name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 08:56:16 UTC 2023 年 2 月 22 日 (水) 17 時 56 分 16 秒 (日本時間) |
composite number 合成数 | 13859091119513754427479927485296446012002301354209476628911918445320933447963970595466704531813966780533356966013<113> |
prime factors 素因数 | 78661491140911051986525871741211063<35> 176186478523361989069741155017705682856390136613066723661005175098723687628651<78> |
factorization results 素因数分解の結果 | N=13859091119513754427479927485296446012002301354209476628911918445320933447963970595466704531813966780533356966013 ( 113 digits) SNFS difficulty: 122 digits. Divisors found: r1=78661491140911051986525871741211063 (pp35) r2=176186478523361989069741155017705682856390136613066723661005175098723687628651 (pp78) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 13859091119513754427479927485296446012002301354209476628911918445320933447963970595466704531813966780533356966013 m: 2000000000000000000000000000000 deg: 4 c4: 22 c0: -1 skew: 0.46 # Murphy_E = 3.893e-08 type: snfs lss: 1 rlim: 770000 alim: 770000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 770000/770000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [385000, 685001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62954 x 63180 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122.000,4,0,0,0,0,0,0,0,0,770000,770000,25,25,46,46,2.2,2.2,75000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 21, 2023 16:39:16 UTC 2023 年 2 月 22 日 (水) 1 時 39 分 16 秒 (日本時間) |
composite number 合成数 | 8319742844312084899194024911957266775390578836654139781134037675199130208702640100215084261031931740291663712212531612659245077879411<133> |
prime factors 素因数 | 2708224815200947195959098140324882208769078824334903193<55> 3072028140948398133026856262068837655437422764845636838785134572135791846312427<79> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 8319742844312084899194024911957266775390578836654139781134037675199130208702640100215084261031931740291663712212531612659245077879411 (133 digits) Using B1=37700000, B2=192391008826, polynomial Dickson(12), sigma=1:928779269 Step 1 took 58846ms Step 2 took 23642ms ********** Factor found in step 2: 2708224815200947195959098140324882208769078824334903193 Found prime factor of 55 digits: 2708224815200947195959098140324882208769078824334903193 Prime cofactor 3072028140948398133026856262068837655437422764845636838785134572135791846312427 has 79 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 23, 2023 04:22:03 UTC 2023 年 2 月 23 日 (木) 13 時 22 分 3 秒 (日本時間) |
composite number 合成数 | 64116575591985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051<140> |
prime factors 素因数 | 5978188028307795134751369123218118784671552787590163883<55> 10725085140912583391369155876210082764904252864520155277061659675527444471530908475897<86> |
factorization results 素因数分解の結果 | Number: n N=64116575591985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051 ( 140 digits) SNFS difficulty: 142 digits. Divisors found: Thu Feb 23 15:18:56 2023 prp55 factor: 5978188028307795134751369123218118784671552787590163883 Thu Feb 23 15:18:56 2023 prp86 factor: 10725085140912583391369155876210082764904252864520155277061659675527444471530908475897 Thu Feb 23 15:18:56 2023 elapsed time 00:03:04 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.061). Factorization parameters were as follows: # # N = 88x10^142-25 = 97(141)5 # n: 64116575591985428051001821493624772313296903460837887067395264116575591985428051001821493624772313296903460837887067395264116575591985428051 m: 200000000000000000000000000000000000 deg: 4 c4: 22 c0: -1 skew: 0.46 # Murphy_E = 4.058e-09 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 12030000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 480322 hash collisions in 6704567 relations (6964730 unique) Msieve: matrix is 234265 x 234491 (65.0 MB) Sieving start time: 2023/02/23 14:24:31 Sieving end time : 2023/02/23 15:15:35 Total sieving time: 0hrs 51min 4secs. Total relation processing time: 0hrs 1min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 20sec. Prototype def-par.txt line would be: snfs,142,4,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 21, 2023 09:19:33 UTC 2023 年 2 月 21 日 (火) 18 時 19 分 33 秒 (日本時間) |
composite number 合成数 | 12809480471524352564705123506973585425743286692508093817386256286964762193739022579669460151336643127<101> |
prime factors 素因数 | 731280810023786441154192811065268076183<39> 17516500222544739500184830204490805994496597962232126841865569<62> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=900000, q1=1000000. -> client 1 q0: 900000 LatSieveTime: 36 LatSieveTime: 37 LatSieveTime: 38 LatSieveTime: 38 LatSieveTime: 40 LatSieveTime: 40 LatSieveTime: 40 LatSieveTime: 40 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 49 -> makeJobFile(): Adjusted to q0=1000001, q1=1100000. -> client 1 q0: 1000001 LatSieveTime: 34 LatSieveTime: 38 LatSieveTime: 39 LatSieveTime: 39 LatSieveTime: 39 LatSieveTime: 40 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 50 LatSieveTime: 54 -> makeJobFile(): Adjusted to q0=1100001, q1=1200000. -> client 1 q0: 1100001 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 49 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 52 LatSieveTime: 52 LatSieveTime: 52 LatSieveTime: 52 LatSieveTime: 52 LatSieveTime: 53 LatSieveTime: 52 LatSieveTime: 53 LatSieveTime: 53 LatSieveTime: 54 LatSieveTime: 55 LatSieveTime: 55 LatSieveTime: 56 LatSieveTime: 58 -> makeJobFile(): Adjusted to q0=1200001, q1=1300000. -> client 1 q0: 1200001 LatSieveTime: 40 LatSieveTime: 42 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 49 LatSieveTime: 48 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 50 LatSieveTime: 51 LatSieveTime: 51 LatSieveTime: 52 LatSieveTime: 53 LatSieveTime: 53 LatSieveTime: 53 LatSieveTime: 54 LatSieveTime: 54 LatSieveTime: 54 LatSieveTime: 61 -> makeJobFile(): Adjusted to q0=1300001, q1=1400000. -> client 1 q0: 1300001 LatSieveTime: 38 LatSieveTime: 39 LatSieveTime: 39 LatSieveTime: 40 LatSieveTime: 40 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 47 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 50 LatSieveTime: 50 -> makeJobFile(): Adjusted to q0=1400001, q1=1500000. -> client 1 q0: 1400001 LatSieveTime: 35 LatSieveTime: 38 LatSieveTime: 38 LatSieveTime: 38 LatSieveTime: 39 LatSieveTime: 39 LatSieveTime: 39 LatSieveTime: 40 LatSieveTime: 40 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 41 LatSieveTime: 42 LatSieveTime: 41 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 42 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 43 LatSieveTime: 43 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 44 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 45 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 46 LatSieveTime: 47 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 48 LatSieveTime: 49 LatSieveTime: 49 LatSieveTime: 50 Tue Feb 21 10:17:05 2023 Tue Feb 21 10:17:05 2023 Tue Feb 21 10:17:05 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 10:17:05 2023 random seeds: ffd91cc0 0612bb29 Tue Feb 21 10:17:05 2023 factoring 12809480471524352564705123506973585425743286692508093817386256286964762193739022579669460151336643127 (101 digits) Tue Feb 21 10:17:05 2023 searching for 15-digit factors Tue Feb 21 10:17:05 2023 commencing number field sieve (101-digit input) Tue Feb 21 10:17:05 2023 R0: -19099420012502626288 Tue Feb 21 10:17:05 2023 R1: 12856496323 Tue Feb 21 10:17:05 2023 A0: 12607188930723464826068925 Tue Feb 21 10:17:05 2023 A1: 537228307495983478271 Tue Feb 21 10:17:05 2023 A2: -54962871610687924 Tue Feb 21 10:17:05 2023 A3: -3735050112049 Tue Feb 21 10:17:05 2023 A4: 1430501 Tue Feb 21 10:17:05 2023 A5: 5040 Tue Feb 21 10:17:05 2023 skew 22374.09, size 1.168e-009, alpha -5.887, combined = 2.800e-009 rroots = 3 Tue Feb 21 10:17:05 2023 Tue Feb 21 10:17:05 2023 commencing relation filtering Tue Feb 21 10:17:05 2023 estimated available RAM is 65413.5 MB Tue Feb 21 10:17:05 2023 commencing duplicate removal, pass 1 Tue Feb 21 10:17:12 2023 found 462063 hash collisions in 4171365 relations Tue Feb 21 10:17:16 2023 added 30171 free relations Tue Feb 21 10:17:16 2023 commencing duplicate removal, pass 2 Tue Feb 21 10:17:17 2023 found 288862 duplicates and 3912674 unique relations Tue Feb 21 10:17:17 2023 memory use: 20.6 MB Tue Feb 21 10:17:17 2023 reading ideals above 100000 Tue Feb 21 10:17:17 2023 commencing singleton removal, initial pass Tue Feb 21 10:17:30 2023 memory use: 94.1 MB Tue Feb 21 10:17:30 2023 reading all ideals from disk Tue Feb 21 10:17:30 2023 memory use: 121.1 MB Tue Feb 21 10:17:30 2023 keeping 4208304 ideals with weight <= 200, target excess is 22764 Tue Feb 21 10:17:30 2023 commencing in-memory singleton removal Tue Feb 21 10:17:30 2023 begin with 3912674 relations and 4208304 unique ideals Tue Feb 21 10:17:30 2023 reduce to 1423921 relations and 1268454 ideals in 14 passes Tue Feb 21 10:17:30 2023 max relations containing the same ideal: 100 Tue Feb 21 10:17:31 2023 removing 329325 relations and 264795 ideals in 64530 cliques Tue Feb 21 10:17:31 2023 commencing in-memory singleton removal Tue Feb 21 10:17:31 2023 begin with 1094596 relations and 1268454 unique ideals Tue Feb 21 10:17:31 2023 reduce to 1035646 relations and 941350 ideals in 13 passes Tue Feb 21 10:17:31 2023 max relations containing the same ideal: 78 Tue Feb 21 10:17:31 2023 removing 261060 relations and 196531 ideals in 64530 cliques Tue Feb 21 10:17:31 2023 commencing in-memory singleton removal Tue Feb 21 10:17:31 2023 begin with 774586 relations and 941350 unique ideals Tue Feb 21 10:17:31 2023 reduce to 722968 relations and 689890 ideals in 9 passes Tue Feb 21 10:17:31 2023 max relations containing the same ideal: 61 Tue Feb 21 10:17:31 2023 relations with 0 large ideals: 91 Tue Feb 21 10:17:31 2023 relations with 1 large ideals: 293 Tue Feb 21 10:17:31 2023 relations with 2 large ideals: 4519 Tue Feb 21 10:17:31 2023 relations with 3 large ideals: 31182 Tue Feb 21 10:17:31 2023 relations with 4 large ideals: 106970 Tue Feb 21 10:17:31 2023 relations with 5 large ideals: 197635 Tue Feb 21 10:17:31 2023 relations with 6 large ideals: 208941 Tue Feb 21 10:17:31 2023 relations with 7+ large ideals: 173337 Tue Feb 21 10:17:31 2023 commencing 2-way merge Tue Feb 21 10:17:32 2023 reduce to 418079 relation sets and 385001 unique ideals Tue Feb 21 10:17:32 2023 commencing full merge Tue Feb 21 10:17:36 2023 memory use: 48.2 MB Tue Feb 21 10:17:36 2023 found 200318 cycles, need 191201 Tue Feb 21 10:17:36 2023 weight of 191201 cycles is about 13739762 (71.86/cycle) Tue Feb 21 10:17:36 2023 distribution of cycle lengths: Tue Feb 21 10:17:36 2023 1 relations: 17286 Tue Feb 21 10:17:36 2023 2 relations: 17310 Tue Feb 21 10:17:36 2023 3 relations: 17908 Tue Feb 21 10:17:36 2023 4 relations: 17718 Tue Feb 21 10:17:36 2023 5 relations: 17038 Tue Feb 21 10:17:36 2023 6 relations: 15652 Tue Feb 21 10:17:36 2023 7 relations: 14933 Tue Feb 21 10:17:36 2023 8 relations: 13089 Tue Feb 21 10:17:36 2023 9 relations: 11581 Tue Feb 21 10:17:36 2023 10+ relations: 48686 Tue Feb 21 10:17:36 2023 heaviest cycle: 20 relations Tue Feb 21 10:17:36 2023 commencing cycle optimization Tue Feb 21 10:17:36 2023 start with 1285510 relations Tue Feb 21 10:17:38 2023 pruned 36450 relations Tue Feb 21 10:17:38 2023 memory use: 40.8 MB Tue Feb 21 10:17:38 2023 distribution of cycle lengths: Tue Feb 21 10:17:38 2023 1 relations: 17286 Tue Feb 21 10:17:38 2023 2 relations: 17692 Tue Feb 21 10:17:38 2023 3 relations: 18537 Tue Feb 21 10:17:38 2023 4 relations: 18274 Tue Feb 21 10:17:38 2023 5 relations: 17577 Tue Feb 21 10:17:38 2023 6 relations: 16132 Tue Feb 21 10:17:38 2023 7 relations: 15309 Tue Feb 21 10:17:38 2023 8 relations: 13353 Tue Feb 21 10:17:38 2023 9 relations: 11824 Tue Feb 21 10:17:38 2023 10+ relations: 45217 Tue Feb 21 10:17:38 2023 heaviest cycle: 20 relations Tue Feb 21 10:17:38 2023 RelProcTime: 33 Tue Feb 21 10:17:38 2023 elapsed time 00:00:33 Tue Feb 21 10:17:38 2023 Tue Feb 21 10:17:38 2023 Tue Feb 21 10:17:38 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 10:17:38 2023 random seeds: 1f80bdc8 11e7591d Tue Feb 21 10:17:38 2023 factoring 12809480471524352564705123506973585425743286692508093817386256286964762193739022579669460151336643127 (101 digits) Tue Feb 21 10:17:38 2023 searching for 15-digit factors Tue Feb 21 10:17:38 2023 commencing number field sieve (101-digit input) Tue Feb 21 10:17:38 2023 R0: -19099420012502626288 Tue Feb 21 10:17:38 2023 R1: 12856496323 Tue Feb 21 10:17:38 2023 A0: 12607188930723464826068925 Tue Feb 21 10:17:38 2023 A1: 537228307495983478271 Tue Feb 21 10:17:38 2023 A2: -54962871610687924 Tue Feb 21 10:17:38 2023 A3: -3735050112049 Tue Feb 21 10:17:38 2023 A4: 1430501 Tue Feb 21 10:17:38 2023 A5: 5040 Tue Feb 21 10:17:38 2023 skew 22374.09, size 1.168e-009, alpha -5.887, combined = 2.800e-009 rroots = 3 Tue Feb 21 10:17:38 2023 Tue Feb 21 10:17:38 2023 commencing linear algebra Tue Feb 21 10:17:38 2023 read 191201 cycles Tue Feb 21 10:17:38 2023 cycles contain 663774 unique relations Tue Feb 21 10:17:40 2023 read 663774 relations Tue Feb 21 10:17:40 2023 using 20 quadratic characters above 67106394 Tue Feb 21 10:17:42 2023 building initial matrix Tue Feb 21 10:17:45 2023 memory use: 83.8 MB Tue Feb 21 10:17:45 2023 read 191201 cycles Tue Feb 21 10:17:45 2023 matrix is 191016 x 191201 (58.4 MB) with weight 18948729 (99.10/col) Tue Feb 21 10:17:45 2023 sparse part has weight 13012956 (68.06/col) Tue Feb 21 10:17:46 2023 filtering completed in 2 passes Tue Feb 21 10:17:46 2023 matrix is 190653 x 190838 (58.3 MB) with weight 18926551 (99.18/col) Tue Feb 21 10:17:46 2023 sparse part has weight 13002852 (68.14/col) Tue Feb 21 10:17:46 2023 matrix starts at (0, 0) Tue Feb 21 10:17:47 2023 matrix is 190653 x 190838 (58.3 MB) with weight 18926551 (99.18/col) Tue Feb 21 10:17:47 2023 sparse part has weight 13002852 (68.14/col) Tue Feb 21 10:17:47 2023 saving the first 48 matrix rows for later Tue Feb 21 10:17:47 2023 matrix includes 64 packed rows Tue Feb 21 10:17:47 2023 matrix is 190605 x 190838 (56.4 MB) with weight 15052977 (78.88/col) Tue Feb 21 10:17:47 2023 sparse part has weight 12870974 (67.44/col) Tue Feb 21 10:17:47 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Feb 21 10:17:47 2023 commencing Lanczos iteration Tue Feb 21 10:17:47 2023 memory use: 42.4 MB Tue Feb 21 10:17:52 2023 linear algebra at 6.4%, ETA 0h 1m Tue Feb 21 10:19:00 2023 lanczos halted after 3016 iterations (dim = 190605) Tue Feb 21 10:19:00 2023 recovered 35 nontrivial dependencies Tue Feb 21 10:19:00 2023 BLanczosTime: 82 Tue Feb 21 10:19:00 2023 elapsed time 00:01:22 Tue Feb 21 10:19:00 2023 Tue Feb 21 10:19:00 2023 Tue Feb 21 10:19:00 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 10:19:00 2023 random seeds: c2ad3664 d6f4b880 Tue Feb 21 10:19:00 2023 factoring 12809480471524352564705123506973585425743286692508093817386256286964762193739022579669460151336643127 (101 digits) Tue Feb 21 10:19:00 2023 searching for 15-digit factors Tue Feb 21 10:19:00 2023 commencing number field sieve (101-digit input) Tue Feb 21 10:19:00 2023 R0: -19099420012502626288 Tue Feb 21 10:19:00 2023 R1: 12856496323 Tue Feb 21 10:19:00 2023 A0: 12607188930723464826068925 Tue Feb 21 10:19:00 2023 A1: 537228307495983478271 Tue Feb 21 10:19:00 2023 A2: -54962871610687924 Tue Feb 21 10:19:00 2023 A3: -3735050112049 Tue Feb 21 10:19:00 2023 A4: 1430501 Tue Feb 21 10:19:00 2023 A5: 5040 Tue Feb 21 10:19:00 2023 skew 22374.09, size 1.168e-009, alpha -5.887, combined = 2.800e-009 rroots = 3 Tue Feb 21 10:19:00 2023 Tue Feb 21 10:19:00 2023 commencing square root phase Tue Feb 21 10:19:00 2023 reading relations for dependency 1 Tue Feb 21 10:19:00 2023 read 95412 cycles Tue Feb 21 10:19:00 2023 cycles contain 332310 unique relations Tue Feb 21 10:19:01 2023 read 332310 relations Tue Feb 21 10:19:02 2023 multiplying 332310 relations Tue Feb 21 10:19:07 2023 multiply complete, coefficients have about 12.97 million bits Tue Feb 21 10:19:07 2023 initial square root is modulo 28350307 Tue Feb 21 10:19:14 2023 sqrtTime: 14 Tue Feb 21 10:19:14 2023 prp39 factor: 731280810023786441154192811065268076183 Tue Feb 21 10:19:14 2023 prp62 factor: 17516500222544739500184830204490805994496597962232126841865569 Tue Feb 21 10:19:14 2023 elapsed time 00:00:14 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 21, 2023 10:59:05 UTC 2023 年 2 月 21 日 (火) 19 時 59 分 5 秒 (日本時間) |
composite number 合成数 | 516634387341983438056687702654810869377702013407405370348705137337023707384447318901613919742748739687<102> |
prime factors 素因数 | 5486372950186844849425836862135155901<37> 94166837003741943860345151405062983759554744463038852068308006387<65> |
factorization results 素因数分解の結果 | N=516634387341983438056687702654810869377702013407405370348705137337023707384447318901613919742748739687 ( 102 digits) Divisors found: r1=5486372950186844849425836862135155901 (pp37) r2=94166837003741943860345151405062983759554744463038852068308006387 (pp65) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.07 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 516634387341983438056687702654810869377702013407405370348705137337023707384447318901613919742748739687 skew: 2380125.25 c0: -50077710142260418836737005074 c1: 6337921578812474419805 c2: -30675503938497016 c3: 4029825620 c4: 8400 Y0: -2800435706299337812301651 Y1: 21479735103187 rlim: 2080000 alim: 2080000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 40000 Factor base limits: 2080000/2080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1040000, 1440001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 231371 x 231597 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,101,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2080000,2080000,26,26,52,52,2.5,2.5,100000 total time: 0.07 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 04:38:01 UTC 2023 年 2 月 25 日 (土) 13 時 38 分 1 秒 (日本時間) |
composite number 合成数 | 1369745850098670112812922504008247190456176619818630657176531861587095720542422069192090885179855677499500772784011833308123536852242863<136> |
prime factors 素因数 | 5215042646195525578678487444450098512101835547757<49> 262652856942200882812826895935594186700199110842908585026717002837118107212087619003659<87> |
factorization results 素因数分解の結果 | Number: n N=1369745850098670112812922504008247190456176619818630657176531861587095720542422069192090885179855677499500772784011833308123536852242863 ( 136 digits) SNFS difficulty: 150 digits. Divisors found: Sat Feb 25 15:34:42 2023 prp49 factor: 5215042646195525578678487444450098512101835547757 Sat Feb 25 15:34:42 2023 prp87 factor: 262652856942200882812826895935594186700199110842908585026717002837118107212087619003659 Sat Feb 25 15:34:42 2023 elapsed time 00:05:25 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: # # N = 88x10^150-25 = 97(149)5 # n: 1369745850098670112812922504008247190456176619818630657176531861587095720542422069192090885179855677499500772784011833308123536852242863 m: 20000000000000000000000000000000000000 deg: 4 c4: 22 c0: -1 skew: 0.46 # Murphy_E = 1.591e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 12350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 967459 hash collisions in 12168365 relations (12495114 unique) Msieve: matrix is 344802 x 345029 (94.9 MB) Sieving start time: 2023/02/25 14:16:44 Sieving end time : 2023/02/25 15:29:06 Total sieving time: 1hrs 12min 22secs. Total relation processing time: 0hrs 3min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 11sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 04:56:51 UTC 2023 年 3 月 1 日 (水) 13 時 56 分 51 秒 (日本時間) |
composite number 合成数 | 300086726063177798555699904369971999053504848084296173871844408377641477869392655277521467695031113891428806187878628056775525767441<132> |
prime factors 素因数 | 200094496757845483752723030951196190169171727<45> 1499725034548766170219999182019488477697713943962768538898177937540333446003948436348383<88> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 300086726063177798555699904369971999053504848084296173871844408377641477869392655277521467695031113891428806187878628056775525767441 (132 digits) Using B1=34150000, B2=144293429296, polynomial Dickson(12), sigma=1:1754913604 Step 1 took 54271ms Step 2 took 20125ms ********** Factor found in step 2: 200094496757845483752723030951196190169171727 Found prime factor of 45 digits: 200094496757845483752723030951196190169171727 Prime cofactor 1499725034548766170219999182019488477697713943962768538898177937540333446003948436348383 has 88 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 4, 2023 17:43:19 UTC 2023 年 3 月 5 日 (日) 2 時 43 分 19 秒 (日本時間) |
composite number 合成数 | 2569047843170423088942879006147709956358069833906695293855621936920015584059709361118201742275876200915627121912866462038707541711787518663<139> |
prime factors 素因数 | 3309193373342291848970306571672247748468155402962675401<55> 776336573095358186526501693666871313221247710192513019452821547060687916588425608463<84> |
factorization results 素因数分解の結果 | Number: n N=2569047843170423088942879006147709956358069833906695293855621936920015584059709361118201742275876200915627121912866462038707541711787518663 ( 139 digits) SNFS difficulty: 158 digits. Divisors found: Sun Mar 5 04:33:22 2023 prp55 factor: 3309193373342291848970306571672247748468155402962675401 Sun Mar 5 04:33:22 2023 prp84 factor: 776336573095358186526501693666871313221247710192513019452821547060687916588425608463 Sun Mar 5 04:33:22 2023 elapsed time 00:08:34 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.112). Factorization parameters were as follows: # # N = 88x10^158-25 = 97(157)5 # n: 2569047843170423088942879006147709956358069833906695293855621936920015584059709361118201742275876200915627121912866462038707541711787518663 m: 20000000000000000000000000000000 deg: 5 c5: 110 c0: -1 skew: 0.39 # Murphy_E = 7.693e-10 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 973941 hash collisions in 12310698 relations (12144565 unique) Msieve: matrix is 467324 x 467560 (129.8 MB) Sieving start time: 2023/03/05 02:58:37 Sieving end time : 2023/03/05 04:24:38 Total sieving time: 1hrs 26min 1secs. Total relation processing time: 0hrs 5min 46sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 27sec. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 22, 2023 11:06:59 UTC 2023 年 2 月 22 日 (水) 20 時 6 分 59 秒 (日本時間) |
composite number 合成数 | 30172895127728263977354924644934292668476630866785977312863755446167561934760133375266715156107227809284392309627<113> |
prime factors 素因数 | 278225161992801893603350356601420884209<39> 108447758324996078105460474246059241473400758966287940260243505004273673003<75> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 82 LatSieveTime: 84 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 119 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 79 LatSieveTime: 86 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 88 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 78 LatSieveTime: 83 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 82 LatSieveTime: 83 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 82 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 82 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 Wed Feb 22 12:00:12 2023 Wed Feb 22 12:00:12 2023 Wed Feb 22 12:00:12 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 12:00:12 2023 random seeds: fb646aa0 b6f478a4 Wed Feb 22 12:00:12 2023 factoring 30172895127728263977354924644934292668476630866785977312863755446167561934760133375266715156107227809284392309627 (113 digits) Wed Feb 22 12:00:13 2023 searching for 15-digit factors Wed Feb 22 12:00:13 2023 commencing number field sieve (113-digit input) Wed Feb 22 12:00:13 2023 R0: -4945417192166051701123 Wed Feb 22 12:00:13 2023 R1: 230417990713 Wed Feb 22 12:00:13 2023 A0: -401248924851816580501360080 Wed Feb 22 12:00:13 2023 A1: 38632662213102071388582 Wed Feb 22 12:00:13 2023 A2: -1041633798866704873 Wed Feb 22 12:00:13 2023 A3: -39683721997970 Wed Feb 22 12:00:13 2023 A4: 1078810160 Wed Feb 22 12:00:13 2023 A5: 10200 Wed Feb 22 12:00:13 2023 skew 44701.62, size 8.081e-011, alpha -5.641, combined = 6.939e-010 rroots = 3 Wed Feb 22 12:00:13 2023 Wed Feb 22 12:00:13 2023 commencing relation filtering Wed Feb 22 12:00:13 2023 estimated available RAM is 65413.5 MB Wed Feb 22 12:00:13 2023 commencing duplicate removal, pass 1 Wed Feb 22 12:00:27 2023 found 691743 hash collisions in 7265344 relations Wed Feb 22 12:00:34 2023 added 57355 free relations Wed Feb 22 12:00:34 2023 commencing duplicate removal, pass 2 Wed Feb 22 12:00:36 2023 found 407396 duplicates and 6915303 unique relations Wed Feb 22 12:00:36 2023 memory use: 24.6 MB Wed Feb 22 12:00:36 2023 reading ideals above 100000 Wed Feb 22 12:00:36 2023 commencing singleton removal, initial pass Wed Feb 22 12:01:00 2023 memory use: 188.3 MB Wed Feb 22 12:01:00 2023 reading all ideals from disk Wed Feb 22 12:01:00 2023 memory use: 235.5 MB Wed Feb 22 12:01:00 2023 keeping 7826549 ideals with weight <= 200, target excess is 37093 Wed Feb 22 12:01:00 2023 commencing in-memory singleton removal Wed Feb 22 12:01:01 2023 begin with 6915303 relations and 7826549 unique ideals Wed Feb 22 12:01:03 2023 reduce to 2048720 relations and 1997596 ideals in 19 passes Wed Feb 22 12:01:03 2023 max relations containing the same ideal: 87 Wed Feb 22 12:01:03 2023 relations with 0 large ideals: 99 Wed Feb 22 12:01:03 2023 relations with 1 large ideals: 324 Wed Feb 22 12:01:03 2023 relations with 2 large ideals: 4935 Wed Feb 22 12:01:03 2023 relations with 3 large ideals: 41803 Wed Feb 22 12:01:03 2023 relations with 4 large ideals: 182201 Wed Feb 22 12:01:03 2023 relations with 5 large ideals: 444243 Wed Feb 22 12:01:03 2023 relations with 6 large ideals: 618432 Wed Feb 22 12:01:03 2023 relations with 7+ large ideals: 756683 Wed Feb 22 12:01:03 2023 commencing 2-way merge Wed Feb 22 12:01:04 2023 reduce to 1112797 relation sets and 1061929 unique ideals Wed Feb 22 12:01:04 2023 ignored 256 oversize relation sets Wed Feb 22 12:01:04 2023 commencing full merge Wed Feb 22 12:01:16 2023 memory use: 110.9 MB Wed Feb 22 12:01:16 2023 found 523478 cycles, need 518129 Wed Feb 22 12:01:16 2023 weight of 518129 cycles is about 36327982 (70.11/cycle) Wed Feb 22 12:01:16 2023 distribution of cycle lengths: Wed Feb 22 12:01:16 2023 1 relations: 62261 Wed Feb 22 12:01:16 2023 2 relations: 62751 Wed Feb 22 12:01:16 2023 3 relations: 62690 Wed Feb 22 12:01:16 2023 4 relations: 54753 Wed Feb 22 12:01:16 2023 5 relations: 47578 Wed Feb 22 12:01:16 2023 6 relations: 39120 Wed Feb 22 12:01:16 2023 7 relations: 33813 Wed Feb 22 12:01:16 2023 8 relations: 27921 Wed Feb 22 12:01:16 2023 9 relations: 22885 Wed Feb 22 12:01:16 2023 10+ relations: 104357 Wed Feb 22 12:01:16 2023 heaviest cycle: 27 relations Wed Feb 22 12:01:16 2023 commencing cycle optimization Wed Feb 22 12:01:17 2023 start with 3192297 relations Wed Feb 22 12:01:20 2023 pruned 61925 relations Wed Feb 22 12:01:20 2023 memory use: 109.5 MB Wed Feb 22 12:01:20 2023 distribution of cycle lengths: Wed Feb 22 12:01:20 2023 1 relations: 62261 Wed Feb 22 12:01:20 2023 2 relations: 64086 Wed Feb 22 12:01:20 2023 3 relations: 64559 Wed Feb 22 12:01:20 2023 4 relations: 55581 Wed Feb 22 12:01:20 2023 5 relations: 48237 Wed Feb 22 12:01:20 2023 6 relations: 39406 Wed Feb 22 12:01:20 2023 7 relations: 33936 Wed Feb 22 12:01:20 2023 8 relations: 27734 Wed Feb 22 12:01:20 2023 9 relations: 22402 Wed Feb 22 12:01:20 2023 10+ relations: 99927 Wed Feb 22 12:01:20 2023 heaviest cycle: 26 relations Wed Feb 22 12:01:21 2023 RelProcTime: 68 Wed Feb 22 12:01:21 2023 elapsed time 00:01:09 Wed Feb 22 12:01:21 2023 Wed Feb 22 12:01:21 2023 Wed Feb 22 12:01:21 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 12:01:21 2023 random seeds: 6ede2040 530611a5 Wed Feb 22 12:01:21 2023 factoring 30172895127728263977354924644934292668476630866785977312863755446167561934760133375266715156107227809284392309627 (113 digits) Wed Feb 22 12:01:21 2023 searching for 15-digit factors Wed Feb 22 12:01:21 2023 commencing number field sieve (113-digit input) Wed Feb 22 12:01:21 2023 R0: -4945417192166051701123 Wed Feb 22 12:01:21 2023 R1: 230417990713 Wed Feb 22 12:01:21 2023 A0: -401248924851816580501360080 Wed Feb 22 12:01:21 2023 A1: 38632662213102071388582 Wed Feb 22 12:01:21 2023 A2: -1041633798866704873 Wed Feb 22 12:01:21 2023 A3: -39683721997970 Wed Feb 22 12:01:21 2023 A4: 1078810160 Wed Feb 22 12:01:21 2023 A5: 10200 Wed Feb 22 12:01:21 2023 skew 44701.62, size 8.081e-011, alpha -5.641, combined = 6.939e-010 rroots = 3 Wed Feb 22 12:01:21 2023 Wed Feb 22 12:01:21 2023 commencing linear algebra Wed Feb 22 12:01:21 2023 read 518129 cycles Wed Feb 22 12:01:22 2023 cycles contain 1866853 unique relations Wed Feb 22 12:01:26 2023 read 1866853 relations Wed Feb 22 12:01:27 2023 using 20 quadratic characters above 134217090 Wed Feb 22 12:01:32 2023 building initial matrix Wed Feb 22 12:01:40 2023 memory use: 231.6 MB Wed Feb 22 12:01:40 2023 read 518129 cycles Wed Feb 22 12:01:40 2023 matrix is 517930 x 518129 (155.7 MB) with weight 49036652 (94.64/col) Wed Feb 22 12:01:40 2023 sparse part has weight 35104785 (67.75/col) Wed Feb 22 12:01:43 2023 filtering completed in 2 passes Wed Feb 22 12:01:43 2023 matrix is 515381 x 515575 (155.3 MB) with weight 48891903 (94.83/col) Wed Feb 22 12:01:43 2023 sparse part has weight 35038887 (67.96/col) Wed Feb 22 12:01:43 2023 matrix starts at (0, 0) Wed Feb 22 12:01:43 2023 matrix is 515381 x 515575 (155.3 MB) with weight 48891903 (94.83/col) Wed Feb 22 12:01:43 2023 sparse part has weight 35038887 (67.96/col) Wed Feb 22 12:01:43 2023 saving the first 48 matrix rows for later Wed Feb 22 12:01:44 2023 matrix includes 64 packed rows Wed Feb 22 12:01:44 2023 matrix is 515333 x 515575 (149.5 MB) with weight 38849056 (75.35/col) Wed Feb 22 12:01:44 2023 sparse part has weight 34025873 (66.00/col) Wed Feb 22 12:01:44 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Feb 22 12:01:45 2023 commencing Lanczos iteration (32 threads) Wed Feb 22 12:01:45 2023 memory use: 116.4 MB Wed Feb 22 12:01:47 2023 linear algebra at 0.6%, ETA 0h 5m Wed Feb 22 12:05:45 2023 lanczos halted after 8151 iterations (dim = 515332) Wed Feb 22 12:05:45 2023 recovered 32 nontrivial dependencies Wed Feb 22 12:05:45 2023 BLanczosTime: 264 Wed Feb 22 12:05:45 2023 elapsed time 00:04:24 Wed Feb 22 12:05:45 2023 Wed Feb 22 12:05:45 2023 Wed Feb 22 12:05:45 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 12:05:45 2023 random seeds: 0d342200 1a64a5ba Wed Feb 22 12:05:45 2023 factoring 30172895127728263977354924644934292668476630866785977312863755446167561934760133375266715156107227809284392309627 (113 digits) Wed Feb 22 12:05:46 2023 searching for 15-digit factors Wed Feb 22 12:05:46 2023 commencing number field sieve (113-digit input) Wed Feb 22 12:05:46 2023 R0: -4945417192166051701123 Wed Feb 22 12:05:46 2023 R1: 230417990713 Wed Feb 22 12:05:46 2023 A0: -401248924851816580501360080 Wed Feb 22 12:05:46 2023 A1: 38632662213102071388582 Wed Feb 22 12:05:46 2023 A2: -1041633798866704873 Wed Feb 22 12:05:46 2023 A3: -39683721997970 Wed Feb 22 12:05:46 2023 A4: 1078810160 Wed Feb 22 12:05:46 2023 A5: 10200 Wed Feb 22 12:05:46 2023 skew 44701.62, size 8.081e-011, alpha -5.641, combined = 6.939e-010 rroots = 3 Wed Feb 22 12:05:46 2023 Wed Feb 22 12:05:46 2023 commencing square root phase Wed Feb 22 12:05:46 2023 reading relations for dependency 1 Wed Feb 22 12:05:46 2023 read 257890 cycles Wed Feb 22 12:05:46 2023 cycles contain 932264 unique relations Wed Feb 22 12:05:48 2023 read 932264 relations Wed Feb 22 12:05:50 2023 multiplying 932264 relations Wed Feb 22 12:06:11 2023 multiply complete, coefficients have about 39.93 million bits Wed Feb 22 12:06:11 2023 initial square root is modulo 541301 Wed Feb 22 12:06:36 2023 sqrtTime: 50 Wed Feb 22 12:06:36 2023 prp39 factor: 278225161992801893603350356601420884209 Wed Feb 22 12:06:36 2023 prp75 factor: 108447758324996078105460474246059241473400758966287940260243505004273673003 Wed Feb 22 12:06:36 2023 elapsed time 00:00:51 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 06:33:29 UTC 2023 年 3 月 9 日 (木) 15 時 33 分 29 秒 (日本時間) |
composite number 合成数 | 85661150760412641215047223268425616200258857960390102066803163523041093503483494610003288933540122082024190284818089823064604903535866738950089<143> |
prime factors 素因数 | 16798956160452023608484578437075207642023029565778374898013<59> 5099194851289360395473609192338744956175073641698189028565809467900718637180767765853<85> |
factorization results 素因数分解の結果 | Number: n N=85661150760412641215047223268425616200258857960390102066803163523041093503483494610003288933540122082024190284818089823064604903535866738950089 ( 143 digits) SNFS difficulty: 164 digits. Divisors found: Thu Mar 9 17:25:04 2023 prp59 factor: 16798956160452023608484578437075207642023029565778374898013 Thu Mar 9 17:25:04 2023 prp85 factor: 5099194851289360395473609192338744956175073641698189028565809467900718637180767765853 Thu Mar 9 17:25:04 2023 elapsed time 00:11:34 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 88x10^164-25 = 97(163)5 # n: 85661150760412641215047223268425616200258857960390102066803163523041093503483494610003288933540122082024190284818089823064604903535866738950089 m: 200000000000000000000000000000000 deg: 5 c5: 1100 c0: -1 skew: 0.25 # Murphy_E = 3.855e-10 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1338364 hash collisions in 13868613 relations (13117550 unique) Msieve: matrix is 556522 x 556749 (155.9 MB) Sieving start time: 2023/03/09 15:56:15 Sieving end time : 2023/03/09 17:13:08 Total sieving time: 1hrs 16min 53secs. Total relation processing time: 0hrs 8min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 35sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 10, 2023 11:47:19 UTC 2023 年 3 月 10 日 (金) 20 時 47 分 19 秒 (日本時間) |
composite number 合成数 | 89590877267645353728048828015284473136330925656441434485217605616249366402817439511624417377412848487472247999834229236210354514181<131> |
prime factors 素因数 | 77550354962155869077464914227101859694013604867<47> 1155260698824205135669738999854791683355250100566908522287627110254388978105485894743<85> |
factorization results 素因数分解の結果 | Number: n N=89590877267645353728048828015284473136330925656441434485217605616249366402817439511624417377412848487472247999834229236210354514181 ( 131 digits) SNFS difficulty: 167 digits. Divisors found: Fri Mar 10 22:39:56 2023 prp47 factor: 77550354962155869077464914227101859694013604867 Fri Mar 10 22:39:56 2023 prp85 factor: 1155260698824205135669738999854791683355250100566908522287627110254388978105485894743 Fri Mar 10 22:39:56 2023 elapsed time 00:12:06 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.036). Factorization parameters were as follows: # # N = 88x10^166-25 = 97(165)5 # n: 89590877267645353728048828015284473136330925656441434485217605616249366402817439511624417377412848487472247999834229236210354514181 m: 1000000000000000000000000000000000 deg: 5 c5: 176 c0: -5 skew: 0.49 # Murphy_E = 3.669e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 6150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1695277 hash collisions in 14724212 relations (13907280 unique) Msieve: matrix is 543129 x 543355 (152.1 MB) Sieving start time: 2023/03/10 21:25:00 Sieving end time : 2023/03/10 22:27:33 Total sieving time: 1hrs 2min 33secs. Total relation processing time: 0hrs 8min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 32sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 8, 2023 15:17:45 UTC 2023 年 3 月 9 日 (木) 0 時 17 分 45 秒 (日本時間) |
composite number 合成数 | 49523638171047062775655836249589323070480523740189127515956064634937785024841472505684694120933758190157574668226932196191124536058550001226198462113<149> |
prime factors 素因数 | 3590771474910148294435468211081939<34> 107124056274594665821666448928493029714089<42> 128747192198846955471910069047083776105791065851092615700777515236431758403<75> |
factorization results 素因数分解の結果 | Number: n N=13791921462305336610722642011183489538467106722213234395269651975045255193936390978706230746507852133065990613239867 ( 116 digits) SNFS difficulty: 167 digits. Divisors found: Thu Mar 9 02:13:57 2023 prp42 factor: 107124056274594665821666448928493029714089 Thu Mar 9 02:13:57 2023 prp75 factor: 128747192198846955471910069047083776105791065851092615700777515236431758403 Thu Mar 9 02:13:57 2023 elapsed time 00:11:12 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 88x10^167-25 = 97(166)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 49523638171047062775655836249589323070480523740189127515956064634937785024841472505684694120933758190157574668226932196191124536058550001226198462113 (149 digits) # Using B1=30200000, B2=144289285156, polynomial Dickson(12), sigma=1:1925120461 # Step 1 took 60313ms # Step 2 took 22846ms # ********** Factor found in step 2: 3590771474910148294435468211081939 # Found prime factor of 34 digits: 3590771474910148294435468211081939 # Composite cofactor 13791921462305336610722642011183489538467106722213234395269651975045255193936390978706230746507852133065990613239867 has 116 digits # n: 13791921462305336610722642011183489538467106722213234395269651975045255193936390978706230746507852133065990613239867 m: 2000000000000000000000000000000000 deg: 5 c5: 11 c0: -1 skew: 0.62 # Murphy_E = 4.398e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 6150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1287922 hash collisions in 12964654 relations (12478049 unique) Msieve: matrix is 542502 x 542729 (152.7 MB) Sieving start time: 2023/03/09 01:14:17 Sieving end time : 2023/03/09 02:02:32 Total sieving time: 0hrs 48min 15secs. Total relation processing time: 0hrs 8min 5sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 35sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 24, 2023 13:16:47 UTC 2023 年 2 月 24 日 (金) 22 時 16 分 47 秒 (日本時間) |
composite number 合成数 | 561254520880101162697486357563809353593513939665518245964061595140067341546742071070985459716203030556924189033194309<117> |
prime factors 素因数 | 20151155223300423836323500204349907957497<41> 27852225575193451043967437652540960589269618155169795871025942732228018644397<77> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000. -> client 1 q0: 1800000 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 140 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 94 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 92 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 95 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 141 Fri Feb 24 14:04:25 2023 Fri Feb 24 14:04:25 2023 Fri Feb 24 14:04:25 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 14:04:25 2023 random seeds: e4441ad0 fb013e89 Fri Feb 24 14:04:25 2023 factoring 561254520880101162697486357563809353593513939665518245964061595140067341546742071070985459716203030556924189033194309 (117 digits) Fri Feb 24 14:04:25 2023 searching for 15-digit factors Fri Feb 24 14:04:25 2023 commencing number field sieve (117-digit input) Fri Feb 24 14:04:25 2023 R0: -45123064039221442201127 Fri Feb 24 14:04:25 2023 R1: 1869495804649 Fri Feb 24 14:04:25 2023 A0: -9265510899162866290533932880 Fri Feb 24 14:04:25 2023 A1: 304067133945668893614144 Fri Feb 24 14:04:25 2023 A2: -15126800632286965098 Fri Feb 24 14:04:25 2023 A3: -41177155120777 Fri Feb 24 14:04:25 2023 A4: 7617557110 Fri Feb 24 14:04:25 2023 A5: 3000 Fri Feb 24 14:04:25 2023 skew 73187.93, size 2.557e-011, alpha -6.414, combined = 3.621e-010 rroots = 3 Fri Feb 24 14:04:25 2023 Fri Feb 24 14:04:25 2023 commencing relation filtering Fri Feb 24 14:04:25 2023 estimated available RAM is 65413.5 MB Fri Feb 24 14:04:25 2023 commencing duplicate removal, pass 1 Fri Feb 24 14:04:44 2023 found 882709 hash collisions in 9530028 relations Fri Feb 24 14:04:54 2023 added 62041 free relations Fri Feb 24 14:04:54 2023 commencing duplicate removal, pass 2 Fri Feb 24 14:04:57 2023 found 657239 duplicates and 8934830 unique relations Fri Feb 24 14:04:57 2023 memory use: 34.6 MB Fri Feb 24 14:04:57 2023 reading ideals above 100000 Fri Feb 24 14:04:57 2023 commencing singleton removal, initial pass Fri Feb 24 14:05:30 2023 memory use: 188.3 MB Fri Feb 24 14:05:30 2023 reading all ideals from disk Fri Feb 24 14:05:30 2023 memory use: 312.3 MB Fri Feb 24 14:05:31 2023 keeping 10177869 ideals with weight <= 200, target excess is 47668 Fri Feb 24 14:05:31 2023 commencing in-memory singleton removal Fri Feb 24 14:05:31 2023 begin with 8934830 relations and 10177869 unique ideals Fri Feb 24 14:05:35 2023 reduce to 2638728 relations and 2634426 ideals in 23 passes Fri Feb 24 14:05:35 2023 max relations containing the same ideal: 88 Fri Feb 24 14:05:35 2023 filtering wants 1000000 more relations Fri Feb 24 14:05:35 2023 elapsed time 00:01:10 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 Fri Feb 24 14:08:04 2023 Fri Feb 24 14:08:04 2023 Fri Feb 24 14:08:04 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 14:08:04 2023 random seeds: 0297c37c 746a33dc Fri Feb 24 14:08:04 2023 factoring 561254520880101162697486357563809353593513939665518245964061595140067341546742071070985459716203030556924189033194309 (117 digits) Fri Feb 24 14:08:04 2023 searching for 15-digit factors Fri Feb 24 14:08:05 2023 commencing number field sieve (117-digit input) Fri Feb 24 14:08:05 2023 R0: -45123064039221442201127 Fri Feb 24 14:08:05 2023 R1: 1869495804649 Fri Feb 24 14:08:05 2023 A0: -9265510899162866290533932880 Fri Feb 24 14:08:05 2023 A1: 304067133945668893614144 Fri Feb 24 14:08:05 2023 A2: -15126800632286965098 Fri Feb 24 14:08:05 2023 A3: -41177155120777 Fri Feb 24 14:08:05 2023 A4: 7617557110 Fri Feb 24 14:08:05 2023 A5: 3000 Fri Feb 24 14:08:05 2023 skew 73187.93, size 2.557e-011, alpha -6.414, combined = 3.621e-010 rroots = 3 Fri Feb 24 14:08:05 2023 Fri Feb 24 14:08:05 2023 commencing relation filtering Fri Feb 24 14:08:05 2023 estimated available RAM is 65413.5 MB Fri Feb 24 14:08:05 2023 commencing duplicate removal, pass 1 Fri Feb 24 14:08:26 2023 found 991261 hash collisions in 10242677 relations Fri Feb 24 14:08:36 2023 added 229 free relations Fri Feb 24 14:08:36 2023 commencing duplicate removal, pass 2 Fri Feb 24 14:08:39 2023 found 735259 duplicates and 9507647 unique relations Fri Feb 24 14:08:39 2023 memory use: 49.3 MB Fri Feb 24 14:08:39 2023 reading ideals above 100000 Fri Feb 24 14:08:39 2023 commencing singleton removal, initial pass Fri Feb 24 14:09:15 2023 memory use: 344.5 MB Fri Feb 24 14:09:15 2023 reading all ideals from disk Fri Feb 24 14:09:15 2023 memory use: 332.5 MB Fri Feb 24 14:09:16 2023 keeping 10444671 ideals with weight <= 200, target excess is 50982 Fri Feb 24 14:09:16 2023 commencing in-memory singleton removal Fri Feb 24 14:09:16 2023 begin with 9507647 relations and 10444671 unique ideals Fri Feb 24 14:09:21 2023 reduce to 3380748 relations and 3194690 ideals in 20 passes Fri Feb 24 14:09:21 2023 max relations containing the same ideal: 100 Fri Feb 24 14:09:21 2023 removing 558634 relations and 495175 ideals in 63459 cliques Fri Feb 24 14:09:22 2023 commencing in-memory singleton removal Fri Feb 24 14:09:22 2023 begin with 2822114 relations and 3194690 unique ideals Fri Feb 24 14:09:22 2023 reduce to 2744155 relations and 2619523 ideals in 13 passes Fri Feb 24 14:09:22 2023 max relations containing the same ideal: 88 Fri Feb 24 14:09:23 2023 removing 416823 relations and 353364 ideals in 63459 cliques Fri Feb 24 14:09:23 2023 commencing in-memory singleton removal Fri Feb 24 14:09:23 2023 begin with 2327332 relations and 2619523 unique ideals Fri Feb 24 14:09:23 2023 reduce to 2271254 relations and 2208744 ideals in 10 passes Fri Feb 24 14:09:23 2023 max relations containing the same ideal: 78 Fri Feb 24 14:09:24 2023 relations with 0 large ideals: 132 Fri Feb 24 14:09:24 2023 relations with 1 large ideals: 522 Fri Feb 24 14:09:24 2023 relations with 2 large ideals: 8283 Fri Feb 24 14:09:24 2023 relations with 3 large ideals: 63669 Fri Feb 24 14:09:24 2023 relations with 4 large ideals: 251747 Fri Feb 24 14:09:24 2023 relations with 5 large ideals: 548059 Fri Feb 24 14:09:24 2023 relations with 6 large ideals: 681308 Fri Feb 24 14:09:24 2023 relations with 7+ large ideals: 717534 Fri Feb 24 14:09:24 2023 commencing 2-way merge Fri Feb 24 14:09:25 2023 reduce to 1263986 relation sets and 1201478 unique ideals Fri Feb 24 14:09:25 2023 ignored 3 oversize relation sets Fri Feb 24 14:09:25 2023 commencing full merge Fri Feb 24 14:09:38 2023 memory use: 136.5 MB Fri Feb 24 14:09:39 2023 found 627527 cycles, need 617678 Fri Feb 24 14:09:39 2023 weight of 617678 cycles is about 43250100 (70.02/cycle) Fri Feb 24 14:09:39 2023 distribution of cycle lengths: Fri Feb 24 14:09:39 2023 1 relations: 72060 Fri Feb 24 14:09:39 2023 2 relations: 70900 Fri Feb 24 14:09:39 2023 3 relations: 70887 Fri Feb 24 14:09:39 2023 4 relations: 63166 Fri Feb 24 14:09:39 2023 5 relations: 57643 Fri Feb 24 14:09:39 2023 6 relations: 48555 Fri Feb 24 14:09:39 2023 7 relations: 43232 Fri Feb 24 14:09:39 2023 8 relations: 37078 Fri Feb 24 14:09:39 2023 9 relations: 31662 Fri Feb 24 14:09:39 2023 10+ relations: 122495 Fri Feb 24 14:09:39 2023 heaviest cycle: 21 relations Fri Feb 24 14:09:39 2023 commencing cycle optimization Fri Feb 24 14:09:39 2023 start with 3709147 relations Fri Feb 24 14:09:43 2023 pruned 69684 relations Fri Feb 24 14:09:43 2023 memory use: 127.8 MB Fri Feb 24 14:09:43 2023 distribution of cycle lengths: Fri Feb 24 14:09:43 2023 1 relations: 72060 Fri Feb 24 14:09:43 2023 2 relations: 72315 Fri Feb 24 14:09:43 2023 3 relations: 72950 Fri Feb 24 14:09:43 2023 4 relations: 64378 Fri Feb 24 14:09:43 2023 5 relations: 58516 Fri Feb 24 14:09:43 2023 6 relations: 48976 Fri Feb 24 14:09:43 2023 7 relations: 43391 Fri Feb 24 14:09:43 2023 8 relations: 37108 Fri Feb 24 14:09:43 2023 9 relations: 31377 Fri Feb 24 14:09:43 2023 10+ relations: 116607 Fri Feb 24 14:09:43 2023 heaviest cycle: 21 relations Fri Feb 24 14:09:44 2023 RelProcTime: 99 Fri Feb 24 14:09:44 2023 elapsed time 00:01:40 Fri Feb 24 14:09:44 2023 Fri Feb 24 14:09:44 2023 Fri Feb 24 14:09:44 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 14:09:44 2023 random seeds: 9b9f8e18 289efec2 Fri Feb 24 14:09:44 2023 factoring 561254520880101162697486357563809353593513939665518245964061595140067341546742071070985459716203030556924189033194309 (117 digits) Fri Feb 24 14:09:44 2023 searching for 15-digit factors Fri Feb 24 14:09:44 2023 commencing number field sieve (117-digit input) Fri Feb 24 14:09:44 2023 R0: -45123064039221442201127 Fri Feb 24 14:09:44 2023 R1: 1869495804649 Fri Feb 24 14:09:44 2023 A0: -9265510899162866290533932880 Fri Feb 24 14:09:44 2023 A1: 304067133945668893614144 Fri Feb 24 14:09:44 2023 A2: -15126800632286965098 Fri Feb 24 14:09:44 2023 A3: -41177155120777 Fri Feb 24 14:09:44 2023 A4: 7617557110 Fri Feb 24 14:09:44 2023 A5: 3000 Fri Feb 24 14:09:44 2023 skew 73187.93, size 2.557e-011, alpha -6.414, combined = 3.621e-010 rroots = 3 Fri Feb 24 14:09:44 2023 Fri Feb 24 14:09:44 2023 commencing linear algebra Fri Feb 24 14:09:44 2023 read 617678 cycles Fri Feb 24 14:09:45 2023 cycles contain 2176071 unique relations Fri Feb 24 14:09:50 2023 read 2176071 relations Fri Feb 24 14:09:51 2023 using 20 quadratic characters above 134214768 Fri Feb 24 14:09:57 2023 building initial matrix Fri Feb 24 14:10:08 2023 memory use: 269.9 MB Fri Feb 24 14:10:08 2023 read 617678 cycles Fri Feb 24 14:10:09 2023 matrix is 617498 x 617678 (185.2 MB) with weight 58818613 (95.23/col) Fri Feb 24 14:10:09 2023 sparse part has weight 41761002 (67.61/col) Fri Feb 24 14:10:11 2023 filtering completed in 2 passes Fri Feb 24 14:10:11 2023 matrix is 615707 x 615886 (185.0 MB) with weight 58736925 (95.37/col) Fri Feb 24 14:10:11 2023 sparse part has weight 41731574 (67.76/col) Fri Feb 24 14:10:12 2023 matrix starts at (0, 0) Fri Feb 24 14:10:12 2023 matrix is 615707 x 615886 (185.0 MB) with weight 58736925 (95.37/col) Fri Feb 24 14:10:12 2023 sparse part has weight 41731574 (67.76/col) Fri Feb 24 14:10:12 2023 saving the first 48 matrix rows for later Fri Feb 24 14:10:13 2023 matrix includes 64 packed rows Fri Feb 24 14:10:13 2023 matrix is 615659 x 615886 (178.9 MB) with weight 46532368 (75.55/col) Fri Feb 24 14:10:13 2023 sparse part has weight 40742573 (66.15/col) Fri Feb 24 14:10:13 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Fri Feb 24 14:10:15 2023 commencing Lanczos iteration (32 threads) Fri Feb 24 14:10:15 2023 memory use: 139.4 MB Fri Feb 24 14:10:16 2023 linear algebra at 0.5%, ETA 0h 3m Fri Feb 24 14:15:17 2023 lanczos halted after 9737 iterations (dim = 615658) Fri Feb 24 14:15:18 2023 recovered 30 nontrivial dependencies Fri Feb 24 14:15:18 2023 BLanczosTime: 334 Fri Feb 24 14:15:18 2023 elapsed time 00:05:34 Fri Feb 24 14:15:18 2023 Fri Feb 24 14:15:18 2023 Fri Feb 24 14:15:18 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 14:15:18 2023 random seeds: 181675c0 f3abda73 Fri Feb 24 14:15:18 2023 factoring 561254520880101162697486357563809353593513939665518245964061595140067341546742071070985459716203030556924189033194309 (117 digits) Fri Feb 24 14:15:18 2023 searching for 15-digit factors Fri Feb 24 14:15:18 2023 commencing number field sieve (117-digit input) Fri Feb 24 14:15:18 2023 R0: -45123064039221442201127 Fri Feb 24 14:15:18 2023 R1: 1869495804649 Fri Feb 24 14:15:18 2023 A0: -9265510899162866290533932880 Fri Feb 24 14:15:18 2023 A1: 304067133945668893614144 Fri Feb 24 14:15:18 2023 A2: -15126800632286965098 Fri Feb 24 14:15:18 2023 A3: -41177155120777 Fri Feb 24 14:15:18 2023 A4: 7617557110 Fri Feb 24 14:15:18 2023 A5: 3000 Fri Feb 24 14:15:18 2023 skew 73187.93, size 2.557e-011, alpha -6.414, combined = 3.621e-010 rroots = 3 Fri Feb 24 14:15:18 2023 Fri Feb 24 14:15:18 2023 commencing square root phase Fri Feb 24 14:15:18 2023 reading relations for dependency 1 Fri Feb 24 14:15:18 2023 read 308317 cycles Fri Feb 24 14:15:19 2023 cycles contain 1088554 unique relations Fri Feb 24 14:15:22 2023 read 1088554 relations Fri Feb 24 14:15:24 2023 multiplying 1088554 relations Fri Feb 24 14:15:49 2023 multiply complete, coefficients have about 48.93 million bits Fri Feb 24 14:15:49 2023 initial square root is modulo 10604567 Fri Feb 24 14:16:25 2023 sqrtTime: 67 Fri Feb 24 14:16:25 2023 prp41 factor: 20151155223300423836323500204349907957497 Fri Feb 24 14:16:25 2023 prp77 factor: 27852225575193451043967437652540960589269618155169795871025942732228018644397 Fri Feb 24 14:16:25 2023 elapsed time 00:01:07 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | April 14, 2023 16:08:52 UTC 2023 年 4 月 15 日 (土) 1 時 8 分 52 秒 (日本時間) |
composite number 合成数 | 4109289608935147669699412275798842090741901815296950630990569688013628421169405424063523256687597244405782929984786067467504573883311189<136> |
prime factors 素因数 | 338821983645173736532403424624700978172054683135400389169<57> 12128167023656115116232344491054654095088221247252585340385542893828067334516581<80> |
factorization results 素因数分解の結果 | 4109289608935147669699412275798842090741901815296950630990569688013628421169405424063523256687597244405782929984786067467504573883311189=338821983645173736532403424624700978172054683135400389169*12128167023656115116232344491054654095088221247252585340385542893828067334516581 cado polynomial n: 4109289608935147669699412275798842090741901815296950630990569688013628421169405424063523256687597244405782929984786067467504573883311189 skew: 0.78 type: snfs c0: -25 c5: 88 Y0: 10000000000000000000000000000000000 Y1: -1 cado parameters (extracts) tasks.lim0 = 2900000 tasks.lim1 = 2900000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 50 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 338821983645173736532403424624700978172054683135400389169 12128167023656115116232344491054654095088221247252585340385542893828067334516581 Info:Square Root: Total cpu/real time for sqrt: 190.33/61.7442 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 46.98/44.0515 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 44.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 46.88/48.0429 Info:Filtering - Merging: Merged matrix has 784579 rows and total weight 133998867 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 175.23/49.0574 Info:Filtering - Merging: Total cpu/real time for replay: 27.98/24.0129 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11646270 Info:Lattice Sieving: Average J: 1892.72 for 429689 special-q, max bucket fill -bkmult 1.0,1s:1.180330 Info:Lattice Sieving: Total time: 54471.7s Info:Linear Algebra: Total cpu/real time for bwc: 9658.65/2481.62 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 6078.87, WCT time 1554.33, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (24576 iterations) Info:Linear Algebra: Lingen CPU time 143.86, WCT time 36.54 Info:Linear Algebra: Mksol: CPU time 3311.04, WCT time 845.7, iteration CPU time 0.07, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12288 iterations) Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 110.69/103.692 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 92.4s Info:Quadratic Characters: Total cpu/real time for characters: 28.05/11.0943 Info:Generate Factor Base: Total cpu/real time for makefb: 2.06/1.22115 Info:Generate Free Relations: Total cpu/real time for freerel: 59.46/16.2702 Info:Square Root: Total cpu/real time for sqrt: 190.33/61.7442 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 112345/30261.1 Info:root: Cleaning up computation data in /tmp/cado.fpswh5tf 338821983645173736532403424624700978172054683135400389169 12128167023656115116232344491054654095088221247252585340385542893828067334516581 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:32:23 UTC 2023 年 3 月 23 日 (木) 20 時 32 分 23 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 15, 2023 01:05:42 UTC 2023 年 3 月 15 日 (水) 10 時 5 分 42 秒 (日本時間) |
composite number 合成数 | 4275046906854827463004071189365685842510463453660765522609913950730102535259177988740956635310792851372085840946075599276418165858614297775796571627<148> |
prime factors 素因数 | 9269809066965940419090461733602247376519373<43> 461179607473196194922083999133301357308433535992167720615242521030957793915727025770181402052151718766999<105> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4275046906854827463004071189365685842510463453660765522609913950730102535259177988740956635310792851372085840946075599276418165858614297775796571627 (148 digits) Using B1=40220000, B2=192393771586, polynomial Dickson(12), sigma=1:311919711 Step 1 took 82021ms Step 2 took 27735ms ********** Factor found in step 2: 9269809066965940419090461733602247376519373 Found prime factor of 43 digits: 9269809066965940419090461733602247376519373 Prime cofactor 461179607473196194922083999133301357308433535992167720615242521030957793915727025770181402052151718766999 has 105 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 16, 2023 09:32:44 UTC 2023 年 4 月 16 日 (日) 18 時 32 分 44 秒 (日本時間) |
composite number 合成数 | 575818450605834977173420162719007150171154731717051207526203270821783361078470716042623393085723046786946445518027463473352742803<129> |
prime factors 素因数 | 10291623318867396318959157066013127813178043<44> 55950206567529561224438564997101993487872568658241167378674819315337277211640645037321<86> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2650000, q1=2750000. -> client 1 q0: 2650000 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 -> makeJobFile(): Adjusted to q0=2950001, q1=3050000. -> client 1 q0: 2950001 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 -> makeJobFile(): Adjusted to q0=3050001, q1=3150000. -> client 1 q0: 3050001 LatSieveTime: 89 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3150001, q1=3250000. -> client 1 q0: 3150001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3250001, q1=3350000. -> client 1 q0: 3250001 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=3350001, q1=3450000. -> client 1 q0: 3350001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=3450001, q1=3550000. -> client 1 q0: 3450001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=3550001, q1=3650000. -> client 1 q0: 3550001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3650001, q1=3750000. -> client 1 q0: 3650001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=3750001, q1=3850000. -> client 1 q0: 3750001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 132 Sun Apr 16 11:14:50 2023 Sun Apr 16 11:14:50 2023 Sun Apr 16 11:14:50 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 11:14:50 2023 random seeds: 6ffe7760 2aaf2b62 Sun Apr 16 11:14:50 2023 factoring 575818450605834977173420162719007150171154731717051207526203270821783361078470716042623393085723046786946445518027463473352742803 (129 digits) Sun Apr 16 11:14:50 2023 searching for 15-digit factors Sun Apr 16 11:14:50 2023 commencing number field sieve (129-digit input) Sun Apr 16 11:14:50 2023 R0: -20000000000000000000000000000000000 Sun Apr 16 11:14:50 2023 R1: 1 Sun Apr 16 11:14:50 2023 A0: -1 Sun Apr 16 11:14:50 2023 A1: 0 Sun Apr 16 11:14:50 2023 A2: 0 Sun Apr 16 11:14:50 2023 A3: 0 Sun Apr 16 11:14:50 2023 A4: 0 Sun Apr 16 11:14:50 2023 A5: 11 Sun Apr 16 11:14:50 2023 skew 0.62, size 8.035e-012, alpha 0.589, combined = 2.785e-010 rroots = 1 Sun Apr 16 11:14:50 2023 Sun Apr 16 11:14:50 2023 commencing relation filtering Sun Apr 16 11:14:50 2023 estimated available RAM is 65413.5 MB Sun Apr 16 11:14:50 2023 commencing duplicate removal, pass 1 Sun Apr 16 11:15:07 2023 found 966869 hash collisions in 10045925 relations Sun Apr 16 11:15:15 2023 added 371295 free relations Sun Apr 16 11:15:15 2023 commencing duplicate removal, pass 2 Sun Apr 16 11:15:18 2023 found 721685 duplicates and 9695535 unique relations Sun Apr 16 11:15:18 2023 memory use: 49.3 MB Sun Apr 16 11:15:18 2023 reading ideals above 100000 Sun Apr 16 11:15:18 2023 commencing singleton removal, initial pass Sun Apr 16 11:15:55 2023 memory use: 344.5 MB Sun Apr 16 11:15:55 2023 reading all ideals from disk Sun Apr 16 11:15:55 2023 memory use: 350.4 MB Sun Apr 16 11:15:55 2023 keeping 10928108 ideals with weight <= 200, target excess is 49167 Sun Apr 16 11:15:56 2023 commencing in-memory singleton removal Sun Apr 16 11:15:56 2023 begin with 9695535 relations and 10928108 unique ideals Sun Apr 16 11:16:01 2023 reduce to 3659593 relations and 3607011 ideals in 19 passes Sun Apr 16 11:16:01 2023 max relations containing the same ideal: 106 Sun Apr 16 11:16:01 2023 filtering wants 1000000 more relations Sun Apr 16 11:16:01 2023 elapsed time 00:01:11 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 Sun Apr 16 11:18:09 2023 Sun Apr 16 11:18:09 2023 Sun Apr 16 11:18:09 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 11:18:09 2023 random seeds: a22022ec 96e0ff12 Sun Apr 16 11:18:09 2023 factoring 575818450605834977173420162719007150171154731717051207526203270821783361078470716042623393085723046786946445518027463473352742803 (129 digits) Sun Apr 16 11:18:09 2023 searching for 15-digit factors Sun Apr 16 11:18:09 2023 commencing number field sieve (129-digit input) Sun Apr 16 11:18:09 2023 R0: -20000000000000000000000000000000000 Sun Apr 16 11:18:09 2023 R1: 1 Sun Apr 16 11:18:09 2023 A0: -1 Sun Apr 16 11:18:09 2023 A1: 0 Sun Apr 16 11:18:09 2023 A2: 0 Sun Apr 16 11:18:09 2023 A3: 0 Sun Apr 16 11:18:09 2023 A4: 0 Sun Apr 16 11:18:09 2023 A5: 11 Sun Apr 16 11:18:09 2023 skew 0.62, size 8.035e-012, alpha 0.589, combined = 2.785e-010 rroots = 1 Sun Apr 16 11:18:09 2023 Sun Apr 16 11:18:09 2023 commencing relation filtering Sun Apr 16 11:18:09 2023 estimated available RAM is 65413.5 MB Sun Apr 16 11:18:09 2023 commencing duplicate removal, pass 1 Sun Apr 16 11:18:30 2023 found 1069320 hash collisions in 10880374 relations Sun Apr 16 11:18:38 2023 added 1076 free relations Sun Apr 16 11:18:38 2023 commencing duplicate removal, pass 2 Sun Apr 16 11:18:41 2023 found 781545 duplicates and 10099905 unique relations Sun Apr 16 11:18:41 2023 memory use: 49.3 MB Sun Apr 16 11:18:41 2023 reading ideals above 720000 Sun Apr 16 11:18:41 2023 commencing singleton removal, initial pass Sun Apr 16 11:19:16 2023 memory use: 344.5 MB Sun Apr 16 11:19:16 2023 reading all ideals from disk Sun Apr 16 11:19:16 2023 memory use: 294.6 MB Sun Apr 16 11:19:16 2023 commencing in-memory singleton removal Sun Apr 16 11:19:17 2023 begin with 10099905 relations and 11018347 unique ideals Sun Apr 16 11:19:22 2023 reduce to 4217274 relations and 3938427 ideals in 19 passes Sun Apr 16 11:19:22 2023 max relations containing the same ideal: 71 Sun Apr 16 11:19:23 2023 removing 590033 relations and 517978 ideals in 72055 cliques Sun Apr 16 11:19:23 2023 commencing in-memory singleton removal Sun Apr 16 11:19:23 2023 begin with 3627241 relations and 3938427 unique ideals Sun Apr 16 11:19:24 2023 reduce to 3552065 relations and 3343469 ideals in 11 passes Sun Apr 16 11:19:24 2023 max relations containing the same ideal: 62 Sun Apr 16 11:19:25 2023 removing 447252 relations and 375197 ideals in 72055 cliques Sun Apr 16 11:19:25 2023 commencing in-memory singleton removal Sun Apr 16 11:19:25 2023 begin with 3104813 relations and 3343469 unique ideals Sun Apr 16 11:19:26 2023 reduce to 3055237 relations and 2917631 ideals in 10 passes Sun Apr 16 11:19:26 2023 max relations containing the same ideal: 56 Sun Apr 16 11:19:27 2023 relations with 0 large ideals: 2912 Sun Apr 16 11:19:27 2023 relations with 1 large ideals: 2517 Sun Apr 16 11:19:27 2023 relations with 2 large ideals: 34278 Sun Apr 16 11:19:27 2023 relations with 3 large ideals: 188411 Sun Apr 16 11:19:27 2023 relations with 4 large ideals: 541341 Sun Apr 16 11:19:27 2023 relations with 5 large ideals: 876290 Sun Apr 16 11:19:27 2023 relations with 6 large ideals: 836358 Sun Apr 16 11:19:27 2023 relations with 7+ large ideals: 573130 Sun Apr 16 11:19:27 2023 commencing 2-way merge Sun Apr 16 11:19:28 2023 reduce to 1787423 relation sets and 1649818 unique ideals Sun Apr 16 11:19:28 2023 ignored 1 oversize relation sets Sun Apr 16 11:19:28 2023 commencing full merge Sun Apr 16 11:19:47 2023 memory use: 186.5 MB Sun Apr 16 11:19:48 2023 found 883282 cycles, need 864018 Sun Apr 16 11:19:48 2023 weight of 864018 cycles is about 60750442 (70.31/cycle) Sun Apr 16 11:19:48 2023 distribution of cycle lengths: Sun Apr 16 11:19:48 2023 1 relations: 105972 Sun Apr 16 11:19:48 2023 2 relations: 97422 Sun Apr 16 11:19:48 2023 3 relations: 95280 Sun Apr 16 11:19:48 2023 4 relations: 86381 Sun Apr 16 11:19:48 2023 5 relations: 78682 Sun Apr 16 11:19:48 2023 6 relations: 68333 Sun Apr 16 11:19:48 2023 7 relations: 59287 Sun Apr 16 11:19:48 2023 8 relations: 51936 Sun Apr 16 11:19:48 2023 9 relations: 44493 Sun Apr 16 11:19:48 2023 10+ relations: 176232 Sun Apr 16 11:19:48 2023 heaviest cycle: 21 relations Sun Apr 16 11:19:48 2023 commencing cycle optimization Sun Apr 16 11:19:49 2023 start with 5213715 relations Sun Apr 16 11:19:55 2023 pruned 119166 relations Sun Apr 16 11:19:55 2023 memory use: 173.4 MB Sun Apr 16 11:19:55 2023 distribution of cycle lengths: Sun Apr 16 11:19:55 2023 1 relations: 105972 Sun Apr 16 11:19:55 2023 2 relations: 99448 Sun Apr 16 11:19:55 2023 3 relations: 98433 Sun Apr 16 11:19:55 2023 4 relations: 88337 Sun Apr 16 11:19:55 2023 5 relations: 80607 Sun Apr 16 11:19:55 2023 6 relations: 69091 Sun Apr 16 11:19:55 2023 7 relations: 60032 Sun Apr 16 11:19:55 2023 8 relations: 51867 Sun Apr 16 11:19:55 2023 9 relations: 44104 Sun Apr 16 11:19:55 2023 10+ relations: 166127 Sun Apr 16 11:19:55 2023 heaviest cycle: 21 relations Sun Apr 16 11:19:56 2023 RelProcTime: 107 Sun Apr 16 11:19:56 2023 elapsed time 00:01:47 Sun Apr 16 11:19:56 2023 Sun Apr 16 11:19:56 2023 Sun Apr 16 11:19:56 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 11:19:56 2023 random seeds: 865f74b8 a4d7d103 Sun Apr 16 11:19:56 2023 factoring 575818450605834977173420162719007150171154731717051207526203270821783361078470716042623393085723046786946445518027463473352742803 (129 digits) Sun Apr 16 11:19:56 2023 searching for 15-digit factors Sun Apr 16 11:19:56 2023 commencing number field sieve (129-digit input) Sun Apr 16 11:19:56 2023 R0: -20000000000000000000000000000000000 Sun Apr 16 11:19:56 2023 R1: 1 Sun Apr 16 11:19:56 2023 A0: -1 Sun Apr 16 11:19:56 2023 A1: 0 Sun Apr 16 11:19:56 2023 A2: 0 Sun Apr 16 11:19:56 2023 A3: 0 Sun Apr 16 11:19:56 2023 A4: 0 Sun Apr 16 11:19:56 2023 A5: 11 Sun Apr 16 11:19:56 2023 skew 0.62, size 8.035e-012, alpha 0.589, combined = 2.785e-010 rroots = 1 Sun Apr 16 11:19:56 2023 Sun Apr 16 11:19:56 2023 commencing linear algebra Sun Apr 16 11:19:57 2023 read 864018 cycles Sun Apr 16 11:19:57 2023 cycles contain 2906964 unique relations Sun Apr 16 11:20:03 2023 read 2906964 relations Sun Apr 16 11:20:05 2023 using 20 quadratic characters above 134217438 Sun Apr 16 11:20:13 2023 building initial matrix Sun Apr 16 11:20:28 2023 memory use: 355.5 MB Sun Apr 16 11:20:29 2023 read 864018 cycles Sun Apr 16 11:20:29 2023 matrix is 863829 x 864018 (259.5 MB) with weight 77568663 (89.78/col) Sun Apr 16 11:20:29 2023 sparse part has weight 58515979 (67.73/col) Sun Apr 16 11:20:32 2023 filtering completed in 2 passes Sun Apr 16 11:20:33 2023 matrix is 861287 x 861475 (259.2 MB) with weight 77467640 (89.92/col) Sun Apr 16 11:20:33 2023 sparse part has weight 58473297 (67.88/col) Sun Apr 16 11:20:34 2023 matrix starts at (0, 0) Sun Apr 16 11:20:34 2023 matrix is 861287 x 861475 (259.2 MB) with weight 77467640 (89.92/col) Sun Apr 16 11:20:34 2023 sparse part has weight 58473297 (67.88/col) Sun Apr 16 11:20:34 2023 saving the first 48 matrix rows for later Sun Apr 16 11:20:34 2023 matrix includes 64 packed rows Sun Apr 16 11:20:34 2023 matrix is 861239 x 861475 (246.1 MB) with weight 61377222 (71.25/col) Sun Apr 16 11:20:34 2023 sparse part has weight 55889749 (64.88/col) Sun Apr 16 11:20:34 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Apr 16 11:20:37 2023 commencing Lanczos iteration (32 threads) Sun Apr 16 11:20:37 2023 memory use: 195.3 MB Sun Apr 16 11:20:38 2023 linear algebra at 0.4%, ETA 0h 4m Sun Apr 16 11:28:33 2023 lanczos halted after 13621 iterations (dim = 861238) Sun Apr 16 11:28:34 2023 recovered 37 nontrivial dependencies Sun Apr 16 11:28:34 2023 BLanczosTime: 518 Sun Apr 16 11:28:34 2023 elapsed time 00:08:38 Sun Apr 16 11:28:34 2023 Sun Apr 16 11:28:34 2023 Sun Apr 16 11:28:34 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 11:28:34 2023 random seeds: 84ec1060 34ae2dc2 Sun Apr 16 11:28:34 2023 factoring 575818450605834977173420162719007150171154731717051207526203270821783361078470716042623393085723046786946445518027463473352742803 (129 digits) Sun Apr 16 11:28:34 2023 searching for 15-digit factors Sun Apr 16 11:28:35 2023 commencing number field sieve (129-digit input) Sun Apr 16 11:28:35 2023 R0: -20000000000000000000000000000000000 Sun Apr 16 11:28:35 2023 R1: 1 Sun Apr 16 11:28:35 2023 A0: -1 Sun Apr 16 11:28:35 2023 A1: 0 Sun Apr 16 11:28:35 2023 A2: 0 Sun Apr 16 11:28:35 2023 A3: 0 Sun Apr 16 11:28:35 2023 A4: 0 Sun Apr 16 11:28:35 2023 A5: 11 Sun Apr 16 11:28:35 2023 skew 0.62, size 8.035e-012, alpha 0.589, combined = 2.785e-010 rroots = 1 Sun Apr 16 11:28:35 2023 Sun Apr 16 11:28:35 2023 commencing square root phase Sun Apr 16 11:28:35 2023 reading relations for dependency 1 Sun Apr 16 11:28:35 2023 read 429864 cycles Sun Apr 16 11:28:35 2023 cycles contain 1451290 unique relations Sun Apr 16 11:28:38 2023 read 1451290 relations Sun Apr 16 11:28:41 2023 multiplying 1451290 relations Sun Apr 16 11:29:02 2023 multiply complete, coefficients have about 36.15 million bits Sun Apr 16 11:29:02 2023 initial square root is modulo 155231 Sun Apr 16 11:29:25 2023 GCD is 1, no factor found Sun Apr 16 11:29:25 2023 reading relations for dependency 2 Sun Apr 16 11:29:25 2023 read 430260 cycles Sun Apr 16 11:29:25 2023 cycles contain 1451400 unique relations Sun Apr 16 11:29:29 2023 read 1451400 relations Sun Apr 16 11:29:31 2023 multiplying 1451400 relations Sun Apr 16 11:29:52 2023 multiply complete, coefficients have about 36.15 million bits Sun Apr 16 11:29:52 2023 initial square root is modulo 155291 Sun Apr 16 11:30:15 2023 GCD is N, no factor found Sun Apr 16 11:30:15 2023 reading relations for dependency 3 Sun Apr 16 11:30:15 2023 read 430865 cycles Sun Apr 16 11:30:16 2023 cycles contain 1452842 unique relations Sun Apr 16 11:30:19 2023 read 1452842 relations Sun Apr 16 11:30:21 2023 multiplying 1452842 relations Sun Apr 16 11:30:42 2023 multiply complete, coefficients have about 36.19 million bits Sun Apr 16 11:30:42 2023 initial square root is modulo 157061 Sun Apr 16 11:31:05 2023 sqrtTime: 150 Sun Apr 16 11:31:05 2023 prp44 factor: 10291623318867396318959157066013127813178043 Sun Apr 16 11:31:05 2023 prp86 factor: 55950206567529561224438564997101993487872568658241167378674819315337277211640645037321 Sun Apr 16 11:31:05 2023 elapsed time 00:02:31 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:32:35 UTC 2023 年 3 月 23 日 (木) 20 時 32 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 10, 2023 21:57:09 UTC 2023 年 3 月 11 日 (土) 6 時 57 分 9 秒 (日本時間) |
composite number 合成数 | 55873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<173> |
prime factors 素因数 | 13567527611630677436412052439196318194501055260272942423<56> 4118142779758862086811484378446617138987971739963672491120490705445149030141080817868990762576549986485223999591770151<118> |
factorization results 素因数分解の結果 | Number: n N=55873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873 ( 173 digits) SNFS difficulty: 174 digits. Divisors found: Sat Mar 11 08:36:40 2023 prp56 factor: 13567527611630677436412052439196318194501055260272942423 Sat Mar 11 08:36:40 2023 prp118 factor: 4118142779758862086811484378446617138987971739963672491120490705445149030141080817868990762576549986485223999591770151 Sat Mar 11 08:36:40 2023 elapsed time 00:29:37 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: # # N = 88x10^174-25 = 97(173)5 # n: 55873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873 m: 20000000000000000000000000000000000 deg: 5 c5: 1100 c0: -1 skew: 0.25 # Murphy_E = 1.551e-10 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 14050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1718107 hash collisions in 13677767 relations (12717846 unique) Msieve: matrix is 921943 x 922169 (259.0 MB) Sieving start time: 2023/03/11 06:14:07 Sieving end time : 2023/03/11 08:06:44 Total sieving time: 1hrs 52min 37secs. Total relation processing time: 0hrs 23min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 11sec. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 18, 2023 13:12:21 UTC 2023 年 4 月 18 日 (火) 22 時 12 分 21 秒 (日本時間) |
composite number 合成数 | 1133537094634532362690646694687275573187920148662731248463656485591939925327099547399794883359102451959634570301262656472294685645942835116791259<145> |
prime factors 素因数 | 15988892685482648210237664981647427462374466821874722603188387<62> 70895284428529822266858661861483524464509494690316646133079802684673810120745783657<83> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3100000, q1=3200000. -> client 1 q0: 3100000 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 103 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 Tue Apr 18 14:48:55 2023 Tue Apr 18 14:48:55 2023 Tue Apr 18 14:48:55 2023 Msieve v. 1.52 (SVN 927) Tue Apr 18 14:48:55 2023 random seeds: 60d3fb20 37f5e0a2 Tue Apr 18 14:48:55 2023 factoring 1133537094634532362690646694687275573187920148662731248463656485591939925327099547399794883359102451959634570301262656472294685645942835116791259 (145 digits) Tue Apr 18 14:48:56 2023 searching for 15-digit factors Tue Apr 18 14:48:56 2023 commencing number field sieve (145-digit input) Tue Apr 18 14:48:56 2023 R0: -100000000000000000000000000000000000 Tue Apr 18 14:48:56 2023 R1: 1 Tue Apr 18 14:48:56 2023 A0: -25 Tue Apr 18 14:48:56 2023 A1: 0 Tue Apr 18 14:48:56 2023 A2: 0 Tue Apr 18 14:48:56 2023 A3: 0 Tue Apr 18 14:48:56 2023 A4: 0 Tue Apr 18 14:48:56 2023 A5: 88 Tue Apr 18 14:48:56 2023 skew 0.78, size 2.309e-012, alpha 0.185, combined = 1.364e-010 rroots = 1 Tue Apr 18 14:48:56 2023 Tue Apr 18 14:48:56 2023 commencing relation filtering Tue Apr 18 14:48:56 2023 estimated available RAM is 65413.5 MB Tue Apr 18 14:48:56 2023 commencing duplicate removal, pass 1 Tue Apr 18 14:49:27 2023 found 1801486 hash collisions in 17272095 relations Tue Apr 18 14:49:40 2023 added 692616 free relations Tue Apr 18 14:49:40 2023 commencing duplicate removal, pass 2 Tue Apr 18 14:49:46 2023 found 1476273 duplicates and 16488438 unique relations Tue Apr 18 14:49:46 2023 memory use: 69.3 MB Tue Apr 18 14:49:46 2023 reading ideals above 720000 Tue Apr 18 14:49:47 2023 commencing singleton removal, initial pass Tue Apr 18 14:50:45 2023 memory use: 376.5 MB Tue Apr 18 14:50:45 2023 reading all ideals from disk Tue Apr 18 14:50:45 2023 memory use: 497.1 MB Tue Apr 18 14:50:46 2023 commencing in-memory singleton removal Tue Apr 18 14:50:46 2023 begin with 16488438 relations and 18893448 unique ideals Tue Apr 18 14:50:56 2023 reduce to 5645102 relations and 5380701 ideals in 21 passes Tue Apr 18 14:50:56 2023 max relations containing the same ideal: 87 Tue Apr 18 14:50:57 2023 removing 661967 relations and 597227 ideals in 64740 cliques Tue Apr 18 14:50:58 2023 commencing in-memory singleton removal Tue Apr 18 14:50:58 2023 begin with 4983135 relations and 5380701 unique ideals Tue Apr 18 14:51:00 2023 reduce to 4913236 relations and 4712380 ideals in 11 passes Tue Apr 18 14:51:00 2023 max relations containing the same ideal: 78 Tue Apr 18 14:51:02 2023 removing 491271 relations and 426531 ideals in 64740 cliques Tue Apr 18 14:51:02 2023 commencing in-memory singleton removal Tue Apr 18 14:51:02 2023 begin with 4421965 relations and 4712380 unique ideals Tue Apr 18 14:51:04 2023 reduce to 4377297 relations and 4240574 ideals in 9 passes Tue Apr 18 14:51:04 2023 max relations containing the same ideal: 70 Tue Apr 18 14:51:05 2023 relations with 0 large ideals: 2944 Tue Apr 18 14:51:05 2023 relations with 1 large ideals: 1767 Tue Apr 18 14:51:05 2023 relations with 2 large ideals: 26938 Tue Apr 18 14:51:05 2023 relations with 3 large ideals: 173868 Tue Apr 18 14:51:05 2023 relations with 4 large ideals: 591568 Tue Apr 18 14:51:05 2023 relations with 5 large ideals: 1137277 Tue Apr 18 14:51:05 2023 relations with 6 large ideals: 1300533 Tue Apr 18 14:51:05 2023 relations with 7+ large ideals: 1142402 Tue Apr 18 14:51:05 2023 commencing 2-way merge Tue Apr 18 14:51:07 2023 reduce to 2474764 relation sets and 2338044 unique ideals Tue Apr 18 14:51:07 2023 ignored 3 oversize relation sets Tue Apr 18 14:51:07 2023 commencing full merge Tue Apr 18 14:51:36 2023 memory use: 270.6 MB Tue Apr 18 14:51:37 2023 found 1237424 cycles, need 1220244 Tue Apr 18 14:51:37 2023 weight of 1220244 cycles is about 85555992 (70.11/cycle) Tue Apr 18 14:51:37 2023 distribution of cycle lengths: Tue Apr 18 14:51:37 2023 1 relations: 158481 Tue Apr 18 14:51:37 2023 2 relations: 142903 Tue Apr 18 14:51:37 2023 3 relations: 138584 Tue Apr 18 14:51:37 2023 4 relations: 122821 Tue Apr 18 14:51:37 2023 5 relations: 110425 Tue Apr 18 14:51:37 2023 6 relations: 92902 Tue Apr 18 14:51:37 2023 7 relations: 81486 Tue Apr 18 14:51:37 2023 8 relations: 69238 Tue Apr 18 14:51:37 2023 9 relations: 58244 Tue Apr 18 14:51:37 2023 10+ relations: 245160 Tue Apr 18 14:51:37 2023 heaviest cycle: 23 relations Tue Apr 18 14:51:37 2023 commencing cycle optimization Tue Apr 18 14:51:38 2023 start with 7310066 relations Tue Apr 18 14:51:47 2023 pruned 144407 relations Tue Apr 18 14:51:47 2023 memory use: 248.2 MB Tue Apr 18 14:51:47 2023 distribution of cycle lengths: Tue Apr 18 14:51:47 2023 1 relations: 158481 Tue Apr 18 14:51:47 2023 2 relations: 145677 Tue Apr 18 14:51:47 2023 3 relations: 142545 Tue Apr 18 14:51:47 2023 4 relations: 125183 Tue Apr 18 14:51:47 2023 5 relations: 112337 Tue Apr 18 14:51:47 2023 6 relations: 93876 Tue Apr 18 14:51:47 2023 7 relations: 81899 Tue Apr 18 14:51:47 2023 8 relations: 68967 Tue Apr 18 14:51:47 2023 9 relations: 57777 Tue Apr 18 14:51:47 2023 10+ relations: 233502 Tue Apr 18 14:51:47 2023 heaviest cycle: 23 relations Tue Apr 18 14:51:48 2023 RelProcTime: 172 Tue Apr 18 14:51:48 2023 elapsed time 00:02:53 Tue Apr 18 14:51:48 2023 Tue Apr 18 14:51:48 2023 Tue Apr 18 14:51:48 2023 Msieve v. 1.52 (SVN 927) Tue Apr 18 14:51:48 2023 random seeds: cd952518 5b18c7d8 Tue Apr 18 14:51:48 2023 factoring 1133537094634532362690646694687275573187920148662731248463656485591939925327099547399794883359102451959634570301262656472294685645942835116791259 (145 digits) Tue Apr 18 14:51:49 2023 searching for 15-digit factors Tue Apr 18 14:51:49 2023 commencing number field sieve (145-digit input) Tue Apr 18 14:51:49 2023 R0: -100000000000000000000000000000000000 Tue Apr 18 14:51:49 2023 R1: 1 Tue Apr 18 14:51:49 2023 A0: -25 Tue Apr 18 14:51:49 2023 A1: 0 Tue Apr 18 14:51:49 2023 A2: 0 Tue Apr 18 14:51:49 2023 A3: 0 Tue Apr 18 14:51:49 2023 A4: 0 Tue Apr 18 14:51:49 2023 A5: 88 Tue Apr 18 14:51:49 2023 skew 0.78, size 2.309e-012, alpha 0.185, combined = 1.364e-010 rroots = 1 Tue Apr 18 14:51:49 2023 Tue Apr 18 14:51:49 2023 commencing linear algebra Tue Apr 18 14:51:49 2023 read 1220244 cycles Tue Apr 18 14:51:51 2023 cycles contain 4212989 unique relations Tue Apr 18 14:51:59 2023 read 4212989 relations Tue Apr 18 14:52:03 2023 using 20 quadratic characters above 268434980 Tue Apr 18 14:52:14 2023 building initial matrix Tue Apr 18 14:52:37 2023 memory use: 504.6 MB Tue Apr 18 14:52:38 2023 read 1220244 cycles Tue Apr 18 14:52:38 2023 matrix is 1220066 x 1220244 (366.9 MB) with weight 109257496 (89.54/col) Tue Apr 18 14:52:38 2023 sparse part has weight 82762129 (67.82/col) Tue Apr 18 14:52:44 2023 filtering completed in 2 passes Tue Apr 18 14:52:44 2023 matrix is 1216936 x 1217113 (366.6 MB) with weight 109146502 (89.68/col) Tue Apr 18 14:52:44 2023 sparse part has weight 82721235 (67.97/col) Tue Apr 18 14:52:46 2023 matrix starts at (0, 0) Tue Apr 18 14:52:46 2023 matrix is 1216936 x 1217113 (366.6 MB) with weight 109146502 (89.68/col) Tue Apr 18 14:52:46 2023 sparse part has weight 82721235 (67.97/col) Tue Apr 18 14:52:46 2023 saving the first 48 matrix rows for later Tue Apr 18 14:52:46 2023 matrix includes 64 packed rows Tue Apr 18 14:52:47 2023 matrix is 1216888 x 1217113 (348.0 MB) with weight 86838572 (71.35/col) Tue Apr 18 14:52:47 2023 sparse part has weight 79042983 (64.94/col) Tue Apr 18 14:52:47 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Apr 18 14:52:50 2023 commencing Lanczos iteration (32 threads) Tue Apr 18 14:52:50 2023 memory use: 278.5 MB Tue Apr 18 14:52:51 2023 linear algebra at 0.1%, ETA 0h13m Tue Apr 18 14:52:51 2023 checkpointing every 7310000 dimensions Tue Apr 18 15:07:33 2023 lanczos halted after 19246 iterations (dim = 1216888) Tue Apr 18 15:07:34 2023 recovered 39 nontrivial dependencies Tue Apr 18 15:07:34 2023 BLanczosTime: 945 Tue Apr 18 15:07:34 2023 elapsed time 00:15:46 Tue Apr 18 15:07:34 2023 Tue Apr 18 15:07:34 2023 Tue Apr 18 15:07:34 2023 Msieve v. 1.52 (SVN 927) Tue Apr 18 15:07:34 2023 random seeds: 8632175c 93a9191b Tue Apr 18 15:07:34 2023 factoring 1133537094634532362690646694687275573187920148662731248463656485591939925327099547399794883359102451959634570301262656472294685645942835116791259 (145 digits) Tue Apr 18 15:07:35 2023 searching for 15-digit factors Tue Apr 18 15:07:35 2023 commencing number field sieve (145-digit input) Tue Apr 18 15:07:35 2023 R0: -100000000000000000000000000000000000 Tue Apr 18 15:07:35 2023 R1: 1 Tue Apr 18 15:07:35 2023 A0: -25 Tue Apr 18 15:07:35 2023 A1: 0 Tue Apr 18 15:07:35 2023 A2: 0 Tue Apr 18 15:07:35 2023 A3: 0 Tue Apr 18 15:07:35 2023 A4: 0 Tue Apr 18 15:07:35 2023 A5: 88 Tue Apr 18 15:07:35 2023 skew 0.78, size 2.309e-012, alpha 0.185, combined = 1.364e-010 rroots = 1 Tue Apr 18 15:07:35 2023 Tue Apr 18 15:07:35 2023 commencing square root phase Tue Apr 18 15:07:35 2023 reading relations for dependency 1 Tue Apr 18 15:07:35 2023 read 606898 cycles Tue Apr 18 15:07:35 2023 cycles contain 2101700 unique relations Tue Apr 18 15:07:40 2023 read 2101700 relations Tue Apr 18 15:07:46 2023 multiplying 2101700 relations Tue Apr 18 15:08:18 2023 multiply complete, coefficients have about 59.43 million bits Tue Apr 18 15:08:18 2023 initial square root is modulo 341053681 Tue Apr 18 15:09:01 2023 GCD is 1, no factor found Tue Apr 18 15:09:01 2023 reading relations for dependency 2 Tue Apr 18 15:09:01 2023 read 609311 cycles Tue Apr 18 15:09:01 2023 cycles contain 2108824 unique relations Tue Apr 18 15:09:06 2023 read 2108824 relations Tue Apr 18 15:09:12 2023 multiplying 2108824 relations Tue Apr 18 15:09:44 2023 multiply complete, coefficients have about 59.64 million bits Tue Apr 18 15:09:44 2023 initial square root is modulo 365070131 Tue Apr 18 15:10:26 2023 GCD is N, no factor found Tue Apr 18 15:10:26 2023 reading relations for dependency 3 Tue Apr 18 15:10:26 2023 read 609143 cycles Tue Apr 18 15:10:27 2023 cycles contain 2107604 unique relations Tue Apr 18 15:10:32 2023 read 2107604 relations Tue Apr 18 15:10:37 2023 multiplying 2107604 relations Tue Apr 18 15:11:09 2023 multiply complete, coefficients have about 59.60 million bits Tue Apr 18 15:11:09 2023 initial square root is modulo 360693101 Tue Apr 18 15:11:51 2023 sqrtTime: 256 Tue Apr 18 15:11:51 2023 prp62 factor: 15988892685482648210237664981647427462374466821874722603188387 Tue Apr 18 15:11:51 2023 prp83 factor: 70895284428529822266858661861483524464509494690316646133079802684673810120745783657 Tue Apr 18 15:11:51 2023 elapsed time 00:04:17 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 29, 2023 15:38:58 UTC 2023 年 3 月 30 日 (木) 0 時 38 分 58 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 14, 2023 10:01:55 UTC 2023 年 3 月 14 日 (火) 19 時 1 分 55 秒 (日本時間) |
composite number 合成数 | 424652336330326715652791846691392798651648739218007364000394952819843817982896326540446989054323065098337664871319163604573080723878270952519201103<147> |
prime factors 素因数 | 3907062754685061917145703763648388577741<40> 16319877562087315226259484847654908087944123426113069<53> 6659877405134826440484036563748857735663411387359142807<55> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 424652336330326715652791846691392798651648739218007364000394952819843817982896326540446989054323065098337664871319163604573080723878270952519201103 (147 digits) Using B1=38310000, B2=192391699516, polynomial Dickson(12), sigma=1:4262708890 Step 1 took 77265ms Step 2 took 28097ms ********** Factor found in step 2: 3907062754685061917145703763648388577741 Found prime factor of 40 digits: 3907062754685061917145703763648388577741 Composite cofactor 108688383830312146313309534940905980195959103873499170001923801736479829214122599663886833470525407700044683 has 108 digits GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 108688383830312146313309534940905980195959103873499170001923801736479829214122599663886833470525407700044683 (108 digits) Using B1=41050000, B2=192394462276, polynomial Dickson(12), sigma=1:1915968077 Step 1 took 52657ms Step 2 took 19799ms ********** Factor found in step 2: 16319877562087315226259484847654908087944123426113069 Found prime factor of 53 digits: 16319877562087315226259484847654908087944123426113069 Prime cofactor 6659877405134826440484036563748857735663411387359142807 has 55 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 11, 2023 08:54:55 UTC 2023 年 4 月 11 日 (火) 17 時 54 分 55 秒 (日本時間) |
composite number 合成数 | 5957303009956277530253258260397994653853173767478834542277996226931120752116880154472389085311104353362432383471676086054108573472699869153985624088447<151> |
prime factors 素因数 | 50035090358420997191359475595733998422441900603383544960127131318975881<71> 119062501282235668859131334238856468766647772519758558545048125615622330835122887<81> |
factorization results 素因数分解の結果 | Number: n N=5957303009956277530253258260397994653853173767478834542277996226931120752116880154472389085311104353362432383471676086054108573472699869153985624088447 ( 151 digits) SNFS difficulty: 178 digits. Divisors found: Mon Apr 10 22:53:10 2023 prp71 factor: 50035090358420997191359475595733998422441900603383544960127131318975881 Mon Apr 10 22:53:10 2023 prp81 factor: 119062501282235668859131334238856468766647772519758558545048125615622330835122887 Mon Apr 10 22:53:10 2023 elapsed time 00:32:38 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.999). Factorization parameters were as follows: # # N = 88x10^178-25 = 97(177)5 # n: 5957303009956277530253258260397994653853173767478834542277996226931120752116880154472389085311104353362432383471676086054108573472699869153985624088447 m: 200000000000000000000000000000000000 deg: 5 c5: 110 c0: -1 skew: 0.39 # Murphy_E = 1.247e-10 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 28900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3017691 hash collisions in 22131143 relations (19877266 unique) Msieve: matrix is 961409 x 961634 (265.8 MB) Sieving start time: 2023/04/10 18:32:55 Sieving end time : 2023/04/10 22:19:25 Total sieving time: 3hrs 46min 30secs. Total relation processing time: 0hrs 25min 48sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 34sec. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6600000,6600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 07:47:36 UTC 2023 年 3 月 31 日 (金) 16 時 47 分 36 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 20, 2023 01:50:12 UTC 2023 年 3 月 20 日 (月) 10 時 50 分 12 秒 (日本時間) |
composite number 合成数 | 332987158905731142199209087010275783351645950265226619012994079686889467143981303893292551278356156913112398924192685547293355313552670684560377952053950703932289310701<168> |
prime factors 素因数 | 754910997233254566114516803675038972142059840450096570094240999<63> 441094592774681509038993735771822060442269984057287156131167872043808383233452389735683177276614156748299<105> |
factorization results 素因数分解の結果 | Number: n N=332987158905731142199209087010275783351645950265226619012994079686889467143981303893292551278356156913112398924192685547293355313552670684560377952053950703932289310701 ( 168 digits) SNFS difficulty: 179 digits. Divisors found: Mon Mar 20 12:30:33 2023 prp63 factor: 754910997233254566114516803675038972142059840450096570094240999 Mon Mar 20 12:30:33 2023 prp105 factor: 441094592774681509038993735771822060442269984057287156131167872043808383233452389735683177276614156748299 Mon Mar 20 12:30:33 2023 elapsed time 00:36:19 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 88x10^179-25 = 97(178)5 # n: 332987158905731142199209087010275783351645950265226619012994079686889467143981303893292551278356156913112398924192685547293355313552670684560377952053950703932289310701 m: 200000000000000000000000000000000000 deg: 5 c5: 1100 c0: -1 skew: 0.25 # Murphy_E = 9.768e-11 type: snfs lss: 1 rlim: 6700000 alim: 6700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6700000/6700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 28950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2272749 hash collisions in 15487144 relations (13998778 unique) Msieve: matrix is 1065957 x 1066183 (299.0 MB) Sieving start time: 2023/03/20 08:40:24 Sieving end time : 2023/03/20 11:53:58 Total sieving time: 3hrs 13min 34secs. Total relation processing time: 0hrs 31min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 13sec. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6700000,6700000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 15, 2023 16:50:05 UTC 2023 年 3 月 16 日 (木) 1 時 50 分 5 秒 (日本時間) |
composite number 合成数 | 2718900544205900341810131121892672939318684360046468520730086197452098052277502634831105395695395410185737360000967544081024415523797548681313094706727<151> |
prime factors 素因数 | 26832172199223071478911302349769051459343<41> 101329870873615905332110168351898116911838768538336264362292812656022650006039961250341506569500068620591216489<111> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:518891916 Step 1 took 5656ms Step 2 took 2828ms ********** Factor found in step 2: 26832172199223071478911302349769051459343 Found prime factor of 41 digits: 26832172199223071478911302349769051459343 Prime cofactor 101329870873615905332110168351898116911838768538336264362292812656022650006039961250341506569500068620591216489 has 111 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 18, 2023 09:23:29 UTC 2023 年 3 月 18 日 (土) 18 時 23 分 29 秒 (日本時間) |
composite number 合成数 | 1002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849<181> |
prime factors 素因数 | 3219493943210542125988349638075569859081019<43> 311492744058074627798396546463321051318108217482904361175897412633664675917506363883064635815073406280078051989308262992777396140166039571<138> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849002849 (181 digits) Using B1=30330000, B2=144289285156, polynomial Dickson(12), sigma=1:3282607535 Step 1 took 85517ms Step 2 took 28184ms ********** Factor found in step 2: 3219493943210542125988349638075569859081019 Found prime factor of 43 digits: 3219493943210542125988349638075569859081019 Prime cofactor 311492744058074627798396546463321051318108217482904361175897412633664675917506363883064635815073406280078051989308262992777396140166039571 has 138 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 25, 2023 20:07:23 UTC 2023 年 3 月 26 日 (日) 5 時 7 分 23 秒 (日本時間) |
composite number 合成数 | 4219259247002767725222069929313182699256335638773566938788820043056922608347180409424101741209288605248677565461948594290505140995246797042831449065760932517<157> |
prime factors 素因数 | 366426223739299445912280638792379528105536130750958799567<57> 11514621426234591526265197957641545591764424241560633700794335869889153065599549595856376229091403851<101> |
factorization results 素因数分解の結果 | Number: n N=4219259247002767725222069929313182699256335638773566938788820043056922608347180409424101741209288605248677565461948594290505140995246797042831449065760932517 ( 157 digits) SNFS difficulty: 187 digits. Divisors found: Sun Mar 26 05:42:48 2023 prp57 factor: 366426223739299445912280638792379528105536130750958799567 Sun Mar 26 05:42:48 2023 prp101 factor: 11514621426234591526265197957641545591764424241560633700794335869889153065599549595856376229091403851 Sun Mar 26 05:42:48 2023 elapsed time 00:56:04 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.106). Factorization parameters were as follows: # # N = 88x10^186-25 = 97(185)5 # n: 4219259247002767725222069929313182699256335638773566938788820043056922608347180409424101741209288605248677565461948594290505140995246797042831449065760932517 m: 10000000000000000000000000000000000000 deg: 5 c5: 176 c0: -5 skew: 0.49 # Murphy_E = 5.771e-11 type: snfs lss: 1 rlim: 9200000 alim: 9200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9200000/9200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1211257 hash collisions in 12648206 relations (12227684 unique) Msieve: matrix is 1347425 x 1347650 (383.4 MB) Sieving start time: 2023/03/26 00:57:47 Sieving end time : 2023/03/26 04:46:31 Total sieving time: 3hrs 48min 44secs. Total relation processing time: 0hrs 51min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 35sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9200000,9200000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 24, 2023 10:27:57 UTC 2023 年 3 月 24 日 (金) 19 時 27 分 57 秒 (日本時間) |
composite number 合成数 | 147929228126111324406840080215723502612471221169198429890490936420006240654289206902703116038296791174822108561617604814169672855327585050897961339288610153822423092394449371431<177> |
prime factors 素因数 | 135713095892136403874972444809867289665624047890909123797<57> 1090014395100707133602264653445154510409899122213997152103239570489773953497039914651209277547980507291965687356392205323<121> |
factorization results 素因数分解の結果 | Number: n N=147929228126111324406840080215723502612471221169198429890490936420006240654289206902703116038296791174822108561617604814169672855327585050897961339288610153822423092394449371431 ( 177 digits) SNFS difficulty: 187 digits. Divisors found: Fri Mar 24 21:09:27 2023 prp57 factor: 135713095892136403874972444809867289665624047890909123797 Fri Mar 24 21:09:27 2023 prp121 factor: 1090014395100707133602264653445154510409899122213997152103239570489773953497039914651209277547980507291965687356392205323 Fri Mar 24 21:09:27 2023 elapsed time 00:48:03 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.023). Factorization parameters were as follows: # # N = 88x10^187-25 = 97(186)5 # n: 147929228126111324406840080215723502612471221169198429890490936420006240654289206902703116038296791174822108561617604814169672855327585050897961339288610153822423092394449371431 m: 20000000000000000000000000000000000000 deg: 5 c5: 11 c0: -1 skew: 0.62 # Murphy_E = 6.887e-11 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1385830 hash collisions in 13869128 relations (13354795 unique) Msieve: matrix is 1210934 x 1211159 (343.4 MB) Sieving start time: 2023/03/24 16:20:00 Sieving end time : 2023/03/24 20:21:08 Total sieving time: 4hrs 1min 8secs. Total relation processing time: 0hrs 42min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 39sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9400000,9400000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 10, 2023 15:42:59 UTC 2023 年 4 月 11 日 (火) 0 時 42 分 59 秒 (日本時間) |
composite number 合成数 | 1246533924364064506537411828323558431049167918609710749479727555163866064330953525800776327500273972028754185788210762735657490635169212916016551970447<151> |
prime factors 素因数 | 13756009795141356701927438449216832429475861519278455325154645059892037<71> 90617405986752216389353393800045322035922365755386138981177288353471416822932931<80> |
factorization results 素因数分解の結果 | Number: n N=12465339243640645065374118283235584310491679186097107494797275551638660643309535258007763275002739720287541857882107627356574906351692129160165519704476044 ( 151 digits) SNFS difficulty: 188 digits. Divisors found: Mon Apr 10 18:05:35 2023 prp71 factor: 13756009795141356701927438449216832429475861519278455325154645059892037 Mon Apr 10 18:05:35 2023 prp80 factor: 90617405986752216389353393800045322035922365755386138981177288353471416822932931 Mon Apr 10 18:05:35 2023 elapsed time 00:53:14 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 88x10^188-25 = 97(187)5 # n: 1246533924364064506537411828323558431049167918609710749479727555163866064330953525800776327500273972028754185788210762735657490635169212916016551970447 m: 20000000000000000000000000000000000000 deg: 5 c5: 110 c0: -1 skew: 0.39 # Murphy_E = 4.888e-11 type: snfs lss: 1 rlim: 9700000 alim: 9700000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9700000/9700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 16050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3322720 hash collisions in 30143883 relations (28649811 unique) Msieve: matrix is 1182617 x 1182842 (333.3 MB) Sieving start time: 2023/04/10 10:55:47 Sieving end time : 2023/04/10 17:11:53 Total sieving time: 6hrs 16min 6secs. Total relation processing time: 0hrs 40min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 12sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9700000,9700000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 5350 | abcd | March 24, 2023 00:48:35 UTC 2023 年 3 月 24 日 (金) 9 時 48 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 26, 2023 22:29:11 UTC 2023 年 3 月 27 日 (月) 7 時 29 分 11 秒 (日本時間) |
composite number 合成数 | 172371578277263601194848440331031781009744870476470300181186033984623671710494099211595906175015914989471622349542137995201018559326183830370696831692865187796875765143724597228343372019<186> |
prime factors 素因数 | 6077872509137519251922518977677401112675235551<46> 28360512336861109495533831049427915530949595199760496060862178804282253169162714926803975953854790732832607958569050324833202686639744169069<140> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 172371578277263601194848440331031781009744870476470300181186033984623671710494099211595906175015914989471622349542137995201018559326183830370696831692865187796875765143724597228343372019 (186 digits) Using B1=31220000, B2=144290666536, polynomial Dickson(12), sigma=1:3248607034 Step 1 took 86154ms Step 2 took 28632ms ********** Factor found in step 2: 6077872509137519251922518977677401112675235551 Found prime factor of 46 digits: 6077872509137519251922518977677401112675235551 Prime cofactor 28360512336861109495533831049427915530949595199760496060862178804282253169162714926803975953854790732832607958569050324833202686639744169069 has 140 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 13, 2023 03:00:52 UTC 2023 年 4 月 13 日 (木) 12 時 0 分 52 秒 (日本時間) |
composite number 合成数 | 4882613186082960654550723049514931586359891267628578443538595888348933277823969667798290901784052937833800760627720418816477434934599229915161<142> |
prime factors 素因数 | 96429173316445081904866344365337477628331<41> 50634191066431938759311110525228610184938688928579942226838374522147070210343963742931661269270169931<101> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4882613186082960654550723049514931586359891267628578443538595888348933277823969667798290901784052937833800760627720418816477434934599229915161 (142 digits) Using B1=33910000, B2=144293429296, polynomial Dickson(12), sigma=1:2937604249 Step 1 took 68950ms Step 2 took 22006ms ********** Factor found in step 2: 96429173316445081904866344365337477628331 Found prime factor of 41 digits: 96429173316445081904866344365337477628331 Prime cofactor 50634191066431938759311110525228610184938688928579942226838374522147070210343963742931661269270169931 has 101 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 12:01:44 UTC 2023 年 3 月 2 日 (木) 21 時 1 分 44 秒 (日本時間) |
2350 | Ignacio Santos | April 8, 2023 10:21:52 UTC 2023 年 4 月 8 日 (土) 19 時 21 分 52 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 18, 2023 22:15:57 UTC 2023 年 4 月 19 日 (水) 7 時 15 分 57 秒 (日本時間) |
composite number 合成数 | 24615283147722430260240522046805500173476202163966708421268736544953955240656072525641205590642748067010918103860650344801000217945969929948722042810348946501085089<164> |
prime factors 素因数 | 511606497356766686142210729746189852305146817663479033601<57> 48113703158380851888194390064308828834467244618525596992652099540371957156619170501184446745651911104534689<107> |
factorization results 素因数分解の結果 | Number: n N=24615283147722430260240522046805500173476202163966708421268736544953955240656072525641205590642748067010918103860650344801000217945969929948722042810348946501085089 ( 164 digits) SNFS difficulty: 194 digits. Divisors found: Wed Apr 19 08:05:38 2023 prp57 factor: 511606497356766686142210729746189852305146817663479033601 Wed Apr 19 08:05:38 2023 prp107 factor: 48113703158380851888194390064308828834467244618525596992652099540371957156619170501184446745651911104534689 Wed Apr 19 08:05:38 2023 elapsed time 02:24:13 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 88x10^194-25 = 97(193)5 # n: 24615283147722430260240522046805500173476202163966708421268736544953955240656072525641205590642748067010918103860650344801000217945969929948722042810348946501085089 m: 200000000000000000000000000000000000000 deg: 5 c5: 1100 c0: -1 skew: 0.25 # Murphy_E = 2.378e-11 type: snfs lss: 1 rlim: 12200000 alim: 12200000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12200000/12200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 24543527) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1616888 hash collisions in 13218170 relations (12340513 unique) Msieve: matrix is 2146028 x 2146257 (608.6 MB) Sieving start time: 2023/04/18 20:30:50 Sieving end time : 2023/04/19 05:41:11 Total sieving time: 9hrs 10min 21secs. Total relation processing time: 2hrs 17min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 18sec. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12200000,12200000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 12:02:01 UTC 2023 年 3 月 2 日 (木) 21 時 2 分 1 秒 (日本時間) |
2350 | Ignacio Santos | April 13, 2023 17:22:50 UTC 2023 年 4 月 14 日 (金) 2 時 22 分 50 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 18, 2023 22:52:36 UTC 2023 年 4 月 19 日 (水) 7 時 52 分 36 秒 (日本時間) |
composite number 合成数 | 52140854760867347412558057780459202633051864065933971295483018695296376771353283755838762897294335367999431797595290975456958525979872422504862675565978022617440801459036357<173> |
prime factors 素因数 | 10899422240261064265786835229627744264355499753<47> 4783818225544628815100255105095684183391468319157626754967838295109273935322785231560212665221889296744798542373770286607167869<127> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 52140854760867347412558057780459202633051864065933971295483018695296376771353283755838762897294335367999431797595290975456958525979872422504862675565978022617440801459036357 (173 digits) Using B1=31020000, B2=144289975846, polynomial Dickson(12), sigma=1:2599406726 Step 1 took 77311ms Step 2 took 26749ms ********** Factor found in step 2: 10899422240261064265786835229627744264355499753 Found prime factor of 47 digits: 10899422240261064265786835229627744264355499753 Prime cofactor 4783818225544628815100255105095684183391468319157626754967838295109273935322785231560212665221889296744798542373770286607167869 has 127 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 12:02:08 UTC 2023 年 3 月 2 日 (木) 21 時 2 分 8 秒 (日本時間) |
2350 | Ignacio Santos | April 18, 2023 16:51:00 UTC 2023 年 4 月 19 日 (水) 1 時 51 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 29, 2023 13:30:24 UTC 2023 年 4 月 29 日 (土) 22 時 30 分 24 秒 (日本時間) |
composite number 合成数 | 16710531194747362501456902389910905831937687055669046258145518317796226554309908145734272885570248436954276444976797705643959166867378433060511217218871811037333645873653062406711115613<185> |
prime factors 素因数 | 6995506167031837706174833516465343529463308374470946131333375503577487<70> 2388752264060624350922578767467123603549068872707492169727061872275848084205370084470037612833296593926982395081299<115> |
factorization results 素因数分解の結果 | Number: n N=16710531194747362501456902389910905831937687055669046258145518317796226554309908145734272885570248436954276444976797705643959166867378433060511217218871811037333645873653062406711115613 ( 185 digits) SNFS difficulty: 198 digits. Divisors found: Fri Apr 28 20:44:32 2023 prp70 factor: 6995506167031837706174833516465343529463308374470946131333375503577487 Fri Apr 28 20:44:32 2023 prp115 factor: 2388752264060624350922578767467123603549068872707492169727061872275848084205370084470037612833296593926982395081299 Fri Apr 28 20:44:32 2023 elapsed time 02:36:29 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 88x10^198-25 = 97(197)5 # n: 16710531194747362501456902389910905831937687055669046258145518317796226554309908145734272885570248436954276444976797705643959166867378433060511217218871811037333645873653062406711115613 m: 2000000000000000000000000000000000000000 deg: 5 c5: 110 c0: -1 skew: 0.39 # Murphy_E = 1.883e-11 type: snfs lss: 1 rlim: 14300000 alim: 14300000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14300000/14300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 32766737) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1776348 hash collisions in 13860550 relations (12842978 unique) Msieve: matrix is 2198055 x 2198280 (625.0 MB) Sieving start time: 2023/04/28 06:16:18 Sieving end time : 2023/04/28 18:07:47 Total sieving time: 11hrs 51min 29secs. Total relation processing time: 2hrs 23min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 40sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14300000,14300000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 12:02:15 UTC 2023 年 3 月 2 日 (木) 21 時 2 分 15 秒 (日本時間) |
2350 | Ignacio Santos | April 24, 2023 15:41:50 UTC 2023 年 4 月 25 日 (火) 0 時 41 分 50 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 15, 2023 00:57:55 UTC 2023 年 6 月 15 日 (木) 9 時 57 分 55 秒 (日本時間) |
composite number 合成数 | 12311743033441468103405792358272715047334963862036532256447079504560810759167236517529237997221460858961435509081830122244832399030673204580943428535389281459675726681132251909019989594077713<191> |
prime factors 素因数 | 412250893816132971190684025720025419778915361633042645987<57> 29864684875450140267691757505359526256272516104009476880191280394652930631627410957616275408212623352999001326473465646911649221375099<134> |
factorization results 素因数分解の結果 | Number: n N=12311743033441468103405792358272715047334963862036532256447079504560810759167236517529237997221460858961435509081830122244832399030673204580943428535389281459675726681132251909019989594077713 ( 191 digits) SNFS difficulty: 201 digits. Divisors found: Thu Jun 15 10:45:05 2023 prp57 factor: 412250893816132971190684025720025419778915361633042645987 Thu Jun 15 10:45:05 2023 prp134 factor: 29864684875450140267691757505359526256272516104009476880191280394652930631627410957616275408212623352999001326473465646911649221375099 Thu Jun 15 10:45:05 2023 elapsed time 03:49:21 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 88x10^200-25 = 97(199)5 # n: 12311743033441468103405792358272715047334963862036532256447079504560810759167236517529237997221460858961435509081830122244832399030673204580943428535389281459675726681132251909019989594077713 m: 10000000000000000000000000000000000000000 deg: 5 c5: 88 c0: -25 skew: 0.78 # Murphy_E = 1.283e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 40900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1881552 hash collisions in 13840428 relations (12682220 unique) Msieve: matrix is 2586433 x 2586659 (736.1 MB) Sieving start time: 2023/06/14 15:47:41 Sieving end time : 2023/06/15 06:55:03 Total sieving time: 15hrs 7min 22secs. Total relation processing time: 3hrs 27min 34sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 17min 34sec. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2521 | 1792 | Dmitry Domanov | March 21, 2023 22:54:20 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 20 秒 (日本時間) |
729 | ddd | June 9, 2023 13:37:00 UTC 2023 年 6 月 9 日 (金) 22 時 37 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 15, 2023 10:20:37 UTC 2023 年 3 月 15 日 (水) 19 時 20 分 37 秒 (日本時間) |
composite number 合成数 | 212728488750246220138064488519696075160297394902621400674491875383143283664337681659246748477547154904940088112523432778886229409729708325863482482428680793368603<162> |
prime factors 素因数 | 57376175341712971734468744893838548917<38> |
composite cofactor 合成数の残り | 3707610127083371200321290054059250403273406634842377046150144594762148256579596577809247640665848523176879287939699192572559<124> |
factorization results 素因数分解の結果 | GPU: factor 57376175341712971734468744893838548917 found in Step 1 with curve 1431 (-sigma 3:-803547593) Computing 1792 Step 1 took 176ms of CPU time / 178433ms of GPU time Throughput: 10.043 curves per second (on average 99.57ms per Step 1) ********** Factor found in step 1: 57376175341712971734468744893838548917 Found prime factor of 38 digits: 57376175341712971734468744893838548917 Composite cofactor 3707610127083371200321290054059250403273406634842377046150144594762148256579596577809247640665848523176879287939699192572559 has 124 digits Peak memory usage: 9428MB |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | March 16, 2023 15:29:37 UTC 2023 年 3 月 17 日 (金) 0 時 29 分 37 秒 (日本時間) |
composite number 合成数 | 3707610127083371200321290054059250403273406634842377046150144594762148256579596577809247640665848523176879287939699192572559<124> |
prime factors 素因数 | 305472791880559246789131661793036293239159051688450847<54> 12137284320015831660184134940502522751591430999180994047841919783793297<71> |
factorization results 素因数分解の結果 | 3707610127083371200321290054059250403273406634842377046150144594762148256579596577809247640665848523176879287939699192572559=305472791880559246789131661793036293239159051688450847*12137284320015831660184134940502522751591430999180994047841919783793297 cado polynomial n: 3707610127083371200321290054059250403273406634842377046150144594762148256579596577809247640665848523176879287939699192572559 skew: 87588.713 c0: 89396347362902689071677397305 c1: -4210830195887664135221429 c2: -49052328988741942181 c3: 30001680217585 c4: 1641815300 c5: 29100 Y0: -662155299148974492808592 Y1: 10859308811040503 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.812e-07 # f(x) = 29100*x^5+1641815300*x^4+30001680217585*x^3-49052328988741942181*x^2-4210830195887664135221429*x+89396347362902689071677397305 # g(x) = 10859308811040503*x-662155299148974492808592 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 12137284320015831660184134940502522751591430999180994047841919783793297 305472791880559246789131661793036293239159051688450847 Info:Square Root: Total cpu/real time for sqrt: 255.44/79.5405 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2496.33 Info:Polynomial Selection (root optimized): Rootsieve time: 2493.78 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 19947/36.770/44.014/47.210/0.880 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15837/36.070/39.371/44.770/0.893 Info:Polynomial Selection (size optimized): Total time: 1968.95 Info:Quadratic Characters: Total cpu/real time for characters: 27.23/10.6977 Info:Generate Factor Base: Total cpu/real time for makefb: 8.56/2.36429 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 133.12/139.653 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 129.0s Info:Generate Free Relations: Total cpu/real time for freerel: 125.69/32.7128 Info:Square Root: Total cpu/real time for sqrt: 255.44/79.5405 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 51.02/50.8645 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 50.7s Info:Filtering - Singleton removal: Total cpu/real time for purge: 54.1/51.1767 Info:Filtering - Merging: Merged matrix has 741014 rows and total weight 126416010 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 143.87/40.9807 Info:Filtering - Merging: Total cpu/real time for replay: 26.17/22.2097 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11623336 Info:Lattice Sieving: Average J: 3795.14 for 175380 special-q, max bucket fill -bkmult 1.0,1s:1.226570 Info:Lattice Sieving: Total time: 51965.5s Info:Linear Algebra: Total cpu/real time for bwc: 8210.07/2114.12 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 5152.48, WCT time 1318.87, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (23296 iterations) Info:Linear Algebra: Lingen CPU time 129.51, WCT time 32.91 Info:Linear Algebra: Mksol: CPU time 2813.67, WCT time 719.66, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (11776 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 110939/30036 Info:root: Cleaning up computation data in /tmp/cado.62sqn6tp 12137284320015831660184134940502522751591430999180994047841919783793297 305472791880559246789131661793036293239159051688450847 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 15, 2023 10:20:28 UTC 2023 年 3 月 15 日 (水) 19 時 20 分 28 秒 (日本時間) |
2350 | Ignacio Santos | March 15, 2023 14:41:06 UTC 2023 年 3 月 15 日 (水) 23 時 41 分 6 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 15, 2023 15:29:50 UTC 2023 年 3 月 16 日 (木) 0 時 29 分 50 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 1, 2023 09:32:47 UTC 2023 年 7 月 1 日 (土) 18 時 32 分 47 秒 (日本時間) |
composite number 合成数 | 1840262208087753739875486395155844330337731507730486698642268135718710484355444763405800454199716233658719923018485904401828781481357751730748308644804247074231419978210668094124602167462919892811<196> |
prime factors 素因数 | 34678586442092115911597885082155529932983347644281609<53> 53066240492838641025407916804184050017367426640405052488372556803051061985476428278352199867480861936423782369978533802006539900231512845107379<143> |
factorization results 素因数分解の結果 | Number: n N=1840262208087753739875486395155844330337731507730486698642268135718710484355444763405800454199716233658719923018485904401828781481357751730748308644804247074231419978210668094124602167462919892811 ( 196 digits) SNFS difficulty: 202 digits. Divisors found: Sat Jul 1 19:18:57 2023 prp53 factor: 34678586442092115911597885082155529932983347644281609 Sat Jul 1 19:18:57 2023 prp143 factor: 53066240492838641025407916804184050017367426640405052488372556803051061985476428278352199867480861936423782369978533802006539900231512845107379 Sat Jul 1 19:18:57 2023 elapsed time 02:07:00 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.076). Factorization parameters were as follows: # # N = 88x10^202-25 = 97(201)5 # n: 1840262208087753739875486395155844330337731507730486698642268135718710484355444763405800454199716233658719923018485904401828781481357751730748308644804247074231419978210668094124602167462919892811 m: 20000000000000000000000000000000000000000 deg: 5 c5: 11 c0: -1 skew: 0.62 # Murphy_E = 1.638e-11 type: snfs lss: 1 rlim: 16600000 alim: 16600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16600000/16600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 19500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2442539 hash collisions in 16365640 relations (14746586 unique) Msieve: matrix is 1994959 x 1995184 (564.0 MB) Sieving start time: 2023/07/01 10:12:16 Sieving end time : 2023/07/01 17:11:35 Total sieving time: 6hrs 59min 19secs. Total relation processing time: 1hrs 58min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 22sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16600000,16600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 21, 2023 22:54:23 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 23 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:29:52 UTC 2023 年 3 月 18 日 (土) 7 時 29 分 52 秒 (日本時間) |
composite number 合成数 | 513137736883223730329862637844161187690630302855685930405961173458156937148887947654791731187323119626158286590197585627642310412319101294215436791739661898653605317<165> |
prime factors 素因数 | 763924326718407424046779655207854589<36> 671712784808819242779382287513816084787878600906411810060843666145683996912780662987401739159915671982093849918346261886384238953<129> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 07:14:21 2023 Input number is 513137736883223730329862637844161187690630302855685930405961173458156937148887947654791731187323119626158286590197585627642310412319101294215436791739661898653605317 (165 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2884336693 Step 1 took 0ms Step 2 took 3367ms ********** Factor found in step 2: 763924326718407424046779655207854589 Found prime factor of 36 digits: 763924326718407424046779655207854589 Prime cofactor 671712784808819242779382287513816084787878600906411810060843666145683996912780662987401739159915671982093849918346261886384238953 has 129 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 23, 2023 22:53:19 UTC 2023 年 3 月 24 日 (金) 7 時 53 分 19 秒 (日本時間) |
composite number 合成数 | 82219766448335218773407951104198244707774055588837126304353729671306014817428850302880690445742061293587992522024195005812895776606014808260168701009802735329889<161> |
prime factors 素因数 | 2747479093498515233967970721023632061<37> 29925529421823660978836113449167632065963251306055132302799759020439319039977929977908305271356847664080757821193154420664949<125> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:6633627231016890278 Step 1 took 11375ms ********** Factor found in step 1: 2747479093498515233967970721023632061 Found prime factor of 37 digits: 2747479093498515233967970721023632061 Prime cofactor 29925529421823660978836113449167632065963251306055132302799759020439319039977929977908305271356847664080757821193154420664949 has 125 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 21, 2023 22:54:26 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:30 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 30 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:21:45 UTC 2024 年 9 月 24 日 (火) 16 時 21 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:33 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:51:45 UTC 2024 年 9 月 24 日 (火) 16 時 51 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:37 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:52:09 UTC 2024 年 9 月 24 日 (火) 16 時 52 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:40 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 40 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 07:52:22 UTC 2024 年 9 月 24 日 (火) 16 時 52 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:44 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 44 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 08:08:15 UTC 2024 年 9 月 24 日 (火) 17 時 8 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:47 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 08:37:50 UTC 2024 年 9 月 24 日 (火) 17 時 37 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:50 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 50 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 08:38:01 UTC 2024 年 9 月 24 日 (火) 17 時 38 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:54:54 UTC 2023 年 3 月 22 日 (水) 7 時 54 分 54 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 08:38:13 UTC 2024 年 9 月 24 日 (火) 17 時 38 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:32 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 32 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 08:53:27 UTC 2024 年 9 月 24 日 (火) 17 時 53 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:35 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 35 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 09:21:54 UTC 2024 年 9 月 24 日 (火) 18 時 21 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 16, 2023 13:04:13 UTC 2023 年 3 月 16 日 (木) 22 時 4 分 13 秒 (日本時間) |
composite number 合成数 | 73863814012595039331431759803270446269636075926125274287607645492303369595849525141710455108112911751418048832794358315460178905711792211018844295709582591809887972515946295131682183313618829564914856216321930397204758256537<224> |
prime factors 素因数 | 2974684773896136585863993641444211<34> 24830803808448865039546071975390859917867071482725704169363314634113927928243032906339113395836408864550955806541038217286974729763484373291601202392201715454327120421412172975372185274710467<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 07:58:33 2023 Input number is 73863814012595039331431759803270446269636075926125274287607645492303369595849525141710455108112911751418048832794358315460178905711792211018844295709582591809887972515946295131682183313618829564914856216321930397204758256537 (224 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1410181629 Step 1 took 0ms Step 2 took 4050ms ********** Factor found in step 2: 2974684773896136585863993641444211 Found prime factor of 34 digits: 2974684773896136585863993641444211 Prime cofactor 24830803808448865039546071975390859917867071482725704169363314634113927928243032906339113395836408864550955806541038217286974729763484373291601202392201715454327120421412172975372185274710467 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:38 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 09:22:05 UTC 2024 年 9 月 24 日 (火) 18 時 22 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:42 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 42 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 09:26:52 UTC 2024 年 9 月 24 日 (火) 18 時 26 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:46 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 46 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 13:43:57 UTC 2024 年 9 月 24 日 (火) 22 時 43 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:49 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 49 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 13:59:57 UTC 2024 年 9 月 24 日 (火) 22 時 59 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:53 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 53 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 14:27:19 UTC 2024 年 9 月 24 日 (火) 23 時 27 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:55:57 UTC 2023 年 3 月 22 日 (水) 7 時 55 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 14:27:29 UTC 2024 年 9 月 24 日 (火) 23 時 27 分 29 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 29, 2023 22:06:53 UTC 2023 年 11 月 30 日 (木) 7 時 6 分 53 秒 (日本時間) |
composite number 合成数 | 263921084921479695713204831339490360836067491168571503921294042523779901355612149980981586495210654841648621978514808381096615655639541512224116109903969385730541926824015871341<177> |
prime factors 素因数 | 8575595523805202176287579341241478823<37> |
composite cofactor 合成数の残り | 30775831741230658438798844784129758830867340395865871995361019726788280140911792788480330728013717775526541994558178254418307853241534507467<140> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Sun Nov 19 11:33:53 2023 Input number is 263921084921479695713204831339490360836067491168571503921294042523779901355612149980981586495210654841648621978514808381096615655639541512224116109903969385730541926824015871341 (177 digits) Using mpz_mod Using lmax = 16777216 with NTT which takes about 4416MB of memory Using B1=4000000000-4000000000, B2=2114508355760232, polynomial x^1 P = 111546435, l = 16777216, s_1 = 7299072, k = s_2 = 5, m_1 = 13 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.77 0.5 0.25 0.11 0.04 0.013 0.0039 0.0011 0.00026 6.1e-05 Step 1 took 0ms Computing F from factored S_1 took 72629ms Computing h took 8105ms Computing DCT-I of h took 23699ms Multi-point evaluation 1 of 5: Computing g_i took 29391ms Computing g*h took 48832ms Computing gcd of coefficients and N took 12150ms Step 2 took 195286ms ********** Factor found in step 2: 8575595523805202176287579341241478823 Found prime factor of 37 digits: 8575595523805202176287579341241478823 Composite cofactor 30775831741230658438798844784129758830867340395865871995361019726788280140911792788480330728013717775526541994558178254418307853241534507467 has 140 digits |
name 名前 | Seth Troisi |
---|---|
date 日付 | December 7, 2023 21:07:18 UTC 2023 年 12 月 8 日 (金) 6 時 7 分 18 秒 (日本時間) |
composite number 合成数 | 30775831741230658438798844784129758830867340395865871995361019726788280140911792788480330728013717775526541994558178254418307853241534507467<140> |
prime factors 素因数 | 356221449701004242555021390045571499579803513981144272910249423629293<69> 86395223440538080205531415909351423984080926985533264325069468282791319<71> |
factorization results 素因数分解の結果 | 356221449701004242555021390045571499579803513981144272910249423629293 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:00 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 0 秒 (日本時間) |
2350 | Ignacio Santos | December 2, 2023 17:02:00 UTC 2023 年 12 月 3 日 (日) 2 時 2 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:03 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 3 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 14:43:50 UTC 2024 年 9 月 24 日 (火) 23 時 43 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:06 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 6 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 14:59:41 UTC 2024 年 9 月 24 日 (火) 23 時 59 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:09 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 9 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 15:17:39 UTC 2024 年 9 月 25 日 (水) 0 時 17 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:12 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 12 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 15:17:55 UTC 2024 年 9 月 25 日 (水) 0 時 17 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:16 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 16 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 15:32:40 UTC 2024 年 9 月 25 日 (水) 0 時 32 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 21, 2023 22:56:19 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 24, 2024 15:42:49 UTC 2024 年 9 月 25 日 (水) 0 時 42 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 21, 2023 22:56:24 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 24 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 22:56:11 UTC 2024 年 10 月 4 日 (金) 7 時 56 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 21, 2023 22:56:27 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 27 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 22:59:05 UTC 2024 年 10 月 4 日 (金) 7 時 59 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 21, 2023 22:56:30 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 30 秒 (日本時間) |
408 | Thomas Kozlowski | October 3, 2024 23:02:22 UTC 2024 年 10 月 4 日 (金) 8 時 2 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 21, 2023 22:56:33 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 33 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 23:05:18 UTC 2024 年 10 月 4 日 (金) 8 時 5 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 21, 2023 22:56:39 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 39 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 23:08:13 UTC 2024 年 10 月 4 日 (金) 8 時 8 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | 1792 | Dmitry Domanov | March 21, 2023 22:56:42 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 42 秒 (日本時間) |
412 | Thomas Kozlowski | October 3, 2024 23:11:08 UTC 2024 年 10 月 4 日 (金) 8 時 11 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 21, 2023 22:56:46 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 46 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 23:14:03 UTC 2024 年 10 月 4 日 (金) 8 時 14 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2209 | 1792 | Dmitry Domanov | March 21, 2023 22:56:49 UTC 2023 年 3 月 22 日 (水) 7 時 56 分 49 秒 (日本時間) |
417 | Thomas Kozlowski | October 3, 2024 23:16:58 UTC 2024 年 10 月 4 日 (金) 8 時 16 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:30:39 UTC 2023 年 3 月 18 日 (土) 7 時 30 分 39 秒 (日本時間) |
composite number 合成数 | 48226590219983119788230120923484416294216985584715219484472374839193254270214164332717437424179629078200429990972986884759950600391343415951996361623576215198887624788911758552452834529601300659996854783201865038500479678835739696192847885867<242> |
prime factors 素因数 | 678732068543526427986407703731592806851<39> |
composite cofactor 合成数の残り | 71053943750545500300641443020930021632763956491607847325512138563565508915453132150389097820572021125635174668824752303504784342864808959113267840672615737477506260810091276760986966186351911963936279417<203> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 09:21:27 2023 Input number is 48226590219983119788230120923484416294216985584715219484472374839193254270214164332717437424179629078200429990972986884759950600391343415951996361623576215198887624788911758552452834529601300659996854783201865038500479678835739696192847885867 (242 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:861870101 Step 1 took 0ms Step 2 took 4470ms ********** Factor found in step 2: 678732068543526427986407703731592806851 Found prime factor of 39 digits: 678732068543526427986407703731592806851 Composite cofactor 71053943750545500300641443020930021632763956491607847325512138563565508915453132150389097820572021125635174668824752303504784342864808959113267840672615737477506260810091276760986966186351911963936279417 has 203 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 21, 2023 22:57:43 UTC 2023 年 3 月 22 日 (水) 7 時 57 分 43 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 23:19:32 UTC 2024 年 10 月 4 日 (金) 8 時 19 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2208 | 1792 | Dmitry Domanov | March 21, 2023 22:57:47 UTC 2023 年 3 月 22 日 (水) 7 時 57 分 47 秒 (日本時間) |
416 | Thomas Kozlowski | October 3, 2024 23:22:50 UTC 2024 年 10 月 4 日 (金) 8 時 22 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 21, 2023 22:57:50 UTC 2023 年 3 月 22 日 (水) 7 時 57 分 50 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 23:26:32 UTC 2024 年 10 月 4 日 (金) 8 時 26 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:29:34 UTC 2023 年 3 月 18 日 (土) 7 時 29 分 34 秒 (日本時間) |
composite number 合成数 | 6767342420413073198228725023075291875286338369812577298142383731001214853316891767316466116858545817311361771936330843066675048943073769223241745428342975835012191790329275427183683937424384080519070543969365471288684638190381876134178712824556070988652973949<259> |
prime factors 素因数 | 11196025166889017056252258176837976133<38> |
composite cofactor 合成数の残り | 604441515585971163345438974499187400847603799873644446313849158689639916552208587359113786261055954545621947062320627348498514249531557635963521183174759094552543375474991125938578415276350389261369753649396173328443003353<222> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 06:37:17 2023 Input number is 6767342420413073198228725023075291875286338369812577298142383731001214853316891767316466116858545817311361771936330843066675048943073769223241745428342975835012191790329275427183683937424384080519070543969365471288684638190381876134178712824556070988652973949 (259 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1369972858 Step 1 took 0ms Step 2 took 7058ms ********** Factor found in step 2: 11196025166889017056252258176837976133 Found prime factor of 38 digits: 11196025166889017056252258176837976133 Composite cofactor 604441515585971163345438974499187400847603799873644446313849158689639916552208587359113786261055954545621947062320627348498514249531557635963521183174759094552543375474991125938578415276350389261369753649396173328443003353 has 222 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 21, 2023 22:57:53 UTC 2023 年 3 月 22 日 (水) 7 時 57 分 53 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 23:29:25 UTC 2024 年 10 月 4 日 (金) 8 時 29 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | March 21, 2023 22:57:57 UTC 2023 年 3 月 22 日 (水) 7 時 57 分 57 秒 (日本時間) |
406 | Thomas Kozlowski | October 3, 2024 23:32:21 UTC 2024 年 10 月 4 日 (金) 8 時 32 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:30:17 UTC 2023 年 3 月 18 日 (土) 7 時 30 分 17 秒 (日本時間) |
composite number 合成数 | 8374825111912129509283222251562217460820311639592144955659801223874293558126547627600084531880689667273444371863691900545011411368886706046456931206143952175596927620306818516438677773047039809386253382474312073<211> |
prime factors 素因数 | 4742542256538089102994676141865352588913<40> |
composite cofactor 合成数の残り | 1765893619686057552226547787830685021526042207151032047760415884806772577564572687370090022013781423211865386668214636592679844128218403966264293419738124688931727269767321<172> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 07:35:01 2023 Input number is 8374825111912129509283222251562217460820311639592144955659801223874293558126547627600084531880689667273444371863691900545011411368886706046456931206143952175596927620306818516438677773047039809386253382474312073 (211 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3918193847 Step 1 took 0ms Step 2 took 6064ms ********** Factor found in step 2: 4742542256538089102994676141865352588913 Found prime factor of 40 digits: 4742542256538089102994676141865352588913 Composite cofactor 1765893619686057552226547787830685021526042207151032047760415884806772577564572687370090022013781423211865386668214636592679844128218403966264293419738124688931727269767321 has 172 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 22, 2023 13:51:35 UTC 2023 年 3 月 22 日 (水) 22 時 51 分 35 秒 (日本時間) |
composite number 合成数 | 1765893619686057552226547787830685021526042207151032047760415884806772577564572687370090022013781423211865386668214636592679844128218403966264293419738124688931727269767321<172> |
prime factors 素因数 | 146801396289025500961851810557758063825186511<45> 12029133675331882849238495499925859444257301150122531746458867140799920690565407961000214870782870712941504185129687765051378711<128> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:920912060 Step 1 took 23750ms Step 2 took 10484ms ********** Factor found in step 2: 146801396289025500961851810557758063825186511 Found prime factor of 45 digits: 146801396289025500961851810557758063825186511 Prime cofactor 12029133675331882849238495499925859444257301150122531746458867140799920690565407961000214870782870712941504185129687765051378711 has 128 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 17, 2023 22:30:08 UTC 2023 年 3 月 18 日 (土) 7 時 30 分 8 秒 (日本時間) |
2350 | Ignacio Santos | March 21, 2023 15:46:47 UTC 2023 年 3 月 22 日 (水) 0 時 46 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 21, 2023 22:58:03 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 3 秒 (日本時間) |
408 | Thomas Kozlowski | October 3, 2024 23:36:01 UTC 2024 年 10 月 4 日 (金) 8 時 36 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 21, 2023 22:58:08 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 8 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 23:39:39 UTC 2024 年 10 月 4 日 (金) 8 時 39 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:29:17 UTC 2023 年 3 月 18 日 (土) 7 時 29 分 17 秒 (日本時間) |
composite number 合成数 | 95485207410819084439305454800055430744122034046217410359101952719081182767476412600456300330319116538102963035774461799423619140758918354115363684359471078301069430361449781668775514865945297384556700928608716974206839021605645881514727514485157<245> |
prime factors 素因数 | 52260552992475971898876019605764887<35> |
composite cofactor 合成数の残り | 1827099063122547308938288464367408830376140402981716769708307172549181579179757132879142175730149229761408048505235992723835973709559406169503788753954716440560229872015519363076915894644247744391867920807362211<211> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @4829788de5ab with GMP-ECM 7.0.5-dev on Wed Mar 15 06:22:23 2023 Input number is 95485207410819084439305454800055430744122034046217410359101952719081182767476412600456300330319116538102963035774461799423619140758918354115363684359471078301069430361449781668775514865945297384556700928608716974206839021605645881514727514485157 (245 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:456971180 Step 1 took 0ms Step 2 took 4305ms ********** Factor found in step 2: 52260552992475971898876019605764887 Found prime factor of 35 digits: 52260552992475971898876019605764887 Composite cofactor 1827099063122547308938288464367408830376140402981716769708307172549181579179757132879142175730149229761408048505235992723835973709559406169503788753954716440560229872015519363076915894644247744391867920807362211 has 211 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | 1792 | Dmitry Domanov | March 21, 2023 22:58:11 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 11 秒 (日本時間) |
414 | Thomas Kozlowski | October 3, 2024 23:42:15 UTC 2024 年 10 月 4 日 (金) 8 時 42 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 21, 2023 22:58:15 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 15 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 23:45:56 UTC 2024 年 10 月 4 日 (金) 8 時 45 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 21, 2023 22:58:19 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 19 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 23:49:36 UTC 2024 年 10 月 4 日 (金) 8 時 49 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 21, 2023 22:58:22 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 22 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 23:53:42 UTC 2024 年 10 月 4 日 (金) 8 時 53 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 21, 2023 22:58:27 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 27 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 23:57:00 UTC 2024 年 10 月 4 日 (金) 8 時 57 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 21, 2023 22:58:31 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 31 秒 (日本時間) |
405 | Thomas Kozlowski | October 4, 2024 00:00:40 UTC 2024 年 10 月 4 日 (金) 9 時 0 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 21, 2023 22:58:37 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 37 秒 (日本時間) |
408 | Thomas Kozlowski | October 4, 2024 00:03:57 UTC 2024 年 10 月 4 日 (金) 9 時 3 分 57 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 22, 2023 16:50:16 UTC 2023 年 2 月 23 日 (木) 1 時 50 分 16 秒 (日本時間) |
composite number 合成数 | 828168879526453079714891578785072650025093150121260669920888124675473887045728005465550544977321678412148744516759<114> |
prime factors 素因数 | 2130116789602754813922865382958504009897071844791701<52> 388790362842451553910918626561166780092300086748163615870926459<63> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 80 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 90 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 78 LatSieveTime: 80 LatSieveTime: 82 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 82 LatSieveTime: 84 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 81 LatSieveTime: 84 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 84 LatSieveTime: 84 LatSieveTime: 84 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 89 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 81 LatSieveTime: 83 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 85 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 121 LatSieveTime: 127 Wed Feb 22 17:38:41 2023 Wed Feb 22 17:38:41 2023 Wed Feb 22 17:38:41 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 17:38:41 2023 random seeds: 8f38f04c a3ec6092 Wed Feb 22 17:38:41 2023 factoring 828168879526453079714891578785072650025093150121260669920888124675473887045728005465550544977321678412148744516759 (114 digits) Wed Feb 22 17:38:41 2023 searching for 15-digit factors Wed Feb 22 17:38:41 2023 commencing number field sieve (114-digit input) Wed Feb 22 17:38:41 2023 R0: -7514654788932303608022 Wed Feb 22 17:38:41 2023 R1: 33567451 Wed Feb 22 17:38:41 2023 A0: 31911823148506397170628345 Wed Feb 22 17:38:41 2023 A1: -8802536681651586211604 Wed Feb 22 17:38:41 2023 A2: -52781889377305079 Wed Feb 22 17:38:41 2023 A3: 188226856059770 Wed Feb 22 17:38:41 2023 A4: 116317368 Wed Feb 22 17:38:41 2023 A5: 34560 Wed Feb 22 17:38:41 2023 skew 17078.56, size 4.901e-011, alpha -5.497, combined = 5.257e-010 rroots = 1 Wed Feb 22 17:38:42 2023 Wed Feb 22 17:38:42 2023 commencing relation filtering Wed Feb 22 17:38:42 2023 estimated available RAM is 65413.5 MB Wed Feb 22 17:38:42 2023 commencing duplicate removal, pass 1 Wed Feb 22 17:38:57 2023 found 825639 hash collisions in 7575000 relations Wed Feb 22 17:39:05 2023 added 57866 free relations Wed Feb 22 17:39:05 2023 commencing duplicate removal, pass 2 Wed Feb 22 17:39:07 2023 found 542155 duplicates and 7090711 unique relations Wed Feb 22 17:39:07 2023 memory use: 24.6 MB Wed Feb 22 17:39:07 2023 reading ideals above 100000 Wed Feb 22 17:39:07 2023 commencing singleton removal, initial pass Wed Feb 22 17:39:34 2023 memory use: 188.3 MB Wed Feb 22 17:39:34 2023 reading all ideals from disk Wed Feb 22 17:39:34 2023 memory use: 244.2 MB Wed Feb 22 17:39:34 2023 keeping 7964742 ideals with weight <= 200, target excess is 38602 Wed Feb 22 17:39:34 2023 commencing in-memory singleton removal Wed Feb 22 17:39:35 2023 begin with 7090711 relations and 7964742 unique ideals Wed Feb 22 17:39:37 2023 reduce to 2216559 relations and 2152372 ideals in 17 passes Wed Feb 22 17:39:37 2023 max relations containing the same ideal: 94 Wed Feb 22 17:39:37 2023 removing 131751 relations and 122047 ideals in 9704 cliques Wed Feb 22 17:39:37 2023 commencing in-memory singleton removal Wed Feb 22 17:39:37 2023 begin with 2084808 relations and 2152372 unique ideals Wed Feb 22 17:39:38 2023 reduce to 2078127 relations and 2023602 ideals in 10 passes Wed Feb 22 17:39:38 2023 max relations containing the same ideal: 90 Wed Feb 22 17:39:38 2023 removing 97278 relations and 87574 ideals in 9704 cliques Wed Feb 22 17:39:38 2023 commencing in-memory singleton removal Wed Feb 22 17:39:38 2023 begin with 1980849 relations and 2023602 unique ideals Wed Feb 22 17:39:38 2023 reduce to 1977118 relations and 1932274 ideals in 8 passes Wed Feb 22 17:39:38 2023 max relations containing the same ideal: 85 Wed Feb 22 17:39:38 2023 relations with 0 large ideals: 127 Wed Feb 22 17:39:38 2023 relations with 1 large ideals: 328 Wed Feb 22 17:39:38 2023 relations with 2 large ideals: 4775 Wed Feb 22 17:39:38 2023 relations with 3 large ideals: 39637 Wed Feb 22 17:39:38 2023 relations with 4 large ideals: 172125 Wed Feb 22 17:39:38 2023 relations with 5 large ideals: 419647 Wed Feb 22 17:39:38 2023 relations with 6 large ideals: 590459 Wed Feb 22 17:39:38 2023 relations with 7+ large ideals: 750020 Wed Feb 22 17:39:38 2023 commencing 2-way merge Wed Feb 22 17:39:39 2023 reduce to 1101797 relation sets and 1056953 unique ideals Wed Feb 22 17:39:39 2023 commencing full merge Wed Feb 22 17:39:51 2023 memory use: 120.6 MB Wed Feb 22 17:39:52 2023 found 545891 cycles, need 541153 Wed Feb 22 17:39:52 2023 weight of 541153 cycles is about 38027707 (70.27/cycle) Wed Feb 22 17:39:52 2023 distribution of cycle lengths: Wed Feb 22 17:39:52 2023 1 relations: 64649 Wed Feb 22 17:39:52 2023 2 relations: 64238 Wed Feb 22 17:39:52 2023 3 relations: 63413 Wed Feb 22 17:39:52 2023 4 relations: 56118 Wed Feb 22 17:39:52 2023 5 relations: 49930 Wed Feb 22 17:39:52 2023 6 relations: 41527 Wed Feb 22 17:39:52 2023 7 relations: 36328 Wed Feb 22 17:39:52 2023 8 relations: 30308 Wed Feb 22 17:39:52 2023 9 relations: 24659 Wed Feb 22 17:39:52 2023 10+ relations: 109983 Wed Feb 22 17:39:52 2023 heaviest cycle: 24 relations Wed Feb 22 17:39:52 2023 commencing cycle optimization Wed Feb 22 17:39:52 2023 start with 3322195 relations Wed Feb 22 17:39:56 2023 pruned 63245 relations Wed Feb 22 17:39:56 2023 memory use: 113.3 MB Wed Feb 22 17:39:56 2023 distribution of cycle lengths: Wed Feb 22 17:39:56 2023 1 relations: 64649 Wed Feb 22 17:39:56 2023 2 relations: 65455 Wed Feb 22 17:39:56 2023 3 relations: 65381 Wed Feb 22 17:39:56 2023 4 relations: 57043 Wed Feb 22 17:39:56 2023 5 relations: 50583 Wed Feb 22 17:39:56 2023 6 relations: 42006 Wed Feb 22 17:39:56 2023 7 relations: 36364 Wed Feb 22 17:39:56 2023 8 relations: 29954 Wed Feb 22 17:39:56 2023 9 relations: 24593 Wed Feb 22 17:39:56 2023 10+ relations: 105125 Wed Feb 22 17:39:56 2023 heaviest cycle: 24 relations Wed Feb 22 17:39:56 2023 RelProcTime: 75 Wed Feb 22 17:39:56 2023 elapsed time 00:01:15 Wed Feb 22 17:39:56 2023 Wed Feb 22 17:39:56 2023 Wed Feb 22 17:39:56 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 17:39:56 2023 random seeds: 92fe6de0 eec36e9e Wed Feb 22 17:39:56 2023 factoring 828168879526453079714891578785072650025093150121260669920888124675473887045728005465550544977321678412148744516759 (114 digits) Wed Feb 22 17:39:57 2023 searching for 15-digit factors Wed Feb 22 17:39:57 2023 commencing number field sieve (114-digit input) Wed Feb 22 17:39:57 2023 R0: -7514654788932303608022 Wed Feb 22 17:39:57 2023 R1: 33567451 Wed Feb 22 17:39:57 2023 A0: 31911823148506397170628345 Wed Feb 22 17:39:57 2023 A1: -8802536681651586211604 Wed Feb 22 17:39:57 2023 A2: -52781889377305079 Wed Feb 22 17:39:57 2023 A3: 188226856059770 Wed Feb 22 17:39:57 2023 A4: 116317368 Wed Feb 22 17:39:57 2023 A5: 34560 Wed Feb 22 17:39:57 2023 skew 17078.56, size 4.901e-011, alpha -5.497, combined = 5.257e-010 rroots = 1 Wed Feb 22 17:39:57 2023 Wed Feb 22 17:39:57 2023 commencing linear algebra Wed Feb 22 17:39:57 2023 read 541153 cycles Wed Feb 22 17:39:57 2023 cycles contain 1923466 unique relations Wed Feb 22 17:40:02 2023 read 1923466 relations Wed Feb 22 17:40:03 2023 using 20 quadratic characters above 134215464 Wed Feb 22 17:40:08 2023 building initial matrix Wed Feb 22 17:40:18 2023 memory use: 236.5 MB Wed Feb 22 17:40:18 2023 read 541153 cycles Wed Feb 22 17:40:18 2023 matrix is 540976 x 541153 (162.9 MB) with weight 51134200 (94.49/col) Wed Feb 22 17:40:18 2023 sparse part has weight 36758589 (67.93/col) Wed Feb 22 17:40:20 2023 filtering completed in 2 passes Wed Feb 22 17:40:21 2023 matrix is 540071 x 540248 (162.9 MB) with weight 51096232 (94.58/col) Wed Feb 22 17:40:21 2023 sparse part has weight 36747520 (68.02/col) Wed Feb 22 17:40:21 2023 matrix starts at (0, 0) Wed Feb 22 17:40:21 2023 matrix is 540071 x 540248 (162.9 MB) with weight 51096232 (94.58/col) Wed Feb 22 17:40:21 2023 sparse part has weight 36747520 (68.02/col) Wed Feb 22 17:40:21 2023 saving the first 48 matrix rows for later Wed Feb 22 17:40:22 2023 matrix includes 64 packed rows Wed Feb 22 17:40:22 2023 matrix is 540023 x 540248 (156.6 MB) with weight 40378072 (74.74/col) Wed Feb 22 17:40:22 2023 sparse part has weight 35648955 (65.99/col) Wed Feb 22 17:40:22 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Feb 22 17:40:23 2023 commencing Lanczos iteration (32 threads) Wed Feb 22 17:40:23 2023 memory use: 122.4 MB Wed Feb 22 17:40:25 2023 linear algebra at 0.6%, ETA 0h 5m Wed Feb 22 17:44:25 2023 lanczos halted after 8541 iterations (dim = 540020) Wed Feb 22 17:44:25 2023 recovered 29 nontrivial dependencies Wed Feb 22 17:44:25 2023 BLanczosTime: 268 Wed Feb 22 17:44:25 2023 elapsed time 00:04:29 Wed Feb 22 17:44:25 2023 Wed Feb 22 17:44:25 2023 Wed Feb 22 17:44:25 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 17:44:25 2023 random seeds: ce11989c 2dcb1b91 Wed Feb 22 17:44:25 2023 factoring 828168879526453079714891578785072650025093150121260669920888124675473887045728005465550544977321678412148744516759 (114 digits) Wed Feb 22 17:44:25 2023 searching for 15-digit factors Wed Feb 22 17:44:26 2023 commencing number field sieve (114-digit input) Wed Feb 22 17:44:26 2023 R0: -7514654788932303608022 Wed Feb 22 17:44:26 2023 R1: 33567451 Wed Feb 22 17:44:26 2023 A0: 31911823148506397170628345 Wed Feb 22 17:44:26 2023 A1: -8802536681651586211604 Wed Feb 22 17:44:26 2023 A2: -52781889377305079 Wed Feb 22 17:44:26 2023 A3: 188226856059770 Wed Feb 22 17:44:26 2023 A4: 116317368 Wed Feb 22 17:44:26 2023 A5: 34560 Wed Feb 22 17:44:26 2023 skew 17078.56, size 4.901e-011, alpha -5.497, combined = 5.257e-010 rroots = 1 Wed Feb 22 17:44:26 2023 Wed Feb 22 17:44:26 2023 commencing square root phase Wed Feb 22 17:44:26 2023 reading relations for dependency 1 Wed Feb 22 17:44:26 2023 read 270126 cycles Wed Feb 22 17:44:26 2023 cycles contain 961054 unique relations Wed Feb 22 17:44:28 2023 read 961054 relations Wed Feb 22 17:44:30 2023 multiplying 961054 relations Wed Feb 22 17:44:53 2023 multiply complete, coefficients have about 43.05 million bits Wed Feb 22 17:44:53 2023 initial square root is modulo 1517671 Wed Feb 22 17:45:21 2023 GCD is N, no factor found Wed Feb 22 17:45:21 2023 reading relations for dependency 2 Wed Feb 22 17:45:21 2023 read 270568 cycles Wed Feb 22 17:45:21 2023 cycles contain 961350 unique relations Wed Feb 22 17:45:23 2023 read 961350 relations Wed Feb 22 17:45:25 2023 multiplying 961350 relations Wed Feb 22 17:45:48 2023 multiply complete, coefficients have about 43.06 million bits Wed Feb 22 17:45:48 2023 initial square root is modulo 1524431 Wed Feb 22 17:46:15 2023 GCD is 1, no factor found Wed Feb 22 17:46:15 2023 reading relations for dependency 3 Wed Feb 22 17:46:15 2023 read 270361 cycles Wed Feb 22 17:46:16 2023 cycles contain 961626 unique relations Wed Feb 22 17:46:18 2023 read 961626 relations Wed Feb 22 17:46:20 2023 multiplying 961626 relations Wed Feb 22 17:46:42 2023 multiply complete, coefficients have about 43.08 million bits Wed Feb 22 17:46:43 2023 initial square root is modulo 1531111 Wed Feb 22 17:47:10 2023 GCD is 1, no factor found Wed Feb 22 17:47:10 2023 reading relations for dependency 4 Wed Feb 22 17:47:10 2023 read 270099 cycles Wed Feb 22 17:47:11 2023 cycles contain 961294 unique relations Wed Feb 22 17:47:13 2023 read 961294 relations Wed Feb 22 17:47:15 2023 multiplying 961294 relations Wed Feb 22 17:47:37 2023 multiply complete, coefficients have about 43.06 million bits Wed Feb 22 17:47:38 2023 initial square root is modulo 1523521 Wed Feb 22 17:48:05 2023 GCD is N, no factor found Wed Feb 22 17:48:05 2023 reading relations for dependency 5 Wed Feb 22 17:48:05 2023 read 270337 cycles Wed Feb 22 17:48:05 2023 cycles contain 962878 unique relations Wed Feb 22 17:48:08 2023 read 962878 relations Wed Feb 22 17:48:10 2023 multiplying 962878 relations Wed Feb 22 17:48:32 2023 multiply complete, coefficients have about 43.13 million bits Wed Feb 22 17:48:32 2023 initial square root is modulo 1559609 Wed Feb 22 17:49:00 2023 sqrtTime: 274 Wed Feb 22 17:49:00 2023 prp52 factor: 2130116789602754813922865382958504009897071844791701 Wed Feb 22 17:49:00 2023 prp63 factor: 388790362842451553910918626561166780092300086748163615870926459 Wed Feb 22 17:49:00 2023 elapsed time 00:04:35 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 21, 2023 22:58:40 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 40 秒 (日本時間) |
404 | Thomas Kozlowski | October 4, 2024 00:06:53 UTC 2024 年 10 月 4 日 (金) 9 時 6 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 21, 2023 22:58:43 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 43 秒 (日本時間) |
401 | Thomas Kozlowski | October 4, 2024 00:10:33 UTC 2024 年 10 月 4 日 (金) 9 時 10 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 21, 2023 22:58:46 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 46 秒 (日本時間) |
405 | Thomas Kozlowski | October 4, 2024 00:14:13 UTC 2024 年 10 月 4 日 (金) 9 時 14 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 21, 2023 22:58:50 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 50 秒 (日本時間) |
408 | Thomas Kozlowski | October 4, 2024 00:16:47 UTC 2024 年 10 月 4 日 (金) 9 時 16 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 21, 2023 22:58:54 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 54 秒 (日本時間) |
403 | Thomas Kozlowski | October 4, 2024 00:20:08 UTC 2024 年 10 月 4 日 (金) 9 時 20 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 21, 2023 22:58:58 UTC 2023 年 3 月 22 日 (水) 7 時 58 分 58 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:22:41 UTC 2024 年 10 月 4 日 (金) 9 時 22 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 21, 2023 22:59:02 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 2 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:25:59 UTC 2024 年 10 月 4 日 (金) 9 時 25 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 21, 2023 22:59:05 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 5 秒 (日本時間) |
286 | ebina | September 22, 2024 02:57:52 UTC 2024 年 9 月 22 日 (日) 11 時 57 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 21, 2023 22:59:09 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 9 秒 (日本時間) |
286 | ebina | September 22, 2024 02:47:09 UTC 2024 年 9 月 22 日 (日) 11 時 47 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 21, 2023 22:59:12 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 12 秒 (日本時間) |
286 | ebina | September 21, 2024 03:46:20 UTC 2024 年 9 月 21 日 (土) 12 時 46 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 21, 2023 22:59:15 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 15 秒 (日本時間) |
286 | ebina | September 21, 2024 03:31:48 UTC 2024 年 9 月 21 日 (土) 12 時 31 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | March 21, 2023 22:59:21 UTC 2023 年 3 月 22 日 (水) 7 時 59 分 21 秒 (日本時間) |
286 | ebina | September 21, 2024 03:30:23 UTC 2024 年 9 月 21 日 (土) 12 時 30 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 09:00:53 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 53 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | February 23, 2023 09:00:53 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 53 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | February 23, 2023 09:00:53 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 53 秒 (日本時間) |