 181^{36k+18}\\||+6178801\cdot 181^{35k+18}+74725283\cdot 181^{34k+17}+4959751\cdot 181^{33k+17}+59176395\cdot 181^{32k+16}+3873513\cdot 181^{31k+16}\\||+45564415\cdot 181^{30k+15}+2939613\cdot 181^{29k+15}+34069917\cdot 181^{28k+14}+2164643\cdot 181^{27k+14}+24689187\cdot 181^{26k+13}\\||+1542093\cdot 181^{25k+13}+17266213\cdot 181^{24k+12}+1056695\cdot 181^{23k+12}+11565409\cdot 181^{22k+11}+689935\cdot 181^{21k+11}\\||+7336493\cdot 181^{20k+10}+423641\cdot 181^{19k+10}+4342735\cdot 181^{18k+9}+240665\cdot 181^{17k+9}+2356143\cdot 181^{16k+8}\\||+124043\cdot 181^{15k+8}+1146995\cdot 181^{14k+7}+56667\cdot 181^{13k+7}+488127\cdot 181^{12k+6}+22275\cdot 181^{11k+6}\\||+175455\cdot 181^{10k+5}+7233\cdot 181^{9k+5}+50693\cdot 181^{8k+4}+1823\cdot 181^{7k+4}+10849\cdot 181^{6k+3}\\||+319\cdot 181^{5k+3}+1471\cdot 181^{4k+2}+31\cdot 181^{3k+2}+91\cdot 181^{2k+1}+181^{k+1}+1)\\{\large\Phi}_{364}(182^{2k+1})|=|182^{288k+144}+182^{284k+142}-182^{260k+130}-182^{256k+128}-182^{236k+118}\\||+182^{228k+114}+182^{208k+104}-182^{200k+100}+182^{184k+92}+182^{172k+86}\\||-182^{156k+78}-182^{144k+72}-182^{132k+66}+182^{116k+58}+182^{104k+52}\\||-182^{88k+44}+182^{80k+40}+182^{60k+30}-182^{52k+26}-182^{32k+16}\\||-182^{28k+14}+182^{4k+2}+1\\|=|(182^{144k+72}-182^{143k+72}+91\cdot 182^{142k+71}-30\cdot 182^{141k+71}+1320\cdot 182^{140k+70}\\||-246\cdot 182^{139k+70}+6552\cdot 182^{138k+69}-743\cdot 182^{137k+69}+10954\cdot 182^{136k+68}-397\cdot 182^{135k+68}\\||-9464\cdot 182^{134k+67}+2314\cdot 182^{133k+67}-50340\cdot 182^{132k+66}+3869\cdot 182^{131k+66}-24843\cdot 182^{130k+65}\\||-2276\cdot 182^{129k+65}+94389\cdot 182^{128k+64}-9766\cdot 182^{127k+64}+110656\cdot 182^{126k+63}-1712\cdot 182^{125k+63}\\||-101262\cdot 182^{124k+62}+14966\cdot 182^{123k+62}-216398\cdot 182^{122k+61}+8772\cdot 182^{121k+61}+58520\cdot 182^{120k+60}\\||-16958\cdot 182^{119k+60}+297479\cdot 182^{118k+59}-15930\cdot 182^{117k+59}+11486\cdot 182^{116k+58}+15666\cdot 182^{115k+58}\\||-333515\cdot 182^{114k+57}+21056\cdot 182^{113k+57}-84536\cdot 182^{112k+56}-11821\cdot 182^{111k+56}+316134\cdot 182^{110k+55}\\||-22372\cdot 182^{109k+55}+128514\cdot 182^{108k+54}+7701\cdot 182^{107k+54}-265720\cdot 182^{106k+53}+20102\cdot 182^{105k+53}\\||-124863\cdot 182^{104k+52}-6266\cdot 182^{103k+52}+236782\cdot 182^{102k+51}-18356\cdot 182^{101k+51}+113427\cdot 182^{100k+50}\\||+6646\cdot 182^{99k+50}-248612\cdot 182^{98k+49}+20336\cdot 182^{97k+49}-148386\cdot 182^{96k+48}-4998\cdot 182^{95k+48}\\||+261898\cdot 182^{94k+47}-24492\cdot 182^{93k+47}+228763\cdot 182^{92k+46}+89\cdot 182^{91k+46}-247702\cdot 182^{90k+45}\\||+28306\cdot 182^{89k+45}-323842\cdot 182^{88k+44}+6628\cdot 182^{87k+44}+209755\cdot 182^{86k+43}-30985\cdot 182^{85k+43}\\||+416942\cdot 182^{84k+42}-14356\cdot 182^{83k+42}-143962\cdot 182^{82k+41}+31058\cdot 182^{81k+41}-479706\cdot 182^{80k+40}\\||+21184\cdot 182^{79k+40}+63791\cdot 182^{78k+39}-28218\cdot 182^{77k+39}+490070\cdot 182^{76k+38}-24436\cdot 182^{75k+38}\\||-12558\cdot 182^{74k+37}+25612\cdot 182^{73k+37}-482173\cdot 182^{72k+36}+25612\cdot 182^{71k+36}-12558\cdot 182^{70k+35}\\||-24436\cdot 182^{69k+35}+490070\cdot 182^{68k+34}-28218\cdot 182^{67k+34}+63791\cdot 182^{66k+33}+21184\cdot 182^{65k+33}\\||-479706\cdot 182^{64k+32}+31058\cdot 182^{63k+32}-143962\cdot 182^{62k+31}-14356\cdot 182^{61k+31}+416942\cdot 182^{60k+30}\\||-30985\cdot 182^{59k+30}+209755\cdot 182^{58k+29}+6628\cdot 182^{57k+29}-323842\cdot 182^{56k+28}+28306\cdot 182^{55k+28}\\||-247702\cdot 182^{54k+27}+89\cdot 182^{53k+27}+228763\cdot 182^{52k+26}-24492\cdot 182^{51k+26}+261898\cdot 182^{50k+25}\\||-4998\cdot 182^{49k+25}-148386\cdot 182^{48k+24}+20336\cdot 182^{47k+24}-248612\cdot 182^{46k+23}+6646\cdot 182^{45k+23}\\||+113427\cdot 182^{44k+22}-18356\cdot 182^{43k+22}+236782\cdot 182^{42k+21}-6266\cdot 182^{41k+21}-124863\cdot 182^{40k+20}\\||+20102\cdot 182^{39k+20}-265720\cdot 182^{38k+19}+7701\cdot 182^{37k+19}+128514\cdot 182^{36k+18}-22372\cdot 182^{35k+18}\\||+316134\cdot 182^{34k+17}-11821\cdot 182^{33k+17}-84536\cdot 182^{32k+16}+21056\cdot 182^{31k+16}-333515\cdot 182^{30k+15}\\||+15666\cdot 182^{29k+15}+11486\cdot 182^{28k+14}-15930\cdot 182^{27k+14}+297479\cdot 182^{26k+13}-16958\cdot 182^{25k+13}\\||+58520\cdot 182^{24k+12}+8772\cdot 182^{23k+12}-216398\cdot 182^{22k+11}+14966\cdot 182^{21k+11}-101262\cdot 182^{20k+10}\\||-1712\cdot 182^{19k+10}+110656\cdot 182^{18k+9}-9766\cdot 182^{17k+9}+94389\cdot 182^{16k+8}-2276\cdot 182^{15k+8}\\||-24843\cdot 182^{14k+7}+3869\cdot 182^{13k+7}-50340\cdot 182^{12k+6}+2314\cdot 182^{11k+6}-9464\cdot 182^{10k+5}\\||-397\cdot 182^{9k+5}+10954\cdot 182^{8k+4}-743\cdot 182^{7k+4}+6552\cdot 182^{6k+3}-246\cdot 182^{5k+3}\\||+1320\cdot 182^{4k+2}-30\cdot 182^{3k+2}+91\cdot 182^{2k+1}-182^{k+1}+1)\\|\times|(182^{144k+72}+182^{143k+72}+91\cdot 182^{142k+71}+30\cdot 182^{141k+71}+1320\cdot 182^{140k+70}\\||+246\cdot 182^{139k+70}+6552\cdot 182^{138k+69}+743\cdot 182^{137k+69}+10954\cdot 182^{136k+68}+397\cdot 182^{135k+68}\\||-9464\cdot 182^{134k+67}-2314\cdot 182^{133k+67}-50340\cdot 182^{132k+66}-3869\cdot 182^{131k+66}-24843\cdot 182^{130k+65}\\||+2276\cdot 182^{129k+65}+94389\cdot 182^{128k+64}+9766\cdot 182^{127k+64}+110656\cdot 182^{126k+63}+1712\cdot 182^{125k+63}\\||-101262\cdot 182^{124k+62}-14966\cdot 182^{123k+62}-216398\cdot 182^{122k+61}-8772\cdot 182^{121k+61}+58520\cdot 182^{120k+60}\\||+16958\cdot 182^{119k+60}+297479\cdot 182^{118k+59}+15930\cdot 182^{117k+59}+11486\cdot 182^{116k+58}-15666\cdot 182^{115k+58}\\||-333515\cdot 182^{114k+57}-21056\cdot 182^{113k+57}-84536\cdot 182^{112k+56}+11821\cdot 182^{111k+56}+316134\cdot 182^{110k+55}\\||+22372\cdot 182^{109k+55}+128514\cdot 182^{108k+54}-7701\cdot 182^{107k+54}-265720\cdot 182^{106k+53}-20102\cdot 182^{105k+53}\\||-124863\cdot 182^{104k+52}+6266\cdot 182^{103k+52}+236782\cdot 182^{102k+51}+18356\cdot 182^{101k+51}+113427\cdot 182^{100k+50}\\||-6646\cdot 182^{99k+50}-248612\cdot 182^{98k+49}-20336\cdot 182^{97k+49}-148386\cdot 182^{96k+48}+4998\cdot 182^{95k+48}\\||+261898\cdot 182^{94k+47}+24492\cdot 182^{93k+47}+228763\cdot 182^{92k+46}-89\cdot 182^{91k+46}-247702\cdot 182^{90k+45}\\||-28306\cdot 182^{89k+45}-323842\cdot 182^{88k+44}-6628\cdot 182^{87k+44}+209755\cdot 182^{86k+43}+30985\cdot 182^{85k+43}\\||+416942\cdot 182^{84k+42}+14356\cdot 182^{83k+42}-143962\cdot 182^{82k+41}-31058\cdot 182^{81k+41}-479706\cdot 182^{80k+40}\\||-21184\cdot 182^{79k+40}+63791\cdot 182^{78k+39}+28218\cdot 182^{77k+39}+490070\cdot 182^{76k+38}+24436\cdot 182^{75k+38}\\||-12558\cdot 182^{74k+37}-25612\cdot 182^{73k+37}-482173\cdot 182^{72k+36}-25612\cdot 182^{71k+36}-12558\cdot 182^{70k+35}\\||+24436\cdot 182^{69k+35}+490070\cdot 182^{68k+34}+28218\cdot 182^{67k+34}+63791\cdot 182^{66k+33}-21184\cdot 182^{65k+33}\\||-479706\cdot 182^{64k+32}-31058\cdot 182^{63k+32}-143962\cdot 182^{62k+31}+14356\cdot 182^{61k+31}+416942\cdot 182^{60k+30}\\||+30985\cdot 182^{59k+30}+209755\cdot 182^{58k+29}-6628\cdot 182^{57k+29}-323842\cdot 182^{56k+28}-28306\cdot 182^{55k+28}\\||-247702\cdot 182^{54k+27}-89\cdot 182^{53k+27}+228763\cdot 182^{52k+26}+24492\cdot 182^{51k+26}+261898\cdot 182^{50k+25}\\||+4998\cdot 182^{49k+25}-148386\cdot 182^{48k+24}-20336\cdot 182^{47k+24}-248612\cdot 182^{46k+23}-6646\cdot 182^{45k+23}\\||+113427\cdot 182^{44k+22}+18356\cdot 182^{43k+22}+236782\cdot 182^{42k+21}+6266\cdot 182^{41k+21}-124863\cdot 182^{40k+20}\\||-20102\cdot 182^{39k+20}-265720\cdot 182^{38k+19}-7701\cdot 182^{37k+19}+128514\cdot 182^{36k+18}+22372\cdot 182^{35k+18}\\||+316134\cdot 182^{34k+17}+11821\cdot 182^{33k+17}-84536\cdot 182^{32k+16}-21056\cdot 182^{31k+16}-333515\cdot 182^{30k+15}\\||-15666\cdot 182^{29k+15}+11486\cdot 182^{28k+14}+15930\cdot 182^{27k+14}+297479\cdot 182^{26k+13}+16958\cdot 182^{25k+13}\\||+58520\cdot 182^{24k+12}-8772\cdot 182^{23k+12}-216398\cdot 182^{22k+11}-14966\cdot 182^{21k+11}-101262\cdot 182^{20k+10}\\||+1712\cdot 182^{19k+10}+110656\cdot 182^{18k+9}+9766\cdot 182^{17k+9}+94389\cdot 182^{16k+8}+2276\cdot 182^{15k+8}\\||-24843\cdot 182^{14k+7}-3869\cdot 182^{13k+7}-50340\cdot 182^{12k+6}-2314\cdot 182^{11k+6}-9464\cdot 182^{10k+5}\\||+397\cdot 182^{9k+5}+10954\cdot 182^{8k+4}+743\cdot 182^{7k+4}+6552\cdot 182^{6k+3}+246\cdot 182^{5k+3}\\||+1320\cdot 182^{4k+2}+30\cdot 182^{3k+2}+91\cdot 182^{2k+1}+182^{k+1}+1)\\{\large\Phi}_{366}(183^{2k+1})|=|183^{240k+120}+183^{238k+119}-183^{234k+117}-183^{232k+116}+183^{228k+114}\\||+183^{226k+113}-183^{222k+111}-183^{220k+110}+183^{216k+108}+183^{214k+107}\\||-183^{210k+105}-183^{208k+104}+183^{204k+102}+183^{202k+101}-183^{198k+99}\\||-183^{196k+98}+183^{192k+96}+183^{190k+95}-183^{186k+93}-183^{184k+92}\\||+183^{180k+90}+183^{178k+89}-183^{174k+87}-183^{172k+86}+183^{168k+84}\\||+183^{166k+83}-183^{162k+81}-183^{160k+80}+183^{156k+78}+183^{154k+77}\\||-183^{150k+75}-183^{148k+74}+183^{144k+72}+183^{142k+71}-183^{138k+69}\\||-183^{136k+68}+183^{132k+66}+183^{130k+65}-183^{126k+63}-183^{124k+62}\\||+183^{120k+60}-183^{116k+58}-183^{114k+57}+183^{110k+55}+183^{108k+54}\\||-183^{104k+52}-183^{102k+51}+183^{98k+49}+183^{96k+48}-183^{92k+46}\\||-183^{90k+45}+183^{86k+43}+183^{84k+42}-183^{80k+40}-183^{78k+39}\\||+183^{74k+37}+183^{72k+36}-183^{68k+34}-183^{66k+33}+183^{62k+31}\\||+183^{60k+30}-183^{56k+28}-183^{54k+27}+183^{50k+25}+183^{48k+24}\\||-183^{44k+22}-183^{42k+21}+183^{38k+19}+183^{36k+18}-183^{32k+16}\\||-183^{30k+15}+183^{26k+13}+183^{24k+12}-183^{20k+10}-183^{18k+9}\\||+183^{14k+7}+183^{12k+6}-183^{8k+4}-183^{6k+3}+183^{2k+1}+1\\|=|(183^{120k+60}-183^{119k+60}+92\cdot 183^{118k+59}-31\cdot 183^{117k+59}+1441\cdot 183^{116k+58}\\||-294\cdot 183^{115k+58}+9161\cdot 183^{114k+57}-1333\cdot 183^{113k+57}+30748\cdot 183^{112k+56}-3375\cdot 183^{111k+56}\\||+58811\cdot 183^{110k+55}-4774\cdot 183^{109k+55}+57643\cdot 183^{108k+54}-2649\cdot 183^{107k+54}+2528\cdot 183^{106k+53}\\||+2449\cdot 183^{105k+53}-58979\cdot 183^{104k+52}+4800\cdot 183^{103k+52}-48037\cdot 183^{102k+51}+1081\cdot 183^{101k+51}\\||+22150\cdot 183^{100k+50}-3591\cdot 183^{99k+50}+57227\cdot 183^{98k+49}-3718\cdot 183^{97k+49}+37291\cdot 183^{96k+48}\\||-2085\cdot 183^{95k+48}+26438\cdot 183^{94k+47}-1937\cdot 183^{93k+47}+16591\cdot 183^{92k+46}+732\cdot 183^{91k+46}\\||-49843\cdot 183^{90k+45}+6485\cdot 183^{89k+45}-102950\cdot 183^{88k+44}+6017\cdot 183^{87k+44}-24829\cdot 183^{86k+43}\\||-3546\cdot 183^{85k+43}+109615\cdot 183^{84k+42}-10175\cdot 183^{83k+42}+125432\cdot 183^{82k+41}-6225\cdot 183^{81k+41}\\||+35245\cdot 183^{80k+40}+212\cdot 183^{79k+40}-23953\cdot 183^{78k+39}+2607\cdot 183^{77k+39}-49586\cdot 183^{76k+38}\\||+5459\cdot 183^{75k+38}-101995\cdot 183^{74k+37}+8648\cdot 183^{73k+37}-101093\cdot 183^{72k+36}+3561\cdot 183^{71k+36}\\||+29804\cdot 183^{70k+35}-7873\cdot 183^{69k+35}+153583\cdot 183^{68k+34}-11440\cdot 183^{67k+34}+113597\cdot 183^{66k+33}\\||-3747\cdot 183^{65k+33}-7952\cdot 183^{64k+32}+3275\cdot 183^{63k+32}-55849\cdot 183^{62k+31}+3936\cdot 183^{61k+31}\\||-50327\cdot 183^{60k+30}+3936\cdot 183^{59k+30}-55849\cdot 183^{58k+29}+3275\cdot 183^{57k+29}-7952\cdot 183^{56k+28}\\||-3747\cdot 183^{55k+28}+113597\cdot 183^{54k+27}-11440\cdot 183^{53k+27}+153583\cdot 183^{52k+26}-7873\cdot 183^{51k+26}\\||+29804\cdot 183^{50k+25}+3561\cdot 183^{49k+25}-101093\cdot 183^{48k+24}+8648\cdot 183^{47k+24}-101995\cdot 183^{46k+23}\\||+5459\cdot 183^{45k+23}-49586\cdot 183^{44k+22}+2607\cdot 183^{43k+22}-23953\cdot 183^{42k+21}+212\cdot 183^{41k+21}\\||+35245\cdot 183^{40k+20}-6225\cdot 183^{39k+20}+125432\cdot 183^{38k+19}-10175\cdot 183^{37k+19}+109615\cdot 183^{36k+18}\\||-3546\cdot 183^{35k+18}-24829\cdot 183^{34k+17}+6017\cdot 183^{33k+17}-102950\cdot 183^{32k+16}+6485\cdot 183^{31k+16}\\||-49843\cdot 183^{30k+15}+732\cdot 183^{29k+15}+16591\cdot 183^{28k+14}-1937\cdot 183^{27k+14}+26438\cdot 183^{26k+13}\\||-2085\cdot 183^{25k+13}+37291\cdot 183^{24k+12}-3718\cdot 183^{23k+12}+57227\cdot 183^{22k+11}-3591\cdot 183^{21k+11}\\||+22150\cdot 183^{20k+10}+1081\cdot 183^{19k+10}-48037\cdot 183^{18k+9}+4800\cdot 183^{17k+9}-58979\cdot 183^{16k+8}\\||+2449\cdot 183^{15k+8}+2528\cdot 183^{14k+7}-2649\cdot 183^{13k+7}+57643\cdot 183^{12k+6}-4774\cdot 183^{11k+6}\\||+58811\cdot 183^{10k+5}-3375\cdot 183^{9k+5}+30748\cdot 183^{8k+4}-1333\cdot 183^{7k+4}+9161\cdot 183^{6k+3}\\||-294\cdot 183^{5k+3}+1441\cdot 183^{4k+2}-31\cdot 183^{3k+2}+92\cdot 183^{2k+1}-183^{k+1}+1)\\|\times|(183^{120k+60}+183^{119k+60}+92\cdot 183^{118k+59}+31\cdot 183^{117k+59}+1441\cdot 183^{116k+58}\\||+294\cdot 183^{115k+58}+9161\cdot 183^{114k+57}+1333\cdot 183^{113k+57}+30748\cdot 183^{112k+56}+3375\cdot 183^{111k+56}\\||+58811\cdot 183^{110k+55}+4774\cdot 183^{109k+55}+57643\cdot 183^{108k+54}+2649\cdot 183^{107k+54}+2528\cdot 183^{106k+53}\\||-2449\cdot 183^{105k+53}-58979\cdot 183^{104k+52}-4800\cdot 183^{103k+52}-48037\cdot 183^{102k+51}-1081\cdot 183^{101k+51}\\||+22150\cdot 183^{100k+50}+3591\cdot 183^{99k+50}+57227\cdot 183^{98k+49}+3718\cdot 183^{97k+49}+37291\cdot 183^{96k+48}\\||+2085\cdot 183^{95k+48}+26438\cdot 183^{94k+47}+1937\cdot 183^{93k+47}+16591\cdot 183^{92k+46}-732\cdot 183^{91k+46}\\||-49843\cdot 183^{90k+45}-6485\cdot 183^{89k+45}-102950\cdot 183^{88k+44}-6017\cdot 183^{87k+44}-24829\cdot 183^{86k+43}\\||+3546\cdot 183^{85k+43}+109615\cdot 183^{84k+42}+10175\cdot 183^{83k+42}+125432\cdot 183^{82k+41}+6225\cdot 183^{81k+41}\\||+35245\cdot 183^{80k+40}-212\cdot 183^{79k+40}-23953\cdot 183^{78k+39}-2607\cdot 183^{77k+39}-49586\cdot 183^{76k+38}\\||-5459\cdot 183^{75k+38}-101995\cdot 183^{74k+37}-8648\cdot 183^{73k+37}-101093\cdot 183^{72k+36}-3561\cdot 183^{71k+36}\\||+29804\cdot 183^{70k+35}+7873\cdot 183^{69k+35}+153583\cdot 183^{68k+34}+11440\cdot 183^{67k+34}+113597\cdot 183^{66k+33}\\||+3747\cdot 183^{65k+33}-7952\cdot 183^{64k+32}-3275\cdot 183^{63k+32}-55849\cdot 183^{62k+31}-3936\cdot 183^{61k+31}\\||-50327\cdot 183^{60k+30}-3936\cdot 183^{59k+30}-55849\cdot 183^{58k+29}-3275\cdot 183^{57k+29}-7952\cdot 183^{56k+28}\\||+3747\cdot 183^{55k+28}+113597\cdot 183^{54k+27}+11440\cdot 183^{53k+27}+153583\cdot 183^{52k+26}+7873\cdot 183^{51k+26}\\||+29804\cdot 183^{50k+25}-3561\cdot 183^{49k+25}-101093\cdot 183^{48k+24}-8648\cdot 183^{47k+24}-101995\cdot 183^{46k+23}\\||-5459\cdot 183^{45k+23}-49586\cdot 183^{44k+22}-2607\cdot 183^{43k+22}-23953\cdot 183^{42k+21}-212\cdot 183^{41k+21}\\||+35245\cdot 183^{40k+20}+6225\cdot 183^{39k+20}+125432\cdot 183^{38k+19}+10175\cdot 183^{37k+19}+109615\cdot 183^{36k+18}\\||+3546\cdot 183^{35k+18}-24829\cdot 183^{34k+17}-6017\cdot 183^{33k+17}-102950\cdot 183^{32k+16}-6485\cdot 183^{31k+16}\\||-49843\cdot 183^{30k+15}-732\cdot 183^{29k+15}+16591\cdot 183^{28k+14}+1937\cdot 183^{27k+14}+26438\cdot 183^{26k+13}\\||+2085\cdot 183^{25k+13}+37291\cdot 183^{24k+12}+3718\cdot 183^{23k+12}+57227\cdot 183^{22k+11}+3591\cdot 183^{21k+11}\\||+22150\cdot 183^{20k+10}-1081\cdot 183^{19k+10}-48037\cdot 183^{18k+9}-4800\cdot 183^{17k+9}-58979\cdot 183^{16k+8}\\||-2449\cdot 183^{15k+8}+2528\cdot 183^{14k+7}+2649\cdot 183^{13k+7}+57643\cdot 183^{12k+6}+4774\cdot 183^{11k+6}\\||+58811\cdot 183^{10k+5}+3375\cdot 183^{9k+5}+30748\cdot 183^{8k+4}+1333\cdot 183^{7k+4}+9161\cdot 183^{6k+3}\\||+294\cdot 183^{5k+3}+1441\cdot 183^{4k+2}+31\cdot 183^{3k+2}+92\cdot 183^{2k+1}+183^{k+1}+1)\\{\large\Phi}_{185}(185^{2k+1})|=|185^{288k+144}-185^{286k+143}+185^{278k+139}-185^{276k+138}+185^{268k+134}\\||-185^{266k+133}+185^{258k+129}-185^{256k+128}+185^{248k+124}-185^{246k+123}\\||+185^{238k+119}-185^{236k+118}+185^{228k+114}-185^{226k+113}+185^{218k+109}\\||-185^{216k+108}+185^{214k+107}-185^{212k+106}+185^{208k+104}-185^{206k+103}\\||+185^{204k+102}-185^{202k+101}+185^{198k+99}-185^{196k+98}+185^{194k+97}\\||-185^{192k+96}+185^{188k+94}-185^{186k+93}+185^{184k+92}-185^{182k+91}\\||+185^{178k+89}-185^{176k+88}+185^{174k+87}-185^{172k+86}+185^{168k+84}\\||-185^{166k+83}+185^{164k+82}-185^{162k+81}+185^{158k+79}-185^{156k+78}\\||+185^{154k+77}-185^{152k+76}+185^{148k+74}-185^{146k+73}+185^{144k+72}\\||-185^{142k+71}+185^{140k+70}-185^{136k+68}+185^{134k+67}-185^{132k+66}\\||+185^{130k+65}-185^{126k+63}+185^{124k+62}-185^{122k+61}+185^{120k+60}\\||-185^{116k+58}+185^{114k+57}-185^{112k+56}+185^{110k+55}-185^{106k+53}\\||+185^{104k+52}-185^{102k+51}+185^{100k+50}-185^{96k+48}+185^{94k+47}\\||-185^{92k+46}+185^{90k+45}-185^{86k+43}+185^{84k+42}-185^{82k+41}\\||+185^{80k+40}-185^{76k+38}+185^{74k+37}-185^{72k+36}+185^{70k+35}\\||-185^{62k+31}+185^{60k+30}-185^{52k+26}+185^{50k+25}-185^{42k+21}\\||+185^{40k+20}-185^{32k+16}+185^{30k+15}-185^{22k+11}+185^{20k+10}\\||-185^{12k+6}+185^{10k+5}-185^{2k+1}+1\\|=|(185^{144k+72}-185^{143k+72}+92\cdot 185^{142k+71}-30\cdot 185^{141k+71}+1318\cdot 185^{140k+70}\\||-239\cdot 185^{139k+70}+6209\cdot 185^{138k+69}-660\cdot 185^{137k+69}+8760\cdot 185^{136k+68}-170\cdot 185^{135k+68}\\||-11239\cdot 185^{134k+67}+2029\cdot 185^{133k+67}-37498\cdot 185^{132k+66}+2306\cdot 185^{131k+66}-6032\cdot 185^{130k+65}\\||-2317\cdot 185^{129k+65}+66569\cdot 185^{128k+64}-6138\cdot 185^{127k+64}+71990\cdot 185^{126k+63}-2230\cdot 185^{125k+63}\\||-33459\cdot 185^{124k+62}+7417\cdot 185^{123k+62}-145398\cdot 185^{122k+61}+10422\cdot 185^{121k+61}-80252\cdot 185^{120k+60}\\||-1733\cdot 185^{119k+60}+132909\cdot 185^{118k+59}-15160\cdot 185^{117k+59}+215070\cdot 185^{116k+58}-11268\cdot 185^{115k+58}\\||+35601\cdot 185^{114k+57}+7855\cdot 185^{113k+57}-231978\cdot 185^{112k+56}+21720\cdot 185^{111k+56}-265702\cdot 185^{110k+55}\\||+10365\cdot 185^{109k+55}+44179\cdot 185^{108k+54}-16865\cdot 185^{107k+54}+351725\cdot 185^{106k+53}-27106\cdot 185^{105k+53}\\||+270521\cdot 185^{104k+52}-5963\cdot 185^{103k+52}-148153\cdot 185^{102k+51}+25663\cdot 185^{101k+51}-453982\cdot 185^{100k+50}\\||+30819\cdot 185^{99k+50}-245131\cdot 185^{98k+49}-1367\cdot 185^{97k+49}+289115\cdot 185^{96k+48}-35242\cdot 185^{95k+48}\\||+526481\cdot 185^{94k+47}-30171\cdot 185^{93k+47}+159617\cdot 185^{92k+46}+11317\cdot 185^{91k+46}-433182\cdot 185^{90k+45}\\||+43035\cdot 185^{89k+45}-554711\cdot 185^{88k+44}+25365\cdot 185^{87k+44}-20085\cdot 185^{86k+43}-23326\cdot 185^{85k+43}\\||+559521\cdot 185^{84k+42}-46231\cdot 185^{83k+42}+501307\cdot 185^{82k+41}-15809\cdot 185^{81k+41}-141362\cdot 185^{80k+40}\\||+33533\cdot 185^{79k+40}-630101\cdot 185^{78k+39}+44773\cdot 185^{77k+39}-400145\cdot 185^{76k+38}+5102\cdot 185^{75k+38}\\||+281021\cdot 185^{74k+37}-40035\cdot 185^{73k+37}+642057\cdot 185^{72k+36}-40035\cdot 185^{71k+36}+281021\cdot 185^{70k+35}\\||+5102\cdot 185^{69k+35}-400145\cdot 185^{68k+34}+44773\cdot 185^{67k+34}-630101\cdot 185^{66k+33}+33533\cdot 185^{65k+33}\\||-141362\cdot 185^{64k+32}-15809\cdot 185^{63k+32}+501307\cdot 185^{62k+31}-46231\cdot 185^{61k+31}+559521\cdot 185^{60k+30}\\||-23326\cdot 185^{59k+30}-20085\cdot 185^{58k+29}+25365\cdot 185^{57k+29}-554711\cdot 185^{56k+28}+43035\cdot 185^{55k+28}\\||-433182\cdot 185^{54k+27}+11317\cdot 185^{53k+27}+159617\cdot 185^{52k+26}-30171\cdot 185^{51k+26}+526481\cdot 185^{50k+25}\\||-35242\cdot 185^{49k+25}+289115\cdot 185^{48k+24}-1367\cdot 185^{47k+24}-245131\cdot 185^{46k+23}+30819\cdot 185^{45k+23}\\||-453982\cdot 185^{44k+22}+25663\cdot 185^{43k+22}-148153\cdot 185^{42k+21}-5963\cdot 185^{41k+21}+270521\cdot 185^{40k+20}\\||-27106\cdot 185^{39k+20}+351725\cdot 185^{38k+19}-16865\cdot 185^{37k+19}+44179\cdot 185^{36k+18}+10365\cdot 185^{35k+18}\\||-265702\cdot 185^{34k+17}+21720\cdot 185^{33k+17}-231978\cdot 185^{32k+16}+7855\cdot 185^{31k+16}+35601\cdot 185^{30k+15}\\||-11268\cdot 185^{29k+15}+215070\cdot 185^{28k+14}-15160\cdot 185^{27k+14}+132909\cdot 185^{26k+13}-1733\cdot 185^{25k+13}\\||-80252\cdot 185^{24k+12}+10422\cdot 185^{23k+12}-145398\cdot 185^{22k+11}+7417\cdot 185^{21k+11}-33459\cdot 185^{20k+10}\\||-2230\cdot 185^{19k+10}+71990\cdot 185^{18k+9}-6138\cdot 185^{17k+9}+66569\cdot 185^{16k+8}-2317\cdot 185^{15k+8}\\||-6032\cdot 185^{14k+7}+2306\cdot 185^{13k+7}-37498\cdot 185^{12k+6}+2029\cdot 185^{11k+6}-11239\cdot 185^{10k+5}\\||-170\cdot 185^{9k+5}+8760\cdot 185^{8k+4}-660\cdot 185^{7k+4}+6209\cdot 185^{6k+3}-239\cdot 185^{5k+3}\\||+1318\cdot 185^{4k+2}-30\cdot 185^{3k+2}+92\cdot 185^{2k+1}-185^{k+1}+1)\\|\times|(185^{144k+72}+185^{143k+72}+92\cdot 185^{142k+71}+30\cdot 185^{141k+71}+1318\cdot 185^{140k+70}\\||+239\cdot 185^{139k+70}+6209\cdot 185^{138k+69}+660\cdot 185^{137k+69}+8760\cdot 185^{136k+68}+170\cdot 185^{135k+68}\\||-11239\cdot 185^{134k+67}-2029\cdot 185^{133k+67}-37498\cdot 185^{132k+66}-2306\cdot 185^{131k+66}-6032\cdot 185^{130k+65}\\||+2317\cdot 185^{129k+65}+66569\cdot 185^{128k+64}+6138\cdot 185^{127k+64}+71990\cdot 185^{126k+63}+2230\cdot 185^{125k+63}\\||-33459\cdot 185^{124k+62}-7417\cdot 185^{123k+62}-145398\cdot 185^{122k+61}-10422\cdot 185^{121k+61}-80252\cdot 185^{120k+60}\\||+1733\cdot 185^{119k+60}+132909\cdot 185^{118k+59}+15160\cdot 185^{117k+59}+215070\cdot 185^{116k+58}+11268\cdot 185^{115k+58}\\||+35601\cdot 185^{114k+57}-7855\cdot 185^{113k+57}-231978\cdot 185^{112k+56}-21720\cdot 185^{111k+56}-265702\cdot 185^{110k+55}\\||-10365\cdot 185^{109k+55}+44179\cdot 185^{108k+54}+16865\cdot 185^{107k+54}+351725\cdot 185^{106k+53}+27106\cdot 185^{105k+53}\\||+270521\cdot 185^{104k+52}+5963\cdot 185^{103k+52}-148153\cdot 185^{102k+51}-25663\cdot 185^{101k+51}-453982\cdot 185^{100k+50}\\||-30819\cdot 185^{99k+50}-245131\cdot 185^{98k+49}+1367\cdot 185^{97k+49}+289115\cdot 185^{96k+48}+35242\cdot 185^{95k+48}\\||+526481\cdot 185^{94k+47}+30171\cdot 185^{93k+47}+159617\cdot 185^{92k+46}-11317\cdot 185^{91k+46}-433182\cdot 185^{90k+45}\\||-43035\cdot 185^{89k+45}-554711\cdot 185^{88k+44}-25365\cdot 185^{87k+44}-20085\cdot 185^{86k+43}+23326\cdot 185^{85k+43}\\||+559521\cdot 185^{84k+42}+46231\cdot 185^{83k+42}+501307\cdot 185^{82k+41}+15809\cdot 185^{81k+41}-141362\cdot 185^{80k+40}\\||-33533\cdot 185^{79k+40}-630101\cdot 185^{78k+39}-44773\cdot 185^{77k+39}-400145\cdot 185^{76k+38}-5102\cdot 185^{75k+38}\\||+281021\cdot 185^{74k+37}+40035\cdot 185^{73k+37}+642057\cdot 185^{72k+36}+40035\cdot 185^{71k+36}+281021\cdot 185^{70k+35}\\||-5102\cdot 185^{69k+35}-400145\cdot 185^{68k+34}-44773\cdot 185^{67k+34}-630101\cdot 185^{66k+33}-33533\cdot 185^{65k+33}\\||-141362\cdot 185^{64k+32}+15809\cdot 185^{63k+32}+501307\cdot 185^{62k+31}+46231\cdot 185^{61k+31}+559521\cdot 185^{60k+30}\\||+23326\cdot 185^{59k+30}-20085\cdot 185^{58k+29}-25365\cdot 185^{57k+29}-554711\cdot 185^{56k+28}-43035\cdot 185^{55k+28}\\||-433182\cdot 185^{54k+27}-11317\cdot 185^{53k+27}+159617\cdot 185^{52k+26}+30171\cdot 185^{51k+26}+526481\cdot 185^{50k+25}\\||+35242\cdot 185^{49k+25}+289115\cdot 185^{48k+24}+1367\cdot 185^{47k+24}-245131\cdot 185^{46k+23}-30819\cdot 185^{45k+23}\\||-453982\cdot 185^{44k+22}-25663\cdot 185^{43k+22}-148153\cdot 185^{42k+21}+5963\cdot 185^{41k+21}+270521\cdot 185^{40k+20}\\||+27106\cdot 185^{39k+20}+351725\cdot 185^{38k+19}+16865\cdot 185^{37k+19}+44179\cdot 185^{36k+18}-10365\cdot 185^{35k+18}\\||-265702\cdot 185^{34k+17}-21720\cdot 185^{33k+17}-231978\cdot 185^{32k+16}-7855\cdot 185^{31k+16}+35601\cdot 185^{30k+15}\\||+11268\cdot 185^{29k+15}+215070\cdot 185^{28k+14}+15160\cdot 185^{27k+14}+132909\cdot 185^{26k+13}+1733\cdot 185^{25k+13}\\||-80252\cdot 185^{24k+12}-10422\cdot 185^{23k+12}-145398\cdot 185^{22k+11}-7417\cdot 185^{21k+11}-33459\cdot 185^{20k+10}\\||+2230\cdot 185^{19k+10}+71990\cdot 185^{18k+9}+6138\cdot 185^{17k+9}+66569\cdot 185^{16k+8}+2317\cdot 185^{15k+8}\\||-6032\cdot 185^{14k+7}-2306\cdot 185^{13k+7}-37498\cdot 185^{12k+6}-2029\cdot 185^{11k+6}-11239\cdot 185^{10k+5}\\||+170\cdot 185^{9k+5}+8760\cdot 185^{8k+4}+660\cdot 185^{7k+4}+6209\cdot 185^{6k+3}+239\cdot 185^{5k+3}\\||+1318\cdot 185^{4k+2}+30\cdot 185^{3k+2}+92\cdot 185^{2k+1}+185^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{372}(186^{2k+1})\cdots{\large\Phi}_{380}(190^{2k+1})$${\large\Phi}_{372}(186^{2k+1})\cdots{\large\Phi}_{380}(190^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{372}(186^{2k+1})|=|186^{240k+120}+186^{236k+118}-186^{228k+114}-186^{224k+112}+186^{216k+108}\\||+186^{212k+106}-186^{204k+102}-186^{200k+100}+186^{192k+96}+186^{188k+94}\\||-186^{180k+90}-186^{176k+88}+186^{168k+84}+186^{164k+82}-186^{156k+78}\\||-186^{152k+76}+186^{144k+72}+186^{140k+70}-186^{132k+66}-186^{128k+64}\\||+186^{120k+60}-186^{112k+56}-186^{108k+54}+186^{100k+50}+186^{96k+48}\\||-186^{88k+44}-186^{84k+42}+186^{76k+38}+186^{72k+36}-186^{64k+32}\\||-186^{60k+30}+186^{52k+26}+186^{48k+24}-186^{40k+20}-186^{36k+18}\\||+186^{28k+14}+186^{24k+12}-186^{16k+8}-186^{12k+6}+186^{4k+2}+1\\|=|(186^{120k+60}-186^{119k+60}+93\cdot 186^{118k+59}-31\cdot 186^{117k+59}+1442\cdot 186^{116k+58}\\||-289\cdot 186^{115k+58}+9021\cdot 186^{114k+57}-1311\cdot 186^{113k+57}+31585\cdot 186^{112k+56}-3744\cdot 186^{111k+56}\\||+77376\cdot 186^{110k+55}-8218\cdot 186^{109k+55}+157187\cdot 186^{108k+54}-15739\cdot 186^{107k+54}+285603\cdot 186^{106k+53}\\||-27127\cdot 186^{105k+53}+466750\cdot 186^{104k+52}-42151\cdot 186^{103k+52}+693687\cdot 186^{102k+51}-60343\cdot 186^{101k+51}\\||+961991\cdot 186^{100k+50}-81294\cdot 186^{99k+50}+1259592\cdot 186^{98k+49}-103426\cdot 186^{97k+49}+1558081\cdot 186^{96k+48}\\||-124657\cdot 186^{95k+48}+1835541\cdot 186^{94k+47}-143973\cdot 186^{93k+47}+2082638\cdot 186^{92k+46}-160653\cdot 186^{91k+46}\\||+2287149\cdot 186^{90k+45}-173826\cdot 186^{89k+45}+2442619\cdot 186^{88k+44}-183679\cdot 186^{87k+44}+2560290\cdot 186^{86k+43}\\||-191402\cdot 186^{85k+43}+2656865\cdot 186^{84k+42}-198048\cdot 186^{83k+42}+2743965\cdot 186^{82k+41}-204338\cdot 186^{81k+41}\\||+2830522\cdot 186^{80k+40}-210883\cdot 186^{79k+40}+2924199\cdot 186^{78k+39}-218162\cdot 186^{77k+39}+3029117\cdot 186^{76k+38}\\||-226153\cdot 186^{75k+38}+3139122\cdot 186^{74k+37}-234038\cdot 186^{73k+37}+3241591\cdot 186^{72k+36}-241110\cdot 186^{71k+36}\\||+3332283\cdot 186^{70k+35}-247344\cdot 186^{69k+35}+3410270\cdot 186^{68k+34}-252343\cdot 186^{67k+34}+3466017\cdot 186^{66k+33}\\||-255482\cdot 186^{65k+33}+3498139\cdot 186^{64k+32}-257317\cdot 186^{63k+32}+3518562\cdot 186^{62k+31}-258468\cdot 186^{61k+31}\\||+3527405\cdot 186^{60k+30}-258468\cdot 186^{59k+30}+3518562\cdot 186^{58k+29}-257317\cdot 186^{57k+29}+3498139\cdot 186^{56k+28}\\||-255482\cdot 186^{55k+28}+3466017\cdot 186^{54k+27}-252343\cdot 186^{53k+27}+3410270\cdot 186^{52k+26}-247344\cdot 186^{51k+26}\\||+3332283\cdot 186^{50k+25}-241110\cdot 186^{49k+25}+3241591\cdot 186^{48k+24}-234038\cdot 186^{47k+24}+3139122\cdot 186^{46k+23}\\||-226153\cdot 186^{45k+23}+3029117\cdot 186^{44k+22}-218162\cdot 186^{43k+22}+2924199\cdot 186^{42k+21}-210883\cdot 186^{41k+21}\\||+2830522\cdot 186^{40k+20}-204338\cdot 186^{39k+20}+2743965\cdot 186^{38k+19}-198048\cdot 186^{37k+19}+2656865\cdot 186^{36k+18}\\||-191402\cdot 186^{35k+18}+2560290\cdot 186^{34k+17}-183679\cdot 186^{33k+17}+2442619\cdot 186^{32k+16}-173826\cdot 186^{31k+16}\\||+2287149\cdot 186^{30k+15}-160653\cdot 186^{29k+15}+2082638\cdot 186^{28k+14}-143973\cdot 186^{27k+14}+1835541\cdot 186^{26k+13}\\||-124657\cdot 186^{25k+13}+1558081\cdot 186^{24k+12}-103426\cdot 186^{23k+12}+1259592\cdot 186^{22k+11}-81294\cdot 186^{21k+11}\\||+961991\cdot 186^{20k+10}-60343\cdot 186^{19k+10}+693687\cdot 186^{18k+9}-42151\cdot 186^{17k+9}+466750\cdot 186^{16k+8}\\||-27127\cdot 186^{15k+8}+285603\cdot 186^{14k+7}-15739\cdot 186^{13k+7}+157187\cdot 186^{12k+6}-8218\cdot 186^{11k+6}\\||+77376\cdot 186^{10k+5}-3744\cdot 186^{9k+5}+31585\cdot 186^{8k+4}-1311\cdot 186^{7k+4}+9021\cdot 186^{6k+3}\\||-289\cdot 186^{5k+3}+1442\cdot 186^{4k+2}-31\cdot 186^{3k+2}+93\cdot 186^{2k+1}-186^{k+1}+1)\\|\times|(186^{120k+60}+186^{119k+60}+93\cdot 186^{118k+59}+31\cdot 186^{117k+59}+1442\cdot 186^{116k+58}\\||+289\cdot 186^{115k+58}+9021\cdot 186^{114k+57}+1311\cdot 186^{113k+57}+31585\cdot 186^{112k+56}+3744\cdot 186^{111k+56}\\||+77376\cdot 186^{110k+55}+8218\cdot 186^{109k+55}+157187\cdot 186^{108k+54}+15739\cdot 186^{107k+54}+285603\cdot 186^{106k+53}\\||+27127\cdot 186^{105k+53}+466750\cdot 186^{104k+52}+42151\cdot 186^{103k+52}+693687\cdot 186^{102k+51}+60343\cdot 186^{101k+51}\\||+961991\cdot 186^{100k+50}+81294\cdot 186^{99k+50}+1259592\cdot 186^{98k+49}+103426\cdot 186^{97k+49}+1558081\cdot 186^{96k+48}\\||+124657\cdot 186^{95k+48}+1835541\cdot 186^{94k+47}+143973\cdot 186^{93k+47}+2082638\cdot 186^{92k+46}+160653\cdot 186^{91k+46}\\||+2287149\cdot 186^{90k+45}+173826\cdot 186^{89k+45}+2442619\cdot 186^{88k+44}+183679\cdot 186^{87k+44}+2560290\cdot 186^{86k+43}\\||+191402\cdot 186^{85k+43}+2656865\cdot 186^{84k+42}+198048\cdot 186^{83k+42}+2743965\cdot 186^{82k+41}+204338\cdot 186^{81k+41}\\||+2830522\cdot 186^{80k+40}+210883\cdot 186^{79k+40}+2924199\cdot 186^{78k+39}+218162\cdot 186^{77k+39}+3029117\cdot 186^{76k+38}\\||+226153\cdot 186^{75k+38}+3139122\cdot 186^{74k+37}+234038\cdot 186^{73k+37}+3241591\cdot 186^{72k+36}+241110\cdot 186^{71k+36}\\||+3332283\cdot 186^{70k+35}+247344\cdot 186^{69k+35}+3410270\cdot 186^{68k+34}+252343\cdot 186^{67k+34}+3466017\cdot 186^{66k+33}\\||+255482\cdot 186^{65k+33}+3498139\cdot 186^{64k+32}+257317\cdot 186^{63k+32}+3518562\cdot 186^{62k+31}+258468\cdot 186^{61k+31}\\||+3527405\cdot 186^{60k+30}+258468\cdot 186^{59k+30}+3518562\cdot 186^{58k+29}+257317\cdot 186^{57k+29}+3498139\cdot 186^{56k+28}\\||+255482\cdot 186^{55k+28}+3466017\cdot 186^{54k+27}+252343\cdot 186^{53k+27}+3410270\cdot 186^{52k+26}+247344\cdot 186^{51k+26}\\||+3332283\cdot 186^{50k+25}+241110\cdot 186^{49k+25}+3241591\cdot 186^{48k+24}+234038\cdot 186^{47k+24}+3139122\cdot 186^{46k+23}\\||+226153\cdot 186^{45k+23}+3029117\cdot 186^{44k+22}+218162\cdot 186^{43k+22}+2924199\cdot 186^{42k+21}+210883\cdot 186^{41k+21}\\||+2830522\cdot 186^{40k+20}+204338\cdot 186^{39k+20}+2743965\cdot 186^{38k+19}+198048\cdot 186^{37k+19}+2656865\cdot 186^{36k+18}\\||+191402\cdot 186^{35k+18}+2560290\cdot 186^{34k+17}+183679\cdot 186^{33k+17}+2442619\cdot 186^{32k+16}+173826\cdot 186^{31k+16}\\||+2287149\cdot 186^{30k+15}+160653\cdot 186^{29k+15}+2082638\cdot 186^{28k+14}+143973\cdot 186^{27k+14}+1835541\cdot 186^{26k+13}\\||+124657\cdot 186^{25k+13}+1558081\cdot 186^{24k+12}+103426\cdot 186^{23k+12}+1259592\cdot 186^{22k+11}+81294\cdot 186^{21k+11}\\||+961991\cdot 186^{20k+10}+60343\cdot 186^{19k+10}+693687\cdot 186^{18k+9}+42151\cdot 186^{17k+9}+466750\cdot 186^{16k+8}\\||+27127\cdot 186^{15k+8}+285603\cdot 186^{14k+7}+15739\cdot 186^{13k+7}+157187\cdot 186^{12k+6}+8218\cdot 186^{11k+6}\\||+77376\cdot 186^{10k+5}+3744\cdot 186^{9k+5}+31585\cdot 186^{8k+4}+1311\cdot 186^{7k+4}+9021\cdot 186^{6k+3}\\||+289\cdot 186^{5k+3}+1442\cdot 186^{4k+2}+31\cdot 186^{3k+2}+93\cdot 186^{2k+1}+186^{k+1}+1)\\{\large\Phi}_{374}(187^{2k+1})|=|187^{320k+160}+187^{318k+159}-187^{298k+149}-187^{296k+148}-187^{286k+143}\\||-187^{284k+142}+187^{276k+138}+187^{274k+137}+187^{264k+132}+187^{262k+131}\\||-187^{254k+127}+187^{250k+125}-187^{242k+121}-187^{240k+120}+187^{232k+116}\\||-187^{228k+114}+187^{220k+110}-187^{216k+108}-187^{210k+105}+187^{206k+103}\\||-187^{198k+99}+187^{194k+97}+187^{188k+94}+187^{182k+91}+187^{176k+88}\\||-187^{172k+86}-187^{166k+83}-187^{160k+80}-187^{154k+77}-187^{148k+74}\\||+187^{144k+72}+187^{138k+69}+187^{132k+66}+187^{126k+63}-187^{122k+61}\\||+187^{114k+57}-187^{110k+55}-187^{104k+52}+187^{100k+50}-187^{92k+46}\\||+187^{88k+44}-187^{80k+40}-187^{78k+39}+187^{70k+35}-187^{66k+33}\\||+187^{58k+29}+187^{56k+28}+187^{46k+23}+187^{44k+22}-187^{36k+18}\\||-187^{34k+17}-187^{24k+12}-187^{22k+11}+187^{2k+1}+1\\|=|(187^{160k+80}-187^{159k+80}+94\cdot 187^{158k+79}-32\cdot 187^{157k+79}+1566\cdot 187^{156k+78}\\||-338\cdot 187^{155k+78}+11746\cdot 187^{154k+77}-1932\cdot 187^{153k+77}+53574\cdot 187^{152k+76}-7254\cdot 187^{151k+76}\\||+169208\cdot 187^{150k+75}-19563\cdot 187^{149k+75}+393515\cdot 187^{148k+74}-39454\cdot 187^{147k+74}+689216\cdot 187^{146k+73}\\||-59808\cdot 187^{145k+73}+895246\cdot 187^{144k+72}-65173\cdot 187^{143k+72}+783123\cdot 187^{142k+71}-41180\cdot 187^{141k+71}\\||+243474\cdot 187^{140k+70}+10442\cdot 187^{139k+70}-546525\cdot 187^{138k+69}+66707\cdot 187^{137k+69}-1190404\cdot 187^{136k+68}\\||+98682\cdot 187^{135k+68}-1382594\cdot 187^{134k+67}+95648\cdot 187^{133k+67}-1161125\cdot 187^{132k+66}+71825\cdot 187^{131k+66}\\||-801970\cdot 187^{130k+65}+46206\cdot 187^{129k+65}-461324\cdot 187^{128k+64}+19309\cdot 187^{127k+64}-10600\cdot 187^{126k+63}\\||-23179\cdot 187^{125k+63}+714194\cdot 187^{124k+62}-84180\cdot 187^{123k+62}+1578520\cdot 187^{122k+61}-141913\cdot 187^{121k+61}\\||+2190255\cdot 187^{120k+60}-168172\cdot 187^{119k+60}+2264172\cdot 187^{118k+59}-153304\cdot 187^{117k+59}+1816131\cdot 187^{116k+58}\\||-105248\cdot 187^{115k+58}+972279\cdot 187^{114k+57}-30364\cdot 187^{113k+57}-228290\cdot 187^{112k+56}+68592\cdot 187^{111k+56}\\||-1667635\cdot 187^{110k+55}+171484\cdot 187^{109k+55}-2883107\cdot 187^{108k+54}+234026\cdot 187^{107k+54}-3242486\cdot 187^{106k+53}\\||+219395\cdot 187^{105k+53}-2512602\cdot 187^{104k+52}+135869\cdot 187^{103k+52}-1132216\cdot 187^{102k+51}+30954\cdot 187^{101k+51}\\||+209948\cdot 187^{100k+50}-54675\cdot 187^{99k+50}+1204928\cdot 187^{98k+49}-118163\cdot 187^{97k+49}+2012540\cdot 187^{96k+48}\\||-175976\cdot 187^{95k+48}+2778701\cdot 187^{94k+47}-225402\cdot 187^{93k+47}+3254602\cdot 187^{92k+46}-236579\cdot 187^{91k+46}\\||+2983520\cdot 187^{90k+45}-182140\cdot 187^{89k+45}+1782647\cdot 187^{88k+44}-66900\cdot 187^{87k+44}-38139\cdot 187^{86k+43}\\||+72794\cdot 187^{85k+43}-1881076\cdot 187^{84k+42}+192431\cdot 187^{83k+42}-3198780\cdot 187^{82k+41}+259680\cdot 187^{81k+41}\\||-3670407\cdot 187^{80k+40}+259680\cdot 187^{79k+40}-3198780\cdot 187^{78k+39}+192431\cdot 187^{77k+39}-1881076\cdot 187^{76k+38}\\||+72794\cdot 187^{75k+38}-38139\cdot 187^{74k+37}-66900\cdot 187^{73k+37}+1782647\cdot 187^{72k+36}-182140\cdot 187^{71k+36}\\||+2983520\cdot 187^{70k+35}-236579\cdot 187^{69k+35}+3254602\cdot 187^{68k+34}-225402\cdot 187^{67k+34}+2778701\cdot 187^{66k+33}\\||-175976\cdot 187^{65k+33}+2012540\cdot 187^{64k+32}-118163\cdot 187^{63k+32}+1204928\cdot 187^{62k+31}-54675\cdot 187^{61k+31}\\||+209948\cdot 187^{60k+30}+30954\cdot 187^{59k+30}-1132216\cdot 187^{58k+29}+135869\cdot 187^{57k+29}-2512602\cdot 187^{56k+28}\\||+219395\cdot 187^{55k+28}-3242486\cdot 187^{54k+27}+234026\cdot 187^{53k+27}-2883107\cdot 187^{52k+26}+171484\cdot 187^{51k+26}\\||-1667635\cdot 187^{50k+25}+68592\cdot 187^{49k+25}-228290\cdot 187^{48k+24}-30364\cdot 187^{47k+24}+972279\cdot 187^{46k+23}\\||-105248\cdot 187^{45k+23}+1816131\cdot 187^{44k+22}-153304\cdot 187^{43k+22}+2264172\cdot 187^{42k+21}-168172\cdot 187^{41k+21}\\||+2190255\cdot 187^{40k+20}-141913\cdot 187^{39k+20}+1578520\cdot 187^{38k+19}-84180\cdot 187^{37k+19}+714194\cdot 187^{36k+18}\\||-23179\cdot 187^{35k+18}-10600\cdot 187^{34k+17}+19309\cdot 187^{33k+17}-461324\cdot 187^{32k+16}+46206\cdot 187^{31k+16}\\||-801970\cdot 187^{30k+15}+71825\cdot 187^{29k+15}-1161125\cdot 187^{28k+14}+95648\cdot 187^{27k+14}-1382594\cdot 187^{26k+13}\\||+98682\cdot 187^{25k+13}-1190404\cdot 187^{24k+12}+66707\cdot 187^{23k+12}-546525\cdot 187^{22k+11}+10442\cdot 187^{21k+11}\\||+243474\cdot 187^{20k+10}-41180\cdot 187^{19k+10}+783123\cdot 187^{18k+9}-65173\cdot 187^{17k+9}+895246\cdot 187^{16k+8}\\||-59808\cdot 187^{15k+8}+689216\cdot 187^{14k+7}-39454\cdot 187^{13k+7}+393515\cdot 187^{12k+6}-19563\cdot 187^{11k+6}\\||+169208\cdot 187^{10k+5}-7254\cdot 187^{9k+5}+53574\cdot 187^{8k+4}-1932\cdot 187^{7k+4}+11746\cdot 187^{6k+3}\\||-338\cdot 187^{5k+3}+1566\cdot 187^{4k+2}-32\cdot 187^{3k+2}+94\cdot 187^{2k+1}-187^{k+1}+1)\\|\times|(187^{160k+80}+187^{159k+80}+94\cdot 187^{158k+79}+32\cdot 187^{157k+79}+1566\cdot 187^{156k+78}\\||+338\cdot 187^{155k+78}+11746\cdot 187^{154k+77}+1932\cdot 187^{153k+77}+53574\cdot 187^{152k+76}+7254\cdot 187^{151k+76}\\||+169208\cdot 187^{150k+75}+19563\cdot 187^{149k+75}+393515\cdot 187^{148k+74}+39454\cdot 187^{147k+74}+689216\cdot 187^{146k+73}\\||+59808\cdot 187^{145k+73}+895246\cdot 187^{144k+72}+65173\cdot 187^{143k+72}+783123\cdot 187^{142k+71}+41180\cdot 187^{141k+71}\\||+243474\cdot 187^{140k+70}-10442\cdot 187^{139k+70}-546525\cdot 187^{138k+69}-66707\cdot 187^{137k+69}-1190404\cdot 187^{136k+68}\\||-98682\cdot 187^{135k+68}-1382594\cdot 187^{134k+67}-95648\cdot 187^{133k+67}-1161125\cdot 187^{132k+66}-71825\cdot 187^{131k+66}\\||-801970\cdot 187^{130k+65}-46206\cdot 187^{129k+65}-461324\cdot 187^{128k+64}-19309\cdot 187^{127k+64}-10600\cdot 187^{126k+63}\\||+23179\cdot 187^{125k+63}+714194\cdot 187^{124k+62}+84180\cdot 187^{123k+62}+1578520\cdot 187^{122k+61}+141913\cdot 187^{121k+61}\\||+2190255\cdot 187^{120k+60}+168172\cdot 187^{119k+60}+2264172\cdot 187^{118k+59}+153304\cdot 187^{117k+59}+1816131\cdot 187^{116k+58}\\||+105248\cdot 187^{115k+58}+972279\cdot 187^{114k+57}+30364\cdot 187^{113k+57}-228290\cdot 187^{112k+56}-68592\cdot 187^{111k+56}\\||-1667635\cdot 187^{110k+55}-171484\cdot 187^{109k+55}-2883107\cdot 187^{108k+54}-234026\cdot 187^{107k+54}-3242486\cdot 187^{106k+53}\\||-219395\cdot 187^{105k+53}-2512602\cdot 187^{104k+52}-135869\cdot 187^{103k+52}-1132216\cdot 187^{102k+51}-30954\cdot 187^{101k+51}\\||+209948\cdot 187^{100k+50}+54675\cdot 187^{99k+50}+1204928\cdot 187^{98k+49}+118163\cdot 187^{97k+49}+2012540\cdot 187^{96k+48}\\||+175976\cdot 187^{95k+48}+2778701\cdot 187^{94k+47}+225402\cdot 187^{93k+47}+3254602\cdot 187^{92k+46}+236579\cdot 187^{91k+46}\\||+2983520\cdot 187^{90k+45}+182140\cdot 187^{89k+45}+1782647\cdot 187^{88k+44}+66900\cdot 187^{87k+44}-38139\cdot 187^{86k+43}\\||-72794\cdot 187^{85k+43}-1881076\cdot 187^{84k+42}-192431\cdot 187^{83k+42}-3198780\cdot 187^{82k+41}-259680\cdot 187^{81k+41}\\||-3670407\cdot 187^{80k+40}-259680\cdot 187^{79k+40}-3198780\cdot 187^{78k+39}-192431\cdot 187^{77k+39}-1881076\cdot 187^{76k+38}\\||-72794\cdot 187^{75k+38}-38139\cdot 187^{74k+37}+66900\cdot 187^{73k+37}+1782647\cdot 187^{72k+36}+182140\cdot 187^{71k+36}\\||+2983520\cdot 187^{70k+35}+236579\cdot 187^{69k+35}+3254602\cdot 187^{68k+34}+225402\cdot 187^{67k+34}+2778701\cdot 187^{66k+33}\\||+175976\cdot 187^{65k+33}+2012540\cdot 187^{64k+32}+118163\cdot 187^{63k+32}+1204928\cdot 187^{62k+31}+54675\cdot 187^{61k+31}\\||+209948\cdot 187^{60k+30}-30954\cdot 187^{59k+30}-1132216\cdot 187^{58k+29}-135869\cdot 187^{57k+29}-2512602\cdot 187^{56k+28}\\||-219395\cdot 187^{55k+28}-3242486\cdot 187^{54k+27}-234026\cdot 187^{53k+27}-2883107\cdot 187^{52k+26}-171484\cdot 187^{51k+26}\\||-1667635\cdot 187^{50k+25}-68592\cdot 187^{49k+25}-228290\cdot 187^{48k+24}+30364\cdot 187^{47k+24}+972279\cdot 187^{46k+23}\\||+105248\cdot 187^{45k+23}+1816131\cdot 187^{44k+22}+153304\cdot 187^{43k+22}+2264172\cdot 187^{42k+21}+168172\cdot 187^{41k+21}\\||+2190255\cdot 187^{40k+20}+141913\cdot 187^{39k+20}+1578520\cdot 187^{38k+19}+84180\cdot 187^{37k+19}+714194\cdot 187^{36k+18}\\||+23179\cdot 187^{35k+18}-10600\cdot 187^{34k+17}-19309\cdot 187^{33k+17}-461324\cdot 187^{32k+16}-46206\cdot 187^{31k+16}\\||-801970\cdot 187^{30k+15}-71825\cdot 187^{29k+15}-1161125\cdot 187^{28k+14}-95648\cdot 187^{27k+14}-1382594\cdot 187^{26k+13}\\||-98682\cdot 187^{25k+13}-1190404\cdot 187^{24k+12}-66707\cdot 187^{23k+12}-546525\cdot 187^{22k+11}-10442\cdot 187^{21k+11}\\||+243474\cdot 187^{20k+10}+41180\cdot 187^{19k+10}+783123\cdot 187^{18k+9}+65173\cdot 187^{17k+9}+895246\cdot 187^{16k+8}\\||+59808\cdot 187^{15k+8}+689216\cdot 187^{14k+7}+39454\cdot 187^{13k+7}+393515\cdot 187^{12k+6}+19563\cdot 187^{11k+6}\\||+169208\cdot 187^{10k+5}+7254\cdot 187^{9k+5}+53574\cdot 187^{8k+4}+1932\cdot 187^{7k+4}+11746\cdot 187^{6k+3}\\||+338\cdot 187^{5k+3}+1566\cdot 187^{4k+2}+32\cdot 187^{3k+2}+94\cdot 187^{2k+1}+187^{k+1}+1)\\{\large\Phi}_{380}(190^{2k+1})|=|190^{288k+144}+190^{284k+142}-190^{268k+134}-190^{264k+132}+190^{248k+124}\\||+190^{244k+122}-190^{228k+114}-190^{224k+112}-190^{212k+106}+190^{204k+102}\\||+190^{192k+96}-190^{184k+92}-190^{172k+86}+190^{164k+82}+190^{152k+76}\\||-190^{144k+72}+190^{136k+68}+190^{124k+62}-190^{116k+58}-190^{104k+52}\\||+190^{96k+48}+190^{84k+42}-190^{76k+38}-190^{64k+32}-190^{60k+30}\\||+190^{44k+22}+190^{40k+20}-190^{24k+12}-190^{20k+10}+190^{4k+2}+1\\|=|(190^{144k+72}-190^{143k+72}+95\cdot 190^{142k+71}-32\cdot 190^{141k+71}+1568\cdot 190^{140k+70}\\||-333\cdot 190^{139k+70}+11590\cdot 190^{138k+69}-1889\cdot 190^{137k+69}+53188\cdot 190^{136k+68}-7282\cdot 190^{135k+68}\\||+177175\cdot 190^{134k+67}-21431\cdot 190^{133k+67}+469021\cdot 190^{132k+66}-51796\cdot 190^{131k+66}+1048040\cdot 190^{130k+65}\\||-108164\cdot 190^{129k+65}+2064180\cdot 190^{128k+64}-202488\cdot 190^{127k+64}+3696640\cdot 190^{126k+63}-348721\cdot 190^{125k+63}\\||+6147749\cdot 190^{124k+62}-561864\cdot 190^{123k+62}+9620745\cdot 190^{122k+61}-855696\cdot 190^{121k+61}+14281802\cdot 190^{120k+60}\\||-1239839\cdot 190^{119k+60}+20222080\cdot 190^{118k+59}-1717505\cdot 190^{117k+59}+27436012\cdot 190^{116k+58}-2284597\cdot 190^{115k+58}\\||+35816235\cdot 190^{114k+57}-2929660\cdot 190^{113k+57}+45154739\cdot 190^{112k+56}-3634034\cdot 190^{111k+56}+55147500\cdot 190^{110k+55}\\||-4372630\cdot 190^{109k+55}+65415480\cdot 190^{108k+54}-5116452\cdot 190^{107k+54}+75554355\cdot 190^{106k+53}-5837136\cdot 190^{105k+53}\\||+85204556\cdot 190^{104k+52}-6512046\cdot 190^{103k+52}+94114315\cdot 190^{102k+51}-7127901\cdot 190^{101k+51}+102173648\cdot 190^{100k+50}\\||-7682106\cdot 190^{99k+50}+109419860\cdot 190^{98k+49}-8182475\cdot 190^{97k+49}+116027093\cdot 190^{96k+48}-8646046\cdot 190^{95k+48}\\||+122282480\cdot 190^{94k+47}-9096568\cdot 190^{93k+47}+128537521\cdot 190^{92k+46}-9559860\cdot 190^{91k+46}+135130280\cdot 190^{90k+45}\\||-10057504\cdot 190^{89k+45}+142296560\cdot 190^{88k+44}-10600854\cdot 190^{87k+44}+150100665\cdot 190^{86k+43}-11187330\cdot 190^{85k+43}\\||+158404584\cdot 190^{84k+42}-11799626\cdot 190^{83k+42}+166875005\cdot 190^{82k+41}-12407353\cdot 190^{81k+41}+175019832\cdot 190^{80k+40}\\||-12970614\cdot 190^{79k+40}+182249520\cdot 190^{78k+39}-13445277\cdot 190^{77k+39}+187959767\cdot 190^{76k+38}-13789520\cdot 190^{75k+38}\\||+191625640\cdot 190^{74k+37}-13970624\cdot 190^{73k+37}+192889839\cdot 190^{72k+36}-13970624\cdot 190^{71k+36}+191625640\cdot 190^{70k+35}\\||-13789520\cdot 190^{69k+35}+187959767\cdot 190^{68k+34}-13445277\cdot 190^{67k+34}+182249520\cdot 190^{66k+33}-12970614\cdot 190^{65k+33}\\||+175019832\cdot 190^{64k+32}-12407353\cdot 190^{63k+32}+166875005\cdot 190^{62k+31}-11799626\cdot 190^{61k+31}+158404584\cdot 190^{60k+30}\\||-11187330\cdot 190^{59k+30}+150100665\cdot 190^{58k+29}-10600854\cdot 190^{57k+29}+142296560\cdot 190^{56k+28}-10057504\cdot 190^{55k+28}\\||+135130280\cdot 190^{54k+27}-9559860\cdot 190^{53k+27}+128537521\cdot 190^{52k+26}-9096568\cdot 190^{51k+26}+122282480\cdot 190^{50k+25}\\||-8646046\cdot 190^{49k+25}+116027093\cdot 190^{48k+24}-8182475\cdot 190^{47k+24}+109419860\cdot 190^{46k+23}-7682106\cdot 190^{45k+23}\\||+102173648\cdot 190^{44k+22}-7127901\cdot 190^{43k+22}+94114315\cdot 190^{42k+21}-6512046\cdot 190^{41k+21}+85204556\cdot 190^{40k+20}\\||-5837136\cdot 190^{39k+20}+75554355\cdot 190^{38k+19}-5116452\cdot 190^{37k+19}+65415480\cdot 190^{36k+18}-4372630\cdot 190^{35k+18}\\||+55147500\cdot 190^{34k+17}-3634034\cdot 190^{33k+17}+45154739\cdot 190^{32k+16}-2929660\cdot 190^{31k+16}+35816235\cdot 190^{30k+15}\\||-2284597\cdot 190^{29k+15}+27436012\cdot 190^{28k+14}-1717505\cdot 190^{27k+14}+20222080\cdot 190^{26k+13}-1239839\cdot 190^{25k+13}\\||+14281802\cdot 190^{24k+12}-855696\cdot 190^{23k+12}+9620745\cdot 190^{22k+11}-561864\cdot 190^{21k+11}+6147749\cdot 190^{20k+10}\\||-348721\cdot 190^{19k+10}+3696640\cdot 190^{18k+9}-202488\cdot 190^{17k+9}+2064180\cdot 190^{16k+8}-108164\cdot 190^{15k+8}\\||+1048040\cdot 190^{14k+7}-51796\cdot 190^{13k+7}+469021\cdot 190^{12k+6}-21431\cdot 190^{11k+6}+177175\cdot 190^{10k+5}\\||-7282\cdot 190^{9k+5}+53188\cdot 190^{8k+4}-1889\cdot 190^{7k+4}+11590\cdot 190^{6k+3}-333\cdot 190^{5k+3}\\||+1568\cdot 190^{4k+2}-32\cdot 190^{3k+2}+95\cdot 190^{2k+1}-190^{k+1}+1)\\|\times|(190^{144k+72}+190^{143k+72}+95\cdot 190^{142k+71}+32\cdot 190^{141k+71}+1568\cdot 190^{140k+70}\\||+333\cdot 190^{139k+70}+11590\cdot 190^{138k+69}+1889\cdot 190^{137k+69}+53188\cdot 190^{136k+68}+7282\cdot 190^{135k+68}\\||+177175\cdot 190^{134k+67}+21431\cdot 190^{133k+67}+469021\cdot 190^{132k+66}+51796\cdot 190^{131k+66}+1048040\cdot 190^{130k+65}\\||+108164\cdot 190^{129k+65}+2064180\cdot 190^{128k+64}+202488\cdot 190^{127k+64}+3696640\cdot 190^{126k+63}+348721\cdot 190^{125k+63}\\||+6147749\cdot 190^{124k+62}+561864\cdot 190^{123k+62}+9620745\cdot 190^{122k+61}+855696\cdot 190^{121k+61}+14281802\cdot 190^{120k+60}\\||+1239839\cdot 190^{119k+60}+20222080\cdot 190^{118k+59}+1717505\cdot 190^{117k+59}+27436012\cdot 190^{116k+58}+2284597\cdot 190^{115k+58}\\||+35816235\cdot 190^{114k+57}+2929660\cdot 190^{113k+57}+45154739\cdot 190^{112k+56}+3634034\cdot 190^{111k+56}+55147500\cdot 190^{110k+55}\\||+4372630\cdot 190^{109k+55}+65415480\cdot 190^{108k+54}+5116452\cdot 190^{107k+54}+75554355\cdot 190^{106k+53}+5837136\cdot 190^{105k+53}\\||+85204556\cdot 190^{104k+52}+6512046\cdot 190^{103k+52}+94114315\cdot 190^{102k+51}+7127901\cdot 190^{101k+51}+102173648\cdot 190^{100k+50}\\||+7682106\cdot 190^{99k+50}+109419860\cdot 190^{98k+49}+8182475\cdot 190^{97k+49}+116027093\cdot 190^{96k+48}+8646046\cdot 190^{95k+48}\\||+122282480\cdot 190^{94k+47}+9096568\cdot 190^{93k+47}+128537521\cdot 190^{92k+46}+9559860\cdot 190^{91k+46}+135130280\cdot 190^{90k+45}\\||+10057504\cdot 190^{89k+45}+142296560\cdot 190^{88k+44}+10600854\cdot 190^{87k+44}+150100665\cdot 190^{86k+43}+11187330\cdot 190^{85k+43}\\||+158404584\cdot 190^{84k+42}+11799626\cdot 190^{83k+42}+166875005\cdot 190^{82k+41}+12407353\cdot 190^{81k+41}+175019832\cdot 190^{80k+40}\\||+12970614\cdot 190^{79k+40}+182249520\cdot 190^{78k+39}+13445277\cdot 190^{77k+39}+187959767\cdot 190^{76k+38}+13789520\cdot 190^{75k+38}\\||+191625640\cdot 190^{74k+37}+13970624\cdot 190^{73k+37}+192889839\cdot 190^{72k+36}+13970624\cdot 190^{71k+36}+191625640\cdot 190^{70k+35}\\||+13789520\cdot 190^{69k+35}+187959767\cdot 190^{68k+34}+13445277\cdot 190^{67k+34}+182249520\cdot 190^{66k+33}+12970614\cdot 190^{65k+33}\\||+175019832\cdot 190^{64k+32}+12407353\cdot 190^{63k+32}+166875005\cdot 190^{62k+31}+11799626\cdot 190^{61k+31}+158404584\cdot 190^{60k+30}\\||+11187330\cdot 190^{59k+30}+150100665\cdot 190^{58k+29}+10600854\cdot 190^{57k+29}+142296560\cdot 190^{56k+28}+10057504\cdot 190^{55k+28}\\||+135130280\cdot 190^{54k+27}+9559860\cdot 190^{53k+27}+128537521\cdot 190^{52k+26}+9096568\cdot 190^{51k+26}+122282480\cdot 190^{50k+25}\\||+8646046\cdot 190^{49k+25}+116027093\cdot 190^{48k+24}+8182475\cdot 190^{47k+24}+109419860\cdot 190^{46k+23}+7682106\cdot 190^{45k+23}\\||+102173648\cdot 190^{44k+22}+7127901\cdot 190^{43k+22}+94114315\cdot 190^{42k+21}+6512046\cdot 190^{41k+21}+85204556\cdot 190^{40k+20}\\||+5837136\cdot 190^{39k+20}+75554355\cdot 190^{38k+19}+5116452\cdot 190^{37k+19}+65415480\cdot 190^{36k+18}+4372630\cdot 190^{35k+18}\\||+55147500\cdot 190^{34k+17}+3634034\cdot 190^{33k+17}+45154739\cdot 190^{32k+16}+2929660\cdot 190^{31k+16}+35816235\cdot 190^{30k+15}\\||+2284597\cdot 190^{29k+15}+27436012\cdot 190^{28k+14}+1717505\cdot 190^{27k+14}+20222080\cdot 190^{26k+13}+1239839\cdot 190^{25k+13}\\||+14281802\cdot 190^{24k+12}+855696\cdot 190^{23k+12}+9620745\cdot 190^{22k+11}+561864\cdot 190^{21k+11}+6147749\cdot 190^{20k+10}\\||+348721\cdot 190^{19k+10}+3696640\cdot 190^{18k+9}+202488\cdot 190^{17k+9}+2064180\cdot 190^{16k+8}+108164\cdot 190^{15k+8}\\||+1048040\cdot 190^{14k+7}+51796\cdot 190^{13k+7}+469021\cdot 190^{12k+6}+21431\cdot 190^{11k+6}+177175\cdot 190^{10k+5}\\||+7282\cdot 190^{9k+5}+53188\cdot 190^{8k+4}+1889\cdot 190^{7k+4}+11590\cdot 190^{6k+3}+333\cdot 190^{5k+3}\\||+1568\cdot 190^{4k+2}+32\cdot 190^{3k+2}+95\cdot 190^{2k+1}+190^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{382}(191^{2k+1})\cdots{\large\Phi}_{390}(195^{2k+1})$${\large\Phi}_{382}(191^{2k+1})\cdots{\large\Phi}_{390}(195^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{382}(191^{2k+1})|=|191^{380k+190}-191^{378k+189}+191^{376k+188}-191^{374k+187}+191^{372k+186}\\||-191^{370k+185}+191^{368k+184}-191^{366k+183}+191^{364k+182}-191^{362k+181}\\||+191^{360k+180}-191^{358k+179}+191^{356k+178}-191^{354k+177}+191^{352k+176}\\||-191^{350k+175}+191^{348k+174}-191^{346k+173}+191^{344k+172}-191^{342k+171}\\||+191^{340k+170}-191^{338k+169}+191^{336k+168}-191^{334k+167}+191^{332k+166}\\||-191^{330k+165}+191^{328k+164}-191^{326k+163}+191^{324k+162}-191^{322k+161}\\||+191^{320k+160}-191^{318k+159}+191^{316k+158}-191^{314k+157}+191^{312k+156}\\||-191^{310k+155}+191^{308k+154}-191^{306k+153}+191^{304k+152}-191^{302k+151}\\||+191^{300k+150}-191^{298k+149}+191^{296k+148}-191^{294k+147}+191^{292k+146}\\||-191^{290k+145}+191^{288k+144}-191^{286k+143}+191^{284k+142}-191^{282k+141}\\||+191^{280k+140}-191^{278k+139}+191^{276k+138}-191^{274k+137}+191^{272k+136}\\||-191^{270k+135}+191^{268k+134}-191^{266k+133}+191^{264k+132}-191^{262k+131}\\||+191^{260k+130}-191^{258k+129}+191^{256k+128}-191^{254k+127}+191^{252k+126}\\||-191^{250k+125}+191^{248k+124}-191^{246k+123}+191^{244k+122}-191^{242k+121}\\||+191^{240k+120}-191^{238k+119}+191^{236k+118}-191^{234k+117}+191^{232k+116}\\||-191^{230k+115}+191^{228k+114}-191^{226k+113}+191^{224k+112}-191^{222k+111}\\||+191^{220k+110}-191^{218k+109}+191^{216k+108}-191^{214k+107}+191^{212k+106}\\||-191^{210k+105}+191^{208k+104}-191^{206k+103}+191^{204k+102}-191^{202k+101}\\||+191^{200k+100}-191^{198k+99}+191^{196k+98}-191^{194k+97}+191^{192k+96}\\||-191^{190k+95}+191^{188k+94}-191^{186k+93}+191^{184k+92}-191^{182k+91}\\||+191^{180k+90}-191^{178k+89}+191^{176k+88}-191^{174k+87}+191^{172k+86}\\||-191^{170k+85}+191^{168k+84}-191^{166k+83}+191^{164k+82}-191^{162k+81}\\||+191^{160k+80}-191^{158k+79}+191^{156k+78}-191^{154k+77}+191^{152k+76}\\||-191^{150k+75}+191^{148k+74}-191^{146k+73}+191^{144k+72}-191^{142k+71}\\||+191^{140k+70}-191^{138k+69}+191^{136k+68}-191^{134k+67}+191^{132k+66}\\||-191^{130k+65}+191^{128k+64}-191^{126k+63}+191^{124k+62}-191^{122k+61}\\||+191^{120k+60}-191^{118k+59}+191^{116k+58}-191^{114k+57}+191^{112k+56}\\||-191^{110k+55}+191^{108k+54}-191^{106k+53}+191^{104k+52}-191^{102k+51}\\||+191^{100k+50}-191^{98k+49}+191^{96k+48}-191^{94k+47}+191^{92k+46}\\||-191^{90k+45}+191^{88k+44}-191^{86k+43}+191^{84k+42}-191^{82k+41}\\||+191^{80k+40}-191^{78k+39}+191^{76k+38}-191^{74k+37}+191^{72k+36}\\||-191^{70k+35}+191^{68k+34}-191^{66k+33}+191^{64k+32}-191^{62k+31}\\||+191^{60k+30}-191^{58k+29}+191^{56k+28}-191^{54k+27}+191^{52k+26}\\||-191^{50k+25}+191^{48k+24}-191^{46k+23}+191^{44k+22}-191^{42k+21}\\||+191^{40k+20}-191^{38k+19}+191^{36k+18}-191^{34k+17}+191^{32k+16}\\||-191^{30k+15}+191^{28k+14}-191^{26k+13}+191^{24k+12}-191^{22k+11}\\||+191^{20k+10}-191^{18k+9}+191^{16k+8}-191^{14k+7}+191^{12k+6}\\||-191^{10k+5}+191^{8k+4}-191^{6k+3}+191^{4k+2}-191^{2k+1}+1\\|=|(191^{190k+95}-191^{189k+95}+95\cdot 191^{188k+94}-31\cdot 191^{187k+94}+1409\cdot 191^{186k+93}\\||-257\cdot 191^{185k+93}+7007\cdot 191^{184k+92}-781\cdot 191^{183k+92}+12563\cdot 191^{182k+91}-723\cdot 191^{181k+91}\\||+3725\cdot 191^{180k+90}+45\cdot 191^{179k+90}+5069\cdot 191^{178k+89}-1741\cdot 191^{177k+89}+48241\cdot 191^{176k+88}\\||-4401\cdot 191^{175k+88}+50095\cdot 191^{174k+87}-1711\cdot 191^{173k+87}+7261\cdot 191^{172k+86}-1747\cdot 191^{171k+86}\\||+70925\cdot 191^{170k+85}-8351\cdot 191^{169k+85}+123759\cdot 191^{168k+84}-6831\cdot 191^{167k+84}+64113\cdot 191^{166k+83}\\||-5413\cdot 191^{165k+83}+130183\cdot 191^{164k+82}-13511\cdot 191^{163k+82}+194139\cdot 191^{162k+81}-10805\cdot 191^{161k+81}\\||+107943\cdot 191^{160k+80}-9701\cdot 191^{159k+80}+231823\cdot 191^{158k+79}-23805\cdot 191^{157k+79}+338979\cdot 191^{156k+78}\\||-18001\cdot 191^{155k+78}+145279\cdot 191^{154k+77}-10349\cdot 191^{153k+77}+272989\cdot 191^{152k+76}-31849\cdot 191^{151k+76}\\||+501947\cdot 191^{150k+75}-29181\cdot 191^{149k+75}+239565\cdot 191^{148k+74}-12765\cdot 191^{147k+74}+292089\cdot 191^{146k+73}\\||-35649\cdot 191^{145k+73}+592267\cdot 191^{144k+72}-35625\cdot 191^{143k+72}+288147\cdot 191^{142k+71}-13571\cdot 191^{141k+71}\\||+308505\cdot 191^{140k+70}-39829\cdot 191^{139k+70}+677379\cdot 191^{138k+69}-39521\cdot 191^{137k+69}+260507\cdot 191^{136k+68}\\||-6349\cdot 191^{135k+68}+204165\cdot 191^{134k+67}-36999\cdot 191^{133k+67}+713379\cdot 191^{132k+66}-43127\cdot 191^{131k+66}\\||+242977\cdot 191^{130k+65}+2109\cdot 191^{129k+65}+30711\cdot 191^{128k+64}-25929\cdot 191^{127k+64}+622771\cdot 191^{126k+63}\\||-39087\cdot 191^{125k+63}+156311\cdot 191^{124k+62}+13301\cdot 191^{123k+62}-163655\cdot 191^{122k+61}-13721\cdot 191^{121k+61}\\||+515281\cdot 191^{120k+60}-33291\cdot 191^{119k+60}+28461\cdot 191^{118k+59}+29249\cdot 191^{117k+59}-443473\cdot 191^{116k+58}\\||+4469\cdot 191^{115k+58}+359647\cdot 191^{114k+57}-28063\cdot 191^{113k+57}-41779\cdot 191^{112k+56}+39951\cdot 191^{111k+56}\\||-680081\cdot 191^{110k+55}+23485\cdot 191^{109k+55}+148827\cdot 191^{108k+54}-18581\cdot 191^{107k+54}-131823\cdot 191^{106k+53}\\||+47959\cdot 191^{105k+53}-836061\cdot 191^{104k+52}+35675\cdot 191^{103k+52}+22561\cdot 191^{102k+51}-13943\cdot 191^{101k+51}\\||-171823\cdot 191^{100k+50}+53625\cdot 191^{99k+50}-978019\cdot 191^{98k+49}+47393\cdot 191^{97k+49}-77381\cdot 191^{96k+48}\\||-14825\cdot 191^{95k+48}-77381\cdot 191^{94k+47}+47393\cdot 191^{93k+47}-978019\cdot 191^{92k+46}+53625\cdot 191^{91k+46}\\||-171823\cdot 191^{90k+45}-13943\cdot 191^{89k+45}+22561\cdot 191^{88k+44}+35675\cdot 191^{87k+44}-836061\cdot 191^{86k+43}\\||+47959\cdot 191^{85k+43}-131823\cdot 191^{84k+42}-18581\cdot 191^{83k+42}+148827\cdot 191^{82k+41}+23485\cdot 191^{81k+41}\\||-680081\cdot 191^{80k+40}+39951\cdot 191^{79k+40}-41779\cdot 191^{78k+39}-28063\cdot 191^{77k+39}+359647\cdot 191^{76k+38}\\||+4469\cdot 191^{75k+38}-443473\cdot 191^{74k+37}+29249\cdot 191^{73k+37}+28461\cdot 191^{72k+36}-33291\cdot 191^{71k+36}\\||+515281\cdot 191^{70k+35}-13721\cdot 191^{69k+35}-163655\cdot 191^{68k+34}+13301\cdot 191^{67k+34}+156311\cdot 191^{66k+33}\\||-39087\cdot 191^{65k+33}+622771\cdot 191^{64k+32}-25929\cdot 191^{63k+32}+30711\cdot 191^{62k+31}+2109\cdot 191^{61k+31}\\||+242977\cdot 191^{60k+30}-43127\cdot 191^{59k+30}+713379\cdot 191^{58k+29}-36999\cdot 191^{57k+29}+204165\cdot 191^{56k+28}\\||-6349\cdot 191^{55k+28}+260507\cdot 191^{54k+27}-39521\cdot 191^{53k+27}+677379\cdot 191^{52k+26}-39829\cdot 191^{51k+26}\\||+308505\cdot 191^{50k+25}-13571\cdot 191^{49k+25}+288147\cdot 191^{48k+24}-35625\cdot 191^{47k+24}+592267\cdot 191^{46k+23}\\||-35649\cdot 191^{45k+23}+292089\cdot 191^{44k+22}-12765\cdot 191^{43k+22}+239565\cdot 191^{42k+21}-29181\cdot 191^{41k+21}\\||+501947\cdot 191^{40k+20}-31849\cdot 191^{39k+20}+272989\cdot 191^{38k+19}-10349\cdot 191^{37k+19}+145279\cdot 191^{36k+18}\\||-18001\cdot 191^{35k+18}+338979\cdot 191^{34k+17}-23805\cdot 191^{33k+17}+231823\cdot 191^{32k+16}-9701\cdot 191^{31k+16}\\||+107943\cdot 191^{30k+15}-10805\cdot 191^{29k+15}+194139\cdot 191^{28k+14}-13511\cdot 191^{27k+14}+130183\cdot 191^{26k+13}\\||-5413\cdot 191^{25k+13}+64113\cdot 191^{24k+12}-6831\cdot 191^{23k+12}+123759\cdot 191^{22k+11}-8351\cdot 191^{21k+11}\\||+70925\cdot 191^{20k+10}-1747\cdot 191^{19k+10}+7261\cdot 191^{18k+9}-1711\cdot 191^{17k+9}+50095\cdot 191^{16k+8}\\||-4401\cdot 191^{15k+8}+48241\cdot 191^{14k+7}-1741\cdot 191^{13k+7}+5069\cdot 191^{12k+6}+45\cdot 191^{11k+6}\\||+3725\cdot 191^{10k+5}-723\cdot 191^{9k+5}+12563\cdot 191^{8k+4}-781\cdot 191^{7k+4}+7007\cdot 191^{6k+3}\\||-257\cdot 191^{5k+3}+1409\cdot 191^{4k+2}-31\cdot 191^{3k+2}+95\cdot 191^{2k+1}-191^{k+1}+1)\\|\times|(191^{190k+95}+191^{189k+95}+95\cdot 191^{188k+94}+31\cdot 191^{187k+94}+1409\cdot 191^{186k+93}\\||+257\cdot 191^{185k+93}+7007\cdot 191^{184k+92}+781\cdot 191^{183k+92}+12563\cdot 191^{182k+91}+723\cdot 191^{181k+91}\\||+3725\cdot 191^{180k+90}-45\cdot 191^{179k+90}+5069\cdot 191^{178k+89}+1741\cdot 191^{177k+89}+48241\cdot 191^{176k+88}\\||+4401\cdot 191^{175k+88}+50095\cdot 191^{174k+87}+1711\cdot 191^{173k+87}+7261\cdot 191^{172k+86}+1747\cdot 191^{171k+86}\\||+70925\cdot 191^{170k+85}+8351\cdot 191^{169k+85}+123759\cdot 191^{168k+84}+6831\cdot 191^{167k+84}+64113\cdot 191^{166k+83}\\||+5413\cdot 191^{165k+83}+130183\cdot 191^{164k+82}+13511\cdot 191^{163k+82}+194139\cdot 191^{162k+81}+10805\cdot 191^{161k+81}\\||+107943\cdot 191^{160k+80}+9701\cdot 191^{159k+80}+231823\cdot 191^{158k+79}+23805\cdot 191^{157k+79}+338979\cdot 191^{156k+78}\\||+18001\cdot 191^{155k+78}+145279\cdot 191^{154k+77}+10349\cdot 191^{153k+77}+272989\cdot 191^{152k+76}+31849\cdot 191^{151k+76}\\||+501947\cdot 191^{150k+75}+29181\cdot 191^{149k+75}+239565\cdot 191^{148k+74}+12765\cdot 191^{147k+74}+292089\cdot 191^{146k+73}\\||+35649\cdot 191^{145k+73}+592267\cdot 191^{144k+72}+35625\cdot 191^{143k+72}+288147\cdot 191^{142k+71}+13571\cdot 191^{141k+71}\\||+308505\cdot 191^{140k+70}+39829\cdot 191^{139k+70}+677379\cdot 191^{138k+69}+39521\cdot 191^{137k+69}+260507\cdot 191^{136k+68}\\||+6349\cdot 191^{135k+68}+204165\cdot 191^{134k+67}+36999\cdot 191^{133k+67}+713379\cdot 191^{132k+66}+43127\cdot 191^{131k+66}\\||+242977\cdot 191^{130k+65}-2109\cdot 191^{129k+65}+30711\cdot 191^{128k+64}+25929\cdot 191^{127k+64}+622771\cdot 191^{126k+63}\\||+39087\cdot 191^{125k+63}+156311\cdot 191^{124k+62}-13301\cdot 191^{123k+62}-163655\cdot 191^{122k+61}+13721\cdot 191^{121k+61}\\||+515281\cdot 191^{120k+60}+33291\cdot 191^{119k+60}+28461\cdot 191^{118k+59}-29249\cdot 191^{117k+59}-443473\cdot 191^{116k+58}\\||-4469\cdot 191^{115k+58}+359647\cdot 191^{114k+57}+28063\cdot 191^{113k+57}-41779\cdot 191^{112k+56}-39951\cdot 191^{111k+56}\\||-680081\cdot 191^{110k+55}-23485\cdot 191^{109k+55}+148827\cdot 191^{108k+54}+18581\cdot 191^{107k+54}-131823\cdot 191^{106k+53}\\||-47959\cdot 191^{105k+53}-836061\cdot 191^{104k+52}-35675\cdot 191^{103k+52}+22561\cdot 191^{102k+51}+13943\cdot 191^{101k+51}\\||-171823\cdot 191^{100k+50}-53625\cdot 191^{99k+50}-978019\cdot 191^{98k+49}-47393\cdot 191^{97k+49}-77381\cdot 191^{96k+48}\\||+14825\cdot 191^{95k+48}-77381\cdot 191^{94k+47}-47393\cdot 191^{93k+47}-978019\cdot 191^{92k+46}-53625\cdot 191^{91k+46}\\||-171823\cdot 191^{90k+45}+13943\cdot 191^{89k+45}+22561\cdot 191^{88k+44}-35675\cdot 191^{87k+44}-836061\cdot 191^{86k+43}\\||-47959\cdot 191^{85k+43}-131823\cdot 191^{84k+42}+18581\cdot 191^{83k+42}+148827\cdot 191^{82k+41}-23485\cdot 191^{81k+41}\\||-680081\cdot 191^{80k+40}-39951\cdot 191^{79k+40}-41779\cdot 191^{78k+39}+28063\cdot 191^{77k+39}+359647\cdot 191^{76k+38}\\||-4469\cdot 191^{75k+38}-443473\cdot 191^{74k+37}-29249\cdot 191^{73k+37}+28461\cdot 191^{72k+36}+33291\cdot 191^{71k+36}\\||+515281\cdot 191^{70k+35}+13721\cdot 191^{69k+35}-163655\cdot 191^{68k+34}-13301\cdot 191^{67k+34}+156311\cdot 191^{66k+33}\\||+39087\cdot 191^{65k+33}+622771\cdot 191^{64k+32}+25929\cdot 191^{63k+32}+30711\cdot 191^{62k+31}-2109\cdot 191^{61k+31}\\||+242977\cdot 191^{60k+30}+43127\cdot 191^{59k+30}+713379\cdot 191^{58k+29}+36999\cdot 191^{57k+29}+204165\cdot 191^{56k+28}\\||+6349\cdot 191^{55k+28}+260507\cdot 191^{54k+27}+39521\cdot 191^{53k+27}+677379\cdot 191^{52k+26}+39829\cdot 191^{51k+26}\\||+308505\cdot 191^{50k+25}+13571\cdot 191^{49k+25}+288147\cdot 191^{48k+24}+35625\cdot 191^{47k+24}+592267\cdot 191^{46k+23}\\||+35649\cdot 191^{45k+23}+292089\cdot 191^{44k+22}+12765\cdot 191^{43k+22}+239565\cdot 191^{42k+21}+29181\cdot 191^{41k+21}\\||+501947\cdot 191^{40k+20}+31849\cdot 191^{39k+20}+272989\cdot 191^{38k+19}+10349\cdot 191^{37k+19}+145279\cdot 191^{36k+18}\\||+18001\cdot 191^{35k+18}+338979\cdot 191^{34k+17}+23805\cdot 191^{33k+17}+231823\cdot 191^{32k+16}+9701\cdot 191^{31k+16}\\||+107943\cdot 191^{30k+15}+10805\cdot 191^{29k+15}+194139\cdot 191^{28k+14}+13511\cdot 191^{27k+14}+130183\cdot 191^{26k+13}\\||+5413\cdot 191^{25k+13}+64113\cdot 191^{24k+12}+6831\cdot 191^{23k+12}+123759\cdot 191^{22k+11}+8351\cdot 191^{21k+11}\\||+70925\cdot 191^{20k+10}+1747\cdot 191^{19k+10}+7261\cdot 191^{18k+9}+1711\cdot 191^{17k+9}+50095\cdot 191^{16k+8}\\||+4401\cdot 191^{15k+8}+48241\cdot 191^{14k+7}+1741\cdot 191^{13k+7}+5069\cdot 191^{12k+6}-45\cdot 191^{11k+6}\\||+3725\cdot 191^{10k+5}+723\cdot 191^{9k+5}+12563\cdot 191^{8k+4}+781\cdot 191^{7k+4}+7007\cdot 191^{6k+3}\\||+257\cdot 191^{5k+3}+1409\cdot 191^{4k+2}+31\cdot 191^{3k+2}+95\cdot 191^{2k+1}+191^{k+1}+1)\\{\large\Phi}_{193}(193^{2k+1})|=|193^{384k+192}+193^{382k+191}+193^{380k+190}+193^{378k+189}+193^{376k+188}\\||+193^{374k+187}+193^{372k+186}+193^{370k+185}+193^{368k+184}+193^{366k+183}\\||+193^{364k+182}+193^{362k+181}+193^{360k+180}+193^{358k+179}+193^{356k+178}\\||+193^{354k+177}+193^{352k+176}+193^{350k+175}+193^{348k+174}+193^{346k+173}\\||+193^{344k+172}+193^{342k+171}+193^{340k+170}+193^{338k+169}+193^{336k+168}\\||+193^{334k+167}+193^{332k+166}+193^{330k+165}+193^{328k+164}+193^{326k+163}\\||+193^{324k+162}+193^{322k+161}+193^{320k+160}+193^{318k+159}+193^{316k+158}\\||+193^{314k+157}+193^{312k+156}+193^{310k+155}+193^{308k+154}+193^{306k+153}\\||+193^{304k+152}+193^{302k+151}+193^{300k+150}+193^{298k+149}+193^{296k+148}\\||+193^{294k+147}+193^{292k+146}+193^{290k+145}+193^{288k+144}+193^{286k+143}\\||+193^{284k+142}+193^{282k+141}+193^{280k+140}+193^{278k+139}+193^{276k+138}\\||+193^{274k+137}+193^{272k+136}+193^{270k+135}+193^{268k+134}+193^{266k+133}\\||+193^{264k+132}+193^{262k+131}+193^{260k+130}+193^{258k+129}+193^{256k+128}\\||+193^{254k+127}+193^{252k+126}+193^{250k+125}+193^{248k+124}+193^{246k+123}\\||+193^{244k+122}+193^{242k+121}+193^{240k+120}+193^{238k+119}+193^{236k+118}\\||+193^{234k+117}+193^{232k+116}+193^{230k+115}+193^{228k+114}+193^{226k+113}\\||+193^{224k+112}+193^{222k+111}+193^{220k+110}+193^{218k+109}+193^{216k+108}\\||+193^{214k+107}+193^{212k+106}+193^{210k+105}+193^{208k+104}+193^{206k+103}\\||+193^{204k+102}+193^{202k+101}+193^{200k+100}+193^{198k+99}+193^{196k+98}\\||+193^{194k+97}+193^{192k+96}+193^{190k+95}+193^{188k+94}+193^{186k+93}\\||+193^{184k+92}+193^{182k+91}+193^{180k+90}+193^{178k+89}+193^{176k+88}\\||+193^{174k+87}+193^{172k+86}+193^{170k+85}+193^{168k+84}+193^{166k+83}\\||+193^{164k+82}+193^{162k+81}+193^{160k+80}+193^{158k+79}+193^{156k+78}\\||+193^{154k+77}+193^{152k+76}+193^{150k+75}+193^{148k+74}+193^{146k+73}\\||+193^{144k+72}+193^{142k+71}+193^{140k+70}+193^{138k+69}+193^{136k+68}\\||+193^{134k+67}+193^{132k+66}+193^{130k+65}+193^{128k+64}+193^{126k+63}\\||+193^{124k+62}+193^{122k+61}+193^{120k+60}+193^{118k+59}+193^{116k+58}\\||+193^{114k+57}+193^{112k+56}+193^{110k+55}+193^{108k+54}+193^{106k+53}\\||+193^{104k+52}+193^{102k+51}+193^{100k+50}+193^{98k+49}+193^{96k+48}\\||+193^{94k+47}+193^{92k+46}+193^{90k+45}+193^{88k+44}+193^{86k+43}\\||+193^{84k+42}+193^{82k+41}+193^{80k+40}+193^{78k+39}+193^{76k+38}\\||+193^{74k+37}+193^{72k+36}+193^{70k+35}+193^{68k+34}+193^{66k+33}\\||+193^{64k+32}+193^{62k+31}+193^{60k+30}+193^{58k+29}+193^{56k+28}\\||+193^{54k+27}+193^{52k+26}+193^{50k+25}+193^{48k+24}+193^{46k+23}\\||+193^{44k+22}+193^{42k+21}+193^{40k+20}+193^{38k+19}+193^{36k+18}\\||+193^{34k+17}+193^{32k+16}+193^{30k+15}+193^{28k+14}+193^{26k+13}\\||+193^{24k+12}+193^{22k+11}+193^{20k+10}+193^{18k+9}+193^{16k+8}\\||+193^{14k+7}+193^{12k+6}+193^{10k+5}+193^{8k+4}+193^{6k+3}\\||+193^{4k+2}+193^{2k+1}+1\\|=|(193^{192k+96}-193^{191k+96}+97\cdot 193^{190k+95}-33\cdot 193^{189k+95}+1665\cdot 193^{188k+94}\\||-359\cdot 193^{187k+94}+12871\cdot 193^{186k+93}-2119\cdot 193^{185k+93}+60839\cdot 193^{184k+92}-8295\cdot 193^{183k+92}\\||+202265\cdot 193^{182k+91}-23891\cdot 193^{181k+91}+513011\cdot 193^{180k+90}-54121\cdot 193^{179k+90}+1051273\cdot 193^{178k+89}\\||-101519\cdot 193^{177k+89}+1825227\cdot 193^{176k+88}-164841\cdot 193^{175k+88}+2797581\cdot 193^{174k+87}-240343\cdot 193^{173k+87}\\||+3902137\cdot 193^{172k+86}-321741\cdot 193^{171k+86}+5017139\cdot 193^{170k+85}-396735\cdot 193^{169k+85}+5914263\cdot 193^{168k+84}\\||-445103\cdot 193^{167k+84}+6280541\cdot 193^{166k+83}-444389\cdot 193^{165k+83}+5842261\cdot 193^{164k+82}-379911\cdot 193^{163k+82}\\||+4483581\cdot 193^{162k+81}-249949\cdot 193^{161k+81}+2266385\cdot 193^{160k+80}-64543\cdot 193^{159k+80}-595271\cdot 193^{158k+79}\\||+155201\cdot 193^{157k+79}-3720513\cdot 193^{156k+78}+375223\cdot 193^{155k+78}-6551009\cdot 193^{154k+77}+550875\cdot 193^{153k+77}\\||-8442457\cdot 193^{152k+76}+637391\cdot 193^{151k+76}-8842563\cdot 193^{150k+75}+603059\cdot 193^{149k+75}-7457045\cdot 193^{148k+74}\\||+439187\cdot 193^{147k+74}-4359527\cdot 193^{146k+73}+166041\cdot 193^{145k+73}-42289\cdot 193^{144k+72}-166655\cdot 193^{143k+72}\\||+4635051\cdot 193^{142k+71}-488153\cdot 193^{141k+71}+8622235\cdot 193^{140k+70}-722209\cdot 193^{139k+70}+10905969\cdot 193^{138k+69}\\||-802749\cdot 193^{137k+69}+10710065\cdot 193^{136k+68}-687515\cdot 193^{135k+68}+7686981\cdot 193^{134k+67}-372341\cdot 193^{133k+67}\\||+2109307\cdot 193^{132k+66}+97947\cdot 193^{131k+66}-5061135\cdot 193^{130k+65}+632959\cdot 193^{129k+65}-12349103\cdot 193^{128k+64}\\||+1117355\cdot 193^{127k+64}-18122429\cdot 193^{126k+63}+1438133\cdot 193^{125k+63}-20955971\cdot 193^{124k+62}+1508419\cdot 193^{123k+62}\\||-19928513\cdot 193^{122k+61}+1286943\cdot 193^{121k+61}-14867947\cdot 193^{120k+60}+792845\cdot 193^{119k+60}-6489491\cdot 193^{118k+59}\\||+108491\cdot 193^{117k+59}+3686031\cdot 193^{116k+58}-635273\cdot 193^{115k+58}+13642031\cdot 193^{114k+57}-1286761\cdot 193^{113k+57}\\||+21292751\cdot 193^{112k+56}-1705539\cdot 193^{111k+56}+24934157\cdot 193^{110k+55}-1794437\cdot 193^{109k+55}+23664889\cdot 193^{108k+54}\\||-1525961\cdot 193^{107k+54}+17658821\cdot 193^{106k+53}-952303\cdot 193^{105k+53}+8146861\cdot 193^{104k+52}-192839\cdot 193^{103k+52}\\||-2884107\cdot 193^{102k+51}+593553\cdot 193^{101k+51}-13116605\cdot 193^{100k+50}+1240077\cdot 193^{99k+50}-20347287\cdot 193^{98k+49}\\||+1604863\cdot 193^{97k+49}-22957943\cdot 193^{96k+48}+1604863\cdot 193^{95k+48}-20347287\cdot 193^{94k+47}+1240077\cdot 193^{93k+47}\\||-13116605\cdot 193^{92k+46}+593553\cdot 193^{91k+46}-2884107\cdot 193^{90k+45}-192839\cdot 193^{89k+45}+8146861\cdot 193^{88k+44}\\||-952303\cdot 193^{87k+44}+17658821\cdot 193^{86k+43}-1525961\cdot 193^{85k+43}+23664889\cdot 193^{84k+42}-1794437\cdot 193^{83k+42}\\||+24934157\cdot 193^{82k+41}-1705539\cdot 193^{81k+41}+21292751\cdot 193^{80k+40}-1286761\cdot 193^{79k+40}+13642031\cdot 193^{78k+39}\\||-635273\cdot 193^{77k+39}+3686031\cdot 193^{76k+38}+108491\cdot 193^{75k+38}-6489491\cdot 193^{74k+37}+792845\cdot 193^{73k+37}\\||-14867947\cdot 193^{72k+36}+1286943\cdot 193^{71k+36}-19928513\cdot 193^{70k+35}+1508419\cdot 193^{69k+35}-20955971\cdot 193^{68k+34}\\||+1438133\cdot 193^{67k+34}-18122429\cdot 193^{66k+33}+1117355\cdot 193^{65k+33}-12349103\cdot 193^{64k+32}+632959\cdot 193^{63k+32}\\||-5061135\cdot 193^{62k+31}+97947\cdot 193^{61k+31}+2109307\cdot 193^{60k+30}-372341\cdot 193^{59k+30}+7686981\cdot 193^{58k+29}\\||-687515\cdot 193^{57k+29}+10710065\cdot 193^{56k+28}-802749\cdot 193^{55k+28}+10905969\cdot 193^{54k+27}-722209\cdot 193^{53k+27}\\||+8622235\cdot 193^{52k+26}-488153\cdot 193^{51k+26}+4635051\cdot 193^{50k+25}-166655\cdot 193^{49k+25}-42289\cdot 193^{48k+24}\\||+166041\cdot 193^{47k+24}-4359527\cdot 193^{46k+23}+439187\cdot 193^{45k+23}-7457045\cdot 193^{44k+22}+603059\cdot 193^{43k+22}\\||-8842563\cdot 193^{42k+21}+637391\cdot 193^{41k+21}-8442457\cdot 193^{40k+20}+550875\cdot 193^{39k+20}-6551009\cdot 193^{38k+19}\\||+375223\cdot 193^{37k+19}-3720513\cdot 193^{36k+18}+155201\cdot 193^{35k+18}-595271\cdot 193^{34k+17}-64543\cdot 193^{33k+17}\\||+2266385\cdot 193^{32k+16}-249949\cdot 193^{31k+16}+4483581\cdot 193^{30k+15}-379911\cdot 193^{29k+15}+5842261\cdot 193^{28k+14}\\||-444389\cdot 193^{27k+14}+6280541\cdot 193^{26k+13}-445103\cdot 193^{25k+13}+5914263\cdot 193^{24k+12}-396735\cdot 193^{23k+12}\\||+5017139\cdot 193^{22k+11}-321741\cdot 193^{21k+11}+3902137\cdot 193^{20k+10}-240343\cdot 193^{19k+10}+2797581\cdot 193^{18k+9}\\||-164841\cdot 193^{17k+9}+1825227\cdot 193^{16k+8}-101519\cdot 193^{15k+8}+1051273\cdot 193^{14k+7}-54121\cdot 193^{13k+7}\\||+513011\cdot 193^{12k+6}-23891\cdot 193^{11k+6}+202265\cdot 193^{10k+5}-8295\cdot 193^{9k+5}+60839\cdot 193^{8k+4}\\||-2119\cdot 193^{7k+4}+12871\cdot 193^{6k+3}-359\cdot 193^{5k+3}+1665\cdot 193^{4k+2}-33\cdot 193^{3k+2}\\||+97\cdot 193^{2k+1}-193^{k+1}+1)\\|\times|(193^{192k+96}+193^{191k+96}+97\cdot 193^{190k+95}+33\cdot 193^{189k+95}+1665\cdot 193^{188k+94}\\||+359\cdot 193^{187k+94}+12871\cdot 193^{186k+93}+2119\cdot 193^{185k+93}+60839\cdot 193^{184k+92}+8295\cdot 193^{183k+92}\\||+202265\cdot 193^{182k+91}+23891\cdot 193^{181k+91}+513011\cdot 193^{180k+90}+54121\cdot 193^{179k+90}+1051273\cdot 193^{178k+89}\\||+101519\cdot 193^{177k+89}+1825227\cdot 193^{176k+88}+164841\cdot 193^{175k+88}+2797581\cdot 193^{174k+87}+240343\cdot 193^{173k+87}\\||+3902137\cdot 193^{172k+86}+321741\cdot 193^{171k+86}+5017139\cdot 193^{170k+85}+396735\cdot 193^{169k+85}+5914263\cdot 193^{168k+84}\\||+445103\cdot 193^{167k+84}+6280541\cdot 193^{166k+83}+444389\cdot 193^{165k+83}+5842261\cdot 193^{164k+82}+379911\cdot 193^{163k+82}\\||+4483581\cdot 193^{162k+81}+249949\cdot 193^{161k+81}+2266385\cdot 193^{160k+80}+64543\cdot 193^{159k+80}-595271\cdot 193^{158k+79}\\||-155201\cdot 193^{157k+79}-3720513\cdot 193^{156k+78}-375223\cdot 193^{155k+78}-6551009\cdot 193^{154k+77}-550875\cdot 193^{153k+77}\\||-8442457\cdot 193^{152k+76}-637391\cdot 193^{151k+76}-8842563\cdot 193^{150k+75}-603059\cdot 193^{149k+75}-7457045\cdot 193^{148k+74}\\||-439187\cdot 193^{147k+74}-4359527\cdot 193^{146k+73}-166041\cdot 193^{145k+73}-42289\cdot 193^{144k+72}+166655\cdot 193^{143k+72}\\||+4635051\cdot 193^{142k+71}+488153\cdot 193^{141k+71}+8622235\cdot 193^{140k+70}+722209\cdot 193^{139k+70}+10905969\cdot 193^{138k+69}\\||+802749\cdot 193^{137k+69}+10710065\cdot 193^{136k+68}+687515\cdot 193^{135k+68}+7686981\cdot 193^{134k+67}+372341\cdot 193^{133k+67}\\||+2109307\cdot 193^{132k+66}-97947\cdot 193^{131k+66}-5061135\cdot 193^{130k+65}-632959\cdot 193^{129k+65}-12349103\cdot 193^{128k+64}\\||-1117355\cdot 193^{127k+64}-18122429\cdot 193^{126k+63}-1438133\cdot 193^{125k+63}-20955971\cdot 193^{124k+62}-1508419\cdot 193^{123k+62}\\||-19928513\cdot 193^{122k+61}-1286943\cdot 193^{121k+61}-14867947\cdot 193^{120k+60}-792845\cdot 193^{119k+60}-6489491\cdot 193^{118k+59}\\||-108491\cdot 193^{117k+59}+3686031\cdot 193^{116k+58}+635273\cdot 193^{115k+58}+13642031\cdot 193^{114k+57}+1286761\cdot 193^{113k+57}\\||+21292751\cdot 193^{112k+56}+1705539\cdot 193^{111k+56}+24934157\cdot 193^{110k+55}+1794437\cdot 193^{109k+55}+23664889\cdot 193^{108k+54}\\||+1525961\cdot 193^{107k+54}+17658821\cdot 193^{106k+53}+952303\cdot 193^{105k+53}+8146861\cdot 193^{104k+52}+192839\cdot 193^{103k+52}\\||-2884107\cdot 193^{102k+51}-593553\cdot 193^{101k+51}-13116605\cdot 193^{100k+50}-1240077\cdot 193^{99k+50}-20347287\cdot 193^{98k+49}\\||-1604863\cdot 193^{97k+49}-22957943\cdot 193^{96k+48}-1604863\cdot 193^{95k+48}-20347287\cdot 193^{94k+47}-1240077\cdot 193^{93k+47}\\||-13116605\cdot 193^{92k+46}-593553\cdot 193^{91k+46}-2884107\cdot 193^{90k+45}+192839\cdot 193^{89k+45}+8146861\cdot 193^{88k+44}\\||+952303\cdot 193^{87k+44}+17658821\cdot 193^{86k+43}+1525961\cdot 193^{85k+43}+23664889\cdot 193^{84k+42}+1794437\cdot 193^{83k+42}\\||+24934157\cdot 193^{82k+41}+1705539\cdot 193^{81k+41}+21292751\cdot 193^{80k+40}+1286761\cdot 193^{79k+40}+13642031\cdot 193^{78k+39}\\||+635273\cdot 193^{77k+39}+3686031\cdot 193^{76k+38}-108491\cdot 193^{75k+38}-6489491\cdot 193^{74k+37}-792845\cdot 193^{73k+37}\\||-14867947\cdot 193^{72k+36}-1286943\cdot 193^{71k+36}-19928513\cdot 193^{70k+35}-1508419\cdot 193^{69k+35}-20955971\cdot 193^{68k+34}\\||-1438133\cdot 193^{67k+34}-18122429\cdot 193^{66k+33}-1117355\cdot 193^{65k+33}-12349103\cdot 193^{64k+32}-632959\cdot 193^{63k+32}\\||-5061135\cdot 193^{62k+31}-97947\cdot 193^{61k+31}+2109307\cdot 193^{60k+30}+372341\cdot 193^{59k+30}+7686981\cdot 193^{58k+29}\\||+687515\cdot 193^{57k+29}+10710065\cdot 193^{56k+28}+802749\cdot 193^{55k+28}+10905969\cdot 193^{54k+27}+722209\cdot 193^{53k+27}\\||+8622235\cdot 193^{52k+26}+488153\cdot 193^{51k+26}+4635051\cdot 193^{50k+25}+166655\cdot 193^{49k+25}-42289\cdot 193^{48k+24}\\||-166041\cdot 193^{47k+24}-4359527\cdot 193^{46k+23}-439187\cdot 193^{45k+23}-7457045\cdot 193^{44k+22}-603059\cdot 193^{43k+22}\\||-8842563\cdot 193^{42k+21}-637391\cdot 193^{41k+21}-8442457\cdot 193^{40k+20}-550875\cdot 193^{39k+20}-6551009\cdot 193^{38k+19}\\||-375223\cdot 193^{37k+19}-3720513\cdot 193^{36k+18}-155201\cdot 193^{35k+18}-595271\cdot 193^{34k+17}+64543\cdot 193^{33k+17}\\||+2266385\cdot 193^{32k+16}+249949\cdot 193^{31k+16}+4483581\cdot 193^{30k+15}+379911\cdot 193^{29k+15}+5842261\cdot 193^{28k+14}\\||+444389\cdot 193^{27k+14}+6280541\cdot 193^{26k+13}+445103\cdot 193^{25k+13}+5914263\cdot 193^{24k+12}+396735\cdot 193^{23k+12}\\||+5017139\cdot 193^{22k+11}+321741\cdot 193^{21k+11}+3902137\cdot 193^{20k+10}+240343\cdot 193^{19k+10}+2797581\cdot 193^{18k+9}\\||+164841\cdot 193^{17k+9}+1825227\cdot 193^{16k+8}+101519\cdot 193^{15k+8}+1051273\cdot 193^{14k+7}+54121\cdot 193^{13k+7}\\||+513011\cdot 193^{12k+6}+23891\cdot 193^{11k+6}+202265\cdot 193^{10k+5}+8295\cdot 193^{9k+5}+60839\cdot 193^{8k+4}\\||+2119\cdot 193^{7k+4}+12871\cdot 193^{6k+3}+359\cdot 193^{5k+3}+1665\cdot 193^{4k+2}+33\cdot 193^{3k+2}\\||+97\cdot 193^{2k+1}+193^{k+1}+1)\\{\large\Phi}_{388}(194^{2k+1})|=|194^{384k+192}-194^{380k+190}+194^{376k+188}-194^{372k+186}+194^{368k+184}\\||-194^{364k+182}+194^{360k+180}-194^{356k+178}+194^{352k+176}-194^{348k+174}\\||+194^{344k+172}-194^{340k+170}+194^{336k+168}-194^{332k+166}+194^{328k+164}\\||-194^{324k+162}+194^{320k+160}-194^{316k+158}+194^{312k+156}-194^{308k+154}\\||+194^{304k+152}-194^{300k+150}+194^{296k+148}-194^{292k+146}+194^{288k+144}\\||-194^{284k+142}+194^{280k+140}-194^{276k+138}+194^{272k+136}-194^{268k+134}\\||+194^{264k+132}-194^{260k+130}+194^{256k+128}-194^{252k+126}+194^{248k+124}\\||-194^{244k+122}+194^{240k+120}-194^{236k+118}+194^{232k+116}-194^{228k+114}\\||+194^{224k+112}-194^{220k+110}+194^{216k+108}-194^{212k+106}+194^{208k+104}\\||-194^{204k+102}+194^{200k+100}-194^{196k+98}+194^{192k+96}-194^{188k+94}\\||+194^{184k+92}-194^{180k+90}+194^{176k+88}-194^{172k+86}+194^{168k+84}\\||-194^{164k+82}+194^{160k+80}-194^{156k+78}+194^{152k+76}-194^{148k+74}\\||+194^{144k+72}-194^{140k+70}+194^{136k+68}-194^{132k+66}+194^{128k+64}\\||-194^{124k+62}+194^{120k+60}-194^{116k+58}+194^{112k+56}-194^{108k+54}\\||+194^{104k+52}-194^{100k+50}+194^{96k+48}-194^{92k+46}+194^{88k+44}\\||-194^{84k+42}+194^{80k+40}-194^{76k+38}+194^{72k+36}-194^{68k+34}\\||+194^{64k+32}-194^{60k+30}+194^{56k+28}-194^{52k+26}+194^{48k+24}\\||-194^{44k+22}+194^{40k+20}-194^{36k+18}+194^{32k+16}-194^{28k+14}\\||+194^{24k+12}-194^{20k+10}+194^{16k+8}-194^{12k+6}+194^{8k+4}\\||-194^{4k+2}+1\\|=|(194^{192k+96}-194^{191k+96}+97\cdot 194^{190k+95}-32\cdot 194^{189k+95}+1503\cdot 194^{188k+94}\\||-281\cdot 194^{187k+94}+8051\cdot 194^{186k+93}-940\cdot 194^{185k+93}+16357\cdot 194^{184k+92}-1017\cdot 194^{183k+92}\\||+4753\cdot 194^{182k+91}+616\cdot 194^{181k+91}-17721\cdot 194^{180k+90}+1095\cdot 194^{179k+90}-1649\cdot 194^{178k+89}\\||-944\cdot 194^{177k+89}+17361\cdot 194^{176k+88}-583\cdot 194^{175k+88}-5723\cdot 194^{174k+87}+900\cdot 194^{173k+87}\\||-9349\cdot 194^{172k+86}+239\cdot 194^{171k+86}-2425\cdot 194^{170k+85}+496\cdot 194^{169k+85}-10919\cdot 194^{168k+84}\\||+687\cdot 194^{167k+84}-1843\cdot 194^{166k+83}-796\cdot 194^{165k+83}+24987\cdot 194^{164k+82}-2137\cdot 194^{163k+82}\\||+15035\cdot 194^{162k+81}+1094\cdot 194^{161k+81}-37751\cdot 194^{160k+80}+2121\cdot 194^{159k+80}+4753\cdot 194^{158k+79}\\||-2394\cdot 194^{157k+79}+31251\cdot 194^{156k+78}-611\cdot 194^{155k+78}-3977\cdot 194^{154k+77}-446\cdot 194^{153k+77}\\||+19573\cdot 194^{152k+76}-949\cdot 194^{151k+76}-9215\cdot 194^{150k+75}+1844\cdot 194^{149k+75}-25513\cdot 194^{148k+74}\\||+1203\cdot 194^{147k+74}-6305\cdot 194^{146k+73}-682\cdot 194^{145k+73}+27461\cdot 194^{144k+72}-1955\cdot 194^{143k+72}\\||-3783\cdot 194^{142k+71}+2996\cdot 194^{141k+71}-44361\cdot 194^{140k+70}+253\cdot 194^{139k+70}+37927\cdot 194^{138k+69}\\||-2534\cdot 194^{137k+69}-2699\cdot 194^{136k+68}+1851\cdot 194^{135k+68}-6111\cdot 194^{134k+67}-2122\cdot 194^{133k+67}\\||+37875\cdot 194^{132k+66}-841\cdot 194^{131k+66}-19497\cdot 194^{130k+65}+2232\cdot 194^{129k+65}-24527\cdot 194^{128k+64}\\||+679\cdot 194^{127k+64}+12513\cdot 194^{126k+63}-2518\cdot 194^{125k+63}+36059\cdot 194^{124k+62}-79\cdot 194^{123k+62}\\||-45493\cdot 194^{122k+61}+4018\cdot 194^{121k+61}-14135\cdot 194^{120k+60}-2827\cdot 194^{119k+60}+50537\cdot 194^{118k+59}\\||-950\cdot 194^{117k+59}-27245\cdot 194^{116k+58}+2129\cdot 194^{115k+58}-97\cdot 194^{114k+57}-1744\cdot 194^{113k+57}\\||+20465\cdot 194^{112k+56}+215\cdot 194^{111k+56}-24347\cdot 194^{110k+55}+2078\cdot 194^{109k+55}-12257\cdot 194^{108k+54}\\||-1501\cdot 194^{107k+54}+52283\cdot 194^{106k+53}-4024\cdot 194^{105k+53}+22245\cdot 194^{104k+52}+1907\cdot 194^{103k+52}\\||-51895\cdot 194^{102k+51}+2604\cdot 194^{101k+51}+479\cdot 194^{100k+50}-1659\cdot 194^{99k+50}+15423\cdot 194^{98k+49}\\||+580\cdot 194^{97k+49}-20255\cdot 194^{96k+48}+580\cdot 194^{95k+48}+15423\cdot 194^{94k+47}-1659\cdot 194^{93k+47}\\||+479\cdot 194^{92k+46}+2604\cdot 194^{91k+46}-51895\cdot 194^{90k+45}+1907\cdot 194^{89k+45}+22245\cdot 194^{88k+44}\\||-4024\cdot 194^{87k+44}+52283\cdot 194^{86k+43}-1501\cdot 194^{85k+43}-12257\cdot 194^{84k+42}+2078\cdot 194^{83k+42}\\||-24347\cdot 194^{82k+41}+215\cdot 194^{81k+41}+20465\cdot 194^{80k+40}-1744\cdot 194^{79k+40}-97\cdot 194^{78k+39}\\||+2129\cdot 194^{77k+39}-27245\cdot 194^{76k+38}-950\cdot 194^{75k+38}+50537\cdot 194^{74k+37}-2827\cdot 194^{73k+37}\\||-14135\cdot 194^{72k+36}+4018\cdot 194^{71k+36}-45493\cdot 194^{70k+35}-79\cdot 194^{69k+35}+36059\cdot 194^{68k+34}\\||-2518\cdot 194^{67k+34}+12513\cdot 194^{66k+33}+679\cdot 194^{65k+33}-24527\cdot 194^{64k+32}+2232\cdot 194^{63k+32}\\||-19497\cdot 194^{62k+31}-841\cdot 194^{61k+31}+37875\cdot 194^{60k+30}-2122\cdot 194^{59k+30}-6111\cdot 194^{58k+29}\\||+1851\cdot 194^{57k+29}-2699\cdot 194^{56k+28}-2534\cdot 194^{55k+28}+37927\cdot 194^{54k+27}+253\cdot 194^{53k+27}\\||-44361\cdot 194^{52k+26}+2996\cdot 194^{51k+26}-3783\cdot 194^{50k+25}-1955\cdot 194^{49k+25}+27461\cdot 194^{48k+24}\\||-682\cdot 194^{47k+24}-6305\cdot 194^{46k+23}+1203\cdot 194^{45k+23}-25513\cdot 194^{44k+22}+1844\cdot 194^{43k+22}\\||-9215\cdot 194^{42k+21}-949\cdot 194^{41k+21}+19573\cdot 194^{40k+20}-446\cdot 194^{39k+20}-3977\cdot 194^{38k+19}\\||-611\cdot 194^{37k+19}+31251\cdot 194^{36k+18}-2394\cdot 194^{35k+18}+4753\cdot 194^{34k+17}+2121\cdot 194^{33k+17}\\||-37751\cdot 194^{32k+16}+1094\cdot 194^{31k+16}+15035\cdot 194^{30k+15}-2137\cdot 194^{29k+15}+24987\cdot 194^{28k+14}\\||-796\cdot 194^{27k+14}-1843\cdot 194^{26k+13}+687\cdot 194^{25k+13}-10919\cdot 194^{24k+12}+496\cdot 194^{23k+12}\\||-2425\cdot 194^{22k+11}+239\cdot 194^{21k+11}-9349\cdot 194^{20k+10}+900\cdot 194^{19k+10}-5723\cdot 194^{18k+9}\\||-583\cdot 194^{17k+9}+17361\cdot 194^{16k+8}-944\cdot 194^{15k+8}-1649\cdot 194^{14k+7}+1095\cdot 194^{13k+7}\\||-17721\cdot 194^{12k+6}+616\cdot 194^{11k+6}+4753\cdot 194^{10k+5}-1017\cdot 194^{9k+5}+16357\cdot 194^{8k+4}\\||-940\cdot 194^{7k+4}+8051\cdot 194^{6k+3}-281\cdot 194^{5k+3}+1503\cdot 194^{4k+2}-32\cdot 194^{3k+2}\\||+97\cdot 194^{2k+1}-194^{k+1}+1)\\|\times|(194^{192k+96}+194^{191k+96}+97\cdot 194^{190k+95}+32\cdot 194^{189k+95}+1503\cdot 194^{188k+94}\\||+281\cdot 194^{187k+94}+8051\cdot 194^{186k+93}+940\cdot 194^{185k+93}+16357\cdot 194^{184k+92}+1017\cdot 194^{183k+92}\\||+4753\cdot 194^{182k+91}-616\cdot 194^{181k+91}-17721\cdot 194^{180k+90}-1095\cdot 194^{179k+90}-1649\cdot 194^{178k+89}\\||+944\cdot 194^{177k+89}+17361\cdot 194^{176k+88}+583\cdot 194^{175k+88}-5723\cdot 194^{174k+87}-900\cdot 194^{173k+87}\\||-9349\cdot 194^{172k+86}-239\cdot 194^{171k+86}-2425\cdot 194^{170k+85}-496\cdot 194^{169k+85}-10919\cdot 194^{168k+84}\\||-687\cdot 194^{167k+84}-1843\cdot 194^{166k+83}+796\cdot 194^{165k+83}+24987\cdot 194^{164k+82}+2137\cdot 194^{163k+82}\\||+15035\cdot 194^{162k+81}-1094\cdot 194^{161k+81}-37751\cdot 194^{160k+80}-2121\cdot 194^{159k+80}+4753\cdot 194^{158k+79}\\||+2394\cdot 194^{157k+79}+31251\cdot 194^{156k+78}+611\cdot 194^{155k+78}-3977\cdot 194^{154k+77}+446\cdot 194^{153k+77}\\||+19573\cdot 194^{152k+76}+949\cdot 194^{151k+76}-9215\cdot 194^{150k+75}-1844\cdot 194^{149k+75}-25513\cdot 194^{148k+74}\\||-1203\cdot 194^{147k+74}-6305\cdot 194^{146k+73}+682\cdot 194^{145k+73}+27461\cdot 194^{144k+72}+1955\cdot 194^{143k+72}\\||-3783\cdot 194^{142k+71}-2996\cdot 194^{141k+71}-44361\cdot 194^{140k+70}-253\cdot 194^{139k+70}+37927\cdot 194^{138k+69}\\||+2534\cdot 194^{137k+69}-2699\cdot 194^{136k+68}-1851\cdot 194^{135k+68}-6111\cdot 194^{134k+67}+2122\cdot 194^{133k+67}\\||+37875\cdot 194^{132k+66}+841\cdot 194^{131k+66}-19497\cdot 194^{130k+65}-2232\cdot 194^{129k+65}-24527\cdot 194^{128k+64}\\||-679\cdot 194^{127k+64}+12513\cdot 194^{126k+63}+2518\cdot 194^{125k+63}+36059\cdot 194^{124k+62}+79\cdot 194^{123k+62}\\||-45493\cdot 194^{122k+61}-4018\cdot 194^{121k+61}-14135\cdot 194^{120k+60}+2827\cdot 194^{119k+60}+50537\cdot 194^{118k+59}\\||+950\cdot 194^{117k+59}-27245\cdot 194^{116k+58}-2129\cdot 194^{115k+58}-97\cdot 194^{114k+57}+1744\cdot 194^{113k+57}\\||+20465\cdot 194^{112k+56}-215\cdot 194^{111k+56}-24347\cdot 194^{110k+55}-2078\cdot 194^{109k+55}-12257\cdot 194^{108k+54}\\||+1501\cdot 194^{107k+54}+52283\cdot 194^{106k+53}+4024\cdot 194^{105k+53}+22245\cdot 194^{104k+52}-1907\cdot 194^{103k+52}\\||-51895\cdot 194^{102k+51}-2604\cdot 194^{101k+51}+479\cdot 194^{100k+50}+1659\cdot 194^{99k+50}+15423\cdot 194^{98k+49}\\||-580\cdot 194^{97k+49}-20255\cdot 194^{96k+48}-580\cdot 194^{95k+48}+15423\cdot 194^{94k+47}+1659\cdot 194^{93k+47}\\||+479\cdot 194^{92k+46}-2604\cdot 194^{91k+46}-51895\cdot 194^{90k+45}-1907\cdot 194^{89k+45}+22245\cdot 194^{88k+44}\\||+4024\cdot 194^{87k+44}+52283\cdot 194^{86k+43}+1501\cdot 194^{85k+43}-12257\cdot 194^{84k+42}-2078\cdot 194^{83k+42}\\||-24347\cdot 194^{82k+41}-215\cdot 194^{81k+41}+20465\cdot 194^{80k+40}+1744\cdot 194^{79k+40}-97\cdot 194^{78k+39}\\||-2129\cdot 194^{77k+39}-27245\cdot 194^{76k+38}+950\cdot 194^{75k+38}+50537\cdot 194^{74k+37}+2827\cdot 194^{73k+37}\\||-14135\cdot 194^{72k+36}-4018\cdot 194^{71k+36}-45493\cdot 194^{70k+35}+79\cdot 194^{69k+35}+36059\cdot 194^{68k+34}\\||+2518\cdot 194^{67k+34}+12513\cdot 194^{66k+33}-679\cdot 194^{65k+33}-24527\cdot 194^{64k+32}-2232\cdot 194^{63k+32}\\||-19497\cdot 194^{62k+31}+841\cdot 194^{61k+31}+37875\cdot 194^{60k+30}+2122\cdot 194^{59k+30}-6111\cdot 194^{58k+29}\\||-1851\cdot 194^{57k+29}-2699\cdot 194^{56k+28}+2534\cdot 194^{55k+28}+37927\cdot 194^{54k+27}-253\cdot 194^{53k+27}\\||-44361\cdot 194^{52k+26}-2996\cdot 194^{51k+26}-3783\cdot 194^{50k+25}+1955\cdot 194^{49k+25}+27461\cdot 194^{48k+24}\\||+682\cdot 194^{47k+24}-6305\cdot 194^{46k+23}-1203\cdot 194^{45k+23}-25513\cdot 194^{44k+22}-1844\cdot 194^{43k+22}\\||-9215\cdot 194^{42k+21}+949\cdot 194^{41k+21}+19573\cdot 194^{40k+20}+446\cdot 194^{39k+20}-3977\cdot 194^{38k+19}\\||+611\cdot 194^{37k+19}+31251\cdot 194^{36k+18}+2394\cdot 194^{35k+18}+4753\cdot 194^{34k+17}-2121\cdot 194^{33k+17}\\||-37751\cdot 194^{32k+16}-1094\cdot 194^{31k+16}+15035\cdot 194^{30k+15}+2137\cdot 194^{29k+15}+24987\cdot 194^{28k+14}\\||+796\cdot 194^{27k+14}-1843\cdot 194^{26k+13}-687\cdot 194^{25k+13}-10919\cdot 194^{24k+12}-496\cdot 194^{23k+12}\\||-2425\cdot 194^{22k+11}-239\cdot 194^{21k+11}-9349\cdot 194^{20k+10}-900\cdot 194^{19k+10}-5723\cdot 194^{18k+9}\\||+583\cdot 194^{17k+9}+17361\cdot 194^{16k+8}+944\cdot 194^{15k+8}-1649\cdot 194^{14k+7}-1095\cdot 194^{13k+7}\\||-17721\cdot 194^{12k+6}-616\cdot 194^{11k+6}+4753\cdot 194^{10k+5}+1017\cdot 194^{9k+5}+16357\cdot 194^{8k+4}\\||+940\cdot 194^{7k+4}+8051\cdot 194^{6k+3}+281\cdot 194^{5k+3}+1503\cdot 194^{4k+2}+32\cdot 194^{3k+2}\\||+97\cdot 194^{2k+1}+194^{k+1}+1)\\{\large\Phi}_{390}(195^{2k+1})|=|195^{192k+96}-195^{190k+95}+195^{188k+94}+195^{182k+91}-195^{180k+90}\\||+195^{178k+89}+195^{166k+83}-195^{164k+82}+195^{160k+80}-195^{158k+79}\\||+195^{156k+78}-195^{154k+77}+195^{150k+75}-195^{148k+74}-195^{136k+68}\\||+195^{134k+67}-195^{130k+65}+195^{128k+64}-195^{126k+63}+195^{124k+62}\\||-195^{120k+60}+195^{118k+59}-195^{114k+57}+195^{112k+56}-195^{110k+55}\\||+195^{106k+53}-2\cdot 195^{104k+52}+195^{102k+51}-195^{98k+49}+195^{96k+48}\\||-195^{94k+47}+195^{90k+45}-2\cdot 195^{88k+44}+195^{86k+43}-195^{82k+41}\\||+195^{80k+40}-195^{78k+39}+195^{74k+37}-195^{72k+36}+195^{68k+34}\\||-195^{66k+33}+195^{64k+32}-195^{62k+31}+195^{58k+29}-195^{56k+28}\\||-195^{44k+22}+195^{42k+21}-195^{38k+19}+195^{36k+18}-195^{34k+17}\\||+195^{32k+16}-195^{28k+14}+195^{26k+13}+195^{14k+7}-195^{12k+6}\\||+195^{10k+5}+195^{4k+2}-195^{2k+1}+1\\|=|(195^{96k+48}-195^{95k+48}+97\cdot 195^{94k+47}-32\cdot 195^{93k+47}+1536\cdot 195^{92k+46}\\||-301\cdot 195^{91k+46}+9543\cdot 195^{90k+45}-1325\cdot 195^{89k+45}+31296\cdot 195^{88k+44}-3360\cdot 195^{87k+44}\\||+63038\cdot 195^{86k+43}-5464\cdot 195^{85k+43}+82988\cdot 195^{84k+42}-5717\cdot 195^{83k+42}+64881\cdot 195^{82k+41}\\||-2732\cdot 195^{81k+41}+1833\cdot 195^{80k+40}+2871\cdot 195^{79k+40}-82599\cdot 195^{78k+39}+8619\cdot 195^{77k+39}\\||-148268\cdot 195^{76k+38}+11593\cdot 195^{75k+38}-157859\cdot 195^{74k+37}+9620\cdot 195^{73k+37}-91380\cdot 195^{72k+36}\\||+2248\cdot 195^{71k+36}+40448\cdot 195^{70k+35}-8310\cdot 195^{69k+35}+185021\cdot 195^{68k+34}-16923\cdot 195^{67k+34}\\||+260342\cdot 195^{66k+33}-17981\cdot 195^{65k+33}+207587\cdot 195^{64k+32}-9617\cdot 195^{63k+32}+40377\cdot 195^{62k+31}\\||+4438\cdot 195^{61k+31}-159599\cdot 195^{60k+30}+17203\cdot 195^{59k+30}-293822\cdot 195^{58k+29}+22449\cdot 195^{57k+29}\\||-295985\cdot 195^{56k+28}+17331\cdot 195^{55k+28}-156194\cdot 195^{54k+27}+3367\cdot 195^{53k+27}+73422\cdot 195^{52k+26}\\||-13631\cdot 195^{51k+26}+288188\cdot 195^{50k+25}-25293\cdot 195^{49k+25}+375977\cdot 195^{48k+24}-25293\cdot 195^{47k+24}\\||+288188\cdot 195^{46k+23}-13631\cdot 195^{45k+23}+73422\cdot 195^{44k+22}+3367\cdot 195^{43k+22}-156194\cdot 195^{42k+21}\\||+17331\cdot 195^{41k+21}-295985\cdot 195^{40k+20}+22449\cdot 195^{39k+20}-293822\cdot 195^{38k+19}+17203\cdot 195^{37k+19}\\||-159599\cdot 195^{36k+18}+4438\cdot 195^{35k+18}+40377\cdot 195^{34k+17}-9617\cdot 195^{33k+17}+207587\cdot 195^{32k+16}\\||-17981\cdot 195^{31k+16}+260342\cdot 195^{30k+15}-16923\cdot 195^{29k+15}+185021\cdot 195^{28k+14}-8310\cdot 195^{27k+14}\\||+40448\cdot 195^{26k+13}+2248\cdot 195^{25k+13}-91380\cdot 195^{24k+12}+9620\cdot 195^{23k+12}-157859\cdot 195^{22k+11}\\||+11593\cdot 195^{21k+11}-148268\cdot 195^{20k+10}+8619\cdot 195^{19k+10}-82599\cdot 195^{18k+9}+2871\cdot 195^{17k+9}\\||+1833\cdot 195^{16k+8}-2732\cdot 195^{15k+8}+64881\cdot 195^{14k+7}-5717\cdot 195^{13k+7}+82988\cdot 195^{12k+6}\\||-5464\cdot 195^{11k+6}+63038\cdot 195^{10k+5}-3360\cdot 195^{9k+5}+31296\cdot 195^{8k+4}-1325\cdot 195^{7k+4}\\||+9543\cdot 195^{6k+3}-301\cdot 195^{5k+3}+1536\cdot 195^{4k+2}-32\cdot 195^{3k+2}+97\cdot 195^{2k+1}\\||-195^{k+1}+1)\\|\times|(195^{96k+48}+195^{95k+48}+97\cdot 195^{94k+47}+32\cdot 195^{93k+47}+1536\cdot 195^{92k+46}\\||+301\cdot 195^{91k+46}+9543\cdot 195^{90k+45}+1325\cdot 195^{89k+45}+31296\cdot 195^{88k+44}+3360\cdot 195^{87k+44}\\||+63038\cdot 195^{86k+43}+5464\cdot 195^{85k+43}+82988\cdot 195^{84k+42}+5717\cdot 195^{83k+42}+64881\cdot 195^{82k+41}\\||+2732\cdot 195^{81k+41}+1833\cdot 195^{80k+40}-2871\cdot 195^{79k+40}-82599\cdot 195^{78k+39}-8619\cdot 195^{77k+39}\\||-148268\cdot 195^{76k+38}-11593\cdot 195^{75k+38}-157859\cdot 195^{74k+37}-9620\cdot 195^{73k+37}-91380\cdot 195^{72k+36}\\||-2248\cdot 195^{71k+36}+40448\cdot 195^{70k+35}+8310\cdot 195^{69k+35}+185021\cdot 195^{68k+34}+16923\cdot 195^{67k+34}\\||+260342\cdot 195^{66k+33}+17981\cdot 195^{65k+33}+207587\cdot 195^{64k+32}+9617\cdot 195^{63k+32}+40377\cdot 195^{62k+31}\\||-4438\cdot 195^{61k+31}-159599\cdot 195^{60k+30}-17203\cdot 195^{59k+30}-293822\cdot 195^{58k+29}-22449\cdot 195^{57k+29}\\||-295985\cdot 195^{56k+28}-17331\cdot 195^{55k+28}-156194\cdot 195^{54k+27}-3367\cdot 195^{53k+27}+73422\cdot 195^{52k+26}\\||+13631\cdot 195^{51k+26}+288188\cdot 195^{50k+25}+25293\cdot 195^{49k+25}+375977\cdot 195^{48k+24}+25293\cdot 195^{47k+24}\\||+288188\cdot 195^{46k+23}+13631\cdot 195^{45k+23}+73422\cdot 195^{44k+22}-3367\cdot 195^{43k+22}-156194\cdot 195^{42k+21}\\||-17331\cdot 195^{41k+21}-295985\cdot 195^{40k+20}-22449\cdot 195^{39k+20}-293822\cdot 195^{38k+19}-17203\cdot 195^{37k+19}\\||-159599\cdot 195^{36k+18}-4438\cdot 195^{35k+18}+40377\cdot 195^{34k+17}+9617\cdot 195^{33k+17}+207587\cdot 195^{32k+16}\\||+17981\cdot 195^{31k+16}+260342\cdot 195^{30k+15}+16923\cdot 195^{29k+15}+185021\cdot 195^{28k+14}+8310\cdot 195^{27k+14}\\||+40448\cdot 195^{26k+13}-2248\cdot 195^{25k+13}-91380\cdot 195^{24k+12}-9620\cdot 195^{23k+12}-157859\cdot 195^{22k+11}\\||-11593\cdot 195^{21k+11}-148268\cdot 195^{20k+10}-8619\cdot 195^{19k+10}-82599\cdot 195^{18k+9}-2871\cdot 195^{17k+9}\\||+1833\cdot 195^{16k+8}+2732\cdot 195^{15k+8}+64881\cdot 195^{14k+7}+5717\cdot 195^{13k+7}+82988\cdot 195^{12k+6}\\||+5464\cdot 195^{11k+6}+63038\cdot 195^{10k+5}+3360\cdot 195^{9k+5}+31296\cdot 195^{8k+4}+1325\cdot 195^{7k+4}\\||+9543\cdot 195^{6k+3}+301\cdot 195^{5k+3}+1536\cdot 195^{4k+2}+32\cdot 195^{3k+2}+97\cdot 195^{2k+1}\\||+195^{k+1}+1)\end{eqnarray}%%
${\large\Phi}_{197}(197^{2k+1})\cdots{\large\Phi}_{398}(199^{2k+1})$${\large\Phi}_{197}(197^{2k+1})\cdots{\large\Phi}_{398}(199^{2k+1})$
%%\begin{eqnarray}{\large\Phi}_{197}(197^{2k+1})|=|197^{392k+196}+197^{390k+195}+197^{388k+194}+197^{386k+193}+197^{384k+192}\\||+197^{382k+191}+197^{380k+190}+197^{378k+189}+197^{376k+188}+197^{374k+187}\\||+197^{372k+186}+197^{370k+185}+197^{368k+184}+197^{366k+183}+197^{364k+182}\\||+197^{362k+181}+197^{360k+180}+197^{358k+179}+197^{356k+178}+197^{354k+177}\\||+197^{352k+176}+197^{350k+175}+197^{348k+174}+197^{346k+173}+197^{344k+172}\\||+197^{342k+171}+197^{340k+170}+197^{338k+169}+197^{336k+168}+197^{334k+167}\\||+197^{332k+166}+197^{330k+165}+197^{328k+164}+197^{326k+163}+197^{324k+162}\\||+197^{322k+161}+197^{320k+160}+197^{318k+159}+197^{316k+158}+197^{314k+157}\\||+197^{312k+156}+197^{310k+155}+197^{308k+154}+197^{306k+153}+197^{304k+152}\\||+197^{302k+151}+197^{300k+150}+197^{298k+149}+197^{296k+148}+197^{294k+147}\\||+197^{292k+146}+197^{290k+145}+197^{288k+144}+197^{286k+143}+197^{284k+142}\\||+197^{282k+141}+197^{280k+140}+197^{278k+139}+197^{276k+138}+197^{274k+137}\\||+197^{272k+136}+197^{270k+135}+197^{268k+134}+197^{266k+133}+197^{264k+132}\\||+197^{262k+131}+197^{260k+130}+197^{258k+129}+197^{256k+128}+197^{254k+127}\\||+197^{252k+126}+197^{250k+125}+197^{248k+124}+197^{246k+123}+197^{244k+122}\\||+197^{242k+121}+197^{240k+120}+197^{238k+119}+197^{236k+118}+197^{234k+117}\\||+197^{232k+116}+197^{230k+115}+197^{228k+114}+197^{226k+113}+197^{224k+112}\\||+197^{222k+111}+197^{220k+110}+197^{218k+109}+197^{216k+108}+197^{214k+107}\\||+197^{212k+106}+197^{210k+105}+197^{208k+104}+197^{206k+103}+197^{204k+102}\\||+197^{202k+101}+197^{200k+100}+197^{198k+99}+197^{196k+98}+197^{194k+97}\\||+197^{192k+96}+197^{190k+95}+197^{188k+94}+197^{186k+93}+197^{184k+92}\\||+197^{182k+91}+197^{180k+90}+197^{178k+89}+197^{176k+88}+197^{174k+87}\\||+197^{172k+86}+197^{170k+85}+197^{168k+84}+197^{166k+83}+197^{164k+82}\\||+197^{162k+81}+197^{160k+80}+197^{158k+79}+197^{156k+78}+197^{154k+77}\\||+197^{152k+76}+197^{150k+75}+197^{148k+74}+197^{146k+73}+197^{144k+72}\\||+197^{142k+71}+197^{140k+70}+197^{138k+69}+197^{136k+68}+197^{134k+67}\\||+197^{132k+66}+197^{130k+65}+197^{128k+64}+197^{126k+63}+197^{124k+62}\\||+197^{122k+61}+197^{120k+60}+197^{118k+59}+197^{116k+58}+197^{114k+57}\\||+197^{112k+56}+197^{110k+55}+197^{108k+54}+197^{106k+53}+197^{104k+52}\\||+197^{102k+51}+197^{100k+50}+197^{98k+49}+197^{96k+48}+197^{94k+47}\\||+197^{92k+46}+197^{90k+45}+197^{88k+44}+197^{86k+43}+197^{84k+42}\\||+197^{82k+41}+197^{80k+40}+197^{78k+39}+197^{76k+38}+197^{74k+37}\\||+197^{72k+36}+197^{70k+35}+197^{68k+34}+197^{66k+33}+197^{64k+32}\\||+197^{62k+31}+197^{60k+30}+197^{58k+29}+197^{56k+28}+197^{54k+27}\\||+197^{52k+26}+197^{50k+25}+197^{48k+24}+197^{46k+23}+197^{44k+22}\\||+197^{42k+21}+197^{40k+20}+197^{38k+19}+197^{36k+18}+197^{34k+17}\\||+197^{32k+16}+197^{30k+15}+197^{28k+14}+197^{26k+13}+197^{24k+12}\\||+197^{22k+11}+197^{20k+10}+197^{18k+9}+197^{16k+8}+197^{14k+7}\\||+197^{12k+6}+197^{10k+5}+197^{8k+4}+197^{6k+3}+197^{4k+2}\\||+197^{2k+1}+1\\|=|(197^{196k+98}-197^{195k+98}+99\cdot 197^{194k+97}-33\cdot 197^{193k+97}+1601\cdot 197^{192k+96}\\||-307\cdot 197^{191k+96}+9247\cdot 197^{190k+95}-1127\cdot 197^{189k+95}+20773\cdot 197^{188k+94}-1277\cdot 197^{187k+94}\\||+749\cdot 197^{186k+93}+2257\cdot 197^{185k+93}-68247\cdot 197^{184k+92}+6041\cdot 197^{183k+92}-54071\cdot 197^{182k+91}\\||-2413\cdot 197^{181k+91}+151689\cdot 197^{180k+90}-16567\cdot 197^{179k+90}+198389\cdot 197^{178k+89}-957\cdot 197^{177k+89}\\||-267221\cdot 197^{176k+88}+35191\cdot 197^{175k+88}-488439\cdot 197^{174k+87}+11403\cdot 197^{173k+87}+394157\cdot 197^{172k+86}\\||-63109\cdot 197^{171k+86}+967277\cdot 197^{170k+85}-32231\cdot 197^{169k+85}-503673\cdot 197^{168k+84}+100097\cdot 197^{167k+84}\\||-1650819\cdot 197^{166k+83}+64889\cdot 197^{165k+83}+584077\cdot 197^{164k+82}-146317\cdot 197^{163k+82}+2553313\cdot 197^{162k+81}\\||-110915\cdot 197^{161k+81}-609697\cdot 197^{160k+80}+199789\cdot 197^{159k+80}-3648775\cdot 197^{158k+79}+169143\cdot 197^{157k+79}\\||+578681\cdot 197^{156k+78}-258921\cdot 197^{155k+78}+4903917\cdot 197^{154k+77}-237813\cdot 197^{153k+77}-487561\cdot 197^{152k+76}\\||+320943\cdot 197^{151k+76}-6256141\cdot 197^{150k+75}+312637\cdot 197^{149k+75}+367541\cdot 197^{148k+74}-385205\cdot 197^{147k+74}\\||+7667523\cdot 197^{146k+73}-390899\cdot 197^{145k+73}-227731\cdot 197^{144k+72}+449391\cdot 197^{143k+72}-9074939\cdot 197^{142k+71}\\||+467843\cdot 197^{141k+71}+112475\cdot 197^{140k+70}-514349\cdot 197^{139k+70}+10467787\cdot 197^{138k+69}-542635\cdot 197^{137k+69}\\||-16241\cdot 197^{136k+68}+578161\cdot 197^{135k+68}-11809025\cdot 197^{134k+67}+613189\cdot 197^{133k+67}-51193\cdot 197^{132k+66}\\||-640323\cdot 197^{131k+66}+13090005\cdot 197^{130k+65}-680027\cdot 197^{129k+65}+121293\cdot 197^{128k+64}+697325\cdot 197^{127k+64}\\||-14260345\cdot 197^{126k+63}+740703\cdot 197^{125k+63}-184305\cdot 197^{124k+62}-748381\cdot 197^{123k+62}+15301563\cdot 197^{122k+61}\\||-794489\cdot 197^{121k+61}+248477\cdot 197^{120k+60}+791589\cdot 197^{119k+60}-16177899\cdot 197^{118k+59}+839125\cdot 197^{117k+59}\\||-296167\cdot 197^{116k+58}-826993\cdot 197^{115k+58}+16876987\cdot 197^{114k+57}-873387\cdot 197^{113k+57}+314205\cdot 197^{112k+56}\\||+854775\cdot 197^{111k+56}-17388137\cdot 197^{110k+55}+895675\cdot 197^{109k+55}-272339\cdot 197^{108k+54}-877343\cdot 197^{107k+54}\\||+17745271\cdot 197^{106k+53}-908201\cdot 197^{105k+53}+195769\cdot 197^{104k+52}+893447\cdot 197^{103k+52}-17937085\cdot 197^{102k+51}\\||+910223\cdot 197^{101k+51}-67703\cdot 197^{100k+50}-905125\cdot 197^{99k+50}+18004419\cdot 197^{98k+49}-905125\cdot 197^{97k+49}\\||-67703\cdot 197^{96k+48}+910223\cdot 197^{95k+48}-17937085\cdot 197^{94k+47}+893447\cdot 197^{93k+47}+195769\cdot 197^{92k+46}\\||-908201\cdot 197^{91k+46}+17745271\cdot 197^{90k+45}-877343\cdot 197^{89k+45}-272339\cdot 197^{88k+44}+895675\cdot 197^{87k+44}\\||-17388137\cdot 197^{86k+43}+854775\cdot 197^{85k+43}+314205\cdot 197^{84k+42}-873387\cdot 197^{83k+42}+16876987\cdot 197^{82k+41}\\||-826993\cdot 197^{81k+41}-296167\cdot 197^{80k+40}+839125\cdot 197^{79k+40}-16177899\cdot 197^{78k+39}+791589\cdot 197^{77k+39}\\||+248477\cdot 197^{76k+38}-794489\cdot 197^{75k+38}+15301563\cdot 197^{74k+37}-748381\cdot 197^{73k+37}-184305\cdot 197^{72k+36}\\||+740703\cdot 197^{71k+36}-14260345\cdot 197^{70k+35}+697325\cdot 197^{69k+35}+121293\cdot 197^{68k+34}-680027\cdot 197^{67k+34}\\||+13090005\cdot 197^{66k+33}-640323\cdot 197^{65k+33}-51193\cdot 197^{64k+32}+613189\cdot 197^{63k+32}-11809025\cdot 197^{62k+31}\\||+578161\cdot 197^{61k+31}-16241\cdot 197^{60k+30}-542635\cdot 197^{59k+30}+10467787\cdot 197^{58k+29}-514349\cdot 197^{57k+29}\\||+112475\cdot 197^{56k+28}+467843\cdot 197^{55k+28}-9074939\cdot 197^{54k+27}+449391\cdot 197^{53k+27}-227731\cdot 197^{52k+26}\\||-390899\cdot 197^{51k+26}+7667523\cdot 197^{50k+25}-385205\cdot 197^{49k+25}+367541\cdot 197^{48k+24}+312637\cdot 197^{47k+24}\\||-6256141\cdot 197^{46k+23}+320943\cdot 197^{45k+23}-487561\cdot 197^{44k+22}-237813\cdot 197^{43k+22}+4903917\cdot 197^{42k+21}\\||-258921\cdot 197^{41k+21}+578681\cdot 197^{40k+20}+169143\cdot 197^{39k+20}-3648775\cdot 197^{38k+19}+199789\cdot 197^{37k+19}\\||-609697\cdot 197^{36k+18}-110915\cdot 197^{35k+18}+2553313\cdot 197^{34k+17}-146317\cdot 197^{33k+17}+584077\cdot 197^{32k+16}\\||+64889\cdot 197^{31k+16}-1650819\cdot 197^{30k+15}+100097\cdot 197^{29k+15}-503673\cdot 197^{28k+14}-32231\cdot 197^{27k+14}\\||+967277\cdot 197^{26k+13}-63109\cdot 197^{25k+13}+394157\cdot 197^{24k+12}+11403\cdot 197^{23k+12}-488439\cdot 197^{22k+11}\\||+35191\cdot 197^{21k+11}-267221\cdot 197^{20k+10}-957\cdot 197^{19k+10}+198389\cdot 197^{18k+9}-16567\cdot 197^{17k+9}\\||+151689\cdot 197^{16k+8}-2413\cdot 197^{15k+8}-54071\cdot 197^{14k+7}+6041\cdot 197^{13k+7}-68247\cdot 197^{12k+6}\\||+2257\cdot 197^{11k+6}+749\cdot 197^{10k+5}-1277\cdot 197^{9k+5}+20773\cdot 197^{8k+4}-1127\cdot 197^{7k+4}\\||+9247\cdot 197^{6k+3}-307\cdot 197^{5k+3}+1601\cdot 197^{4k+2}-33\cdot 197^{3k+2}+99\cdot 197^{2k+1}\\||-197^{k+1}+1)\\|\times|(197^{196k+98}+197^{195k+98}+99\cdot 197^{194k+97}+33\cdot 197^{193k+97}+1601\cdot 197^{192k+96}\\||+307\cdot 197^{191k+96}+9247\cdot 197^{190k+95}+1127\cdot 197^{189k+95}+20773\cdot 197^{188k+94}+1277\cdot 197^{187k+94}\\||+749\cdot 197^{186k+93}-2257\cdot 197^{185k+93}-68247\cdot 197^{184k+92}-6041\cdot 197^{183k+92}-54071\cdot 197^{182k+91}\\||+2413\cdot 197^{181k+91}+151689\cdot 197^{180k+90}+16567\cdot 197^{179k+90}+198389\cdot 197^{178k+89}+957\cdot 197^{177k+89}\\||-267221\cdot 197^{176k+88}-35191\cdot 197^{175k+88}-488439\cdot 197^{174k+87}-11403\cdot 197^{173k+87}+394157\cdot 197^{172k+86}\\||+63109\cdot 197^{171k+86}+967277\cdot 197^{170k+85}+32231\cdot 197^{169k+85}-503673\cdot 197^{168k+84}-100097\cdot 197^{167k+84}\\||-1650819\cdot 197^{166k+83}-64889\cdot 197^{165k+83}+584077\cdot 197^{164k+82}+146317\cdot 197^{163k+82}+2553313\cdot 197^{162k+81}\\||+110915\cdot 197^{161k+81}-609697\cdot 197^{160k+80}-199789\cdot 197^{159k+80}-3648775\cdot 197^{158k+79}-169143\cdot 197^{157k+79}\\||+578681\cdot 197^{156k+78}+258921\cdot 197^{155k+78}+4903917\cdot 197^{154k+77}+237813\cdot 197^{153k+77}-487561\cdot 197^{152k+76}\\||-320943\cdot 197^{151k+76}-6256141\cdot 197^{150k+75}-312637\cdot 197^{149k+75}+367541\cdot 197^{148k+74}+385205\cdot 197^{147k+74}\\||+7667523\cdot 197^{146k+73}+390899\cdot 197^{145k+73}-227731\cdot 197^{144k+72}-449391\cdot 197^{143k+72}-9074939\cdot 197^{142k+71}\\||-467843\cdot 197^{141k+71}+112475\cdot 197^{140k+70}+514349\cdot 197^{139k+70}+10467787\cdot 197^{138k+69}+542635\cdot 197^{137k+69}\\||-16241\cdot 197^{136k+68}-578161\cdot 197^{135k+68}-11809025\cdot 197^{134k+67}-613189\cdot 197^{133k+67}-51193\cdot 197^{132k+66}\\||+640323\cdot 197^{131k+66}+13090005\cdot 197^{130k+65}+680027\cdot 197^{129k+65}+121293\cdot 197^{128k+64}-697325\cdot 197^{127k+64}\\||-14260345\cdot 197^{126k+63}-740703\cdot 197^{125k+63}-184305\cdot 197^{124k+62}+748381\cdot 197^{123k+62}+15301563\cdot 197^{122k+61}\\||+794489\cdot 197^{121k+61}+248477\cdot 197^{120k+60}-791589\cdot 197^{119k+60}-16177899\cdot 197^{118k+59}-839125\cdot 197^{117k+59}\\||-296167\cdot 197^{116k+58}+826993\cdot 197^{115k+58}+16876987\cdot 197^{114k+57}+873387\cdot 197^{113k+57}+314205\cdot 197^{112k+56}\\||-854775\cdot 197^{111k+56}-17388137\cdot 197^{110k+55}-895675\cdot 197^{109k+55}-272339\cdot 197^{108k+54}+877343\cdot 197^{107k+54}\\||+17745271\cdot 197^{106k+53}+908201\cdot 197^{105k+53}+195769\cdot 197^{104k+52}-893447\cdot 197^{103k+52}-17937085\cdot 197^{102k+51}\\||-910223\cdot 197^{101k+51}-67703\cdot 197^{100k+50}+905125\cdot 197^{99k+50}+18004419\cdot 197^{98k+49}+905125\cdot 197^{97k+49}\\||-67703\cdot 197^{96k+48}-910223\cdot 197^{95k+48}-17937085\cdot 197^{94k+47}-893447\cdot 197^{93k+47}+195769\cdot 197^{92k+46}\\||+908201\cdot 197^{91k+46}+17745271\cdot 197^{90k+45}+877343\cdot 197^{89k+45}-272339\cdot 197^{88k+44}-895675\cdot 197^{87k+44}\\||-17388137\cdot 197^{86k+43}-854775\cdot 197^{85k+43}+314205\cdot 197^{84k+42}+873387\cdot 197^{83k+42}+16876987\cdot 197^{82k+41}\\||+826993\cdot 197^{81k+41}-296167\cdot 197^{80k+40}-839125\cdot 197^{79k+40}-16177899\cdot 197^{78k+39}-791589\cdot 197^{77k+39}\\||+248477\cdot 197^{76k+38}+794489\cdot 197^{75k+38}+15301563\cdot 197^{74k+37}+748381\cdot 197^{73k+37}-184305\cdot 197^{72k+36}\\||-740703\cdot 197^{71k+36}-14260345\cdot 197^{70k+35}-697325\cdot 197^{69k+35}+121293\cdot 197^{68k+34}+680027\cdot 197^{67k+34}\\||+13090005\cdot 197^{66k+33}+640323\cdot 197^{65k+33}-51193\cdot 197^{64k+32}-613189\cdot 197^{63k+32}-11809025\cdot 197^{62k+31}\\||-578161\cdot 197^{61k+31}-16241\cdot 197^{60k+30}+542635\cdot 197^{59k+30}+10467787\cdot 197^{58k+29}+514349\cdot 197^{57k+29}\\||+112475\cdot 197^{56k+28}-467843\cdot 197^{55k+28}-9074939\cdot 197^{54k+27}-449391\cdot 197^{53k+27}-227731\cdot 197^{52k+26}\\||+390899\cdot 197^{51k+26}+7667523\cdot 197^{50k+25}+385205\cdot 197^{49k+25}+367541\cdot 197^{48k+24}-312637\cdot 197^{47k+24}\\||-6256141\cdot 197^{46k+23}-320943\cdot 197^{45k+23}-487561\cdot 197^{44k+22}+237813\cdot 197^{43k+22}+4903917\cdot 197^{42k+21}\\||+258921\cdot 197^{41k+21}+578681\cdot 197^{40k+20}-169143\cdot 197^{39k+20}-3648775\cdot 197^{38k+19}-199789\cdot 197^{37k+19}\\||-609697\cdot 197^{36k+18}+110915\cdot 197^{35k+18}+2553313\cdot 197^{34k+17}+146317\cdot 197^{33k+17}+584077\cdot 197^{32k+16}\\||-64889\cdot 197^{31k+16}-1650819\cdot 197^{30k+15}-100097\cdot 197^{29k+15}-503673\cdot 197^{28k+14}+32231\cdot 197^{27k+14}\\||+967277\cdot 197^{26k+13}+63109\cdot 197^{25k+13}+394157\cdot 197^{24k+12}-11403\cdot 197^{23k+12}-488439\cdot 197^{22k+11}\\||-35191\cdot 197^{21k+11}-267221\cdot 197^{20k+10}+957\cdot 197^{19k+10}+198389\cdot 197^{18k+9}+16567\cdot 197^{17k+9}\\||+151689\cdot 197^{16k+8}+2413\cdot 197^{15k+8}-54071\cdot 197^{14k+7}-6041\cdot 197^{13k+7}-68247\cdot 197^{12k+6}\\||-2257\cdot 197^{11k+6}+749\cdot 197^{10k+5}+1277\cdot 197^{9k+5}+20773\cdot 197^{8k+4}+1127\cdot 197^{7k+4}\\||+9247\cdot 197^{6k+3}+307\cdot 197^{5k+3}+1601\cdot 197^{4k+2}+33\cdot 197^{3k+2}+99\cdot 197^{2k+1}\\||+197^{k+1}+1)\\{\large\Phi}_{398}(199^{2k+1})|=|199^{396k+198}-199^{394k+197}+199^{392k+196}-199^{390k+195}+199^{388k+194}\\||-199^{386k+193}+199^{384k+192}-199^{382k+191}+199^{380k+190}-199^{378k+189}\\||+199^{376k+188}-199^{374k+187}+199^{372k+186}-199^{370k+185}+199^{368k+184}\\||-199^{366k+183}+199^{364k+182}-199^{362k+181}+199^{360k+180}-199^{358k+179}\\||+199^{356k+178}-199^{354k+177}+199^{352k+176}-199^{350k+175}+199^{348k+174}\\||-199^{346k+173}+199^{344k+172}-199^{342k+171}+199^{340k+170}-199^{338k+169}\\||+199^{336k+168}-199^{334k+167}+199^{332k+166}-199^{330k+165}+199^{328k+164}\\||-199^{326k+163}+199^{324k+162}-199^{322k+161}+199^{320k+160}-199^{318k+159}\\||+199^{316k+158}-199^{314k+157}+199^{312k+156}-199^{310k+155}+199^{308k+154}\\||-199^{306k+153}+199^{304k+152}-199^{302k+151}+199^{300k+150}-199^{298k+149}\\||+199^{296k+148}-199^{294k+147}+199^{292k+146}-199^{290k+145}+199^{288k+144}\\||-199^{286k+143}+199^{284k+142}-199^{282k+141}+199^{280k+140}-199^{278k+139}\\||+199^{276k+138}-199^{274k+137}+199^{272k+136}-199^{270k+135}+199^{268k+134}\\||-199^{266k+133}+199^{264k+132}-199^{262k+131}+199^{260k+130}-199^{258k+129}\\||+199^{256k+128}-199^{254k+127}+199^{252k+126}-199^{250k+125}+199^{248k+124}\\||-199^{246k+123}+199^{244k+122}-199^{242k+121}+199^{240k+120}-199^{238k+119}\\||+199^{236k+118}-199^{234k+117}+199^{232k+116}-199^{230k+115}+199^{228k+114}\\||-199^{226k+113}+199^{224k+112}-199^{222k+111}+199^{220k+110}-199^{218k+109}\\||+199^{216k+108}-199^{214k+107}+199^{212k+106}-199^{210k+105}+199^{208k+104}\\||-199^{206k+103}+199^{204k+102}-199^{202k+101}+199^{200k+100}-199^{198k+99}\\||+199^{196k+98}-199^{194k+97}+199^{192k+96}-199^{190k+95}+199^{188k+94}\\||-199^{186k+93}+199^{184k+92}-199^{182k+91}+199^{180k+90}-199^{178k+89}\\||+199^{176k+88}-199^{174k+87}+199^{172k+86}-199^{170k+85}+199^{168k+84}\\||-199^{166k+83}+199^{164k+82}-199^{162k+81}+199^{160k+80}-199^{158k+79}\\||+199^{156k+78}-199^{154k+77}+199^{152k+76}-199^{150k+75}+199^{148k+74}\\||-199^{146k+73}+199^{144k+72}-199^{142k+71}+199^{140k+70}-199^{138k+69}\\||+199^{136k+68}-199^{134k+67}+199^{132k+66}-199^{130k+65}+199^{128k+64}\\||-199^{126k+63}+199^{124k+62}-199^{122k+61}+199^{120k+60}-199^{118k+59}\\||+199^{116k+58}-199^{114k+57}+199^{112k+56}-199^{110k+55}+199^{108k+54}\\||-199^{106k+53}+199^{104k+52}-199^{102k+51}+199^{100k+50}-199^{98k+49}\\||+199^{96k+48}-199^{94k+47}+199^{92k+46}-199^{90k+45}+199^{88k+44}\\||-199^{86k+43}+199^{84k+42}-199^{82k+41}+199^{80k+40}-199^{78k+39}\\||+199^{76k+38}-199^{74k+37}+199^{72k+36}-199^{70k+35}+199^{68k+34}\\||-199^{66k+33}+199^{64k+32}-199^{62k+31}+199^{60k+30}-199^{58k+29}\\||+199^{56k+28}-199^{54k+27}+199^{52k+26}-199^{50k+25}+199^{48k+24}\\||-199^{46k+23}+199^{44k+22}-199^{42k+21}+199^{40k+20}-199^{38k+19}\\||+199^{36k+18}-199^{34k+17}+199^{32k+16}-199^{30k+15}+199^{28k+14}\\||-199^{26k+13}+199^{24k+12}-199^{22k+11}+199^{20k+10}-199^{18k+9}\\||+199^{16k+8}-199^{14k+7}+199^{12k+6}-199^{10k+5}+199^{8k+4}\\||-199^{6k+3}+199^{4k+2}-199^{2k+1}+1\\|=|(199^{198k+99}-199^{197k+99}+99\cdot 199^{196k+98}-33\cdot 199^{195k+98}+1667\cdot 199^{194k+97}\\||-347\cdot 199^{193k+97}+12375\cdot 199^{192k+96}-1975\cdot 199^{191k+96}+57205\cdot 199^{190k+95}-7721\cdot 199^{189k+95}\\||+194579\cdot 199^{188k+94}-23321\cdot 199^{187k+94}+529993\cdot 199^{186k+93}-57993\cdot 199^{185k+93}+1215639\cdot 199^{184k+92}\\||-123761\cdot 199^{183k+92}+2431779\cdot 199^{182k+91}-233597\cdot 199^{181k+91}+4356719\cdot 199^{180k+90}-399437\cdot 199^{179k+90}\\||+7146795\cdot 199^{178k+89}-631589\cdot 199^{177k+89}+10940537\cdot 199^{176k+88}-939833\cdot 199^{175k+88}+15882429\cdot 199^{174k+87}\\||-1335253\cdot 199^{173k+87}+22141819\cdot 199^{172k+86}-1830469\cdot 199^{171k+86}+29896087\cdot 199^{170k+85}-2437075\cdot 199^{169k+85}\\||+39279355\cdot 199^{168k+84}-3161375\cdot 199^{167k+84}+50322949\cdot 199^{166k+83}-4001117\cdot 199^{165k+83}+62935069\cdot 199^{164k+82}\\||-4946297\cdot 199^{163k+82}+76941443\cdot 199^{162k+81}-5983585\cdot 199^{161k+81}+92159977\cdot 199^{160k+80}-7101611\cdot 199^{159k+80}\\||+108459149\cdot 199^{158k+79}-8292843\cdot 199^{157k+79}+125745059\cdot 199^{156k+78}-9550167\cdot 199^{155k+78}+143889447\cdot 199^{154k+77}\\||-10861035\cdot 199^{153k+77}+162650973\cdot 199^{152k+76}-12203425\cdot 199^{151k+76}+181657909\cdot 199^{150k+75}-13548033\cdot 199^{149k+75}\\||+200480847\cdot 199^{148k+74}-14865219\cdot 199^{147k+74}+218738341\cdot 199^{146k+73}-16131885\cdot 199^{145k+73}+236167097\cdot 199^{144k+72}\\||-17333227\cdot 199^{143k+72}+252592149\cdot 199^{142k+71}-18457357\cdot 199^{141k+71}+267826531\cdot 199^{140k+70}-19488061\cdot 199^{139k+70}\\||+281585249\cdot 199^{138k+69}-20401057\cdot 199^{137k+69}+293483623\cdot 199^{136k+68}-21168191\cdot 199^{135k+68}+303148249\cdot 199^{134k+67}\\||-21767161\cdot 199^{133k+67}+310352611\cdot 199^{132k+66}-22189597\cdot 199^{131k+66}+315093865\cdot 199^{130k+65}-22442703\cdot 199^{129k+65}\\||+317551445\cdot 199^{128k+64}-22542271\cdot 199^{127k+64}+317958341\cdot 199^{126k+63}-22503655\cdot 199^{125k+63}+316496927\cdot 199^{124k+62}\\||-22336957\cdot 199^{123k+62}+313280373\cdot 199^{122k+61}-22049959\cdot 199^{121k+61}+308448383\cdot 199^{120k+60}-21656831\cdot 199^{119k+60}\\||+302282057\cdot 199^{118k+59}-21183977\cdot 199^{117k+59}+295242765\cdot 199^{116k+58}-20669091\cdot 199^{115k+58}+287898015\cdot 199^{114k+57}\\||-20151881\cdot 199^{113k+57}+280760439\cdot 199^{112k+56}-19663229\cdot 199^{111k+56}+274171593\cdot 199^{110k+55}-19220373\cdot 199^{109k+55}\\||+268287415\cdot 199^{108k+54}-18830139\cdot 199^{107k+54}+263182337\cdot 199^{106k+53}-18498823\cdot 199^{105k+53}+258985113\cdot 199^{104k+52}\\||-18239283\cdot 199^{103k+52}+255930359\cdot 199^{102k+51}-18071005\cdot 199^{101k+51}+254305083\cdot 199^{100k+50}-18012449\cdot 199^{99k+50}\\||+254305083\cdot 199^{98k+49}-18071005\cdot 199^{97k+49}+255930359\cdot 199^{96k+48}-18239283\cdot 199^{95k+48}+258985113\cdot 199^{94k+47}\\||-18498823\cdot 199^{93k+47}+263182337\cdot 199^{92k+46}-18830139\cdot 199^{91k+46}+268287415\cdot 199^{90k+45}-19220373\cdot 199^{89k+45}\\||+274171593\cdot 199^{88k+44}-19663229\cdot 199^{87k+44}+280760439\cdot 199^{86k+43}-20151881\cdot 199^{85k+43}+287898015\cdot 199^{84k+42}\\||-20669091\cdot 199^{83k+42}+295242765\cdot 199^{82k+41}-21183977\cdot 199^{81k+41}+302282057\cdot 199^{80k+40}-21656831\cdot 199^{79k+40}\\||+308448383\cdot 199^{78k+39}-22049959\cdot 199^{77k+39}+313280373\cdot 199^{76k+38}-22336957\cdot 199^{75k+38}+316496927\cdot 199^{74k+37}\\||-22503655\cdot 199^{73k+37}+317958341\cdot 199^{72k+36}-22542271\cdot 199^{71k+36}+317551445\cdot 199^{70k+35}-22442703\cdot 199^{69k+35}\\||+315093865\cdot 199^{68k+34}-22189597\cdot 199^{67k+34}+310352611\cdot 199^{66k+33}-21767161\cdot 199^{65k+33}+303148249\cdot 199^{64k+32}\\||-21168191\cdot 199^{63k+32}+293483623\cdot 199^{62k+31}-20401057\cdot 199^{61k+31}+281585249\cdot 199^{60k+30}-19488061\cdot 199^{59k+30}\\||+267826531\cdot 199^{58k+29}-18457357\cdot 199^{57k+29}+252592149\cdot 199^{56k+28}-17333227\cdot 199^{55k+28}+236167097\cdot 199^{54k+27}\\||-16131885\cdot 199^{53k+27}+218738341\cdot 199^{52k+26}-14865219\cdot 199^{51k+26}+200480847\cdot 199^{50k+25}-13548033\cdot 199^{49k+25}\\||+181657909\cdot 199^{48k+24}-12203425\cdot 199^{47k+24}+162650973\cdot 199^{46k+23}-10861035\cdot 199^{45k+23}+143889447\cdot 199^{44k+22}\\||-9550167\cdot 199^{43k+22}+125745059\cdot 199^{42k+21}-8292843\cdot 199^{41k+21}+108459149\cdot 199^{40k+20}-7101611\cdot 199^{39k+20}\\||+92159977\cdot 199^{38k+19}-5983585\cdot 199^{37k+19}+76941443\cdot 199^{36k+18}-4946297\cdot 199^{35k+18}+62935069\cdot 199^{34k+17}\\||-4001117\cdot 199^{33k+17}+50322949\cdot 199^{32k+16}-3161375\cdot 199^{31k+16}+39279355\cdot 199^{30k+15}-2437075\cdot 199^{29k+15}\\||+29896087\cdot 199^{28k+14}-1830469\cdot 199^{27k+14}+22141819\cdot 199^{26k+13}-1335253\cdot 199^{25k+13}+15882429\cdot 199^{24k+12}\\||-939833\cdot 199^{23k+12}+10940537\cdot 199^{22k+11}-631589\cdot 199^{21k+11}+7146795\cdot 199^{20k+10}-399437\cdot 199^{19k+10}\\||+4356719\cdot 199^{18k+9}-233597\cdot 199^{17k+9}+2431779\cdot 199^{16k+8}-123761\cdot 199^{15k+8}+1215639\cdot 199^{14k+7}\\||-57993\cdot 199^{13k+7}+529993\cdot 199^{12k+6}-23321\cdot 199^{11k+6}+194579\cdot 199^{10k+5}-7721\cdot 199^{9k+5}\\||+57205\cdot 199^{8k+4}-1975\cdot 199^{7k+4}+12375\cdot 199^{6k+3}-347\cdot 199^{5k+3}+1667\cdot 199^{4k+2}\\||-33\cdot 199^{3k+2}+99\cdot 199^{2k+1}-199^{k+1}+1)\\|\times|(199^{198k+99}+199^{197k+99}+99\cdot 199^{196k+98}+33\cdot 199^{195k+98}+1667\cdot 199^{194k+97}\\||+347\cdot 199^{193k+97}+12375\cdot 199^{192k+96}+1975\cdot 199^{191k+96}+57205\cdot 199^{190k+95}+7721\cdot 199^{189k+95}\\||+194579\cdot 199^{188k+94}+23321\cdot 199^{187k+94}+529993\cdot 199^{186k+93}+57993\cdot 199^{185k+93}+1215639\cdot 199^{184k+92}\\||+123761\cdot 199^{183k+92}+2431779\cdot 199^{182k+91}+233597\cdot 199^{181k+91}+4356719\cdot 199^{180k+90}+399437\cdot 199^{179k+90}\\||+7146795\cdot 199^{178k+89}+631589\cdot 199^{177k+89}+10940537\cdot 199^{176k+88}+939833\cdot 199^{175k+88}+15882429\cdot 199^{174k+87}\\||+1335253\cdot 199^{173k+87}+22141819\cdot 199^{172k+86}+1830469\cdot 199^{171k+86}+29896087\cdot 199^{170k+85}+2437075\cdot 199^{169k+85}\\||+39279355\cdot 199^{168k+84}+3161375\cdot 199^{167k+84}+50322949\cdot 199^{166k+83}+4001117\cdot 199^{165k+83}+62935069\cdot 199^{164k+82}\\||+4946297\cdot 199^{163k+82}+76941443\cdot 199^{162k+81}+5983585\cdot 199^{161k+81}+92159977\cdot 199^{160k+80}+7101611\cdot 199^{159k+80}\\||+108459149\cdot 199^{158k+79}+8292843\cdot 199^{157k+79}+125745059\cdot 199^{156k+78}+9550167\cdot 199^{155k+78}+143889447\cdot 199^{154k+77}\\||+10861035\cdot 199^{153k+77}+162650973\cdot 199^{152k+76}+12203425\cdot 199^{151k+76}+181657909\cdot 199^{150k+75}+13548033\cdot 199^{149k+75}\\||+200480847\cdot 199^{148k+74}+14865219\cdot 199^{147k+74}+218738341\cdot 199^{146k+73}+16131885\cdot 199^{145k+73}+236167097\cdot 199^{144k+72}\\||+17333227\cdot 199^{143k+72}+252592149\cdot 199^{142k+71}+18457357\cdot 199^{141k+71}+267826531\cdot 199^{140k+70}+19488061\cdot 199^{139k+70}\\||+281585249\cdot 199^{138k+69}+20401057\cdot 199^{137k+69}+293483623\cdot 199^{136k+68}+21168191\cdot 199^{135k+68}+303148249\cdot 199^{134k+67}\\||+21767161\cdot 199^{133k+67}+310352611\cdot 199^{132k+66}+22189597\cdot 199^{131k+66}+315093865\cdot 199^{130k+65}+22442703\cdot 199^{129k+65}\\||+317551445\cdot 199^{128k+64}+22542271\cdot 199^{127k+64}+317958341\cdot 199^{126k+63}+22503655\cdot 199^{125k+63}+316496927\cdot 199^{124k+62}\\||+22336957\cdot 199^{123k+62}+313280373\cdot 199^{122k+61}+22049959\cdot 199^{121k+61}+308448383\cdot 199^{120k+60}+21656831\cdot 199^{119k+60}\\||+302282057\cdot 199^{118k+59}+21183977\cdot 199^{117k+59}+295242765\cdot 199^{116k+58}+20669091\cdot 199^{115k+58}+287898015\cdot 199^{114k+57}\\||+20151881\cdot 199^{113k+57}+280760439\cdot 199^{112k+56}+19663229\cdot 199^{111k+56}+274171593\cdot 199^{110k+55}+19220373\cdot 199^{109k+55}\\||+268287415\cdot 199^{108k+54}+18830139\cdot 199^{107k+54}+263182337\cdot 199^{106k+53}+18498823\cdot 199^{105k+53}+258985113\cdot 199^{104k+52}\\||+18239283\cdot 199^{103k+52}+255930359\cdot 199^{102k+51}+18071005\cdot 199^{101k+51}+254305083\cdot 199^{100k+50}+18012449\cdot 199^{99k+50}\\||+254305083\cdot 199^{98k+49}+18071005\cdot 199^{97k+49}+255930359\cdot 199^{96k+48}+18239283\cdot 199^{95k+48}+258985113\cdot 199^{94k+47}\\||+18498823\cdot 199^{93k+47}+263182337\cdot 199^{92k+46}+18830139\cdot 199^{91k+46}+268287415\cdot 199^{90k+45}+19220373\cdot 199^{89k+45}\\||+274171593\cdot 199^{88k+44}+19663229\cdot 199^{87k+44}+280760439\cdot 199^{86k+43}+20151881\cdot 199^{85k+43}+287898015\cdot 199^{84k+42}\\||+20669091\cdot 199^{83k+42}+295242765\cdot 199^{82k+41}+21183977\cdot 199^{81k+41}+302282057\cdot 199^{80k+40}+21656831\cdot 199^{79k+40}\\||+308448383\cdot 199^{78k+39}+22049959\cdot 199^{77k+39}+313280373\cdot 199^{76k+38}+22336957\cdot 199^{75k+38}+316496927\cdot 199^{74k+37}\\||+22503655\cdot 199^{73k+37}+317958341\cdot 199^{72k+36}+22542271\cdot 199^{71k+36}+317551445\cdot 199^{70k+35}+22442703\cdot 199^{69k+35}\\||+315093865\cdot 199^{68k+34}+22189597\cdot 199^{67k+34}+310352611\cdot 199^{66k+33}+21767161\cdot 199^{65k+33}+303148249\cdot 199^{64k+32}\\||+21168191\cdot 199^{63k+32}+293483623\cdot 199^{62k+31}+20401057\cdot 199^{61k+31}+281585249\cdot 199^{60k+30}+19488061\cdot 199^{59k+30}\\||+267826531\cdot 199^{58k+29}+18457357\cdot 199^{57k+29}+252592149\cdot 199^{56k+28}+17333227\cdot 199^{55k+28}+236167097\cdot 199^{54k+27}\\||+16131885\cdot 199^{53k+27}+218738341\cdot 199^{52k+26}+14865219\cdot 199^{51k+26}+200480847\cdot 199^{50k+25}+13548033\cdot 199^{49k+25}\\||+181657909\cdot 199^{48k+24}+12203425\cdot 199^{47k+24}+162650973\cdot 199^{46k+23}+10861035\cdot 199^{45k+23}+143889447\cdot 199^{44k+22}\\||+9550167\cdot 199^{43k+22}+125745059\cdot 199^{42k+21}+8292843\cdot 199^{41k+21}+108459149\cdot 199^{40k+20}+7101611\cdot 199^{39k+20}\\||+92159977\cdot 199^{38k+19}+5983585\cdot 199^{37k+19}+76941443\cdot 199^{36k+18}+4946297\cdot 199^{35k+18}+62935069\cdot 199^{34k+17}\\||+4001117\cdot 199^{33k+17}+50322949\cdot 199^{32k+16}+3161375\cdot 199^{31k+16}+39279355\cdot 199^{30k+15}+2437075\cdot 199^{29k+15}\\||+29896087\cdot 199^{28k+14}+1830469\cdot 199^{27k+14}+22141819\cdot 199^{26k+13}+1335253\cdot 199^{25k+13}+15882429\cdot 199^{24k+12}\\||+939833\cdot 199^{23k+12}+10940537\cdot 199^{22k+11}+631589\cdot 199^{21k+11}+7146795\cdot 199^{20k+10}+399437\cdot 199^{19k+10}\\||+4356719\cdot 199^{18k+9}+233597\cdot 199^{17k+9}+2431779\cdot 199^{16k+8}+123761\cdot 199^{15k+8}+1215639\cdot 199^{14k+7}\\||+57993\cdot 199^{13k+7}+529993\cdot 199^{12k+6}+23321\cdot 199^{11k+6}+194579\cdot 199^{10k+5}+7721\cdot 199^{9k+5}\\||+57205\cdot 199^{8k+4}+1975\cdot 199^{7k+4}+12375\cdot 199^{6k+3}+347\cdot 199^{5k+3}+1667\cdot 199^{4k+2}\\||+33\cdot 199^{3k+2}+99\cdot 199^{2k+1}+199^{k+1}+1)\end{eqnarray}%%

7.2. Aurifeuillean factorization of repunit レピュニットのオーラフィーユ因数分解

$$\begin{eqnarray} {\large\Phi}_{20}(x) & = & x^8-x^6+x^4-x^2+1 \\ & = & (x^4+5x^3+7x^2+5x+1)^2-10x(x^3+2x^2+2x+1)^2 \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{20}(10^{2k+1}) & = & 10^{16k+8}-10^{12k+6}+10^{8k+4}-10^{4k+2}+1 \\ & = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-10\cdot 10^{2k+1}(10^{6k+3}+2\cdot 10^{4k+2}+2\cdot 10^{2k+1}+1)^2 \\ & = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-(10^{k+1})^2(10^{6k+3}+2\cdot 10^{4k+2}+2\cdot 10^{2k+1}+1)^2 \\ & = & (10^{8k+4}+5\cdot 10^{6k+3}+7\cdot 10^{4k+2}+5\cdot 10^{2k+1}+1)^2-(10^{7k+4}+2\cdot 10^{5k+3}+2\cdot 10^{3k+2}+10^{k+1})^2 \\ & = & (10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1) \\ & \times & (10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1) \\ & = & {\large\Phi}_{20\mathrm{L}}(10^{2k+1}){\large\Phi}_{20\mathrm{M}}(10^{2k+1}) \\ {\large\Phi}_{20\mathrm{L}}(10^{2k+1}) & = & 10^{8k+4}-10^{7k+4}+5\cdot 10^{6k+3}-2\cdot 10^{5k+3}+7\cdot 10^{4k+2}-2\cdot 10^{3k+2}+5\cdot 10^{2k+1}-10^{k+1}+1 \\ & = & (10^{2k+1}+1)((10^{4k+2}+10^{2k+1})(10^{2k+1}-10^{k+1}+3)-10^{k+1}+2)-1 \\ {\large\Phi}_{20\mathrm{M}}(10^{2k+1}) & = & 10^{8k+4}+10^{7k+4}+5\cdot 10^{6k+3}+2\cdot 10^{5k+3}+7\cdot 10^{4k+2}+2\cdot 10^{3k+2}+5\cdot 10^{2k+1}+10^{k+1}+1 \\ & = & (10^{2k+1}+1)((10^{4k+2}+10^{2k+1})(10^{2k+1}+10^{k+1}+3)+10^{k+1}+2)-1 \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{20,\mp 1}(10^{2k+1}) & = & \prod_{d\mid r}{{\large\Phi}_{(40k+20)/d,\mp \left( \frac{10}{d} \right) }(10)}\hspace{2em} \text{($r$ is the greatest divisor of $2k+1$ that satisfies $\mathrm{gcd}(20,r)=1$)} \\ {\large\Phi}_{40k+20,\mp 1}(10) & = & \frac{{\large\Phi}_{20,\mp 1}(10^{2k+1})}{\prod_{d\mid r;1\lt d}{{\large\Phi}_{(40k+20)/d,\mp \left( \frac{10}{d} \right) }(10)}} \end{eqnarray}$$ $$\begin{eqnarray} {\large\Phi}_{(40k+20)\mathrm{L}}(10) & = & \mathrm{gcd}({\large\Phi}_{40k+20}(10),{\large\Phi}_{20\mathrm{L}}(10^{2k+1})) \\ {\large\Phi}_{(40k+20)\mathrm{M}}(10) & = & \mathrm{gcd}({\large\Phi}_{40k+20}(10),{\large\Phi}_{20\mathrm{M}}(10^{2k+1})) \end{eqnarray}$$

7.3. Links related to Aurifeuillean factorization オーラフィーユ因数分解の関連リンク

Powered by MathJax