name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2023 07:57:16 UTC 2023 年 2 月 22 日 (水) 16 時 57 分 16 秒 (日本時間) |
composite number 合成数 | 2416666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667<124> |
prime factors 素因数 | 71143220440656747405988349662315534836037<41> 33969036707896851428009833575144476603960857405512977557373174414878268557073842991<83> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2416666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 (124 digits) Using B1=41950000, B2=192395152966, polynomial Dickson(12), sigma=1:1753957345 Step 1 took 65289ms ********** Factor found in step 1: 71143220440656747405988349662315534836037 Found prime factor of 41 digits: 71143220440656747405988349662315534836037 Prime cofactor 33969036707896851428009833575144476603960857405512977557373174414878268557073842991 has 83 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 05:50:12 UTC 2023 年 2 月 24 日 (金) 14 時 50 分 12 秒 (日本時間) |
composite number 合成数 | 3334299130322806146148079673652598223853346026665194976016041428091815100465882071588552086351448925435873379415646831036116208373<130> |
prime factors 素因数 | 5175701021148290582930228024887338031567378536034441944926394179<64> 644221742465149655409663856905378270770972663835431298912751101287<66> |
factorization results 素因数分解の結果 | Number: n N=3334299130322806146148079673652598223853346026665194976016041428091815100465882071588552086351448925435873379415646831036116208373 ( 130 digits) SNFS difficulty: 134 digits. Divisors found: Fri Feb 24 16:27:56 2023 prp64 factor: 5175701021148290582930228024887338031567378536034441944926394179 Fri Feb 24 16:27:56 2023 prp66 factor: 644221742465149655409663856905378270770972663835431298912751101287 Fri Feb 24 16:27:56 2023 elapsed time 00:04:10 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 29x10^134+4 = 96(133)8 # n: 3334299130322806146148079673652598223853346026665194976016041428091815100465882071588552086351448925435873379415646831036116208373 m: 1000000000000000000000000000000000 deg: 4 c4: 725 c0: 1 skew: 0.19 # Murphy_E = 8.157e-09 type: snfs lss: 1 rlim: 1240000 alim: 1240000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1240000/1240000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved special-q in [100000, 11820000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 799281 hash collisions in 8662017 relations (8757279 unique) Msieve: matrix is 337277 x 337519 (40.6 MB) Sieving start time: 2023/02/24 15:56:49 Sieving end time : 2023/02/24 16:23:38 Total sieving time: 0hrs 26min 49secs. Total relation processing time: 0hrs 2min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 8sec. Prototype def-par.txt line would be: snfs,134,4,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2023 11:45:10 UTC 2023 年 2 月 22 日 (水) 20 時 45 分 10 秒 (日本時間) |
composite number 合成数 | 12652705061082024432809773123909249563699825479930191972076788830715532286212914485165794066317626527050610820244328097731239092495637<134> |
prime factors 素因数 | 6632498000630417020442305599037428008689135412239<49> 1907683207726468740593217330992670106126727841493224947746872354526338393748314288283<85> |
factorization results 素因数分解の結果 | Number: n N=12652705061082024432809773123909249563699825479930191972076788830715532286212914485165794066317626527050610820244328097731239092495637 ( 134 digits) SNFS difficulty: 136 digits. Divisors found: Wed Feb 22 22:42:07 2023 prp49 factor: 6632498000630417020442305599037428008689135412239 Wed Feb 22 22:42:07 2023 prp85 factor: 1907683207726468740593217330992670106126727841493224947746872354526338393748314288283 Wed Feb 22 22:42:07 2023 elapsed time 00:03:09 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.081). Factorization parameters were as follows: # # N = 29x10^135+4 = 96(134)8 # n: 12652705061082024432809773123909249563699825479930191972076788830715532286212914485165794066317626527050610820244328097731239092495637 m: 1000000000000000000000000000 deg: 5 c5: 29 c0: 4 skew: 0.67 # Murphy_E = 6.923e-09 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 57660000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 377149 hash collisions in 6733108 relations (6847498 unique) Msieve: matrix is 240097 x 240345 (55.6 MB) Sieving start time: 2023/02/22 20:39:51 Sieving end time : 2023/02/22 22:38:13 Total sieving time: 1hrs 58min 22secs. Total relation processing time: 0hrs 1min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 10sec. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 06:33:18 UTC 2023 年 2 月 24 日 (金) 15 時 33 分 18 秒 (日本時間) |
composite number 合成数 | 38251509972682945123275754576973258846599187308949787533051697175800888715156610032947943881715337560203780824241399629141923<125> |
prime factors 素因数 | 34188188674894784428087112257512439969134585287<47> 1118851610900695537810685929927665818882527488800826023407636694004980877397829<79> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 38251509972682945123275754576973258846599187308949787533051697175800888715156610032947943881715337560203780824241399629141923 (125 digits) Using B1=37350000, B2=192391008826, polynomial Dickson(12), sigma=1:2532278218 Step 1 took 58586ms Step 2 took 22831ms ********** Factor found in step 2: 34188188674894784428087112257512439969134585287 Found prime factor of 47 digits: 34188188674894784428087112257512439969134585287 Prime cofactor 1118851610900695537810685929927665818882527488800826023407636694004980877397829 has 79 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 26, 2023 18:27:17 UTC 2023 年 2 月 27 日 (月) 3 時 27 分 17 秒 (日本時間) |
composite number 合成数 | 1388730834369239352247886421553023698411632139962111304935649731614813166300169490817613989615933954818924084867397976853583<124> |
prime factors 素因数 | 51386815565170759217969056126623933599716283<44> 27025041717325271219278264312832899333633327169709315530525602505916211657023101<80> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1388730834369239352247886421553023698411632139962111304935649731614813166300169490817613989615933954818924084867397976853583 (124 digits) Using B1=38020000, B2=192391699516, polynomial Dickson(12), sigma=1:3425254135 Step 1 took 59435ms Step 2 took 22810ms ********** Factor found in step 2: 51386815565170759217969056126623933599716283 Found prime factor of 44 digits: 51386815565170759217969056126623933599716283 Prime cofactor 27025041717325271219278264312832899333633327169709315530525602505916211657023101 has 80 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 05:52:41 UTC 2023 年 2 月 24 日 (金) 14 時 52 分 41 秒 (日本時間) |
composite number 合成数 | 4224465483812734051824932318074144989593330502255058109694724272545604936429564797279293464715908564330523375670385866323358222263<130> |
prime factors 素因数 | 28915221288184075531998521274240149562147060571<47> 146098327995124867341638974838921552266698985433180278651350149680376493303059972053<84> |
factorization results 素因数分解の結果 | Number: n N=4224465483812734051824932318074144989593330502255058109694724272545604936429564797279293464715908564330523375670385866323358222263 ( 130 digits) SNFS difficulty: 145 digits. Divisors found: Fri Feb 24 15:49:54 2023 prp47 factor: 28915221288184075531998521274240149562147060571 Fri Feb 24 15:49:54 2023 prp84 factor: 146098327995124867341638974838921552266698985433180278651350149680376493303059972053 Fri Feb 24 15:49:54 2023 elapsed time 00:05:34 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 29x10^144+4 = 96(143)8 # n: 4224465483812734051824932318074144989593330502255058109694724272545604936429564797279293464715908564330523375670385866323358222263 m: 50000000000000000000000000000 deg: 5 c5: 116 c0: 5 skew: 0.53 # Murphy_E = 2.59e-09 type: snfs lss: 1 rlim: 1870000 alim: 1870000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1870000/1870000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 69735000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 774917 hash collisions in 6780110 relations (6417850 unique) Msieve: matrix is 380525 x 380750 (106.4 MB) Sieving start time: 2023/02/24 12:29:07 Sieving end time : 2023/02/24 15:43:55 Total sieving time: 3hrs 14min 48secs. Total relation processing time: 0hrs 3min 41sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 38sec. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1870000,1870000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 18:30:33 UTC 2023 年 2 月 26 日 (日) 3 時 30 分 33 秒 (日本時間) |
composite number 合成数 | 18236487493713644960466726731489291209319308929710572441040383684495696974143389801060503174831954484390751191547429167632524609<128> |
prime factors 素因数 | 7782250386281124671202046574373278666531466105788804531<55> 2343343710176902708361388494212575516362361989840832265453157515050970939<73> |
factorization results 素因数分解の結果 | Number: n N=18236487493713644960466726731489291209319308929710572441040383684495696974143389801060503174831954484390751191547429167632524609 ( 128 digits) SNFS difficulty: 146 digits. Divisors found: Sun Feb 26 05:27:23 2023 prp55 factor: 7782250386281124671202046574373278666531466105788804531 Sun Feb 26 05:27:23 2023 prp73 factor: 2343343710176902708361388494212575516362361989840832265453157515050970939 Sun Feb 26 05:27:23 2023 elapsed time 00:05:21 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 29x10^145+4 = 96(144)8 # n: 18236487493713644960466726731489291209319308929710572441040383684495696974143389801060503174831954484390751191547429167632524609 m: 100000000000000000000000000000 deg: 5 c5: 29 c0: 4 skew: 0.67 # Murphy_E = 2.944e-09 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 69765000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 720962 hash collisions in 6665751 relations (6356984 unique) Msieve: matrix is 365751 x 365976 (101.2 MB) Sieving start time: 2023/02/26 02:43:51 Sieving end time : 2023/02/26 05:21:31 Total sieving time: 2hrs 37min 40secs. Total relation processing time: 0hrs 3min 30sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 37sec. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 01:30:44 UTC 2023 年 2 月 24 日 (金) 10 時 30 分 44 秒 (日本時間) |
composite number 合成数 | 2237656891763937270006122915681313872337013246361904861303247654430620511910854574200311076757602750284817270986816518042143740189<130> |
prime factors 素因数 | 3305827243559765482206560172418643543222566550479823<52> 676882585477876940331354134913141526910357406044327363686147322397881030818643<78> |
factorization results 素因数分解の結果 | Number: n N=2237656891763937270006122915681313872337013246361904861303247654430620511910854574200311076757602750284817270986816518042143740189 ( 130 digits) SNFS difficulty: 147 digits. Divisors found: Fri Feb 24 12:26:49 2023 prp52 factor: 3305827243559765482206560172418643543222566550479823 Fri Feb 24 12:26:49 2023 prp78 factor: 676882585477876940331354134913141526910357406044327363686147322397881030818643 Fri Feb 24 12:26:49 2023 elapsed time 00:05:12 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.036). Factorization parameters were as follows: # # N = 29x10^147+4 = 96(146)8 # n: 2237656891763937270006122915681313872337013246361904861303247654430620511910854574200311076757602750284817270986816518042143740189 m: 100000000000000000000000000000 deg: 5 c5: 725 c0: 1 skew: 0.27 # Murphy_E = 2.114e-09 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 631059 hash collisions in 7159250 relations (7008488 unique) Msieve: matrix is 344375 x 344600 (94.5 MB) Sieving start time: 2023/02/24 11:47:05 Sieving end time : 2023/02/24 12:21:30 Total sieving time: 0hrs 34min 25secs. Total relation processing time: 0hrs 3min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 39sec. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 03:19:16 UTC 2023 年 2 月 25 日 (土) 12 時 19 分 16 秒 (日本時間) |
composite number 合成数 | 44708218682899342769932565585156119401881846596796382305050133125115862017374393930944054136438139270389903963428146624588741394403013263<137> |
prime factors 素因数 | 126871618850898732884870149276443802845526974343409673706441<60> 352389439717333903887343915017192143417192313401036007623440491075488266344343<78> |
factorization results 素因数分解の結果 | Number: n N=44708218682899342769932565585156119401881846596796382305050133125115862017374393930944054136438139270389903963428146624588741394403013263 ( 137 digits) SNFS difficulty: 150 digits. Divisors found: Sat Feb 25 14:14:35 2023 prp60 factor: 126871618850898732884870149276443802845526974343409673706441 Sat Feb 25 14:14:35 2023 prp78 factor: 352389439717333903887343915017192143417192313401036007623440491075488266344343 Sat Feb 25 14:14:35 2023 elapsed time 00:07:02 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 29x10^149+4 = 96(148)8 # n: 44708218682899342769932565585156119401881846596796382305050133125115862017374393930944054136438139270389903963428146624588741394403013263 m: 500000000000000000000000000000 deg: 5 c5: 116 c0: 5 skew: 0.53 # Murphy_E = 1.678e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 12350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1070875 hash collisions in 13910339 relations (13783152 unique) Msieve: matrix is 442903 x 443148 (63.0 MB) Sieving start time: 2023/02/25 12:54:03 Sieving end time : 2023/02/25 14:07:13 Total sieving time: 1hrs 13min 10secs. Total relation processing time: 0hrs 3min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 16sec. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 26, 2023 19:51:35 UTC 2023 年 2 月 27 日 (月) 4 時 51 分 35 秒 (日本時間) |
composite number 合成数 | 1206915080730850438465816702836364248864068020121693837700468318528718896918319487772635826652247037010010600375397016060025029799<130> |
prime factors 素因数 | 3534929215578265857044494859557412762453<40> 341425529940467481688433592736921059836429005742389172745487217853751136859880782774505483<90> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1206915080730850438465816702836364248864068020121693837700468318528718896918319487772635826652247037010010600375397016060025029799 (130 digits) Using B1=38410000, B2=192391699516, polynomial Dickson(12), sigma=1:3286360892 Step 1 took 59836ms Step 2 took 23734ms ********** Factor found in step 2: 3534929215578265857044494859557412762453 Found prime factor of 40 digits: 3534929215578265857044494859557412762453 Prime cofactor 341425529940467481688433592736921059836429005742389172745487217853751136859880782774505483 has 90 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 22:48:06 UTC 2023 年 3 月 2 日 (木) 7 時 48 分 6 秒 (日本時間) |
composite number 合成数 | 6362791310439856912145861759927933011289873253501369106647482246356634686907796398830197019208626571019125968224877520275174338540815889201413<142> |
prime factors 素因数 | 314529925494179859664668165823266202529848723870233737<54> 20229526015506577266757901145552699689713563737581704825598789527372502535667582135105949<89> |
factorization results 素因数分解の結果 | Number: n N=6362791310439856912145861759927933011289873253501369106647482246356634686907796398830197019208626571019125968224877520275174338540815889201413 ( 142 digits) SNFS difficulty: 152 digits. Divisors found: Thu Mar 2 09:44:31 2023 prp54 factor: 314529925494179859664668165823266202529848723870233737 Thu Mar 2 09:44:31 2023 prp89 factor: 20229526015506577266757901145552699689713563737581704825598789527372502535667582135105949 Thu Mar 2 09:44:31 2023 elapsed time 00:05:49 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 29x10^152+4 = 96(151)8 # n: 6362791310439856912145861759927933011289873253501369106647482246356634686907796398830197019208626571019125968224877520275174338540815889201413 m: 1000000000000000000000000000000 deg: 5 c5: 725 c0: 1 skew: 0.27 # Murphy_E = 1.366e-09 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 779805 hash collisions in 11794709 relations (11813314 unique) Msieve: matrix is 357170 x 357418 (98.9 MB) Sieving start time: 2023/03/02 08:28:36 Sieving end time : 2023/03/02 09:38:28 Total sieving time: 1hrs 9min 52secs. Total relation processing time: 0hrs 3min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 19sec. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 21:51:59 UTC 2023 年 3 月 2 日 (木) 6 時 51 分 59 秒 (日本時間) |
composite number 合成数 | 1516348643088843130514243848809499740125156824119667983382890235783772269901432748375020765431079826907957025994276936864945636060759679774091<142> |
prime factors 素因数 | 197904145552341938562333480097133650400081659066302738079<57> 7662035774221805397995186871275956768812699808695387001447140771607220973577541326229<85> |
factorization results 素因数分解の結果 | Number: n N=1516348643088843130514243848809499740125156824119667983382890235783772269901432748375020765431079826907957025994276936864945636060759679774091 ( 142 digits) SNFS difficulty: 153 digits. Divisors found: Thu Mar 2 08:19:38 2023 prp57 factor: 197904145552341938562333480097133650400081659066302738079 Thu Mar 2 08:19:38 2023 prp85 factor: 7662035774221805397995186871275956768812699808695387001447140771607220973577541326229 Thu Mar 2 08:19:38 2023 elapsed time 00:06:41 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.024). Factorization parameters were as follows: # # N = 29x10^153+4 = 96(152)8 # n: 1516348643088843130514243848809499740125156824119667983382890235783772269901432748375020765431079826907957025994276936864945636060759679774091 m: 1000000000000000000000000000000 deg: 5 c5: 7250 c0: 1 skew: 0.17 # Murphy_E = 1.127e-09 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 971641 hash collisions in 12827351 relations (12715784 unique) Msieve: matrix is 372100 x 372334 (101.8 MB) Sieving start time: 2023/03/02 07:09:17 Sieving end time : 2023/03/02 08:12:48 Total sieving time: 1hrs 3min 31secs. Total relation processing time: 0hrs 3min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 41sec. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 7, 2023 10:22:17 UTC 2023 年 3 月 7 日 (火) 19 時 22 分 17 秒 (日本時間) |
composite number 合成数 | 5830474250945930736515990439092723016713450031319012574853097016553377581606660319497107983959405747382576526474087652076711<124> |
prime factors 素因数 | 28680122958169568481151372786649702008519272979<47> 203293209706589243825572324998050778076015013536499983988547015895657036318109<78> |
factorization results 素因数分解の結果 | Number: n N=5830474250945930736515990439092723016713450031319012574853097016553377581606660319497107983959405747382576526474087652076711 ( 124 digits) SNFS difficulty: 157 digits. Divisors found: Tue Mar 7 20:12:41 2023 prp47 factor: 28680122958169568481151372786649702008519272979 Tue Mar 7 20:12:41 2023 prp78 factor: 203293209706589243825572324998050778076015013536499983988547015895657036318109 Tue Mar 7 20:12:41 2023 elapsed time 00:06:03 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.092). Factorization parameters were as follows: # # N = 29x10^156+4 = 96(155)8 # n: 5830474250945930736515990439092723016713450031319012574853097016553377581606660319497107983959405747382576526474087652076711 m: 10000000000000000000000000000000 deg: 5 c5: 145 c0: 2 skew: 0.42 # Murphy_E = 1.043e-09 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 5450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1354847 hash collisions in 14574802 relations (14173004 unique) Msieve: matrix is 348192 x 348424 (95.8 MB) Sieving start time: 2023/03/07 19:34:38 Sieving end time : 2023/03/07 20:06:23 Total sieving time: 0hrs 31min 45secs. Total relation processing time: 0hrs 3min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 17sec. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 10, 2023 04:36:01 UTC 2023 年 3 月 10 日 (金) 13 時 36 分 1 秒 (日本時間) |
composite number 合成数 | 35977868896515097055916896740852057011827118675482508852519548355799227304077150476482973562530997637035166885085701<116> |
prime factors 素因数 | 2562526694181697441799314286655810809045669<43> 14039997701566993077604178768843458890409366392855262049696124493326197729<74> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 35977868896515097055916896740852057011827118675482508852519548355799227304077150476482973562530997637035166885085701 (116 digits) Using B1=30890000, B2=144289975846, polynomial Dickson(12), sigma=1:3063904336 Step 1 took 43545ms ********** Factor found in step 1: 2562526694181697441799314286655810809045669 Found prime factor of 43 digits: 2562526694181697441799314286655810809045669 Prime cofactor 14039997701566993077604178768843458890409366392855262049696124493326197729 has 74 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 7, 2023 10:23:36 UTC 2023 年 3 月 7 日 (火) 19 時 23 分 36 秒 (日本時間) |
composite number 合成数 | 10589898646065673203576670136154566906347913627233673994861334289716689567264938665053195823262180460855948009952637538649<122> |
prime factors 素因数 | 1888908686697007372343461475008560971522221922303<49> 5606358168950682790083826572492406179439922709958144181207204862156412583<73> |
factorization results 素因数分解の結果 | Number: n N=10589898646065673203576670136154566906347913627233673994861334289716689567264938665053195823262180460855948009952637538649 ( 122 digits) SNFS difficulty: 161 digits. Divisors found: Tue Mar 7 21:15:23 2023 prp49 factor: 1888908686697007372343461475008560971522221922303 Tue Mar 7 21:15:23 2023 prp73 factor: 5606358168950682790083826572492406179439922709958144181207204862156412583 Tue Mar 7 21:15:23 2023 elapsed time 00:08:16 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 29x10^160+4 = 96(159)8 # n: 10589898646065673203576670136154566906347913627233673994861334289716689567264938665053195823262180460855948009952637538649 m: 100000000000000000000000000000000 deg: 5 c5: 29 c0: 4 skew: 0.67 # Murphy_E = 7.851e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 5700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1277624 hash collisions in 13903881 relations (13527705 unique) Msieve: matrix is 392008 x 392236 (110.3 MB) Sieving start time: 2023/03/07 20:14:35 Sieving end time : 2023/03/07 21:06:41 Total sieving time: 0hrs 52min 6secs. Total relation processing time: 0hrs 4min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 41sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 12, 2023 01:11:29 UTC 2023 年 3 月 12 日 (日) 10 時 11 分 29 秒 (日本時間) |
composite number 合成数 | 422265459399830125093962752682680575234840822447269855976145962177252905032920614761353340011362128769870310665997655699039677732457358651354868554413632529923<159> |
prime factors 素因数 | 607882548140357974102369269138725061865477117759255687<54> 694649748856304546571342334870122816543216616027362116091035580631355104612587030122437307097483608645029<105> |
factorization results 素因数分解の結果 | Number: n N=422265459399830125093962752682680575234840822447269855976145962177252905032920614761353340011362128769870310665997655699039677732457358651354868554413632529923 ( 159 digits) SNFS difficulty: 171 digits. Divisors found: Sun Mar 12 12:02:35 2023 prp54 factor: 607882548140357974102369269138725061865477117759255687 Sun Mar 12 12:02:35 2023 prp105 factor: 694649748856304546571342334870122816543216616027362116091035580631355104612587030122437307097483608645029 Sun Mar 12 12:02:35 2023 elapsed time 00:14:11 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 29x10^170+4 = 96(169)8 # n: 422265459399830125093962752682680575234840822447269855976145962177252905032920614761353340011362128769870310665997655699039677732457358651354868554413632529923 m: 10000000000000000000000000000000000 deg: 5 c5: 29 c0: 4 skew: 0.67 # Murphy_E = 3.174e-10 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 6500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1562420 hash collisions in 14614161 relations (13956251 unique) Msieve: matrix is 613541 x 613766 (172.3 MB) Sieving start time: 2023/03/12 10:47:32 Sieving end time : 2023/03/12 11:48:09 Total sieving time: 1hrs 0min 37secs. Total relation processing time: 0hrs 10min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 11sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 16, 2023 14:24:40 UTC 2023 年 4 月 16 日 (日) 23 時 24 分 40 秒 (日本時間) |
composite number 合成数 | 51287425946868219141854130327559392319087817858247171144553019428903212131311181502591099028423663561670282837037402026801271790586733777679<140> |
prime factors 素因数 | 8153591506238836768818620244544744567663372661725542205915045250173<67> 6290163777229324535891306773916035421142679134427211473614776252028716923<73> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2650000, q1=2750000. -> client 1 q0: 2650000 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=2950001, q1=3050000. -> client 1 q0: 2950001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 -> makeJobFile(): Adjusted to q0=3050001, q1=3150000. -> client 1 q0: 3050001 LatSieveTime: 91 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=3150001, q1=3250000. -> client 1 q0: 3150001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 -> makeJobFile(): Adjusted to q0=3250001, q1=3350000. -> client 1 q0: 3250001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=3350001, q1=3450000. -> client 1 q0: 3350001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=3450001, q1=3550000. -> client 1 q0: 3450001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=3550001, q1=3650000. -> client 1 q0: 3550001 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=3650001, q1=3750000. -> client 1 q0: 3650001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=3750001, q1=3850000. -> client 1 q0: 3750001 LatSieveTime: 92 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 Sun Apr 16 16:07:52 2023 Sun Apr 16 16:07:52 2023 Sun Apr 16 16:07:52 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 16:07:52 2023 random seeds: 8d63ca0c 53903b76 Sun Apr 16 16:07:52 2023 factoring 51287425946868219141854130327559392319087817858247171144553019428903212131311181502591099028423663561670282837037402026801271790586733777679 (140 digits) Sun Apr 16 16:07:53 2023 searching for 15-digit factors Sun Apr 16 16:07:53 2023 commencing number field sieve (140-digit input) Sun Apr 16 16:07:53 2023 R0: -10000000000000000000000000000000000 Sun Apr 16 16:07:53 2023 R1: 1 Sun Apr 16 16:07:53 2023 A0: 1 Sun Apr 16 16:07:53 2023 A1: 0 Sun Apr 16 16:07:53 2023 A2: 0 Sun Apr 16 16:07:53 2023 A3: 0 Sun Apr 16 16:07:53 2023 A4: 0 Sun Apr 16 16:07:53 2023 A5: 725 Sun Apr 16 16:07:53 2023 skew 0.27, size 5.497e-012, alpha -0.092, combined = 2.268e-010 rroots = 1 Sun Apr 16 16:07:53 2023 Sun Apr 16 16:07:53 2023 commencing relation filtering Sun Apr 16 16:07:53 2023 estimated available RAM is 65413.5 MB Sun Apr 16 16:07:53 2023 commencing duplicate removal, pass 1 Sun Apr 16 16:08:10 2023 found 1042806 hash collisions in 10164707 relations Sun Apr 16 16:08:18 2023 added 370850 free relations Sun Apr 16 16:08:18 2023 commencing duplicate removal, pass 2 Sun Apr 16 16:08:22 2023 found 803586 duplicates and 9731971 unique relations Sun Apr 16 16:08:22 2023 memory use: 49.3 MB Sun Apr 16 16:08:22 2023 reading ideals above 100000 Sun Apr 16 16:08:22 2023 commencing singleton removal, initial pass Sun Apr 16 16:08:58 2023 memory use: 344.5 MB Sun Apr 16 16:08:58 2023 reading all ideals from disk Sun Apr 16 16:08:58 2023 memory use: 353.1 MB Sun Apr 16 16:08:59 2023 keeping 10959139 ideals with weight <= 200, target excess is 49786 Sun Apr 16 16:08:59 2023 commencing in-memory singleton removal Sun Apr 16 16:09:00 2023 begin with 9731971 relations and 10959139 unique ideals Sun Apr 16 16:09:05 2023 reduce to 3705419 relations and 3660214 ideals in 20 passes Sun Apr 16 16:09:05 2023 max relations containing the same ideal: 107 Sun Apr 16 16:09:05 2023 filtering wants 1000000 more relations Sun Apr 16 16:09:05 2023 elapsed time 00:01:13 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 Sun Apr 16 16:11:09 2023 Sun Apr 16 16:11:09 2023 Sun Apr 16 16:11:09 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 16:11:09 2023 random seeds: a1f994a0 31404f78 Sun Apr 16 16:11:09 2023 factoring 51287425946868219141854130327559392319087817858247171144553019428903212131311181502591099028423663561670282837037402026801271790586733777679 (140 digits) Sun Apr 16 16:11:09 2023 searching for 15-digit factors Sun Apr 16 16:11:09 2023 commencing number field sieve (140-digit input) Sun Apr 16 16:11:09 2023 R0: -10000000000000000000000000000000000 Sun Apr 16 16:11:09 2023 R1: 1 Sun Apr 16 16:11:09 2023 A0: 1 Sun Apr 16 16:11:09 2023 A1: 0 Sun Apr 16 16:11:09 2023 A2: 0 Sun Apr 16 16:11:09 2023 A3: 0 Sun Apr 16 16:11:09 2023 A4: 0 Sun Apr 16 16:11:09 2023 A5: 725 Sun Apr 16 16:11:09 2023 skew 0.27, size 5.497e-012, alpha -0.092, combined = 2.268e-010 rroots = 1 Sun Apr 16 16:11:09 2023 Sun Apr 16 16:11:09 2023 commencing relation filtering Sun Apr 16 16:11:09 2023 estimated available RAM is 65413.5 MB Sun Apr 16 16:11:09 2023 commencing duplicate removal, pass 1 Sun Apr 16 16:11:31 2023 found 1138118 hash collisions in 10941610 relations Sun Apr 16 16:11:38 2023 added 855 free relations Sun Apr 16 16:11:38 2023 commencing duplicate removal, pass 2 Sun Apr 16 16:11:41 2023 found 860512 duplicates and 10081953 unique relations Sun Apr 16 16:11:41 2023 memory use: 49.3 MB Sun Apr 16 16:11:41 2023 reading ideals above 720000 Sun Apr 16 16:11:42 2023 commencing singleton removal, initial pass Sun Apr 16 16:12:15 2023 memory use: 344.5 MB Sun Apr 16 16:12:15 2023 reading all ideals from disk Sun Apr 16 16:12:15 2023 memory use: 295.2 MB Sun Apr 16 16:12:15 2023 commencing in-memory singleton removal Sun Apr 16 16:12:16 2023 begin with 10081953 relations and 11028375 unique ideals Sun Apr 16 16:12:22 2023 reduce to 4189014 relations and 3939978 ideals in 23 passes Sun Apr 16 16:12:22 2023 max relations containing the same ideal: 68 Sun Apr 16 16:12:23 2023 removing 512364 relations and 455388 ideals in 56976 cliques Sun Apr 16 16:12:23 2023 commencing in-memory singleton removal Sun Apr 16 16:12:23 2023 begin with 3676650 relations and 3939978 unique ideals Sun Apr 16 16:12:24 2023 reduce to 3619723 relations and 3426572 ideals in 10 passes Sun Apr 16 16:12:24 2023 max relations containing the same ideal: 63 Sun Apr 16 16:12:25 2023 removing 383679 relations and 326703 ideals in 56976 cliques Sun Apr 16 16:12:25 2023 commencing in-memory singleton removal Sun Apr 16 16:12:25 2023 begin with 3236044 relations and 3426572 unique ideals Sun Apr 16 16:12:25 2023 reduce to 3200173 relations and 3063409 ideals in 9 passes Sun Apr 16 16:12:25 2023 max relations containing the same ideal: 58 Sun Apr 16 16:12:26 2023 relations with 0 large ideals: 2972 Sun Apr 16 16:12:26 2023 relations with 1 large ideals: 2353 Sun Apr 16 16:12:26 2023 relations with 2 large ideals: 32927 Sun Apr 16 16:12:26 2023 relations with 3 large ideals: 185216 Sun Apr 16 16:12:26 2023 relations with 4 large ideals: 545284 Sun Apr 16 16:12:26 2023 relations with 5 large ideals: 903676 Sun Apr 16 16:12:26 2023 relations with 6 large ideals: 890108 Sun Apr 16 16:12:26 2023 relations with 7+ large ideals: 637637 Sun Apr 16 16:12:26 2023 commencing 2-way merge Sun Apr 16 16:12:28 2023 reduce to 1873606 relation sets and 1736841 unique ideals Sun Apr 16 16:12:28 2023 commencing full merge Sun Apr 16 16:12:47 2023 memory use: 198.3 MB Sun Apr 16 16:12:48 2023 found 929138 cycles, need 911041 Sun Apr 16 16:12:48 2023 weight of 911041 cycles is about 63778730 (70.01/cycle) Sun Apr 16 16:12:48 2023 distribution of cycle lengths: Sun Apr 16 16:12:48 2023 1 relations: 116380 Sun Apr 16 16:12:48 2023 2 relations: 105485 Sun Apr 16 16:12:48 2023 3 relations: 101219 Sun Apr 16 16:12:48 2023 4 relations: 91100 Sun Apr 16 16:12:48 2023 5 relations: 82269 Sun Apr 16 16:12:48 2023 6 relations: 69355 Sun Apr 16 16:12:48 2023 7 relations: 61761 Sun Apr 16 16:12:48 2023 8 relations: 53209 Sun Apr 16 16:12:48 2023 9 relations: 45499 Sun Apr 16 16:12:48 2023 10+ relations: 184764 Sun Apr 16 16:12:48 2023 heaviest cycle: 22 relations Sun Apr 16 16:12:48 2023 commencing cycle optimization Sun Apr 16 16:12:49 2023 start with 5463323 relations Sun Apr 16 16:12:55 2023 pruned 121933 relations Sun Apr 16 16:12:55 2023 memory use: 182.0 MB Sun Apr 16 16:12:55 2023 distribution of cycle lengths: Sun Apr 16 16:12:55 2023 1 relations: 116380 Sun Apr 16 16:12:55 2023 2 relations: 107724 Sun Apr 16 16:12:55 2023 3 relations: 104467 Sun Apr 16 16:12:55 2023 4 relations: 93054 Sun Apr 16 16:12:55 2023 5 relations: 84070 Sun Apr 16 16:12:55 2023 6 relations: 70189 Sun Apr 16 16:12:55 2023 7 relations: 62179 Sun Apr 16 16:12:55 2023 8 relations: 53262 Sun Apr 16 16:12:55 2023 9 relations: 45349 Sun Apr 16 16:12:55 2023 10+ relations: 174367 Sun Apr 16 16:12:55 2023 heaviest cycle: 22 relations Sun Apr 16 16:12:56 2023 RelProcTime: 107 Sun Apr 16 16:12:56 2023 elapsed time 00:01:47 Sun Apr 16 16:12:56 2023 Sun Apr 16 16:12:56 2023 Sun Apr 16 16:12:56 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 16:12:56 2023 random seeds: c546fec0 4da036fd Sun Apr 16 16:12:56 2023 factoring 51287425946868219141854130327559392319087817858247171144553019428903212131311181502591099028423663561670282837037402026801271790586733777679 (140 digits) Sun Apr 16 16:12:56 2023 searching for 15-digit factors Sun Apr 16 16:12:57 2023 commencing number field sieve (140-digit input) Sun Apr 16 16:12:57 2023 R0: -10000000000000000000000000000000000 Sun Apr 16 16:12:57 2023 R1: 1 Sun Apr 16 16:12:57 2023 A0: 1 Sun Apr 16 16:12:57 2023 A1: 0 Sun Apr 16 16:12:57 2023 A2: 0 Sun Apr 16 16:12:57 2023 A3: 0 Sun Apr 16 16:12:57 2023 A4: 0 Sun Apr 16 16:12:57 2023 A5: 725 Sun Apr 16 16:12:57 2023 skew 0.27, size 5.497e-012, alpha -0.092, combined = 2.268e-010 rroots = 1 Sun Apr 16 16:12:57 2023 Sun Apr 16 16:12:57 2023 commencing linear algebra Sun Apr 16 16:12:57 2023 read 911041 cycles Sun Apr 16 16:12:58 2023 cycles contain 3058117 unique relations Sun Apr 16 16:13:04 2023 read 3058117 relations Sun Apr 16 16:13:07 2023 using 20 quadratic characters above 134216142 Sun Apr 16 16:13:15 2023 building initial matrix Sun Apr 16 16:13:31 2023 memory use: 375.0 MB Sun Apr 16 16:13:32 2023 read 911041 cycles Sun Apr 16 16:13:32 2023 matrix is 910860 x 911041 (272.7 MB) with weight 81646407 (89.62/col) Sun Apr 16 16:13:32 2023 sparse part has weight 61476612 (67.48/col) Sun Apr 16 16:13:36 2023 filtering completed in 2 passes Sun Apr 16 16:13:36 2023 matrix is 908381 x 908562 (272.5 MB) with weight 81552227 (89.76/col) Sun Apr 16 16:13:36 2023 sparse part has weight 61439517 (67.62/col) Sun Apr 16 16:13:38 2023 matrix starts at (0, 0) Sun Apr 16 16:13:38 2023 matrix is 908381 x 908562 (272.5 MB) with weight 81552227 (89.76/col) Sun Apr 16 16:13:38 2023 sparse part has weight 61439517 (67.62/col) Sun Apr 16 16:13:38 2023 saving the first 48 matrix rows for later Sun Apr 16 16:13:38 2023 matrix includes 64 packed rows Sun Apr 16 16:13:38 2023 matrix is 908333 x 908562 (258.5 MB) with weight 64380994 (70.86/col) Sun Apr 16 16:13:38 2023 sparse part has weight 58672105 (64.58/col) Sun Apr 16 16:13:38 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Apr 16 16:13:41 2023 commencing Lanczos iteration (32 threads) Sun Apr 16 16:13:41 2023 memory use: 205.7 MB Sun Apr 16 16:13:42 2023 linear algebra at 0.3%, ETA 0h 4m Sun Apr 16 16:22:00 2023 lanczos halted after 14367 iterations (dim = 908330) Sun Apr 16 16:22:00 2023 recovered 35 nontrivial dependencies Sun Apr 16 16:22:00 2023 BLanczosTime: 543 Sun Apr 16 16:22:00 2023 elapsed time 00:09:04 Sun Apr 16 16:22:00 2023 Sun Apr 16 16:22:00 2023 Sun Apr 16 16:22:00 2023 Msieve v. 1.52 (SVN 927) Sun Apr 16 16:22:00 2023 random seeds: d6f5f6dc 2c8e432b Sun Apr 16 16:22:00 2023 factoring 51287425946868219141854130327559392319087817858247171144553019428903212131311181502591099028423663561670282837037402026801271790586733777679 (140 digits) Sun Apr 16 16:22:01 2023 searching for 15-digit factors Sun Apr 16 16:22:01 2023 commencing number field sieve (140-digit input) Sun Apr 16 16:22:01 2023 R0: -10000000000000000000000000000000000 Sun Apr 16 16:22:01 2023 R1: 1 Sun Apr 16 16:22:01 2023 A0: 1 Sun Apr 16 16:22:01 2023 A1: 0 Sun Apr 16 16:22:01 2023 A2: 0 Sun Apr 16 16:22:01 2023 A3: 0 Sun Apr 16 16:22:01 2023 A4: 0 Sun Apr 16 16:22:01 2023 A5: 725 Sun Apr 16 16:22:01 2023 skew 0.27, size 5.497e-012, alpha -0.092, combined = 2.268e-010 rroots = 1 Sun Apr 16 16:22:01 2023 Sun Apr 16 16:22:01 2023 commencing square root phase Sun Apr 16 16:22:01 2023 reading relations for dependency 1 Sun Apr 16 16:22:01 2023 read 454397 cycles Sun Apr 16 16:22:01 2023 cycles contain 1529834 unique relations Sun Apr 16 16:22:05 2023 read 1529834 relations Sun Apr 16 16:22:08 2023 multiplying 1529834 relations Sun Apr 16 16:22:34 2023 multiply complete, coefficients have about 46.48 million bits Sun Apr 16 16:22:34 2023 initial square root is modulo 4714441 Sun Apr 16 16:23:08 2023 GCD is 1, no factor found Sun Apr 16 16:23:08 2023 reading relations for dependency 2 Sun Apr 16 16:23:09 2023 read 454088 cycles Sun Apr 16 16:23:09 2023 cycles contain 1528792 unique relations Sun Apr 16 16:23:12 2023 read 1528792 relations Sun Apr 16 16:23:16 2023 multiplying 1528792 relations Sun Apr 16 16:23:41 2023 multiply complete, coefficients have about 46.45 million bits Sun Apr 16 16:23:41 2023 initial square root is modulo 4663111 Sun Apr 16 16:24:15 2023 sqrtTime: 134 Sun Apr 16 16:24:15 2023 prp67 factor: 8153591506238836768818620244544744567663372661725542205915045250173 Sun Apr 16 16:24:15 2023 prp73 factor: 6290163777229324535891306773916035421142679134427211473614776252028716923 Sun Apr 16 16:24:15 2023 elapsed time 00:02:15 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:25:41 UTC 2023 年 3 月 23 日 (木) 20 時 25 分 41 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 04:46:33 UTC 2023 年 3 月 11 日 (土) 13 時 46 分 33 秒 (日本時間) |
composite number 合成数 | 146553466747523751768748736608045279967657165959167172023448554679603800282999797857287244794825146553466747523751768748736608045279967657165959167172023448554679603800283<171> |
prime factors 素因数 | 298341289448116066155043142920933204009817165787116935753973395289<66> 491227570339406777053088419506160982254677465432607320206991298298923605758965922935426781278065236715347<105> |
factorization results 素因数分解の結果 | Number: n N=146553466747523751768748736608045279967657165959167172023448554679603800282999797857287244794825146553466747523751768748736608045279967657165959167172023448554679603800283 ( 171 digits) SNFS difficulty: 173 digits. Divisors found: Sat Mar 11 15:38:21 2023 prp66 factor: 298341289448116066155043142920933204009817165787116935753973395289 Sat Mar 11 15:38:21 2023 prp105 factor: 491227570339406777053088419506160982254677465432607320206991298298923605758965922935426781278065236715347 Sat Mar 11 15:38:21 2023 elapsed time 00:21:49 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 29x10^173+4 = 96(172)8 # n: 146553466747523751768748736608045279967657165959167172023448554679603800282999797857287244794825146553466747523751768748736608045279967657165959167172023448554679603800283 m: 10000000000000000000000000000000000 deg: 5 c5: 7250 c0: 1 skew: 0.17 # Murphy_E = 1.867e-10 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 13950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1504689 hash collisions in 13516224 relations (12812795 unique) Msieve: matrix is 806325 x 806552 (227.4 MB) Sieving start time: 2023/03/11 13:22:15 Sieving end time : 2023/03/11 15:16:08 Total sieving time: 1hrs 53min 53secs. Total relation processing time: 0hrs 18min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 0sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 11, 2023 13:39:20 UTC 2023 年 3 月 11 日 (土) 22 時 39 分 20 秒 (日本時間) |
composite number 合成数 | 331785327959695551554184951673932858584801793385746105653335349094019583921417186622676408049155841322825005091499385222753373688753396353946709<144> |
prime factors 素因数 | 2910160901757259330045298616882133606001<40> 114009272737927203036706069039038612062361929929592401954214340810200983293493191724538258216900675292709<105> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:12859825913456764679 Step 1 took 11157ms Step 2 took 4297ms ********** Factor found in step 2: 2910160901757259330045298616882133606001 Found prime factor of 40 digits: 2910160901757259330045298616882133606001 Prime cofactor 114009272737927203036706069039038612062361929929592401954214340810200983293493191724538258216900675292709 has 105 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 12, 2023 06:18:22 UTC 2023 年 4 月 12 日 (水) 15 時 18 分 22 秒 (日本時間) |
composite number 合成数 | 8375076806101410184956740849560885849560262685034319823435127543032269783061346841333849358297575712154810741175414850009438356618016944370047898969389<151> |
prime factors 素因数 | 72906007860808251348060801963961227175260410686760386277<56> 114874988383550786300552583302608241943749560876265949200357815314552666111198212088186879090857<96> |
factorization results 素因数分解の結果 | Number: n N=8375076806101410184956740849560885849560262685034319823435127543032269783061346841333849358297575712154810741175414850009438356618016944370047898969389 ( 151 digits) SNFS difficulty: 176 digits. Divisors found: Wed Apr 12 13:42:58 2023 prp56 factor: 72906007860808251348060801963961227175260410686760386277 Wed Apr 12 13:42:58 2023 prp96 factor: 114874988383550786300552583302608241943749560876265949200357815314552666111198212088186879090857 Wed Apr 12 13:42:58 2023 elapsed time 00:21:22 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 29x10^175+4 = 96(174)8 # n: 8375076806101410184956740849560885849560262685034319823435127543032269783061346841333849358297575712154810741175414850009438356618016944370047898969389 m: 100000000000000000000000000000000000 deg: 5 c5: 29 c0: 4 skew: 0.67 # Murphy_E = 2.004e-10 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 21450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1893774 hash collisions in 18915689 relations (17811366 unique) Msieve: matrix is 743950 x 744181 (208.8 MB) Sieving start time: 2023/04/12 09:22:38 Sieving end time : 2023/04/12 12:25:16 Total sieving time: 3hrs 2min 38secs. Total relation processing time: 0hrs 15min 15sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 0sec. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6100000,6100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2125 | Rytis Slatkevičius | March 27, 2023 07:55:53 UTC 2023 年 3 月 27 日 (月) 16 時 55 分 53 秒 (日本時間) | |
45 | 11e6 | 2310 / 3965 | Rytis Slatkevičius | March 27, 2023 08:43:48 UTC 2023 年 3 月 27 日 (月) 17 時 43 分 48 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 22, 2023 08:44:19 UTC 2023 年 2 月 22 日 (水) 17 時 44 分 19 秒 (日本時間) |
composite number 合成数 | 1020097843969826888378827467372272368652000017450463223722222973453991956083064852005585101916122855835574907589<112> |
prime factors 素因数 | 8341353430025865876638960021903928456595914113304449<52> 122294044069376358474388422840075435882445305802436955073861<60> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 82 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 81 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 90 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 76 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 89 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 85 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 Wed Feb 22 09:37:01 2023 Wed Feb 22 09:37:01 2023 Wed Feb 22 09:37:01 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 09:37:01 2023 random seeds: fd8c4c8c aade963a Wed Feb 22 09:37:01 2023 factoring 1020097843969826888378827467372272368652000017450463223722222973453991956083064852005585101916122855835574907589 (112 digits) Wed Feb 22 09:37:02 2023 searching for 15-digit factors Wed Feb 22 09:37:02 2023 commencing number field sieve (112-digit input) Wed Feb 22 09:37:02 2023 R0: -2530034443943199329492 Wed Feb 22 09:37:02 2023 R1: 723009501269 Wed Feb 22 09:37:02 2023 A0: 698431831641547941773791053 Wed Feb 22 09:37:02 2023 A1: 52773318677653234090457 Wed Feb 22 09:37:02 2023 A2: -2239147263747427903 Wed Feb 22 09:37:02 2023 A3: -69101023434489 Wed Feb 22 09:37:02 2023 A4: 1154646882 Wed Feb 22 09:37:02 2023 A5: 9840 Wed Feb 22 09:37:02 2023 skew 45689.74, size 9.055e-011, alpha -5.340, combined = 7.220e-010 rroots = 5 Wed Feb 22 09:37:02 2023 Wed Feb 22 09:37:02 2023 commencing relation filtering Wed Feb 22 09:37:02 2023 estimated available RAM is 65413.5 MB Wed Feb 22 09:37:02 2023 commencing duplicate removal, pass 1 Wed Feb 22 09:37:16 2023 found 709600 hash collisions in 7351377 relations Wed Feb 22 09:37:24 2023 added 57799 free relations Wed Feb 22 09:37:24 2023 commencing duplicate removal, pass 2 Wed Feb 22 09:37:26 2023 found 418635 duplicates and 6990541 unique relations Wed Feb 22 09:37:26 2023 memory use: 24.6 MB Wed Feb 22 09:37:26 2023 reading ideals above 100000 Wed Feb 22 09:37:26 2023 commencing singleton removal, initial pass Wed Feb 22 09:37:51 2023 memory use: 188.3 MB Wed Feb 22 09:37:52 2023 reading all ideals from disk Wed Feb 22 09:37:52 2023 memory use: 238.4 MB Wed Feb 22 09:37:52 2023 keeping 7856100 ideals with weight <= 200, target excess is 37787 Wed Feb 22 09:37:52 2023 commencing in-memory singleton removal Wed Feb 22 09:37:52 2023 begin with 6990541 relations and 7856100 unique ideals Wed Feb 22 09:37:55 2023 reduce to 2142164 relations and 2059915 ideals in 19 passes Wed Feb 22 09:37:55 2023 max relations containing the same ideal: 86 Wed Feb 22 09:37:55 2023 removing 208433 relations and 189225 ideals in 19208 cliques Wed Feb 22 09:37:55 2023 commencing in-memory singleton removal Wed Feb 22 09:37:55 2023 begin with 1933731 relations and 2059915 unique ideals Wed Feb 22 09:37:55 2023 reduce to 1916097 relations and 1852849 ideals in 10 passes Wed Feb 22 09:37:55 2023 max relations containing the same ideal: 80 Wed Feb 22 09:37:56 2023 removing 155945 relations and 136737 ideals in 19208 cliques Wed Feb 22 09:37:56 2023 commencing in-memory singleton removal Wed Feb 22 09:37:56 2023 begin with 1760152 relations and 1852849 unique ideals Wed Feb 22 09:37:56 2023 reduce to 1749142 relations and 1704981 ideals in 9 passes Wed Feb 22 09:37:56 2023 max relations containing the same ideal: 78 Wed Feb 22 09:37:57 2023 relations with 0 large ideals: 109 Wed Feb 22 09:37:57 2023 relations with 1 large ideals: 330 Wed Feb 22 09:37:57 2023 relations with 2 large ideals: 5091 Wed Feb 22 09:37:57 2023 relations with 3 large ideals: 40156 Wed Feb 22 09:37:57 2023 relations with 4 large ideals: 169709 Wed Feb 22 09:37:57 2023 relations with 5 large ideals: 393512 Wed Feb 22 09:37:57 2023 relations with 6 large ideals: 525514 Wed Feb 22 09:37:57 2023 relations with 7+ large ideals: 614721 Wed Feb 22 09:37:57 2023 commencing 2-way merge Wed Feb 22 09:37:57 2023 reduce to 974766 relation sets and 930606 unique ideals Wed Feb 22 09:37:57 2023 ignored 1 oversize relation sets Wed Feb 22 09:37:57 2023 commencing full merge Wed Feb 22 09:38:07 2023 memory use: 105.0 MB Wed Feb 22 09:38:08 2023 found 479884 cycles, need 474806 Wed Feb 22 09:38:08 2023 weight of 474806 cycles is about 33471889 (70.50/cycle) Wed Feb 22 09:38:08 2023 distribution of cycle lengths: Wed Feb 22 09:38:08 2023 1 relations: 53522 Wed Feb 22 09:38:08 2023 2 relations: 53807 Wed Feb 22 09:38:08 2023 3 relations: 54389 Wed Feb 22 09:38:08 2023 4 relations: 48026 Wed Feb 22 09:38:08 2023 5 relations: 43535 Wed Feb 22 09:38:08 2023 6 relations: 36596 Wed Feb 22 09:38:08 2023 7 relations: 32403 Wed Feb 22 09:38:08 2023 8 relations: 27562 Wed Feb 22 09:38:08 2023 9 relations: 23260 Wed Feb 22 09:38:08 2023 10+ relations: 101706 Wed Feb 22 09:38:08 2023 heaviest cycle: 23 relations Wed Feb 22 09:38:08 2023 commencing cycle optimization Wed Feb 22 09:38:08 2023 start with 2965430 relations Wed Feb 22 09:38:12 2023 pruned 57690 relations Wed Feb 22 09:38:12 2023 memory use: 100.4 MB Wed Feb 22 09:38:12 2023 distribution of cycle lengths: Wed Feb 22 09:38:12 2023 1 relations: 53522 Wed Feb 22 09:38:12 2023 2 relations: 54840 Wed Feb 22 09:38:12 2023 3 relations: 56058 Wed Feb 22 09:38:12 2023 4 relations: 48968 Wed Feb 22 09:38:12 2023 5 relations: 44160 Wed Feb 22 09:38:12 2023 6 relations: 36968 Wed Feb 22 09:38:12 2023 7 relations: 32480 Wed Feb 22 09:38:12 2023 8 relations: 27527 Wed Feb 22 09:38:12 2023 9 relations: 23057 Wed Feb 22 09:38:12 2023 10+ relations: 97226 Wed Feb 22 09:38:12 2023 heaviest cycle: 23 relations Wed Feb 22 09:38:12 2023 RelProcTime: 70 Wed Feb 22 09:38:12 2023 elapsed time 00:01:11 Wed Feb 22 09:38:12 2023 Wed Feb 22 09:38:12 2023 Wed Feb 22 09:38:12 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 09:38:12 2023 random seeds: efe88d8c 94dce65a Wed Feb 22 09:38:12 2023 factoring 1020097843969826888378827467372272368652000017450463223722222973453991956083064852005585101916122855835574907589 (112 digits) Wed Feb 22 09:38:12 2023 searching for 15-digit factors Wed Feb 22 09:38:12 2023 commencing number field sieve (112-digit input) Wed Feb 22 09:38:12 2023 R0: -2530034443943199329492 Wed Feb 22 09:38:12 2023 R1: 723009501269 Wed Feb 22 09:38:12 2023 A0: 698431831641547941773791053 Wed Feb 22 09:38:12 2023 A1: 52773318677653234090457 Wed Feb 22 09:38:12 2023 A2: -2239147263747427903 Wed Feb 22 09:38:12 2023 A3: -69101023434489 Wed Feb 22 09:38:12 2023 A4: 1154646882 Wed Feb 22 09:38:12 2023 A5: 9840 Wed Feb 22 09:38:12 2023 skew 45689.74, size 9.055e-011, alpha -5.340, combined = 7.220e-010 rroots = 5 Wed Feb 22 09:38:12 2023 Wed Feb 22 09:38:12 2023 commencing linear algebra Wed Feb 22 09:38:12 2023 read 474806 cycles Wed Feb 22 09:38:13 2023 cycles contain 1697762 unique relations Wed Feb 22 09:38:16 2023 read 1697762 relations Wed Feb 22 09:38:18 2023 using 20 quadratic characters above 134215122 Wed Feb 22 09:38:22 2023 building initial matrix Wed Feb 22 09:38:30 2023 memory use: 212.5 MB Wed Feb 22 09:38:30 2023 read 474806 cycles Wed Feb 22 09:38:30 2023 matrix is 474629 x 474806 (143.1 MB) with weight 45586555 (96.01/col) Wed Feb 22 09:38:30 2023 sparse part has weight 32282304 (67.99/col) Wed Feb 22 09:38:32 2023 filtering completed in 2 passes Wed Feb 22 09:38:33 2023 matrix is 473786 x 473962 (143.0 MB) with weight 45552386 (96.11/col) Wed Feb 22 09:38:33 2023 sparse part has weight 32273188 (68.09/col) Wed Feb 22 09:38:33 2023 matrix starts at (0, 0) Wed Feb 22 09:38:33 2023 matrix is 473786 x 473962 (143.0 MB) with weight 45552386 (96.11/col) Wed Feb 22 09:38:33 2023 sparse part has weight 32273188 (68.09/col) Wed Feb 22 09:38:33 2023 saving the first 48 matrix rows for later Wed Feb 22 09:38:34 2023 matrix includes 64 packed rows Wed Feb 22 09:38:34 2023 matrix is 473738 x 473962 (138.1 MB) with weight 36001082 (75.96/col) Wed Feb 22 09:38:34 2023 sparse part has weight 31454862 (66.37/col) Wed Feb 22 09:38:34 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Feb 22 09:38:35 2023 commencing Lanczos iteration (32 threads) Wed Feb 22 09:38:35 2023 memory use: 107.9 MB Wed Feb 22 09:38:40 2023 linear algebra at 2.6%, ETA 0h 3m Wed Feb 22 09:42:07 2023 lanczos halted after 7493 iterations (dim = 473737) Wed Feb 22 09:42:07 2023 recovered 30 nontrivial dependencies Wed Feb 22 09:42:07 2023 BLanczosTime: 235 Wed Feb 22 09:42:07 2023 elapsed time 00:03:55 Wed Feb 22 09:42:07 2023 Wed Feb 22 09:42:07 2023 Wed Feb 22 09:42:07 2023 Msieve v. 1.52 (SVN 927) Wed Feb 22 09:42:07 2023 random seeds: 912b2bf8 a4ab9d74 Wed Feb 22 09:42:07 2023 factoring 1020097843969826888378827467372272368652000017450463223722222973453991956083064852005585101916122855835574907589 (112 digits) Wed Feb 22 09:42:08 2023 searching for 15-digit factors Wed Feb 22 09:42:08 2023 commencing number field sieve (112-digit input) Wed Feb 22 09:42:08 2023 R0: -2530034443943199329492 Wed Feb 22 09:42:08 2023 R1: 723009501269 Wed Feb 22 09:42:08 2023 A0: 698431831641547941773791053 Wed Feb 22 09:42:08 2023 A1: 52773318677653234090457 Wed Feb 22 09:42:08 2023 A2: -2239147263747427903 Wed Feb 22 09:42:08 2023 A3: -69101023434489 Wed Feb 22 09:42:08 2023 A4: 1154646882 Wed Feb 22 09:42:08 2023 A5: 9840 Wed Feb 22 09:42:08 2023 skew 45689.74, size 9.055e-011, alpha -5.340, combined = 7.220e-010 rroots = 5 Wed Feb 22 09:42:08 2023 Wed Feb 22 09:42:08 2023 commencing square root phase Wed Feb 22 09:42:08 2023 reading relations for dependency 1 Wed Feb 22 09:42:08 2023 read 237306 cycles Wed Feb 22 09:42:08 2023 cycles contain 850542 unique relations Wed Feb 22 09:42:10 2023 read 850542 relations Wed Feb 22 09:42:12 2023 multiplying 850542 relations Wed Feb 22 09:42:32 2023 multiply complete, coefficients have about 36.56 million bits Wed Feb 22 09:42:32 2023 initial square root is modulo 177841 Wed Feb 22 09:42:56 2023 GCD is N, no factor found Wed Feb 22 09:42:56 2023 reading relations for dependency 2 Wed Feb 22 09:42:56 2023 read 237173 cycles Wed Feb 22 09:42:56 2023 cycles contain 849886 unique relations Wed Feb 22 09:42:58 2023 read 849886 relations Wed Feb 22 09:43:00 2023 multiplying 849886 relations Wed Feb 22 09:43:19 2023 multiply complete, coefficients have about 36.54 million bits Wed Feb 22 09:43:19 2023 initial square root is modulo 176261 Wed Feb 22 09:43:43 2023 sqrtTime: 95 Wed Feb 22 09:43:43 2023 prp52 factor: 8341353430025865876638960021903928456595914113304449 Wed Feb 22 09:43:43 2023 prp60 factor: 122294044069376358474388422840075435882445305802436955073861 Wed Feb 22 09:43:43 2023 elapsed time 00:01:36 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 6, 2023 09:13:32 UTC 2023 年 4 月 6 日 (木) 18 時 13 分 32 秒 (日本時間) |
composite number 合成数 | 31579690017273580808589059597614821817830077060676819584050068700352444977984105853155592227140271816619442419993932317562454868729951805302919305864666454575726182932207<170> |
prime factors 素因数 | 1239298879277165295531981108261473815762594259392856323633886352386091344710111158229<85> 25481899923683286479858919207370809805093985318765609308303093681860792503598553704883<86> |
factorization results 素因数分解の結果 | Number: n N=31579690017273580808589059597614821817830077060676819584050068700352444977984105853155592227140271816619442419993932317562454868729951805302919305864666454575726182932207 ( 170 digits) SNFS difficulty: 178 digits. Divisors found: Fri Mar 17 17:16:53 2023 prp85 factor: 1239298879277165295531981108261473815762594259392856323633886352386091344710111158229 Fri Mar 17 17:16:53 2023 prp86 factor: 25481899923683286479858919207370809805093985318765609308303093681860792503598553704883 Fri Mar 17 17:16:53 2023 elapsed time 00:30:51 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.083). Factorization parameters were as follows: # # N = 29x10^178+4 = 96(177)8 # n: 31579690017273580808589059597614821817830077060676819584050068700352444977984105853155592227140271816619442419993932317562454868729951805302919305864666454575726182932207 m: 100000000000000000000000000000000000 deg: 5 c5: 7250 c0: 1 skew: 0.17 # Murphy_E = 1.177e-10 type: snfs lss: 1 rlim: 6500000 alim: 6500000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 14450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1913265 hash collisions in 15170125 relations (14117554 unique) Msieve: matrix is 957125 x 957350 (270.0 MB) Sieving start time: 2023/03/17 14:34:42 Sieving end time : 2023/03/17 16:45:43 Total sieving time: 2hrs 11min 1secs. Total relation processing time: 0hrs 26min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 19sec. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 22, 2023 05:44:17 UTC 2023 年 6 月 22 日 (木) 14 時 44 分 17 秒 (日本時間) |
composite number 合成数 | 12066827232156226128551111548914304284935652354211745501710768027229031182148602418217904092013371755043683600555361922488878507909151<134> |
prime factors 素因数 | 416427209627410006972801639592131765714771865243664870302306762603<66> 28977038371130408729053631900110868907991732425382504529729911788317<68> |
factorization results 素因数分解の結果 | 12066827232156226128551111548914304284935652354211745501710768027229031182148602418217904092013371755043683600555361922488878507909151=416427209627410006972801639592131765714771865243664870302306762603*28977038371130408729053631900110868907991732425382504529729911788317 cado polynomial n: 12066827232156226128551111548914304284935652354211745501710768027229031182148602418217904092013371755043683600555361922488878507909151 skew: 0.67 type: snfs c0: 4 c5: 29 Y0: 1000000000000000000000000000000000000 Y1: -1 # f(x) = 29*x^5+4 # g(x) = -x+1000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 7400000 tasks.lim1 = 7400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 416427209627410006972801639592131765714771865243664870302306762603 28977038371130408729053631900110868907991732425382504529729911788317 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 204.51/66.2312 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Factor Base: Total cpu/real time for makefb: 3.11/1.77535 Info:Generate Free Relations: Total cpu/real time for freerel: 126.74/33.5601 Info:Square Root: Total cpu/real time for sqrt: 204.51/66.2312 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 86.76/84.9859 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 84.7s Info:Quadratic Characters: Total cpu/real time for characters: 30.13/12.7766 Info:Filtering - Singleton removal: Total cpu/real time for purge: 139.42/115.318 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 211.41/185.497 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 161.2s Info:Filtering - Merging: Merged matrix has 908695 rows and total weight 155014299 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 239.98/65.3425 Info:Filtering - Merging: Total cpu/real time for replay: 30.1/30.1874 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22425128 Info:Lattice Sieving: Average J: 1894.66 for 724251 special-q, max bucket fill -bkmult 1.0,1s:1.181730 Info:Lattice Sieving: Total time: 124478s Info:Linear Algebra: Total cpu/real time for bwc: 14370.5/3817.11 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 9266.17, WCT time 2390.48, iteration CPU time 0.08, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28416 iterations) Info:Linear Algebra: Lingen CPU time 114.13, WCT time 116.74 Info:Linear Algebra: Mksol: CPU time 4817.73, WCT time 1246.54, iteration CPU time 0.08, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (14336 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 249486/66900.7 Info:root: Cleaning up computation data in /tmp/cado.ba67_wk1 416427209627410006972801639592131765714771865243664870302306762603 28977038371130408729053631900110868907991732425382504529729911788317 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 14:23:31 UTC 2023 年 3 月 31 日 (金) 23 時 23 分 31 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | May 13, 2023 04:52:36 UTC 2023 年 5 月 13 日 (土) 13 時 52 分 36 秒 (日本時間) |
composite number 合成数 | 496944423387221264108164236992300515086556454734412353306497096441425755832644048031585185528887596059483403333487506772677339439133725341759<141> |
prime factors 素因数 | 384382858940970086226748554654174623485347424773822259921827870143<66> 1292837107139414161715946068036370057137112272029320096988498990519494909313<76> |
factorization results 素因数分解の結果 | 496944423387221264108164236992300515086556454734412353306497096441425755832644048031585185528887596059483403333487506772677339439133725341759=384382858940970086226748554654174623485347424773822259921827870143*1292837107139414161715946068036370057137112272029320096988498990519494909313 cado polynomial n: 496944423387221264108164236992300515086556454734412353306497096441425755832644048031585185528887596059483403333487506772677339439133725341759 skew: 0.42 type: snfs c0: 2 c5: 145 Y0: 1000000000000000000000000000000000000 Y1: -1 # f(x) = 145*x^5+2 # g(x) = -x+1000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 7600000 tasks.lim1 = 7600000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 53 tasks.sieve.mfb1 = 53 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 384382858940970086226748554654174623485347424773822259921827870143 1292837107139414161715946068036370057137112272029320096988498990519494909313 Info:Square Root: Total cpu/real time for sqrt: 218.43/70.9238 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22433109 Info:Lattice Sieving: Average J: 1895.71 for 822548 special-q, max bucket fill -bkmult 1.0,1s:1.183100 Info:Lattice Sieving: Total time: 143788s Info:Linear Algebra: Total cpu/real time for bwc: 14931.9/3838.48 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 9441.14, WCT time 2415.86, iteration CPU time 0.07, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (30976 iterations) Info:Linear Algebra: Lingen CPU time 179.37, WCT time 45.67 Info:Linear Algebra: Mksol: CPU time 5149.52, WCT time 1317.31, iteration CPU time 0.08, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (15616 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 3.23/1.8582 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 233.3/230.372 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 216.7s Info:Generate Free Relations: Total cpu/real time for freerel: 120.4/31.5536 Info:Square Root: Total cpu/real time for sqrt: 218.43/70.9238 Info:Quadratic Characters: Total cpu/real time for characters: 32.64/12.8265 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 93.5/88.1315 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 87.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 133.06/117.523 Info:Filtering - Merging: Merged matrix has 987893 rows and total weight 168378477 (170.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 246.08/67.4514 Info:Filtering - Merging: Total cpu/real time for replay: 33.94/29.3168 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 290937/52788.4 Info:root: Cleaning up computation data in /tmp/cado.aecda_we 384382858940970086226748554654174623485347424773822259921827870143 1292837107139414161715946068036370057137112272029320096988498990519494909313 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 15, 2023 15:49:13 UTC 2023 年 3 月 16 日 (木) 0 時 49 分 13 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 13, 2023 12:41:29 UTC 2023 年 6 月 13 日 (火) 21 時 41 分 29 秒 (日本時間) |
composite number 合成数 | 108972855666021237548204045220792080849844984632790591544442946903810479851204484090404388886892917978298908396367499579059787065546704339407284321<147> |
prime factors 素因数 | 10057331058505840365809874770930136883960482884591225527112233984319651<71> 10835166410661110903984360129332343143796472576313204880676370432517867024171<77> |
factorization results 素因数分解の結果 | 108972855666021237548204045220792080849844984632790591544442946903810479851204484090404388886892917978298908396367499579059787065546704339407284321=10057331058505840365809874770930136883960482884591225527112233984319651*10835166410661110903984360129332343143796472576313204880676370432517867024171 cado polynomial n: 108972855666021237548204045220792080849844984632790591544442946903810479851204484090404388886892917978298908396367499579059787065546704339407284321 skew: 0.67 type: snfs c0: 4 c5: 29 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 29*x^5+4 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 9000000 tasks.lim1 = 9000000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 10057331058505840365809874770930136883960482884591225527112233984319651 10835166410661110903984360129332343143796472576313204880676370432517867024171 Info:Square Root: Total cpu/real time for sqrt: 343.23/112.75 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22426338 Info:Lattice Sieving: Average J: 1894.86 for 921347 special-q, max bucket fill -bkmult 1.0,1s:1.168990 Info:Lattice Sieving: Total time: 172683s Info:Linear Algebra: Total cpu/real time for bwc: 30524.7/7869.15 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 19441.52, WCT time 4985.46, iteration CPU time 0.11, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (43264 iterations) Info:Linear Algebra: Lingen CPU time 265.03, WCT time 67.41 Info:Linear Algebra: Mksol: CPU time 10575.21, WCT time 2710.56, iteration CPU time 0.12, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (21760 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 3.82/2.04709 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 236.15/228.488 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 213.2s Info:Generate Free Relations: Total cpu/real time for freerel: 118.68/31.0695 Info:Square Root: Total cpu/real time for sqrt: 343.23/112.75 Info:Quadratic Characters: Total cpu/real time for characters: 49.93/23.6694 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 92.67/90.7222 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 90.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 102.56/98.1872 Info:Filtering - Merging: Merged matrix has 1382715 rows and total weight 236708807 (171.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 356.99/98.2509 Info:Filtering - Merging: Total cpu/real time for replay: 51.72/44.5893 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 357019/95297.9 Info:root: Cleaning up computation data in /tmp/cado.1z3mbp1z 10057331058505840365809874770930136883960482884591225527112233984319651 10835166410661110903984360129332343143796472576313204880676370432517867024171 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 13:03:30 UTC 2023 年 3 月 28 日 (火) 22 時 3 分 30 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 22, 2023 14:18:47 UTC 2023 年 3 月 22 日 (水) 23 時 18 分 47 秒 (日本時間) |
composite number 合成数 | 372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750373<183> |
prime factors 素因数 | 160652994253673596309617825301659770744444593766118180199394074616798065962250723<81> 2321774021608078268148567154274969802596178726290032687941614979701310524730782334065722183747832774551<103> |
factorization results 素因数分解の結果 | Number: n N=372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750373 ( 183 digits) SNFS difficulty: 187 digits. Divisors found: Wed Mar 22 23:12:04 2023 prp81 factor: 160652994253673596309617825301659770744444593766118180199394074616798065962250723 Wed Mar 22 23:12:04 2023 prp103 factor: 2321774021608078268148567154274969802596178726290032687941614979701310524730782334065722183747832774551 Wed Mar 22 23:12:04 2023 elapsed time 00:57:30 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.110). Factorization parameters were as follows: # # N = 29x10^186+4 = 96(185)8 # n: 372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750372999948551731234243967690487215105211709625971086072953645109842053814889128980809795750373 m: 10000000000000000000000000000000000000 deg: 5 c5: 145 c0: 2 skew: 0.42 # Murphy_E = 6.685e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 8550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1087802 hash collisions in 12185179 relations (11874784 unique) Msieve: matrix is 1362927 x 1363156 (391.6 MB) Sieving start time: 2023/03/22 18:54:43 Sieving end time : 2023/03/22 22:14:19 Total sieving time: 3hrs 19min 36secs. Total relation processing time: 0hrs 51min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 14sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9100000,9100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 25, 2023 02:28:23 UTC 2023 年 3 月 25 日 (土) 11 時 28 分 23 秒 (日本時間) |
composite number 合成数 | 1950618231219153878916691919461570236784076699025009209392927830852566399203023881236818068792995502819296045038436495309169413441405964014557772545757693280046869261388538981<175> |
prime factors 素因数 | 17312004870658930988296458901386650435130835743248820331837<59> 112674311600104655204987346764331428511078906070820136774505025682209484783032439921988031064203159977480959853002313<117> |
factorization results 素因数分解の結果 | Number: n N=1950618231219153878916691919461570236784076699025009209392927830852566399203023881236818068792995502819296045038436495309169413441405964014557772545757693280046869261388538981 ( 175 digits) SNFS difficulty: 187 digits. Divisors found: Sat Mar 25 13:01:42 2023 prp59 factor: 17312004870658930988296458901386650435130835743248820331837 Sat Mar 25 13:01:42 2023 prp117 factor: 112674311600104655204987346764331428511078906070820136774505025682209484783032439921988031064203159977480959853002313 Sat Mar 25 13:01:42 2023 elapsed time 00:51:35 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 29x10^187+4 = 96(186)8 # n: 1950618231219153878916691919461570236784076699025009209392927830852566399203023881236818068792995502819296045038436495309169413441405964014557772545757693280046869261388538981 m: 10000000000000000000000000000000000000 deg: 5 c5: 725 c0: 1 skew: 0.27 # Murphy_E = 5.616e-11 type: snfs lss: 1 rlim: 9500000 alim: 9500000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 23150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1551262 hash collisions in 14764527 relations (14137920 unique) Msieve: matrix is 1222652 x 1222878 (345.2 MB) Sieving start time: 2023/03/25 04:48:56 Sieving end time : 2023/03/25 12:09:37 Total sieving time: 7hrs 20min 41secs. Total relation processing time: 0hrs 42min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 57sec. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9500000,9500000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 29, 2023 09:36:06 UTC 2023 年 3 月 29 日 (水) 18 時 36 分 6 秒 (日本時間) |
composite number 合成数 | 223935740932330127500867265457486915350028418213991876808444888319449612666520449071858466513899621676160405964953586724393775276462532235991886089843668685890328387<165> |
prime factors 素因数 | 20413931060088697226517958387591459274424279816927711698649826701323<68> 10969751013323797372047796121226795958630313159168069197196274423635886055552233463378028879257769<98> |
factorization results 素因数分解の結果 | Number: n N=223935740932330127500867265457486915350028418213991876808444888319449612666520449071858466513899621676160405964953586724393775276462532235991886089843668685890328387 ( 165 digits) SNFS difficulty: 188 digits. Divisors found: Wed Mar 29 20:20:30 2023 prp68 factor: 20413931060088697226517958387591459274424279816927711698649826701323 Wed Mar 29 20:20:30 2023 prp98 factor: 10969751013323797372047796121226795958630313159168069197196274423635886055552233463378028879257769 Wed Mar 29 20:20:30 2023 elapsed time 00:57:00 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.080). Factorization parameters were as follows: # # N = 29x10^188+4 = 96(187)8 # n: 223935740932330127500867265457486915350028418213991876808444888319449612666520449071858466513899621676160405964953586724393775276462532235991886089843668685890328387 m: 10000000000000000000000000000000000000 deg: 5 c5: 7250 c0: 1 skew: 0.17 # Murphy_E = 4.619e-11 type: snfs lss: 1 rlim: 9800000 alim: 9800000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9800000/9800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 16100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1608476 hash collisions in 14646446 relations (13932914 unique) Msieve: matrix is 1316985 x 1317209 (371.8 MB) Sieving start time: 2023/03/29 13:52:19 Sieving end time : 2023/03/29 19:23:11 Total sieving time: 5hrs 30min 52secs. Total relation processing time: 0hrs 50min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 7sec. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9800000,9800000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 09:17:05 UTC 2023 年 3 月 28 日 (火) 18 時 17 分 5 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 14, 2023 13:31:07 UTC 2023 年 4 月 14 日 (金) 22 時 31 分 7 秒 (日本時間) |
composite number 合成数 | 3452380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952381<193> |
prime factors 素因数 | 16917617529292339673472220892804579609039810359459987583<56> 90234638671643408631446565653770239955876731399598012565041<59> 2261550166913193735414251890145181364496626237409953095000718218369460909711027<79> |
factorization results 素因数分解の結果 | Number: n N=3452380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952381 ( 193 digits) SNFS difficulty: 193 digits. Divisors found: Fri Apr 14 23:03:00 2023 prp56 factor: 16917617529292339673472220892804579609039810359459987583 Fri Apr 14 23:03:00 2023 prp59 factor: 90234638671643408631446565653770239955876731399598012565041 Fri Apr 14 23:03:00 2023 prp79 factor: 2261550166913193735414251890145181364496626237409953095000718218369460909711027 Fri Apr 14 23:03:00 2023 elapsed time 02:00:38 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.044). Factorization parameters were as follows: # # N = 29x10^193+4 = 96(192)8 # n: 3452380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952380952381 m: 100000000000000000000000000000000000000 deg: 5 c5: 7250 c0: 1 skew: 0.17 # Murphy_E = 2.874e-11 type: snfs lss: 1 rlim: 11900000 alim: 11900000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11900000/11900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 24350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1450951 hash collisions in 13025882 relations (12340546 unique) Msieve: matrix is 1900239 x 1900464 (541.1 MB) Sieving start time: 2023/04/14 13:55:52 Sieving end time : 2023/04/14 21:02:06 Total sieving time: 7hrs 6min 14secs. Total relation processing time: 1hrs 47min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 39sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11900000,11900000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 2, 2023 20:58:30 UTC 2023 年 3 月 3 日 (金) 5 時 58 分 30 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 19, 2023 16:05:31 UTC 2023 年 4 月 20 日 (木) 1 時 5 分 31 秒 (日本時間) |
composite number 合成数 | 6146487644494863850507879935406416481370939254289054292868001917273726716742302360123498463714626398439672456602956115927072086007188467156103349118852257808511<160> |
prime factors 素因数 | 86497723676191486560331232652658783775173447<44> 129575162220180068256653805926356650084188452513686652591<57> 548403948771342721730590687645131681360634942189421732492743<60> |
factorization results 素因数分解の結果 | Number: n N=71059530624234052998454926266463700777482730913370051859908373305948795011508670801873652956304984818021009869647113 ( 116 digits) Divisors found: Thu Apr 20 01:56:55 2023 prp57 factor: 129575162220180068256653805926356650084188452513686652591 Thu Apr 20 01:56:55 2023 prp60 factor: 548403948771342721730590687645131681360634942189421732492743 Thu Apr 20 01:56:55 2023 elapsed time 00:07:47 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.092). Factorization parameters were as follows: # # N = 29x10^194+4 = 96(193)8 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 6146487644494863850507879935406416481370939254289054292868001917273726716742302360123498463714626398439672456602956115927072086007188467156103349118852257808511 (160 digits) # Using B1=31560000, B2=144290666536, polynomial Dickson(12), sigma=1:970514595 # Step 1 took 74639ms # Step 2 took 24592ms # ********** Factor found in step 2: 86497723676191486560331232652658783775173447 # Found prime factor of 44 digits: 86497723676191486560331232652658783775173447 # Composite cofactor 71059530624234052998454926266463700777482730913370051859908373305948795011508670801873652956304984818021009869647113 has 116 digits n: 71059530624234052998454926266463700777482730913370051859908373305948795011508670801873652956304984818021009869647113 Y0: -65276112107679424233857 Y1: 48674572712251 c0: -102426281672670306315227504340 c1: 206571229065230285000727 c2: 4706222869423273285 c3: -10945520197565 c4: -55613576 c5: 60 # skew 334536.90, size 4.733e-11, alpha -5.521, combined = 5.331e-10 rroots = 3 skew: 334536.90 type: gnfs rlim: 2600000 alim: 2600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1722111 hash collisions in 11703260 relations (10215817 unique) Msieve: matrix is 486647 x 486889 (66.8 MB) Sieving start time: 2023/04/20 00:42:10 Sieving end time : 2023/04/20 01:48:56 Total sieving time: 1hrs 6min 46secs. Total relation processing time: 0hrs 4min 38sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 41sec. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2600000,2600000,26,26,49,49,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 20:58:38 UTC 2023 年 3 月 3 日 (金) 5 時 58 分 38 秒 (日本時間) |
2350 | Ignacio Santos | April 18, 2023 15:46:37 UTC 2023 年 4 月 19 日 (水) 0 時 46 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 3, 2023 07:26:27 UTC 2023 年 3 月 3 日 (金) 16 時 26 分 27 秒 (日本時間) |
composite number 合成数 | 385465304012948276876567981527591661326912326978658026945157166736418533812645656651525867891075454319233102754204554326661821958025159005586954065802689<153> |
prime factors 素因数 | 117477465818055853674570776351101643228143<42> 3281185045393647568942965830185047945487597806502018686300903686458090866349512606587419666691886907918484287823<112> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:893674113 Step 1 took 6639ms Step 2 took 3591ms ********** Factor found in step 2: 117477465818055853674570776351101643228143 Found prime factor of 42 digits: 117477465818055853674570776351101643228143 Prime cofactor 3281185045393647568942965830185047945487597806502018686300903686458090866349512606587419666691886907918484287823 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 2, 2023 20:58:47 UTC 2023 年 3 月 3 日 (金) 5 時 58 分 47 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 22, 2023 19:22:07 UTC 2023 年 4 月 23 日 (日) 4 時 22 分 7 秒 (日本時間) |
composite number 合成数 | 10507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942029<197> |
prime factors 素因数 | 24744504995703985717785004972714917846896884658137<50> 424629483541328005100189840095596323745157360234058600068244149325524662735690631132543507462325489420906704451775769742716754768014971161318620117<147> |
factorization results 素因数分解の結果 | Number: n N=10507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942029 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: Sun Apr 23 05:14:19 2023 prp50 factor: 24744504995703985717785004972714917846896884658137 Sun Apr 23 05:14:19 2023 prp147 factor: 424629483541328005100189840095596323745157360234058600068244149325524662735690631132543507462325489420906704451775769742716754768014971161318620117 Sun Apr 23 05:14:19 2023 elapsed time 01:51:32 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 29x10^197+4 = 96(196)8 # n: 10507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942028985507246376811594202898550724637681159420289855072463768115942029 m: 1000000000000000000000000000000000000000 deg: 5 c5: 725 c0: 1 skew: 0.27 # Murphy_E = 2.168e-11 type: snfs lss: 1 rlim: 13900000 alim: 13900000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13900000/13900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 32550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2099827 hash collisions in 15815337 relations (14591737 unique) Msieve: matrix is 1793362 x 1793587 (507.0 MB) Sieving start time: 2023/04/22 15:47:54 Sieving end time : 2023/04/23 03:22:28 Total sieving time: 11hrs 34min 34secs. Total relation processing time: 1hrs 39min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 30sec. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,13900000,13900000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 2, 2023 20:58:55 UTC 2023 年 3 月 3 日 (金) 5 時 58 分 55 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 4, 2023 15:35:44 UTC 2023 年 6 月 5 日 (月) 0 時 35 分 44 秒 (日本時間) |
composite number 合成数 | 12539373983037315807693677490397916115273115726533195722422844232969498554088894936612813737667459690155645867752941168946468881859368918975430687032359803<155> |
prime factors 素因数 | 157527510221721041268813550105444562290887078076717<51> 79601169125240802086126763579815572445235047067217875173469472747369832303494852285445458940712986175559<104> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 12539373983037315807693677490397916115273115726533195722422844232969498554088894936612813737667459690155645867752941168946468881859368918975430687032359803 (155 digits) Using B1=43420000, B2=240490660426, polynomial Dickson(12), sigma=1:3864230142 Step 1 took 87468ms Step 2 took 30296ms ********** Factor found in step 2: 157527510221721041268813550105444562290887078076717 Found prime factor of 51 digits: 157527510221721041268813550105444562290887078076717 Prime cofactor 79601169125240802086126763579815572445235047067217875173469472747369832303494852285445458940712986175559 has 104 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 16:18:47 UTC 2023 年 3 月 18 日 (土) 1 時 18 分 47 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 29, 2023 23:42:59 UTC 2023 年 3 月 30 日 (木) 8 時 42 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 11, 2023 10:08:58 UTC 2023 年 7 月 11 日 (火) 19 時 8 分 58 秒 (日本時間) |
composite number 合成数 | 14073925017356711434503000202529190632873354527377899974394823657578574838353619399657227796635422741425107123225421462076644300753845210206282313134305044547067657731723428905020487<182> |
prime factors 素因数 | 32318699945705921587813716068956338890151770590786581132851093941588523<71> 435473117452135235014045674900062691964276794582069129421620201844103557380321519117855371565845510305202678869<111> |
factorization results 素因数分解の結果 | Number: n N=14073925017356711434503000202529190632873354527377899974394823657578574838353619399657227796635422741425107123225421462076644300753845210206282313134305044547067657731723428905020487 ( 182 digits) SNFS difficulty: 202 digits. Divisors found: Sun Jul 9 18:36:27 2023 prp71 factor: 32318699945705921587813716068956338890151770590786581132851093941588523 Sun Jul 9 18:36:27 2023 prp111 factor: 435473117452135235014045674900062691964276794582069129421620201844103557380321519117855371565845510305202678869 Sun Jul 9 18:36:27 2023 elapsed time 02:02:05 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.975). Factorization parameters were as follows: # # N = 29x10^201+4 = 96(200)8 # n: 14073925017356711434503000202529190632873354527377899974394823657578574838353619399657227796635422741425107123225421462076644300753845210206282313134305044547067657731723428905020487 m: 10000000000000000000000000000000000000000 deg: 5 c5: 145 c0: 2 skew: 0.42 # Murphy_E = 1.595e-11 type: snfs lss: 1 rlim: 16400000 alim: 16400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16400000/16400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 19400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2159202 hash collisions in 16378836 relations (14779130 unique) Msieve: matrix is 1952564 x 1952790 (554.8 MB) Sieving start time: 2023/07/09 08:36:57 Sieving end time : 2023/07/09 16:33:48 Total sieving time: 7hrs 56min 51secs. Total relation processing time: 1hrs 54min 56sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 46sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16400000,16400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 19, 2023 01:33:14 UTC 2023 年 3 月 19 日 (日) 10 時 33 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 29, 2023 23:58:02 UTC 2023 年 7 月 30 日 (日) 8 時 58 分 2 秒 (日本時間) |
composite number 合成数 | 254441326505499017750157309522265577580074542740078729667145635917702550939540600185366966708405399628774391462879905485355426851388257791335451149183<150> |
prime factors 素因数 | 436460802398020245694722291279505536109319<42> 582964896521147817543101382231005957956335390797905271146674788100948924512394379051967183774629961124122057<108> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 254441326505499017750157309522265577580074542740078729667145635917702550939540600185366966708405399628774391462879905485355426851388257791335451149183 (150 digits) Using B1=44800000, B2=240492041806, polynomial Dickson(12), sigma=1:2935055275 Step 1 took 85994ms Step 2 took 31708ms ********** Factor found in step 2: 436460802398020245694722291279505536109319 Found prime factor of 42 digits: 436460802398020245694722291279505536109319 Prime cofactor 582964896521147817543101382231005957956335390797905271146674788100948924512394379051967183774629961124122057 has 108 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 16:19:06 UTC 2023 年 3 月 18 日 (土) 1 時 19 分 6 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 29, 2023 23:43:13 UTC 2023 年 3 月 30 日 (木) 8 時 43 分 13 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | August 18, 2023 10:25:51 UTC 2023 年 8 月 18 日 (金) 19 時 25 分 51 秒 (日本時間) |
composite number 合成数 | 83383969986778875715596852475707892987356297276948424190851070891935441261119891008185524700513452089539986948526243062326042736747898595449<140> |
prime factors 素因数 | 82081851400864335760411913486288255520468050019351577546801668002629<68> 1015863660038019420533234480492806383961570342810806677733186500236892581<73> |
factorization results 素因数分解の結果 | 83383969986778875715596852475707892987356297276948424190851070891935441261119891008185524700513452089539986948526243062326042736747898595449=82081851400864335760411913486288255520468050019351577546801668002629*1015863660038019420533234480492806383961570342810806677733186500236892581 cado polynomial n: 83383969986778875715596852475707892987356297276948424190851070891935441261119891008185524700513452089539986948526243062326042736747898595449 skew: 105807.644 c0: 31735884400919224888626681965100 c1: -411315763611266711790193023 c2: -11704599942378737352602 c3: 282991929201950651 c4: 592743703170 c5: 542160 Y0: -774934976205718789514560334 Y1: 68479671328409388247 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.482e-07 # f(x) = 542160*x^5+592743703170*x^4+282991929201950651*x^3-11704599942378737352602*x^2-411315763611266711790193023*x+31735884400919224888626681965100 # g(x) = 68479671328409388247*x-774934976205718789514560334 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 82081851400864335760411913486288255520468050019351577546801668002629 1015863660038019420533234480492806383961570342810806677733186500236892581 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 3851.63/599.416 Info:HTTP server: Got notification to stop serving Workunits Info:Quadratic Characters: Total cpu/real time for characters: 103.66/26.1 Info:Linear Algebra: Total cpu/real time for bwc: 59281.3/15498.1 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 37853.2, WCT time 9870.72, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (62720 iterations) Info:Linear Algebra: Lingen CPU time 366.57, WCT time 95.01 Info:Linear Algebra: Mksol: CPU time 20658.05, WCT time 5377.01, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31488 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 743.17/93.93 Info:Square Root: Total cpu/real time for sqrt: 3851.63/599.416 Info:Generate Factor Base: Total cpu/real time for makefb: 16.14/2.27211 Info:Filtering - Merging: Merged matrix has 2004956 rows and total weight 340939501 (170.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 1071.86/151.963 Info:Filtering - Merging: Total cpu/real time for replay: 77.24/67.007 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 305.54/247.823 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 247.20000000000002s Info:Filtering - Singleton removal: Total cpu/real time for purge: 488.36/399.924 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 33539431 Info:Lattice Sieving: Average J: 3790.62 for 968586 special-q, max bucket fill -bkmult 1.0,1s:1.125110 Info:Lattice Sieving: Total time: 598347s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 12988.4 Info:Polynomial Selection (root optimized): Rootsieve time: 12983.9 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 905.47/735.902 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 550.8000000000001s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48233/43.030/50.367/55.690/0.935 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39919/41.050/44.916/51.340/1.003 Info:Polynomial Selection (size optimized): Total time: 38100 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.22967e+06/173899 82081851400864335760411913486288255520468050019351577546801668002629 1015863660038019420533234480492806383961570342810806677733186500236892581 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 23, 2023 16:03:11 UTC 2023 年 2 月 24 日 (金) 1 時 3 分 11 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 3, 2023 13:21:31 UTC 2023 年 3 月 3 日 (金) 22 時 21 分 31 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | April 8, 2023 09:44:13 UTC 2023 年 4 月 8 日 (土) 18 時 44 分 13 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 9, 2024 00:55:02 UTC 2024 年 6 月 9 日 (日) 9 時 55 分 2 秒 (日本時間) |
composite number 合成数 | 33816233816541660877094221869103002708983508732307754594145257842252819772487177467175281480499903752002095953493489815273342215108841396592732252342613767255782774215723410633512391457468949584286543<200> |
prime factors 素因数 | 2048787116132520260745364258141848244791190724390025760793<58> 16505489296699750005537301549260314837980305697665239052189765388351955169625649851826140593458447355468070191530579743090619190291874373667751<143> |
factorization results 素因数分解の結果 | Number: n N=33816233816541660877094221869103002708983508732307754594145257842252819772487177467175281480499903752002095953493489815273342215108841396592732252342613767255782774215723410633512391457468949584286543 ( 200 digits) SNFS difficulty: 207 digits. Divisors found: Sat Jun 8 07:27:29 2024 prp58 factor: 2048787116132520260745364258141848244791190724390025760793 Sat Jun 8 07:27:29 2024 prp143 factor: 16505489296699750005537301549260314837980305697665239052189765388351955169625649851826140593458447355468070191530579743090619190291874373667751 Sat Jun 8 07:27:29 2024 elapsed time 02:12:49 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.938). Factorization parameters were as follows: # # N = 29x10^206+4 = 96(205)8 # n: 33816233816541660877094221869103002708983508732307754594145257842252819772487177467175281480499903752002095953493489815273342215108841396592732252342613767255782774215723410633512391457468949584286543 m: 100000000000000000000000000000000000000000 deg: 5 c5: 145 c0: 2 skew: 0.42 # Murphy_E = 9.81e-12 type: snfs lss: 1 rlim: 19900000 alim: 19900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19900000/19900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 35550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4081666 hash collisions in 21605884 relations (17881511 unique) Msieve: matrix is 2030973 x 2031198 (575.5 MB) Sieving start time: 2024/06/07 16:09:44 Sieving end time : 2024/06/08 05:09:45 Total sieving time: 13hrs 0min 1secs. Total relation processing time: 2hrs 1min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 5sec. Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,19900000,19900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 19, 2023 00:24:07 UTC 2023 年 3 月 19 日 (日) 9 時 24 分 7 秒 (日本時間) |
2350 | Ignacio Santos | May 29, 2024 14:56:26 UTC 2024 年 5 月 29 日 (水) 23 時 56 分 26 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | May 30, 2024 07:20:55 UTC 2024 年 5 月 30 日 (木) 16 時 20 分 55 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 22:28:01 UTC 2023 年 3 月 18 日 (土) 7 時 28 分 1 秒 (日本時間) |
composite number 合成数 | 57105284401596987278529838771217848177930295954778976311980861598830118353119655499106963992405650947689276774416207714727235949504437802051855730388895516093106975403462849<173> |
prime factors 素因数 | 21432359448966590147665838321885437871<38> 2664442267197531915620579944227777683495269834617483916546861940345054192777204424458257223092307283897945144960043517750471261504242319<136> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:911236797 Step 1 took 8111ms Step 2 took 4171ms ********** Factor found in step 2: 21432359448966590147665838321885437871 Found prime factor of 38 digits: 21432359448966590147665838321885437871 Prime cofactor 2664442267197531915620579944227777683495269834617483916546861940345054192777204424458257223092307283897945144960043517750471261504242319 has 136 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 17, 2023 16:19:16 UTC 2023 年 3 月 18 日 (土) 1 時 19 分 16 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 6, 2025 17:12:28 UTC 2025 年 1 月 7 日 (火) 2 時 12 分 28 秒 (日本時間) |
composite number 合成数 | 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053<204> |
prime factors 素因数 | 71640727929111267503824430671563118670658895462176098483382642812671128441585675289470084240053789<98> 1555067904727658791518105556422747348376529765292516438864024285345091773128270001452537798044559979161777<106> |
factorization results 素因数分解の結果 | 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, **************************** 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, Starting factorization of 2900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, using pretesting plan: normal 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, **************************** 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, div: found prime factor = 2 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, div: found prime factor = 2 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, div: found prime factor = 3 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, div: found prime factor = 563 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, div: found prime factor = 3853 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C204 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C204 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C204 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C204 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00 01/05/25 01:12:50 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 62.77 01/05/25 01:12:51 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C204 input, B1=2K, B2=gmp-ecm default 01/05/25 01:12:51 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18 01/05/25 01:12:51 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 62.77 01/05/25 01:12:53 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C204 input, B1=11K, B2=gmp-ecm default 01/05/25 01:12:53 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24 01/05/25 01:12:53 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 62.77 01/05/25 01:13:32 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c211: 2900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 01/05/25 01:13:32 v1.34.5 @ RYZEN-9, nfs: input divides 29*10^209 + 4 01/05/25 01:13:32 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 01/05/25 01:13:32 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c204: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 01/05/25 01:13:33 v1.34.5 @ RYZEN-9, gen: best 3 polynomials: n: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 # 29*10^209+4, difficulty: 211.16, anorm: 4.82e+031, rnorm: 6.85e+047 # scaled difficulty: 213.85, suggest sieving rational side # size = 1.700e-014, alpha = -0.028, combined = 6.342e-012, rroots = 1 type: snfs size: 211 skew: 0.5332 c5: 116 c0: 5 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 n: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 # 29*10^209+4, difficulty: 210.00, anorm: 6.81e+031, rnorm: 9.68e+047 # scaled difficulty: 212.69, suggest sieving rational side # size = 1.458e-014, alpha = -0.259, combined = 5.766e-012, rroots = 1 type: snfs size: 210 skew: 1.0664 c5: 29 c0: 40 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 n: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 # 29*10^209+4, difficulty: 211.16, anorm: 6.81e+037, rnorm: 6.88e+040 # scaled difficulty: 211.16, suggest sieving algebraic side # size = 1.066e-010, alpha = 1.447, combined = 3.529e-012, rroots = 0 type: snfs size: 211 skew: 0.5275 c6: 232 c0: 5 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 01/05/25 01:13:34 v1.34.5 @ RYZEN-9, test: fb generation took 1.8413 seconds 01/05/25 01:13:34 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.5332 c5: 116 c0: 5 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 01/05/25 01:16:56 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 01/05/25 01:16:58 v1.34.5 @ RYZEN-9, test: fb generation took 1.7239 seconds 01/05/25 01:16:58 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 1.0664 c5: 29 c0: 40 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 01/05/25 01:20:18 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 01/05/25 01:20:21 v1.34.5 @ RYZEN-9, test: fb generation took 2.6955 seconds 01/05/25 01:20:21 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the algebraic side over range 22600000-22602000 skew: 0.5275 c6: 232 c0: 5 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 01/05/25 01:23:22 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 01/05/25 01:23:22 v1.34.5 @ RYZEN-9, gen: selected polynomial: n: 111406196673887324848330067210974294057347607463569789528339969301062108263158954207750582884904183755993077142106824866539217977671739567040177069777312074265061003728342827446245741786251614813612823053 # 29*10^209+4, difficulty: 210.00, anorm: 6.81e+031, rnorm: 9.68e+047 # scaled difficulty: 212.69, suggest sieving rational side # size = 1.458e-014, alpha = -0.259, combined = 5.766e-012, rroots = 1 type: snfs size: 210 skew: 1.0664 c5: 29 c0: 40 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 01/06/25 11:53:48 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/06/25 11:56:01 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22226812 01/06/25 14:04:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/06/25 14:06:46 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23444601 01/06/25 16:19:35 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/06/25 16:22:02 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24645328 01/06/25 18:48:26 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/06/25 18:50:59 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25981870 01/06/25 21:16:04 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/06/25 21:22:42 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27300896 01/06/25 23:59:32 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 01/07/25 00:04:18 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra 01/07/25 03:56:36 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt 01/07/25 04:00:00 v1.34.5 @ RYZEN-9, prp106 = 1555067904727658791518105556422747348376529765292516438864024285345091773128270001452537798044559979161777 01/07/25 04:00:00 v1.34.5 @ RYZEN-9, prp98 = 71640727929111267503824430671563118670658895462176098483382642812671128441585675289470084240053789 01/07/25 04:00:01 v1.34.5 @ RYZEN-9, NFS elapsed time = 182788.3032 seconds. 01/07/25 04:00:01 v1.34.5 @ RYZEN-9, 01/07/25 04:00:01 v1.34.5 @ RYZEN-9, 01/05/25 01:23:22 v1.34.5 @ RYZEN-9, test: test sieving took 589.02 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 28, 2023 21:07:55 UTC 2023 年 3 月 29 日 (水) 6 時 7 分 55 秒 (日本時間) |
1200 | Dmitry Domanov | November 3, 2023 06:49:59 UTC 2023 年 11 月 3 日 (金) 15 時 49 分 59 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 4, 2025 07:57:39 UTC 2025 年 1 月 4 日 (土) 16 時 57 分 39 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | March 6, 2023 23:07:36 UTC 2023 年 3 月 7 日 (火) 8 時 7 分 36 秒 (日本時間) |
composite number 合成数 | 8959787058596107166820726354162596134397233148598605398481282796237352442527132600018679846344179748363975424509515513965157623317<130> |
prime factors 素因数 | 152610692948611973663275509038651123219724436243282597921247<60> 58710086989861861536053267166170643393064729076707126523849674223836811<71> |
factorization results 素因数分解の結果 | n: 8959787058596107166820726354162596134397233148598605398481282796237352442527132600018679846344179748363975424509515513965157623317 skew: 344747.91 c0: -5857708945698748438837016999256 c1: 226335902382018890098608090 c2: 1362451270922570584583 c3: -19064209096783354 c4: -11634264032 c5: 8784 Y0: -15911880225739184397952115 Y1: 59311351456363 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 nfs: commencing nfs on c130: 8959787058596107166820726354162596134397233148598605398481282796237352442527132600018679846344179748363975424509515513965157623317 nfs: commencing poly selection with 7 threads nfs: setting deadline of 7986 seconds nfs: completed 35 ranges of size 250 in 8491.7187 seconds nfs: best poly = # norm 1.777897e-012 alpha -6.516037 e 7.533e-011 rroots 5 nfs: commencing lattice sieving with 7 threads nfs: commencing msieve filtering nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp71 = 58710086989861861536053267166170643393064729076707126523849674223836811 prp60 = 152610692948611973663275509038651123219724436243282597921247 NFS elapsed time = 84247.0604 seconds. |
software ソフトウェア | YAFU, v1.50 r373 |
execution environment 実行環境 | Windows 10 v22H2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 25, 2023 19:54:00 UTC 2023 年 2 月 26 日 (日) 4 時 54 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 19, 2023 21:09:11 UTC 2023 年 3 月 20 日 (月) 6 時 9 分 11 秒 (日本時間) |
composite number 合成数 | 1673722963408137495683697418643762124375562182420536517244461651791979277265221128739616906074110612239429061385172618162816165225210088551558955163586191146691404589321564555717103231<184> |
prime factors 素因数 | 2598302825414496464676448032081929839<37> 644160082896086378475758273058955007436456916474303084824589223466880372455198653931522659278720563860365494987614269842472396484969738850738086129<147> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3396257362 Step 1 took 9416ms Step 2 took 5138ms ********** Factor found in step 2: 2598302825414496464676448032081929839 Found prime factor of 37 digits: 2598302825414496464676448032081929839 Prime cofactor 644160082896086378475758273058955007436456916474303084824589223466880372455198653931522659278720563860365494987614269842472396484969738850738086129 has 147 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 19, 2023 01:33:07 UTC 2023 年 3 月 19 日 (日) 10 時 33 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 19, 2023 00:23:35 UTC 2023 年 3 月 19 日 (日) 9 時 23 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 30, 2023 05:32:35 UTC 2023 年 3 月 30 日 (木) 14 時 32 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 19, 2023 15:40:39 UTC 2023 年 3 月 20 日 (月) 0 時 40 分 39 秒 (日本時間) |
composite number 合成数 | 147668726850298923644610984481945236319217502777138572222755857558046688882721052697415718984723968015727338975666716158291152649723779725737512985378044201764577925299885514902743727345181<189> |
prime factors 素因数 | 353701500107065618227376459395541855609<39> |
composite cofactor 合成数の残り | 417495336620284413049742766169035428889232710971830423845351387793341796348120421439877784849898811458254664291140960434676128002953263256054077018309<150> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:803411001 Step 1 took 16389ms Step 2 took 7725ms ********** Factor found in step 2: 353701500107065618227376459395541855609 Found prime factor of 39 digits: 353701500107065618227376459395541855609 Composite cofactor 417495336620284413049742766169035428889232710971830423845351387793341796348120421439877784849898811458254664291140960434676128002953263256054077018309 has 150 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 00:28:54 UTC 2023 年 3 月 19 日 (日) 9 時 28 分 54 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 29, 2023 23:43:26 UTC 2023 年 3 月 30 日 (木) 8 時 43 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 29, 2023 09:12:39 UTC 2023 年 3 月 29 日 (水) 18 時 12 分 39 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 14:31:12 UTC 2024 年 9 月 22 日 (日) 23 時 31 分 12 秒 (日本時間) |
composite cofactor 合成数の残り | 1818246139873494887285876646759674524242605538974582141093591067350875335378476429360878323215068444325595256588125968387310792697010754036971637610315701081279891135869<169> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 16:19:23 UTC 2023 年 3 月 18 日 (土) 1 時 19 分 23 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:30:23 UTC 2023 年 3 月 30 日 (木) 14 時 30 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 16:19:30 UTC 2023 年 3 月 18 日 (土) 1 時 19 分 30 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:31:36 UTC 2023 年 3 月 30 日 (木) 14 時 31 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 29, 2023 09:12:52 UTC 2023 年 3 月 29 日 (水) 18 時 12 分 52 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 14:31:29 UTC 2024 年 9 月 22 日 (日) 23 時 31 分 29 秒 (日本時間) |
composite cofactor 合成数の残り | 873933107366884822088447777773444571322329053989491238687228409333572413493927893147239161441670597347029664864705423980844009894399984515195326596534037786627<159> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 16:19:40 UTC 2023 年 3 月 18 日 (土) 1 時 19 分 40 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 29, 2023 23:43:33 UTC 2023 年 3 月 30 日 (木) 8 時 43 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 28, 2023 21:09:09 UTC 2023 年 3 月 29 日 (水) 6 時 9 分 9 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 14:31:48 UTC 2024 年 9 月 22 日 (日) 23 時 31 分 48 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 22, 2024 14:32:11 UTC 2024 年 9 月 22 日 (日) 23 時 32 分 11 秒 (日本時間) |
composite number 合成数 | 1055271481324605874296061144612948253853196453705604001007238434588451400017757671823669229884706132364521336133805512738218439741087322623419458041678129098274158075301261813582290070113692766077606848056917704835472259459963<226> |
prime factors 素因数 | 751462967113094274558103721899156804333<39> |
composite cofactor 合成数の残り | 1404289402814694903009239743002787786325604448212192030633483439978090002870674438232652372141217121305399183523849876715156278816207280694680858248766204792736377248067759308731656463111<187> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3353066923 Step 1 took 7594ms ********** Factor found in step 2: 751462967113094274558103721899156804333 Found prime factor of 39 digits: 751462967113094274558103721899156804333 Composite cofactor 1404289402814694903009239743002787786325604448212192030633483439978090002870674438232652372141217121305399183523849876715156278816207280694680858248766204792736377248067759308731656463111 has 187 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 29, 2023 09:13:06 UTC 2023 年 3 月 29 日 (水) 18 時 13 分 6 秒 (日本時間) |
2350 | Ignacio Santos | September 27, 2024 16:12:11 UTC 2024 年 9 月 28 日 (土) 1 時 12 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 00:29:03 UTC 2023 年 3 月 19 日 (日) 9 時 29 分 3 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:32:17 UTC 2023 年 3 月 30 日 (木) 14 時 32 分 17 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 20:06:24 UTC 2023 年 3 月 30 日 (木) 5 時 6 分 24 秒 (日本時間) |
composite number 合成数 | 3693934750733943492695120772406208620448212657340034846164011010433344727324346514215619954906258596821671993525764091235141122083573843236042526463540921259952187320938577214890315069069526783138261898466922682969337399<220> |
prime factors 素因数 | 25713276433947772089909945163857704748019<41> 143658656656335408030040934137464942167313835567129727629374265671890475851230620049961208169670439818136761331847617118466551560860146378077175904623472752100989142157402542191021<180> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @f33ee09baadc with GMP-ECM 7.0.5-dev on Wed Mar 29 09:29:16 2023 Input number is 3693934750733943492695120772406208620448212657340034846164011010433344727324346514215619954906258596821671993525764091235141122083573843236042526463540921259952187320938577214890315069069526783138261898466922682969337399 (220 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:296902603 Step 1 took 0ms Step 2 took 5626ms ********** Factor found in step 2: 25713276433947772089909945163857704748019 Found prime factor of 41 digits: 25713276433947772089909945163857704748019 Prime cofactor 143658656656335408030040934137464942167313835567129727629374265671890475851230620049961208169670439818136761331847617118466551560860146378077175904623472752100989142157402542191021 has 180 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 29, 2023 09:13:17 UTC 2023 年 3 月 29 日 (水) 18 時 13 分 17 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | May 21, 2023 21:10:39 UTC 2023 年 5 月 22 日 (月) 6 時 10 分 39 秒 (日本時間) |
composite number 合成数 | 4560894943281764255906845824740808981912667766753382993314164363631383764028128396723641463997560093106147732966595324429317223629195251041<139> |
prime factors 素因数 | 172845179999379109100473941836259655523534811347138705941<57> 26387168813721897300737825391858209692924141292227693374393450150556923631816611101<83> |
factorization results 素因数分解の結果 | Number: 96668_233 N = 4560894943281764255906845824740808981912667766753382993314164363631383764028128396723641463997560093106147732966595324429317223629195251041 (139 digits) Divisors found: r1=172845179999379109100473941836259655523534811347138705941 (pp57) r2=26387168813721897300737825391858209692924141292227693374393450150556923631816611101 (pp83) Version: Msieve v. 1.53 (SVN unknown) Total time: 117.88 hours. Factorization parameters were as follows: n: 4560894943281764255906845824740808981912667766753382993314164363631383764028128396723641463997560093106147732966595324429317223629195251041 # norm 1.927890e-13 alpha -6.021669 e 2.138e-11 rroots 5 skew: 3671604.75 c0: 75386731419464936753694247593337440 c1: 21867576028891131459606520368 c2: -136525625287446033081302 c3: -4798206063523465 c4: 10870606806 c5: 108 Y0: -2114090279800020526686572363 Y1: 419121503452501 type: gnfs Factor base limits: 11600000/11600000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 24847929 Relations: 3903398 relations Pruned matrix : 2403694 x 2403919 Polynomial selection time: 0.40 hours. Total sieving time: 107.06 hours. Total relation processing time: 0.31 hours. Matrix solve time: 9.91 hours. time per square root: 0.20 hours. Prototype def-par.txt line would be: gnfs,138,5,65,2000,1e-05,0.28,250,20,50000,3600,11600000,11600000,28,28,56,56,2.5,2.5,100000 total time: 117.88 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel processors: 4, speed: 3.39GHz Windows-7-6.1.7601-SP1 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 22, 2023 16:03:07 UTC 2023 年 2 月 23 日 (木) 1 時 3 分 7 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 2, 2023 13:10:29 UTC 2023 年 3 月 2 日 (木) 22 時 10 分 29 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | April 12, 2023 13:39:13 UTC 2023 年 4 月 12 日 (水) 22 時 39 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 29, 2023 09:13:25 UTC 2023 年 3 月 29 日 (水) 18 時 13 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 14:56:44 UTC 2024 年 9 月 22 日 (日) 23 時 56 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 19, 2023 00:23:13 UTC 2023 年 3 月 19 日 (日) 9 時 23 分 13 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 30, 2023 05:31:10 UTC 2023 年 3 月 30 日 (木) 14 時 31 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 28, 2023 21:09:16 UTC 2023 年 3 月 29 日 (水) 6 時 9 分 16 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 16:32:03 UTC 2024 年 9 月 23 日 (月) 1 時 32 分 3 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | December 6, 2023 07:33:11 UTC 2023 年 12 月 6 日 (水) 16 時 33 分 11 秒 (日本時間) |
composite number 合成数 | 7879192104572539213913089188186042467705232886514023321883051884445238146652871070963821011705253047977182034560016364187578141371807718266393556620649014698847876176766358682761135626420399990188969<199> |
prime factors 素因数 | 3441260105879712888719733308936098190451103<43> 2289624109235511383901964963539664554324335182221320622764056980563745274132341421937991002495348423544271443928625522705270384737672576627766068450851831223<157> |
factorization results 素因数分解の結果 | Input number is 787919210457253921391308918818604246770523288651402332188305188444523814665287107096382101170525304797718203456001636418757814137180771826639355662064901469884787617676635868276113 5626420399990188969 (199 digits) Using mpz_mod Using lmax = 33554432 with NTT which takes about 9600MB of memory Using B1=4000000000-4000000000, B2=8344907294582686, polynomial x^1 P = 240705465, l = 33554432, s_1 = 16220160, k = s_2 = 5, m_1 = 3 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.81 0.53 0.28 0.12 0.045 0.015 0.0045 0.0012 0.00031 7.3e-05 Step 1 took 0ms Computing F from factored S_1 took 167964ms Computing h took 20060ms Computing DCT-I of h took 53259ms Multi-point evaluation 1 of 5: Computing g_i took 66743ms Computing g*h took 106939ms Computing gcd of coefficients and N took 23380ms Step 2 took 439684ms ********** Factor found in step 2: 3441260105879712888719733308936098190451103 Found prime factor of 43 digits: 3441260105879712888719733308936098190451103 Prime cofactor 2289624109235511383901964963539664554324335182221320622764056980563745274132341421937991002495348423544271443928625522705270384737672576627766068450851831223 has 157 digits |
execution environment 実行環境 | 1080 TI for stage 1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 19, 2023 00:22:54 UTC 2023 年 3 月 19 日 (日) 9 時 22 分 54 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 30, 2023 05:31:01 UTC 2023 年 3 月 30 日 (木) 14 時 31 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 28, 2023 21:09:24 UTC 2023 年 3 月 29 日 (水) 6 時 9 分 24 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 16:43:09 UTC 2024 年 9 月 23 日 (月) 1 時 43 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 28, 2023 21:09:32 UTC 2023 年 3 月 29 日 (水) 6 時 9 分 32 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 16:53:42 UTC 2024 年 9 月 23 日 (月) 1 時 53 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 1, 2023 08:37:05 UTC 2023 年 4 月 1 日 (土) 17 時 37 分 5 秒 (日本時間) |
composite number 合成数 | 2098234806745335226606882600596995151510699047345920106915363810435382373908862509907732752657765532267193107802984383785324450029678161200030099284225631136504266855794636682846265493335123<190> |
prime factors 素因数 | 739273373864026082599096488972896458838667931<45> 2838239386031589654474872331392926790165165069223900038758312746929711585040152580567448222617094611865302141663862941934583790628022650516491433<145> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:3316269088 Step 1 took 30428ms Step 2 took 13997ms ********** Factor found in step 2: 739273373864026082599096488972896458838667931 Found prime factor of 45 digits: 739273373864026082599096488972896458838667931 Prime cofactor 2838239386031589654474872331392926790165165069223900038758312746929711585040152580567448222617094611865302141663862941934583790628022650516491433 has 145 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 00:29:16 UTC 2023 年 3 月 19 日 (日) 9 時 29 分 16 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:30:53 UTC 2023 年 3 月 30 日 (木) 14 時 30 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 01:33:01 UTC 2023 年 3 月 19 日 (日) 10 時 33 分 1 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:30:45 UTC 2023 年 3 月 30 日 (木) 14 時 30 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 29, 2023 09:13:33 UTC 2023 年 3 月 29 日 (水) 18 時 13 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 15:08:56 UTC 2024 年 9 月 23 日 (月) 0 時 8 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:04:14 UTC 2023 年 3 月 29 日 (水) 6 時 4 分 14 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 15:12:38 UTC 2024 年 9 月 23 日 (月) 0 時 12 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 28, 2023 21:04:32 UTC 2023 年 3 月 29 日 (水) 6 時 4 分 32 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 21:08:23 UTC 2024 年 10 月 4 日 (金) 6 時 8 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 28, 2023 21:04:40 UTC 2023 年 3 月 29 日 (水) 6 時 4 分 40 秒 (日本時間) |
401 | Thomas Kozlowski | October 3, 2024 21:11:42 UTC 2024 年 10 月 4 日 (金) 6 時 11 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 29, 2023 09:14:39 UTC 2023 年 3 月 29 日 (水) 18 時 14 分 39 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 21:14:36 UTC 2024 年 10 月 4 日 (金) 6 時 14 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | 1000 | Dmitry Domanov | March 28, 2023 21:09:40 UTC 2023 年 3 月 29 日 (水) 6 時 9 分 40 秒 (日本時間) |
1206 | Thomas Kozlowski | October 3, 2024 21:21:30 UTC 2024 年 10 月 4 日 (金) 6 時 21 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 28, 2023 21:04:48 UTC 2023 年 3 月 29 日 (水) 6 時 4 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 21:24:48 UTC 2024 年 10 月 4 日 (金) 6 時 24 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 28, 2023 21:04:56 UTC 2023 年 3 月 29 日 (水) 6 時 4 分 56 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 21:28:06 UTC 2024 年 10 月 4 日 (金) 6 時 28 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 00:29:27 UTC 2023 年 3 月 19 日 (日) 9 時 29 分 27 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:31:26 UTC 2023 年 3 月 30 日 (木) 14 時 31 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 19, 2023 01:32:54 UTC 2023 年 3 月 19 日 (日) 10 時 32 分 54 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 30, 2023 05:31:18 UTC 2023 年 3 月 30 日 (木) 14 時 31 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 28, 2023 21:05:04 UTC 2023 年 3 月 29 日 (水) 6 時 5 分 4 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 21:31:23 UTC 2024 年 10 月 4 日 (金) 6 時 31 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 22, 2023 06:44:10 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 10 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 21:35:04 UTC 2024 年 10 月 4 日 (金) 6 時 35 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1792 | Dmitry Domanov | March 28, 2023 21:05:14 UTC 2023 年 3 月 29 日 (水) 6 時 5 分 14 秒 (日本時間) |
415 | Thomas Kozlowski | October 3, 2024 21:38:01 UTC 2024 年 10 月 4 日 (金) 6 時 38 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 22, 2023 06:44:19 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 19 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 21:41:41 UTC 2024 年 10 月 4 日 (金) 6 時 41 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | March 29, 2023 09:16:08 UTC 2023 年 3 月 29 日 (水) 18 時 16 分 8 秒 (日本時間) |
406 | Thomas Kozlowski | October 3, 2024 21:44:36 UTC 2024 年 10 月 4 日 (金) 6 時 44 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 22, 2023 06:44:25 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 25 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 21:48:20 UTC 2024 年 10 月 4 日 (金) 6 時 48 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 29, 2023 09:16:25 UTC 2023 年 3 月 29 日 (水) 18 時 16 分 25 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 21:51:14 UTC 2024 年 10 月 4 日 (金) 6 時 51 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 28, 2023 21:05:21 UTC 2023 年 3 月 29 日 (水) 6 時 5 分 21 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 21:54:33 UTC 2024 年 10 月 4 日 (金) 6 時 54 分 33 秒 (日本時間) |
composite cofactor 合成数の残り | 228236930712368089859357813200408656773062039479463276528228407330233710091414225423585415928566143787558768499773483899953612039864327914066558028534693397<156> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 28, 2023 16:58:48 UTC 2023 年 3 月 1 日 (水) 1 時 58 分 48 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 4, 2023 16:23:10 UTC 2023 年 3 月 5 日 (日) 1 時 23 分 10 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | October 14, 2024 11:51:45 UTC 2024 年 10 月 14 日 (月) 20 時 51 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 29, 2023 09:16:35 UTC 2023 年 3 月 29 日 (水) 18 時 16 分 35 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 21:57:26 UTC 2024 年 10 月 4 日 (金) 6 時 57 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 22, 2023 06:44:32 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 32 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 22:00:49 UTC 2024 年 10 月 4 日 (金) 7 時 0 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 22, 2023 06:44:40 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 40 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 22:04:56 UTC 2024 年 10 月 4 日 (金) 7 時 4 分 56 秒 (日本時間) |
composite cofactor 合成数の残り | 1863070972569301079703098329318045474573750642513058570934869774894814344019146707185349279923894211478452820142535952035560324304408948273725338231186135892339274489<166> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 10:50:50 UTC 2023 年 3 月 1 日 (水) 19 時 50 分 50 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 9, 2023 09:35:49 UTC 2023 年 3 月 9 日 (木) 18 時 35 分 49 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | September 13, 2024 05:24:13 UTC 2024 年 9 月 13 日 (金) 14 時 24 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 24, 2023 05:57:11 UTC 2023 年 3 月 24 日 (金) 14 時 57 分 11 秒 (日本時間) |
composite number 合成数 | 860512958563750366054794357859373388967668157878651965217002739527867969130060199124621413021315085207702362948287979380656729555600497674642953559731016847641384365094127186234207321687445306909085962031583168548365783045552459366628540482795934741655013273780329317787<270> |
prime factors 素因数 | 362569961029762460966058805115359900231<39> |
composite cofactor 合成数の残り | 2373370800271876384855056672562694085849708445430416168147470496908909492328608347365798695045821945186141289602987156906482492774886228423197649950655583719911606073286935338820572508434645721141452295618124438363293979916007000077<232> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1b01e02b26e9 with GMP-ECM 7.0.5-dev on Wed Mar 22 08:20:40 2023 Input number is 860512958563750366054794357859373388967668157878651965217002739527867969130060199124621413021315085207702362948287979380656729555600497674642953559731016847641384365094127186234207321687445306909085962031583168548365783045552459366628540482795934741655013273780329317787 (270 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2358462622 Step 1 took 0ms Step 2 took 5923ms ********** Factor found in step 2: 362569961029762460966058805115359900231 Found prime factor of 39 digits: 362569961029762460966058805115359900231 Composite cofactor 2373370800271876384855056672562694085849708445430416168147470496908909492328608347365798695045821945186141289602987156906482492774886228423197649950655583719911606073286935338820572508434645721141452295618124438363293979916007000077 has 232 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 22, 2023 06:44:47 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 47 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 22:08:15 UTC 2024 年 10 月 4 日 (金) 7 時 8 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 24, 2023 05:57:30 UTC 2023 年 3 月 24 日 (金) 14 時 57 分 30 秒 (日本時間) |
composite number 合成数 | 6970285314748045355782723194957482014587914501054297447349064823507117990352766567524468799592744666981290455553723983949665443373688918789894055009602710604280638706703298704770383861692167742046581551230027641416769120249252189655746606383984345887375470173191<262> |
prime factors 素因数 | 138057124287981341184631247030342231<36> |
composite cofactor 合成数の残り | 50488414492890088278491602349343364161491987066402418790475066019046209377828774403031894519832051276539695385819582663231385718532968165267281924716368882296657375573834168218513854415101644835074384898123071712625720986654161<227> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1b01e02b26e9 with GMP-ECM 7.0.5-dev on Wed Mar 22 08:25:08 2023 Input number is 6970285314748045355782723194957482014587914501054297447349064823507117990352766567524468799592744666981290455553723983949665443373688918789894055009602710604280638706703298704770383861692167742046581551230027641416769120249252189655746606383984345887375470173191 (262 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:180911500 Step 1 took 0ms Step 2 took 6694ms ********** Factor found in step 2: 138057124287981341184631247030342231 Found prime factor of 36 digits: 138057124287981341184631247030342231 Composite cofactor 50488414492890088278491602349343364161491987066402418790475066019046209377828774403031894519832051276539695385819582663231385718532968165267281924716368882296657375573834168218513854415101644835074384898123071712625720986654161 has 227 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 22, 2023 06:44:55 UTC 2023 年 3 月 22 日 (水) 15 時 44 分 55 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 22:11:08 UTC 2024 年 10 月 4 日 (金) 7 時 11 分 8 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 3, 2024 22:15:18 UTC 2024 年 10 月 4 日 (金) 7 時 15 分 18 秒 (日本時間) |
composite number 合成数 | 1347834169920059490611637850901654582636177728202268079568693065625580963004275887711470533556423126975274214538018218999814091838631715932329429261944599367912251347834169920059490611637850901654582636177728202268079568693065625580963004275887711470533556423126975274214538018219<280> |
prime factors 素因数 | 119562744377776094454930156645176480800497439<45> |
composite cofactor 合成数の残り | 11273028040083949436187309222883448736151429744899754064734085702729610303825072418868407572646078056879963248959450918263871051456940428312671053080672611728650408153495355822095567522975574811403809263194251688460661100941204629548021<236> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 1347834169920059490611637850901654582636177728202268079568693065625580963004275887711470533556423126975274214538018218999814091838631715932329429261944599367912251347834169920059490611637850901654582636177728202268079568693065625580963004275887711470533556423126975274214538018219 (280 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3391234774 Step 1 took 15436ms Step 2 took 5794ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1527659271 Step 1 took 15192ms Step 2 took 5790ms Run 3 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3522862326 Step 1 took 14872ms Step 2 took 5767ms Run 4 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4126145211 Step 1 took 14855ms Step 2 took 5765ms ** Factor found in step 2: 119562744377776094454930156645176480800497439 Found prime factor of 45 digits: 119562744377776094454930156645176480800497439 Composite cofactor 11273028040083949436187309222883448736151429744899754064734085702729610303825072418868407572646078056879963248959450918263871051456940428312671053080672611728650408153495355822095567522975574811403809263194251688460661100941204629548021 has 236 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 22, 2023 06:45:01 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 1 秒 (日本時間) |
404 | Thomas Kozlowski | October 7, 2024 03:22:25 UTC 2024 年 10 月 7 日 (月) 12 時 22 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | 1792 | Dmitry Domanov | March 22, 2023 06:45:09 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 9 秒 (日本時間) |
414 | Thomas Kozlowski | October 3, 2024 22:16:14 UTC 2024 年 10 月 4 日 (金) 7 時 16 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 22, 2023 06:45:16 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 16 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 22:20:20 UTC 2024 年 10 月 4 日 (金) 7 時 20 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 22, 2023 06:45:24 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 24 秒 (日本時間) |
401 | Thomas Kozlowski | October 3, 2024 22:24:02 UTC 2024 年 10 月 4 日 (金) 7 時 24 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 22, 2023 06:45:31 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 31 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 22:28:08 UTC 2024 年 10 月 4 日 (金) 7 時 28 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 24, 2023 05:56:52 UTC 2023 年 3 月 24 日 (金) 14 時 56 分 52 秒 (日本時間) |
composite number 合成数 | 957668015609460149097436855807093128517467149424892488925021098854118918895035536165461833690223020618226445140944005044078557792340405854674006795420253943225397210972893345949443846609823901139719002723963608508222803172886203149045903226191860203985139381<258> |
prime factors 素因数 | 30068537397107800231592903754552270710931421<44> |
composite cofactor 合成数の残り | 31849504449178006193584602714713759080930437973123880027775009334912592398490980696162984739268125017480991141782232895110847229159670454903717382152464493389896432228052989389274612196001430509884774331939935768761<215> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1b01e02b26e9 with GMP-ECM 7.0.5-dev on Wed Mar 22 08:51:51 2023 Input number is 957668015609460149097436855807093128517467149424892488925021098854118918895035536165461833690223020618226445140944005044078557792340405854674006795420253943225397210972893345949443846609823901139719002723963608508222803172886203149045903226191860203985139381 (258 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2828540511 Step 1 took 0ms Step 2 took 4581ms ********** Factor found in step 2: 30068537397107800231592903754552270710931421 Found prime factor of 44 digits: 30068537397107800231592903754552270710931421 Composite cofactor 31849504449178006193584602714713759080930437973123880027775009334912592398490980696162984739268125017480991141782232895110847229159670454903717382152464493389896432228052989389274612196001430509884774331939935768761 has 215 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 22, 2023 06:45:39 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 39 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 22:31:02 UTC 2024 年 10 月 4 日 (金) 7 時 31 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 22, 2023 06:45:46 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 46 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 22:35:11 UTC 2024 年 10 月 4 日 (金) 7 時 35 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 29, 2023 09:16:45 UTC 2023 年 3 月 29 日 (水) 18 時 16 分 45 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 22:38:07 UTC 2024 年 10 月 4 日 (金) 7 時 38 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 28, 2023 21:05:28 UTC 2023 年 3 月 29 日 (水) 6 時 5 分 28 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 22:41:24 UTC 2024 年 10 月 4 日 (金) 7 時 41 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 22, 2023 06:45:54 UTC 2023 年 3 月 22 日 (水) 15 時 45 分 54 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 22:45:04 UTC 2024 年 10 月 4 日 (金) 7 時 45 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 22, 2023 06:46:01 UTC 2023 年 3 月 22 日 (水) 15 時 46 分 1 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 22:49:10 UTC 2024 年 10 月 4 日 (金) 7 時 49 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 22, 2023 06:46:09 UTC 2023 年 3 月 22 日 (水) 15 時 46 分 9 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 22:52:50 UTC 2024 年 10 月 4 日 (金) 7 時 52 分 50 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 20, 2023 19:22:25 UTC 2023 年 2 月 21 日 (火) 4 時 22 分 25 秒 (日本時間) |
composite number 合成数 | 83650941665412691000434506220492133551560747519108649288085025415769576089935481582051448467125549503120575225043490510549722689874826813014618915456740319118089526888711602233183930635115186002717363<200> |
prime factors 素因数 | 42876544889338538827267066459510662203335883<44> 1950972072990258690496920894675755324650558890307254839314464894872869250202402245390735078135690591130147432432343108395408960437869111854807526648421989561<157> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1fb4c068622 with GMP-ECM 7.0.5-dev on Mon Feb 20 14:24:39 2023 Input number is 83650941665412691000434506220492133551560747519108649288085025415769576089935481582051448467125549503120575225043490510549722689874826813014618915456740319118089526888711602233183930635115186002717363 (200 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2733310550 Step 1 took 0ms Step 2 took 5008ms ********** Factor found in step 2: 42876544889338538827267066459510662203335883 Found prime factor of 44 digits: 42876544889338538827267066459510662203335883 Prime cofactor 1950972072990258690496920894675755324650558890307254839314464894872869250202402245390735078135690591130147432432343108395408960437869111854807526648421989561 has 157 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |