Table of contents 目次

85×10119+329

c108

name 名前Dmitry Domanov
date 日付February 22, 2023 07:47:54 UTC 2023 年 2 月 22 日 (水) 16 時 47 分 54 秒 (日本時間)
composite number 合成数
491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773<108>
prime factors 素因数
132963056875323182447976987563119739843475454001<48>
3693622466582124173714933461879760208872874194405534193170773<61>
factorization results 素因数分解の結果
N=491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773
  ( 108 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=132963056875323182447976987563119739843475454001 (pp48)
 r2=3693622466582124173714933461879760208872874194405534193170773 (pp61)
Version: Msieve v. 1.54 (SVN 1043M)
Total time: 0.01 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773
m: 500000000000000000000000000000
deg: 4
c4: 17
c0: 4
skew: 0.70
# Murphy_E = 4.27e-08
type: snfs
lss: 1
rlim: 700000
alim: 700000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 700000/700000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [350000, 600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 61819 x 62044
Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,120.000,4,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.2,2.2,50000
total time: 0.01 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10131+329

c127

name 名前Bob Backstrom
date 日付February 27, 2023 17:37:04 UTC 2023 年 2 月 28 日 (火) 2 時 37 分 4 秒 (日本時間)
composite number 合成数
2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637<127>
prime factors 素因数
980785791469806151904380235084160557800195871749059078431897269<63>
2090163539286080563654970997570385110087427195418376751260226073<64>
factorization results 素因数分解の結果
Number: n
N=2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637  ( 127 digits)
SNFS difficulty: 132 digits.
Divisors found:

Tue Feb 28 04:33:04 2023  prp63 factor: 980785791469806151904380235084160557800195871749059078431897269
Tue Feb 28 04:33:04 2023  prp64 factor: 2090163539286080563654970997570385110087427195418376751260226073
Tue Feb 28 04:33:04 2023  elapsed time 00:03:50 (Msieve 1.44 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.094).
Factorization parameters were as follows:
#
# N = 85x10^131+32 = 94(130)8
#
n: 2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637
m: 500000000000000000000000000000000
deg: 4
c4: 17
c0: 4
skew: 0.70
# Murphy_E = 1.127e-08
type: snfs
lss: 1
rlim: 1110000
alim: 1110000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1110000/1110000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved  special-q in [100000, 11755000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 687089 hash collisions in 8017933 relations (8165834 unique)
Msieve: matrix is 299688 x 299934 (35.0 MB)

Sieving start time: 2023/02/28 04:06:07
Sieving end time  : 2023/02/28 04:29:06

Total sieving time: 0hrs 22min 59secs.

Total relation processing time: 0hrs 1min 50sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 21sec.

Prototype def-par.txt line would be:
snfs,132,4,0,0,0,0,0,0,0,0,1110000,1110000,26,26,47,47,2.3,2.3,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10139+329

c129

name 名前Bob Backstrom
date 日付February 24, 2023 11:22:16 UTC 2023 年 2 月 24 日 (金) 20 時 22 分 16 秒 (日本時間)
composite number 合成数
153124082212748412514091079660728823854368345925168072218114438778537556230562631379906608046716123441889307644350856282847179423<129>
prime factors 素因数
114612473449156097428737110407540847468850425374759<51>
1336015859396636027604060925865751516199516816040980896335333809024249605764297<79>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 153124082212748412514091079660728823854368345925168072218114438778537556230562631379906608046716123441889307644350856282847179423 (129 digits)
Using B1=40390000, B2=192393771586, polynomial Dickson(12), sigma=1:1776773692
Step 1 took 62817ms
Step 2 took 23619ms
********** Factor found in step 2: 114612473449156097428737110407540847468850425374759
Found prime factor of 51 digits: 114612473449156097428737110407540847468850425374759
Prime cofactor 1336015859396636027604060925865751516199516816040980896335333809024249605764297 has 79 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10141+329

c120

name 名前anonymous
date 日付March 4, 2023 03:54:11 UTC 2023 年 3 月 4 日 (土) 12 時 54 分 11 秒 (日本時間)
composite number 合成数
154712594068787949708195815559752412408638264212773506034400074205530056550237617724789465851572359139179456496865365073<120>
prime factors 素因数
572052087197927142320029152096788087340374403977<48>
270451935288994358692941390415840581227902088699371112888634229516992649<72>
factorization results 素因数分解の結果
p48 factor: 572052087197927142320029152096788087340374403977
p72 factor: 270451935288994358692941390415840581227902088699371112888634229516992649
software ソフトウェア
GGNFS+Msieve 1.54 snfs

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10147+329

c108

name 名前Lionel Debroux
date 日付March 8, 2023 14:04:44 UTC 2023 年 3 月 8 日 (水) 23 時 4 分 44 秒 (日本時間)
composite number 合成数
124114935821271217197051495963463319076769255209377353847526607980938212956721039059562932245170687179717661<108>
prime factors 素因数
2618741620754243119136592265660102081192491623<46>
47394876545905264865334132790399747239891422865929533689318107<62>
factorization results 素因数分解の結果
2618741620754243119136592265660102081192491623 47394876545905264865334132790399747239891422865929533689318107
software ソフトウェア
CADO-NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10150+329

c116

name 名前Lionel Debroux
date 日付March 15, 2023 07:40:41 UTC 2023 年 3 月 15 日 (水) 16 時 40 分 41 秒 (日本時間)
composite number 合成数
54371891944977223720273795761857457935376468626649024415140326229377571377158675887182897205882456594087321113081267<116>
prime factors 素因数
15142298443042052804150948920801679252761591<44>
3590729118799090063072654512907940350951762430562348333778954477153926437<73>
factorization results 素因数分解の結果
15142298443042052804150948920801679252761591 3590729118799090063072654512907940350951762430562348333778954477153926437
software ソフトウェア
CADO-NFS

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10151+329

c146

name 名前Bob Backstrom
date 日付March 1, 2023 12:27:50 UTC 2023 年 3 月 1 日 (水) 21 時 27 分 50 秒 (日本時間)
composite number 合成数
71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257<146>
prime factors 素因数
3985713112021812438988880688594621360418559023393254153191<58>
17896223843637851325552524507556557316495500875093436841768463834661663827894923568960127<89>
factorization results 素因数分解の結果
Number: n
N=71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257  ( 146 digits)
SNFS difficulty: 152 digits.
Divisors found:

Wed Mar  1 23:24:02 2023  prp58 factor: 3985713112021812438988880688594621360418559023393254153191
Wed Mar  1 23:24:02 2023  prp89 factor: 17896223843637851325552524507556557316495500875093436841768463834661663827894923568960127
Wed Mar  1 23:24:02 2023  elapsed time 00:07:29 (Msieve 1.44 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.093).
Factorization parameters were as follows:
#
# N = 85x10^151+32 = 94(150)8
#
n: 71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257
m: 50000000000000000000000000000000000000
deg: 4
c4: 17
c0: 4
skew: 0.70
# Murphy_E = 1.114e-09
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 12400000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 987956 hash collisions in 12158785 relations (12481405 unique)
Msieve: matrix is 420799 x 421025 (115.0 MB)

Sieving start time: 2023/03/01 21:59:31
Sieving end time  : 2023/03/01 23:16:25

Total sieving time: 1hrs 16min 54secs.

Total relation processing time: 0hrs 4min 35sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 44sec.

Prototype def-par.txt line would be:
snfs,152,4,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10153+329

c151

name 名前Bob Backstrom
date 日付February 28, 2023 22:53:03 UTC 2023 年 3 月 1 日 (水) 7 時 53 分 3 秒 (日本時間)
composite number 合成数
1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573<151>
prime factors 素因数
117946641623668596169553344097080217<36>
57572756331411213964431088449707932447<38>
148339296863275018443410291734004169285107002172442073761787127658507356929427<78>
factorization results 素因数分解の結果
Number: n
N=1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573  ( 151 digits)
SNFS difficulty: 154 digits.
Divisors found:

Wed Mar  1 09:49:12 2023  prp36 factor: 117946641623668596169553344097080217
Wed Mar  1 09:49:12 2023  prp38 factor: 57572756331411213964431088449707932447
Wed Mar  1 09:49:12 2023  prp78 factor: 148339296863275018443410291734004169285107002172442073761787127658507356929427
Wed Mar  1 09:49:12 2023  elapsed time 00:07:35 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.088).
Factorization parameters were as follows:
#
# N = 85x10^153+32 = 94(152)8
#
n: 1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573
m: 5000000000000000000000000000000
deg: 5
c5: 17
c0: 20
skew: 1.03
# Murphy_E = 9.698e-10
type: snfs
lss: 1
rlim: 2700000
alim: 2700000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2700000/2700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 12550000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1262670 hash collisions in 14660737 relations (14385425 unique)
Msieve: matrix is 405686 x 405916 (109.8 MB)

Sieving start time: 2023/03/01 08:18:49
Sieving end time  : 2023/03/01 09:41:28

Total sieving time: 1hrs 22min 39secs.

Total relation processing time: 0hrs 4min 13sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 37sec.

Prototype def-par.txt line would be:
snfs,154,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10159+329

c159

name 名前Bob Backstrom
date 日付March 3, 2023 01:31:45 UTC 2023 年 3 月 3 日 (金) 10 時 31 分 45 秒 (日本時間)
composite number 合成数
295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889<159>
prime factors 素因数
9225840956767204907033236265318357103474759263375563107668451404078138057801<76>
31990459219048524382321709483564410752068066971457953939589529640189876449227864689<83>
factorization results 素因数分解の結果
Number: n
N=295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889  ( 159 digits)
SNFS difficulty: 159 digits.
Divisors found:

Fri Mar  3 12:27:13 2023  prp76 factor: 9225840956767204907033236265318357103474759263375563107668451404078138057801
Fri Mar  3 12:27:13 2023  prp83 factor: 31990459219048524382321709483564410752068066971457953939589529640189876449227864689
Fri Mar  3 12:27:13 2023  elapsed time 00:10:52 (Msieve 1.44 - dependency 4)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.104).
Factorization parameters were as follows:
#
# N = 85x10^159+32 = 94(158)8
#
n: 295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889
m: 50000000000000000000000000000000
deg: 5
c5: 17
c0: 2
skew: 0.65
# Murphy_E = 6.574e-10
type: snfs
lss: 1
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [100000, 20000000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1226172 hash collisions in 13779444 relations (13450342 unique)
Msieve: matrix is 509255 x 509483 (139.8 MB)

Sieving start time: 2023/03/03 10:25:55
Sieving end time  : 2023/03/03 12:16:12

Total sieving time: 1hrs 50min 17secs.

Total relation processing time: 0hrs 6min 49sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 1min 25sec.

Prototype def-par.txt line would be:
snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10160+329

c121

name 名前Bob Backstrom
date 日付March 7, 2023 11:35:18 UTC 2023 年 3 月 7 日 (火) 20 時 35 分 18 秒 (日本時間)
composite number 合成数
2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533<121>
prime factors 素因数
1416705305427748133489790693561653615135287931<46>
1505372849256553403382820988625755474708298734668599063979192013430716528543<76>
factorization results 素因数分解の結果
Number: n
N=2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533  ( 121 digits)
SNFS difficulty: 161 digits.
Divisors found:

Tue Mar  7 22:13:42 2023  prp46 factor: 1416705305427748133489790693561653615135287931
Tue Mar  7 22:13:42 2023  prp76 factor: 1505372849256553403382820988625755474708298734668599063979192013430716528543
Tue Mar  7 22:13:42 2023  elapsed time 00:08:32 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.070).
Factorization parameters were as follows:
#
# N = 85x10^160+32 = 94(159)8
#
n: 2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533
m: 100000000000000000000000000000000
deg: 5
c5: 85
c0: 32
skew: 0.82
# Murphy_E = 5.587e-10
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 5750000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1539668 hash collisions in 16899627 relations (16086149 unique)
Msieve: matrix is 427043 x 427269 (117.3 MB)

Sieving start time: 2023/03/07 21:17:21
Sieving end time  : 2023/03/07 22:04:55

Total sieving time: 0hrs 47min 34secs.

Total relation processing time: 0hrs 4min 35sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 40sec.

Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10162+329

c149

name 名前Bob Backstrom
date 日付March 5, 2023 00:24:02 UTC 2023 年 3 月 5 日 (日) 9 時 24 分 2 秒 (日本時間)
composite number 合成数
21948950664096780533157556798815601066793004034234790354342548235378804506789884939813598790892687417772736095584780272345876488797049047459605287931<149>
prime factors 素因数
2345314555803317488524258122591140021<37>
9358638315609149795028463140334222400466115964106105487656659919873624363783403281636278046499903960574099273711<112>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 21948950664096780533157556798815601066793004034234790354342548235378804506789884939813598790892687417772736095584780272345876488797049047459605287931 (149 digits)
Using B1=30900000, B2=144289975846, polynomial Dickson(12), sigma=1:3500296830
Step 1 took 60188ms
Step 2 took 22469ms
********** Factor found in step 2: 2345314555803317488524258122591140021
Found prime factor of 37 digits: 2345314555803317488524258122591140021
Prime cofactor 9358638315609149795028463140334222400466115964106105487656659919873624363783403281636278046499903960574099273711 has 112 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10163+329

c127

name 名前anonymous
date 日付March 17, 2023 05:08:03 UTC 2023 年 3 月 17 日 (金) 14 時 8 分 3 秒 (日本時間)
composite number 合成数
1760985628608604968041544644380970587783025459150181334291254946102082721167223223336553947039194625428086037818298899217235609<127>
prime factors 素因数
834620143150981148619663248993191629138439421<45>
2109924668197285670034633454094793596996649031246584450783516127615843179448244429<82>
factorization results 素因数分解の結果
p45 factor: 834620143150981148619663248993191629138439421
p82 factor: 2109924668197285670034633454094793596996649031246584450783516127615843179448244429
software ソフトウェア
SNFS, GGNFS+Msieve 1.54

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10164+329

c143

name 名前Bob Backstrom
date 日付March 9, 2023 05:01:55 UTC 2023 年 3 月 9 日 (木) 14 時 1 分 55 秒 (日本時間)
composite number 合成数
24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951<143>
prime factors 素因数
7544019828856117934387593064209070396258985779468052077650098608529511<70>
3258008842544424444616860812989609130540237788483504266235277190565347041<73>
factorization results 素因数分解の結果
Number: n
N=24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951  ( 143 digits)
SNFS difficulty: 164 digits.
Divisors found:

Thu Mar  9 15:44:28 2023  prp70 factor: 7544019828856117934387593064209070396258985779468052077650098608529511
Thu Mar  9 15:44:28 2023  prp73 factor: 3258008842544424444616860812989609130540237788483504266235277190565347041
Thu Mar  9 15:44:28 2023  elapsed time 00:10:51 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.078).
Factorization parameters were as follows:
#
# N = 85x10^164+32 = 94(163)8
#
n: 24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951
m: 500000000000000000000000000000000
deg: 5
c5: 17
c0: 2
skew: 0.65
# Murphy_E = 4.196e-10
type: snfs
lss: 1
rlim: 3900000
alim: 3900000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3900000/3900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 13150000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1527960 hash collisions in 13922972 relations (13233028 unique)
Msieve: matrix is 540359 x 540586 (151.4 MB)

Sieving start time: 2023/03/09 14:15:41
Sieving end time  : 2023/03/09 15:33:09

Total sieving time: 1hrs 17min 28secs.

Total relation processing time: 0hrs 7min 45sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 29sec.

Prototype def-par.txt line would be:
snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10166+329

c125

name 名前Bob Backstrom
date 日付March 9, 2023 11:33:32 UTC 2023 年 3 月 9 日 (木) 20 時 33 分 32 秒 (日本時間)
composite number 合成数
12905341257403807999461091866163044239800377016050909127594068851284985529989124455066487672754960712984649868626105248890129<125>
prime factors 素因数
1072207239920217799462844437844913613<37>
69895297508747656426059992340504146927777059<44>
172203827430821131886578504253767298770382887<45>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 12905341257403807999461091866163044239800377016050909127594068851284985529989124455066487672754960712984649868626105248890129 (125 digits)
Using B1=30180000, B2=144289285156, polynomial Dickson(12), sigma=1:2811114911
Step 1 took 49164ms
Step 2 took 19823ms
********** Factor found in step 2: 1072207239920217799462844437844913613
Found prime factor of 37 digits: 1072207239920217799462844437844913613
Composite cofactor 12036237750422283600116489267377649977590255693302014417401142271872193154509653204789333 has 89 digits

Msieve v. 1.54 (SVN 1034)
Thu Mar  9 21:47:51 2023
random seeds: a3a52176 64b5e635
factoring 12036237750422283600116489267377649977590255693302014417401142271872193154509653204789333 (89 digits)
no P-1/P+1/ECM available, skipping
commencing quadratic sieve (89-digit input)
using multiplier of 13
using generic 32kb sieve core
sieve interval: 28 blocks of size 32768
processing polynomials in batches of 8
using a sieve bound of 1536349 (58333 primes)
using large prime bound of 122907920 (26 bits)
using double large prime bound of 364119260593040 (42-49 bits)
using trial factoring cutoff of 49 bits
polynomial 'A' values have 11 factors
58576 relations (15762 full + 42814 combined from 616014 partial), need 58429
begin with 631776 relations
reduce to 141513 relations in 11 passes
attempting to read 141513 relations
recovered 141513 relations
recovered 121304 polynomials
attempting to build 58576 cycles
found 58576 cycles in 6 passes
distribution of cycle lengths:
   length 1 : 15762
   length 2 : 11542
   length 3 : 10452
   length 4 : 7741
   length 5 : 5314
   length 6 : 3384
   length 7 : 2079
   length 9+: 2302
largest cycle: 17 relations
matrix is 58333 x 58576 (15.1 MB) with weight 3479638 (59.40/col)
sparse part has weight 3479638 (59.40/col)
filtering completed in 3 passes
matrix is 54283 x 54347 (14.1 MB) with weight 3256387 (59.92/col)
sparse part has weight 3256387 (59.92/col)
saving the first 48 matrix rows for later
matrix includes 64 packed rows
matrix is 54235 x 54347 (10.4 MB) with weight 2682599 (49.36/col)
sparse part has weight 2192470 (40.34/col)
using block size 8192 and superblock size 3145728 for processor cache size 32768 kB
commencing Lanczos iteration
memory use: 8.8 MB
lanczos halted after 859 iterations (dim = 54234)
recovered 17 nontrivial dependencies
p44 factor: 69895297508747656426059992340504146927777059
p45 factor: 172203827430821131886578504253767298770382887
elapsed time 00:37:22

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10168+329

c132

name 名前Norman Powell
date 日付April 14, 2023 15:51:04 UTC 2023 年 4 月 15 日 (土) 0 時 51 分 4 秒 (日本時間)
composite number 合成数
552482594905095478681083958155648742813677159644569794134914573707230507269913279440759970566350267436249855045160566082382325293121<132>
prime factors 素因数
289924072363692272873553389994562145382701793296920219<54>
1905611322305239165026331508313243636728097042280580906226509947107976617675859<79>
factorization results 素因数分解の結果
nfs: commencing nfs on c132: 552482594905095478681083958155648742813677159644569794134914573707230507269913279440759970566350267436249855045160566082382325293121
nfs: commencing poly selection with 6 threads
nfs: setting deadline of 12600 seconds
nfs: completed 46 ranges of size 250 in 12285.4198 seconds
nfs: best poly = # norm 1.593420e-012 alpha -8.201562 e 7.180e-011 rroots 5
nfs: commencing lattice sieving with 6 threads
nfs: commencing msieve filtering
nfs: commencing msieve linear algebra
nfs: commencing msieve sqrt
prp79 = 1905611322305239165026331508313243636728097042280580906226509947107976617675859
prp54 = 289924072363692272873553389994562145382701793296920219
NFS elapsed time = 87953.7826 seconds.
software ソフトウェア
YAFU v1.35 r373
execution environment 実行環境
Windows 10 Pro v22H2

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62078Caleb BirtwistleMarch 23, 2023 11:31:13 UTC 2023 年 3 月 23 日 (木) 20 時 31 分 13 秒 (日本時間)

85×10169+329

c145

name 名前Bob Backstrom
date 日付March 11, 2023 19:36:21 UTC 2023 年 3 月 12 日 (日) 4 時 36 分 21 秒 (日本時間)
composite number 合成数
2916499116276477015555296111771454109808612866656696840269023713543206094475017031419039781575666597479406905996044183832232608487150379621757051<145>
prime factors 素因数
977917441124530259936835069467465042813486378239<48>
2982357194614226436406809395444511885775875533839844914107975196955069201708574152251017898111109<97>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 2916499116276477015555296111771454109808612866656696840269023713543206094475017031419039781575666597479406905996044183832232608487150379621757051 (145 digits)
Using B1=33050000, B2=144292047916, polynomial Dickson(12), sigma=1:2171573790
Step 1 took 66976ms
Step 2 took 22305ms
********** Factor found in step 2: 977917441124530259936835069467465042813486378239
Found prime factor of 48 digits: 977917441124530259936835069467465042813486378239
Prime cofactor 2982357194614226436406809395444511885775875533839844914107975196955069201708574152251017898111109 has 97 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10170+329

c160

name 名前Bob Backstrom
date 日付March 11, 2023 23:52:52 UTC 2023 年 3 月 12 日 (日) 8 時 52 分 52 秒 (日本時間)
composite number 合成数
5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919<160>
prime factors 素因数
4338119775903178512263771805149867589047662001<46>
1288077489670527940365846735214184607985365135960133749331978370777567386283215967022805476919636717023994418622919<115>
factorization results 素因数分解の結果
Number: n
N=5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919  ( 160 digits)
SNFS difficulty: 171 digits.
Divisors found:

Sun Mar 12 10:44:19 2023  prp46 factor: 4338119775903178512263771805149867589047662001
Sun Mar 12 10:44:19 2023  prp115 factor: 1288077489670527940365846735214184607985365135960133749331978370777567386283215967022805476919636717023994418622919
Sun Mar 12 10:44:19 2023  elapsed time 00:19:38 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.096).
Factorization parameters were as follows:
#
# N = 85x10^170+32 = 94(169)8
#
n: 5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919
m: 10000000000000000000000000000000000
deg: 5
c5: 85
c0: 32
skew: 0.82
# Murphy_E = 2.259e-10
type: snfs
lss: 1
rlim: 5100000
alim: 5100000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5100000/5100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved  special-q in [100000, 28150000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1301744 hash collisions in 13508331 relations (13060574 unique)
Msieve: matrix is 763843 x 764069 (214.7 MB)

Sieving start time: 2023/03/12 07:12:09
Sieving end time  : 2023/03/12 10:24:09

Total sieving time: 3hrs 12min 0secs.

Total relation processing time: 0hrs 16min 6sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 0min 44sec.

Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10171+329

c149

name 名前Bob Backstrom
date 日付March 23, 2023 01:58:19 UTC 2023 年 3 月 23 日 (木) 10 時 58 分 19 秒 (日本時間)
composite number 合成数
70417292805604183198025100443962936571976780241252273222181385295079164055430125873848755463848712514690675532268305012498240207748921757752733860073<149>
prime factors 素因数
13505252661249012818976775150878900176255842927<47>
5214067042792500160642899227820633095030108471478528612855485009877122545145956049712950013448819688999<103>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 70417292805604183198025100443962936571976780241252273222181385295079164055430125873848755463848712514690675532268305012498240207748921757752733860073 (149 digits)
Using B1=31990000, B2=144291357226, polynomial Dickson(12), sigma=1:3758695963
Step 1 took 64614ms
Step 2 took 23124ms
********** Factor found in step 2: 13505252661249012818976775150878900176255842927
Found prime factor of 47 digits: 13505252661249012818976775150878900176255842927
Prime cofactor 5214067042792500160642899227820633095030108471478528612855485009877122545145956049712950013448819688999 has 103 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10172+329

c153

name 名前Bob Backstrom
date 日付March 11, 2023 04:22:07 UTC 2023 年 3 月 11 日 (土) 13 時 22 分 7 秒 (日本時間)
composite number 合成数
743246537778118826244944604118027005963019345437410644163031199292323805532490497784413383106991491524147926899954584858053074938689044711909427668814633<153>
prime factors 素因数
1212159997258222048990396816074907038699331<43>
613158773973125687361851205088617367045433358449339445652614221894462075786798668251785229923628287178423281443<111>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 743246537778118826244944604118027005963019345437410644163031199292323805532490497784413383106991491524147926899954584858053074938689044711909427668814633 (153 digits)
Using B1=30800000, B2=144289975846, polynomial Dickson(12), sigma=1:1041420250
Step 1 took 61498ms
Step 2 took 23111ms
********** Factor found in step 2: 1212159997258222048990396816074907038699331
Found prime factor of 43 digits: 1212159997258222048990396816074907038699331
Prime cofactor 613158773973125687361851205088617367045433358449339445652614221894462075786798668251785229923628287178423281443 has 111 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10176+329

c156

name 名前Bob Backstrom
date 日付March 17, 2023 06:22:01 UTC 2023 年 3 月 17 日 (金) 15 時 22 分 1 秒 (日本時間)
composite number 合成数
653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999<156>
prime factors 素因数
2268832923561863352777054372920063656333018682406711212561059879466357204587<76>
288073717680283250713446085120315147463732552814321729676521792444007219436230477<81>
factorization results 素因数分解の結果
Number: n
N=653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999  ( 156 digits)
SNFS difficulty: 177 digits.
Divisors found:

Tue Mar 14 22:23:50 2023  prp76 factor: 2268832923561863352777054372920063656333018682406711212561059879466357204587
Tue Mar 14 22:23:50 2023  prp81 factor: 288073717680283250713446085120315147463732552814321729676521792444007219436230477
Tue Mar 14 22:23:50 2023  elapsed time 00:31:19 (Msieve 1.44 - dependency 3)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.082).
Factorization parameters were as follows:
#
# N = 85x10^176+32 = 94(175)8
#
n: 653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999
m: 100000000000000000000000000000000000
deg: 5
c5: 425
c0: 16
skew: 0.52
# Murphy_E = 1.103e-10
type: snfs
lss: 1
rlim: 6100000
alim: 6100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.5
alambda: 2.5
Factor base limits: 6100000/6100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved  special-q in [100000, 21450000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1951930 hash collisions in 13641991 relations (12374266 unique)
Msieve: matrix is 950905 x 951130 (266.4 MB)

Sieving start time: 2023/03/14 19:12:10
Sieving end time  : 2023/03/14 21:52:18

Total sieving time: 2hrs 40min 8secs.

Total relation processing time: 0hrs 25min 16sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 3min 11sec.

Prototype def-par.txt line would be:
snfs,177,5,0,0,0,0,0,0,0,0,6100000,6100000,27,27,51,51,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10178+329

c147

name 名前Ignacio Santos
date 日付April 29, 2023 12:39:52 UTC 2023 年 4 月 29 日 (土) 21 時 39 分 52 秒 (日本時間)
composite number 合成数
370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323<147>
prime factors 素因数
3730487921707315512549135534719831777489456762674659906847980245741<67>
99198771235192781660990373654417668099732708313316084146310444158850045602831103<80>
factorization results 素因数分解の結果
-> makeJobFile(): Adjusted to q0=3450000, q1=3550000.
->               client 1 q0: 3450000
      LatSieveTime: 96
        LatSieveTime: 98
        LatSieveTime: 98
        LatSieveTime: 99
        LatSieveTime: 99
        LatSieveTime: 99
        LatSieveTime: 101
        LatSieveTime: 101
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 103
        LatSieveTime: 103
        LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 117
-> makeJobFile(): Adjusted to q0=3550001, q1=3650000.
->               client 1 q0: 3550001
      LatSieveTime: 97
        LatSieveTime: 98
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
-> makeJobFile(): Adjusted to q0=3650001, q1=3750000.
->               client 1 q0: 3650001
      LatSieveTime: 98
        LatSieveTime: 100
        LatSieveTime: 100
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=3750001, q1=3850000.
->               client 1 q0: 3750001
      LatSieveTime: 95
        LatSieveTime: 100
        LatSieveTime: 101
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 119
        LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=3850001, q1=3950000.
->               client 1 q0: 3850001
      LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 118
        LatSieveTime: 120
-> makeJobFile(): Adjusted to q0=3950001, q1=4050000.
->               client 1 q0: 3950001
      LatSieveTime: 98
        LatSieveTime: 99
        LatSieveTime: 99
        LatSieveTime: 103
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
-> makeJobFile(): Adjusted to q0=4050001, q1=4150000.
->               client 1 q0: 4050001
      LatSieveTime: 95
        LatSieveTime: 97
        LatSieveTime: 99
        LatSieveTime: 100
        LatSieveTime: 101
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
-> makeJobFile(): Adjusted to q0=4150001, q1=4250000.
->               client 1 q0: 4150001
      LatSieveTime: 97
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 123
-> makeJobFile(): Adjusted to q0=4250001, q1=4350000.
->               client 1 q0: 4250001
      LatSieveTime: 100
        LatSieveTime: 101
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=4350001, q1=4450000.
->               client 1 q0: 4350001
      LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=4450001, q1=4550000.
->               client 1 q0: 4450001
      LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=4550001, q1=4650000.
->               client 1 q0: 4550001
      LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=4650001, q1=4750000.
->               client 1 q0: 4650001
      LatSieveTime: 103
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=4750001, q1=4850000.
->               client 1 q0: 4750001
      LatSieveTime: 105
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 106
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=4850001, q1=4950000.
->               client 1 q0: 4850001
      LatSieveTime: 104
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=4950001, q1=5050000.
->               client 1 q0: 4950001
      LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=5050001, q1=5150000.
->               client 1 q0: 5050001
      LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=5150001, q1=5250000.
->               client 1 q0: 5150001
      LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 125
        LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=5250001, q1=5350000.
->               client 1 q0: 5250001
      LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=5350001, q1=5450000.
->               client 1 q0: 5350001
      LatSieveTime: 101
        LatSieveTime: 102
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=5450001, q1=5550000.
->               client 1 q0: 5450001
      LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=5550001, q1=5650000.
->               client 1 q0: 5550001
      LatSieveTime: 105
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=5650001, q1=5750000.
->               client 1 q0: 5650001
      LatSieveTime: 103
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 124
        LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=5750001, q1=5850000.
->               client 1 q0: 5750001
      LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 130
-> makeJobFile(): Adjusted to q0=5850001, q1=5950000.
->               client 1 q0: 5850001
      LatSieveTime: 104
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=5950001, q1=6050000.
->               client 1 q0: 5950001
      LatSieveTime: 100
        LatSieveTime: 101
        LatSieveTime: 103
        LatSieveTime: 106
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=6050001, q1=6150000.
->               client 1 q0: 6050001
      LatSieveTime: 106
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 128
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=6150001, q1=6250000.
->               client 1 q0: 6150001
      LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 125
        LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=6250001, q1=6350000.
->               client 1 q0: 6250001
      LatSieveTime: 104
        LatSieveTime: 104
        LatSieveTime: 106
        LatSieveTime: 108
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=6350001, q1=6450000.
->               client 1 q0: 6350001
      LatSieveTime: 103
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
-> makeJobFile(): Adjusted to q0=6450001, q1=6550000.
->               client 1 q0: 6450001
      LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=6550001, q1=6650000.
->               client 1 q0: 6550001
      LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 130
-> makeJobFile(): Adjusted to q0=6650001, q1=6750000.
->               client 1 q0: 6650001
      LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=6750001, q1=6850000.
->               client 1 q0: 6750001
      LatSieveTime: 102
        LatSieveTime: 104
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 130
-> makeJobFile(): Adjusted to q0=6850001, q1=6950000.
->               client 1 q0: 6850001
      LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 113
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 131
-> makeJobFile(): Adjusted to q0=6950001, q1=7050000.
->               client 1 q0: 6950001
      LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 129
        LatSieveTime: 130
-> makeJobFile(): Adjusted to q0=7050001, q1=7150000.
->               client 1 q0: 7050001
      LatSieveTime: 102
        LatSieveTime: 106
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=7150001, q1=7250000.
->               client 1 q0: 7150001
      LatSieveTime: 106
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
-> makeJobFile(): Adjusted to q0=7250001, q1=7350000.
->               client 1 q0: 7250001
      LatSieveTime: 101
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 129
        LatSieveTime: 132
-> makeJobFile(): Adjusted to q0=7350001, q1=7450000.
->               client 1 q0: 7350001
      LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=7450001, q1=7550000.
->               client 1 q0: 7450001
      LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 108
        LatSieveTime: 110
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 133
-> makeJobFile(): Adjusted to q0=7550001, q1=7650000.
->               client 1 q0: 7550001
      LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 131
-> makeJobFile(): Adjusted to q0=7650001, q1=7750000.
->               client 1 q0: 7650001
      LatSieveTime: 105
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
-> makeJobFile(): Adjusted to q0=7750001, q1=7850000.
->               client 1 q0: 7750001
      LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 128
-> makeJobFile(): Adjusted to q0=7850001, q1=7950000.
->               client 1 q0: 7850001
      LatSieveTime: 100
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=7950001, q1=8050000.
->               client 1 q0: 7950001
      LatSieveTime: 105
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 123
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
-> makeJobFile(): Adjusted to q0=8050001, q1=8150000.
->               client 1 q0: 8050001
      LatSieveTime: 101
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 131
-> makeJobFile(): Adjusted to q0=8150001, q1=8250000.
->               client 1 q0: 8150001
      LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 129
-> makeJobFile(): Adjusted to q0=8250001, q1=8350000.
->               client 1 q0: 8250001
      LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 128
        LatSieveTime: 131
        LatSieveTime: 132
Sat Apr 29 14:07:22 2023  
Sat Apr 29 14:07:22 2023  
Sat Apr 29 14:07:22 2023  Msieve v. 1.52 (SVN 927)
Sat Apr 29 14:07:22 2023  random seeds: d5f50158 422bc41d
Sat Apr 29 14:07:22 2023  factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits)
Sat Apr 29 14:07:23 2023  searching for 15-digit factors
Sat Apr 29 14:07:23 2023  commencing number field sieve (147-digit input)
Sat Apr 29 14:07:23 2023  R0: -500000000000000000000000000000000000
Sat Apr 29 14:07:23 2023  R1: 1
Sat Apr 29 14:07:23 2023  A0: 20
Sat Apr 29 14:07:23 2023  A1: 0
Sat Apr 29 14:07:23 2023  A2: 0
Sat Apr 29 14:07:23 2023  A3: 0
Sat Apr 29 14:07:23 2023  A4: 0
Sat Apr 29 14:07:23 2023  A5: 17
Sat Apr 29 14:07:23 2023  skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1
Sat Apr 29 14:07:23 2023  
Sat Apr 29 14:07:23 2023  commencing relation filtering
Sat Apr 29 14:07:23 2023  estimated available RAM is 65413.5 MB
Sat Apr 29 14:07:23 2023  commencing duplicate removal, pass 1
Sat Apr 29 14:07:54 2023  found 2179346 hash collisions in 18193152 relations
Sat Apr 29 14:08:08 2023  added 697342 free relations
Sat Apr 29 14:08:08 2023  commencing duplicate removal, pass 2
Sat Apr 29 14:08:14 2023  found 1872177 duplicates and 17018317 unique relations
Sat Apr 29 14:08:14 2023  memory use: 98.6 MB
Sat Apr 29 14:08:14 2023  reading ideals above 720000
Sat Apr 29 14:08:14 2023  commencing singleton removal, initial pass
Sat Apr 29 14:09:14 2023  memory use: 376.5 MB
Sat Apr 29 14:09:14 2023  reading all ideals from disk
Sat Apr 29 14:09:15 2023  memory use: 521.0 MB
Sat Apr 29 14:09:15 2023  keeping 19251380 ideals with weight <= 200, target excess is 116002
Sat Apr 29 14:09:16 2023  commencing in-memory singleton removal
Sat Apr 29 14:09:17 2023  begin with 17018317 relations and 19251380 unique ideals
Sat Apr 29 14:09:27 2023  reduce to 6260531 relations and 5944653 ideals in 20 passes
Sat Apr 29 14:09:27 2023  max relations containing the same ideal: 95
Sat Apr 29 14:09:29 2023  removing 808569 relations and 717911 ideals in 90658 cliques
Sat Apr 29 14:09:29 2023  commencing in-memory singleton removal
Sat Apr 29 14:09:30 2023  begin with 5451962 relations and 5944653 unique ideals
Sat Apr 29 14:09:34 2023  reduce to 5359579 relations and 5132469 ideals in 14 passes
Sat Apr 29 14:09:34 2023  max relations containing the same ideal: 85
Sat Apr 29 14:09:36 2023  removing 607384 relations and 516726 ideals in 90658 cliques
Sat Apr 29 14:09:36 2023  commencing in-memory singleton removal
Sat Apr 29 14:09:36 2023  begin with 4752195 relations and 5132469 unique ideals
Sat Apr 29 14:09:40 2023  reduce to 4691248 relations and 4553704 ideals in 14 passes
Sat Apr 29 14:09:40 2023  max relations containing the same ideal: 79
Sat Apr 29 14:09:41 2023  relations with 0 large ideals: 2883
Sat Apr 29 14:09:41 2023  relations with 1 large ideals: 1385
Sat Apr 29 14:09:41 2023  relations with 2 large ideals: 23223
Sat Apr 29 14:09:41 2023  relations with 3 large ideals: 157734
Sat Apr 29 14:09:41 2023  relations with 4 large ideals: 562985
Sat Apr 29 14:09:41 2023  relations with 5 large ideals: 1145829
Sat Apr 29 14:09:41 2023  relations with 6 large ideals: 1403666
Sat Apr 29 14:09:41 2023  relations with 7+ large ideals: 1393543
Sat Apr 29 14:09:41 2023  commencing 2-way merge
Sat Apr 29 14:09:44 2023  reduce to 2705042 relation sets and 2567499 unique ideals
Sat Apr 29 14:09:44 2023  ignored 1 oversize relation sets
Sat Apr 29 14:09:44 2023  commencing full merge
Sat Apr 29 14:10:16 2023  memory use: 307.6 MB
Sat Apr 29 14:10:17 2023  found 1368471 cycles, need 1349699
Sat Apr 29 14:10:17 2023  weight of 1349699 cycles is about 94688747 (70.16/cycle)
Sat Apr 29 14:10:17 2023  distribution of cycle lengths:
Sat Apr 29 14:10:17 2023  1 relations: 183197
Sat Apr 29 14:10:17 2023  2 relations: 159424
Sat Apr 29 14:10:17 2023  3 relations: 151121
Sat Apr 29 14:10:17 2023  4 relations: 134493
Sat Apr 29 14:10:17 2023  5 relations: 122395
Sat Apr 29 14:10:17 2023  6 relations: 103180
Sat Apr 29 14:10:17 2023  7 relations: 90467
Sat Apr 29 14:10:17 2023  8 relations: 78085
Sat Apr 29 14:10:17 2023  9 relations: 65476
Sat Apr 29 14:10:17 2023  10+ relations: 261861
Sat Apr 29 14:10:17 2023  heaviest cycle: 23 relations
Sat Apr 29 14:10:17 2023  commencing cycle optimization
Sat Apr 29 14:10:19 2023  start with 7936374 relations
Sat Apr 29 14:10:29 2023  pruned 165819 relations
Sat Apr 29 14:10:29 2023  memory use: 267.6 MB
Sat Apr 29 14:10:29 2023  distribution of cycle lengths:
Sat Apr 29 14:10:29 2023  1 relations: 183197
Sat Apr 29 14:10:29 2023  2 relations: 162555
Sat Apr 29 14:10:29 2023  3 relations: 155699
Sat Apr 29 14:10:29 2023  4 relations: 137182
Sat Apr 29 14:10:29 2023  5 relations: 124498
Sat Apr 29 14:10:29 2023  6 relations: 104616
Sat Apr 29 14:10:29 2023  7 relations: 91181
Sat Apr 29 14:10:29 2023  8 relations: 77821
Sat Apr 29 14:10:29 2023  9 relations: 65088
Sat Apr 29 14:10:29 2023  10+ relations: 247862
Sat Apr 29 14:10:29 2023  heaviest cycle: 22 relations
Sat Apr 29 14:10:30 2023  RelProcTime: 187
Sat Apr 29 14:10:30 2023  elapsed time 00:03:08
Sat Apr 29 14:10:30 2023  
Sat Apr 29 14:10:30 2023  
Sat Apr 29 14:10:30 2023  Msieve v. 1.52 (SVN 927)
Sat Apr 29 14:10:30 2023  random seeds: 735712e0 3a2798c8
Sat Apr 29 14:10:30 2023  factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits)
Sat Apr 29 14:10:31 2023  searching for 15-digit factors
Sat Apr 29 14:10:31 2023  commencing number field sieve (147-digit input)
Sat Apr 29 14:10:31 2023  R0: -500000000000000000000000000000000000
Sat Apr 29 14:10:31 2023  R1: 1
Sat Apr 29 14:10:31 2023  A0: 20
Sat Apr 29 14:10:31 2023  A1: 0
Sat Apr 29 14:10:31 2023  A2: 0
Sat Apr 29 14:10:31 2023  A3: 0
Sat Apr 29 14:10:31 2023  A4: 0
Sat Apr 29 14:10:31 2023  A5: 17
Sat Apr 29 14:10:31 2023  skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1
Sat Apr 29 14:10:31 2023  
Sat Apr 29 14:10:31 2023  commencing linear algebra
Sat Apr 29 14:10:31 2023  read 1349699 cycles
Sat Apr 29 14:10:33 2023  cycles contain 4529559 unique relations
Sat Apr 29 14:10:41 2023  read 4529559 relations
Sat Apr 29 14:10:46 2023  using 20 quadratic characters above 268434374
Sat Apr 29 14:10:58 2023  building initial matrix
Sat Apr 29 14:11:25 2023  memory use: 558.4 MB
Sat Apr 29 14:11:26 2023  read 1349699 cycles
Sat Apr 29 14:11:26 2023  matrix is 1349516 x 1349699 (405.4 MB) with weight 118902717 (88.10/col)
Sat Apr 29 14:11:26 2023  sparse part has weight 91433427 (67.74/col)
Sat Apr 29 14:11:33 2023  filtering completed in 2 passes
Sat Apr 29 14:11:33 2023  matrix is 1346895 x 1347078 (405.2 MB) with weight 118811879 (88.20/col)
Sat Apr 29 14:11:33 2023  sparse part has weight 91397610 (67.85/col)
Sat Apr 29 14:11:35 2023  matrix starts at (0, 0)
Sat Apr 29 14:11:36 2023  matrix is 1346895 x 1347078 (405.2 MB) with weight 118811879 (88.20/col)
Sat Apr 29 14:11:36 2023  sparse part has weight 91397610 (67.85/col)
Sat Apr 29 14:11:36 2023  saving the first 48 matrix rows for later
Sat Apr 29 14:11:36 2023  matrix includes 64 packed rows
Sat Apr 29 14:11:36 2023  matrix is 1346847 x 1347078 (383.0 MB) with weight 94496730 (70.15/col)
Sat Apr 29 14:11:36 2023  sparse part has weight 86924664 (64.53/col)
Sat Apr 29 14:11:36 2023  using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Sat Apr 29 14:11:40 2023  commencing Lanczos iteration (32 threads)
Sat Apr 29 14:11:40 2023  memory use: 306.8 MB
Sat Apr 29 14:11:41 2023  linear algebra at 0.1%, ETA 0h14m
Sat Apr 29 14:11:41 2023  checkpointing every 7270000 dimensions
Sat Apr 29 14:29:30 2023  lanczos halted after 21303 iterations (dim = 1346845)
Sat Apr 29 14:29:31 2023  recovered 38 nontrivial dependencies
Sat Apr 29 14:29:31 2023  BLanczosTime: 1140
Sat Apr 29 14:29:31 2023  elapsed time 00:19:01
Sat Apr 29 14:29:31 2023  
Sat Apr 29 14:29:31 2023  
Sat Apr 29 14:29:31 2023  Msieve v. 1.52 (SVN 927)
Sat Apr 29 14:29:31 2023  random seeds: a69d6ec4 81937786
Sat Apr 29 14:29:31 2023  factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits)
Sat Apr 29 14:29:31 2023  searching for 15-digit factors
Sat Apr 29 14:29:31 2023  commencing number field sieve (147-digit input)
Sat Apr 29 14:29:31 2023  R0: -500000000000000000000000000000000000
Sat Apr 29 14:29:31 2023  R1: 1
Sat Apr 29 14:29:31 2023  A0: 20
Sat Apr 29 14:29:31 2023  A1: 0
Sat Apr 29 14:29:31 2023  A2: 0
Sat Apr 29 14:29:31 2023  A3: 0
Sat Apr 29 14:29:31 2023  A4: 0
Sat Apr 29 14:29:31 2023  A5: 17
Sat Apr 29 14:29:31 2023  skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1
Sat Apr 29 14:29:31 2023  
Sat Apr 29 14:29:31 2023  commencing square root phase
Sat Apr 29 14:29:31 2023  reading relations for dependency 1
Sat Apr 29 14:29:32 2023  read 674197 cycles
Sat Apr 29 14:29:32 2023  cycles contain 2266850 unique relations
Sat Apr 29 14:29:38 2023  read 2266850 relations
Sat Apr 29 14:29:44 2023  multiplying 2266850 relations
Sat Apr 29 14:30:16 2023  multiply complete, coefficients have about 59.50 million bits
Sat Apr 29 14:30:17 2023  initial square root is modulo 348969211
Sat Apr 29 14:30:58 2023  GCD is N, no factor found
Sat Apr 29 14:30:58 2023  reading relations for dependency 2
Sat Apr 29 14:30:58 2023  read 673339 cycles
Sat Apr 29 14:30:59 2023  cycles contain 2263722 unique relations
Sat Apr 29 14:31:04 2023  read 2263722 relations
Sat Apr 29 14:31:10 2023  multiplying 2263722 relations
Sat Apr 29 14:31:42 2023  multiply complete, coefficients have about 59.43 million bits
Sat Apr 29 14:31:42 2023  initial square root is modulo 340486021
Sat Apr 29 14:32:23 2023  GCD is N, no factor found
Sat Apr 29 14:32:23 2023  reading relations for dependency 3
Sat Apr 29 14:32:23 2023  read 674008 cycles
Sat Apr 29 14:32:24 2023  cycles contain 2264782 unique relations
Sat Apr 29 14:32:29 2023  read 2264782 relations
Sat Apr 29 14:32:34 2023  multiplying 2264782 relations
Sat Apr 29 14:33:06 2023  multiply complete, coefficients have about 59.45 million bits
Sat Apr 29 14:33:06 2023  initial square root is modulo 342983441
Sat Apr 29 14:33:47 2023  Newton iteration failed to converge
Sat Apr 29 14:33:47 2023  algebraic square root failed
Sat Apr 29 14:33:47 2023  reading relations for dependency 4
Sat Apr 29 14:33:47 2023  read 672678 cycles
Sat Apr 29 14:33:48 2023  cycles contain 2262826 unique relations
Sat Apr 29 14:33:53 2023  read 2262826 relations
Sat Apr 29 14:33:58 2023  multiplying 2262826 relations
Sat Apr 29 14:34:30 2023  multiply complete, coefficients have about 59.40 million bits
Sat Apr 29 14:34:30 2023  initial square root is modulo 337186981
Sat Apr 29 14:35:11 2023  Newton iteration failed to converge
Sat Apr 29 14:35:11 2023  algebraic square root failed
Sat Apr 29 14:35:11 2023  reading relations for dependency 5
Sat Apr 29 14:35:11 2023  read 673228 cycles
Sat Apr 29 14:35:12 2023  cycles contain 2263508 unique relations
Sat Apr 29 14:35:17 2023  read 2263508 relations
Sat Apr 29 14:35:23 2023  multiplying 2263508 relations
Sat Apr 29 14:35:54 2023  multiply complete, coefficients have about 59.42 million bits
Sat Apr 29 14:35:55 2023  initial square root is modulo 339165601
Sat Apr 29 14:36:36 2023  GCD is 1, no factor found
Sat Apr 29 14:36:36 2023  reading relations for dependency 6
Sat Apr 29 14:36:36 2023  read 672685 cycles
Sat Apr 29 14:36:37 2023  cycles contain 2262832 unique relations
Sat Apr 29 14:36:42 2023  read 2262832 relations
Sat Apr 29 14:36:48 2023  multiplying 2262832 relations
Sat Apr 29 14:37:20 2023  multiply complete, coefficients have about 59.40 million bits
Sat Apr 29 14:37:20 2023  initial square root is modulo 337423291
Sat Apr 29 14:38:02 2023  Newton iteration failed to converge
Sat Apr 29 14:38:02 2023  algebraic square root failed
Sat Apr 29 14:38:02 2023  reading relations for dependency 7
Sat Apr 29 14:38:02 2023  read 673822 cycles
Sat Apr 29 14:38:03 2023  cycles contain 2266962 unique relations
Sat Apr 29 14:38:08 2023  read 2266962 relations
Sat Apr 29 14:38:14 2023  multiplying 2266962 relations
Sat Apr 29 14:38:45 2023  multiply complete, coefficients have about 59.51 million bits
Sat Apr 29 14:38:46 2023  initial square root is modulo 349725931
Sat Apr 29 14:39:27 2023  sqrtTime: 596
Sat Apr 29 14:39:27 2023  prp67 factor: 3730487921707315512549135534719831777489456762674659906847980245741
Sat Apr 29 14:39:27 2023  prp80 factor: 99198771235192781660990373654417668099732708313316084146310444158850045602831103
Sat Apr 29 14:39:27 2023  elapsed time 00:09:56
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62350Ignacio SantosMarch 31, 2023 12:49:18 UTC 2023 年 3 月 31 日 (金) 21 時 49 分 18 秒 (日本時間)

85×10179+329

c117

name 名前Ignacio Santos
date 日付February 24, 2023 14:36:21 UTC 2023 年 2 月 24 日 (金) 23 時 36 分 21 秒 (日本時間)
composite number 合成数
507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409<117>
prime factors 素因数
1068993152395198375738292760814540458645611940360943<52>
474362239557972496236962420921124969998080682678403468008747846063<66>
factorization results 素因数分解の結果
-> makeJobFile(): Adjusted to q0=1800000, q1=1900000.
->               client 1 q0: 1800000
      LatSieveTime: 96
        LatSieveTime: 97
        LatSieveTime: 101
        LatSieveTime: 101
        LatSieveTime: 105
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 129
        LatSieveTime: 131
-> makeJobFile(): Adjusted to q0=1900001, q1=2000000.
->               client 1 q0: 1900001
      LatSieveTime: 98
        LatSieveTime: 99
        LatSieveTime: 103
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 134
-> makeJobFile(): Adjusted to q0=2000001, q1=2100000.
->               client 1 q0: 2000001
      LatSieveTime: 100
        LatSieveTime: 102
        LatSieveTime: 102
        LatSieveTime: 104
        LatSieveTime: 105
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 133
        LatSieveTime: 135
        LatSieveTime: 137
        LatSieveTime: 143
-> makeJobFile(): Adjusted to q0=2100001, q1=2200000.
->               client 1 q0: 2100001
      LatSieveTime: 94
        LatSieveTime: 105
        LatSieveTime: 109
        LatSieveTime: 112
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 132
        LatSieveTime: 134
        LatSieveTime: 138
-> makeJobFile(): Adjusted to q0=2200001, q1=2300000.
->               client 1 q0: 2200001
      LatSieveTime: 102
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 108
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 132
        LatSieveTime: 135
        LatSieveTime: 136
        LatSieveTime: 136
        LatSieveTime: 137
        LatSieveTime: 138
        LatSieveTime: 139
        LatSieveTime: 141
        LatSieveTime: 145
-> makeJobFile(): Adjusted to q0=2300001, q1=2400000.
->               client 1 q0: 2300001
      LatSieveTime: 101
        LatSieveTime: 103
        LatSieveTime: 104
        LatSieveTime: 106
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 110
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 134
        LatSieveTime: 134
        LatSieveTime: 136
-> makeJobFile(): Adjusted to q0=2400001, q1=2500000.
->               client 1 q0: 2400001
      LatSieveTime: 96
        LatSieveTime: 102
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 133
        LatSieveTime: 133
        LatSieveTime: 133
        LatSieveTime: 134
        LatSieveTime: 134
        LatSieveTime: 135
        LatSieveTime: 135
        LatSieveTime: 136
        LatSieveTime: 139
        LatSieveTime: 140
        LatSieveTime: 140
        LatSieveTime: 141
        LatSieveTime: 152
-> makeJobFile(): Adjusted to q0=2500001, q1=2600000.
->               client 1 q0: 2500001
      LatSieveTime: 103
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 110
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 115
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 134
        LatSieveTime: 134
        LatSieveTime: 136
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 138
        LatSieveTime: 139
        LatSieveTime: 140
        LatSieveTime: 140
        LatSieveTime: 141
        LatSieveTime: 143
        LatSieveTime: 146
-> makeJobFile(): Adjusted to q0=2600001, q1=2700000.
->               client 1 q0: 2600001
      LatSieveTime: 99
        LatSieveTime: 101
        LatSieveTime: 107
        LatSieveTime: 107
        LatSieveTime: 108
        LatSieveTime: 109
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 133
        LatSieveTime: 134
        LatSieveTime: 135
        LatSieveTime: 137
        LatSieveTime: 139
        LatSieveTime: 139
        LatSieveTime: 143
        LatSieveTime: 151
-> makeJobFile(): Adjusted to q0=2700001, q1=2800000.
->               client 1 q0: 2700001
      LatSieveTime: 100
        LatSieveTime: 103
        LatSieveTime: 106
        LatSieveTime: 107
        LatSieveTime: 109
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 112
        LatSieveTime: 113
        LatSieveTime: 114
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 134
        LatSieveTime: 133
        LatSieveTime: 135
        LatSieveTime: 136
        LatSieveTime: 136
        LatSieveTime: 136
        LatSieveTime: 136
        LatSieveTime: 138
        LatSieveTime: 138
        LatSieveTime: 139
        LatSieveTime: 149
-> makeJobFile(): Adjusted to q0=2800001, q1=2900000.
->               client 1 q0: 2800001
      LatSieveTime: 107
        LatSieveTime: 111
        LatSieveTime: 112
        LatSieveTime: 114
        LatSieveTime: 114
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 133
        LatSieveTime: 134
        LatSieveTime: 134
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 140
-> makeJobFile(): Adjusted to q0=2900001, q1=3000000.
->               client 1 q0: 2900001
      LatSieveTime: 107
        LatSieveTime: 110
        LatSieveTime: 113
        LatSieveTime: 113
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 118
        LatSieveTime: 118
        LatSieveTime: 119
        LatSieveTime: 119
        LatSieveTime: 120
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 125
        LatSieveTime: 125
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 132
        LatSieveTime: 133
        LatSieveTime: 133
        LatSieveTime: 133
        LatSieveTime: 134
        LatSieveTime: 134
        LatSieveTime: 135
        LatSieveTime: 136
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 139
        LatSieveTime: 139
        LatSieveTime: 141
-> makeJobFile(): Adjusted to q0=3000001, q1=3100000.
->               client 1 q0: 3000001
      LatSieveTime: 100
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 111
        LatSieveTime: 115
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 116
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 117
        LatSieveTime: 119
        LatSieveTime: 121
        LatSieveTime: 121
        LatSieveTime: 122
        LatSieveTime: 122
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 123
        LatSieveTime: 124
        LatSieveTime: 126
        LatSieveTime: 127
        LatSieveTime: 127
        LatSieveTime: 128
        LatSieveTime: 128
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 129
        LatSieveTime: 130
        LatSieveTime: 131
        LatSieveTime: 132
        LatSieveTime: 132
        LatSieveTime: 133
        LatSieveTime: 133
        LatSieveTime: 136
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 137
        LatSieveTime: 138
        LatSieveTime: 139
        LatSieveTime: 140
        LatSieveTime: 141
        LatSieveTime: 142
Fri Feb 24 15:08:15 2023  
Fri Feb 24 15:08:15 2023  
Fri Feb 24 15:08:15 2023  Msieve v. 1.52 (SVN 927)
Fri Feb 24 15:08:15 2023  random seeds: 980b20b0 4da3c551
Fri Feb 24 15:08:15 2023  factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits)
Fri Feb 24 15:08:16 2023  searching for 15-digit factors
Fri Feb 24 15:08:16 2023  commencing number field sieve (117-digit input)
Fri Feb 24 15:08:16 2023  R0: -26900438653216238571759
Fri Feb 24 15:08:16 2023  R1: 4057985117857
Fri Feb 24 15:08:16 2023  A0: 1102963749009010475939176580
Fri Feb 24 15:08:16 2023  A1: -285633358560084339196176
Fri Feb 24 15:08:16 2023  A2: 10024305885388348967
Fri Feb 24 15:08:16 2023  A3: -500943484545414
Fri Feb 24 15:08:16 2023  A4: -7844567392
Fri Feb 24 15:08:16 2023  A5: 36000
Fri Feb 24 15:08:16 2023  skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3
Fri Feb 24 15:08:16 2023  
Fri Feb 24 15:08:16 2023  commencing relation filtering
Fri Feb 24 15:08:16 2023  estimated available RAM is 65413.5 MB
Fri Feb 24 15:08:16 2023  commencing duplicate removal, pass 1
Fri Feb 24 15:08:36 2023  found 1064329 hash collisions in 9567309 relations
Fri Feb 24 15:08:46 2023  added 62154 free relations
Fri Feb 24 15:08:46 2023  commencing duplicate removal, pass 2
Fri Feb 24 15:08:48 2023  found 593366 duplicates and 9036097 unique relations
Fri Feb 24 15:08:48 2023  memory use: 41.3 MB
Fri Feb 24 15:08:48 2023  reading ideals above 100000
Fri Feb 24 15:08:48 2023  commencing singleton removal, initial pass
Fri Feb 24 15:09:23 2023  memory use: 188.3 MB
Fri Feb 24 15:09:23 2023  reading all ideals from disk
Fri Feb 24 15:09:23 2023  memory use: 313.9 MB
Fri Feb 24 15:09:24 2023  keeping 10172718 ideals with weight <= 200, target excess is 47999
Fri Feb 24 15:09:24 2023  commencing in-memory singleton removal
Fri Feb 24 15:09:25 2023  begin with 9036097 relations and 10172718 unique ideals
Fri Feb 24 15:09:29 2023  reduce to 2834975 relations and 2756909 ideals in 22 passes
Fri Feb 24 15:09:29 2023  max relations containing the same ideal: 90
Fri Feb 24 15:09:29 2023  removing 187005 relations and 175811 ideals in 11194 cliques
Fri Feb 24 15:09:29 2023  commencing in-memory singleton removal
Fri Feb 24 15:09:29 2023  begin with 2647970 relations and 2756909 unique ideals
Fri Feb 24 15:09:30 2023  reduce to 2636794 relations and 2569857 ideals in 9 passes
Fri Feb 24 15:09:30 2023  max relations containing the same ideal: 87
Fri Feb 24 15:09:30 2023  removing 133405 relations and 122211 ideals in 11194 cliques
Fri Feb 24 15:09:30 2023  commencing in-memory singleton removal
Fri Feb 24 15:09:30 2023  begin with 2503389 relations and 2569857 unique ideals
Fri Feb 24 15:09:31 2023  reduce to 2497228 relations and 2441449 ideals in 10 passes
Fri Feb 24 15:09:31 2023  max relations containing the same ideal: 84
Fri Feb 24 15:09:31 2023  relations with 0 large ideals: 129
Fri Feb 24 15:09:31 2023  relations with 1 large ideals: 516
Fri Feb 24 15:09:31 2023  relations with 2 large ideals: 7532
Fri Feb 24 15:09:31 2023  relations with 3 large ideals: 61225
Fri Feb 24 15:09:31 2023  relations with 4 large ideals: 254405
Fri Feb 24 15:09:31 2023  relations with 5 large ideals: 585589
Fri Feb 24 15:09:31 2023  relations with 6 large ideals: 757171
Fri Feb 24 15:09:31 2023  relations with 7+ large ideals: 830661
Fri Feb 24 15:09:31 2023  commencing 2-way merge
Fri Feb 24 15:09:32 2023  reduce to 1345731 relation sets and 1289958 unique ideals
Fri Feb 24 15:09:32 2023  ignored 6 oversize relation sets
Fri Feb 24 15:09:32 2023  commencing full merge
Fri Feb 24 15:09:47 2023  memory use: 138.7 MB
Fri Feb 24 15:09:47 2023  found 662969 cycles, need 658158
Fri Feb 24 15:09:47 2023  weight of 658158 cycles is about 46241311 (70.26/cycle)
Fri Feb 24 15:09:47 2023  distribution of cycle lengths:
Fri Feb 24 15:09:47 2023  1 relations: 79909
Fri Feb 24 15:09:47 2023  2 relations: 80312
Fri Feb 24 15:09:47 2023  3 relations: 80702
Fri Feb 24 15:09:47 2023  4 relations: 70119
Fri Feb 24 15:09:47 2023  5 relations: 59310
Fri Feb 24 15:09:47 2023  6 relations: 50295
Fri Feb 24 15:09:47 2023  7 relations: 42595
Fri Feb 24 15:09:47 2023  8 relations: 34888
Fri Feb 24 15:09:47 2023  9 relations: 28573
Fri Feb 24 15:09:47 2023  10+ relations: 131455
Fri Feb 24 15:09:47 2023  heaviest cycle: 26 relations
Fri Feb 24 15:09:47 2023  commencing cycle optimization
Fri Feb 24 15:09:48 2023  start with 4031827 relations
Fri Feb 24 15:09:53 2023  pruned 68390 relations
Fri Feb 24 15:09:53 2023  memory use: 140.7 MB
Fri Feb 24 15:09:53 2023  distribution of cycle lengths:
Fri Feb 24 15:09:53 2023  1 relations: 79909
Fri Feb 24 15:09:53 2023  2 relations: 81901
Fri Feb 24 15:09:53 2023  3 relations: 82876
Fri Feb 24 15:09:53 2023  4 relations: 71046
Fri Feb 24 15:09:53 2023  5 relations: 60065
Fri Feb 24 15:09:53 2023  6 relations: 50549
Fri Feb 24 15:09:53 2023  7 relations: 42439
Fri Feb 24 15:09:53 2023  8 relations: 34587
Fri Feb 24 15:09:53 2023  9 relations: 28163
Fri Feb 24 15:09:53 2023  10+ relations: 126623
Fri Feb 24 15:09:53 2023  heaviest cycle: 26 relations
Fri Feb 24 15:09:53 2023  RelProcTime: 97
Fri Feb 24 15:09:53 2023  elapsed time 00:01:38
Fri Feb 24 15:09:53 2023  
Fri Feb 24 15:09:53 2023  
Fri Feb 24 15:09:53 2023  Msieve v. 1.52 (SVN 927)
Fri Feb 24 15:09:53 2023  random seeds: 5449fdc0 d1f3ed58
Fri Feb 24 15:09:53 2023  factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits)
Fri Feb 24 15:09:54 2023  searching for 15-digit factors
Fri Feb 24 15:09:54 2023  commencing number field sieve (117-digit input)
Fri Feb 24 15:09:54 2023  R0: -26900438653216238571759
Fri Feb 24 15:09:54 2023  R1: 4057985117857
Fri Feb 24 15:09:54 2023  A0: 1102963749009010475939176580
Fri Feb 24 15:09:54 2023  A1: -285633358560084339196176
Fri Feb 24 15:09:54 2023  A2: 10024305885388348967
Fri Feb 24 15:09:54 2023  A3: -500943484545414
Fri Feb 24 15:09:54 2023  A4: -7844567392
Fri Feb 24 15:09:54 2023  A5: 36000
Fri Feb 24 15:09:54 2023  skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3
Fri Feb 24 15:09:54 2023  
Fri Feb 24 15:09:54 2023  commencing linear algebra
Fri Feb 24 15:09:54 2023  read 658158 cycles
Fri Feb 24 15:09:55 2023  cycles contain 2415540 unique relations
Fri Feb 24 15:10:00 2023  read 2415540 relations
Fri Feb 24 15:10:02 2023  using 20 quadratic characters above 134217618
Fri Feb 24 15:10:08 2023  building initial matrix
Fri Feb 24 15:10:21 2023  memory use: 304.3 MB
Fri Feb 24 15:10:21 2023  read 658158 cycles
Fri Feb 24 15:10:21 2023  matrix is 657980 x 658158 (200.8 MB) with weight 62683848 (95.24/col)
Fri Feb 24 15:10:21 2023  sparse part has weight 44732531 (67.97/col)
Fri Feb 24 15:10:24 2023  filtering completed in 2 passes
Fri Feb 24 15:10:24 2023  matrix is 656288 x 656464 (200.6 MB) with weight 62610556 (95.38/col)
Fri Feb 24 15:10:24 2023  sparse part has weight 44710111 (68.11/col)
Fri Feb 24 15:10:25 2023  matrix starts at (0, 0)
Fri Feb 24 15:10:25 2023  matrix is 656288 x 656464 (200.6 MB) with weight 62610556 (95.38/col)
Fri Feb 24 15:10:25 2023  sparse part has weight 44710111 (68.11/col)
Fri Feb 24 15:10:25 2023  saving the first 48 matrix rows for later
Fri Feb 24 15:10:26 2023  matrix includes 64 packed rows
Fri Feb 24 15:10:26 2023  matrix is 656240 x 656464 (191.9 MB) with weight 50279253 (76.59/col)
Fri Feb 24 15:10:26 2023  sparse part has weight 43748480 (66.64/col)
Fri Feb 24 15:10:26 2023  using block size 8192 and superblock size 12582912 for processor cache size 131072 kB
Fri Feb 24 15:10:28 2023  commencing Lanczos iteration (32 threads)
Fri Feb 24 15:10:28 2023  memory use: 149.9 MB
Fri Feb 24 15:10:29 2023  linear algebra at 0.5%, ETA 0h 3m
Fri Feb 24 15:16:03 2023  lanczos halted after 10378 iterations (dim = 656240)
Fri Feb 24 15:16:03 2023  recovered 33 nontrivial dependencies
Fri Feb 24 15:16:03 2023  BLanczosTime: 369
Fri Feb 24 15:16:03 2023  elapsed time 00:06:10
Fri Feb 24 15:16:03 2023  
Fri Feb 24 15:16:03 2023  
Fri Feb 24 15:16:03 2023  Msieve v. 1.52 (SVN 927)
Fri Feb 24 15:16:03 2023  random seeds: 6dee971c 5744e77f
Fri Feb 24 15:16:03 2023  factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits)
Fri Feb 24 15:16:04 2023  searching for 15-digit factors
Fri Feb 24 15:16:04 2023  commencing number field sieve (117-digit input)
Fri Feb 24 15:16:04 2023  R0: -26900438653216238571759
Fri Feb 24 15:16:04 2023  R1: 4057985117857
Fri Feb 24 15:16:04 2023  A0: 1102963749009010475939176580
Fri Feb 24 15:16:04 2023  A1: -285633358560084339196176
Fri Feb 24 15:16:04 2023  A2: 10024305885388348967
Fri Feb 24 15:16:04 2023  A3: -500943484545414
Fri Feb 24 15:16:04 2023  A4: -7844567392
Fri Feb 24 15:16:04 2023  A5: 36000
Fri Feb 24 15:16:04 2023  skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3
Fri Feb 24 15:16:04 2023  
Fri Feb 24 15:16:04 2023  commencing square root phase
Fri Feb 24 15:16:04 2023  reading relations for dependency 1
Fri Feb 24 15:16:04 2023  read 328336 cycles
Fri Feb 24 15:16:04 2023  cycles contain 1209252 unique relations
Fri Feb 24 15:16:07 2023  read 1209252 relations
Fri Feb 24 15:16:10 2023  multiplying 1209252 relations
Fri Feb 24 15:16:38 2023  multiply complete, coefficients have about 55.10 million bits
Fri Feb 24 15:16:38 2023  initial square root is modulo 81317329
Fri Feb 24 15:17:18 2023  sqrtTime: 74
Fri Feb 24 15:17:18 2023  prp52 factor: 1068993152395198375738292760814540458645611940360943
Fri Feb 24 15:17:18 2023  prp66 factor: 474362239557972496236962420921124969998080682678403468008747846063
Fri Feb 24 15:17:18 2023  elapsed time 00:01:15
software ソフトウェア
GNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10183+329

c176

name 名前Bob Backstrom
date 日付March 22, 2023 19:22:57 UTC 2023 年 3 月 23 日 (木) 4 時 22 分 57 秒 (日本時間)
composite number 合成数
23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463<176>
prime factors 素因数
959612312023021884128905765579271511481<39>
102719503374511429582026977161779624811963439597<48>
237850258517966899553980142126137251318822886804510667268345125494582219927453042620762659<90>
factorization results 素因数分解の結果
Number: n
N=23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463  ( 176 digits)
SNFS difficulty: 184 digits.
Divisors found:

Thu Mar 23 06:14:52 2023  prp39 factor: 959612312023021884128905765579271511481
Thu Mar 23 06:14:52 2023  prp48 factor: 102719503374511429582026977161779624811963439597
Thu Mar 23 06:14:52 2023  prp90 factor: 237850258517966899553980142126137251318822886804510667268345125494582219927453042620762659
Thu Mar 23 06:14:52 2023  elapsed time 00:49:56 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.089).
Factorization parameters were as follows:
#
# N = 85x10^183+32 = 94(182)8
#
n: 23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463
m: 5000000000000000000000000000000000000
deg: 5
c5: 17
c0: 20
skew: 1.03
# Murphy_E = 6.304e-11
type: snfs
lss: 1
rlim: 8300000
alim: 8300000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8300000/8300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved  special-q in [100000, 15350000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1427362 hash collisions in 13637857 relations (13047759 unique)
Msieve: matrix is 1225199 x 1225426 (345.8 MB)

Sieving start time: 2023/03/23 01:12:06
Sieving end time  : 2023/03/23 05:24:41

Total sieving time: 4hrs 12min 35secs.

Total relation processing time: 0hrs 44min 6sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 2min 39sec.

Prototype def-par.txt line would be:
snfs,184,5,0,0,0,0,0,0,0,0,8300000,8300000,27,27,53,53,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10186+329

c134

name 名前Eric Jeancolas
date 日付June 16, 2023 05:12:17 UTC 2023 年 6 月 16 日 (金) 14 時 12 分 17 秒 (日本時間)
composite number 合成数
51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697<134>
prime factors 素因数
274945573139593468658977843752953712549668899013356313533<57>
187667666433068013962339257765500608785038670233298103321114525699248397396309<78>
factorization results 素因数分解の結果
51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697=274945573139593468658977843752953712549668899013356313533*187667666433068013962339257765500608785038670233298103321114525699248397396309

cado polynomial
n: 51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697
skew: 0.52
type: snfs
c0: 16
c5: 425
Y0: 10000000000000000000000000000000000000
Y1: -1
# f(x) = 425*x^5+16
# g(x) = -x+10000000000000000000000000000000000000

cado parameters (extracts)
tasks.lim0 = 9400000
tasks.lim1 = 9400000
tasks.lpb0 = 28
tasks.lpb1 = 28
tasks.sieve.mfb0 = 54
tasks.sieve.mfb1 = 54
tasks.sieve.lambda0 = 2.5
tasks.sieve.lambda1 = 2.5
tasks.I = 12
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 274945573139593468658977843752953712549668899013356313533 187667666433068013962339257765500608785038670233298103321114525699248397396309
Info:Square Root: Total cpu/real time for sqrt: 882.36/276.816
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 24172918
Info:Lattice Sieving: Average J: 1894.2 for 1605515 special-q, max bucket fill -bkmult 1.0,1s:1.156150
Info:Lattice Sieving: Total time: 294339s
Info:Linear Algebra: Total cpu/real time for bwc: 51493.2/13281.5
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 33015.49, WCT time 8446.82, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (55040 iterations)
Info:Linear Algebra: Lingen CPU time 347.1, WCT time 88.3
Info:Linear Algebra: Mksol: CPU time 17801.45,  WCT time 4600.29, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (27648 iterations)
Info:Generate Factor Base: Total cpu/real time for makefb: 3.99/2.13715
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 410.43/437.606
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 363.1s
Info:Generate Free Relations: Total cpu/real time for freerel: 119.99/31.1374
Info:Square Root: Total cpu/real time for sqrt: 882.36/276.816
Info:Quadratic Characters: Total cpu/real time for characters: 62.66/26.5256
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 103.19/99.2724
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 98.80000000000001s
Info:Filtering - Singleton removal: Total cpu/real time for purge: 286.12/274.279
Info:Filtering - Merging: Merged matrix has 1759077 rows and total weight 299606542 (170.3 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 456.27/125.482
Info:Filtering - Merging: Total cpu/real time for replay: 65.34/57.7263
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 606614/161656
Info:root: Cleaning up computation data in /tmp/cado.0b6ni94w
274945573139593468658977843752953712549668899013356313533 187667666433068013962339257765500608785038670233298103321114525699248397396309
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e62350cccMarch 24, 2023 12:58:37 UTC 2023 年 3 月 24 日 (金) 21 時 58 分 37 秒 (日本時間)

85×10188+329

c168

name 名前Bob Backstrom
date 日付March 31, 2023 17:37:41 UTC 2023 年 4 月 1 日 (土) 2 時 37 分 41 秒 (日本時間)
composite number 合成数
176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551<168>
prime factors 素因数
145613728444689436065693830544596711473003481546825581832699821399339268364618241<81>
1212017392231711036562872652002576540164272239899772244925216412125835651217733886667911<88>
factorization results 素因数分解の結果
Number: n
N=176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551  ( 168 digits)
SNFS difficulty: 189 digits.
Divisors found:

Fri Mar 31 22:07:26 2023  prp81 factor: 145613728444689436065693830544596711473003481546825581832699821399339268364618241
Fri Mar 31 22:07:26 2023  prp88 factor: 1212017392231711036562872652002576540164272239899772244925216412125835651217733886667911
Fri Mar 31 22:07:26 2023  elapsed time 01:30:50 (Msieve 1.44 - dependency 4)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.091).
Factorization parameters were as follows:
#
# N = 85x10^188+32 = 94(187)8
#
n: 176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551
m: 50000000000000000000000000000000000000
deg: 5
c5: 17
c0: 20
skew: 1.03
# Murphy_E = 3.934e-11
type: snfs
lss: 1
rlim: 10200000
alim: 10200000
lpbr: 27
lpba: 27
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 10200000/10200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 54/54
Sieved  special-q in [100000, 16360801)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1411264 hash collisions in 13070042 relations (12442855 unique)
Msieve: matrix is 1667284 x 1667509 (472.6 MB)

Sieving start time: 2023/03/31 14:53:16
Sieving end time  : 2023/03/31 20:36:21

Total sieving time: 5hrs 43min 5secs.

Total relation processing time: 1hrs 18min 54sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 8min 33sec.

Prototype def-par.txt line would be:
snfs,189,5,0,0,0,0,0,0,0,0,10200000,10200000,27,27,54,54,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)

85×10196+329

c151

name 名前Bob Backstrom
date 日付April 25, 2023 19:34:16 UTC 2023 年 4 月 26 日 (水) 4 時 34 分 16 秒 (日本時間)
composite number 合成数
2548156331705405369187402379356684274602668686734572099049028676985290647329180472752927888271357261242939645470778693375020375879639407459286094209921<151>
prime factors 素因数
33378861854978951846977637824400685434784767297<47>
76340419957288330795557462110021189024128000491121957258901056099393356728459419096540310073838611772993<104>
factorization results 素因数分解の結果
GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM]
Input number is 2548156331705405369187402379356684274602668686734572099049028676985290647329180472752927888271357261242939645470778693375020375879639407459286094209921 (151 digits)
Using B1=36060000, B2=192389627446, polynomial Dickson(12), sigma=1:3954634289
Step 1 took 74134ms
Step 2 took 28268ms
********** Factor found in step 2: 33378861854978951846977637824400685434784767297
Found prime factor of 47 digits: 33378861854978951846977637824400685434784767297
Prime cofactor 76340419957288330795557462110021189024128000491121957258901056099393356728459419096540310073838611772993 has 104 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 6, 2023 17:04:50 UTC 2023 年 3 月 7 日 (火) 2 時 4 分 50 秒 (日本時間)
2350Ignacio SantosApril 22, 2023 07:41:08 UTC 2023 年 4 月 22 日 (土) 16 時 41 分 8 秒 (日本時間)

85×10197+329

c168

name 名前Bob Backstrom
date 日付May 3, 2023 08:12:18 UTC 2023 年 5 月 3 日 (水) 17 時 12 分 18 秒 (日本時間)
composite number 合成数
108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211<168>
prime factors 素因数
5612471316965524375551871079394060534124640652439434174059254380163607094781<76>
19388854300630003464718454648164862433958211555101879905030452720031469506828195707728858031<92>
factorization results 素因数分解の結果
Number: n
N=108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211  ( 168 digits)
SNFS difficulty: 198 digits.
Divisors found:

Tue May  2 13:09:14 2023  prp76 factor: 5612471316965524375551871079394060534124640652439434174059254380163607094781
Tue May  2 13:09:14 2023  prp92 factor: 19388854300630003464718454648164862433958211555101879905030452720031469506828195707728858031
Tue May  2 13:09:14 2023  elapsed time 01:53:35 (Msieve 1.44 - dependency 1)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.109).
Factorization parameters were as follows:
#
# N = 85x10^197+32 = 94(196)8
#
n: 108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211
m: 1000000000000000000000000000000000000000
deg: 5
c5: 2125
c0: 8
skew: 0.33
# Murphy_E = 1.815e-11
type: snfs
lss: 1
rlim: 14100000
alim: 14100000
lpbr: 27
lpba: 27
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14100000/14100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 55/55
Sieved  special-q in [100000, 32650000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1974121 hash collisions in 14991122 relations (13837690 unique)
Msieve: matrix is 1915143 x 1915368 (546.4 MB)

Sieving start time: 2023/05/01 23:25:17
Sieving end time  : 2023/05/02 11:15:22

Total sieving time: 11hrs 50min 5secs.

Total relation processing time: 1hrs 47min 2sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 2min 35sec.

Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14100000,14100000,27,27,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 6, 2023 17:05:04 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 4 秒 (日本時間)
2350Ignacio SantosApril 24, 2023 15:26:56 UTC 2023 年 4 月 25 日 (火) 0 時 26 分 56 秒 (日本時間)

85×10198+329

c192

name 名前Bob Backstrom
date 日付May 8, 2023 23:05:09 UTC 2023 年 5 月 9 日 (火) 8 時 5 分 9 秒 (日本時間)
composite number 合成数
204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807<192>
prime factors 素因数
2053619762349217184820982998503312815414281508977713565063129187<64>
99435231050893783340951930725408585406116815696682531143487533118672675639099756329685013668651378797526758898276629651939799261<128>
factorization results 素因数分解の結果
Number: n
N=204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807  ( 192 digits)
SNFS difficulty: 199 digits.
Divisors found:

Sun May  7 20:20:19 2023  prp64 factor: 2053619762349217184820982998503312815414281508977713565063129187
Sun May  7 20:20:19 2023  prp128 factor: 99435231050893783340951930725408585406116815696682531143487533118672675639099756329685013668651378797526758898276629651939799261
Sun May  7 20:20:19 2023  elapsed time 02:12:10 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.080).
Factorization parameters were as follows:
#
# N = 85x10^198+32 = 94(197)8
#
n: 204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807
m: 1000000000000000000000000000000000
deg: 6
c6: 85
c0: 32
skew: 0.85
# Murphy_E = 1.578e-11
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 27
lpba: 27
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 55/55
Sieved  special-q in [100000, 33100000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1774046 hash collisions in 13999183 relations (13251355 unique)
Msieve: matrix is 2040047 x 2040271 (588.5 MB)

Sieving start time: 2023/05/07 05:21:25
Sieving end time  : 2023/05/07 18:07:52

Total sieving time: 12hrs 46min 27secs.

Total relation processing time: 2hrs 1min 31sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 6min 38sec.

Prototype def-par.txt line would be:
snfs,199,6,0,0,0,0,0,0,0,0,15000000,15000000,27,27,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e61000 / 2078Dmitry DomanovMarch 6, 2023 17:05:11 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 11 秒 (日本時間)

85×10199+329

c198

name 名前Bob Backstrom
date 日付May 4, 2023 01:01:12 UTC 2023 年 5 月 4 日 (木) 10 時 1 分 12 秒 (日本時間)
composite number 合成数
421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127<198>
prime factors 素因数
61074796389322738195257050048579345851369887803<47>
6903452963466515978951139699023818896274528723676983328322949484464592234469555197282343612075471626661826652009080053834340210756997048479788977951309<151>
factorization results 素因数分解の結果
Number: n
N=421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127  ( 198 digits)
SNFS difficulty: 199 digits.
Divisors found:

Thu May  4 10:53:11 2023  prp47 factor: 61074796389322738195257050048579345851369887803
Thu May  4 10:53:11 2023  prp151 factor: 6903452963466515978951139699023818896274528723676983328322949484464592234469555197282343612075471626661826652009080053834340210756997048479788977951309
Thu May  4 10:53:11 2023  elapsed time 03:25:50 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.110).
Factorization parameters were as follows:
#
# N = 85x10^199+32 = 94(198)8
#
n: 421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127
m: 5000000000000000000000000000000000000000
deg: 5
c5: 17
c0: 2
skew: 0.65
# Murphy_E = 1.593e-11
type: snfs
lss: 1
rlim: 14900000
alim: 14900000
lpbr: 27
lpba: 27
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14900000/14900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 55/55
Sieved  special-q in [100000, 33050000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1826936 hash collisions in 13682827 relations (12579011 unique)
Msieve: matrix is 2515273 x 2515499 (713.7 MB)

Sieving start time: 2023/05/03 18:12:48
Sieving end time  : 2023/05/04 07:27:01

Total sieving time: 13hrs 14min 13secs.

Total relation processing time: 3hrs 15min 10sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 6min 38sec.

Prototype def-par.txt line would be:
snfs,199,5,0,0,0,0,0,0,0,0,14900000,14900000,27,27,55,55,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e61000 / 2078Dmitry DomanovMarch 6, 2023 17:05:18 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 18 秒 (日本時間)

85×10200+329

c191

name 名前Bob Backstrom
date 日付June 16, 2023 17:36:33 UTC 2023 年 6 月 17 日 (土) 2 時 36 分 33 秒 (日本時間)
composite number 合成数
23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193<191>
prime factors 素因数
28339637224868652042042505015839317458463409939567090871953223<62>
817566025483572289142229246178916070573081143225737767153877146221020750246306558776025333514432991268692616678334552864572710391<129>
factorization results 素因数分解の結果
Number: n
N=23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193  ( 191 digits)
SNFS difficulty: 201 digits.
Divisors found:

Sat Jun 17 03:29:03 2023  prp62 factor: 28339637224868652042042505015839317458463409939567090871953223
Sat Jun 17 03:29:03 2023  prp129 factor: 817566025483572289142229246178916070573081143225737767153877146221020750246306558776025333514432991268692616678334552864572710391
Sat Jun 17 03:29:03 2023  elapsed time 02:37:24 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.090).
Factorization parameters were as follows:
#
# N = 85x10^200+32 = 94(199)8
#
n: 23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193
m: 10000000000000000000000000000000000000000
deg: 5
c5: 85
c0: 32
skew: 0.82
# Murphy_E = 1.342e-11
type: snfs
lss: 1
rlim: 16200000
alim: 16200000
lpbr: 27
lpba: 27
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 16200000/16200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 56/56
Sieved  special-q in [100000, 40900000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2164197 hash collisions in 15305237 relations (13935189 unique)
Msieve: matrix is 2208929 x 2209154 (626.0 MB)

Sieving start time: 2023/06/16 08:35:45
Sieving end time  : 2023/06/17 00:51:19

Total sieving time: 16hrs 15min 34secs.

Total relation processing time: 2hrs 23min 44sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 5min 21sec.

Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,27,27,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e634001000Dmitry DomanovMarch 16, 2023 18:49:36 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 36 秒 (日本時間)
2400cccJune 9, 2023 03:15:31 UTC 2023 年 6 月 9 日 (金) 12 時 15 分 31 秒 (日本時間)

85×10202+329

c174

name 名前Bob Backstrom
date 日付August 11, 2023 21:19:11 UTC 2023 年 8 月 12 日 (土) 6 時 19 分 11 秒 (日本時間)
composite number 合成数
175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407<174>
prime factors 素因数
49463766692349517696002930292795092515518544236559<50>
8495990539753191101036990017431508972374301857752439557843491<61>
418068801876526346196825310325835066922002721087888569253298003<63>
factorization results 素因数分解の結果
Number: n
N=175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407  ( 174 digits)
SNFS difficulty: 203 digits.
Divisors found:

Sat Aug 12 06:48:02 2023  prp50 factor: 49463766692349517696002930292795092515518544236559
Sat Aug 12 06:48:02 2023  prp61 factor: 8495990539753191101036990017431508972374301857752439557843491
Sat Aug 12 06:48:02 2023  prp63 factor: 418068801876526346196825310325835066922002721087888569253298003
Sat Aug 12 06:48:02 2023  elapsed time 02:30:08 (Msieve 1.44 - dependency 2)

Version: 
Total time: 0.00 hours.
Scaled time: 0.00 units (timescale=2.095).
Factorization parameters were as follows:
#
# N = 85x10^202+32 = 94(201)8
#
n: 175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407
m: 10000000000000000000000000000000000000000
deg: 5
c5: 2125
c0: 8
skew: 0.33
# Murphy_E = 1.121e-11
type: snfs
lss: 1
rlim: 17100000
alim: 17100000
lpbr: 27
lpba: 27
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 17100000/17100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 56/56
Sieved  special-q in [100000, 34150000)
Primes: , , 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2956297 hash collisions in 17513110 relations (15328181 unique)
Msieve: matrix is 2119277 x 2119502 (603.3 MB)

Sieving start time: 2023/08/11 15:07:05
Sieving end time  : 2023/08/12 04:17:32

Total sieving time: 13hrs 10min 27secs.

Total relation processing time: 2hrs 18min 50sec.
Matrix solve time: 0.00 hours.
Total square root time: 0hrs 6min 39sec.

Prototype def-par.txt line would be:
snfs,203,5,0,0,0,0,0,0,0,0,17100000,17100000,27,27,56,56,2.6,2.6,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 15, 2023 16:55:42 UTC 2023 年 3 月 16 日 (木) 1 時 55 分 42 秒 (日本時間)
2350Ignacio SantosJuly 12, 2023 06:39:59 UTC 2023 年 7 月 12 日 (水) 15 時 39 分 59 秒 (日本時間)

85×10205+329

c177

name 名前Dmitry Domanov
date 日付November 2, 2023 12:27:13 UTC 2023 年 11 月 2 日 (木) 21 時 27 分 13 秒 (日本時間)
composite number 合成数
296867084594011906782608149093574441614167711621535970933458378183435736247028695912462501622187968068592968966649629020400754452500188279854497857127547179683630578348182279173<177>
prime factors 素因数
117990031071749863354303456174885345683850681<45>
2516035311606000993255737521499172951397152807017823463549158216382376993359368495779226485870758909926411434273099953815056595330733<133>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3983789501
Step 1 took 9332ms
Step 2 took 3791ms
********** Factor found in step 2: 117990031071749863354303456174885345683850681
Found prime factor of 45 digits: 117990031071749863354303456174885345683850681
Prime cofactor 2516035311606000993255737521499172951397152807017823463549158216382376993359368495779226485870758909926411434273099953815056595330733 has 133 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622001000Dmitry DomanovMarch 15, 2023 16:55:56 UTC 2023 年 3 月 16 日 (木) 1 時 55 分 56 秒 (日本時間)
1200Dmitry DomanovNovember 2, 2023 12:16:18 UTC 2023 年 11 月 2 日 (木) 21 時 16 分 18 秒 (日本時間)

85×10206+329

c169

name 名前Bob Backstrom
date 日付August 10, 2024 23:03:13 UTC 2024 年 8 月 11 日 (日) 8 時 3 分 13 秒 (日本時間)
composite number 合成数
7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167<169>
prime factors 素因数
144113472307488034291111490643851280738338204225097299<54>
7344997807741093430260720214738862344899460953402685309<55>
6712580421917530248788460949464244534520559313920478757052737<61>
factorization results 素因数分解の結果
08/07/24 18:20:45 v1.34.5 @ RYZEN-9,
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, ****************************
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, Starting factorization of 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, using pretesting plan: normal
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, ****************************
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 47
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 73
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 199
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C199
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C199
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, prp8 = 13885433
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C192
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C192
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C192
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00
08/07/24 18:20:45 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 59.08
08/07/24 18:20:46 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C192 input, B1=2K, B2=gmp-ecm default
08/07/24 18:20:46 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18
08/07/24 18:20:46 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 59.08
08/07/24 18:20:48 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C192 input, B1=11K, B2=gmp-ecm default
08/07/24 18:20:48 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24
08/07/24 18:20:48 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 59.08
08/07/24 18:20:49 v1.34.5 @ RYZEN-9, prp23 = 48681612161736256976719 (curve 6 stg2 B1=50000 sigma=3811070331 thread=0)
08/07/24 18:20:49 v1.34.5 @ RYZEN-9, Finished 6 curves using Lenstra ECM method on C192 input, B1=50K, B2=gmp-ecm default
08/07/24 18:20:49 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.38
08/07/24 18:20:49 v1.34.5 @ RYZEN-9, scheduled 208 curves at B1=50000 toward target pretesting depth of 52.00
08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c208: 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: input divides 85*10^206 + 32
08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
08/07/24 18:21:34 v1.34.5 @ RYZEN-9, gen: best 3 polynomials:
n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
# 85*10^206+32, difficulty: 208.93, anorm: 1.65e+032, rnorm: 1.39e+047
# scaled difficulty: 211.42, suggest sieving rational side
# size = 1.585e-014, alpha = 0.547, combined = 6.366e-012, rroots = 1
type: snfs
size: 208
skew: 0.5190
c5: 425
c0: 16
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
# 85*10^206+32, difficulty: 209.93, anorm: 2.61e+038, rnorm: 1.59e+040
# scaled difficulty: 209.93, suggest sieving algebraic side
# size = 1.905e-010, alpha = -0.463, combined = 5.295e-012, rroots = 0
type: snfs
size: 209
skew: 0.3944
c6: 2125
c0: 8
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
# 85*10^206+32, difficulty: 209.13, anorm: 9.33e+032, rnorm: 1.96e+047
# scaled difficulty: 211.52, suggest sieving rational side
# size = 9.986e-015, alpha = -0.146, combined = 4.871e-012, rroots = 1
type: snfs
size: 209
skew: 1.0379
c5: 425
c0: 512
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
08/07/24 18:21:36 v1.34.5 @ RYZEN-9, test: fb generation took 1.7188 seconds
08/07/24 18:21:36 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000
skew: 0.5190
c5: 425
c0: 16
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
08/07/24 18:24:43 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/07/24 18:24:46 v1.34.5 @ RYZEN-9, test: fb generation took 2.4844 seconds
08/07/24 18:24:46 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the algebraic side over range 21400000-21402000
skew: 0.3944
c6: 2125
c0: 8
Y1: -1
Y0: 10000000000000000000000000000000000
m: 10000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
08/07/24 18:27:39 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/07/24 18:27:40 v1.34.5 @ RYZEN-9, test: fb generation took 1.7500 seconds
08/07/24 18:27:40 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000
skew: 1.0379
c5: 425
c0: 512
Y1: -1
Y0: 200000000000000000000000000000000000000000
m: 200000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
08/07/24 18:30:53 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/07/24 18:30:53 v1.34.5 @ RYZEN-9, gen: selected polynomial:
n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
# 85*10^206+32, difficulty: 208.93, anorm: 1.65e+032, rnorm: 1.39e+047
# scaled difficulty: 211.42, suggest sieving rational side
# size = 1.585e-014, alpha = 0.547, combined = 6.366e-012, rroots = 1
type: snfs
size: 208
skew: 0.5190
c5: 425
c0: 16
Y1: -1
Y0: 100000000000000000000000000000000000000000
m: 100000000000000000000000000000000000000000
08/07/24 18:30:53 v1.34.5 @ RYZEN-9, test: test sieving took 558.89 seconds
08/10/24 10:28:14 v1.34.5 @ RYZEN-9, nfs: previous data file found - commencing search for last special-q
08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: resuming with filtering
08/10/24 19:59:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/10/24 20:01:31 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22196714
08/10/24 21:32:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/10/24 21:34:39 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23383649
08/10/24 23:05:03 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/10/24 23:07:23 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24553845
08/11/24 00:48:47 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/11/24 00:51:15 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25860807
08/11/24 02:00:08 v1.34.5 @ RYZEN-9, nfs: previous data file found - commencing search for last special-q
08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file
08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167
08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: resuming with filtering
08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/11/24 02:02:39 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27054842
08/11/24 03:55:58 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering
08/11/24 04:00:28 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra
08/11/24 07:43:05 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt
08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp54 = 144113472307488034291111490643851280738338204225097299
08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp61 = 6712580421917530248788460949464244534520559313920478757052737
08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp55 = 7344997807741093430260720214738862344899460953402685309
08/11/24 07:56:51 v1.34.5 @ RYZEN-9, NFS elapsed time = 21402.4019 seconds.
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622001000Dmitry DomanovMarch 15, 2023 16:56:06 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 6 秒 (日本時間)
1200Dmitry DomanovNovember 2, 2023 12:27:59 UTC 2023 年 11 月 2 日 (木) 21 時 27 分 59 秒 (日本時間)
4511e64480Ignacio SantosAugust 3, 2024 15:25:16 UTC 2024 年 8 月 4 日 (日) 0 時 25 分 16 秒 (日本時間)

85×10207+329

c166

name 名前Dmitry Domanov
date 日付March 16, 2023 14:40:03 UTC 2023 年 3 月 16 日 (木) 23 時 40 分 3 秒 (日本時間)
composite number 合成数
5233601169458312618266730466793382529779090765562336994784403007329117923218259302875980569945650372765225769313767255794897881879664201363970321056129266295266698409<166>
prime factors 素因数
4397632143450469606721115273180781<34>
composite cofactor 合成数の残り
1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989<133>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4251394510
Step 1 took 8189ms
Step 2 took 4455ms
********** Factor found in step 2: 4397632143450469606721115273180781
Found prime factor of 34 digits: 4397632143450469606721115273180781
Composite cofactor 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989 has 133 digits

c133

name 名前Eric Jeancolas
date 日付March 22, 2023 13:32:50 UTC 2023 年 3 月 22 日 (水) 22 時 32 分 50 秒 (日本時間)
composite number 合成数
1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989<133>
prime factors 素因数
2244638928008091949003222373106811331617936069245713<52>
530194520473527515212826266218039255421296434361509943520253982161398553888863453<81>
factorization results 素因数分解の結果
1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989=2244638928008091949003222373106811331617936069245713*530194520473527515212826266218039255421296434361509943520253982161398553888863453

cado polynomial
n: 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989
skew: 33015.593
c0: -15407799571893630232486166748
c1: 3468519727516751488104128
c2: -147986859946388418627
c3: -3420690670489961
c4: -83543248242
c5: -932760
Y0: -23806934567362452853756247
Y1: 272778890506612679
# MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.704e-07
# f(x) = -932760*x^5-83543248242*x^4-3420690670489961*x^3-147986859946388418627*x^2+3468519727516751488104128*x-15407799571893630232486166748
# g(x) = 272778890506612679*x-23806934567362452853756247

cado parameters (extracts)
tasks.lim0 = 3341873
tasks.lim1 = 16407032
tasks.lpb0 = 27
tasks.lpb1 = 28
tasks.sieve.mfb0 = 51
tasks.sieve.mfb1 = 62
tasks.I = 13
tasks.linalg.m = 64
tasks.linalg.n = 64
tasks.linalg.characters.nchar = 50

cado log (extracts)
Info:Square Root: Factors: 530194520473527515212826266218039255421296434361509943520253982161398553888863453 2244638928008091949003222373106811331617936069245713
Info:Square Root: Total cpu/real time for sqrt: 3866.84/495.409
Info:Polynomial Selection (root optimized): Aggregate statistics:
Info:Polynomial Selection (root optimized): Total time: 14502.9
Info:Polynomial Selection (root optimized): Rootsieve time: 14497.1
Info:Filtering - Merging: Merged matrix has 1143546 rows and total weight 194995395 (170.5 entries per row on average)
Info:Filtering - Merging: Total cpu/real time for merge: 476.98/76.4125
Info:Filtering - Merging: Total cpu/real time for replay: 61.08/48.9708
Info:Linear Algebra: Total cpu/real time for bwc: 111385/24591.4
Info:Linear Algebra: Aggregate statistics:
Info:Linear Algebra: Krylov: CPU time 32804.73, WCT time 7843.3, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.05, comm-wait 0.0 (35840 iterations)
Info:Linear Algebra: Lingen CPU time 60760.15, WCT time 12651.06
Info:Linear Algebra: Mksol: CPU time 17444.35,  WCT time 3997.55, iteration CPU time 0.17, COMM 0.0, cpu-wait 0.05, comm-wait 0.0 (17920 iterations)
Info:Filtering - Singleton removal: Total cpu/real time for purge: 216.54/188.7
Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 201.34/190.105
Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 189.8s
Info:Generate Factor Base: Total cpu/real time for makefb: 36.1/9.4887
Info:Square Root: Total cpu/real time for sqrt: 3866.84/495.409
Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 437.12/348.238
Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics:
Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 326.8s
Info:Lattice Sieving: Aggregate statistics:
Info:Lattice Sieving: Total number of relations: 17025964
Info:Lattice Sieving: Average J: 3793.98 for 473182 special-q, max bucket fill -bkmult 1.0,1s:1.151310
Info:Lattice Sieving: Total time: 533126s
Info:Polynomial Selection (size optimized): Aggregate statistics:
Info:Polynomial Selection (size optimized): potential collisions: 53395.3
Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54242/38.950/47.462/52.010/0.994
Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44383/37.470/42.224/48.190/0.947
Info:Polynomial Selection (size optimized): Total time: 27120.7
Info:Quadratic Characters: Total cpu/real time for characters: 65.06/19.9805
Info:Generate Free Relations: Total cpu/real time for freerel: 577.37/117.217
Info:HTTP server: Shutting down HTTP server
Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 947058/120630
Info:root: Cleaning up computation data in /tmp/cado.zwu1xi8y
530194520473527515212826266218039255421296434361509943520253982161398553888863453 2244638928008091949003222373106811331617936069245713
software ソフトウェア
cado-nfs-3.0.0
execution environment 実行環境
Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)]
GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs)

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 15, 2023 16:56:14 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 14 秒 (日本時間)
2350Ignacio SantosMarch 17, 2023 16:14:04 UTC 2023 年 3 月 18 日 (土) 1 時 14 分 4 秒 (日本時間)
4511e64480Ignacio SantosMarch 17, 2023 16:54:55 UTC 2023 年 3 月 18 日 (土) 1 時 54 分 55 秒 (日本時間)

85×10208+329

c188

name 名前Bob Backstrom
date 日付November 1, 2024 23:31:20 UTC 2024 年 11 月 2 日 (土) 8 時 31 分 20 秒 (日本時間)
composite number 合成数
39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007<188>
prime factors 素因数
642401944112724635030372996752751301495692132805609644499347345148453077<72>
61967503333649557813298057428462141267519024940265034985851474763999567278460277743731420925099894771849848390218091<116>
factorization results 素因数分解の結果
10/31/24 10:32:57,
10/31/24 10:32:57, ****************************
10/31/24 10:32:57, Starting factorization of 850000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
10/31/24 10:32:57, using pretesting plan: normal
10/31/24 10:32:57, no tune info: using qs/gnfs crossover of 100 digits
10/31/24 10:32:57, no tune info: using qs/snfs crossover of 95 digits
10/31/24 10:32:57, ****************************
10/31/24 10:32:57, div: found prime factor = 2
10/31/24 10:32:57, div: found prime factor = 2
10/31/24 10:32:57, div: found prime factor = 2
10/31/24 10:32:57, div: found prime factor = 2
10/31/24 10:32:57, div: found prime factor = 2
10/31/24 10:32:57, div: found prime factor = 3
10/31/24 10:32:57, div: found prime factor = 3
10/31/24 10:32:57, rho: x^2 + 3, starting 1000 iterations on C208
10/31/24 10:32:57, prp8 = 63653039
10/31/24 10:32:57, rho: x^2 + 3, starting 1000 iterations on C200
10/31/24 10:32:57, rho: x^2 + 2, starting 1000 iterations on C200
10/31/24 10:32:57, rho: x^2 + 1, starting 1000 iterations on C200
10/31/24 10:32:58, nfs: input divides 85*10^208 + 32
10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151
10/31/24 10:32:58, nfs: input divides 85*10^208 + 32
10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151
10/31/24 10:32:58, nfs: commencing snfs on c200: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151
10/31/24 10:32:58, pm1: starting B1 = 150K, B2 = gmp-ecm default on C200
10/31/24 10:32:58, nfs: input divides 85*10^208 + 32
10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151
10/31/24 10:32:58, nfs: commencing snfs on c200: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151
10/31/24 10:32:58, current ECM pretesting depth: 0.000000
10/31/24 10:32:58, scheduled 30 curves at B1=2000 toward target pretesting depth of 47.863780
10/31/24 10:32:58, ecm: commencing 32 curves using AVX-ECM method on 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151, B1=2k, B2=200k
10/31/24 10:32:58, ecm: finished 0 curves using AVX-ECM method on C200 input, B1=2k, B2=200k
10/31/24 10:32:58, prp13 = 1164760004593 (curve=5 stg=2 B1=2000 B2=200000 sigma=4051810923 thread=0 vecpos=5)
10/31/24 10:32:58, nfs: input divides 85*10^208 + 32
10/31/24 10:32:58, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:58, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:58, current ECM pretesting depth: 0.000000
10/31/24 10:32:58, scheduled 30 curves at B1=2000 toward target pretesting depth of 44.991953
10/31/24 10:32:58, ecm: commencing 32 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=2k, B2=200k
10/31/24 10:32:58, ecm: finished 128 curves using AVX-ECM method on C188 input, B1=2k, B2=200k
10/31/24 10:32:58, nfs: input divides 85*10^208 + 32
10/31/24 10:32:58, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:58, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:58, current ECM pretesting depth: 15.758294
10/31/24 10:32:58, scheduled 74 curves at B1=11000 toward target pretesting depth of 44.991953
10/31/24 10:32:58, ecm: commencing 80 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=11k, B2=1100k
10/31/24 10:32:59, ecm: finished 128 curves using AVX-ECM method on C188 input, B1=11k, B2=1100k
10/31/24 10:32:59, nfs: input divides 85*10^208 + 32
10/31/24 10:32:59, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:59, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:32:59, current ECM pretesting depth: 20.426864
10/31/24 10:32:59, scheduled 214 curves at B1=50000 toward target pretesting depth of 44.991953
10/31/24 10:32:59, ecm: commencing 224 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=50k, B2=5M
10/31/24 10:33:01, ecm: finished 256 curves using AVX-ECM method on C188 input, B1=50k, B2=5M
10/31/24 10:33:02, nfs: input divides 85*10^208 + 32
10/31/24 10:33:02, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:02, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:02, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C188
10/31/24 10:33:03, nfs: input divides 85*10^208 + 32
10/31/24 10:33:03, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:03, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:03, current ECM pretesting depth: 25.402199
10/31/24 10:33:03, scheduled 430 curves at B1=250000 toward target pretesting depth of 44.991953
10/31/24 10:33:04, ecm: commencing 432 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=250k, B2=25M
10/31/24 10:33:57, nfs: commencing nfs on c210: 850000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
10/31/24 10:33:57, nfs: input divides 85*10^208 + 32
10/31/24 10:33:57, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:57, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
10/31/24 10:33:57, gen: best 3 polynomials:
n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
# 85*10^208+32, difficulty: 211.33, anorm: 9.85e+41, rnorm: 3.03e+41
# scaled difficulty: 211.43, suggest sieving algebraic side
# size = 2.198e-10, alpha = 0.150, combined = 5.853e-12, rroots = 0
type: snfs
size: 211
skew: 0.9154
c6: 17
c0: 10
Y1: -1
Y0: 50000000000000000000000000000000000
n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
# 85*10^208+32, difficulty: 211.33, anorm: 2.41e+35, rnorm: 2.85e+48
# scaled difficulty: 213.94, suggest sieving rational side
# size = 1.392e-14, alpha = 1.170, combined = 5.727e-12, rroots = 1
type: snfs
size: 211
skew: 1.0330
c5: 17
c0: 20
Y1: -1
Y0: 500000000000000000000000000000000000000000
n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
# 85*10^208+32, difficulty: 209.93, anorm: 2.69e+36, rnorm: 1.27e+48
# scaled difficulty: 212.26, suggest sieving rational side
# size = 1.064e-14, alpha = 0.365, combined = 5.034e-12, rroots = 1
type: snfs
size: 209
skew: 0.2066
c5: 10625
c0: 4
Y1: -1
Y0: 100000000000000000000000000000000000000000
10/31/24 10:33:59, test: fb generation took 2.4103 seconds
10/31/24 10:33:59, test: commencing test sieving of polynomial 0 on the algebraic side over range 22600000-22601000
skew: 0.9154
c6: 17
c0: 10
Y1: -1
Y0: 50000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/31/24 10:34:48, nfs: parsing special-q from .dat file
10/31/24 10:34:49, test: fb generation took 1.7349 seconds
10/31/24 10:34:49, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23801000
skew: 1.0330
c5: 17
c0: 20
Y1: -1
Y0: 500000000000000000000000000000000000000000
rlim: 23800000
alim: 23800000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/31/24 10:36:33, nfs: parsing special-q from .dat file
10/31/24 10:36:35, test: fb generation took 1.7087 seconds
10/31/24 10:36:35, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22601000
skew: 0.2066
c5: 10625
c0: 4
Y1: -1
Y0: 100000000000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/31/24 10:38:03, nfs: parsing special-q from .dat file
10/31/24 10:38:03, gen: selected polynomial:
n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007
# 85*10^208+32, difficulty: 211.33, anorm: 9.85e+41, rnorm: 3.03e+41
# scaled difficulty: 211.43, suggest sieving algebraic side
# size = 2.198e-10, alpha = 0.150, combined = 5.853e-12, rroots = 0
type: snfs
size: 211
skew: 0.9154
c6: 17
c0: 10
Y1: -1
Y0: 50000000000000000000000000000000000
10/31/24 10:38:05, test: fb generation took 2.3466 seconds
10/31/24 10:38:05, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22601000
skew: 0.9154
c6: 17
c0: 10
Y1: -1
Y0: 50000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
10/31/24 10:39:29, nfs: parsing special-q from .dat file
11/02/24 03:32:44, nfs: commencing msieve filtering
11/02/24 07:23:07, nfs: commencing msieve linear algebra
11/02/24 09:00:57, nfs: commencing msieve sqrt
11/02/24 09:32:39, prp116 = 61967503333649557813298057428462141267519024940265034985851474763999567278460277743731420925099894771849848390218091
11/02/24 09:32:39, C23 = 21352468031423541540576
11/02/24 09:32:39, prp72 = 642401944112724635030372996752751301495692132805609644499347345148453077
10/31/24 10:38:03, test: test sieving took 245.79 seconds
10/31/24 10:39:29, test: test sieving took 86.24 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622001000Dmitry DomanovMarch 16, 2023 18:49:31 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 31 秒 (日本時間)
1200Dmitry DomanovNovember 3, 2023 08:20:18 UTC 2023 年 11 月 3 日 (金) 17 時 20 分 18 秒 (日本時間)

85×10209+329

c187

name 名前Bob Backstrom
date 日付November 24, 2024 18:51:51 UTC 2024 年 11 月 25 日 (月) 3 時 51 分 51 秒 (日本時間)
composite number 合成数
2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681<187>
prime factors 素因数
164531219231246697482896933163922323498200239738538831633713729803459371399249937<81>
17526423605170560784278488862242991785623625241231791023774285662736025022566476563117388398114942000026513<107>
factorization results 素因数分解の結果
11/21/24 17:57:10 v1.34.5 @ TRIGKEY,
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, ****************************
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, Starting factorization of 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, using pretesting plan: normal
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, ****************************
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C208
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C208
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C208
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C208
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 64.00
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C208 input, B1=2K, B2=gmp-ecm default
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18
11/21/24 17:57:10 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 64.00
11/21/24 17:57:13 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C208 input, B1=11K, B2=gmp-ecm default
11/21/24 17:57:13 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24
11/21/24 17:57:13 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 64.00
11/21/24 17:57:27 v1.34.5 @ TRIGKEY, prp22 = 3411642870409219446323 (curve 102 stg2 B1=50000 sigma=3848723826 thread=0)
11/21/24 17:57:27 v1.34.5 @ TRIGKEY, Finished 102 curves using Lenstra ECM method on C208 input, B1=50K, B2=gmp-ecm default
11/21/24 17:57:27 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 22.63
11/21/24 17:57:27 v1.34.5 @ TRIGKEY, scheduled 112 curves at B1=50000 toward target pretesting depth of 57.54
11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c211: 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032
11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: input divides 85*10^209 + 32
11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c187: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
11/21/24 17:58:26 v1.34.5 @ TRIGKEY, gen: best 3 polynomials:
n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
# 85*10^209+32, difficulty: 211.63, anorm: 1.17e+031, rnorm: 6.19e+047
# scaled difficulty: 214.42, suggest sieving rational side
# size = 1.541e-014, alpha = 1.785, combined = 6.023e-012, rroots = 1
type: snfs
size: 211
skew: 0.6518
c5: 17
c0: 2
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
# 85*10^209+32, difficulty: 211.63, anorm: 8.25e+036, rnorm: 6.33e+040
# scaled difficulty: 211.63, suggest sieving algebraic side
# size = 2.204e-010, alpha = 1.099, combined = 5.864e-012, rroots = 0
type: snfs
size: 211
skew: 0.6236
c6: 17
c0: 1
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
# 85*10^209+32, difficulty: 210.00, anorm: 6.60e+031, rnorm: 8.76e+047
# scaled difficulty: 212.69, suggest sieving rational side
# size = 1.090e-014, alpha = 0.745, combined = 4.919e-012, rroots = 1
type: snfs
size: 210
skew: 1.3036
c5: 17
c0: 64
Y1: -1
Y0: 1000000000000000000000000000000000000000000
m: 1000000000000000000000000000000000000000000
11/21/24 17:58:28 v1.34.5 @ TRIGKEY, test: fb generation took 1.6262 seconds
11/21/24 17:58:28 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000
skew: 0.6518
c5: 17
c0: 2
Y1: -1
Y0: 500000000000000000000000000000000000000000
m: 500000000000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
11/21/24 18:01:27 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/21/24 18:01:29 v1.34.5 @ TRIGKEY, test: fb generation took 2.4052 seconds
11/21/24 18:01:29 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the algebraic side over range 22600000-22602000
skew: 0.6236
c6: 17
c0: 1
Y1: -1
Y0: 50000000000000000000000000000000000
m: 50000000000000000000000000000000000
rlim: 22600000
alim: 22600000
mfbr: 58
mfba: 58
lpbr: 29
lpba: 29
rlambda: 2.60
alambda: 2.60
11/21/24 18:04:55 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/21/24 18:04:56 v1.34.5 @ TRIGKEY, test: fb generation took 1.5976 seconds
11/21/24 18:04:56 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000
skew: 1.3036
c5: 17
c0: 64
Y1: -1
Y0: 1000000000000000000000000000000000000000000
m: 1000000000000000000000000000000000000000000
rlim: 21400000
alim: 21400000
mfbr: 56
mfba: 56
lpbr: 28
lpba: 28
rlambda: 2.60
alambda: 2.60
11/21/24 18:07:53 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file
11/21/24 18:07:53 v1.34.5 @ TRIGKEY, gen: selected polynomial:
n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681
# 85*10^209+32, difficulty: 210.00, anorm: 6.60e+031, rnorm: 8.76e+047
# scaled difficulty: 212.69, suggest sieving rational side
# size = 1.090e-014, alpha = 0.745, combined = 4.919e-012, rroots = 1
type: snfs
size: 210
skew: 1.3036
c5: 17
c0: 64
Y1: -1
Y0: 1000000000000000000000000000000000000000000
m: 1000000000000000000000000000000000000000000
11/23/24 13:08:12 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/23/24 13:10:16 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22120929
11/23/24 15:40:10 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/23/24 15:42:20 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23273809
11/23/24 18:28:18 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/23/24 18:30:34 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24544871
11/23/24 21:15:04 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/23/24 21:17:25 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25793516
11/24/24 00:18:19 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/24/24 00:20:47 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 27151423
11/24/24 03:36:58 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering
11/24/24 03:41:37 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra
11/24/24 07:01:43 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt
11/24/24 07:08:31 v1.34.5 @ TRIGKEY, prp107 = 17526423605170560784278488862242991785623625241231791023774285662736025022566476563117388398114942000026513
11/24/24 07:08:31 v1.34.5 @ TRIGKEY, prp81 = 164531219231246697482896933163922323498200239738538831633713729803459371399249937
11/24/24 07:08:31 v1.34.5 @ TRIGKEY, NFS elapsed time = 220205.2300 seconds.
11/24/24 07:08:31 v1.34.5 @ TRIGKEY,
11/24/24 07:08:31 v1.34.5 @ TRIGKEY,
11/21/24 18:07:53 v1.34.5 @ TRIGKEY, test: test sieving took 567.05 seconds
software ソフトウェア
YAFU

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e620781792Dmitry DomanovNovember 8, 2023 19:28:45 UTC 2023 年 11 月 9 日 (木) 4 時 28 分 45 秒 (日本時間)
286ebinaSeptember 24, 2024 03:05:02 UTC 2024 年 9 月 24 日 (火) 12 時 5 分 2 秒 (日本時間)

85×10211+329

c202

name 名前Dmitry Domanov
date 日付November 8, 2023 20:50:27 UTC 2023 年 11 月 9 日 (木) 5 時 50 分 27 秒 (日本時間)
composite number 合成数
9440122258036260220201096755731761741282265483602433716080722480630664748823334384091351943501326920110356541392969357523787977052544601151682263495392741090836329976423015232935602226745242900095955391<202>
prime factors 素因数
132191739204450326684655639695934967579<39>
composite cofactor 合成数の残り
71412346299763729486126533983072941675874531175259625396823106381841316784814458412537002650304198883077204128700519727551368086128601223989834213469090880158416429<164>
factorization results 素因数分解の結果
GPU: factor 132191739204450326684655639695934967579 found in Step 1 with curve 1370 (-sigma 3:640993744)
Computing 1792 Step 1 took 221ms of CPU time / 175289ms of GPU time
Throughput: 10.223 curves per second (on average 97.82ms per Step 1)
********** Factor found in step 1: 132191739204450326684655639695934967579
Found prime factor of 39 digits: 132191739204450326684655639695934967579
Composite cofactor 71412346299763729486126533983072941675874531175259625396823106381841316784814458412537002650304198883077204128700519727551368086128601223989834213469090880158416429 has 164 digits
Peak memory usage: 9426MB

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e620781792Dmitry DomanovNovember 8, 2023 19:28:54 UTC 2023 年 11 月 9 日 (木) 4 時 28 分 54 秒 (日本時間)
286ebinaSeptember 24, 2024 03:41:26 UTC 2024 年 9 月 24 日 (火) 12 時 41 分 26 秒 (日本時間)

85×10213+329

c189

composite cofactor 合成数の残り
147320299206995115549913114598547032372795751156206886082596868245640823742182277757417563365268845816402376358025733991478700440461039945391841348437065172448507448951150652538726938564501<189>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 16, 2023 18:49:25 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 25 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 06:30:28 UTC 2024 年 9 月 25 日 (水) 15 時 30 分 28 秒 (日本時間)

85×10214+329

c163

name 名前Dmitry Domanov
date 日付March 16, 2023 17:54:23 UTC 2023 年 3 月 17 日 (金) 2 時 54 分 23 秒 (日本時間)
composite number 合成数
1272431362342632063234433717550388913031104102960312254307456379091293563698280731649878925501088377167869695983380724981594283043938583453613498088537488479232233<163>
prime factors 素因数
144567886370325933615808292480467087<36>
8801618355844011776422216502541976314260395789574347384005072066185202293221087397554062670594089227669096017263870056033604359<127>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:666103135
Step 1 took 8021ms
Step 2 took 4005ms
********** Factor found in step 2: 144567886370325933615808292480467087
Found prime factor of 36 digits: 144567886370325933615808292480467087
Prime cofactor 8801618355844011776422216502541976314260395789574347384005072066185202293221087397554062670594089227669096017263870056033604359 has 127 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e61000 / 2078Dmitry DomanovMarch 15, 2023 16:56:26 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 26 秒 (日本時間)

85×10217+329

c176

composite cofactor 合成数の残り
84895120831011715557247442639032975867243129040727730088413146626487876427761200563598586914711128342952953924666052922041092099736908786553829144836833906832536003358060269037<176>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 15, 2023 16:56:37 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 37 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 06:30:39 UTC 2024 年 9 月 25 日 (水) 15 時 30 分 39 秒 (日本時間)

85×10218+329

c207

composite cofactor 合成数の残り
407531465682179724856108452526636738619451490300907741558367682882902211006897801568271752992050729238034458643242203058190744030124464668954801261444763744058280985083821454860541071487220817403710819408989<207>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:29:14 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 14 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 06:50:38 UTC 2024 年 9 月 25 日 (水) 15 時 50 分 38 秒 (日本時間)

85×10219+329

c206

composite cofactor 合成数の残り
26903169105442445482273681161031810319260453762315742345670758614560457535291591643730499459846524397002337360423568089422730449749668488148967929825952980527167956198470301342502883034983770493777358671133<206>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:29:23 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 23 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 06:50:51 UTC 2024 年 9 月 25 日 (水) 15 時 50 分 51 秒 (日本時間)

85×10221+329

c191

name 名前Dmitry Domanov
date 日付March 17, 2023 00:15:58 UTC 2023 年 3 月 17 日 (金) 9 時 15 分 58 秒 (日本時間)
composite number 合成数
28672234374260520439891541416419871820091626601090230509606724648306189169219514901098650407580500013890895189763654180080927454873730691992321163093310933994705320950619116298604587299209909<191>
prime factors 素因数
4967430979947678648282649479947419<34>
composite cofactor 合成数の残り
5772044843703600211529718525338944658578189344237097859403805406968944991621558969163225265239265058823203553991297715466185510476810584785214104896190505711<157>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3836424899
Step 1 took 9881ms
Step 2 took 4694ms
********** Factor found in step 2: 4967430979947678648282649479947419
Found prime factor of 34 digits: 4967430979947678648282649479947419

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e620781000Dmitry DomanovMarch 16, 2023 18:49:15 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 15 秒 (日本時間)
1078ebinaSeptember 24, 2024 05:45:56 UTC 2024 年 9 月 24 日 (火) 14 時 45 分 56 秒 (日本時間)

85×10224+329

c218

composite cofactor 合成数の残り
11208709698068903361785838512126441925338368000896612380854844456023437164068376990229043362947957533622225825888323737833881879673926450356397935715407263429553328118566859969173041758767974919834253302027855495014809<218>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:29:37 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 37 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 07:10:12 UTC 2024 年 9 月 25 日 (水) 16 時 10 分 12 秒 (日本時間)

85×10225+329

c203

composite cofactor 合成数の残り
24990686721547231606270256729394313078886144202637990377429407314278664125375993477487439234229869216388503262312973337939193927472307019315614585029973363772817171551942563047634391829106798867153852851<203>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:29:47 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 47 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 07:27:38 UTC 2024 年 9 月 25 日 (水) 16 時 27 分 38 秒 (日本時間)

85×10228+329

c200

composite cofactor 合成数の残り
39258043676292616101490838338167386905166313088361103187004960035035551253867132484113446380831413083026989492356962850048484692036615243951823420551462775465850489288095143788022575387685672651224861<200>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:29:55 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 55 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 07:43:11 UTC 2024 年 9 月 25 日 (水) 16 時 43 分 11 秒 (日本時間)

85×10231+329

c214

composite cofactor 合成数の残り
1378543487612167212494884600601403492282451275161846592373638168561986786773258826568145307484019396230340982890153953830536339089678634888004109204001878007608019290146096299763328773670545401290226947470986569179<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:30:05 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 5 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 07:43:27 UTC 2024 年 9 月 25 日 (水) 16 時 43 分 27 秒 (日本時間)

85×10232+329

c228

composite cofactor 合成数の残り
122510019878331696022950018217960603083678090942214473823788505619894935406952342737490718064376276986795437669207956867248718977580378103394997670868327960187990904856124232654887256190647498604827067738528449997463321941342779<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:30:14 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 14 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 08:01:20 UTC 2024 年 9 月 25 日 (水) 17 時 1 分 20 秒 (日本時間)

85×10234+329

c214

composite cofactor 合成数の残り
9277166125157123271701697123358231250978255407526642512224755688465679717308186277676540587171252507418191789538111474358356614493041689560595849556254215756579927908204966515215429048828668707899626858783302280471<214>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:30:23 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 23 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 08:13:59 UTC 2024 年 9 月 25 日 (水) 17 時 13 分 59 秒 (日本時間)

85×10235+329

c201

composite cofactor 合成数の残り
222112157593377038705905894384347861495723034652094865851242368212989508292583205031962862685279552137283693216974915447515343006380488183793330894214939926440009159619534931775847856035541569964015513<201>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:30:32 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 32 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 08:27:47 UTC 2024 年 9 月 25 日 (水) 17 時 27 分 47 秒 (日本時間)

85×10237+329

c200

name 名前Ignacio Santos
date 日付September 25, 2024 08:28:12 UTC 2024 年 9 月 25 日 (水) 17 時 28 分 12 秒 (日本時間)
composite number 合成数
20314365778043859064721666799621379436601996325583525780326436118251321754911861859765765706231731526562118783323179349983827895101093747395709724601632447533694786810936789820390399661950870117086901<200>
prime factors 素因数
6243287728944722054365158051926653924283<40>
3253792978956219760045507130000324013997819430567070817749504374980032462948910808439095192791612880345165459439280573461504208860011691210031522132927938183247<160>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2549845329
Step 1 took 8703ms
Step 2 took 3843ms
********** Factor found in step 2: 6243287728944722054365158051926653924283
Found prime factor of 40 digits: 6243287728944722054365158051926653924283
Prime cofactor 3253792978956219760045507130000324013997819430567070817749504374980032462948910808439095192791612880345165459439280573461504208860011691210031522132927938183247 has 160 digits
 
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e61792 / 2078Dmitry DomanovNovember 8, 2023 19:31:38 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 38 秒 (日本時間)

85×10238+329

c233

composite cofactor 合成数の残り
14558871004429185377385119888363262261378391429052189407554663250915735858095061137666491823189945239461569787485701475865297077702304590490816880781413316276502626214792196609571227889014403485030603089412980840114684166361101656409<233>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 9, 2023 05:26:30 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 30 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 08:49:57 UTC 2024 年 9 月 25 日 (水) 17 時 49 分 57 秒 (日本時間)

85×10239+329

c215

composite cofactor 合成数の残り
74601573885615179696012679782851642274910377491916072541291564752166771075537738341874615488348403744878857719680155244199106225489873705555634090201974808081491082033308541693983133423262526948418888525402138826131<215>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:31:47 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 47 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 09:06:44 UTC 2024 年 9 月 25 日 (水) 18 時 6 分 44 秒 (日本時間)

85×10242+329

c223

name 名前Dmitry Domanov
date 日付November 9, 2023 04:49:06 UTC 2023 年 11 月 9 日 (木) 13 時 49 分 6 秒 (日本時間)
composite number 合成数
2143927474961030150495452442025180253577234121938097018053732303080700235620064447619511251868107890511751684689324555726388234766299122412449542291130891094511641287034052247389488478684131702520946777807370502547057066373<223>
prime factors 素因数
5151652184296017601973028353653461419<37>
composite cofactor 合成数の残り
416163086765921026224566865696525277848769561855913901873937943808942899807828552954075359652221333618786331058739130529966188906124037579955034471001096679973759693376844055721028282767<186>
factorization results 素因数分解の結果
Resuming ECM residue saved by @8b6ca5cb11b9 with GMP-ECM 7.0.5-dev on Wed Nov  8 20:20:16 2023 
Input number is 2143927474961030150495452442025180253577234121938097018053732303080700235620064447619511251868107890511751684689324555726388234766299122412449542291130891094511641287034052247389488478684131702520946777807370502547057066373 (223 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3711364811
Step 1 took 0ms
Step 2 took 5709ms
********** Factor found in step 2: 5151652184296017601973028353653461419
Found prime factor of 37 digits: 5151652184296017601973028353653461419
Composite cofactor 416163086765921026224566865696525277848769561855913901873937943808942899807828552954075359652221333618786331058739130529966188906124037579955034471001096679973759693376844055721028282767 has 186 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:31:56 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 56 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 09:07:00 UTC 2024 年 9 月 25 日 (水) 18 時 7 分 0 秒 (日本時間)

85×10243+329

c229

composite cofactor 合成数の残り
3021464875968846347495427908765590589929956151634549442513785836532924396831038046340029394003279121380154975486081841206246070241999925685816625593756047997713164014087569527202880382959653717062432096929228175780109082107804613<229>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:32:05 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 5 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 09:18:24 UTC 2024 年 9 月 25 日 (水) 18 時 18 分 24 秒 (日本時間)

85×10245+329

c227

composite cofactor 合成数の残り
16429570610884893901808065490418308217245531825596579376539836523729122314242111567681533300075421944264881656133073090547964021349972469086636405731677747820785834460731983292529103814099678525979508041954220613999597083618581<227>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:32:36 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 36 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 09:47:34 UTC 2024 年 9 月 25 日 (水) 18 時 47 分 34 秒 (日本時間)

85×10246+329

c198

composite cofactor 合成数の残り
171603786445450627832388338029609219119407372947742528890641289554668129832004192994562827582766683094178357246109469686221627796850301661854792177945133775614299652495919396533094604361581918900843<198>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e633501000Dmitry DomanovMarch 16, 2023 18:50:44 UTC 2023 年 3 月 17 日 (金) 3 時 50 分 44 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 09:47:46 UTC 2024 年 9 月 25 日 (水) 18 時 47 分 46 秒 (日本時間)

85×10249+329

c244

composite cofactor 合成数の残り
6474757889759096349272511438231114426187150667768441938636967485441697318932253008553383693238463657260138404424651490443562049204503628301974176532674218214880303816968801721889495840310837129826665399137592718532981350259721582363795469558583<244>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 9, 2023 05:26:39 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 39 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 10:02:05 UTC 2024 年 9 月 25 日 (水) 19 時 2 分 5 秒 (日本時間)

85×10250+329

c209

composite cofactor 合成数の残り
11600307061310368167450232667296424534601875877365891239971606178110375194835563214098387814393390457984327313362736758991818767087558592324606244795677563004369054361497282857205540425129812845825193849531323<209>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e641421792Dmitry DomanovNovember 8, 2023 19:32:49 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 49 秒 (日本時間)
2350Ignacio SantosSeptember 25, 2024 10:08:25 UTC 2024 年 9 月 25 日 (水) 19 時 8 分 25 秒 (日本時間)

85×10251+329

c213

composite cofactor 合成数の残り
329916160714705407114691719855178763777315306714228230176032074046770843237555684407196529913706638287261417316845467905602616546372935198525743180815947285993933392168866480067314715883075145222636447447816327047<213>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622051792Dmitry DomanovNovember 8, 2023 19:32:58 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 58 秒 (日本時間)
413Thomas KozlowskiOctober 3, 2024 17:28:01 UTC 2024 年 10 月 4 日 (金) 2 時 28 分 1 秒 (日本時間)

85×10252+329

c197

composite cofactor 合成数の残り
60193744808240899211229284595425903649929892335941317031242736209148127391370276829270065707425683803189629948260664712432592588034528327637209345665295870228804167850034305205970627202993542504043<197>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622061000Dmitry DomanovMarch 16, 2023 18:50:56 UTC 2023 年 3 月 17 日 (金) 3 時 50 分 56 秒 (日本時間)
1206Thomas KozlowskiOctober 3, 2024 17:34:54 UTC 2024 年 10 月 4 日 (金) 2 時 34 分 54 秒 (日本時間)

85×10253+329

c251

name 名前Dmitry Domanov
date 日付March 22, 2023 06:12:23 UTC 2023 年 3 月 22 日 (水) 15 時 12 分 23 秒 (日本時間)
composite number 合成数
60232426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569161<251>
prime factors 素因数
63462059582525353647090584808214709<35>
composite cofactor 合成数の残り
949109226837009610269672635276048219775491060237785052797262313156260663909566197410940141619188008658442197861393509884477873650820957950605735813143017790059005323087836852626369950308722287252459347381768991751429<216>
factorization results 素因数分解の結果
Resuming ECM residue saved by @d3d9b6b29b12 with GMP-ECM 7.0.5-dev on Mon Mar 20 10:02:17 2023 
Input number is 60232426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569161 (251 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2369533810
Step 1 took 0ms
Step 2 took 6906ms
********** Factor found in step 2: 63462059582525353647090584808214709
Found prime factor of 35 digits: 63462059582525353647090584808214709
Composite cofactor 949109226837009610269672635276048219775491060237785052797262313156260663909566197410940141619188008658442197861393509884477873650820957950605735813143017790059005323087836852626369950308722287252459347381768991751429 has 216 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622071792Dmitry DomanovMarch 20, 2023 09:04:20 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 20 秒 (日本時間)
415Thomas KozlowskiOctober 3, 2024 17:37:49 UTC 2024 年 10 月 4 日 (金) 2 時 37 分 49 秒 (日本時間)

85×10255+329

c240

composite cofactor 合成数の残り
431819242189339619179773739271784936974271446333904951481635840850497077263181818436933014669477154941733789949381392912793276790620124650433276502541794591727872763573164992415881201358789782536796576590385084604584219375689933557510812321<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622051792Dmitry DomanovNovember 9, 2023 05:26:48 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 48 秒 (日本時間)
413Thomas KozlowskiOctober 3, 2024 17:41:08 UTC 2024 年 10 月 4 日 (金) 2 時 41 分 8 秒 (日本時間)

85×10257+329

c235

composite cofactor 合成数の残り
8006433386827997580777466755139590831359716306371938507584193333989754688983553562934828486898827088765370008476323045353610066650455690322523790397254750007434278970790328899412946709193753975505232775934365043531025659283222565515289<235>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622101792Dmitry DomanovNovember 9, 2023 05:26:57 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 57 秒 (日本時間)
418Thomas KozlowskiOctober 3, 2024 17:44:26 UTC 2024 年 10 月 4 日 (金) 2 時 44 分 26 秒 (日本時間)

85×10259+329

c249

composite cofactor 合成数の残り
358525335188262446548526266639715263409156232259735762688036243651948508645430943827960511890466003121020211154801157603692211164692286150753735231700467783275131202352485985614915585222922425259011521656244685295932386843020573978607099600357613433<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622031792Dmitry DomanovNovember 9, 2023 05:27:07 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 7 秒 (日本時間)
411Thomas KozlowskiOctober 3, 2024 17:47:47 UTC 2024 年 10 月 4 日 (金) 2 時 47 分 47 秒 (日本時間)

85×10260+329

c217

composite cofactor 合成数の残り
3082484523626840473856647961613502468197452297055711237191581276787313450702758528362048067090300074840842630368651680157316867416189369545072158842762445792127583088947068106517697425539897740783028842404424821835409<217>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622021792Dmitry DomanovNovember 8, 2023 19:33:11 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 11 秒 (日本時間)
410Thomas KozlowskiOctober 3, 2024 17:50:41 UTC 2024 年 10 月 4 日 (金) 2 時 50 分 41 秒 (日本時間)

85×10263+329

c252

composite cofactor 合成数の残り
124645250244422897464862794471621098420003423848683289971593353198871571726688886489469440605586581430030697763419175711971870199146485716330117917222092611482956490492561634434591273573236400603060136606693637021390116830952258248083920080130296130201<252>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621991792Dmitry DomanovMarch 20, 2023 09:04:27 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 27 秒 (日本時間)
407Thomas KozlowskiOctober 3, 2024 17:54:23 UTC 2024 年 10 月 4 日 (金) 2 時 54 分 23 秒 (日本時間)

85×10264+329

c222

composite cofactor 合成数の残り
299106421840469205819331628663481211632360368079840035789503920979709982752765048643319406653653410642024793973890104870156695838978181903026976990392945952210142445646574479767244310875524740095473113348621996733777495621<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621961792Dmitry DomanovNovember 8, 2023 19:33:19 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 19 秒 (日本時間)
404Thomas KozlowskiOctober 3, 2024 17:57:18 UTC 2024 年 10 月 4 日 (金) 2 時 57 分 18 秒 (日本時間)

85×10269+329

c208

composite cofactor 合成数の残り
8907982911502916771997975987209036298325383186983040872007210569169402264628447816382128132449449375264899867970276159205525117486175926929245899035697772718544330621552389490394850311278596848750003796422823<208>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621921792Dmitry DomanovNovember 8, 2023 19:33:28 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 28 秒 (日本時間)
400Thomas KozlowskiOctober 3, 2024 17:59:50 UTC 2024 年 10 月 4 日 (金) 2 時 59 分 50 秒 (日本時間)

85×10270+329

c223

composite cofactor 合成数の残り
2067225287977406821628508808285883557856778953333639737985073892465298103699079132384426570497900412451715170080641132344727659405287728166754823479976379906715073510423928026407542794965536423240092120165706506935353848569<223>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621971792Dmitry DomanovNovember 8, 2023 19:33:38 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 38 秒 (日本時間)
405Thomas KozlowskiOctober 3, 2024 18:02:44 UTC 2024 年 10 月 4 日 (金) 3 時 2 分 44 秒 (日本時間)

85×10271+329

c246

composite cofactor 合成数の残り
452576827090123633847607367450436126434888968335065146228865040100039816507588184002562936782984411704402184386518904364059946251362468488908502173339565962746154742397561582199164591772090322405744288936066712330360665562758321886181340271148291<246>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621961792Dmitry DomanovNovember 9, 2023 05:27:23 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 23 秒 (日本時間)
404Thomas KozlowskiOctober 3, 2024 18:06:02 UTC 2024 年 10 月 4 日 (金) 3 時 6 分 2 秒 (日本時間)

85×10272+329

c250

composite cofactor 合成数の残り
6946486522221642053463327980945946592639584040150850016779963672016521153638651838921740887075248493212075636517848731463956268345418173625899713642025228034314858161046601117695701498833814467617441847500847165052584079087268562506449112427020743127<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621991792Dmitry DomanovMarch 20, 2023 09:04:35 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 35 秒 (日本時間)
407Thomas KozlowskiOctober 3, 2024 18:09:25 UTC 2024 年 10 月 4 日 (金) 3 時 9 分 25 秒 (日本時間)

85×10273+329

c237

composite cofactor 合成数の残り
285866232301745740260605620824480608712187420827833417862979985155441002014231575504585832276428286690627228441866555009392644367180471820706105195279793113482123061831696876107939907369646507507923932319097821536778755719609772199780951<237>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621921792Dmitry DomanovNovember 9, 2023 05:27:37 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 37 秒 (日本時間)
400Thomas KozlowskiOctober 3, 2024 18:12:43 UTC 2024 年 10 月 4 日 (金) 3 時 12 分 43 秒 (日本時間)

85×10274+329

c257

composite cofactor 合成数の残り
23123645447269834870661384206077070890961316324722831091174088600280215102940478801748101143505012064470052716684638263124403384809060190514453888932956403716799306883364690151999959234985152673792237616684636777288145758100242266272104717476565481346510611<257>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621921792Dmitry DomanovMarch 20, 2023 09:05:31 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 31 秒 (日本時間)
400Thomas KozlowskiOctober 3, 2024 18:16:25 UTC 2024 年 10 月 4 日 (金) 3 時 16 分 25 秒 (日本時間)

85×10275+329

c228

composite cofactor 合成数の残り
109657464784087747193719158122652848113970289911737555026679420901553014827216278841844822470271757049549722822855627056350345068374272148483545325384176150574827629961191379697523800648229893470217213036843407335912801695823491<228>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621991792Dmitry DomanovNovember 8, 2023 19:33:48 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 48 秒 (日本時間)
407Thomas KozlowskiOctober 3, 2024 18:19:20 UTC 2024 年 10 月 4 日 (金) 3 時 19 分 20 秒 (日本時間)

85×10276+329

c259

composite cofactor 合成数の残り
9201585663080155558452869410048217516828457424621422988037617914003242465056014885211138357008901237337119040043699171485883471598196388049097459186679905923372493145499608774845192651610681620957396018087560257719224550940231407804182998901152707141085926251<259>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621951792Dmitry DomanovMarch 20, 2023 09:05:39 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 39 秒 (日本時間)
403Thomas KozlowskiOctober 3, 2024 18:23:02 UTC 2024 年 10 月 4 日 (金) 3 時 23 分 2 秒 (日本時間)

85×10278+329

c272

composite cofactor 合成数の残り
15485075942893196902600052828520732046362477689102581479481902733843884667329267600942145541000604362474541077730971311991240562556704526329234546681215205216533683020597468300118464838865141705132324018269503923167673189315860163103831245347554477298747500016468833708677<272>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621941792Dmitry DomanovMarch 20, 2023 09:05:47 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 47 秒 (日本時間)
402Thomas KozlowskiOctober 3, 2024 18:27:08 UTC 2024 年 10 月 4 日 (金) 3 時 27 分 8 秒 (日本時間)

85×10279+329

c230

name 名前Dmitry Domanov
date 日付November 9, 2023 15:00:08 UTC 2023 年 11 月 10 日 (金) 0 時 0 分 8 秒 (日本時間)
composite number 合成数
62893270229816599643161035190314429670606290107399255596118046856408052489099113862111604849051045986712647560560482984198569102013231603128326458629650192085066844733899969542224940322309609985597053742069536948578409147073386297<230>
prime factors 素因数
4850538939037372025512394939194741019<37>
composite cofactor 合成数の残り
12966243755647134049473725691634972910962408637578468716331551993384849622236789727110434023607019203077223347323331302198156508192348515632707484363599786968027428222353895919569284568627515963<194>
factorization results 素因数分解の結果
Resuming ECM residue saved by @8b6ca5cb11b9 with GMP-ECM 7.0.5-dev on Wed Nov  8 20:36:27 2023 
Input number is 62893270229816599643161035190314429670606290107399255596118046856408052489099113862111604849051045986712647560560482984198569102013231603128326458629650192085066844733899969542224940322309609985597053742069536948578409147073386297 (230 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3509659362
Step 1 took 0ms
Step 2 took 5997ms
********** Factor found in step 2: 4850538939037372025512394939194741019
Found prime factor of 37 digits: 4850538939037372025512394939194741019
Composite cofactor 12966243755647134049473725691634972910962408637578468716331551993384849622236789727110434023607019203077223347323331302198156508192348515632707484363599786968027428222353895919569284568627515963 has 194 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621951792Dmitry DomanovNovember 8, 2023 19:33:57 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 57 秒 (日本時間)
403Thomas KozlowskiOctober 3, 2024 18:29:42 UTC 2024 年 10 月 4 日 (金) 3 時 29 分 42 秒 (日本時間)

85×10280+329

c258

composite cofactor 合成数の残り
204259274574823608639905372103037092974551937509535616957760052822319491129013548200334483147925692058251128173461305417490067784641326355921972603372024256857536376299415059532919420880462617927864454501394723085085364153785265150352867879410849853409505511<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622021792Dmitry DomanovMarch 20, 2023 09:05:55 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 55 秒 (日本時間)
410Thomas KozlowskiOctober 3, 2024 18:33:24 UTC 2024 年 10 月 4 日 (金) 3 時 33 分 24 秒 (日本時間)

85×10281+329

c242

name 名前Dmitry Domanov
date 日付November 10, 2023 18:59:59 UTC 2023 年 11 月 11 日 (土) 3 時 59 分 59 秒 (日本時間)
composite number 合成数
10357339840926238807587444838107260009489618299855498032259840860513073784055849771762759047914754060474628242654074660543778480842779595246015757533903385504069856289535830517908937275674783217061854345301474678604530973330989256747943323199<242>
prime factors 素因数
734147480439716036871337913430519348697<39>
composite cofactor 合成数の残り
14107982546943745735932154902912862542488291214228197712422044436500421034791049843058507477793368761640196742466020591496191262767904984776558955906192913271616527421035077547646459767982516519224196567<203>
factorization results 素因数分解の結果
Resuming ECM residue saved by @bae5341798f6 with GMP-ECM 7.0.5-dev on Thu Nov  9 17:28:03 2023 
Input number is 10357339840926238807587444838107260009489618299855498032259840860513073784055849771762759047914754060474628242654074660543778480842779595246015757533903385504069856289535830517908937275674783217061854345301474678604530973330989256747943323199 (242 digits)
Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:4204654844
Step 1 took 0ms
Step 2 took 6173ms
********** Factor found in step 2: 734147480439716036871337913430519348697
Found prime factor of 39 digits: 734147480439716036871337913430519348697
Composite cofactor 14107982546943745735932154902912862542488291214228197712422044436500421034791049843058507477793368761640196742466020591496191262767904984776558955906192913271616527421035077547646459767982516519224196567 has 203 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622121792Dmitry DomanovNovember 9, 2023 05:28:35 UTC 2023 年 11 月 9 日 (木) 14 時 28 分 35 秒 (日本時間)
420Thomas KozlowskiOctober 3, 2024 18:35:59 UTC 2024 年 10 月 4 日 (金) 3 時 35 分 59 秒 (日本時間)

85×10283+329

c258

composite cofactor 合成数の残り
690525463520797426028470165543517909616368221795052594914367926828719441245493662243127684620496552264163604084862289760590885211429037311040293195816105629423502755922410698421870491999166255282918310081403785603030283675637147394294831396117595138985462981<258>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621921792Dmitry DomanovMarch 20, 2023 09:06:03 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 3 秒 (日本時間)
400Thomas KozlowskiOctober 3, 2024 18:39:39 UTC 2024 年 10 月 4 日 (金) 3 時 39 分 39 秒 (日本時間)

85×10284+329

c238

composite cofactor 合成数の残り
8199478729861416254393648138560129237512426577413184514832894481763893044283187754825471288176441990306387056327114933877985910657708205181830816541113917769598344235765193013650088010196104615267196652679139246782335523748349574235379819<238>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621961792Dmitry DomanovNovember 9, 2023 05:28:52 UTC 2023 年 11 月 9 日 (木) 14 時 28 分 52 秒 (日本時間)
404Thomas KozlowskiOctober 3, 2024 18:42:58 UTC 2024 年 10 月 4 日 (金) 3 時 42 分 58 秒 (日本時間)

85×10288+329

c285

composite cofactor 合成数の残り
287379638645461430271556853835334847993075841177106999891810018392296873309531537379638645461430271556853835334847993075841177106999891810018392296873309531537379638645461430271556853835334847993075841177106999891810018392296873309531537379638645461430271556853835334847993075841177107<285>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622021792Dmitry DomanovMarch 20, 2023 09:06:09 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 9 秒 (日本時間)
410Thomas KozlowskiOctober 3, 2024 18:47:06 UTC 2024 年 10 月 4 日 (金) 3 時 47 分 6 秒 (日本時間)

85×10289+329

c241

name 名前Seth Troisi
date 日付November 17, 2023 22:32:20 UTC 2023 年 11 月 18 日 (土) 7 時 32 分 20 秒 (日本時間)
composite number 合成数
5474961865933817412164566227847006643647724686273304536948192073685764322105030722650054940193599614727563631730656212639442599914173138185784276884506443444747026884254246816863608983312160873791590218509834684616035941409921567829407287273<241>
prime factors 素因数
21618438520504071379857282455172504900234229<44>
composite cofactor 合成数の残り
253254269994619351575334298767588989780267584858308647311788139689112721545184467442948939041727578030031243826243955733990704783091888593280526867778335396245432780434134721950434770873088117475237<198>
factorization results 素因数分解の結果
Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Thu Nov 16 23:56:02 2023 
Input number is 5474961865933817412164566227847006643647724686273304536948192073685764322105030722650054940193599614727563631730656212639442599914173138185784276884506443444747026884254246816863608983312160873791590218509834684616035941409921567829407287273 (241 digits)
Using mpz_mod
Using lmax = 8388608 with NTT which takes about 2880MB of memory
Using B1=4000000000-4000000000, B2=205705378426380, polynomial x^1
P = 24249225, l = 8388608, s_1 = 4147200, k = s_2 = 2, m_1 = 79
Probability of finding a factor of n digits (assuming one exists):
20      25      30      35      40      45      50      55      60      65
0.71    0.43    0.21    0.087   0.032   0.01    0.003   0.00079 0.00019 4.5e-05
Step 1 took 0ms
Computing F from factored S_1 took 30066ms
Computing h took 4142ms
Computing DCT-I of h took 8876ms
Multi-point evaluation 1 of 2:
Computing g_i took 14087ms
Computing g*h took 17119ms
Computing gcd of coefficients and N took 3928ms
Step 2 took 78649ms
********** Factor found in step 2: 21618438520504071379857282455172504900234229
Found prime factor of 44 digits: 21618438520504071379857282455172504900234229
Composite cofactor 253254269994619351575334298767588989780267584858308647311788139689112721545184467442948939041727578030031243826243955733990704783091888593280526867778335396245432780434134721950434770873088117475237 has 198 digits
execution environment 実行環境
1080 ti for stage 1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622021792Dmitry DomanovNovember 9, 2023 05:29:07 UTC 2023 年 11 月 9 日 (木) 14 時 29 分 7 秒 (日本時間)
410Thomas KozlowskiOctober 3, 2024 18:49:41 UTC 2024 年 10 月 4 日 (金) 3 時 49 分 41 秒 (日本時間)
4511e63584Dmitry DomanovDecember 6, 2024 23:38:50 UTC 2024 年 12 月 7 日 (土) 8 時 38 分 50 秒 (日本時間)
5043e61792 / 6660Dmitry DomanovDecember 8, 2024 20:50:20 UTC 2024 年 12 月 9 日 (月) 5 時 50 分 20 秒 (日本時間)

85×10290+329

c264

composite cofactor 合成数の残り
106732158430123107013819084923649426519113406415802009507551633787054741783704639502468654164104433135499809350095459542278503339020091726354813190840404299161986125455541679284074627752609797552963463545341370739805562151287924116382760440582024013683965925195351<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621971792Dmitry DomanovMarch 20, 2023 09:06:16 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 16 秒 (日本時間)
405Thomas KozlowskiOctober 3, 2024 18:53:21 UTC 2024 年 10 月 4 日 (金) 3 時 53 分 21 秒 (日本時間)

85×10291+329

c264

composite cofactor 合成数の残り
108976793352009593728103817544775721054297344911710146577765679530032246361669757666651157148421811613900372650962603472319019874779939119489771556837745527369323114398669887545042462819964278341532728019094728621369779348221553928921066502869767346003009801397919<264>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622031792Dmitry DomanovMarch 20, 2023 09:06:24 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 24 秒 (日本時間)
411Thomas KozlowskiOctober 3, 2024 18:57:03 UTC 2024 年 10 月 4 日 (金) 3 時 57 分 3 秒 (日本時間)

85×10292+329

c275

composite cofactor 合成数の残り
59504290769592263685806050910231568537953867087187320192156986598199959870081015413219325709065948331723851861004663213405654237325738622425815991054076249364867728587982835521279309239670063439670497712370446822066559109681032557533120949850071061466260277038716196260075741<275>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621921792Dmitry DomanovMarch 20, 2023 09:06:33 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 33 秒 (日本時間)
400Thomas KozlowskiOctober 3, 2024 19:01:08 UTC 2024 年 10 月 4 日 (金) 4 時 1 分 8 秒 (日本時間)

85×10294+329

c277

composite cofactor 合成数の残り
8611539691625482986940125805791256995475361126826268429326372078053138302904278273416620037038683054006971307313372733174109324491221777603661345094623648122461058872985507354072760574851073443273998783777061340562008453650170423753108954551303732007620931114893395180029531969<277>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621981792Dmitry DomanovMarch 20, 2023 09:06:40 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 40 秒 (日本時間)
406Thomas KozlowskiOctober 3, 2024 19:05:14 UTC 2024 年 10 月 4 日 (金) 4 時 5 分 14 秒 (日本時間)

85×10297+329

c275

composite cofactor 合成数の残り
60633443098880653817118544205151868365703515129689487985742357833427154050858490182185609244850582113853528767080052031760071543376597135109536557640476917790701973494835576793900821155463104790084017848466351352570309371694643781842773450935485574050399344395511111756360817<275>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e622001792Dmitry DomanovMarch 20, 2023 09:06:48 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 48 秒 (日本時間)
408Thomas KozlowskiOctober 3, 2024 19:09:20 UTC 2024 年 10 月 4 日 (金) 4 時 9 分 20 秒 (日本時間)

85×10298+329

c266

composite cofactor 合成数の残り
46669454894021801083343258534387326110522460411010178330089116969778018791954043756085208962499896312987405102112225115994901518441789633988810079769933812034743289888191995002253501316774275257090911729543238913147841308356327312218254914599543056163429309333540987<266>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)
403e621941792Dmitry DomanovMarch 20, 2023 09:06:57 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 57 秒 (日本時間)
402Thomas KozlowskiOctober 3, 2024 19:13:01 UTC 2024 年 10 月 4 日 (金) 4 時 13 分 1 秒 (日本時間)

85×10300+329

c280

name 名前Dmitry Domanov
date 日付February 22, 2023 08:32:22 UTC 2023 年 2 月 22 日 (水) 17 時 32 分 22 秒 (日本時間)
composite number 合成数
1032632130258684218880968201481542213685500041671515159977230272565794911439278722962513747439637534868305947823027740134215457924328039329668430743926945594817603520594757130562507771920683302516271938050302855836018774670242606367955947836810029468683649510729781227802179882037<280>
prime factors 素因数
154726498126280026435396891010056422391<39>
6673919094426227750654086939143364164388911377474237618122015670842175699076468956468398029745745729099102866182207914119136216602863635903936987314020085135561423007835657759664870439804056832600537095934490095542045033711060713972025888307<241>
factorization results 素因数分解の結果
Resuming ECM residue saved by @d758d0e39ce3 with GMP-ECM 7.0.5-dev on Tue Feb 21 08:18:30 2023 
Input number is 1032632130258684218880968201481542213685500041671515159977230272565794911439278722962513747439637534868305947823027740134215457924328039329668430743926945594817603520594757130562507771920683302516271938050302855836018774670242606367955947836810029468683649510729781227802179882037 (280 digits)
Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:1439730784
Step 1 took 0ms
Step 2 took 36464ms
********** Factor found in step 2: 154726498126280026435396891010056422391
Found prime factor of 39 digits: 154726498126280026435396891010056422391
Prime cofactor 6673919094426227750654086939143364164388911377474237618122015670842175699076468956468398029745745729099102866182207914119136216602863635903936987314020085135561423007835657759664870439804056832600537095934490095542045033711060713972025888307 has 241 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e61000Eric JeancolasFebruary 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間)