| name 名前 | Rytis Slatkevičius |
|---|---|
| date 日付 | February 20, 2023 15:26:39 UTC 2023 年 2 月 21 日 (火) 0 時 26 分 39 秒 (日本時間) |
| composite number 合成数 | 1208333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<100> |
| prime factors 素因数 | 31354998388496154519450967055510137697310796848589<50> 38537183716668891300770168198401791342462312041897<50> |
| factorization results 素因数分解の結果 | P50 = 38537183716668891300770168198401791342462312041897 P50 = 31354998388496154519450967055510137697310796848589 |
| software ソフトウェア | yafu2 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | anonymous |
|---|---|
| date 日付 | February 28, 2023 14:02:29 UTC 2023 年 2 月 28 日 (火) 23 時 2 分 29 秒 (日本時間) |
| composite number 合成数 | 2241930596013383552578684033124911095855675331341880500460755391456543654254101959911188625217235343958538199405038004589<121> |
| prime factors 素因数 | 321764319269797667630791463887052869816973928791<48> 6967617171167871757879216969015018217756807214406220232355309633083561179<73> |
| factorization results 素因数分解の結果 | p48 factor: 321764319269797667630791463887052869816973928791 p73 factor: 6967617171167871757879216969015018217756807214406220232355309633083561179 |
| software ソフトウェア | GGNFS+Msieve snfs |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | anonymous |
|---|---|
| date 日付 | March 7, 2023 14:03:13 UTC 2023 年 3 月 7 日 (火) 23 時 3 分 13 秒 (日本時間) |
| composite number 合成数 | 4452198594086178369827155299311654619063334541663331050132158838242063080725772920828988256608532005288596381737<112> |
| prime factors 素因数 | 7066248485640720720058340283148370131079<40> 630065388039136076421020800135223697964832936026160810925281191283031503<72> |
| factorization results 素因数分解の結果 | p40 factor: 7066248485640720720058340283148370131079 p72 factor: 630065388039136076421020800135223697964832936026160810925281191283031503 |
| software ソフトウェア | GGNFS+Msieve 1.54 snfs |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | anonymous |
|---|---|
| date 日付 | March 3, 2023 05:01:31 UTC 2023 年 3 月 3 日 (金) 14 時 1 分 31 秒 (日本時間) |
| composite number 合成数 | 164220791558876436766487577258040703935627110006293047866964095667691501586562662786686853636656124648688752857209<114> |
| prime factors 素因数 | 703705748206046109821756902988402505329118763289<48> 233365709996719168557752503537042349496497915891399157843296157281<66> |
| factorization results 素因数分解の結果 | p48 factor: 703705748206046109821756902988402505329118763289 p66 factor: 233365709996719168557752503537042349496497915891399157843296157281 |
| software ソフトウェア | GGNFS+Msieve 1.54 snfs |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Lionel Debroux |
|---|---|
| date 日付 | March 6, 2023 22:43:03 UTC 2023 年 3 月 7 日 (火) 7 時 43 分 3 秒 (日本時間) |
| composite number 合成数 | 4017051581011038217451548422006434374264331034742304620210530380350434101411686315273506040563426371<100> |
| prime factors 素因数 | 10532427031094319767165017604307920803625277219091<50> 381398472465245869343211313419006289185657395480081<51> |
| factorization results 素因数分解の結果 | 10532427031094319767165017604307920803625277219091 381398472465245869343211313419006289185657395480081 |
| software ソフトウェア | CADO-NFS |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | anonymous |
|---|---|
| date 日付 | March 3, 2023 01:34:51 UTC 2023 年 3 月 3 日 (金) 10 時 34 分 51 秒 (日本時間) |
| composite number 合成数 | 114189860132496259011048035862285154768575416241350054599875623575294815335579609085307213825856697274524575399231<114> |
| prime factors 素因数 | 18107766155164411937897357820403139211614873<44> 6306126286037155672984512280106479390339573474712154090528533555287447<70> |
| factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:5918595747964427751 Step 1 took 7016ms Step 2 took 3297ms ********** Factor found in step 2: 18107766155164411937897357820403139211614873 Found prime factor of 44 digits: 18107766155164411937897357820403139211614873 Prime cofactor ((10^132*29-8)/253963004826793306632)/18107766155164411937897357820403139211614873 has 70 digits |
| software ソフトウェア | GMP-ECM 7.0.5 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | February 28, 2023 09:25:30 UTC 2023 年 2 月 28 日 (火) 18 時 25 分 30 秒 (日本時間) |
| composite number 合成数 | 19735548451597712130347111304317158359457603703596843142813193291652435753375259571155445668248827369437567105695549<116> |
| prime factors 素因数 | 11005826806769224516978572681112359035807<41> 1793190897703314787944056790243973056484283063298205203017364351404699340707<76> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 19735548451597712130347111304317158359457603703596843142813193291652435753375259571155445668248827369437567105695549 (116 digits) Using B1=32610000, B2=144292047916, polynomial Dickson(12), sigma=1:2055327482 Step 1 took 43400ms Step 2 took 16290ms ********** Factor found in step 2: 11005826806769224516978572681112359035807 Found prime factor of 41 digits: 11005826806769224516978572681112359035807 Prime cofactor 1793190897703314787944056790243973056484283063298205203017364351404699340707 has 76 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Lionel Debroux |
|---|---|
| date 日付 | March 6, 2023 23:57:58 UTC 2023 年 3 月 7 日 (火) 8 時 57 分 58 秒 (日本時間) |
| composite number 合成数 | 438502377211527874225653524759099592667385759297483162088169563249691285169018113226014910575891400329<102> |
| prime factors 素因数 | 398608499842585442104255651361764979079486348179<48> 1100082856699485662653181114792763236061877888512900851<55> |
| factorization results 素因数分解の結果 | 398608499842585442104255651361764979079486348179 1100082856699485662653181114792763236061877888512900851 |
| software ソフトウェア | CADO-NFS |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | February 22, 2023 09:02:04 UTC 2023 年 2 月 22 日 (水) 18 時 2 分 4 秒 (日本時間) |
| composite number 合成数 | 3460419011398858873134834152856015067380324391610607878682005152921882353390399222575105411522574819032018183189332172541742199260949959<136> |
| prime factors 素因数 | 11110286669104652132461550809652699767<38> 311460821350501179764138279486887652123507645500257542054562716774331066638644414024714400394793777<99> |
| factorization results 素因数分解の結果 | Number: n N=3460419011398858873134834152856015067380324391610607878682005152921882353390399222575105411522574819032018183189332172541742199260949959 ( 136 digits) SNFS difficulty: 142 digits. Divisors found: Wed Feb 22 19:49:49 2023 prp38 factor: 11110286669104652132461550809652699767 Wed Feb 22 19:49:49 2023 prp99 factor: 311460821350501179764138279486887652123507645500257542054562716774331066638644414024714400394793777 Wed Feb 22 19:49:49 2023 elapsed time 00:03:29 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.068). Factorization parameters were as follows: # # N = 29x10^141-8 = 96(140)4 # n: 3460419011398858873134834152856015067380324391610607878682005152921882353390399222575105411522574819032018183189332172541742199260949959 m: 10000000000000000000000000000 deg: 5 c5: 145 c0: -4 skew: 0.49 # Murphy_E = 3.021e-09 type: snfs lss: 1 rlim: 1640000 alim: 1640000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1640000/1640000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 12020000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 476486 hash collisions in 6184117 relations (6120825 unique) Msieve: matrix is 285351 x 285576 (79.1 MB) Sieving start time: 2023/02/22 19:21:59 Sieving end time : 2023/02/22 19:46:10 Total sieving time: 0hrs 24min 11secs. Total relation processing time: 0hrs 2min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 12sec. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1640000,1640000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | February 22, 2023 18:35:57 UTC 2023 年 2 月 23 日 (木) 3 時 35 分 57 秒 (日本時間) |
| composite number 合成数 | 12083333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<143> |
| prime factors 素因数 | 1679137585594123826393783859013987613397899<43> 7196154405094759726230505012807412303720858810872116454130707476612959234739483622259910894058935967<100> |
| factorization results 素因数分解の結果 | Number: n N=12083333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 ( 143 digits) SNFS difficulty: 142 digits. Divisors found: Thu Feb 23 05:31:41 2023 prp43 factor: 1679137585594123826393783859013987613397899 Thu Feb 23 05:31:41 2023 prp100 factor: 7196154405094759726230505012807412303720858810872116454130707476612959234739483622259910894058935967 Thu Feb 23 05:31:41 2023 elapsed time 00:03:40 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.019). Factorization parameters were as follows: # # N = 29x10^142-8 = 96(141)4 # n: 12083333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 m: 100000000000000000000000000000000000 deg: 4 c4: 725 c0: -2 skew: 0.23 # Murphy_E = 3.059e-09 type: snfs lss: 1 rlim: 1680000 alim: 1680000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1680000/1680000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 4840000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 433788 hash collisions in 6036438 relations (6279680 unique) Msieve: matrix is 272728 x 272955 (75.7 MB) Sieving start time: 2023/02/23 04:47:36 Sieving end time : 2023/02/23 05:27:53 Total sieving time: 0hrs 40min 17secs. Total relation processing time: 0hrs 2min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: snfs,142,4,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 8, 2023 03:37:36 UTC 2023 年 3 月 8 日 (水) 12 時 37 分 36 秒 (日本時間) |
| composite number 合成数 | 490763900087194283990814251093419097135095417760828621733247476237243443502742461381983849710073443575096028295973019897<120> |
| prime factors 素因数 | 39691976613026863063162898380563730792037057382802301<53> 12364309917640284808169702658312599098402614039596111556145971786797<68> |
| factorization results 素因数分解の結果 | Number: n N=490763900087194283990814251093419097135095417760828621733247476237243443502742461381983849710073443575096028295973019897 ( 120 digits) SNFS difficulty: 145 digits. Divisors found: Wed Mar 8 11:37:27 2023 prp53 factor: 39691976613026863063162898380563730792037057382802301 Wed Mar 8 11:37:27 2023 prp68 factor: 12364309917640284808169702658312599098402614039596111556145971786797 Wed Mar 8 11:37:27 2023 elapsed time 00:08:29 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.018). Factorization parameters were as follows: # # N = 29x10^144-8 = 96(143)4 # n: 490763900087194283990814251093419097135095417760828621733247476237243443502742461381983849710073443575096028295973019897 m: 1000000000000000000000000000000000000 deg: 4 c4: 29 c0: -8 skew: 0.72 # Murphy_E = 2.746e-09 type: snfs lss: 1 rlim: 1860000 alim: 1860000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1860000/1860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 33730000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1318710 hash collisions in 14938889 relations (14739529 unique) Msieve: matrix is 514118 x 514366 (49.7 MB) Sieving start time: 2023/03/08 07:39:13 Sieving end time : 2023/03/08 11:10:42 Total sieving time: 3hrs 31min 29secs. Total relation processing time: 0hrs 4min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 10sec. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1860000,1860000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | February 27, 2023 22:35:24 UTC 2023 年 2 月 28 日 (火) 7 時 35 分 24 秒 (日本時間) |
| composite number 合成数 | 119405033899357388707359814486395594499700640735467595101255253687974202812617402780229202861567938780596930072410313490527<123> |
| prime factors 素因数 | 3196871909250733362477741008975157807985348777141<49> 37350584348980981052823072611968405985578359351048352713297511436213018947<74> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 119405033899357388707359814486395594499700640735467595101255253687974202812617402780229202861567938780596930072410313490527 (123 digits) Using B1=45130000, B2=240492732496, polynomial Dickson(12), sigma=1:1078197855 Step 1 took 70383ms Step 2 took 26719ms ********** Factor found in step 2: 3196871909250733362477741008975157807985348777141 Found prime factor of 49 digits: 3196871909250733362477741008975157807985348777141 Prime cofactor 37350584348980981052823072611968405985578359351048352713297511436213018947 has 74 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Norman Powell |
|---|---|
| date 日付 | March 1, 2023 19:01:52 UTC 2023 年 3 月 2 日 (木) 4 時 1 分 52 秒 (日本時間) |
| composite number 合成数 | 75111887562759876844186195788792566932149663194483788433075225559473056270793487282748037545788250706493944947279473588162610845106199<134> |
| prime factors 素因数 | 8399118898386743473854832672820831986055615296476921864631<58> 8942829417165049867746329385926285305876564630580528228100090922331946144929<76> |
| factorization results 素因数分解の結果 | n: 75111887562759876844186195788792566932149663194483788433075225559473056270793487282748037545788250706493944947279473588162610845106199
skew: 227874.452
c0: -6137652978584051929167293214938
c1: 431430347111250851317358945
c2: 198626788400760637404
c3: -16370529794898989
c4: -10868124670
c5: 45240
Y0: -80385931931300536755170304
Y1: 3376217602986877789
# MurphyE (Bf=1.074e+09,Bg=5.369e+08,area=4.698e+13) = 1.849e-06
# f(x) = 45240*x^5-10868124670*x^4-16370529794898989*x^3+198626788400760637404*x^2+431430347111250851317358945*x-6137652978584051929167293214938
# g(x) = 3376217602986877789*x-80385931931300536755170304
Factors: 8399118898386743473854832672820831986055615296476921864631
8942829417165049867746329385926285305876564630580528228100090922331946144929
|
| software ソフトウェア | CADO-NFS v3.0.0 |
| execution environment 実行環境 | Ubuntu 20.04.4 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 1, 2023 00:47:16 UTC 2023 年 3 月 1 日 (水) 9 時 47 分 16 秒 (日本時間) |
| composite number 合成数 | 22746492870471753077513906104940955561636615843997688469826762982446940172763144497961492903792695165109124851516901890327487499976992369547757<143> |
| prime factors 素因数 | 134427035367057858168797190253614315603629<42> 169210700871008838635475197592989283740315106580936425578231129059070984572490218007248476516456532033<102> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 22746492870471753077513906104940955561636615843997688469826762982446940172763144497961492903792695165109124851516901890327487499976992369547757 (143 digits) Using B1=32380000, B2=144291357226, polynomial Dickson(12), sigma=1:1742948293 Step 1 took 65695ms Step 2 took 22387ms ********** Factor found in step 2: 134427035367057858168797190253614315603629 Found prime factor of 42 digits: 134427035367057858168797190253614315603629 Prime cofactor 169210700871008838635475197592989283740315106580936425578231129059070984572490218007248476516456532033 has 102 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | February 21, 2023 08:12:57 UTC 2023 年 2 月 21 日 (火) 17 時 12 分 57 秒 (日本時間) |
| composite number 合成数 | 3623410954380700328702357325614794875961397611503684469245880020793371308370950955448893631185919051<100> |
| prime factors 素因数 | 473296421924757986364109820638389981637777601<45> 7655690570499875663543606583194662332569792071858621451<55> |
| factorization results 素因数分解の結果 | N=3623410954380700328702357325614794875961397611503684469245880020793371308370950955448893631185919051 ( 100 digits) Divisors found: r1=473296421924757986364109820638389981637777601 (pp45) r2=7655690570499875663543606583194662332569792071858621451 (pp55) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.14 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 3623410954380700328702357325614794875961397611503684469245880020793371308370950955448893631185919051 skew: 297109.56 c0: 28074856182154879596879655 c1: 857923727591533565474 c2: -12948311018857744 c3: -25334283224 c4: 43680 Y0: -536674803915900719322414 Y1: 21011003180291 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 40000 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [900000, 1220001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 189569 x 189795 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,99,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,52,52,2.5,2.5,100000 total time: 0.14 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 7, 2023 01:14:35 UTC 2023 年 3 月 7 日 (火) 10 時 14 分 35 秒 (日本時間) |
| composite number 合成数 | 72869398511424053024431425343350779855915179162376815199300323258807561734734116127437534782894954235056036708219285587021038049<128> |
| prime factors 素因数 | 40756746281647555139401683634781769455982883441<47> 1787910104694411649747962785014308322598222775709231762411441280120306259097099889<82> |
| factorization results 素因数分解の結果 | Number: n N=72869398511424053024431425343350779855915179162376815199300323258807561734734116127437534782894954235056036708219285587021038049 ( 128 digits) SNFS difficulty: 157 digits. Divisors found: Tue Mar 7 12:03:32 2023 prp47 factor: 40756746281647555139401683634781769455982883441 Tue Mar 7 12:03:32 2023 prp82 factor: 1787910104694411649747962785014308322598222775709231762411441280120306259097099889 Tue Mar 7 12:03:32 2023 elapsed time 00:06:42 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.089). Factorization parameters were as follows: # # N = 29x10^157-8 = 96(156)4 # n: 72869398511424053024431425343350779855915179162376815199300323258807561734734116127437534782894954235056036708219285587021038049 m: 10000000000000000000000000000000 deg: 5 c5: 725 c0: -2 skew: 0.31 # Murphy_E = 8.179e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 5500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1321665 hash collisions in 13624382 relations (13160327 unique) Msieve: matrix is 387910 x 388140 (107.4 MB) Sieving start time: 2023/03/07 11:20:52 Sieving end time : 2023/03/07 11:56:36 Total sieving time: 0hrs 35min 44secs. Total relation processing time: 0hrs 3min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 20sec. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 3, 2023 03:50:56 UTC 2023 年 3 月 3 日 (金) 12 時 50 分 56 秒 (日本時間) |
| composite number 合成数 | 71078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549<158> |
| prime factors 素因数 | 2297964067167294753726004619979834372683098123473071471633<58> 30931045610372643807736280654902087655351983997116110532818110786278296695618510834501458931682672053<101> |
| factorization results 素因数分解の結果 | Number: n N=71078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549 ( 158 digits) SNFS difficulty: 160 digits. Divisors found: Fri Mar 3 14:47:01 2023 prp58 factor: 2297964067167294753726004619979834372683098123473071471633 Fri Mar 3 14:47:01 2023 prp101 factor: 30931045610372643807736280654902087655351983997116110532818110786278296695618510834501458931682672053 Fri Mar 3 14:47:01 2023 elapsed time 00:13:08 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 29x10^159-8 = 96(158)4 # n: 71078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549 m: 50000000000000000000000000000000 deg: 5 c5: 58 c0: -5 skew: 0.61 # Murphy_E = 5.415e-10 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1457121 hash collisions in 15401011 relations (14969547 unique) Msieve: matrix is 554474 x 554703 (152.7 MB) Sieving start time: 2023/03/03 12:29:51 Sieving end time : 2023/03/03 14:33:42 Total sieving time: 2hrs 3min 51secs. Total relation processing time: 0hrs 8min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 56sec. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 4, 2023 06:34:44 UTC 2023 年 3 月 4 日 (土) 15 時 34 分 44 秒 (日本時間) |
| composite number 合成数 | 10038066357183716688487609755553942604566243327882337134994824653387793978547821926209471006360809961560328926434769308534241706995051408015633<143> |
| prime factors 素因数 | 10306558369804382720503958199504706630562590165189135117<56> 973949401634664008680346754373389996673685354447421620660249305285802327229979741289749<87> |
| factorization results 素因数分解の結果 | Number: n N=10038066357183716688487609755553942604566243327882337134994824653387793978547821926209471006360809961560328926434769308534241706995051408015633 ( 143 digits) SNFS difficulty: 161 digits. Divisors found: Sat Mar 4 17:11:18 2023 prp56 factor: 10306558369804382720503958199504706630562590165189135117 Sat Mar 4 17:11:18 2023 prp87 factor: 973949401634664008680346754373389996673685354447421620660249305285802327229979741289749 Sat Mar 4 17:11:18 2023 elapsed time 00:11:44 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 29x10^160-8 = 96(159)4 # n: 10038066357183716688487609755553942604566243327882337134994824653387793978547821926209471006360809961560328926434769308534241706995051408015633 m: 100000000000000000000000000000000 deg: 5 c5: 29 c0: -8 skew: 0.77 # Murphy_E = 6.004e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 814931 hash collisions in 11677008 relations (11646741 unique) Msieve: matrix is 557591 x 557816 (156.5 MB) Sieving start time: 2023/03/04 14:43:04 Sieving end time : 2023/03/04 16:59:12 Total sieving time: 2hrs 16min 8secs. Total relation processing time: 0hrs 8min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 2sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 6, 2023 07:30:21 UTC 2023 年 3 月 6 日 (月) 16 時 30 分 21 秒 (日本時間) |
| composite number 合成数 | 105106345935384262513156292683214348323367532339519448526904426522537077698542874171182210506420332868621840629300000647529687967<129> |
| prime factors 素因数 | 3762846779851461604603003907693225182837371876917357274193<58> 27932666963264801348897424377108461285039580129694814602160968474363119<71> |
| factorization results 素因数分解の結果 | Number: n N=105106345935384262513156292683214348323367532339519448526904426522537077698542874171182210506420332868621840629300000647529687967 ( 129 digits) SNFS difficulty: 162 digits. Divisors found: Mon Mar 6 18:15:53 2023 prp58 factor: 3762846779851461604603003907693225182837371876917357274193 Mon Mar 6 18:15:53 2023 prp71 factor: 27932666963264801348897424377108461285039580129694814602160968474363119 Mon Mar 6 18:15:53 2023 elapsed time 00:09:25 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.022). Factorization parameters were as follows: # # N = 29x10^161-8 = 96(160)4 # n: 105106345935384262513156292683214348323367532339519448526904426522537077698542874171182210506420332868621840629300000647529687967 m: 100000000000000000000000000000000 deg: 5 c5: 145 c0: -4 skew: 0.49 # Murphy_E = 5.233e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 5750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1529830 hash collisions in 15998152 relations (15143506 unique) Msieve: matrix is 476118 x 476350 (131.4 MB) Sieving start time: 2023/03/06 17:11:45 Sieving end time : 2023/03/06 18:06:10 Total sieving time: 0hrs 54min 25secs. Total relation processing time: 0hrs 5min 52sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 26sec. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 5, 2023 04:23:45 UTC 2023 年 3 月 5 日 (日) 13 時 23 分 45 秒 (日本時間) |
| composite number 合成数 | 172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619<162> |
| prime factors 素因数 | 1568029203176833749668069124892597132523094928764409483468859<61> 110086628022820432015914295332349980482364062983970226482777222243993804078107789731213969337694351641<102> |
| factorization results 素因数分解の結果 | Number: n N=172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 ( 162 digits) SNFS difficulty: 162 digits. Divisors found: Sun Mar 5 15:16:36 2023 prp61 factor: 1568029203176833749668069124892597132523094928764409483468859 Sun Mar 5 15:16:36 2023 prp102 factor: 110086628022820432015914295332349980482364062983970226482777222243993804078107789731213969337694351641 Sun Mar 5 15:16:36 2023 elapsed time 00:10:31 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 29x10^162-8 = 96(161)4 # n: 172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 m: 100000000000000000000000000000000 deg: 5 c5: 725 c0: -2 skew: 0.31 # Murphy_E = 5.234e-10 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 991594 hash collisions in 12522526 relations (12359230 unique) Msieve: matrix is 537996 x 538221 (151.4 MB) Sieving start time: 2023/03/05 13:36:49 Sieving end time : 2023/03/05 15:05:57 Total sieving time: 1hrs 29min 8secs. Total relation processing time: 0hrs 7min 30sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 35sec. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Lionel Debroux |
|---|---|
| date 日付 | March 14, 2023 16:55:40 UTC 2023 年 3 月 15 日 (水) 1 時 55 分 40 秒 (日本時間) |
| composite number 合成数 | 1466716462920671852123117917177441097194397270262607342533516677314711822035073085213913944761321578185713247954753<115> |
| prime factors 素因数 | 8427998346733786892355074374511192955586688053<46> 174029040179995738165976910041824522537888570250018235337050245623901<69> |
| factorization results 素因数分解の結果 | 174029040179995738165976910041824522537888570250018235337050245623901 8427998346733786892355074374511192955586688053 |
| software ソフトウェア | CADO-NFS |
| execution environment 実行環境 | 10 x Xeon L5640, Debian sid amd64 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 10, 2023 19:06:26 UTC 2023 年 3 月 11 日 (土) 4 時 6 分 26 秒 (日本時間) |
| composite number 合成数 | 47754567232527097810762638838778910666382890342349174291229186970727662681714225236686212034878014046187255805125395862119179912341<131> |
| prime factors 素因数 | 12658322335665274685174646022144614476175594763911345549626171<62> 3772582650860209278705832669781614479390998135204436780039143601820271<70> |
| factorization results 素因数分解の結果 | Number: n N=47754567232527097810762638838778910666382890342349174291229186970727662681714225236686212034878014046187255805125395862119179912341 ( 131 digits) SNFS difficulty: 165 digits. Divisors found: Fri Mar 10 23:54:37 2023 prp62 factor: 12658322335665274685174646022144614476175594763911345549626171 Fri Mar 10 23:54:37 2023 prp70 factor: 3772582650860209278705832669781614479390998135204436780039143601820271 Fri Mar 10 23:54:37 2023 elapsed time 00:13:02 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 29x10^164-8 = 96(163)4 # n: 47754567232527097810762638838778910666382890342349174291229186970727662681714225236686212034878014046187255805125395862119179912341 m: 500000000000000000000000000000000 deg: 5 c5: 58 c0: -5 skew: 0.61 # Murphy_E = 3.456e-10 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 6000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1430272 hash collisions in 12693484 relations (12000899 unique) Msieve: matrix is 598433 x 598660 (168.4 MB) Sieving start time: 2023/03/10 22:41:59 Sieving end time : 2023/03/10 23:41:22 Total sieving time: 0hrs 59min 23secs. Total relation processing time: 0hrs 9min 59sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 35sec. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 7, 2023 20:36:59 UTC 2023 年 3 月 8 日 (水) 5 時 36 分 59 秒 (日本時間) |
| composite number 合成数 | 90913650841421513304742557620444912597497053143731347026810122137787475233867529405863616983923958568454844130113109121460637524139141775136056980914403230256063<161> |
| prime factors 素因数 | 10954802080353192217635558240478812850093<41> 1051952333061125109021980368729231347739368961246264480775279<61> 7889118898206012808683033085678987611446818155531363585543829<61> |
| factorization results 素因数分解の結果 | Number: n N=90913650841421513304742557620444912597497053143731347026810122137787475233867529405863616983923958568454844130113109121460637524139141775136056980914403230256063 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: Wed Mar 8 06:44:17 2023 prp41 factor: 10954802080353192217635558240478812850093 Wed Mar 8 06:44:17 2023 prp61 factor: 1051952333061125109021980368729231347739368961246264480775279 Wed Mar 8 06:44:17 2023 prp61 factor: 7889118898206012808683033085678987611446818155531363585543829 Wed Mar 8 06:44:17 2023 elapsed time 00:12:23 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.069). Factorization parameters were as follows: # # N = 29x10^165-8 = 96(164)4 # n: 90913650841421513304742557620444912597497053143731347026810122137787475233867529405863616983923958568454844130113109121460637524139141775136056980914403230256063 m: 1000000000000000000000000000000000 deg: 5 c5: 29 c0: -8 skew: 0.77 # Murphy_E = 3.827e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 6100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1597699 hash collisions in 14224381 relations (13476657 unique) Msieve: matrix is 531113 x 531339 (148.8 MB) Sieving start time: 2023/03/08 05:32:40 Sieving end time : 2023/03/08 06:31:39 Total sieving time: 0hrs 58min 59secs. Total relation processing time: 0hrs 7min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 37sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 12, 2023 11:38:04 UTC 2023 年 3 月 12 日 (日) 20 時 38 分 4 秒 (日本時間) |
| composite number 合成数 | 24796033984919106000997543737506341131993393521801493085468944481011715043106453266886310762973280868039401177850335944071629748678703895944827722387172411<155> |
| prime factors 素因数 | 59130786286460414047057205018121065794288905228494425540139585514433<68> 419342199591159939573780819488431068422697873210314704824631576548583022209526677423867<87> |
| factorization results 素因数分解の結果 | Number: n N=24796033984919106000997543737506341131993393521801493085468944481011715043106453266886310762973280868039401177850335944071629748678703895944827722387172411 ( 155 digits) SNFS difficulty: 168 digits. Divisors found: Sun Mar 12 22:29:30 2023 prp68 factor: 59130786286460414047057205018121065794288905228494425540139585514433 Sun Mar 12 22:29:30 2023 prp87 factor: 419342199591159939573780819488431068422697873210314704824631576548583022209526677423867 Sun Mar 12 22:29:30 2023 elapsed time 00:15:48 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 29x10^168-8 = 96(167)4 # n: 24796033984919106000997543737506341131993393521801493085468944481011715043106453266886310762973280868039401177850335944071629748678703895944827722387172411 m: 1000000000000000000000000000000000 deg: 5 c5: 3625 c0: -1 skew: 0.19 # Murphy_E = 2.642e-10 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 13450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1682772 hash collisions in 14750575 relations (13952219 unique) Msieve: matrix is 630131 x 630356 (176.8 MB) Sieving start time: 2023/03/12 20:57:23 Sieving end time : 2023/03/12 22:13:17 Total sieving time: 1hrs 15min 54secs. Total relation processing time: 0hrs 10min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 5sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | February 21, 2023 14:39:49 UTC 2023 年 2 月 21 日 (火) 23 時 39 分 49 秒 (日本時間) |
| composite number 合成数 | 4996296534179704797513601626567988030820402597596119052491963214500296059977931141904325055788790254996719<106> |
| prime factors 素因数 | 10311232571723691068983083082280844868080097<44> 484548912986499747208525136469285771158858455280202780754565327<63> |
| factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1250000, q1=1400000.
-> client 1 q0: 1250000
LatSieveTime: 55
LatSieveTime: 58
LatSieveTime: 59
LatSieveTime: 59
LatSieveTime: 59
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 77
-> makeJobFile(): Adjusted to q0=1400001, q1=1550000.
-> client 1 q0: 1400001
LatSieveTime: 57
LatSieveTime: 61
LatSieveTime: 62
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 74
LatSieveTime: 74
LatSieveTime: 75
LatSieveTime: 76
LatSieveTime: 77
LatSieveTime: 79
-> makeJobFile(): Adjusted to q0=1550001, q1=1700000.
-> client 1 q0: 1550001
LatSieveTime: 55
LatSieveTime: 58
LatSieveTime: 58
LatSieveTime: 58
LatSieveTime: 59
LatSieveTime: 60
LatSieveTime: 61
LatSieveTime: 61
LatSieveTime: 62
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 75
LatSieveTime: 76
LatSieveTime: 77
-> makeJobFile(): Adjusted to q0=1700001, q1=1850000.
-> client 1 q0: 1700001
LatSieveTime: 59
LatSieveTime: 60
LatSieveTime: 60
LatSieveTime: 60
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 78
LatSieveTime: 79
-> makeJobFile(): Adjusted to q0=1850001, q1=2000000.
-> client 1 q0: 1850001
LatSieveTime: 56
LatSieveTime: 61
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 62
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 65
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 74
LatSieveTime: 74
LatSieveTime: 74
LatSieveTime: 74
LatSieveTime: 76
-> makeJobFile(): Adjusted to q0=2000001, q1=2150000.
-> client 1 q0: 2000001
LatSieveTime: 58
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 65
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 74
LatSieveTime: 74
LatSieveTime: 75
LatSieveTime: 76
LatSieveTime: 76
LatSieveTime: 76
LatSieveTime: 76
Tue Feb 21 15:34:51 2023
Tue Feb 21 15:34:51 2023
Tue Feb 21 15:34:51 2023 Msieve v. 1.52 (SVN 927)
Tue Feb 21 15:34:51 2023 random seeds: 6c2be138 52b136b3
Tue Feb 21 15:34:51 2023 factoring 4996296534179704797513601626567988030820402597596119052491963214500296059977931141904325055788790254996719 (106 digits)
Tue Feb 21 15:34:51 2023 searching for 15-digit factors
Tue Feb 21 15:34:51 2023 commencing number field sieve (106-digit input)
Tue Feb 21 15:34:51 2023 R0: -208767617440155139657
Tue Feb 21 15:34:51 2023 R1: 125765987633
Tue Feb 21 15:34:51 2023 A0: 9681695818098626564631564
Tue Feb 21 15:34:51 2023 A1: 5066938662541577325064
Tue Feb 21 15:34:51 2023 A2: 1263278585112366110
Tue Feb 21 15:34:51 2023 A3: -41226012346773
Tue Feb 21 15:34:51 2023 A4: -1830610350
Tue Feb 21 15:34:51 2023 A5: 12600
Tue Feb 21 15:34:51 2023 skew 26696.26, size 3.380e-010, alpha -6.557, combined = 1.459e-009 rroots = 3
Tue Feb 21 15:34:51 2023
Tue Feb 21 15:34:51 2023 commencing relation filtering
Tue Feb 21 15:34:51 2023 estimated available RAM is 65413.5 MB
Tue Feb 21 15:34:51 2023 commencing duplicate removal, pass 1
Tue Feb 21 15:34:59 2023 found 418801 hash collisions in 4434359 relations
Tue Feb 21 15:35:04 2023 added 31538 free relations
Tue Feb 21 15:35:04 2023 commencing duplicate removal, pass 2
Tue Feb 21 15:35:05 2023 found 323483 duplicates and 4142414 unique relations
Tue Feb 21 15:35:05 2023 memory use: 16.3 MB
Tue Feb 21 15:35:05 2023 reading ideals above 100000
Tue Feb 21 15:35:05 2023 commencing singleton removal, initial pass
Tue Feb 21 15:35:18 2023 memory use: 94.1 MB
Tue Feb 21 15:35:18 2023 reading all ideals from disk
Tue Feb 21 15:35:18 2023 memory use: 132.7 MB
Tue Feb 21 15:35:18 2023 keeping 4642146 ideals with weight <= 200, target excess is 22994
Tue Feb 21 15:35:18 2023 commencing in-memory singleton removal
Tue Feb 21 15:35:18 2023 begin with 4142414 relations and 4642146 unique ideals
Tue Feb 21 15:35:19 2023 reduce to 1326205 relations and 1302786 ideals in 19 passes
Tue Feb 21 15:35:19 2023 max relations containing the same ideal: 88
Tue Feb 21 15:35:19 2023 filtering wants 1000000 more relations
Tue Feb 21 15:35:19 2023 elapsed time 00:00:28
-> makeJobFile(): Adjusted to q0=2150001, q1=2300000.
-> client 1 q0: 2150001
LatSieveTime: 58
LatSieveTime: 59
LatSieveTime: 59
LatSieveTime: 60
LatSieveTime: 61
LatSieveTime: 61
LatSieveTime: 61
LatSieveTime: 62
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 63
LatSieveTime: 64
LatSieveTime: 64
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 66
LatSieveTime: 67
LatSieveTime: 67
LatSieveTime: 68
LatSieveTime: 69
LatSieveTime: 69
LatSieveTime: 70
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 71
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 72
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 73
LatSieveTime: 75
LatSieveTime: 75
LatSieveTime: 75
LatSieveTime: 76
LatSieveTime: 76
LatSieveTime: 76
LatSieveTime: 77
LatSieveTime: 77
LatSieveTime: 78
Tue Feb 21 15:36:42 2023
Tue Feb 21 15:36:42 2023
Tue Feb 21 15:36:42 2023 Msieve v. 1.52 (SVN 927)
Tue Feb 21 15:36:42 2023 random seeds: e896a0b8 542d5e7b
Tue Feb 21 15:36:42 2023 factoring 4996296534179704797513601626567988030820402597596119052491963214500296059977931141904325055788790254996719 (106 digits)
Tue Feb 21 15:36:42 2023 searching for 15-digit factors
Tue Feb 21 15:36:42 2023 commencing number field sieve (106-digit input)
Tue Feb 21 15:36:42 2023 R0: -208767617440155139657
Tue Feb 21 15:36:42 2023 R1: 125765987633
Tue Feb 21 15:36:42 2023 A0: 9681695818098626564631564
Tue Feb 21 15:36:42 2023 A1: 5066938662541577325064
Tue Feb 21 15:36:42 2023 A2: 1263278585112366110
Tue Feb 21 15:36:42 2023 A3: -41226012346773
Tue Feb 21 15:36:42 2023 A4: -1830610350
Tue Feb 21 15:36:42 2023 A5: 12600
Tue Feb 21 15:36:42 2023 skew 26696.26, size 3.380e-010, alpha -6.557, combined = 1.459e-009 rroots = 3
Tue Feb 21 15:36:42 2023
Tue Feb 21 15:36:42 2023 commencing relation filtering
Tue Feb 21 15:36:42 2023 estimated available RAM is 65413.5 MB
Tue Feb 21 15:36:42 2023 commencing duplicate removal, pass 1
Tue Feb 21 15:36:52 2023 found 545033 hash collisions in 5187029 relations
Tue Feb 21 15:36:57 2023 added 471 free relations
Tue Feb 21 15:36:57 2023 commencing duplicate removal, pass 2
Tue Feb 21 15:36:58 2023 found 421268 duplicates and 4766232 unique relations
Tue Feb 21 15:36:58 2023 memory use: 24.6 MB
Tue Feb 21 15:36:58 2023 reading ideals above 100000
Tue Feb 21 15:36:58 2023 commencing singleton removal, initial pass
Tue Feb 21 15:37:14 2023 memory use: 94.1 MB
Tue Feb 21 15:37:14 2023 reading all ideals from disk
Tue Feb 21 15:37:14 2023 memory use: 152.9 MB
Tue Feb 21 15:37:14 2023 keeping 4935245 ideals with weight <= 200, target excess is 25165
Tue Feb 21 15:37:14 2023 commencing in-memory singleton removal
Tue Feb 21 15:37:14 2023 begin with 4766232 relations and 4935245 unique ideals
Tue Feb 21 15:37:15 2023 reduce to 2060816 relations and 1803840 ideals in 13 passes
Tue Feb 21 15:37:15 2023 max relations containing the same ideal: 116
Tue Feb 21 15:37:16 2023 removing 513633 relations and 399741 ideals in 113892 cliques
Tue Feb 21 15:37:16 2023 commencing in-memory singleton removal
Tue Feb 21 15:37:16 2023 begin with 1547183 relations and 1803840 unique ideals
Tue Feb 21 15:37:16 2023 reduce to 1448235 relations and 1298263 ideals in 10 passes
Tue Feb 21 15:37:16 2023 max relations containing the same ideal: 95
Tue Feb 21 15:37:16 2023 removing 413265 relations and 299373 ideals in 113892 cliques
Tue Feb 21 15:37:16 2023 commencing in-memory singleton removal
Tue Feb 21 15:37:16 2023 begin with 1034970 relations and 1298263 unique ideals
Tue Feb 21 15:37:17 2023 reduce to 948384 relations and 905428 ideals in 8 passes
Tue Feb 21 15:37:17 2023 max relations containing the same ideal: 73
Tue Feb 21 15:37:17 2023 removing 80124 relations and 66360 ideals in 13764 cliques
Tue Feb 21 15:37:17 2023 commencing in-memory singleton removal
Tue Feb 21 15:37:17 2023 begin with 868260 relations and 905428 unique ideals
Tue Feb 21 15:37:17 2023 reduce to 864140 relations and 834891 ideals in 6 passes
Tue Feb 21 15:37:17 2023 max relations containing the same ideal: 68
Tue Feb 21 15:37:17 2023 relations with 0 large ideals: 85
Tue Feb 21 15:37:17 2023 relations with 1 large ideals: 286
Tue Feb 21 15:37:17 2023 relations with 2 large ideals: 4188
Tue Feb 21 15:37:17 2023 relations with 3 large ideals: 30510
Tue Feb 21 15:37:17 2023 relations with 4 large ideals: 109153
Tue Feb 21 15:37:17 2023 relations with 5 large ideals: 219540
Tue Feb 21 15:37:17 2023 relations with 6 large ideals: 254327
Tue Feb 21 15:37:17 2023 relations with 7+ large ideals: 246051
Tue Feb 21 15:37:17 2023 commencing 2-way merge
Tue Feb 21 15:37:17 2023 reduce to 516452 relation sets and 487203 unique ideals
Tue Feb 21 15:37:17 2023 commencing full merge
Tue Feb 21 15:37:22 2023 memory use: 62.2 MB
Tue Feb 21 15:37:22 2023 found 261132 cycles, need 257403
Tue Feb 21 15:37:22 2023 weight of 257403 cycles is about 18210425 (70.75/cycle)
Tue Feb 21 15:37:22 2023 distribution of cycle lengths:
Tue Feb 21 15:37:22 2023 1 relations: 23660
Tue Feb 21 15:37:22 2023 2 relations: 25360
Tue Feb 21 15:37:22 2023 3 relations: 26220
Tue Feb 21 15:37:22 2023 4 relations: 25211
Tue Feb 21 15:37:22 2023 5 relations: 24089
Tue Feb 21 15:37:22 2023 6 relations: 22406
Tue Feb 21 15:37:22 2023 7 relations: 20408
Tue Feb 21 15:37:22 2023 8 relations: 17875
Tue Feb 21 15:37:22 2023 9 relations: 15630
Tue Feb 21 15:37:22 2023 10+ relations: 56544
Tue Feb 21 15:37:22 2023 heaviest cycle: 20 relations
Tue Feb 21 15:37:22 2023 commencing cycle optimization
Tue Feb 21 15:37:23 2023 start with 1643302 relations
Tue Feb 21 15:37:25 2023 pruned 45634 relations
Tue Feb 21 15:37:25 2023 memory use: 52.1 MB
Tue Feb 21 15:37:25 2023 distribution of cycle lengths:
Tue Feb 21 15:37:25 2023 1 relations: 23660
Tue Feb 21 15:37:25 2023 2 relations: 25898
Tue Feb 21 15:37:25 2023 3 relations: 27161
Tue Feb 21 15:37:25 2023 4 relations: 25792
Tue Feb 21 15:37:25 2023 5 relations: 25008
Tue Feb 21 15:37:25 2023 6 relations: 23017
Tue Feb 21 15:37:25 2023 7 relations: 20888
Tue Feb 21 15:37:25 2023 8 relations: 18054
Tue Feb 21 15:37:25 2023 9 relations: 15795
Tue Feb 21 15:37:25 2023 10+ relations: 52130
Tue Feb 21 15:37:25 2023 heaviest cycle: 20 relations
Tue Feb 21 15:37:25 2023 RelProcTime: 43
Tue Feb 21 15:37:25 2023 elapsed time 00:00:43
Tue Feb 21 15:37:25 2023
Tue Feb 21 15:37:25 2023
Tue Feb 21 15:37:25 2023 Msieve v. 1.52 (SVN 927)
Tue Feb 21 15:37:25 2023 random seeds: 120827ac 697217fe
Tue Feb 21 15:37:25 2023 factoring 4996296534179704797513601626567988030820402597596119052491963214500296059977931141904325055788790254996719 (106 digits)
Tue Feb 21 15:37:25 2023 searching for 15-digit factors
Tue Feb 21 15:37:25 2023 commencing number field sieve (106-digit input)
Tue Feb 21 15:37:25 2023 R0: -208767617440155139657
Tue Feb 21 15:37:25 2023 R1: 125765987633
Tue Feb 21 15:37:25 2023 A0: 9681695818098626564631564
Tue Feb 21 15:37:25 2023 A1: 5066938662541577325064
Tue Feb 21 15:37:25 2023 A2: 1263278585112366110
Tue Feb 21 15:37:25 2023 A3: -41226012346773
Tue Feb 21 15:37:25 2023 A4: -1830610350
Tue Feb 21 15:37:25 2023 A5: 12600
Tue Feb 21 15:37:25 2023 skew 26696.26, size 3.380e-010, alpha -6.557, combined = 1.459e-009 rroots = 3
Tue Feb 21 15:37:25 2023
Tue Feb 21 15:37:25 2023 commencing linear algebra
Tue Feb 21 15:37:25 2023 read 257403 cycles
Tue Feb 21 15:37:26 2023 cycles contain 844201 unique relations
Tue Feb 21 15:37:28 2023 read 844201 relations
Tue Feb 21 15:37:28 2023 using 20 quadratic characters above 67107758
Tue Feb 21 15:37:30 2023 building initial matrix
Tue Feb 21 15:37:34 2023 memory use: 106.3 MB
Tue Feb 21 15:37:35 2023 read 257403 cycles
Tue Feb 21 15:37:35 2023 matrix is 257226 x 257403 (78.1 MB) with weight 24924910 (96.83/col)
Tue Feb 21 15:37:35 2023 sparse part has weight 17372275 (67.49/col)
Tue Feb 21 15:37:36 2023 filtering completed in 2 passes
Tue Feb 21 15:37:36 2023 matrix is 257153 x 257330 (78.0 MB) with weight 24922006 (96.85/col)
Tue Feb 21 15:37:36 2023 sparse part has weight 17371497 (67.51/col)
Tue Feb 21 15:37:36 2023 matrix starts at (0, 0)
Tue Feb 21 15:37:36 2023 matrix is 257153 x 257330 (78.0 MB) with weight 24922006 (96.85/col)
Tue Feb 21 15:37:36 2023 sparse part has weight 17371497 (67.51/col)
Tue Feb 21 15:37:36 2023 saving the first 48 matrix rows for later
Tue Feb 21 15:37:36 2023 matrix includes 64 packed rows
Tue Feb 21 15:37:36 2023 matrix is 257105 x 257330 (75.0 MB) with weight 19969216 (77.60/col)
Tue Feb 21 15:37:36 2023 sparse part has weight 17093015 (66.42/col)
Tue Feb 21 15:37:36 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Tue Feb 21 15:37:37 2023 commencing Lanczos iteration (32 threads)
Tue Feb 21 15:37:37 2023 memory use: 57.3 MB
Tue Feb 21 15:37:41 2023 linear algebra at 4.7%, ETA 0h 1m
Tue Feb 21 15:38:59 2023 lanczos halted after 4068 iterations (dim = 257101)
Tue Feb 21 15:38:59 2023 recovered 32 nontrivial dependencies
Tue Feb 21 15:38:59 2023 BLanczosTime: 94
Tue Feb 21 15:38:59 2023 elapsed time 00:01:34
Tue Feb 21 15:38:59 2023
Tue Feb 21 15:38:59 2023
Tue Feb 21 15:38:59 2023 Msieve v. 1.52 (SVN 927)
Tue Feb 21 15:38:59 2023 random seeds: 3e361a18 1163c92f
Tue Feb 21 15:38:59 2023 factoring 4996296534179704797513601626567988030820402597596119052491963214500296059977931141904325055788790254996719 (106 digits)
Tue Feb 21 15:38:59 2023 searching for 15-digit factors
Tue Feb 21 15:38:59 2023 commencing number field sieve (106-digit input)
Tue Feb 21 15:38:59 2023 R0: -208767617440155139657
Tue Feb 21 15:38:59 2023 R1: 125765987633
Tue Feb 21 15:38:59 2023 A0: 9681695818098626564631564
Tue Feb 21 15:38:59 2023 A1: 5066938662541577325064
Tue Feb 21 15:38:59 2023 A2: 1263278585112366110
Tue Feb 21 15:38:59 2023 A3: -41226012346773
Tue Feb 21 15:38:59 2023 A4: -1830610350
Tue Feb 21 15:38:59 2023 A5: 12600
Tue Feb 21 15:38:59 2023 skew 26696.26, size 3.380e-010, alpha -6.557, combined = 1.459e-009 rroots = 3
Tue Feb 21 15:38:59 2023
Tue Feb 21 15:38:59 2023 commencing square root phase
Tue Feb 21 15:38:59 2023 reading relations for dependency 1
Tue Feb 21 15:38:59 2023 read 129305 cycles
Tue Feb 21 15:38:59 2023 cycles contain 422080 unique relations
Tue Feb 21 15:39:01 2023 read 422080 relations
Tue Feb 21 15:39:01 2023 multiplying 422080 relations
Tue Feb 21 15:39:09 2023 multiply complete, coefficients have about 17.97 million bits
Tue Feb 21 15:39:09 2023 initial square root is modulo 144731
Tue Feb 21 15:39:19 2023 sqrtTime: 20
Tue Feb 21 15:39:19 2023 prp44 factor: 10311232571723691068983083082280844868080097
Tue Feb 21 15:39:19 2023 prp63 factor: 484548912986499747208525136469285771158858455280202780754565327
Tue Feb 21 15:39:19 2023 elapsed time 00:00:20 |
| software ソフトウェア | GNFS, Msieve |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | anonymous |
|---|---|
| date 日付 | March 20, 2023 22:56:50 UTC 2023 年 3 月 21 日 (火) 7 時 56 分 50 秒 (日本時間) |
| composite number 合成数 | 16849132057796074215844173777429334023592518375808689235455435182485262403660768680504422829820763869394603074097967315417655888419157347275458227<146> |
| prime factors 素因数 | 13821913254459332028806729827387173822619408007911906351<56> 1219015902328867355535191143053918817837673936393529341921522063531658001393396576396249277<91> |
| factorization results 素因数分解の結果 | Tue Mar 21 03:48:34 2023 Tue Mar 21 03:48:34 2023 Tue Mar 21 03:48:34 2023 Msieve v. 1.54 (SVN Unversioned directory) Tue Mar 21 03:48:34 2023 random seeds: 4e47c518 21cd9598 Tue Mar 21 03:48:34 2023 factoring 16849132057796074215844173777429334023592518375808689235455435182485262403660768680504422829820763869394603074097967315417655888419157347275458227 (146 digits) Tue Mar 21 03:48:35 2023 searching for 15-digit factors Tue Mar 21 03:48:35 2023 commencing number field sieve (146-digit input) Tue Mar 21 03:48:35 2023 R0: -50000000000000000000000000000000000 Tue Mar 21 03:48:35 2023 R1: 1 Tue Mar 21 03:48:35 2023 A0: -5 Tue Mar 21 03:48:35 2023 A1: 0 Tue Mar 21 03:48:35 2023 A2: 0 Tue Mar 21 03:48:35 2023 A3: 0 Tue Mar 21 03:48:35 2023 A4: 0 Tue Mar 21 03:48:35 2023 A5: 58 Tue Mar 21 03:48:35 2023 skew 0.61, size 2.346e-012, alpha 1.725, combined = 1.388e-010 rroots = 1 Tue Mar 21 03:48:35 2023 Tue Mar 21 03:48:35 2023 commencing relation filtering Tue Mar 21 03:48:35 2023 estimated available RAM is 15734.8 MB Tue Mar 21 03:48:35 2023 commencing duplicate removal, pass 1 Tue Mar 21 03:50:34 2023 found 2102959 hash collisions in 20484103 relations Tue Mar 21 03:50:49 2023 added 1001 free relations Tue Mar 21 03:50:49 2023 commencing duplicate removal, pass 2 Tue Mar 21 03:50:56 2023 found 1622618 duplicates and 18862486 unique relations Tue Mar 21 03:50:56 2023 memory use: 98.6 MB Tue Mar 21 03:50:56 2023 reading ideals above 720000 Tue Mar 21 03:50:56 2023 commencing singleton removal, initial pass Tue Mar 21 03:52:37 2023 memory use: 689.0 MB Tue Mar 21 03:52:37 2023 reading all ideals from disk Tue Mar 21 03:52:38 2023 memory use: 572.6 MB Tue Mar 21 03:52:39 2023 keeping 21351256 ideals with weight <= 200, target excess is 116037 Tue Mar 21 03:52:40 2023 commencing in-memory singleton removal Tue Mar 21 03:52:41 2023 begin with 18862486 relations and 21351256 unique ideals Tue Mar 21 03:52:49 2023 reduce to 6511404 relations and 6225103 ideals in 21 passes Tue Mar 21 03:52:49 2023 max relations containing the same ideal: 95 Tue Mar 21 03:52:51 2023 removing 841867 relations and 766018 ideals in 75849 cliques Tue Mar 21 03:52:51 2023 commencing in-memory singleton removal Tue Mar 21 03:52:51 2023 begin with 5669537 relations and 6225103 unique ideals Tue Mar 21 03:52:54 2023 reduce to 5566040 relations and 5353675 ideals in 11 passes Tue Mar 21 03:52:54 2023 max relations containing the same ideal: 81 Tue Mar 21 03:52:56 2023 removing 615479 relations and 539630 ideals in 75849 cliques Tue Mar 21 03:52:56 2023 commencing in-memory singleton removal Tue Mar 21 03:52:56 2023 begin with 4950561 relations and 5353675 unique ideals Tue Mar 21 03:52:59 2023 reduce to 4887316 relations and 4749810 ideals in 10 passes Tue Mar 21 03:52:59 2023 max relations containing the same ideal: 73 Tue Mar 21 03:53:01 2023 relations with 0 large ideals: 2887 Tue Mar 21 03:53:01 2023 relations with 1 large ideals: 1631 Tue Mar 21 03:53:01 2023 relations with 2 large ideals: 25761 Tue Mar 21 03:53:01 2023 relations with 3 large ideals: 175904 Tue Mar 21 03:53:01 2023 relations with 4 large ideals: 626214 Tue Mar 21 03:53:01 2023 relations with 5 large ideals: 1254070 Tue Mar 21 03:53:01 2023 relations with 6 large ideals: 1473807 Tue Mar 21 03:53:01 2023 relations with 7+ large ideals: 1327042 Tue Mar 21 03:53:01 2023 commencing 2-way merge Tue Mar 21 03:53:03 2023 reduce to 2712322 relation sets and 2574821 unique ideals Tue Mar 21 03:53:03 2023 ignored 5 oversize relation sets Tue Mar 21 03:53:03 2023 commencing full merge Tue Mar 21 03:53:42 2023 memory use: 292.6 MB Tue Mar 21 03:53:43 2023 found 1202808 cycles, need 1199021 Tue Mar 21 03:53:43 2023 weight of 1199021 cycles is about 108361969 (90.38/cycle) Tue Mar 21 03:53:43 2023 distribution of cycle lengths: Tue Mar 21 03:53:43 2023 1 relations: 129350 Tue Mar 21 03:53:43 2023 2 relations: 110778 Tue Mar 21 03:53:43 2023 3 relations: 108516 Tue Mar 21 03:53:43 2023 4 relations: 98745 Tue Mar 21 03:53:43 2023 5 relations: 92325 Tue Mar 21 03:53:43 2023 6 relations: 83206 Tue Mar 21 03:53:43 2023 7 relations: 74554 Tue Mar 21 03:53:43 2023 8 relations: 65918 Tue Mar 21 03:53:43 2023 9 relations: 58116 Tue Mar 21 03:53:43 2023 10+ relations: 377513 Tue Mar 21 03:53:43 2023 heaviest cycle: 28 relations Tue Mar 21 03:53:43 2023 commencing cycle optimization Tue Mar 21 03:53:45 2023 start with 9265422 relations Tue Mar 21 03:54:00 2023 pruned 240712 relations Tue Mar 21 03:54:00 2023 memory use: 287.5 MB Tue Mar 21 03:54:00 2023 distribution of cycle lengths: Tue Mar 21 03:54:00 2023 1 relations: 129350 Tue Mar 21 03:54:00 2023 2 relations: 113258 Tue Mar 21 03:54:00 2023 3 relations: 111916 Tue Mar 21 03:54:00 2023 4 relations: 101353 Tue Mar 21 03:54:00 2023 5 relations: 94764 Tue Mar 21 03:54:00 2023 6 relations: 84606 Tue Mar 21 03:54:00 2023 7 relations: 75945 Tue Mar 21 03:54:00 2023 8 relations: 66458 Tue Mar 21 03:54:00 2023 9 relations: 58845 Tue Mar 21 03:54:00 2023 10+ relations: 362526 Tue Mar 21 03:54:00 2023 heaviest cycle: 28 relations Tue Mar 21 03:54:01 2023 RelProcTime: 326 Tue Mar 21 03:54:01 2023 elapsed time 00:05:27 Tue Mar 21 03:54:01 2023 Tue Mar 21 03:54:01 2023 Tue Mar 21 03:54:01 2023 Msieve v. 1.54 (SVN Unversioned directory) Tue Mar 21 03:54:01 2023 random seeds: f779c468 e58c8973 Tue Mar 21 03:54:01 2023 factoring 16849132057796074215844173777429334023592518375808689235455435182485262403660768680504422829820763869394603074097967315417655888419157347275458227 (146 digits) Tue Mar 21 03:54:02 2023 searching for 15-digit factors Tue Mar 21 03:54:02 2023 commencing number field sieve (146-digit input) Tue Mar 21 03:54:02 2023 R0: -50000000000000000000000000000000000 Tue Mar 21 03:54:02 2023 R1: 1 Tue Mar 21 03:54:02 2023 A0: -5 Tue Mar 21 03:54:02 2023 A1: 0 Tue Mar 21 03:54:02 2023 A2: 0 Tue Mar 21 03:54:02 2023 A3: 0 Tue Mar 21 03:54:02 2023 A4: 0 Tue Mar 21 03:54:02 2023 A5: 58 Tue Mar 21 03:54:02 2023 skew 0.61, size 2.346e-012, alpha 1.725, combined = 1.388e-010 rroots = 1 Tue Mar 21 03:54:02 2023 Tue Mar 21 03:54:02 2023 commencing linear algebra Tue Mar 21 03:54:02 2023 read 1199021 cycles Tue Mar 21 03:54:04 2023 cycles contain 4694382 unique relations Tue Mar 21 03:54:22 2023 read 4694382 relations Tue Mar 21 03:54:28 2023 using 20 quadratic characters above 4294917295 Tue Mar 21 03:54:42 2023 building initial matrix Tue Mar 21 03:55:14 2023 memory use: 558.7 MB Tue Mar 21 03:55:15 2023 read 1199021 cycles Tue Mar 21 03:55:15 2023 matrix is 1198844 x 1199021 (443.9 MB) with weight 129680316 (108.16/col) Tue Mar 21 03:55:15 2023 sparse part has weight 103167761 (86.04/col) Tue Mar 21 03:55:23 2023 filtering completed in 2 passes Tue Mar 21 03:55:23 2023 matrix is 1198216 x 1198393 (443.8 MB) with weight 129656089 (108.19/col) Tue Mar 21 03:55:23 2023 sparse part has weight 103158722 (86.08/col) Tue Mar 21 03:55:25 2023 matrix starts at (0, 0) Tue Mar 21 03:55:25 2023 matrix is 1198216 x 1198393 (443.8 MB) with weight 129656089 (108.19/col) Tue Mar 21 03:55:25 2023 sparse part has weight 103158722 (86.08/col) Tue Mar 21 03:55:25 2023 saving the first 112 matrix rows for later Tue Mar 21 03:55:26 2023 matrix includes 128 packed rows Tue Mar 21 03:55:26 2023 matrix is 1198104 x 1198393 (405.6 MB) with weight 98342827 (82.06/col) Tue Mar 21 03:55:26 2023 sparse part has weight 91956118 (76.73/col) Tue Mar 21 03:55:26 2023 using block size 8192 and superblock size 393216 for processor cache size 8192 kB Tue Mar 21 03:55:29 2023 commencing Lanczos iteration (10 threads) Tue Mar 21 03:55:29 2023 memory use: 458.3 MB Tue Mar 21 03:55:31 2023 linear algebra at 0.1%, ETA 0h26m Tue Mar 21 03:55:32 2023 checkpointing every 2450000 dimensions Tue Mar 21 04:21:03 2023 lanczos halted after 9418 iterations (dim = 1198102) Tue Mar 21 04:21:05 2023 recovered 37 nontrivial dependencies Tue Mar 21 04:21:05 2023 BLanczosTime: 1623 Tue Mar 21 04:21:05 2023 elapsed time 00:27:04 Tue Mar 21 04:21:05 2023 Tue Mar 21 04:21:05 2023 Tue Mar 21 04:21:05 2023 Msieve v. 1.54 (SVN Unversioned directory) Tue Mar 21 04:21:05 2023 random seeds: eb69d4e4 0b8e2ee0 Tue Mar 21 04:21:05 2023 factoring 16849132057796074215844173777429334023592518375808689235455435182485262403660768680504422829820763869394603074097967315417655888419157347275458227 (146 digits) Tue Mar 21 04:21:06 2023 searching for 15-digit factors Tue Mar 21 04:21:06 2023 commencing number field sieve (146-digit input) Tue Mar 21 04:21:06 2023 R0: -50000000000000000000000000000000000 Tue Mar 21 04:21:06 2023 R1: 1 Tue Mar 21 04:21:06 2023 A0: -5 Tue Mar 21 04:21:06 2023 A1: 0 Tue Mar 21 04:21:06 2023 A2: 0 Tue Mar 21 04:21:06 2023 A3: 0 Tue Mar 21 04:21:06 2023 A4: 0 Tue Mar 21 04:21:06 2023 A5: 58 Tue Mar 21 04:21:06 2023 skew 0.61, size 2.346e-012, alpha 1.725, combined = 1.388e-010 rroots = 1 Tue Mar 21 04:21:06 2023 Tue Mar 21 04:21:06 2023 commencing square root phase Tue Mar 21 04:21:06 2023 reading relations for dependency 1 Tue Mar 21 04:21:06 2023 read 598465 cycles Tue Mar 21 04:21:07 2023 cycles contain 2345214 unique relations Tue Mar 21 04:21:17 2023 read 2345214 relations Tue Mar 21 04:21:23 2023 multiplying 2345214 relations Tue Mar 21 04:22:03 2023 multiply complete, coefficients have about 64.49 million bits Tue Mar 21 04:22:03 2023 initial square root is modulo 1811947421 Tue Mar 21 04:22:46 2023 sqrtTime: 100 Tue Mar 21 04:22:46 2023 p56 factor: 13821913254459332028806729827387173822619408007911906351 Tue Mar 21 04:22:46 2023 p91 factor: 1219015902328867355535191143053918817837673936393529341921522063531658001393396576396249277 Tue Mar 21 04:22:46 2023 elapsed time 00:01:41 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 0 | - | - | |
| 45 | 11e6 | 4633 | ccc | March 13, 2023 00:57:48 UTC 2023 年 3 月 13 日 (月) 9 時 57 分 48 秒 (日本時間) | |
| name 名前 | Eric Jeancolas |
|---|---|
| date 日付 | April 15, 2023 14:23:38 UTC 2023 年 4 月 15 日 (土) 23 時 23 分 38 秒 (日本時間) |
| composite number 合成数 | 153539752630535198147581048143268990335573232910611268545296874722433568297891831080664732291358310785929205411533635892104178752469<132> |
| prime factors 素因数 | 103429035240110253826285713382348373513969<42> 1484493713724516870351364902940073837701618364835440230987596369891596238710476613892766501<91> |
| factorization results 素因数分解の結果 | 153539752630535198147581048143268990335573232910611268545296874722433568297891831080664732291358310785929205411533635892104178752469=103429035240110253826285713382348373513969*1484493713724516870351364902940073837701618364835440230987596369891596238710476613892766501 cado polynomial n: 153539752630535198147581048143268990335573232910611268545296874722433568297891831080664732291358310785929205411533635892104178752469 skew: 0.77 type: snfs c0: -8 c5: 29 Y0: 100000000000000000000000000000000000 Y1: -1 cado parameters (extracts) tasks.lim0 = 5777834 tasks.lim1 = 5777834 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 52 tasks.sieve.mfb1 = 52 tasks.sieve.lambda0 = 2.500000 tasks.sieve.lambda1 = 2.500000 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1484493713724516870351364902940073837701618364835440230987596369891596238710476613892766501 103429035240110253826285713382348373513969 Info:Square Root: Total cpu/real time for sqrt: 144.71/46.9036 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 91.27/87.9671 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 87.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 160.01/136.969 Info:Filtering - Merging: Merged matrix has 725789 rows and total weight 123971978 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 169.89/46.6552 Info:Filtering - Merging: Total cpu/real time for replay: 23.39/20.2268 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 22417225 Info:Lattice Sieving: Average J: 1893.72 for 775821 special-q, max bucket fill -bkmult 1.0,1s:1.219020 Info:Lattice Sieving: Total time: 120460s Info:Linear Algebra: Total cpu/real time for bwc: 7886.78/2030.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 4944.87, WCT time 1266.14, iteration CPU time 0.05, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (22784 iterations) Info:Linear Algebra: Lingen CPU time 127.33, WCT time 32.37 Info:Linear Algebra: Mksol: CPU time 2702.52, WCT time 691.07, iteration CPU time 0.06, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (11520 iterations) Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 228.71/231.369 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 216.3s Info:Quadratic Characters: Total cpu/real time for characters: 23.06/9.07993 Info:Generate Factor Base: Total cpu/real time for makefb: 2.47/1.43436 Info:Generate Free Relations: Total cpu/real time for freerel: 117.71/30.6772 Info:Square Root: Total cpu/real time for sqrt: 144.71/46.9036 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 234791/63136.4 Info:root: Cleaning up computation data in /tmp/cado.m49h3efz 1484493713724516870351364902940073837701618364835440230987596369891596238710476613892766501 103429035240110253826285713382348373513969 |
| software ソフトウェア | cado-nfs-3.0.0 |
| execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2307 | Rytis Slatkevičius | March 27, 2023 06:31:01 UTC 2023 年 3 月 27 日 (月) 15 時 31 分 1 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 15, 2023 11:04:47 UTC 2023 年 3 月 15 日 (水) 20 時 4 分 47 秒 (日本時間) |
| composite number 合成数 | 17672849255183165716668854326524688958103340240710735472639760925353453844170250617991547030168621274106122855683996648581227732720807<134> |
| prime factors 素因数 | 144346360244172058480608321618408222721<39> 122433632724013917546570674351630800058934277102074356731007440253648683475215764482263074278567<96> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 17672849255183165716668854326524688958103340240710735472639760925353453844170250617991547030168621274106122855683996648581227732720807 (134 digits) Using B1=31140000, B2=144290666536, polynomial Dickson(12), sigma=1:343807703 Step 1 took 49443ms Step 2 took 19633ms ********** Factor found in step 2: 144346360244172058480608321618408222721 Found prime factor of 39 digits: 144346360244172058480608321618408222721 Prime cofactor 122433632724013917546570674351630800058934277102074356731007440253648683475215764482263074278567 has 96 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 14, 2023 12:21:02 UTC 2023 年 3 月 14 日 (火) 21 時 21 分 2 秒 (日本時間) |
| composite number 合成数 | 6781285419170229612904494303599054563603919366841675596558282975625537375666805365263588514830429930111561618935489549093716754215783702478704677<145> |
| prime factors 素因数 | 411773595570013112436008588693343474648037<42> 112637559599242218588453385305577988249621715736867<51> 146207717342041514596441928535719954341618412027084363<54> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 6781285419170229612904494303599054563603919366841675596558282975625537375666805365263588514830429930111561618935489549093716754215783702478704677 (145 digits) Using B1=37640000, B2=192391008826, polynomial Dickson(12), sigma=1:2804551068 Step 1 took 76443ms Step 2 took 27129ms ********** Factor found in step 2: 112637559599242218588453385305577988249621715736867 Found prime factor of 51 digits: 112637559599242218588453385305577988249621715736867 Composite cofactor 60204477470016595128923139784576579903276561563907064297515328779740371497410869208292731345431 has 95 digits Msieve v. 1.54 (SVN 1034) Tue Mar 14 20:22:06 2023 random seeds: e02189f4 dca6236c factoring 60204477470016595128923139784576579903276561563907064297515328779740371497410869208292731345431 (95 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (95-digit input) using multiplier of 1 using generic 32kb sieve core sieve interval: 36 blocks of size 32768 processing polynomials in batches of 6 using a sieve bound of 2162087 (80000 primes) using large prime bound of 324313050 (28 bits) using double large prime bound of 2088026007067200 (43-51 bits) using trial factoring cutoff of 51 bits polynomial 'A' values have 12 factors 80197 relations (19156 full + 61041 combined from 1203092 partial), need 80096 begin with 1222248 relations reduce to 211014 relations in 11 passes attempting to read 211014 relations recovered 211014 relations recovered 198177 polynomials attempting to build 80197 cycles found 80197 cycles in 6 passes distribution of cycle lengths: length 1 : 19156 length 2 : 13906 length 3 : 13581 length 4 : 10878 length 5 : 8293 length 6 : 5502 length 7 : 3607 length 9+: 5274 largest cycle: 22 relations matrix is 80000 x 80197 (23.1 MB) with weight 5412401 (67.49/col) sparse part has weight 5412401 (67.49/col) filtering completed in 3 passes matrix is 76480 x 76544 (22.2 MB) with weight 5200718 (67.94/col) sparse part has weight 5200718 (67.94/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 76432 x 76544 (15.2 MB) with weight 4238871 (55.38/col) sparse part has weight 3229266 (42.19/col) using block size 8192 and superblock size 3145728 for processor cache size 32768 kB commencing Lanczos iteration memory use: 13.1 MB linear algebra at 63.0%, ETA 0h 0m lanczos halted after 1210 iterations (dim = 76430) recovered 17 nontrivial dependencies p42 factor: 411773595570013112436008588693343474648037 p54 factor: 146207717342041514596441928535719954341618412027084363 elapsed time 02:47:06 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | April 30, 2023 09:06:52 UTC 2023 年 4 月 30 日 (日) 18 時 6 分 52 秒 (日本時間) |
| composite number 合成数 | 34857079589098230413349649528093309832699110592236620825053705992203701496698449767203958703403424562627731900173878195503879496941873847<137> |
| prime factors 素因数 | 14888376114902284493458048612852434422327809419518003461<56> 2341227768568298603241283265933405936629030195437154817365703819488158284401836427<82> |
| factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3550000, q1=3650000.
-> client 1 q0: 3550000
LatSieveTime: 95
LatSieveTime: 97
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
-> makeJobFile(): Adjusted to q0=3650001, q1=3750000.
-> client 1 q0: 3650001
LatSieveTime: 95
LatSieveTime: 97
LatSieveTime: 98
LatSieveTime: 98
LatSieveTime: 99
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 119
-> makeJobFile(): Adjusted to q0=3750001, q1=3850000.
-> client 1 q0: 3750001
LatSieveTime: 92
LatSieveTime: 96
LatSieveTime: 98
LatSieveTime: 98
LatSieveTime: 99
LatSieveTime: 99
LatSieveTime: 99
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 119
-> makeJobFile(): Adjusted to q0=3850001, q1=3950000.
-> client 1 q0: 3850001
LatSieveTime: 100
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 118
-> makeJobFile(): Adjusted to q0=3950001, q1=4050000.
-> client 1 q0: 3950001
LatSieveTime: 96
LatSieveTime: 98
LatSieveTime: 98
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 119
-> makeJobFile(): Adjusted to q0=4050001, q1=4150000.
-> client 1 q0: 4050001
LatSieveTime: 95
LatSieveTime: 97
LatSieveTime: 99
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 115
LatSieveTime: 117
-> makeJobFile(): Adjusted to q0=4150001, q1=4250000.
-> client 1 q0: 4150001
LatSieveTime: 95
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=4250001, q1=4350000.
-> client 1 q0: 4250001
LatSieveTime: 94
LatSieveTime: 96
LatSieveTime: 99
LatSieveTime: 99
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
-> makeJobFile(): Adjusted to q0=4350001, q1=4450000.
-> client 1 q0: 4350001
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=4450001, q1=4550000.
-> client 1 q0: 4450001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=4550001, q1=4650000.
-> client 1 q0: 4550001
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=4650001, q1=4750000.
-> client 1 q0: 4650001
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=4750001, q1=4850000.
-> client 1 q0: 4750001
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=4850001, q1=4950000.
-> client 1 q0: 4850001
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=4950001, q1=5050000.
-> client 1 q0: 4950001
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=5050001, q1=5150000.
-> client 1 q0: 5050001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=5150001, q1=5250000.
-> client 1 q0: 5150001
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 124
LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=5250001, q1=5350000.
-> client 1 q0: 5250001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=5350001, q1=5450000.
-> client 1 q0: 5350001
LatSieveTime: 98
LatSieveTime: 99
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=5450001, q1=5550000.
-> client 1 q0: 5450001
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=5550001, q1=5650000.
-> client 1 q0: 5550001
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
-> makeJobFile(): Adjusted to q0=5650001, q1=5750000.
-> client 1 q0: 5650001
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=5750001, q1=5850000.
-> client 1 q0: 5750001
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=5850001, q1=5950000.
-> client 1 q0: 5850001
LatSieveTime: 103
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=5950001, q1=6050000.
-> client 1 q0: 5950001
LatSieveTime: 98
LatSieveTime: 98
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=6050001, q1=6150000.
-> client 1 q0: 6050001
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=6150001, q1=6250000.
-> client 1 q0: 6150001
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=6250001, q1=6350000.
-> client 1 q0: 6250001
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=6350001, q1=6450000.
-> client 1 q0: 6350001
LatSieveTime: 101
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=6450001, q1=6550000.
-> client 1 q0: 6450001
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=6550001, q1=6650000.
-> client 1 q0: 6550001
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=6650001, q1=6750000.
-> client 1 q0: 6650001
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=6750001, q1=6850000.
-> client 1 q0: 6750001
LatSieveTime: 97
LatSieveTime: 100
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=6850001, q1=6950000.
-> client 1 q0: 6850001
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=6950001, q1=7050000.
-> client 1 q0: 6950001
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=7050001, q1=7150000.
-> client 1 q0: 7050001
LatSieveTime: 100
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=7150001, q1=7250000.
-> client 1 q0: 7150001
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=7250001, q1=7350000.
-> client 1 q0: 7250001
LatSieveTime: 99
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 127
LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=7350001, q1=7450000.
-> client 1 q0: 7350001
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=7450001, q1=7550000.
-> client 1 q0: 7450001
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=7550001, q1=7650000.
-> client 1 q0: 7550001
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=7650001, q1=7750000.
-> client 1 q0: 7650001
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=7750001, q1=7850000.
-> client 1 q0: 7750001
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=7850001, q1=7950000.
-> client 1 q0: 7850001
LatSieveTime: 97
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=7950001, q1=8050000.
-> client 1 q0: 7950001
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=8050001, q1=8150000.
-> client 1 q0: 8050001
LatSieveTime: 98
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=8150001, q1=8250000.
-> client 1 q0: 8150001
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=8250001, q1=8350000.
-> client 1 q0: 8250001
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=8350001, q1=8450000.
-> client 1 q0: 8350001
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=8450001, q1=8550000.
-> client 1 q0: 8450001
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=8550001, q1=8650000.
-> client 1 q0: 8550001
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 127
LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=8650001, q1=8750000.
-> client 1 q0: 8650001
LatSieveTime: 100
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=8750001, q1=8850000.
-> client 1 q0: 8750001
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=8850001, q1=8950000.
-> client 1 q0: 8850001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=8950001, q1=9050000.
-> client 1 q0: 8950001
LatSieveTime: 97
LatSieveTime: 99
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=9050001, q1=9150000.
-> client 1 q0: 9050001
LatSieveTime: 98
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
-> makeJobFile(): Adjusted to q0=9150001, q1=9250000.
-> client 1 q0: 9150001
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
Sun Apr 30 10:12:44 2023
Sun Apr 30 10:12:44 2023
Sun Apr 30 10:12:44 2023 Msieve v. 1.52 (SVN 927)
Sun Apr 30 10:12:44 2023 random seeds: 0e80fab0 91a76722
Sun Apr 30 10:12:44 2023 factoring 34857079589098230413349649528093309832699110592236620825053705992203701496698449767203958703403424562627731900173878195503879496941873847 (137 digits)
Sun Apr 30 10:12:44 2023 searching for 15-digit factors
Sun Apr 30 10:12:44 2023 commencing number field sieve (137-digit input)
Sun Apr 30 10:12:44 2023 R0: -500000000000000000000000000000000000
Sun Apr 30 10:12:44 2023 R1: 1
Sun Apr 30 10:12:44 2023 A0: -5
Sun Apr 30 10:12:44 2023 A1: 0
Sun Apr 30 10:12:44 2023 A2: 0
Sun Apr 30 10:12:44 2023 A3: 0
Sun Apr 30 10:12:44 2023 A4: 0
Sun Apr 30 10:12:44 2023 A5: 58
Sun Apr 30 10:12:44 2023 skew 0.61, size 1.089e-012, alpha 1.725, combined = 8.732e-011 rroots = 1
Sun Apr 30 10:12:44 2023
Sun Apr 30 10:12:44 2023 commencing relation filtering
Sun Apr 30 10:12:44 2023 estimated available RAM is 65413.5 MB
Sun Apr 30 10:12:44 2023 commencing duplicate removal, pass 1
Sun Apr 30 10:13:17 2023 found 2655628 hash collisions in 18110221 relations
Sun Apr 30 10:13:31 2023 added 694776 free relations
Sun Apr 30 10:13:31 2023 commencing duplicate removal, pass 2
Sun Apr 30 10:13:38 2023 found 2040943 duplicates and 16764054 unique relations
Sun Apr 30 10:13:38 2023 memory use: 82.6 MB
Sun Apr 30 10:13:38 2023 reading ideals above 720000
Sun Apr 30 10:13:38 2023 commencing singleton removal, initial pass
Sun Apr 30 10:14:37 2023 memory use: 376.5 MB
Sun Apr 30 10:14:37 2023 reading all ideals from disk
Sun Apr 30 10:14:37 2023 memory use: 516.9 MB
Sun Apr 30 10:14:38 2023 commencing in-memory singleton removal
Sun Apr 30 10:14:38 2023 begin with 16764054 relations and 19196292 unique ideals
Sun Apr 30 10:14:49 2023 reduce to 5919573 relations and 5763753 ideals in 21 passes
Sun Apr 30 10:14:49 2023 max relations containing the same ideal: 89
Sun Apr 30 10:14:51 2023 removing 190816 relations and 180198 ideals in 10618 cliques
Sun Apr 30 10:14:51 2023 commencing in-memory singleton removal
Sun Apr 30 10:14:51 2023 begin with 5728757 relations and 5763753 unique ideals
Sun Apr 30 10:14:54 2023 reduce to 5723032 relations and 5577810 ideals in 9 passes
Sun Apr 30 10:14:54 2023 max relations containing the same ideal: 86
Sun Apr 30 10:14:55 2023 removing 137365 relations and 126747 ideals in 10618 cliques
Sun Apr 30 10:14:55 2023 commencing in-memory singleton removal
Sun Apr 30 10:14:55 2023 begin with 5585667 relations and 5577810 unique ideals
Sun Apr 30 10:14:58 2023 reduce to 5582595 relations and 5447981 ideals in 8 passes
Sun Apr 30 10:14:58 2023 max relations containing the same ideal: 83
Sun Apr 30 10:14:59 2023 relations with 0 large ideals: 2887
Sun Apr 30 10:14:59 2023 relations with 1 large ideals: 1226
Sun Apr 30 10:14:59 2023 relations with 2 large ideals: 21186
Sun Apr 30 10:14:59 2023 relations with 3 large ideals: 152141
Sun Apr 30 10:14:59 2023 relations with 4 large ideals: 583371
Sun Apr 30 10:14:59 2023 relations with 5 large ideals: 1279394
Sun Apr 30 10:14:59 2023 relations with 6 large ideals: 1699388
Sun Apr 30 10:14:59 2023 relations with 7+ large ideals: 1843002
Sun Apr 30 10:14:59 2023 commencing 2-way merge
Sun Apr 30 10:15:01 2023 reduce to 3162432 relation sets and 3027818 unique ideals
Sun Apr 30 10:15:01 2023 ignored 1 oversize relation sets
Sun Apr 30 10:15:01 2023 commencing full merge
Sun Apr 30 10:15:42 2023 memory use: 355.1 MB
Sun Apr 30 10:15:43 2023 found 1584295 cycles, need 1574018
Sun Apr 30 10:15:43 2023 weight of 1574018 cycles is about 110188165 (70.00/cycle)
Sun Apr 30 10:15:43 2023 distribution of cycle lengths:
Sun Apr 30 10:15:43 2023 1 relations: 224545
Sun Apr 30 10:15:43 2023 2 relations: 199345
Sun Apr 30 10:15:43 2023 3 relations: 189825
Sun Apr 30 10:15:43 2023 4 relations: 163582
Sun Apr 30 10:15:43 2023 5 relations: 141001
Sun Apr 30 10:15:43 2023 6 relations: 115914
Sun Apr 30 10:15:43 2023 7 relations: 98965
Sun Apr 30 10:15:43 2023 8 relations: 80892
Sun Apr 30 10:15:43 2023 9 relations: 65928
Sun Apr 30 10:15:43 2023 10+ relations: 294021
Sun Apr 30 10:15:43 2023 heaviest cycle: 28 relations
Sun Apr 30 10:15:43 2023 commencing cycle optimization
Sun Apr 30 10:15:45 2023 start with 9294267 relations
Sun Apr 30 10:15:57 2023 pruned 185598 relations
Sun Apr 30 10:15:57 2023 memory use: 316.4 MB
Sun Apr 30 10:15:57 2023 distribution of cycle lengths:
Sun Apr 30 10:15:57 2023 1 relations: 224545
Sun Apr 30 10:15:57 2023 2 relations: 203369
Sun Apr 30 10:15:57 2023 3 relations: 195520
Sun Apr 30 10:15:57 2023 4 relations: 166302
Sun Apr 30 10:15:57 2023 5 relations: 143192
Sun Apr 30 10:15:57 2023 6 relations: 116534
Sun Apr 30 10:15:57 2023 7 relations: 98767
Sun Apr 30 10:15:57 2023 8 relations: 80194
Sun Apr 30 10:15:57 2023 9 relations: 64910
Sun Apr 30 10:15:57 2023 10+ relations: 280685
Sun Apr 30 10:15:57 2023 heaviest cycle: 27 relations
Sun Apr 30 10:15:58 2023 RelProcTime: 194
Sun Apr 30 10:15:58 2023 elapsed time 00:03:14
Sun Apr 30 10:15:58 2023
Sun Apr 30 10:15:58 2023
Sun Apr 30 10:15:58 2023 Msieve v. 1.52 (SVN 927)
Sun Apr 30 10:15:58 2023 random seeds: 3d979ee0 2a2f02b7
Sun Apr 30 10:15:58 2023 factoring 34857079589098230413349649528093309832699110592236620825053705992203701496698449767203958703403424562627731900173878195503879496941873847 (137 digits)
Sun Apr 30 10:15:59 2023 searching for 15-digit factors
Sun Apr 30 10:15:59 2023 commencing number field sieve (137-digit input)
Sun Apr 30 10:15:59 2023 R0: -500000000000000000000000000000000000
Sun Apr 30 10:15:59 2023 R1: 1
Sun Apr 30 10:15:59 2023 A0: -5
Sun Apr 30 10:15:59 2023 A1: 0
Sun Apr 30 10:15:59 2023 A2: 0
Sun Apr 30 10:15:59 2023 A3: 0
Sun Apr 30 10:15:59 2023 A4: 0
Sun Apr 30 10:15:59 2023 A5: 58
Sun Apr 30 10:15:59 2023 skew 0.61, size 1.089e-012, alpha 1.725, combined = 8.732e-011 rroots = 1
Sun Apr 30 10:15:59 2023
Sun Apr 30 10:15:59 2023 commencing linear algebra
Sun Apr 30 10:15:59 2023 read 1574018 cycles
Sun Apr 30 10:16:01 2023 cycles contain 5395055 unique relations
Sun Apr 30 10:16:11 2023 read 5395055 relations
Sun Apr 30 10:16:17 2023 using 20 quadratic characters above 268434282
Sun Apr 30 10:16:31 2023 building initial matrix
Sun Apr 30 10:17:04 2023 memory use: 660.2 MB
Sun Apr 30 10:17:05 2023 read 1574018 cycles
Sun Apr 30 10:17:05 2023 matrix is 1573838 x 1574018 (472.8 MB) with weight 139188370 (88.43/col)
Sun Apr 30 10:17:05 2023 sparse part has weight 106621786 (67.74/col)
Sun Apr 30 10:17:13 2023 filtering completed in 2 passes
Sun Apr 30 10:17:13 2023 matrix is 1570710 x 1570888 (472.5 MB) with weight 139072863 (88.53/col)
Sun Apr 30 10:17:13 2023 sparse part has weight 106576243 (67.84/col)
Sun Apr 30 10:17:16 2023 matrix starts at (0, 0)
Sun Apr 30 10:17:16 2023 matrix is 1570710 x 1570888 (472.5 MB) with weight 139072863 (88.53/col)
Sun Apr 30 10:17:16 2023 sparse part has weight 106576243 (67.84/col)
Sun Apr 30 10:17:16 2023 saving the first 48 matrix rows for later
Sun Apr 30 10:17:16 2023 matrix includes 64 packed rows
Sun Apr 30 10:17:17 2023 matrix is 1570662 x 1570888 (447.5 MB) with weight 110138492 (70.11/col)
Sun Apr 30 10:17:17 2023 sparse part has weight 101588401 (64.67/col)
Sun Apr 30 10:17:17 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Sun Apr 30 10:17:21 2023 commencing Lanczos iteration (32 threads)
Sun Apr 30 10:17:21 2023 memory use: 360.2 MB
Sun Apr 30 10:17:22 2023 linear algebra at 0.1%, ETA 0h17m
Sun Apr 30 10:17:23 2023 checkpointing every 3640000 dimensions
Sun Apr 30 10:40:25 2023 lanczos halted after 24837 iterations (dim = 1570661)
Sun Apr 30 10:40:26 2023 recovered 39 nontrivial dependencies
Sun Apr 30 10:40:26 2023 BLanczosTime: 1467
Sun Apr 30 10:40:26 2023 elapsed time 00:24:28
Sun Apr 30 10:40:26 2023
Sun Apr 30 10:40:26 2023
Sun Apr 30 10:40:26 2023 Msieve v. 1.52 (SVN 927)
Sun Apr 30 10:40:26 2023 random seeds: b2ce5480 9a0b246a
Sun Apr 30 10:40:26 2023 factoring 34857079589098230413349649528093309832699110592236620825053705992203701496698449767203958703403424562627731900173878195503879496941873847 (137 digits)
Sun Apr 30 10:40:26 2023 searching for 15-digit factors
Sun Apr 30 10:40:27 2023 commencing number field sieve (137-digit input)
Sun Apr 30 10:40:27 2023 R0: -500000000000000000000000000000000000
Sun Apr 30 10:40:27 2023 R1: 1
Sun Apr 30 10:40:27 2023 A0: -5
Sun Apr 30 10:40:27 2023 A1: 0
Sun Apr 30 10:40:27 2023 A2: 0
Sun Apr 30 10:40:27 2023 A3: 0
Sun Apr 30 10:40:27 2023 A4: 0
Sun Apr 30 10:40:27 2023 A5: 58
Sun Apr 30 10:40:27 2023 skew 0.61, size 1.089e-012, alpha 1.725, combined = 8.732e-011 rroots = 1
Sun Apr 30 10:40:27 2023
Sun Apr 30 10:40:27 2023 commencing square root phase
Sun Apr 30 10:40:27 2023 reading relations for dependency 1
Sun Apr 30 10:40:27 2023 read 786095 cycles
Sun Apr 30 10:40:28 2023 cycles contain 2697516 unique relations
Sun Apr 30 10:40:33 2023 read 2697516 relations
Sun Apr 30 10:40:40 2023 multiplying 2697516 relations
Sun Apr 30 10:41:27 2023 multiply complete, coefficients have about 74.78 million bits
Sun Apr 30 10:41:27 2023 initial square root is modulo 233141
Sun Apr 30 10:42:22 2023 sqrtTime: 115
Sun Apr 30 10:42:22 2023 prp56 factor: 14888376114902284493458048612852434422327809419518003461
Sun Apr 30 10:42:22 2023 prp82 factor: 2341227768568298603241283265933405936629030195437154817365703819488158284401836427
Sun Apr 30 10:42:22 2023 elapsed time 00:01:56 |
| software ソフトウェア | GNFS, Msieve |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 14:11:15 UTC 2023 年 3 月 31 日 (金) 23 時 11 分 15 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 16, 2023 04:22:54 UTC 2023 年 3 月 16 日 (木) 13 時 22 分 54 秒 (日本時間) |
| composite number 合成数 | 172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619<180> |
| prime factors 素因数 | 748041076921157908476705662989071633722728526240896523<54> 48175429539720377377304548759569736157799579926514468380201<59> 4790023827867611901993997570111683785233066249470707398808499434753<67> |
| factorization results 素因数分解の結果 | Number: n N=172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 ( 180 digits) SNFS difficulty: 181 digits. Divisors found: Thu Mar 16 15:19:49 2023 prp54 factor: 748041076921157908476705662989071633722728526240896523 Thu Mar 16 15:19:49 2023 prp59 factor: 48175429539720377377304548759569736157799579926514468380201 Thu Mar 16 15:19:49 2023 prp67 factor: 4790023827867611901993997570111683785233066249470707398808499434753 Thu Mar 16 15:19:49 2023 elapsed time 00:23:08 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.104). Factorization parameters were as follows: # # N = 29x10^180-8 = 96(179)4 # n: 172619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 m: 1000000000000000000000000000000000000 deg: 5 c5: 29 c0: -8 skew: 0.77 # Murphy_E = 9.636e-11 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1748688 hash collisions in 14825305 relations (13955372 unique) Msieve: matrix is 801253 x 801479 (224.7 MB) Sieving start time: 2023/03/16 10:50:22 Sieving end time : 2023/03/16 14:56:26 Total sieving time: 4hrs 6min 4secs. Total relation processing time: 0hrs 17min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 11sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 21, 2023 14:05:15 UTC 2023 年 3 月 21 日 (火) 23 時 5 分 15 秒 (日本時間) |
| composite number 合成数 | 693543072045772798019807943821368128953666030643075986521029730558738200443058851506425209332853201998708752781034799329585577971319910498807708152194043871333<159> |
| prime factors 素因数 | 727625759430188351176549292644501215136116406344380009<54> 953159042347392873406182256609016558910740125535718764403001880733711048452266680214223062677905697979037<105> |
| factorization results 素因数分解の結果 | Number: n N=693543072045772798019807943821368128953666030643075986521029730558738200443058851506425209332853201998708752781034799329585577971319910498807708152194043871333 ( 159 digits) SNFS difficulty: 182 digits. Divisors found: Tue Mar 21 23:37:41 2023 prp54 factor: 727625759430188351176549292644501215136116406344380009 Tue Mar 21 23:37:41 2023 prp105 factor: 953159042347392873406182256609016558910740125535718764403001880733711048452266680214223062677905697979037 Tue Mar 21 23:37:41 2023 elapsed time 00:28:24 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 29x10^182-8 = 96(181)4 # n: 693543072045772798019807943821368128953666030643075986521029730558738200443058851506425209332853201998708752781034799329585577971319910498807708152194043871333 m: 1000000000000000000000000000000000000 deg: 5 c5: 725 c0: -2 skew: 0.31 # Murphy_E = 8.369e-11 type: snfs lss: 1 rlim: 7700000 alim: 7700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7700000/7700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1619372 hash collisions in 14901637 relations (14202437 unique) Msieve: matrix is 917433 x 917658 (258.6 MB) Sieving start time: 2023/03/21 19:17:56 Sieving end time : 2023/03/21 23:09:00 Total sieving time: 3hrs 51min 4secs. Total relation processing time: 0hrs 23min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 5sec. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7700000,7700000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | March 18, 2023 17:01:22 UTC 2023 年 3 月 19 日 (日) 2 時 1 分 22 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 22, 2023 18:12:27 UTC 2023 年 3 月 23 日 (木) 3 時 12 分 27 秒 (日本時間) |
| composite number 合成数 | 22020311264138979217147285506458200701528612528179278727707849636589863075120380778295583759704836622174804823081341611522342401770091583684561646909836262845347773579<167> |
| prime factors 素因数 | 63038859609952674346413316412915317979723<41> 349313287080186612797846394505093461233497593113127394730546620238346443436085852737066039457812663867381954706184144739540673<126> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 22020311264138979217147285506458200701528612528179278727707849636589863075120380778295583759704836622174804823081341611522342401770091583684561646909836262845347773579 (167 digits) Using B1=34150000, B2=144293429296, polynomial Dickson(12), sigma=1:2750748906 Step 1 took 81550ms Step 2 took 25528ms ********** Factor found in step 2: 63038859609952674346413316412915317979723 Found prime factor of 41 digits: 63038859609952674346413316412915317979723 Prime cofactor 349313287080186612797846394505093461233497593113127394730546620238346443436085852737066039457812663867381954706184144739540673 has 126 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 22, 2023 18:20:55 UTC 2023 年 3 月 23 日 (木) 3 時 20 分 55 秒 (日本時間) |
| composite number 合成数 | 54532431345625383746393510401775076935211609805179088537232865098497456819869242617258513519654165253244183246240409693678121749519395617307530800510122041<155> |
| prime factors 素因数 | 1100155796806073513704652509495580862203<40> 49567917111323384450403877739353820278417202494775186843692946421386852448851897801317607224088507114176564486899547<116> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 54532431345625383746393510401775076935211609805179088537232865098497456819869242617258513519654165253244183246240409693678121749519395617307530800510122041 (155 digits) Using B1=34160000, B2=144293429296, polynomial Dickson(12), sigma=1:4197755709 Step 1 took 82020ms Step 2 took 25196ms ********** Factor found in step 2: 1100155796806073513704652509495580862203 Found prime factor of 40 digits: 1100155796806073513704652509495580862203 Prime cofactor 49567917111323384450403877739353820278417202494775186843692946421386852448851897801317607224088507114176564486899547 has 116 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | March 24, 2023 00:23:39 UTC 2023 年 3 月 24 日 (金) 9 時 23 分 39 秒 (日本時間) |
| composite number 合成数 | 2354679883731518082427008720875904601712600061691250495343031194322967560373035729575434782904915758075969100110551263230340971055833965229865248658799346635580583<163> |
| prime factors 素因数 | 204926663283357137422821237791784661104694579<45> 11490353895411083206132923214554710474241315568538081670991222350478851568860368259123744618763652794109603381093862077<119> |
| factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2354679883731518082427008720875904601712600061691250495343031194322967560373035729575434782904915758075969100110551263230340971055833965229865248658799346635580583 (163 digits) Using B1=31810000, B2=144291357226, polynomial Dickson(12), sigma=1:244006864 Step 1 took 75850ms Step 2 took 24677ms ********** Factor found in step 2: 204926663283357137422821237791784661104694579 Found prime factor of 45 digits: 204926663283357137422821237791784661104694579 Prime cofactor 11490353895411083206132923214554710474241315568538081670991222350478851568860368259123744618763652794109603381093862077 has 119 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Eric Jeancolas |
|---|---|
| date 日付 | June 18, 2023 15:47:54 UTC 2023 年 6 月 19 日 (月) 0 時 47 分 54 秒 (日本時間) |
| composite number 合成数 | 9140919009816518112765514851564123174512438123689530489976280726715172846426523532110638163773702921131291233639060735583957363648699889765787<142> |
| prime factors 素因数 | 9329305275650424399629456522855066813401103538321053657139241<61> 979807042403725791410267476143334193436364419865929517745513857801595964345987107<81> |
| factorization results 素因数分解の結果 | 9140919009816518112765514851564123174512438123689530489976280726715172846426523532110638163773702921131291233639060735583957363648699889765787=9329305275650424399629456522855066813401103538321053657139241*979807042403725791410267476143334193436364419865929517745513857801595964345987107 cado polynomial n: 9140919009816518112765514851564123174512438123689530489976280726715172846426523532110638163773702921131291233639060735583957363648699889765787 skew: 0.19 type: snfs c0: -1 c5: 3625 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 3625*x^5-1 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 9700000 tasks.lim1 = 9700000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 979807042403725791410267476143334193436364419865929517745513857801595964345987107 9329305275650424399629456522855066813401103538321053657139241 Info:Square Root: Total cpu/real time for sqrt: 544.78/177.236 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24426265 Info:Lattice Sieving: Average J: 1897.86 for 1720738 special-q, max bucket fill -bkmult 1.0,1s:1.151700 Info:Lattice Sieving: Total time: 320950s Info:Linear Algebra: Total cpu/real time for bwc: 56372.2/14502.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 36095.6, WCT time 9231.12, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (57856 iterations) Info:Linear Algebra: Lingen CPU time 371.62, WCT time 94.59 Info:Linear Algebra: Mksol: CPU time 19560.11, WCT time 5043.17, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28928 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 4.2/2.14223 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 413.87/435.984 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 363.0s Info:Generate Free Relations: Total cpu/real time for freerel: 118.98/30.87 Info:Square Root: Total cpu/real time for sqrt: 544.78/177.236 Info:Quadratic Characters: Total cpu/real time for characters: 65.51/28.1629 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 104.28/101.571 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 100.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 285.07/270.487 Info:Filtering - Merging: Merged matrix has 1847707 rows and total weight 314587026 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 482.47/132.54 Info:Filtering - Merging: Total cpu/real time for replay: 69.23/61.7996 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 662009/176115 Info:root: Cleaning up computation data in /tmp/cado.dxha3_h1 979807042403725791410267476143334193436364419865929517745513857801595964345987107 9329305275650424399629456522855066813401103538321053657139241 |
| software ソフトウェア | cado-nfs-3.0.0 |
| execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 09:15:51 UTC 2023 年 3 月 28 日 (火) 18 時 15 分 51 秒 (日本時間) | |
| name 名前 | Eric Jeancolas |
|---|---|
| date 日付 | February 21, 2023 10:00:01 UTC 2023 年 2 月 21 日 (火) 19 時 0 分 1 秒 (日本時間) |
| composite number 合成数 | 9008146387137150532068396907859465086124821960941766317493956320828819575601716931142627060718570887663457<106> |
| prime factors 素因数 | 620884062888997128564997532687570630401789<42> 14508580467055158773429990177475284067537869427519229959544981813<65> |
| factorization results 素因数分解の結果 | 9008146387137150532068396907859465086124821960941766317493956320828819575601716931142627060718570887663457=620884062888997128564997532687570630401789 14508580467055158773429990177475284067537869427519229959544981813 cado polynomial n: 9008146387137150532068396907859465086124821960941766317493956320828819575601716931142627060718570887663457 skew: 6576.192 c0: 183086661089784072146136 c1: -88826900484567187282 c2: 114965627720734811 c3: 3807213783152 c4: -878493900 c5: 62640 Y0: -213946447942641325473 Y1: 580162179315803 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=2.517e+12) = 2.850e-06 # f(x) = 62640*x^5-878493900*x^4+3807213783152*x^3+114965627720734811*x^2-88826900484567187282*x+183086661089784072146136 # g(x) = 580162179315803*x-213946447942641325473 cado parameters (extracts) tasks.lim0 = 1000000 tasks.lim1 = 1600000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 620884062888997128564997532687570630401789 14508580467055158773429990177475284067537869427519229959544981813 Info:Square Root: Total cpu/real time for sqrt: 70.53/21.657 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 9952.64 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 9814/30.560/37.506/42.750/1.084 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 7524/29.890/33.283/37.990/0.892 Info:Polynomial Selection (size optimized): Total time: 485.59 Info:Generate Free Relations: Total cpu/real time for freerel: 62.56/19.0725 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 68.14/92.8707 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 53.900000000000006s Info:Quadratic Characters: Total cpu/real time for characters: 9.05/3.48969 Info:Square Root: Total cpu/real time for sqrt: 70.53/21.657 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 149.31 Info:Polynomial Selection (root optimized): Rootsieve time: 148.68 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 20.15/19.4017 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 18.899999999999995s Info:Filtering - Singleton removal: Total cpu/real time for purge: 44.59/41.8714 Info:Filtering - Merging: Merged matrix has 240281 rows and total weight 34890022 (145.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 31.11/9.47871 Info:Filtering - Merging: Total cpu/real time for replay: 7.44/6.14122 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 5018137 Info:Lattice Sieving: Average J: 1890.65 for 59904 special-q, max bucket fill -bkmult 1.0,1s:1.333830 Info:Lattice Sieving: Total time: 5328.22s Info:Linear Algebra: Total cpu/real time for bwc: 696.77/184.98 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 413.87, WCT time 108.44, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (7552 iterations) Info:Linear Algebra: Lingen CPU time 33.8, WCT time 8.64 Info:Linear Algebra: Mksol: CPU time 230.78, WCT time 60.41, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (3840 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 1.5/0.427838 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 11361.1/3230.6 Info:root: Cleaning up computation data in /tmp/cado.pz4juqnt 620884062888997128564997532687570630401789 14508580467055158773429990177475284067537869427519229959544981813 |
| software ソフトウェア | cado-nfs-3.0.0 |
| execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | March 3, 2023 07:27:36 UTC 2023 年 3 月 3 日 (金) 16 時 27 分 36 秒 (日本時間) |
| composite number 合成数 | 819569543081501646508298665377854791653599434476921503757603916494600251328147126774299407075502113256311431732144237738491426857297094286566435694337086311<156> |
| prime factors 素因数 | 868052084330079249671909588398369307<36> 944147889137327409126446330527824371476033978027227443131178404475528000762363551962843040901736073917681426658194116773<120> |
| factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:418284331 Step 1 took 8126ms Step 2 took 4045ms ********** Factor found in step 2: 868052084330079249671909588398369307 Found prime factor of 36 digits: 868052084330079249671909588398369307 Prime cofactor 944147889137327409126446330527824371476033978027227443131178404475528000762363551962843040901736073917681426658194116773 has 120 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 2, 2023 20:59:03 UTC 2023 年 3 月 3 日 (金) 5 時 59 分 3 秒 (日本時間) | |
| name 名前 | Rytis Slatkevičius |
|---|---|
| date 日付 | February 21, 2023 20:07:18 UTC 2023 年 2 月 22 日 (水) 5 時 7 分 18 秒 (日本時間) |
| composite number 合成数 | 8863857590355872113673146428678097038303071752446228154836806727111565129534408782845798855953355004070995575879560701538149662404477<133> |
| prime factors 素因数 | 9290004618256266129425423200625861800795964349846013777302385121<64> 954128437453846840706933447186525786395794958137885745974422692555037<69> |
| factorization results 素因数分解の結果 | P64 = 9290004618256266129425423200625861800795964349846013777302385121 P69 = 954128437453846840706933447186525786395794958137885745974422692555037 |
| software ソフトウェア | yafu2 |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Rytis Slatkevičius | February 21, 2023 11:36:02 UTC 2023 年 2 月 21 日 (火) 20 時 36 分 2 秒 (日本時間) | |
| 45 | 11e6 | 265 / 3915 | Rytis Slatkevičius | February 21, 2023 11:36:02 UTC 2023 年 2 月 21 日 (火) 20 時 36 分 2 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | March 12, 2023 16:23:02 UTC 2023 年 3 月 13 日 (月) 1 時 23 分 2 秒 (日本時間) |
| composite number 合成数 | 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413<130> |
| prime factors 素因数 | 3012520669439802605111355637947407282693821829<46> 1264533757105044586094802929606943858881054200011716778444212625113456023607803837097<85> |
| factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3600000, q1=3700000.
-> client 1 q0: 3600000
LatSieveTime: 86
LatSieveTime: 96
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 137
LatSieveTime: 141
-> makeJobFile(): Adjusted to q0=3700001, q1=3800000.
-> client 1 q0: 3700001
LatSieveTime: 100
LatSieveTime: 100
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 144
-> makeJobFile(): Adjusted to q0=3800001, q1=3900000.
-> client 1 q0: 3800001
LatSieveTime: 96
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 138
LatSieveTime: 144
-> makeJobFile(): Adjusted to q0=3900001, q1=4000000.
-> client 1 q0: 3900001
LatSieveTime: 97
LatSieveTime: 99
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 143
-> makeJobFile(): Adjusted to q0=4000001, q1=4100000.
-> client 1 q0: 4000001
LatSieveTime: 90
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 144
-> makeJobFile(): Adjusted to q0=4100001, q1=4200000.
-> client 1 q0: 4100001
LatSieveTime: 97
LatSieveTime: 112
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 137
LatSieveTime: 150
-> makeJobFile(): Adjusted to q0=4200001, q1=4300000.
-> client 1 q0: 4200001
LatSieveTime: 95
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 135
-> makeJobFile(): Adjusted to q0=4300001, q1=4400000.
-> client 1 q0: 4300001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 143
LatSieveTime: 146
-> makeJobFile(): Adjusted to q0=4400001, q1=4500000.
-> client 1 q0: 4400001
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 145
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=4500001, q1=4600000.
-> client 1 q0: 4500001
LatSieveTime: 104
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 141
LatSieveTime: 143
-> makeJobFile(): Adjusted to q0=4600001, q1=4700000.
-> client 1 q0: 4600001
LatSieveTime: 94
LatSieveTime: 95
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 143
LatSieveTime: 145
-> makeJobFile(): Adjusted to q0=4700001, q1=4800000.
-> client 1 q0: 4700001
LatSieveTime: 100
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 152
-> makeJobFile(): Adjusted to q0=4800001, q1=4900000.
-> client 1 q0: 4800001
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 146
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=4900001, q1=5000000.
-> client 1 q0: 4900001
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 146
-> makeJobFile(): Adjusted to q0=5000001, q1=5100000.
-> client 1 q0: 5000001
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 150
-> makeJobFile(): Adjusted to q0=5100001, q1=5200000.
-> client 1 q0: 5100001
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 145
-> makeJobFile(): Adjusted to q0=5200001, q1=5300000.
-> client 1 q0: 5200001
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 145
LatSieveTime: 161
-> makeJobFile(): Adjusted to q0=5300001, q1=5400000.
-> client 1 q0: 5300001
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 142
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 150
LatSieveTime: 151
-> makeJobFile(): Adjusted to q0=5400001, q1=5500000.
-> client 1 q0: 5400001
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 149
LatSieveTime: 151
LatSieveTime: 152
-> makeJobFile(): Adjusted to q0=5500001, q1=5600000.
-> client 1 q0: 5500001
LatSieveTime: 99
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 147
-> makeJobFile(): Adjusted to q0=5600001, q1=5700000.
-> client 1 q0: 5600001
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 142
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=5700001, q1=5800000.
-> client 1 q0: 5700001
LatSieveTime: 101
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 148
-> makeJobFile(): Adjusted to q0=5800001, q1=5900000.
-> client 1 q0: 5800001
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 130
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 146
-> makeJobFile(): Adjusted to q0=5900001, q1=6000000.
-> client 1 q0: 5900001
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 114
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 143
LatSieveTime: 147
LatSieveTime: 153
-> makeJobFile(): Adjusted to q0=6000001, q1=6100000.
-> client 1 q0: 6000001
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 146
LatSieveTime: 146
LatSieveTime: 147
LatSieveTime: 148
LatSieveTime: 150
-> makeJobFile(): Adjusted to q0=6100001, q1=6200000.
-> client 1 q0: 6100001
LatSieveTime: 108
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 154
LatSieveTime: 158
-> makeJobFile(): Adjusted to q0=6200001, q1=6300000.
-> client 1 q0: 6200001
LatSieveTime: 95
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 150
LatSieveTime: 154
LatSieveTime: 154
-> makeJobFile(): Adjusted to q0=6300001, q1=6400000.
-> client 1 q0: 6300001
LatSieveTime: 95
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 111
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 146
LatSieveTime: 147
LatSieveTime: 153
-> makeJobFile(): Adjusted to q0=6400001, q1=6500000.
-> client 1 q0: 6400001
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 145
LatSieveTime: 151
LatSieveTime: 152
-> makeJobFile(): Adjusted to q0=6500001, q1=6600000.
-> client 1 q0: 6500001
LatSieveTime: 97
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 147
LatSieveTime: 148
LatSieveTime: 150
LatSieveTime: 151
LatSieveTime: 152
LatSieveTime: 154
LatSieveTime: 156
-> makeJobFile(): Adjusted to q0=6600001, q1=6700000.
-> client 1 q0: 6600001
LatSieveTime: 107
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 148
LatSieveTime: 150
LatSieveTime: 152
LatSieveTime: 155
LatSieveTime: 158
-> makeJobFile(): Adjusted to q0=6700001, q1=6800000.
-> client 1 q0: 6700001
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 151
LatSieveTime: 151
LatSieveTime: 152
LatSieveTime: 157
-> makeJobFile(): Adjusted to q0=6800001, q1=6900000.
-> client 1 q0: 6800001
LatSieveTime: 114
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 146
LatSieveTime: 146
LatSieveTime: 149
LatSieveTime: 149
LatSieveTime: 151
LatSieveTime: 154
LatSieveTime: 154
LatSieveTime: 156
LatSieveTime: 158
-> makeJobFile(): Adjusted to q0=6900001, q1=7000000.
-> client 1 q0: 6900001
LatSieveTime: 114
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 141
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 145
LatSieveTime: 145
LatSieveTime: 147
LatSieveTime: 148
LatSieveTime: 154
-> makeJobFile(): Adjusted to q0=7000001, q1=7100000.
-> client 1 q0: 7000001
LatSieveTime: 104
LatSieveTime: 111
LatSieveTime: 114
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 148
LatSieveTime: 151
LatSieveTime: 154
LatSieveTime: 155
-> makeJobFile(): Adjusted to q0=7100001, q1=7200000.
-> client 1 q0: 7100001
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 145
-> makeJobFile(): Adjusted to q0=7200001, q1=7300000.
-> client 1 q0: 7200001
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 148
LatSieveTime: 150
LatSieveTime: 153
LatSieveTime: 157
-> makeJobFile(): Adjusted to q0=7300001, q1=7400000.
-> client 1 q0: 7300001
LatSieveTime: 108
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 142
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 146
LatSieveTime: 147
LatSieveTime: 147
LatSieveTime: 149
LatSieveTime: 151
LatSieveTime: 152
LatSieveTime: 153
LatSieveTime: 156
LatSieveTime: 160
-> makeJobFile(): Adjusted to q0=7400001, q1=7500000.
-> client 1 q0: 7400001
LatSieveTime: 100
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 138
LatSieveTime: 145
LatSieveTime: 151
LatSieveTime: 154
LatSieveTime: 166
-> makeJobFile(): Adjusted to q0=7500001, q1=7600000.
-> client 1 q0: 7500001
LatSieveTime: 101
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 110
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 144
LatSieveTime: 146
LatSieveTime: 147
LatSieveTime: 150
LatSieveTime: 151
-> makeJobFile(): Adjusted to q0=7600001, q1=7700000.
-> client 1 q0: 7600001
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 117
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 129
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 146
LatSieveTime: 146
LatSieveTime: 146
LatSieveTime: 148
LatSieveTime: 151
LatSieveTime: 154
LatSieveTime: 172
-> makeJobFile(): Adjusted to q0=7700001, q1=7800000.
-> client 1 q0: 7700001
LatSieveTime: 105
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 138
LatSieveTime: 146
LatSieveTime: 146
-> makeJobFile(): Adjusted to q0=7800001, q1=7900000.
-> client 1 q0: 7800001
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 147
LatSieveTime: 149
LatSieveTime: 151
-> makeJobFile(): Adjusted to q0=7900001, q1=8000000.
-> client 1 q0: 7900001
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 145
LatSieveTime: 145
LatSieveTime: 146
LatSieveTime: 148
LatSieveTime: 157
-> makeJobFile(): Adjusted to q0=8000001, q1=8100000.
-> client 1 q0: 8000001
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 143
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=8100001, q1=8200000.
-> client 1 q0: 8100001
LatSieveTime: 106
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=8200001, q1=8300000.
-> client 1 q0: 8200001
LatSieveTime: 102
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 143
LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=8300001, q1=8400000.
-> client 1 q0: 8300001
LatSieveTime: 96
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 141
-> makeJobFile(): Adjusted to q0=8400001, q1=8500000.
-> client 1 q0: 8400001
LatSieveTime: 87
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
-> makeJobFile(): Adjusted to q0=8500001, q1=8600000.
-> client 1 q0: 8500001
LatSieveTime: 97
LatSieveTime: 100
LatSieveTime: 107
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 146
LatSieveTime: 148
-> makeJobFile(): Adjusted to q0=8600001, q1=8700000.
-> client 1 q0: 8600001
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 144
LatSieveTime: 146
LatSieveTime: 149
LatSieveTime: 151
-> makeJobFile(): Adjusted to q0=8700001, q1=8800000.
-> client 1 q0: 8700001
LatSieveTime: 98
LatSieveTime: 105
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 142
LatSieveTime: 144
LatSieveTime: 145
LatSieveTime: 148
LatSieveTime: 149
LatSieveTime: 156
LatSieveTime: 157
-> makeJobFile(): Adjusted to q0=8800001, q1=8900000.
-> client 1 q0: 8800001
LatSieveTime: 98
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 141
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 154
-> makeJobFile(): Adjusted to q0=8900001, q1=9000000.
-> client 1 q0: 8900001
LatSieveTime: 85
LatSieveTime: 103
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 139
LatSieveTime: 142
LatSieveTime: 147
-> makeJobFile(): Adjusted to q0=9000001, q1=9100000.
-> client 1 q0: 9000001
LatSieveTime: 99
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 139
-> makeJobFile(): Adjusted to q0=9100001, q1=9200000.
-> client 1 q0: 9100001
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 140
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 143
LatSieveTime: 148
Sun Mar 12 16:35:44 2023
Sun Mar 12 16:35:44 2023
Sun Mar 12 16:35:44 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 16:35:44 2023 random seeds: b37fa570 57a1e948
Sun Mar 12 16:35:44 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 16:35:45 2023 searching for 15-digit factors
Sun Mar 12 16:35:45 2023 commencing number field sieve (130-digit input)
Sun Mar 12 16:35:45 2023 R0: -8484537884612787023937580
Sun Mar 12 16:35:45 2023 R1: 23779120138763
Sun Mar 12 16:35:45 2023 A0: 17719512882132705020757336017691
Sun Mar 12 16:35:45 2023 A1: -93882515830276305908708865
Sun Mar 12 16:35:45 2023 A2: -2786430742628308426822
Sun Mar 12 16:35:45 2023 A3: -5732399296421578
Sun Mar 12 16:35:45 2023 A4: 74971665980
Sun Mar 12 16:35:45 2023 A5: 86640
Sun Mar 12 16:35:45 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 16:35:45 2023
Sun Mar 12 16:35:45 2023 commencing relation filtering
Sun Mar 12 16:35:45 2023 estimated available RAM is 65413.5 MB
Sun Mar 12 16:35:45 2023 commencing duplicate removal, pass 1
Sun Mar 12 16:36:25 2023 found 2361321 hash collisions in 19278367 relations
Sun Mar 12 16:36:46 2023 added 120565 free relations
Sun Mar 12 16:36:46 2023 commencing duplicate removal, pass 2
Sun Mar 12 16:36:53 2023 found 2024424 duplicates and 17374508 unique relations
Sun Mar 12 16:36:53 2023 memory use: 98.6 MB
Sun Mar 12 16:36:53 2023 reading ideals above 720000
Sun Mar 12 16:36:53 2023 commencing singleton removal, initial pass
Sun Mar 12 16:37:54 2023 memory use: 376.5 MB
Sun Mar 12 16:37:54 2023 reading all ideals from disk
Sun Mar 12 16:37:54 2023 memory use: 531.7 MB
Sun Mar 12 16:37:55 2023 keeping 19857697 ideals with weight <= 200, target excess is 117579
Sun Mar 12 16:37:56 2023 commencing in-memory singleton removal
Sun Mar 12 16:37:56 2023 begin with 17374508 relations and 19857697 unique ideals
Sun Mar 12 16:38:05 2023 reduce to 5064609 relations and 5131906 ideals in 23 passes
Sun Mar 12 16:38:05 2023 max relations containing the same ideal: 86
Sun Mar 12 16:38:06 2023 filtering wants 1000000 more relations
Sun Mar 12 16:38:06 2023 elapsed time 00:02:22
-> makeJobFile(): Adjusted to q0=9200001, q1=9300000.
-> client 1 q0: 9200001
LatSieveTime: 97
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 141
Sun Mar 12 16:40:34 2023
Sun Mar 12 16:40:34 2023
Sun Mar 12 16:40:34 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 16:40:34 2023 random seeds: 3d8ce8a8 46fbdf84
Sun Mar 12 16:40:34 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 16:40:34 2023 searching for 15-digit factors
Sun Mar 12 16:40:34 2023 commencing number field sieve (130-digit input)
Sun Mar 12 16:40:34 2023 R0: -8484537884612787023937580
Sun Mar 12 16:40:34 2023 R1: 23779120138763
Sun Mar 12 16:40:34 2023 A0: 17719512882132705020757336017691
Sun Mar 12 16:40:34 2023 A1: -93882515830276305908708865
Sun Mar 12 16:40:34 2023 A2: -2786430742628308426822
Sun Mar 12 16:40:34 2023 A3: -5732399296421578
Sun Mar 12 16:40:34 2023 A4: 74971665980
Sun Mar 12 16:40:34 2023 A5: 86640
Sun Mar 12 16:40:34 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 16:40:34 2023
Sun Mar 12 16:40:34 2023 commencing relation filtering
Sun Mar 12 16:40:34 2023 estimated available RAM is 65413.5 MB
Sun Mar 12 16:40:34 2023 commencing duplicate removal, pass 1
Sun Mar 12 16:41:15 2023 found 2432576 hash collisions in 19715822 relations
Sun Mar 12 16:41:35 2023 added 83 free relations
Sun Mar 12 16:41:35 2023 commencing duplicate removal, pass 2
Sun Mar 12 16:41:42 2023 found 2081215 duplicates and 17634690 unique relations
Sun Mar 12 16:41:42 2023 memory use: 98.6 MB
Sun Mar 12 16:41:42 2023 reading ideals above 720000
Sun Mar 12 16:41:42 2023 commencing singleton removal, initial pass
Sun Mar 12 16:42:44 2023 memory use: 376.5 MB
Sun Mar 12 16:42:44 2023 reading all ideals from disk
Sun Mar 12 16:42:44 2023 memory use: 539.8 MB
Sun Mar 12 16:42:45 2023 keeping 19981004 ideals with weight <= 200, target excess is 118067
Sun Mar 12 16:42:46 2023 commencing in-memory singleton removal
Sun Mar 12 16:42:47 2023 begin with 17634690 relations and 19981004 unique ideals
Sun Mar 12 16:42:56 2023 reduce to 5414698 relations and 5407967 ideals in 23 passes
Sun Mar 12 16:42:56 2023 max relations containing the same ideal: 90
Sun Mar 12 16:42:57 2023 filtering wants 1000000 more relations
Sun Mar 12 16:42:57 2023 elapsed time 00:02:23
-> makeJobFile(): Adjusted to q0=9300001, q1=9400000.
-> client 1 q0: 9300001
LatSieveTime: 103
LatSieveTime: 107
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 142
LatSieveTime: 143
LatSieveTime: 146
LatSieveTime: 153
Sun Mar 12 16:45:37 2023
Sun Mar 12 16:45:37 2023
Sun Mar 12 16:45:37 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 16:45:37 2023 random seeds: a545be80 48addf2f
Sun Mar 12 16:45:37 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 16:45:37 2023 searching for 15-digit factors
Sun Mar 12 16:45:37 2023 commencing number field sieve (130-digit input)
Sun Mar 12 16:45:37 2023 R0: -8484537884612787023937580
Sun Mar 12 16:45:37 2023 R1: 23779120138763
Sun Mar 12 16:45:37 2023 A0: 17719512882132705020757336017691
Sun Mar 12 16:45:37 2023 A1: -93882515830276305908708865
Sun Mar 12 16:45:37 2023 A2: -2786430742628308426822
Sun Mar 12 16:45:37 2023 A3: -5732399296421578
Sun Mar 12 16:45:37 2023 A4: 74971665980
Sun Mar 12 16:45:37 2023 A5: 86640
Sun Mar 12 16:45:37 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 16:45:37 2023
Sun Mar 12 16:45:37 2023 commencing relation filtering
Sun Mar 12 16:45:37 2023 estimated available RAM is 65413.5 MB
Sun Mar 12 16:45:37 2023 commencing duplicate removal, pass 1
Sun Mar 12 16:46:20 2023 found 2496937 hash collisions in 20028351 relations
Sun Mar 12 16:46:41 2023 added 79 free relations
Sun Mar 12 16:46:41 2023 commencing duplicate removal, pass 2
Sun Mar 12 16:46:48 2023 found 2138058 duplicates and 17890372 unique relations
Sun Mar 12 16:46:48 2023 memory use: 98.6 MB
Sun Mar 12 16:46:48 2023 reading ideals above 720000
Sun Mar 12 16:46:48 2023 commencing singleton removal, initial pass
Sun Mar 12 16:47:51 2023 memory use: 376.5 MB
Sun Mar 12 16:47:51 2023 reading all ideals from disk
Sun Mar 12 16:47:51 2023 memory use: 547.7 MB
Sun Mar 12 16:47:52 2023 keeping 20100129 ideals with weight <= 200, target excess is 118568
Sun Mar 12 16:47:53 2023 commencing in-memory singleton removal
Sun Mar 12 16:47:54 2023 begin with 17890372 relations and 20100129 unique ideals
Sun Mar 12 16:48:04 2023 reduce to 5761497 relations and 5677540 ideals in 23 passes
Sun Mar 12 16:48:04 2023 max relations containing the same ideal: 91
Sun Mar 12 16:48:04 2023 filtering wants 1000000 more relations
Sun Mar 12 16:48:04 2023 elapsed time 00:02:27
-> makeJobFile(): Adjusted to q0=9400001, q1=9500000.
-> client 1 q0: 9400001
LatSieveTime: 98
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 135
LatSieveTime: 137
LatSieveTime: 140
LatSieveTime: 143
Sun Mar 12 16:50:34 2023
Sun Mar 12 16:50:34 2023
Sun Mar 12 16:50:34 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 16:50:34 2023 random seeds: 3f02bca0 85fe6d28
Sun Mar 12 16:50:34 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 16:50:34 2023 searching for 15-digit factors
Sun Mar 12 16:50:34 2023 commencing number field sieve (130-digit input)
Sun Mar 12 16:50:34 2023 R0: -8484537884612787023937580
Sun Mar 12 16:50:34 2023 R1: 23779120138763
Sun Mar 12 16:50:34 2023 A0: 17719512882132705020757336017691
Sun Mar 12 16:50:34 2023 A1: -93882515830276305908708865
Sun Mar 12 16:50:34 2023 A2: -2786430742628308426822
Sun Mar 12 16:50:34 2023 A3: -5732399296421578
Sun Mar 12 16:50:34 2023 A4: 74971665980
Sun Mar 12 16:50:34 2023 A5: 86640
Sun Mar 12 16:50:34 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 16:50:34 2023
Sun Mar 12 16:50:34 2023 commencing relation filtering
Sun Mar 12 16:50:34 2023 estimated available RAM is 65413.5 MB
Sun Mar 12 16:50:34 2023 commencing duplicate removal, pass 1
Sun Mar 12 16:51:17 2023 found 2562015 hash collisions in 20339763 relations
Sun Mar 12 16:51:38 2023 added 59 free relations
Sun Mar 12 16:51:38 2023 commencing duplicate removal, pass 2
Sun Mar 12 16:51:46 2023 found 2195377 duplicates and 18144445 unique relations
Sun Mar 12 16:51:46 2023 memory use: 98.6 MB
Sun Mar 12 16:51:46 2023 reading ideals above 720000
Sun Mar 12 16:51:46 2023 commencing singleton removal, initial pass
Sun Mar 12 16:52:49 2023 memory use: 376.5 MB
Sun Mar 12 16:52:49 2023 reading all ideals from disk
Sun Mar 12 16:52:49 2023 memory use: 555.6 MB
Sun Mar 12 16:52:50 2023 keeping 20215895 ideals with weight <= 200, target excess is 119162
Sun Mar 12 16:52:51 2023 commencing in-memory singleton removal
Sun Mar 12 16:52:52 2023 begin with 18144445 relations and 20215895 unique ideals
Sun Mar 12 16:53:01 2023 reduce to 6099924 relations and 5935833 ideals in 20 passes
Sun Mar 12 16:53:01 2023 max relations containing the same ideal: 98
Sun Mar 12 16:53:03 2023 removing 251013 relations and 238081 ideals in 12932 cliques
Sun Mar 12 16:53:03 2023 commencing in-memory singleton removal
Sun Mar 12 16:53:03 2023 begin with 5848911 relations and 5935833 unique ideals
Sun Mar 12 16:53:06 2023 reduce to 5839537 relations and 5688352 ideals in 9 passes
Sun Mar 12 16:53:06 2023 max relations containing the same ideal: 95
Sun Mar 12 16:53:08 2023 removing 180083 relations and 167151 ideals in 12932 cliques
Sun Mar 12 16:53:08 2023 commencing in-memory singleton removal
Sun Mar 12 16:53:08 2023 begin with 5659454 relations and 5688352 unique ideals
Sun Mar 12 16:53:11 2023 reduce to 5654310 relations and 5516041 ideals in 9 passes
Sun Mar 12 16:53:11 2023 max relations containing the same ideal: 90
Sun Mar 12 16:53:11 2023 relations with 0 large ideals: 489
Sun Mar 12 16:53:11 2023 relations with 1 large ideals: 1688
Sun Mar 12 16:53:11 2023 relations with 2 large ideals: 28284
Sun Mar 12 16:53:11 2023 relations with 3 large ideals: 192543
Sun Mar 12 16:53:11 2023 relations with 4 large ideals: 695366
Sun Mar 12 16:53:11 2023 relations with 5 large ideals: 1412658
Sun Mar 12 16:53:11 2023 relations with 6 large ideals: 1661730
Sun Mar 12 16:53:11 2023 relations with 7+ large ideals: 1661552
Sun Mar 12 16:53:11 2023 commencing 2-way merge
Sun Mar 12 16:53:14 2023 reduce to 3081695 relation sets and 2943435 unique ideals
Sun Mar 12 16:53:14 2023 ignored 9 oversize relation sets
Sun Mar 12 16:53:14 2023 commencing full merge
Sun Mar 12 16:53:51 2023 memory use: 331.0 MB
Sun Mar 12 16:53:51 2023 found 1557408 cycles, need 1545635
Sun Mar 12 16:53:51 2023 weight of 1545635 cycles is about 108317587 (70.08/cycle)
Sun Mar 12 16:53:51 2023 distribution of cycle lengths:
Sun Mar 12 16:53:51 2023 1 relations: 221405
Sun Mar 12 16:53:51 2023 2 relations: 200999
Sun Mar 12 16:53:51 2023 3 relations: 193189
Sun Mar 12 16:53:51 2023 4 relations: 166111
Sun Mar 12 16:53:51 2023 5 relations: 137599
Sun Mar 12 16:53:51 2023 6 relations: 117329
Sun Mar 12 16:53:51 2023 7 relations: 95686
Sun Mar 12 16:53:51 2023 8 relations: 76868
Sun Mar 12 16:53:51 2023 9 relations: 62166
Sun Mar 12 16:53:51 2023 10+ relations: 274283
Sun Mar 12 16:53:51 2023 heaviest cycle: 26 relations
Sun Mar 12 16:53:51 2023 commencing cycle optimization
Sun Mar 12 16:53:53 2023 start with 8918094 relations
Sun Mar 12 16:54:04 2023 pruned 153732 relations
Sun Mar 12 16:54:04 2023 memory use: 314.2 MB
Sun Mar 12 16:54:04 2023 distribution of cycle lengths:
Sun Mar 12 16:54:04 2023 1 relations: 221405
Sun Mar 12 16:54:04 2023 2 relations: 205142
Sun Mar 12 16:54:04 2023 3 relations: 198664
Sun Mar 12 16:54:04 2023 4 relations: 168204
Sun Mar 12 16:54:04 2023 5 relations: 139457
Sun Mar 12 16:54:04 2023 6 relations: 117198
Sun Mar 12 16:54:04 2023 7 relations: 95195
Sun Mar 12 16:54:04 2023 8 relations: 75755
Sun Mar 12 16:54:04 2023 9 relations: 61072
Sun Mar 12 16:54:04 2023 10+ relations: 263543
Sun Mar 12 16:54:04 2023 heaviest cycle: 26 relations
Sun Mar 12 16:54:05 2023 RelProcTime: 211
Sun Mar 12 16:54:05 2023 elapsed time 00:03:31
Sun Mar 12 16:54:05 2023
Sun Mar 12 16:54:05 2023
Sun Mar 12 16:54:05 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 16:54:05 2023 random seeds: e9401990 44835a18
Sun Mar 12 16:54:05 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 16:54:05 2023 searching for 15-digit factors
Sun Mar 12 16:54:06 2023 commencing number field sieve (130-digit input)
Sun Mar 12 16:54:06 2023 R0: -8484537884612787023937580
Sun Mar 12 16:54:06 2023 R1: 23779120138763
Sun Mar 12 16:54:06 2023 A0: 17719512882132705020757336017691
Sun Mar 12 16:54:06 2023 A1: -93882515830276305908708865
Sun Mar 12 16:54:06 2023 A2: -2786430742628308426822
Sun Mar 12 16:54:06 2023 A3: -5732399296421578
Sun Mar 12 16:54:06 2023 A4: 74971665980
Sun Mar 12 16:54:06 2023 A5: 86640
Sun Mar 12 16:54:06 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 16:54:06 2023
Sun Mar 12 16:54:06 2023 commencing linear algebra
Sun Mar 12 16:54:06 2023 read 1545635 cycles
Sun Mar 12 16:54:08 2023 cycles contain 5441095 unique relations
Sun Mar 12 16:54:19 2023 read 5441095 relations
Sun Mar 12 16:54:25 2023 using 20 quadratic characters above 268434950
Sun Mar 12 16:54:39 2023 building initial matrix
Sun Mar 12 16:55:11 2023 memory use: 694.0 MB
Sun Mar 12 16:55:12 2023 read 1545635 cycles
Sun Mar 12 16:55:13 2023 matrix is 1545454 x 1545635 (470.2 MB) with weight 145709090 (94.27/col)
Sun Mar 12 16:55:13 2023 sparse part has weight 104717816 (67.75/col)
Sun Mar 12 16:55:21 2023 filtering completed in 2 passes
Sun Mar 12 16:55:21 2023 matrix is 1540639 x 1540817 (469.7 MB) with weight 145495211 (94.43/col)
Sun Mar 12 16:55:21 2023 sparse part has weight 104645432 (67.92/col)
Sun Mar 12 16:55:23 2023 matrix starts at (0, 0)
Sun Mar 12 16:55:24 2023 matrix is 1540639 x 1540817 (469.7 MB) with weight 145495211 (94.43/col)
Sun Mar 12 16:55:24 2023 sparse part has weight 104645432 (67.92/col)
Sun Mar 12 16:55:24 2023 saving the first 48 matrix rows for later
Sun Mar 12 16:55:24 2023 matrix includes 64 packed rows
Sun Mar 12 16:55:24 2023 matrix is 1540591 x 1540817 (450.1 MB) with weight 115657562 (75.06/col)
Sun Mar 12 16:55:24 2023 sparse part has weight 102577704 (66.57/col)
Sun Mar 12 16:55:24 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Sun Mar 12 16:55:29 2023 commencing Lanczos iteration (32 threads)
Sun Mar 12 16:55:29 2023 memory use: 355.0 MB
Sun Mar 12 16:55:31 2023 linear algebra at 0.1%, ETA 0h33m
Sun Mar 12 16:55:31 2023 checkpointing every 3640000 dimensions
Sun Mar 12 17:19:18 2023 lanczos halted after 24365 iterations (dim = 1540588)
Sun Mar 12 17:19:19 2023 recovered 28 nontrivial dependencies
Sun Mar 12 17:19:19 2023 BLanczosTime: 1513
Sun Mar 12 17:19:19 2023 elapsed time 00:25:14
Sun Mar 12 17:19:19 2023
Sun Mar 12 17:19:19 2023
Sun Mar 12 17:19:19 2023 Msieve v. 1.52 (SVN 927)
Sun Mar 12 17:19:19 2023 random seeds: d2714fcc 15f4c121
Sun Mar 12 17:19:19 2023 factoring 3809434080483317660403192649756775532696048251872800270292962309624376590364046434240715004996565963109887323892873177281858590413 (130 digits)
Sun Mar 12 17:19:19 2023 searching for 15-digit factors
Sun Mar 12 17:19:19 2023 commencing number field sieve (130-digit input)
Sun Mar 12 17:19:19 2023 R0: -8484537884612787023937580
Sun Mar 12 17:19:19 2023 R1: 23779120138763
Sun Mar 12 17:19:19 2023 A0: 17719512882132705020757336017691
Sun Mar 12 17:19:19 2023 A1: -93882515830276305908708865
Sun Mar 12 17:19:19 2023 A2: -2786430742628308426822
Sun Mar 12 17:19:19 2023 A3: -5732399296421578
Sun Mar 12 17:19:19 2023 A4: 74971665980
Sun Mar 12 17:19:19 2023 A5: 86640
Sun Mar 12 17:19:19 2023 skew 232301.98, size 1.126e-012, alpha -6.009, combined = 6.414e-011 rroots = 3
Sun Mar 12 17:19:19 2023
Sun Mar 12 17:19:19 2023 commencing square root phase
Sun Mar 12 17:19:19 2023 reading relations for dependency 1
Sun Mar 12 17:19:20 2023 read 770254 cycles
Sun Mar 12 17:19:20 2023 cycles contain 2720408 unique relations
Sun Mar 12 17:19:27 2023 read 2720408 relations
Sun Mar 12 17:19:35 2023 multiplying 2720408 relations
Sun Mar 12 17:20:47 2023 multiply complete, coefficients have about 131.55 million bits
Sun Mar 12 17:20:48 2023 initial square root is modulo 2766488917
Sun Mar 12 17:22:29 2023 sqrtTime: 190
Sun Mar 12 17:22:29 2023 prp46 factor: 3012520669439802605111355637947407282693821829
Sun Mar 12 17:22:29 2023 prp85 factor: 1264533757105044586094802929606943858881054200011716778444212625113456023607803837097
Sun Mar 12 17:22:29 2023 elapsed time 00:03:10 |
| software ソフトウェア | GNNFS, Msieve |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | February 25, 2023 20:06:55 UTC 2023 年 2 月 26 日 (日) 5 時 6 分 55 秒 (日本時間) | |
| 45 | 11e6 | 4480 | Ignacio Santos | March 6, 2023 13:06:54 UTC 2023 年 3 月 6 日 (月) 22 時 6 分 54 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | April 27, 2023 20:21:20 UTC 2023 年 4 月 28 日 (金) 5 時 21 分 20 秒 (日本時間) |
| composite number 合成数 | 67975772215489515873700638839763265064785198783286468538815355741716487702584313850258232774236648985377443154743054297024431289395585188648686299397542536696840241685282220821338367737<185> |
| prime factors 素因数 | 224890702357860923009177948495128052521696835755958862871<57> 302261371869976119983344661583542977452261651272123822399030635312388505554677431469045959555139270506105996939530392521622996847<129> |
| factorization results 素因数分解の結果 | Number: n N=67975772215489515873700638839763265064785198783286468538815355741716487702584313850258232774236648985377443154743054297024431289395585188648686299397542536696840241685282220821338367737 ( 185 digits) SNFS difficulty: 198 digits. Divisors found: Fri Apr 28 06:13:18 2023 prp57 factor: 224890702357860923009177948495128052521696835755958862871 Fri Apr 28 06:13:18 2023 prp129 factor: 302261371869976119983344661583542977452261651272123822399030635312388505554677431469045959555139270506105996939530392521622996847 Fri Apr 28 06:13:18 2023 elapsed time 03:26:30 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 29x10^198-8 = 96(197)4 # n: 67975772215489515873700638839763265064785198783286468538815355741716487702584313850258232774236648985377443154743054297024431289395585188648686299397542536696840241685282220821338367737 m: 1000000000000000000000000000000000000000 deg: 5 c5: 3625 c0: -1 skew: 0.19 # Murphy_E = 1.597e-11 type: snfs lss: 1 rlim: 14300000 alim: 14300000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14300000/14300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 40040509) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1586946 hash collisions in 13342017 relations (12513112 unique) Msieve: matrix is 2488444 x 2488676 (705.7 MB) Sieving start time: 2023/04/27 09:09:44 Sieving end time : 2023/04/28 02:46:34 Total sieving time: 17hrs 36min 50secs. Total relation processing time: 3hrs 11min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 33sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14300000,14300000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 2, 2023 20:59:11 UTC 2023 年 3 月 3 日 (金) 5 時 59 分 11 秒 (日本時間) |
| 2350 | Ignacio Santos | April 24, 2023 15:53:06 UTC 2023 年 4 月 25 日 (火) 0 時 53 分 6 秒 (日本時間) | |||
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | July 19, 2023 12:19:01 UTC 2023 年 7 月 19 日 (水) 21 時 19 分 1 秒 (日本時間) |
| composite number 合成数 | 120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<204> |
| prime factors 素因数 | 61845549984706701749762019597352024601209207<44> 255822380977330719628998637323087110970854549798768295965228289409321<69> 7637298471987373799343386237752177710712659901302225138100580017914018921935868872052283739<91> |
| factorization results 素因数分解の結果 | Number: n N=120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 ( 204 digits) SNFS difficulty: 203 digits. Divisors found: Wed Jul 19 22:08:27 2023 prp44 factor: 61845549984706701749762019597352024601209207 Wed Jul 19 22:08:27 2023 prp69 factor: 255822380977330719628998637323087110970854549798768295965228289409321 Wed Jul 19 22:08:27 2023 prp91 factor: 7637298471987373799343386237752177710712659901302225138100580017914018921935868872052283739 Wed Jul 19 22:08:27 2023 elapsed time 03:01:43 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 29x10^203-8 = 96(202)4 # n: 120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 m: 10000000000000000000000000000000000000000 deg: 5 c5: 3625 c0: -1 skew: 0.19 # Murphy_E = 9.856e-12 type: snfs lss: 1 rlim: 17300000 alim: 17300000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17300000/17300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2646544 hash collisions in 16693160 relations (14494884 unique) Msieve: matrix is 2380626 x 2380851 (672.1 MB) Sieving start time: 2023/07/19 05:17:11 Sieving end time : 2023/07/19 19:06:22 Total sieving time: 13hrs 49min 11secs. Total relation processing time: 2hrs 50min 47sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 26sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17300000,17300000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:07:34 UTC 2023 年 3 月 24 日 (金) 0 時 7 分 34 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:49:52 UTC 2023 年 4 月 26 日 (水) 17 時 49 分 52 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | February 24, 2023 09:02:08 UTC 2023 年 2 月 24 日 (金) 18 時 2 分 8 秒 (日本時間) |
| composite number 合成数 | 256381205813454341981754686261627653224594098654280489162421608384172868004519795348799448993084566006691005865185537<117> |
| prime factors 素因数 | 234946614487389268039425557502130185853364311<45> 1091231752255002478941063855960389554663994389752713204115779959064369767<73> |
| factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000.
-> client 1 q0: 1800000
LatSieveTime: 93
LatSieveTime: 94
LatSieveTime: 94
LatSieveTime: 97
LatSieveTime: 98
LatSieveTime: 99
LatSieveTime: 100
LatSieveTime: 101
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=1900001, q1=2000000.
-> client 1 q0: 1900001
LatSieveTime: 93
LatSieveTime: 96
LatSieveTime: 98
LatSieveTime: 98
LatSieveTime: 100
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 129
LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=2000001, q1=2100000.
-> client 1 q0: 2000001
LatSieveTime: 97
LatSieveTime: 100
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 134
-> makeJobFile(): Adjusted to q0=2100001, q1=2200000.
-> client 1 q0: 2100001
LatSieveTime: 91
LatSieveTime: 93
LatSieveTime: 97
LatSieveTime: 98
LatSieveTime: 100
LatSieveTime: 103
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 133
-> makeJobFile(): Adjusted to q0=2200001, q1=2300000.
-> client 1 q0: 2200001
LatSieveTime: 92
LatSieveTime: 101
LatSieveTime: 102
LatSieveTime: 102
LatSieveTime: 103
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 133
-> makeJobFile(): Adjusted to q0=2300001, q1=2400000.
-> client 1 q0: 2300001
LatSieveTime: 97
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 134
LatSieveTime: 134
-> makeJobFile(): Adjusted to q0=2400001, q1=2500000.
-> client 1 q0: 2400001
LatSieveTime: 95
LatSieveTime: 99
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 127
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 137
LatSieveTime: 139
LatSieveTime: 140
-> makeJobFile(): Adjusted to q0=2500001, q1=2600000.
-> client 1 q0: 2500001
LatSieveTime: 95
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 142
-> makeJobFile(): Adjusted to q0=2600001, q1=2700000.
-> client 1 q0: 2600001
LatSieveTime: 98
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 137
-> makeJobFile(): Adjusted to q0=2700001, q1=2800000.
-> client 1 q0: 2700001
LatSieveTime: 99
LatSieveTime: 104
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 142
-> makeJobFile(): Adjusted to q0=2800001, q1=2900000.
-> client 1 q0: 2800001
LatSieveTime: 100
LatSieveTime: 105
LatSieveTime: 107
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 132
LatSieveTime: 134
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 141
LatSieveTime: 141
LatSieveTime: 145
-> makeJobFile(): Adjusted to q0=2900001, q1=3000000.
-> client 1 q0: 2900001
LatSieveTime: 94
LatSieveTime: 95
LatSieveTime: 104
LatSieveTime: 104
LatSieveTime: 105
LatSieveTime: 106
LatSieveTime: 106
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 134
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 135
-> makeJobFile(): Adjusted to q0=3000001, q1=3100000.
-> client 1 q0: 3000001
LatSieveTime: 93
LatSieveTime: 95
LatSieveTime: 108
LatSieveTime: 109
LatSieveTime: 110
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 112
LatSieveTime: 113
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 134
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 142
LatSieveTime: 157
-> makeJobFile(): Adjusted to q0=3100001, q1=3200000.
-> client 1 q0: 3100001
LatSieveTime: 97
LatSieveTime: 98
LatSieveTime: 107
LatSieveTime: 107
LatSieveTime: 108
LatSieveTime: 111
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 116
LatSieveTime: 119
LatSieveTime: 120
LatSieveTime: 120
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 123
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 126
LatSieveTime: 127
LatSieveTime: 127
LatSieveTime: 128
LatSieveTime: 128
LatSieveTime: 131
LatSieveTime: 131
LatSieveTime: 132
LatSieveTime: 132
LatSieveTime: 133
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 137
LatSieveTime: 138
LatSieveTime: 139
LatSieveTime: 141
LatSieveTime: 145
LatSieveTime: 148
LatSieveTime: 148
Fri Feb 24 09:48:40 2023
Fri Feb 24 09:48:40 2023
Fri Feb 24 09:48:40 2023 Msieve v. 1.52 (SVN 927)
Fri Feb 24 09:48:40 2023 random seeds: 8a181380 5c425069
Fri Feb 24 09:48:40 2023 factoring 256381205813454341981754686261627653224594098654280489162421608384172868004519795348799448993084566006691005865185537 (117 digits)
Fri Feb 24 09:48:40 2023 searching for 15-digit factors
Fri Feb 24 09:48:40 2023 commencing number field sieve (117-digit input)
Fri Feb 24 09:48:40 2023 R0: -37197645701691376329816
Fri Feb 24 09:48:40 2023 R1: 645437962981
Fri Feb 24 09:48:40 2023 A0: -302728176031238524185754595
Fri Feb 24 09:48:40 2023 A1: 14693685915459521916612
Fri Feb 24 09:48:40 2023 A2: 4697250394309060471
Fri Feb 24 09:48:40 2023 A3: -34541294338269
Fri Feb 24 09:48:40 2023 A4: 3065691778
Fri Feb 24 09:48:40 2023 A5: 3600
Fri Feb 24 09:48:40 2023 skew 41459.92, size 2.610e-011, alpha -5.195, combined = 3.644e-010 rroots = 3
Fri Feb 24 09:48:40 2023
Fri Feb 24 09:48:40 2023 commencing relation filtering
Fri Feb 24 09:48:40 2023 estimated available RAM is 65413.5 MB
Fri Feb 24 09:48:40 2023 commencing duplicate removal, pass 1
Fri Feb 24 09:48:57 2023 found 1013312 hash collisions in 9087951 relations
Fri Feb 24 09:49:07 2023 added 62012 free relations
Fri Feb 24 09:49:07 2023 commencing duplicate removal, pass 2
Fri Feb 24 09:49:10 2023 found 595898 duplicates and 8554065 unique relations
Fri Feb 24 09:49:10 2023 memory use: 41.3 MB
Fri Feb 24 09:49:10 2023 reading ideals above 100000
Fri Feb 24 09:49:10 2023 commencing singleton removal, initial pass
Fri Feb 24 09:49:41 2023 memory use: 188.3 MB
Fri Feb 24 09:49:41 2023 reading all ideals from disk
Fri Feb 24 09:49:41 2023 memory use: 299.0 MB
Fri Feb 24 09:49:42 2023 keeping 9987983 ideals with weight <= 200, target excess is 45914
Fri Feb 24 09:49:42 2023 commencing in-memory singleton removal
Fri Feb 24 09:49:42 2023 begin with 8554065 relations and 9987983 unique ideals
Fri Feb 24 09:49:46 2023 reduce to 2126178 relations and 2217124 ideals in 31 passes
Fri Feb 24 09:49:46 2023 max relations containing the same ideal: 76
Fri Feb 24 09:49:46 2023 filtering wants 1000000 more relations
Fri Feb 24 09:49:46 2023 elapsed time 00:01:06
-> makeJobFile(): Adjusted to q0=3200001, q1=3300000.
-> client 1 q0: 3200001
LatSieveTime: 97
LatSieveTime: 100
LatSieveTime: 103
LatSieveTime: 104
LatSieveTime: 106
LatSieveTime: 110
LatSieveTime: 111
LatSieveTime: 112
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 114
LatSieveTime: 115
LatSieveTime: 116
LatSieveTime: 117
LatSieveTime: 118
LatSieveTime: 118
LatSieveTime: 119
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 121
LatSieveTime: 122
LatSieveTime: 122
LatSieveTime: 123
LatSieveTime: 124
LatSieveTime: 124
LatSieveTime: 125
LatSieveTime: 125
LatSieveTime: 126
LatSieveTime: 128
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 129
LatSieveTime: 130
LatSieveTime: 130
LatSieveTime: 131
LatSieveTime: 133
LatSieveTime: 135
LatSieveTime: 135
LatSieveTime: 136
LatSieveTime: 136
LatSieveTime: 140
LatSieveTime: 140
LatSieveTime: 141
LatSieveTime: 142
Fri Feb 24 09:52:14 2023
Fri Feb 24 09:52:14 2023
Fri Feb 24 09:52:14 2023 Msieve v. 1.52 (SVN 927)
Fri Feb 24 09:52:14 2023 random seeds: 758ad778 f9095433
Fri Feb 24 09:52:14 2023 factoring 256381205813454341981754686261627653224594098654280489162421608384172868004519795348799448993084566006691005865185537 (117 digits)
Fri Feb 24 09:52:15 2023 searching for 15-digit factors
Fri Feb 24 09:52:15 2023 commencing number field sieve (117-digit input)
Fri Feb 24 09:52:15 2023 R0: -37197645701691376329816
Fri Feb 24 09:52:15 2023 R1: 645437962981
Fri Feb 24 09:52:15 2023 A0: -302728176031238524185754595
Fri Feb 24 09:52:15 2023 A1: 14693685915459521916612
Fri Feb 24 09:52:15 2023 A2: 4697250394309060471
Fri Feb 24 09:52:15 2023 A3: -34541294338269
Fri Feb 24 09:52:15 2023 A4: 3065691778
Fri Feb 24 09:52:15 2023 A5: 3600
Fri Feb 24 09:52:15 2023 skew 41459.92, size 2.610e-011, alpha -5.195, combined = 3.644e-010 rroots = 3
Fri Feb 24 09:52:15 2023
Fri Feb 24 09:52:15 2023 commencing relation filtering
Fri Feb 24 09:52:15 2023 estimated available RAM is 65413.5 MB
Fri Feb 24 09:52:15 2023 commencing duplicate removal, pass 1
Fri Feb 24 09:52:35 2023 found 914066 hash collisions in 9821984 relations
Fri Feb 24 09:52:45 2023 added 254 free relations
Fri Feb 24 09:52:45 2023 commencing duplicate removal, pass 2
Fri Feb 24 09:52:48 2023 found 673616 duplicates and 9148622 unique relations
Fri Feb 24 09:52:48 2023 memory use: 34.6 MB
Fri Feb 24 09:52:48 2023 reading ideals above 100000
Fri Feb 24 09:52:48 2023 commencing singleton removal, initial pass
Fri Feb 24 09:53:21 2023 memory use: 344.5 MB
Fri Feb 24 09:53:21 2023 reading all ideals from disk
Fri Feb 24 09:53:21 2023 memory use: 320.0 MB
Fri Feb 24 09:53:21 2023 keeping 10277267 ideals with weight <= 200, target excess is 49183
Fri Feb 24 09:53:22 2023 commencing in-memory singleton removal
Fri Feb 24 09:53:22 2023 begin with 9148622 relations and 10277267 unique ideals
Fri Feb 24 09:53:27 2023 reduce to 2912439 relations and 2839654 ideals in 26 passes
Fri Feb 24 09:53:27 2023 max relations containing the same ideal: 95
Fri Feb 24 09:53:28 2023 relations with 0 large ideals: 151
Fri Feb 24 09:53:28 2023 relations with 1 large ideals: 497
Fri Feb 24 09:53:28 2023 relations with 2 large ideals: 7780
Fri Feb 24 09:53:28 2023 relations with 3 large ideals: 62895
Fri Feb 24 09:53:28 2023 relations with 4 large ideals: 274157
Fri Feb 24 09:53:28 2023 relations with 5 large ideals: 656967
Fri Feb 24 09:53:28 2023 relations with 6 large ideals: 886432
Fri Feb 24 09:53:28 2023 relations with 7+ large ideals: 1023560
Fri Feb 24 09:53:28 2023 commencing 2-way merge
Fri Feb 24 09:53:29 2023 reduce to 1553882 relation sets and 1481805 unique ideals
Fri Feb 24 09:53:29 2023 ignored 708 oversize relation sets
Fri Feb 24 09:53:29 2023 commencing full merge
Fri Feb 24 09:53:47 2023 memory use: 148.9 MB
Fri Feb 24 09:53:47 2023 found 715020 cycles, need 706005
Fri Feb 24 09:53:47 2023 weight of 706005 cycles is about 49707572 (70.41/cycle)
Fri Feb 24 09:53:47 2023 distribution of cycle lengths:
Fri Feb 24 09:53:47 2023 1 relations: 85470
Fri Feb 24 09:53:47 2023 2 relations: 86910
Fri Feb 24 09:53:47 2023 3 relations: 85923
Fri Feb 24 09:53:47 2023 4 relations: 75170
Fri Feb 24 09:53:47 2023 5 relations: 63811
Fri Feb 24 09:53:47 2023 6 relations: 54114
Fri Feb 24 09:53:47 2023 7 relations: 45961
Fri Feb 24 09:53:47 2023 8 relations: 37674
Fri Feb 24 09:53:47 2023 9 relations: 30357
Fri Feb 24 09:53:47 2023 10+ relations: 140615
Fri Feb 24 09:53:47 2023 heaviest cycle: 26 relations
Fri Feb 24 09:53:47 2023 commencing cycle optimization
Fri Feb 24 09:53:48 2023 start with 4323076 relations
Fri Feb 24 09:53:53 2023 pruned 80116 relations
Fri Feb 24 09:53:53 2023 memory use: 150.4 MB
Fri Feb 24 09:53:53 2023 distribution of cycle lengths:
Fri Feb 24 09:53:53 2023 1 relations: 85470
Fri Feb 24 09:53:53 2023 2 relations: 88750
Fri Feb 24 09:53:53 2023 3 relations: 88517
Fri Feb 24 09:53:53 2023 4 relations: 76058
Fri Feb 24 09:53:53 2023 5 relations: 64913
Fri Feb 24 09:53:53 2023 6 relations: 54317
Fri Feb 24 09:53:53 2023 7 relations: 45832
Fri Feb 24 09:53:53 2023 8 relations: 37311
Fri Feb 24 09:53:53 2023 9 relations: 29848
Fri Feb 24 09:53:53 2023 10+ relations: 134989
Fri Feb 24 09:53:53 2023 heaviest cycle: 25 relations
Fri Feb 24 09:53:53 2023 RelProcTime: 98
Fri Feb 24 09:53:53 2023 elapsed time 00:01:39
Fri Feb 24 09:53:53 2023
Fri Feb 24 09:53:53 2023
Fri Feb 24 09:53:53 2023 Msieve v. 1.52 (SVN 927)
Fri Feb 24 09:53:53 2023 random seeds: 66db8700 f1aa0794
Fri Feb 24 09:53:53 2023 factoring 256381205813454341981754686261627653224594098654280489162421608384172868004519795348799448993084566006691005865185537 (117 digits)
Fri Feb 24 09:53:54 2023 searching for 15-digit factors
Fri Feb 24 09:53:54 2023 commencing number field sieve (117-digit input)
Fri Feb 24 09:53:54 2023 R0: -37197645701691376329816
Fri Feb 24 09:53:54 2023 R1: 645437962981
Fri Feb 24 09:53:54 2023 A0: -302728176031238524185754595
Fri Feb 24 09:53:54 2023 A1: 14693685915459521916612
Fri Feb 24 09:53:54 2023 A2: 4697250394309060471
Fri Feb 24 09:53:54 2023 A3: -34541294338269
Fri Feb 24 09:53:54 2023 A4: 3065691778
Fri Feb 24 09:53:54 2023 A5: 3600
Fri Feb 24 09:53:54 2023 skew 41459.92, size 2.610e-011, alpha -5.195, combined = 3.644e-010 rroots = 3
Fri Feb 24 09:53:54 2023
Fri Feb 24 09:53:54 2023 commencing linear algebra
Fri Feb 24 09:53:54 2023 read 706005 cycles
Fri Feb 24 09:53:54 2023 cycles contain 2579707 unique relations
Fri Feb 24 09:54:00 2023 read 2579707 relations
Fri Feb 24 09:54:02 2023 using 20 quadratic characters above 134216940
Fri Feb 24 09:54:08 2023 building initial matrix
Fri Feb 24 09:54:21 2023 memory use: 325.0 MB
Fri Feb 24 09:54:22 2023 read 706005 cycles
Fri Feb 24 09:54:22 2023 matrix is 705762 x 706005 (212.9 MB) with weight 67190684 (95.17/col)
Fri Feb 24 09:54:22 2023 sparse part has weight 48052908 (68.06/col)
Fri Feb 24 09:54:26 2023 filtering completed in 3 passes
Fri Feb 24 09:54:26 2023 matrix is 700168 x 700368 (212.0 MB) with weight 66839938 (95.44/col)
Fri Feb 24 09:54:26 2023 sparse part has weight 47878585 (68.36/col)
Fri Feb 24 09:54:27 2023 matrix starts at (0, 0)
Fri Feb 24 09:54:27 2023 matrix is 700168 x 700368 (212.0 MB) with weight 66839938 (95.44/col)
Fri Feb 24 09:54:27 2023 sparse part has weight 47878585 (68.36/col)
Fri Feb 24 09:54:27 2023 saving the first 48 matrix rows for later
Fri Feb 24 09:54:27 2023 matrix includes 64 packed rows
Fri Feb 24 09:54:27 2023 matrix is 700120 x 700368 (204.4 MB) with weight 53009511 (75.69/col)
Fri Feb 24 09:54:27 2023 sparse part has weight 46588613 (66.52/col)
Fri Feb 24 09:54:27 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Fri Feb 24 09:54:30 2023 commencing Lanczos iteration (32 threads)
Fri Feb 24 09:54:30 2023 memory use: 160.4 MB
Fri Feb 24 09:54:31 2023 linear algebra at 0.4%, ETA 0h 3m
Fri Feb 24 10:00:05 2023 lanczos halted after 11072 iterations (dim = 700118)
Fri Feb 24 10:00:05 2023 recovered 30 nontrivial dependencies
Fri Feb 24 10:00:05 2023 BLanczosTime: 371
Fri Feb 24 10:00:05 2023 elapsed time 00:06:12
Fri Feb 24 10:00:05 2023
Fri Feb 24 10:00:05 2023
Fri Feb 24 10:00:05 2023 Msieve v. 1.52 (SVN 927)
Fri Feb 24 10:00:05 2023 random seeds: a6804bdc 635fa1d2
Fri Feb 24 10:00:05 2023 factoring 256381205813454341981754686261627653224594098654280489162421608384172868004519795348799448993084566006691005865185537 (117 digits)
Fri Feb 24 10:00:06 2023 searching for 15-digit factors
Fri Feb 24 10:00:06 2023 commencing number field sieve (117-digit input)
Fri Feb 24 10:00:06 2023 R0: -37197645701691376329816
Fri Feb 24 10:00:06 2023 R1: 645437962981
Fri Feb 24 10:00:06 2023 A0: -302728176031238524185754595
Fri Feb 24 10:00:06 2023 A1: 14693685915459521916612
Fri Feb 24 10:00:06 2023 A2: 4697250394309060471
Fri Feb 24 10:00:06 2023 A3: -34541294338269
Fri Feb 24 10:00:06 2023 A4: 3065691778
Fri Feb 24 10:00:06 2023 A5: 3600
Fri Feb 24 10:00:06 2023 skew 41459.92, size 2.610e-011, alpha -5.195, combined = 3.644e-010 rroots = 3
Fri Feb 24 10:00:06 2023
Fri Feb 24 10:00:06 2023 commencing square root phase
Fri Feb 24 10:00:06 2023 reading relations for dependency 1
Fri Feb 24 10:00:06 2023 read 350589 cycles
Fri Feb 24 10:00:06 2023 cycles contain 1288722 unique relations
Fri Feb 24 10:00:09 2023 read 1288722 relations
Fri Feb 24 10:00:12 2023 multiplying 1288722 relations
Fri Feb 24 10:00:41 2023 multiply complete, coefficients have about 56.76 million bits
Fri Feb 24 10:00:42 2023 initial square root is modulo 141007091
Fri Feb 24 10:01:22 2023 sqrtTime: 76
Fri Feb 24 10:01:22 2023 prp45 factor: 234946614487389268039425557502130185853364311
Fri Feb 24 10:01:22 2023 prp73 factor: 1091231752255002478941063855960389554663994389752713204115779959064369767
Fri Feb 24 10:01:22 2023 elapsed time 00:01:17 |
| software ソフトウェア | GNFS, Msieve |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | February 18, 2024 09:46:11 UTC 2024 年 2 月 18 日 (日) 18 時 46 分 11 秒 (日本時間) |
| composite number 合成数 | 2622903202810417273844150128517762184250457489487957868593411880159110575167977000982860385972423900887947097904278171630962986821694131625390871370584659442044649422851271191527729652884539<190> |
| prime factors 素因数 | 5026325156427758427001286538586241247010655946295632962659827869066156845054019455062388457813<94> 521833172582597387534219320995258532638473299044579132188699291629031236673440810522696627834703<96> |
| factorization results 素因数分解の結果 | Number: n N=2622903202810417273844150128517762184250457489487957868593411880159110575167977000982860385972423900887947097904278171630962986821694131625390871370584659442044649422851271191527729652884539 ( 190 digits) SNFS difficulty: 206 digits. Divisors found: Sun Feb 18 14:03:01 2024 prp94 factor: 5026325156427758427001286538586241247010655946295632962659827869066156845054019455062388457813 Sun Feb 18 14:03:01 2024 prp96 factor: 521833172582597387534219320995258532638473299044579132188699291629031236673440810522696627834703 Sun Feb 18 14:03:01 2024 elapsed time 02:56:48 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.022). Factorization parameters were as follows: # # N = 29x10^205-8 = 96(204)4 # n: 2622903202810417273844150128517762184250457489487957868593411880159110575167977000982860385972423900887947097904278171630962986821694131625390871370584659442044649422851271191527729652884539 m: 100000000000000000000000000000000000000000 deg: 5 c5: 29 c0: -8 skew: 0.77 # Murphy_E = 8.869e-12 type: snfs lss: 1 rlim: 19300000 alim: 19300000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19300000/19300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 42450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3349096 hash collisions in 19254503 relations (16322839 unique) Msieve: matrix is 2339544 x 2339769 (659.9 MB) Sieving start time: 2024/02/17 16:21:14 Sieving end time : 2024/02/18 11:04:59 Total sieving time: 18hrs 43min 45secs. Total relation processing time: 2hrs 48min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 32sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19300000,19300000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:15:22 UTC 2023 年 3 月 18 日 (土) 8 時 15 分 22 秒 (日本時間) | |
| 45 | 11e6 | 5480 | 1000 | Dmitry Domanov | April 24, 2023 14:27:32 UTC 2023 年 4 月 24 日 (月) 23 時 27 分 32 秒 (日本時間) |
| 4480 | Ignacio Santos | February 10, 2024 15:37:29 UTC 2024 年 2 月 11 日 (日) 0 時 37 分 29 秒 (日本時間) | |||
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | September 21, 2024 19:21:49 UTC 2024 年 9 月 22 日 (日) 4 時 21 分 49 秒 (日本時間) |
| composite number 合成数 | 16498120845616271953428395530213182933608059749649174540870096484125655057342997635238115239514512237304127418175235556403117524335529331177582312636562486819078515638493985309878464802341874274369<197> |
| prime factors 素因数 | 7584705116974308924877772398483986369133820633561835231265786461994647251<73> 2175182896523431807484410028954506657762481922045235070994843479386272012842992009348503582189444806504919680965810134126619<124> |
| factorization results 素因数分解の結果 | Number: n N=16498120845616271953428395530213182933608059749649174540870096484125655057342997635238115239514512237304127418175235556403117524335529331177582312636562486819078515638493985309878464802341874274369 ( 197 digits) SNFS difficulty: 208 digits. Divisors found: Sat Sep 21 15:05:11 2024 prp73 factor: 7584705116974308924877772398483986369133820633561835231265786461994647251 Sat Sep 21 15:05:11 2024 prp124 factor: 2175182896523431807484410028954506657762481922045235070994843479386272012842992009348503582189444806504919680965810134126619 Sat Sep 21 15:05:11 2024 elapsed time 03:08:00 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.111). Factorization parameters were as follows: # # N = 29x10^208-8 = 96(207)4 # n: 16498120845616271953428395530213182933608059749649174540870096484125655057342997635238115239514512237304127418175235556403117524335529331177582312636562486819078515638493985309878464802341874274369 m: 100000000000000000000000000000000000000000 deg: 5 c5: 3625 c0: -1 skew: 0.19 # Murphy_E = 6.059e-12 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 27 lpba: 27 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 q0: 50000 qintsize: 50000 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 57/57 Sieved special-q in [50000, 56050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8110975 hash collisions in 26823323 relations (16881178 unique) Msieve: matrix is 2405348 x 2405573 (675.9 MB) Sieving start time: 2024/09/20 06:57:16 Sieving end time : 2024/09/21 11:50:43 Total sieving time: 28hrs 53min 27secs. Total relation processing time: 2hrs 52min 40sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 16sec. Prototype def-par.txt line would be: snfs,208,5,0,0,0,0,0,0,0,0,21000000,21000000,27,27,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:15:37 UTC 2023 年 3 月 18 日 (土) 8 時 15 分 37 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:27:45 UTC 2023 年 4 月 24 日 (月) 23 時 27 分 45 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | December 25, 2024 03:25:12 UTC 2024 年 12 月 25 日 (水) 12 時 25 分 12 秒 (日本時間) |
| composite number 合成数 | 120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<210> |
| prime factors 素因数 | 56296010401932366233293365127807964942855076347176147<53> 973089602767643995637187737636318990884760345620148302331<57> 2205750090283275077685421135409337575647338463870469352905007094971748306103820156284216609335918069<100> |
| factorization results 素因数分解の結果 | Number: n N=120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 ( 210 digits) SNFS difficulty: 210 digits. Divisors found: Tue Dec 24 17:58:04 2024 prp53 factor: 56296010401932366233293365127807964942855076347176147 Tue Dec 24 17:58:04 2024 prp57 factor: 973089602767643995637187737636318990884760345620148302331 Tue Dec 24 17:58:04 2024 prp100 factor: 2205750090283275077685421135409337575647338463870469352905007094971748306103820156284216609335918069 Tue Dec 24 17:58:04 2024 elapsed time 04:25:21 (Msieve 1.44 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.114). Factorization parameters were as follows: # # N = 29x10^209-8 = 96(208)4 # n: 120833333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 m: 500000000000000000000000000000000000000000 deg: 5 c5: 58 c0: -5 skew: 0.61 # Murphy_E = 4.958e-12 type: snfs lss: 1 rlim: 22000000 alim: 22000000 lpbr: 27 lpba: 27 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 q0: 50000 qintsize: 50000 Factor base limits: 22000000/22000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 57/57 Sieved special-q in [50000, 77650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8823657 hash collisions in 28335447 relations (17231133 unique) Msieve: matrix is 2756158 x 2756383 (774.2 MB) Sieving start time: 2024/12/22 20:13:25 Sieving end time : 2024/12/24 13:26:48 Total sieving time: 41hrs 13min 23secs. Total relation processing time: 3hrs 59min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 19min 1sec. Prototype def-par.txt line would be: snfs,210,5,0,0,0,0,0,0,0,0,22000000,22000000,27,27,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:07:42 UTC 2023 年 3 月 24 日 (金) 0 時 7 分 42 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:05 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 5 秒 (日本時間) | |
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | April 29, 2023 09:10:03 UTC 2023 年 4 月 29 日 (土) 18 時 10 分 3 秒 (日本時間) |
| composite number 合成数 | 235496654323393750406028714350678880010394335087377379328266094978236860910803612031442863639316572468004937309166504255180926395114662508932631715714935360228675371922302345221854089521210940037679464691743<207> |
| prime factors 素因数 | 5704847790153292146252918734403780008681639<43> 41280094226153899921066757246079249963769426867498632855268361458437490345677201467342408708520574463396544003816771316795100457025367656038664929084943172570964937<164> |
| factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3708502029 Step 1 took 49152ms Step 2 took 16548ms ********** Factor found in step 2: 5704847790153292146252918734403780008681639 Found probable prime factor of 43 digits: 5704847790153292146252918734403780008681639 Probable prime cofactor 41280094226153899921066757246079249963769426867498632855268361458437490345677201467342408708520574463396544003816771316795100457025367656038664929084943172570964937 has 164 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:07:49 UTC 2023 年 3 月 24 日 (金) 0 時 7 分 49 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:18 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 18 秒 (日本時間) | |
| name 名前 | Bob Backstrom |
|---|---|
| date 日付 | September 5, 2025 05:37:05 UTC 2025 年 9 月 5 日 (金) 14 時 37 分 5 秒 (日本時間) |
| composite number 合成数 | 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627<190> |
| prime factors 素因数 | 352071735903522190242199142590698709858155455904787<51> 20372753680637099175052045475816208868513867934668813594973821021261412568594215382368381900653257991198850194920890025236801726028438817321<140> |
| factorization results 素因数分解の結果 | 08/29/25 16:53:23 v1.34.5 @ GMK, 08/29/25 16:53:23 v1.34.5 @ GMK, **************************** 08/29/25 16:53:23 v1.34.5 @ GMK, Starting factorization of 289999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992 08/29/25 16:53:23 v1.34.5 @ GMK, using pretesting plan: normal 08/29/25 16:53:23 v1.34.5 @ GMK, no tune info: using qs/gnfs crossover of 95 digits 08/29/25 16:53:23 v1.34.5 @ GMK, **************************** 08/29/25 16:53:23 v1.34.5 @ GMK, div: found prime factor = 2 08/29/25 16:53:23 v1.34.5 @ GMK, div: found prime factor = 2 08/29/25 16:53:23 v1.34.5 @ GMK, div: found prime factor = 2 08/29/25 16:53:23 v1.34.5 @ GMK, div: found prime factor = 3 08/29/25 16:53:23 v1.34.5 @ GMK, div: found prime factor = 97 08/29/25 16:53:23 v1.34.5 @ GMK, rho: x^2 + 3, starting 1000 iterations on C210 08/29/25 16:53:23 v1.34.5 @ GMK, rho: x^2 + 2, starting 1000 iterations on C210 08/29/25 16:53:23 v1.34.5 @ GMK, prp5 = 24889 08/29/25 16:53:23 v1.34.5 @ GMK, rho: x^2 + 2, starting 1000 iterations on C205 08/29/25 16:53:23 v1.34.5 @ GMK, rho: x^2 + 1, starting 1000 iterations on C205 08/29/25 16:53:23 v1.34.5 @ GMK, pm1: starting B1 = 150K, B2 = gmp-ecm default on C205 08/29/25 16:53:23 v1.34.5 @ GMK, current ECM pretesting depth: 0.00 08/29/25 16:53:23 v1.34.5 @ GMK, scheduled 30 curves at B1=2000 toward target pretesting depth of 63.08 08/29/25 16:53:24 v1.34.5 @ GMK, Finished 30 curves using Lenstra ECM method on C205 input, B1=2K, B2=gmp-ecm default 08/29/25 16:53:24 v1.34.5 @ GMK, current ECM pretesting depth: 15.18 08/29/25 16:53:24 v1.34.5 @ GMK, scheduled 74 curves at B1=11000 toward target pretesting depth of 63.08 08/29/25 16:53:24 v1.34.5 @ GMK, prp15 = 697793112236663 (curve 4 stg2 B1=11000 sigma=3933141504 thread=0) 08/29/25 16:53:24 v1.34.5 @ GMK, Finished 4 curves using Lenstra ECM method on C205 input, B1=11K, B2=gmp-ecm default 08/29/25 16:53:24 v1.34.5 @ GMK, current ECM pretesting depth: 15.45 08/29/25 16:53:24 v1.34.5 @ GMK, scheduled 70 curves at B1=11000 toward target pretesting depth of 58.46 08/29/25 16:53:27 v1.34.5 @ GMK, Finished 70 curves using Lenstra ECM method on C190 input, B1=11K, B2=gmp-ecm default 08/29/25 16:53:27 v1.34.5 @ GMK, current ECM pretesting depth: 20.24 08/29/25 16:53:27 v1.34.5 @ GMK, scheduled 214 curves at B1=50000 toward target pretesting depth of 58.46 08/29/25 16:55:00 v1.34.5 @ GMK, nfs: commencing nfs on c213: 289999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992 08/29/25 16:55:00 v1.34.5 @ GMK, nfs: input divides 29*10^211 - 8 08/29/25 16:55:00 v1.34.5 @ GMK, nfs: using supplied cofactor: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 08/29/25 16:55:00 v1.34.5 @ GMK, nfs: commencing snfs on c190: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 08/29/25 16:55:00 v1.34.5 @ GMK, gen: best 3 polynomials: n: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 # 29*10^211-8, difficulty: 213.46, anorm: -5.46e+025, rnorm: 1.43e+048 # scaled difficulty: 217.20, suggest sieving rational side # size = 1.036e-014, alpha = 0.720, combined = 4.717e-012, rroots = 1 type: snfs size: 213 skew: 0.4877 c5: 145 c0: -4 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 n: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 # 29*10^211-8, difficulty: 213.46, anorm: -4.90e+031, rnorm: 1.35e+041 # scaled difficulty: 215.04, suggest sieving rational side # size = 1.284e-010, alpha = 0.825, combined = 3.990e-012, rroots = 2 type: snfs size: 213 skew: 0.5497 c6: 145 c0: -4 Y1: -1 Y0: 100000000000000000000000000000000000 m: 100000000000000000000000000000000000 n: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 # 29*10^211-8, difficulty: 213.67, anorm: 2.29e+026, rnorm: 2.03e+048 # scaled difficulty: 217.32, suggest sieving rational side # size = 7.048e-015, alpha = -0.204, combined = 3.770e-012, rroots = 1 type: snfs size: 213 skew: 0.9754 c5: 145 c0: -128 Y1: -1 Y0: 2000000000000000000000000000000000000000000 m: 2000000000000000000000000000000000000000000 08/29/25 16:55:03 v1.34.5 @ GMK, test: fb generation took 2.3287 seconds 08/29/25 16:55:03 v1.34.5 @ GMK, test: commencing test sieving of polynomial 0 on the rational side over range 23800000-23802000 skew: 0.4877 c5: 145 c0: -4 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 08/29/25 16:59:08 v1.34.5 @ GMK, nfs: parsing special-q from .dat file 08/29/25 16:59:11 v1.34.5 @ GMK, test: fb generation took 3.2253 seconds 08/29/25 16:59:11 v1.34.5 @ GMK, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23802000 skew: 0.5497 c6: 145 c0: -4 Y1: -1 Y0: 100000000000000000000000000000000000 m: 100000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 08/29/25 17:03:10 v1.34.5 @ GMK, nfs: parsing special-q from .dat file 08/29/25 17:03:12 v1.34.5 @ GMK, test: fb generation took 2.2480 seconds 08/29/25 17:03:12 v1.34.5 @ GMK, test: commencing test sieving of polynomial 2 on the rational side over range 23800000-23802000 skew: 0.9754 c5: 145 c0: -128 Y1: -1 Y0: 2000000000000000000000000000000000000000000 m: 2000000000000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 08/29/25 17:07:15 v1.34.5 @ GMK, nfs: parsing special-q from .dat file 08/29/25 17:07:15 v1.34.5 @ GMK, gen: selected polynomial: n: 7172670753476774438721698281521537438725953152335720879387050544628653705701753148829341208302607981301119781582101974159006923262206535681422006930452140922547836467651918094857708262415627 # 29*10^211-8, difficulty: 213.46, anorm: -5.46e+025, rnorm: 1.43e+048 # scaled difficulty: 217.20, suggest sieving rational side # size = 1.036e-014, alpha = 0.720, combined = 4.717e-012, rroots = 1 type: snfs size: 213 skew: 0.4877 c5: 145 c0: -4 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 09/03/25 00:47:41 v1.34.5 @ GMK, nfs: commencing msieve filtering 09/03/25 00:55:30 v1.34.5 @ GMK, nfs: commencing msieve linear algebra 09/03/25 10:50:08 v1.34.5 @ GMK, nfs: commencing msieve sqrt 09/03/25 10:57:05 v1.34.5 @ GMK, prp140 = 20372753680637099175052045475816208868513867934668813594973821021261412568594215382368381900653257991198850194920890025236801726028438817321 09/03/25 10:57:05 v1.34.5 @ GMK, prp51 = 352071735903522190242199142590698709858155455904787 09/03/25 10:57:05 v1.34.5 @ GMK, NFS elapsed time = 410524.8300 seconds. 09/03/25 10:57:05 v1.34.5 @ GMK, 09/03/25 10:57:05 v1.34.5 @ GMK, 08/29/25 17:07:15 v1.34.5 @ GMK, test: test sieving took 735.18 seconds |
| software ソフトウェア | YAFU |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:15:46 UTC 2023 年 3 月 18 日 (土) 8 時 15 分 46 秒 (日本時間) | |
| 45 | 11e6 | 4213 | 1000 | Dmitry Domanov | April 24, 2023 14:27:53 UTC 2023 年 4 月 24 日 (月) 23 時 27 分 53 秒 (日本時間) |
| 3213 | Thomas Kozlowski | August 29, 2025 08:22:27 UTC 2025 年 8 月 29 日 (金) 17 時 22 分 27 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 16, 2023 18:58:24 UTC 2023 年 3 月 17 日 (金) 3 時 58 分 24 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:18:49 UTC 2023 年 4 月 6 日 (木) 18 時 18 分 49 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:15:54 UTC 2023 年 3 月 18 日 (土) 8 時 15 分 54 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:00 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 0 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:01 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 1 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:08 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 8 秒 (日本時間) | |
| name 名前 | Erik Branger |
|---|---|
| date 日付 | January 9, 2025 16:13:48 UTC 2025 年 1 月 10 日 (金) 1 時 13 分 48 秒 (日本時間) |
| composite number 合成数 | 9539314692386232256252407686804621412360113109620852116325022967284313917355900031708583816982228092072046230915073891817759776093207900413149721193820812575079003207994268779342092367<184> |
| prime factors 素因数 | 80922979746090223385426747410397657336930018988625193<53> 117881406768725940590809367688883953777503979612585980892776752432974150483731242560038415456623486596577859105222325417925265780919<132> |
| factorization results 素因数分解の結果 | Number: 96664_220 N = 9539314692386232256252407686804621412360113109620852116325022967284313917355900031708583816982228092072046230915073891817759776093207900413149721193820812575079003207994268779342092367 (184 digits) SNFS difficulty: 222 digits. Divisors found: r1=80922979746090223385426747410397657336930018988625193 (pp53) r2=117881406768725940590809367688883953777503979612585980892776752432974150483731242560038415456623486596577859105222325417925265780919 (pp132) Version: Msieve v. 1.52 (SVN unknown) Total time: 21.15 hours. Factorization parameters were as follows: n: 9539314692386232256252407686804621412360113109620852116325022967284313917355900031708583816982228092072046230915073891817759776093207900413149721193820812575079003207994268779342092367 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 29 c0: -8 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 30053365 Relations: 7058650 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 7.74 hours. Total relation processing time: 0.25 hours. Pruned matrix : 6133879 x 6134104 Matrix solve time: 12.73 hours. time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 21.15 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.22621-SP0 processors: 12, speed: 3.19GHz |
| software ソフトウェア | GGNFS, NFS_factory, Msieve |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:08 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 8 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:16 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 16 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | March 4, 2023 09:47:03 UTC 2023 年 3 月 4 日 (土) 18 時 47 分 3 秒 (日本時間) |
| composite number 合成数 | 52807514614053503411315946400440543830599427991222032890863357656679930795358511050900814163358505788514483795677911910657267544745953273339115323<146> |
| prime factors 素因数 | 12557043417968904680306461118026079824699889<44> 4205409892784705506891037644079789349306568347490585246385267228795993700497257539786792501100670844907<103> |
| factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1133997218 Step 1 took 20719ms Step 2 took 9234ms ********** Factor found in step 2: 12557043417968904680306461118026079824699889 Found prime factor of 44 digits: 12557043417968904680306461118026079824699889 Prime cofactor 4205409892784705506891037644079789349306568347490585246385267228795993700497257539786792501100670844907 has 103 digits |
| software ソフトウェア | GMP-ECM |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | February 24, 2023 16:00:13 UTC 2023 年 2 月 25 日 (土) 1 時 0 分 13 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 16, 2023 18:58:32 UTC 2023 年 3 月 17 日 (金) 3 時 58 分 32 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:19:01 UTC 2023 年 4 月 6 日 (木) 18 時 19 分 1 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:15 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 15 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:27 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 27 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:22 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 22 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:33 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 33 秒 (日本時間) | |
| composite cofactor 合成数の残り | 4451046853599044618659491669841997212589394154004787265406825475844876100941153868644452069549998482561065471640339113205731417153506293189537180991443710137028221<163> |
|---|
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 16, 2023 18:58:41 UTC 2023 年 3 月 17 日 (金) 3 時 58 分 41 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:19:10 UTC 2023 年 4 月 6 日 (木) 18 時 19 分 10 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:07:57 UTC 2023 年 3 月 24 日 (金) 0 時 7 分 57 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:28 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 28 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:29 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 29 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:28:44 UTC 2023 年 4 月 24 日 (月) 23 時 28 分 44 秒 (日本時間) | |
| composite cofactor 合成数の残り | 12350048539520237227863544464788912020815573645732387128411118068832206328936460573367351570586268331290339170202612316742238202221961681613271964116615152809<158> |
|---|
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 09:03:48 UTC 2023 年 3 月 1 日 (水) 18 時 3 分 48 秒 (日本時間) | |
| 45 | 11e6 | 4480 | Ignacio Santos | March 7, 2023 13:15:53 UTC 2023 年 3 月 7 日 (火) 22 時 15 分 53 秒 (日本時間) | |
| 50 | 43e6 | 5000 | yoyo@Home | November 21, 2024 02:45:34 UTC 2024 年 11 月 21 日 (木) 11 時 45 分 34 秒 (日本時間) | |
| 55 | 11e7 | 7000 / 15685 | yoyo@Home | November 25, 2024 02:05:15 UTC 2024 年 11 月 25 日 (月) 11 時 5 分 15 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 26, 2023 22:19:08 UTC 2023 年 3 月 27 日 (月) 7 時 19 分 8 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 09:15:08 UTC 2024 年 9 月 22 日 (日) 18 時 15 分 8 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:36 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 36 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:29:32 UTC 2023 年 4 月 24 日 (月) 23 時 29 分 32 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 16, 2023 18:58:54 UTC 2023 年 3 月 17 日 (金) 3 時 58 分 54 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:19:22 UTC 2023 年 4 月 6 日 (木) 18 時 19 分 22 秒 (日本時間) | |
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | March 24, 2023 14:40:53 UTC 2023 年 3 月 24 日 (金) 23 時 40 分 53 秒 (日本時間) |
| composite number 合成数 | 1333116631944227948099501446634542055282150515504034569685631545897973099867256981035150980082079576726626007709578232955628973645719885685248546202979282277708447302542122948948715585218256311079410251056979679<211> |
| prime factors 素因数 | 148316923925564368673033614725333222253<39> 8988297469095823108940845971540192342752924187289700265166620042081257700277911872630057546355940311807154887760380418925978569316509463658362422362970431523991403838107643<172> |
| factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1419454839 Step 1 took 11106ms Step 2 took 5243ms ********** Factor found in step 2: 148316923925564368673033614725333222253 Found prime factor of 39 digits: 148316923925564368673033614725333222253 Prime cofactor 8988297469095823108940845971540192342752924187289700265166620042081257700277911872630057546355940311807154887760380418925978569316509463658362422362970431523991403838107643 has 172 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 23, 2023 15:09:00 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 0 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 27, 2023 19:06:40 UTC 2023 年 3 月 28 日 (火) 4 時 6 分 40 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 09:30:02 UTC 2024 年 9 月 22 日 (日) 18 時 30 分 2 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 27, 2023 19:06:48 UTC 2023 年 3 月 28 日 (火) 4 時 6 分 48 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 09:48:58 UTC 2024 年 9 月 22 日 (日) 18 時 48 分 58 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 23, 2023 15:09:07 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 7 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 09:56:56 UTC 2024 年 9 月 22 日 (日) 18 時 56 分 56 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:42 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 42 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:29:40 UTC 2023 年 4 月 24 日 (月) 23 時 29 分 40 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | September 22, 2024 15:28:25 UTC 2024 年 9 月 23 日 (月) 0 時 28 分 25 秒 (日本時間) |
| composite number 合成数 | 39571799101797728236712735724192303447744648234380636102129359297527702142113190135620622555546680902177551117487250545760817214572945801010406078908504940252118843642789265046925806871186590318594506708763293334898072729<221> |
| prime factors 素因数 | 19632778124255628428401948039715354017<38> 2015598549087055528286698881387970161871643350303628531827718973925673063446023680751228751554212295297012644293257154878723612036280846419139914930075374793256815576490023263414457337<184> |
| factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:766488362 Step 1 took 9547ms Step 2 took 4359ms ********** Factor found in step 2: 19632778124255628428401948039715354017 Found prime factor of 38 digits: 19632778124255628428401948039715354017 Prime cofactor 2015598549087055528286698881387970161871643350303628531827718973925673063446023680751228751554212295297012644293257154878723612036280846419139914930075374793256815576490023263414457337 has 184 digits |
| software ソフトウェア | GMP-ECM |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 26, 2023 22:19:17 UTC 2023 年 3 月 27 日 (月) 7 時 19 分 17 秒 (日本時間) | |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | September 22, 2024 15:29:09 UTC 2024 年 9 月 23 日 (月) 0 時 29 分 9 秒 (日本時間) |
| composite number 合成数 | 3824203596854691609748000472802294178992932666566051472973252190904847154088714550871252964723870361624655866501982286505352852899083112590248090384794458850386980386663337369523120422608067124414650837816766981<211> |
| prime factors 素因数 | 180747185802413154688282183081877771027<39> |
| composite cofactor 合成数の残り | 21157749039784135264025491286250732922761946065150570574045230751863133985061450496295901145426954956128033346425168897168667871166382019104707197213387481595271221521805703<173> |
| factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2999340223 Step 1 took 6563ms Step 2 took 3390ms ********** Factor found in step 2: 180747185802413154688282183081877771027 Found prime factor of 39 digits: 180747185802413154688282183081877771027 Composite cofactor 21157749039784135264025491286250732922761946065150570574045230751863133985061450496295901145426954956128033346425168897168667871166382019104707197213387481595271221521805703 has 173 digits |
| software ソフトウェア | GMP-ECM |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 23, 2023 15:09:15 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 15 秒 (日本時間) |
| 2350 | Ignacio Santos | September 27, 2024 16:11:34 UTC 2024 年 9 月 28 日 (土) 1 時 11 分 34 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 27, 2023 19:06:55 UTC 2023 年 3 月 28 日 (火) 4 時 6 分 55 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 15:38:24 UTC 2024 年 9 月 23 日 (月) 0 時 38 分 24 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:50 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 50 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:29:48 UTC 2023 年 4 月 24 日 (月) 23 時 29 分 48 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 27, 2023 19:07:03 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 3 秒 (日本時間) |
| 2350 | Ignacio Santos | September 22, 2024 13:58:40 UTC 2024 年 9 月 22 日 (日) 22 時 58 分 40 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2204 | 1792 | Dmitry Domanov | March 26, 2023 22:19:26 UTC 2023 年 3 月 27 日 (月) 7 時 19 分 26 秒 (日本時間) |
| 412 | Thomas Kozlowski | October 3, 2024 19:15:56 UTC 2024 年 10 月 4 日 (金) 4 時 15 分 56 秒 (日本時間) | |||
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | April 27, 2023 05:47:11 UTC 2023 年 4 月 27 日 (木) 14 時 47 分 11 秒 (日本時間) |
| composite number 合成数 | 1053195666224206901560794890074317317026467211681442201213300141725656312567205057857043252639225608334805542665964626473581527838098544163149347510771487027331121051553849877839196421683993196763017359923<205> |
| prime factors 素因数 | 334781808279193204834318553995018915984313<42> |
| composite cofactor 合成数の残り | 3145916654306043859776972930049984101514526779374542858362117698653970301050408935285686231341677333355659286764801324130715953627081482638897142998748314091184971<163> |
| factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1985060050 Step 1 took 49124ms Step 2 took 16128ms ********** Factor found in step 2: 334781808279193204834318553995018915984313 Found probable prime factor of 42 digits: 334781808279193204834318553995018915984313 Composite cofactor 3145916654306043859776972930049984101514526779374542858362117698653970301050408935285686231341677333355659286764801324130715953627081482638897142998748314091184971 has 163 digits |
| name 名前 | Ignacio Santos |
|---|---|
| date 日付 | May 3, 2023 14:58:49 UTC 2023 年 5 月 3 日 (水) 23 時 58 分 49 秒 (日本時間) |
| composite number 合成数 | 3145916654306043859776972930049984101514526779374542858362117698653970301050408935285686231341677333355659286764801324130715953627081482638897142998748314091184971<163> |
| prime factors 素因数 | 1327726032249880044261708244973789443561845047<46> |
| composite cofactor 合成数の残り | 2369401953334584912924226583547229435062736633154194724765404253151735439668718915467083083540409108984053448000714893<118> |
| factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:603401553 Step 1 took 15766ms ********** Factor found in step 2: 1327726032249880044261708244973789443561845047 Found prime factor of 46 digits: 1327726032249880044261708244973789443561845047 Composite cofactor 2369401953334584912924226583547229435062736633154194724765404253151735439668718915467083083540409108984053448000714893 has 118 digits |
| software ソフトウェア | GMP-ECM |
| name 名前 | Eric Jeancolas |
|---|---|
| date 日付 | May 10, 2023 21:15:30 UTC 2023 年 5 月 11 日 (木) 6 時 15 分 30 秒 (日本時間) |
| composite number 合成数 | 2369401953334584912924226583547229435062736633154194724765404253151735439668718915467083083540409108984053448000714893<118> |
| prime factors 素因数 | 59516245858142102291672879908362226464173450084322764267<56> 39811011584670365835362353043516385696173117691365504639493479<62> |
| factorization results 素因数分解の結果 | 2369401953334584912924226583547229435062736633154194724765404253151735439668718915467083083540409108984053448000714893=59516245858142102291672879908362226464173450084322764267*39811011584670365835362353043516385696173117691365504639493479 cado polynomial n: 2369401953334584912924226583547229435062736633154194724765404253151735439668718915467083083540409108984053448000714893 skew: 18877.046 c0: -147884403360268009401271536 c1: 3477697860037138614233 c2: 2224899765217920552 c3: -23877672063297 c4: -1428058972 c5: 63360 Y0: -45757445690334126148516 Y1: 523927855185466279 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.889e-06 # f(x) = 63360*x^5-1428058972*x^4-23877672063297*x^3+2224899765217920552*x^2+3477697860037138614233*x-147884403360268009401271536 # g(x) = 523927855185466279*x-45757445690334126148516 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 39811011584670365835362353043516385696173117691365504639493479 59516245858142102291672879908362226464173450084322764267 Info:Square Root: Total cpu/real time for sqrt: 267.76/72.7113 Info:Linear Algebra: Total cpu/real time for bwc: 2626.86/682.82 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 1567.04, WCT time 405.51, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (16896 iterations) Info:Linear Algebra: Lingen CPU time 95.17, WCT time 24.21 Info:Linear Algebra: Mksol: CPU time 915.1, WCT time 235.69, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (8448 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 4.93/1.3848 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1093.9 Info:Polynomial Selection (root optimized): Rootsieve time: 1091.39 Info:Generate Free Relations: Total cpu/real time for freerel: 127.33/32.6495 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20111/33.920/41.862/46.650/1.050 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 15758/33.110/37.050/42.320/0.810 Info:Polynomial Selection (size optimized): Total time: 2377.73 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13433117 Info:Lattice Sieving: Average J: 1898.7 for 186845 special-q, max bucket fill -bkmult 1.0,1s:1.245080 Info:Lattice Sieving: Total time: 23452.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 139.2/145.674 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 135.2s Info:Square Root: Total cpu/real time for sqrt: 267.76/72.7113 Info:Quadratic Characters: Total cpu/real time for characters: 16.11/6.18058 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 56.76/55.1283 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 55.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 63.01/53.885 Info:Filtering - Merging: Total cpu/real time for merge: 38.08/12.1544 Info:Filtering - Merging: Merged matrix has 537473 rows and total weight 53868189 (100.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for replay: 12.01/9.72823 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 50762/13922.6 Info:root: Cleaning up computation data in /tmp/cado.c73nnti0 39811011584670365835362353043516385696173117691365504639493479 59516245858142102291672879908362226464173450084322764267 |
| software ソフトウェア | cado-nfs-3.0.0 |
| execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:09:24 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 24 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:35 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 35 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 27, 2023 19:07:10 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 10 秒 (日本時間) |
| 400 | Thomas Kozlowski | October 3, 2024 19:18:50 UTC 2024 年 10 月 4 日 (金) 4 時 18 分 50 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2202 | 1000 | Dmitry Domanov | March 23, 2023 15:09:32 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 32 秒 (日本時間) |
| 1202 | Thomas Kozlowski | October 3, 2024 19:25:55 UTC 2024 年 10 月 4 日 (金) 4 時 25 分 55 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 22, 2023 06:41:30 UTC 2023 年 3 月 22 日 (水) 15 時 41 分 30 秒 (日本時間) |
| 408 | Thomas Kozlowski | October 3, 2024 19:29:35 UTC 2024 年 10 月 4 日 (金) 4 時 29 分 35 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2210 | 1792 | Dmitry Domanov | March 27, 2023 19:07:17 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 17 秒 (日本時間) |
| 418 | Thomas Kozlowski | October 3, 2024 19:32:54 UTC 2024 年 10 月 4 日 (金) 4 時 32 分 54 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:16:56 UTC 2023 年 3 月 18 日 (土) 8 時 16 分 56 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:29:57 UTC 2023 年 4 月 24 日 (月) 23 時 29 分 57 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2205 | 1000 | Dmitry Domanov | March 23, 2023 15:09:39 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 39 秒 (日本時間) |
| 1205 | Thomas Kozlowski | October 3, 2024 19:40:43 UTC 2024 年 10 月 4 日 (金) 4 時 40 分 43 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 27, 2023 19:07:24 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 24 秒 (日本時間) |
| 405 | Thomas Kozlowski | October 3, 2024 19:44:02 UTC 2024 年 10 月 4 日 (金) 4 時 44 分 2 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 27, 2023 19:07:31 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 31 秒 (日本時間) |
| 405 | Thomas Kozlowski | October 3, 2024 19:47:20 UTC 2024 年 10 月 4 日 (金) 4 時 47 分 20 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 22, 2023 06:41:37 UTC 2023 年 3 月 22 日 (水) 15 時 41 分 37 秒 (日本時間) |
| 405 | Thomas Kozlowski | October 3, 2024 19:51:01 UTC 2024 年 10 月 4 日 (金) 4 時 51 分 1 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:17:03 UTC 2023 年 3 月 18 日 (土) 8 時 17 分 3 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 24, 2023 14:30:07 UTC 2023 年 4 月 24 日 (月) 23 時 30 分 7 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 22, 2023 06:41:44 UTC 2023 年 3 月 22 日 (水) 15 時 41 分 44 秒 (日本時間) |
| 403 | Thomas Kozlowski | October 3, 2024 19:54:41 UTC 2024 年 10 月 4 日 (金) 4 時 54 分 41 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 27, 2023 19:07:38 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 38 秒 (日本時間) |
| 413 | Thomas Kozlowski | October 3, 2024 19:58:01 UTC 2024 年 10 月 4 日 (金) 4 時 58 分 1 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:09:46 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 46 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:43 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 43 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 27, 2023 19:07:46 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 46 秒 (日本時間) |
| 400 | Thomas Kozlowski | October 3, 2024 20:01:19 UTC 2024 年 10 月 4 日 (金) 5 時 1 分 19 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 26, 2023 22:19:37 UTC 2023 年 3 月 27 日 (月) 7 時 19 分 37 秒 (日本時間) |
| 409 | Thomas Kozlowski | October 3, 2024 20:04:14 UTC 2024 年 10 月 4 日 (金) 5 時 4 分 14 秒 (日本時間) | |||
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | March 28, 2023 17:57:11 UTC 2023 年 3 月 29 日 (水) 2 時 57 分 11 秒 (日本時間) |
| composite number 合成数 | 252157382520512076645598061694792258002706270601351964036375793191000497031051045029511678600233818535488449364208443589320637619859535511265889729348917587118839646194922847985480060390009055205350333944738121882852325751006711963066471<237> |
| prime factors 素因数 | 20415581136336727444667326878709730671<38> 12351222374547500664244562921173575968042492930328340363514910737235588547047131674997492906642461034792261786466300601439382056607132789213816441528516331216873882017467035831506700641036438627569801<200> |
| factorization results 素因数分解の結果 | Resuming ECM residue saved by @163b0e32febf with GMP-ECM 7.0.5-dev on Mon Mar 27 20:02:58 2023 Input number is 252157382520512076645598061694792258002706270601351964036375793191000497031051045029511678600233818535488449364208443589320637619859535511265889729348917587118839646194922847985480060390009055205350333944738121882852325751006711963066471 (237 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2761800042 Step 1 took 0ms Step 2 took 6238ms ********** Factor found in step 2: 20415581136336727444667326878709730671 Found prime factor of 38 digits: 20415581136336727444667326878709730671 Prime cofactor 12351222374547500664244562921173575968042492930328340363514910737235588547047131674997492906642461034792261786466300601439382056607132789213816441528516331216873882017467035831506700641036438627569801 has 200 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 27, 2023 19:07:55 UTC 2023 年 3 月 28 日 (火) 4 時 7 分 55 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 22, 2023 06:41:53 UTC 2023 年 3 月 22 日 (水) 15 時 41 分 53 秒 (日本時間) |
| 404 | Thomas Kozlowski | October 3, 2024 20:07:56 UTC 2024 年 10 月 4 日 (金) 5 時 7 分 56 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2208 | 1000 | Dmitry Domanov | March 23, 2023 15:09:55 UTC 2023 年 3 月 24 日 (金) 0 時 9 分 55 秒 (日本時間) |
| 1208 | Thomas Kozlowski | October 3, 2024 20:15:44 UTC 2024 年 10 月 4 日 (金) 5 時 15 分 44 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 22, 2023 06:42:00 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 0 秒 (日本時間) |
| 401 | Thomas Kozlowski | October 3, 2024 20:19:26 UTC 2024 年 10 月 4 日 (金) 5 時 19 分 26 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 22, 2023 06:42:07 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 7 秒 (日本時間) |
| 408 | Thomas Kozlowski | October 3, 2024 20:23:32 UTC 2024 年 10 月 4 日 (金) 5 時 23 分 32 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 22, 2023 06:42:15 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 15 秒 (日本時間) |
| 403 | Thomas Kozlowski | October 3, 2024 20:27:13 UTC 2024 年 10 月 4 日 (金) 5 時 27 分 13 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 22, 2023 06:42:22 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 22 秒 (日本時間) |
| 400 | Thomas Kozlowski | October 3, 2024 20:31:19 UTC 2024 年 10 月 4 日 (金) 5 時 31 分 19 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2204 | 1792 | Dmitry Domanov | March 27, 2023 19:08:03 UTC 2023 年 3 月 28 日 (火) 4 時 8 分 3 秒 (日本時間) |
| 412 | Thomas Kozlowski | October 3, 2024 20:34:39 UTC 2024 年 10 月 4 日 (金) 5 時 34 分 39 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 27, 2023 19:08:15 UTC 2023 年 3 月 28 日 (火) 4 時 8 分 15 秒 (日本時間) |
| 402 | Thomas Kozlowski | October 3, 2024 20:37:56 UTC 2024 年 10 月 4 日 (金) 5 時 37 分 56 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 22, 2023 06:42:30 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 30 秒 (日本時間) |
| 402 | Thomas Kozlowski | October 3, 2024 20:42:02 UTC 2024 年 10 月 4 日 (金) 5 時 42 分 2 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 22, 2023 06:42:37 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 37 秒 (日本時間) |
| 402 | Thomas Kozlowski | October 3, 2024 20:45:43 UTC 2024 年 10 月 4 日 (金) 5 時 45 分 43 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 17, 2023 23:17:11 UTC 2023 年 3 月 18 日 (土) 8 時 17 分 11 秒 (日本時間) | |
| 45 | 11e6 | 7272 | 1000 | Dmitry Domanov | April 24, 2023 14:30:13 UTC 2023 年 4 月 24 日 (月) 23 時 30 分 13 秒 (日本時間) |
| 1792 | Dmitry Domanov | May 19, 2023 16:22:21 UTC 2023 年 5 月 20 日 (土) 1 時 22 分 21 秒 (日本時間) | |||
| 4480 | Ignacio Santos | August 28, 2024 12:59:06 UTC 2024 年 8 月 28 日 (水) 21 時 59 分 6 秒 (日本時間) | |||
| 50 | 43e6 | 1792 | Dmitry Domanov | August 29, 2024 00:02:33 UTC 2024 年 8 月 29 日 (木) 9 時 2 分 33 秒 (日本時間) | |
| 55 | 11e7 | 0 / 5042 | - | - | |
| 60 | 26e7 | 5000 / 41691 | Markus Tervooren | November 13, 2024 18:33:53 UTC 2024 年 11 月 14 日 (木) 3 時 33 分 53 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 22, 2023 06:42:44 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 44 秒 (日本時間) |
| 400 | Thomas Kozlowski | October 3, 2024 20:49:47 UTC 2024 年 10 月 4 日 (金) 5 時 49 分 47 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 22, 2023 06:42:51 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 51 秒 (日本時間) |
| 410 | Thomas Kozlowski | October 3, 2024 20:53:53 UTC 2024 年 10 月 4 日 (金) 5 時 53 分 53 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 22, 2023 06:42:59 UTC 2023 年 3 月 22 日 (水) 15 時 42 分 59 秒 (日本時間) |
| 404 | Thomas Kozlowski | October 3, 2024 20:58:26 UTC 2024 年 10 月 4 日 (金) 5 時 58 分 26 秒 (日本時間) | |||
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | March 24, 2023 10:26:05 UTC 2023 年 3 月 24 日 (金) 19 時 26 分 5 秒 (日本時間) |
| composite number 合成数 | 16409782052837511204683619496977640869841635199094552843793930004138054338537175416261119903348130617074511023197251047137128857439854478448667366042447797157230707830689906816914132875017527723009030860471565554718138072079029442861059718686052977828170225379302007<266> |
| prime factors 素因数 | 51268779385144278806761153553578633<35> |
| composite cofactor 合成数の残り | 320073585711159629349959597787075769293234274779636529228954366139988141197526946121877695345404734463673615354654660756542833323534094443948086970772891348132069221372040564828678539057196330563398115777933302964939945235617230079<231> |
| factorization results 素因数分解の結果 | Resuming ECM residue saved by @1b01e02b26e9 with GMP-ECM 7.0.5-dev on Wed Mar 22 07:49:28 2023 Input number is 16409782052837511204683619496977640869841635199094552843793930004138054338537175416261119903348130617074511023197251047137128857439854478448667366042447797157230707830689906816914132875017527723009030860471565554718138072079029442861059718686052977828170225379302007 (266 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:878186244 Step 1 took 0ms Step 2 took 6694ms ********** Factor found in step 2: 51268779385144278806761153553578633 Found prime factor of 35 digits: 51268779385144278806761153553578633 Composite cofactor 320073585711159629349959597787075769293234274779636529228954366139988141197526946121877695345404734463673615354654660756542833323534094443948086970772891348132069221372040564828678539057196330563398115777933302964939945235617230079 has 231 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 22, 2023 06:43:05 UTC 2023 年 3 月 22 日 (水) 15 時 43 分 5 秒 (日本時間) |
| 401 | Thomas Kozlowski | October 3, 2024 21:01:21 UTC 2024 年 10 月 4 日 (金) 6 時 1 分 21 秒 (日本時間) | |||
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 22, 2023 06:43:12 UTC 2023 年 3 月 22 日 (水) 15 時 43 分 12 秒 (日本時間) |
| 405 | Thomas Kozlowski | October 3, 2024 21:05:03 UTC 2024 年 10 月 4 日 (金) 6 時 5 分 3 秒 (日本時間) | |||
| name 名前 | Dmitry Domanov |
|---|---|
| date 日付 | April 29, 2023 09:10:31 UTC 2023 年 4 月 29 日 (土) 18 時 10 分 31 秒 (日本時間) |
| composite number 合成数 | 98869322251983987886173959822275634222298412516933572508342158756852238542087900703461689547015052188637816700012729159540959672879830434336650452145735392468295172628796459995424233180328378057903669247274497<209> |
| prime factors 素因数 | 37057102456172085258412785891155882201<38> 2668026254047196892333144882782886203139587134101880071609614229775977566227414612299398633473528754847262081576847676665343572992321702224240427750306907536223053344501097<172> |
| factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3159911496 Step 1 took 50128ms Step 2 took 16864ms ********** Factor found in step 2: 37057102456172085258412785891155882201 Found probable prime factor of 38 digits: 37057102456172085258412785891155882201 Probable prime cofactor 2668026254047196892333144882782886203139587134101880071609614229775977566227414612299398633473528754847262081576847676665343572992321702224240427750306907536223053344501097 has 172 digits |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1000 | Dmitry Domanov | March 23, 2023 15:10:02 UTC 2023 年 3 月 24 日 (金) 0 時 10 分 2 秒 (日本時間) | |
| 45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 26, 2023 08:50:51 UTC 2023 年 4 月 26 日 (水) 17 時 50 分 51 秒 (日本時間) | |
| level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
|---|---|---|---|---|---|
| 35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
| 40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 09:00:04 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 4 秒 (日本時間) | |
| 45 | 11e6 | 3584 | Dmitry Domanov | February 23, 2023 09:00:04 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 4 秒 (日本時間) | |
| 50 | 43e6 | 130 / 6675 | Dmitry Domanov | February 23, 2023 09:00:04 UTC 2023 年 2 月 23 日 (木) 18 時 0 分 4 秒 (日本時間) | |