name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 07:47:54 UTC 2023 年 2 月 22 日 (水) 16 時 47 分 54 秒 (日本時間) |
composite number 合成数 | 491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773<108> |
prime factors 素因数 | 132963056875323182447976987563119739843475454001<48> 3693622466582124173714933461879760208872874194405534193170773<61> |
factorization results 素因数分解の結果 | N=491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773 ( 108 digits) SNFS difficulty: 120 digits. Divisors found: r1=132963056875323182447976987563119739843475454001 (pp48) r2=3693622466582124173714933461879760208872874194405534193170773 (pp61) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 491115334100130477318623887758388638552225438654255767253837454693790925327346689634817362079893989899112773 m: 500000000000000000000000000000 deg: 4 c4: 17 c0: 4 skew: 0.70 # Murphy_E = 4.27e-08 type: snfs lss: 1 rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [350000, 600001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61819 x 62044 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120.000,4,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 27, 2023 17:37:04 UTC 2023 年 2 月 28 日 (火) 2 時 37 分 4 秒 (日本時間) |
composite number 合成数 | 2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637<127> |
prime factors 素因数 | 980785791469806151904380235084160557800195871749059078431897269<63> 2090163539286080563654970997570385110087427195418376751260226073<64> |
factorization results 素因数分解の結果 | Number: n N=2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637 ( 127 digits) SNFS difficulty: 132 digits. Divisors found: Tue Feb 28 04:33:04 2023 prp63 factor: 980785791469806151904380235084160557800195871749059078431897269 Tue Feb 28 04:33:04 2023 prp64 factor: 2090163539286080563654970997570385110087427195418376751260226073 Tue Feb 28 04:33:04 2023 elapsed time 00:03:50 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: # # N = 85x10^131+32 = 94(130)8 # n: 2050002701180029790156899971444668256504055628873299221288385697637625122517808494053545105847668881634291094595324643251294637 m: 500000000000000000000000000000000 deg: 4 c4: 17 c0: 4 skew: 0.70 # Murphy_E = 1.127e-08 type: snfs lss: 1 rlim: 1110000 alim: 1110000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1110000/1110000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved special-q in [100000, 11755000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 687089 hash collisions in 8017933 relations (8165834 unique) Msieve: matrix is 299688 x 299934 (35.0 MB) Sieving start time: 2023/02/28 04:06:07 Sieving end time : 2023/02/28 04:29:06 Total sieving time: 0hrs 22min 59secs. Total relation processing time: 0hrs 1min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 21sec. Prototype def-par.txt line would be: snfs,132,4,0,0,0,0,0,0,0,0,1110000,1110000,26,26,47,47,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 11:22:16 UTC 2023 年 2 月 24 日 (金) 20 時 22 分 16 秒 (日本時間) |
composite number 合成数 | 153124082212748412514091079660728823854368345925168072218114438778537556230562631379906608046716123441889307644350856282847179423<129> |
prime factors 素因数 | 114612473449156097428737110407540847468850425374759<51> 1336015859396636027604060925865751516199516816040980896335333809024249605764297<79> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 153124082212748412514091079660728823854368345925168072218114438778537556230562631379906608046716123441889307644350856282847179423 (129 digits) Using B1=40390000, B2=192393771586, polynomial Dickson(12), sigma=1:1776773692 Step 1 took 62817ms Step 2 took 23619ms ********** Factor found in step 2: 114612473449156097428737110407540847468850425374759 Found prime factor of 51 digits: 114612473449156097428737110407540847468850425374759 Prime cofactor 1336015859396636027604060925865751516199516816040980896335333809024249605764297 has 79 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 4, 2023 03:54:11 UTC 2023 年 3 月 4 日 (土) 12 時 54 分 11 秒 (日本時間) |
composite number 合成数 | 154712594068787949708195815559752412408638264212773506034400074205530056550237617724789465851572359139179456496865365073<120> |
prime factors 素因数 | 572052087197927142320029152096788087340374403977<48> 270451935288994358692941390415840581227902088699371112888634229516992649<72> |
factorization results 素因数分解の結果 | p48 factor: 572052087197927142320029152096788087340374403977 p72 factor: 270451935288994358692941390415840581227902088699371112888634229516992649 |
software ソフトウェア | GGNFS+Msieve 1.54 snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 8, 2023 14:04:44 UTC 2023 年 3 月 8 日 (水) 23 時 4 分 44 秒 (日本時間) |
composite number 合成数 | 124114935821271217197051495963463319076769255209377353847526607980938212956721039059562932245170687179717661<108> |
prime factors 素因数 | 2618741620754243119136592265660102081192491623<46> 47394876545905264865334132790399747239891422865929533689318107<62> |
factorization results 素因数分解の結果 | 2618741620754243119136592265660102081192491623 47394876545905264865334132790399747239891422865929533689318107 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 15, 2023 07:40:41 UTC 2023 年 3 月 15 日 (水) 16 時 40 分 41 秒 (日本時間) |
composite number 合成数 | 54371891944977223720273795761857457935376468626649024415140326229377571377158675887182897205882456594087321113081267<116> |
prime factors 素因数 | 15142298443042052804150948920801679252761591<44> 3590729118799090063072654512907940350951762430562348333778954477153926437<73> |
factorization results 素因数分解の結果 | 15142298443042052804150948920801679252761591 3590729118799090063072654512907940350951762430562348333778954477153926437 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 12:27:50 UTC 2023 年 3 月 1 日 (水) 21 時 27 分 50 秒 (日本時間) |
composite number 合成数 | 71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257<146> |
prime factors 素因数 | 3985713112021812438988880688594621360418559023393254153191<58> 17896223843637851325552524507556557316495500875093436841768463834661663827894923568960127<89> |
factorization results 素因数分解の結果 | Number: n N=71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257 ( 146 digits) SNFS difficulty: 152 digits. Divisors found: Wed Mar 1 23:24:02 2023 prp58 factor: 3985713112021812438988880688594621360418559023393254153191 Wed Mar 1 23:24:02 2023 prp89 factor: 17896223843637851325552524507556557316495500875093436841768463834661663827894923568960127 Wed Mar 1 23:24:02 2023 elapsed time 00:07:29 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 85x10^151+32 = 94(150)8 # n: 71329214029264782098481980058701425644413294557094252577250377960917632715974790073927275754377767573504335473545421100826277615315003235828815257 m: 50000000000000000000000000000000000000 deg: 4 c4: 17 c0: 4 skew: 0.70 # Murphy_E = 1.114e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 987956 hash collisions in 12158785 relations (12481405 unique) Msieve: matrix is 420799 x 421025 (115.0 MB) Sieving start time: 2023/03/01 21:59:31 Sieving end time : 2023/03/01 23:16:25 Total sieving time: 1hrs 16min 54secs. Total relation processing time: 0hrs 4min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 44sec. Prototype def-par.txt line would be: snfs,152,4,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 28, 2023 22:53:03 UTC 2023 年 3 月 1 日 (水) 7 時 53 分 3 秒 (日本時間) |
composite number 合成数 | 1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573<151> |
prime factors 素因数 | 117946641623668596169553344097080217<36> 57572756331411213964431088449707932447<38> 148339296863275018443410291734004169285107002172442073761787127658507356929427<78> |
factorization results 素因数分解の結果 | Number: n N=1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573 ( 151 digits) SNFS difficulty: 154 digits. Divisors found: Wed Mar 1 09:49:12 2023 prp36 factor: 117946641623668596169553344097080217 Wed Mar 1 09:49:12 2023 prp38 factor: 57572756331411213964431088449707932447 Wed Mar 1 09:49:12 2023 prp78 factor: 148339296863275018443410291734004169285107002172442073761787127658507356929427 Wed Mar 1 09:49:12 2023 elapsed time 00:07:35 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 85x10^153+32 = 94(152)8 # n: 1007299962078119074706105422828972317026924535456958665149791429654910883579825559347743648084945013272658323852863102009859689040576412590064467197573 m: 5000000000000000000000000000000 deg: 5 c5: 17 c0: 20 skew: 1.03 # Murphy_E = 9.698e-10 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1262670 hash collisions in 14660737 relations (14385425 unique) Msieve: matrix is 405686 x 405916 (109.8 MB) Sieving start time: 2023/03/01 08:18:49 Sieving end time : 2023/03/01 09:41:28 Total sieving time: 1hrs 22min 39secs. Total relation processing time: 0hrs 4min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 37sec. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 3, 2023 01:31:45 UTC 2023 年 3 月 3 日 (金) 10 時 31 分 45 秒 (日本時間) |
composite number 合成数 | 295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889<159> |
prime factors 素因数 | 9225840956767204907033236265318357103474759263375563107668451404078138057801<76> 31990459219048524382321709483564410752068066971457953939589529640189876449227864689<83> |
factorization results 素因数分解の結果 | Number: n N=295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 159 digits) SNFS difficulty: 159 digits. Divisors found: Fri Mar 3 12:27:13 2023 prp76 factor: 9225840956767204907033236265318357103474759263375563107668451404078138057801 Fri Mar 3 12:27:13 2023 prp83 factor: 31990459219048524382321709483564410752068066971457953939589529640189876449227864689 Fri Mar 3 12:27:13 2023 elapsed time 00:10:52 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.104). Factorization parameters were as follows: # # N = 85x10^159+32 = 94(158)8 # n: 295138888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 50000000000000000000000000000000 deg: 5 c5: 17 c0: 2 skew: 0.65 # Murphy_E = 6.574e-10 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 20000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1226172 hash collisions in 13779444 relations (13450342 unique) Msieve: matrix is 509255 x 509483 (139.8 MB) Sieving start time: 2023/03/03 10:25:55 Sieving end time : 2023/03/03 12:16:12 Total sieving time: 1hrs 50min 17secs. Total relation processing time: 0hrs 6min 49sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 25sec. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 7, 2023 11:35:18 UTC 2023 年 3 月 7 日 (火) 20 時 35 分 18 秒 (日本時間) |
composite number 合成数 | 2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533<121> |
prime factors 素因数 | 1416705305427748133489790693561653615135287931<46> 1505372849256553403382820988625755474708298734668599063979192013430716528543<76> |
factorization results 素因数分解の結果 | Number: n N=2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: Tue Mar 7 22:13:42 2023 prp46 factor: 1416705305427748133489790693561653615135287931 Tue Mar 7 22:13:42 2023 prp76 factor: 1505372849256553403382820988625755474708298734668599063979192013430716528543 Tue Mar 7 22:13:42 2023 elapsed time 00:08:32 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.070). Factorization parameters were as follows: # # N = 85x10^160+32 = 94(159)8 # n: 2132669702188644939063946208669499931955753780874757741118232665458440597728824790002567633377402255144192483939084914533 m: 100000000000000000000000000000000 deg: 5 c5: 85 c0: 32 skew: 0.82 # Murphy_E = 5.587e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 5750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1539668 hash collisions in 16899627 relations (16086149 unique) Msieve: matrix is 427043 x 427269 (117.3 MB) Sieving start time: 2023/03/07 21:17:21 Sieving end time : 2023/03/07 22:04:55 Total sieving time: 0hrs 47min 34secs. Total relation processing time: 0hrs 4min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 40sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 5, 2023 00:24:02 UTC 2023 年 3 月 5 日 (日) 9 時 24 分 2 秒 (日本時間) |
composite number 合成数 | 21948950664096780533157556798815601066793004034234790354342548235378804506789884939813598790892687417772736095584780272345876488797049047459605287931<149> |
prime factors 素因数 | 2345314555803317488524258122591140021<37> 9358638315609149795028463140334222400466115964106105487656659919873624363783403281636278046499903960574099273711<112> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 21948950664096780533157556798815601066793004034234790354342548235378804506789884939813598790892687417772736095584780272345876488797049047459605287931 (149 digits) Using B1=30900000, B2=144289975846, polynomial Dickson(12), sigma=1:3500296830 Step 1 took 60188ms Step 2 took 22469ms ********** Factor found in step 2: 2345314555803317488524258122591140021 Found prime factor of 37 digits: 2345314555803317488524258122591140021 Prime cofactor 9358638315609149795028463140334222400466115964106105487656659919873624363783403281636278046499903960574099273711 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 17, 2023 05:08:03 UTC 2023 年 3 月 17 日 (金) 14 時 8 分 3 秒 (日本時間) |
composite number 合成数 | 1760985628608604968041544644380970587783025459150181334291254946102082721167223223336553947039194625428086037818298899217235609<127> |
prime factors 素因数 | 834620143150981148619663248993191629138439421<45> 2109924668197285670034633454094793596996649031246584450783516127615843179448244429<82> |
factorization results 素因数分解の結果 | p45 factor: 834620143150981148619663248993191629138439421 p82 factor: 2109924668197285670034633454094793596996649031246584450783516127615843179448244429 |
software ソフトウェア | SNFS, GGNFS+Msieve 1.54 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 05:01:55 UTC 2023 年 3 月 9 日 (木) 14 時 1 分 55 秒 (日本時間) |
composite number 合成数 | 24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951<143> |
prime factors 素因数 | 7544019828856117934387593064209070396258985779468052077650098608529511<70> 3258008842544424444616860812989609130540237788483504266235277190565347041<73> |
factorization results 素因数分解の結果 | Number: n N=24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951 ( 143 digits) SNFS difficulty: 164 digits. Divisors found: Thu Mar 9 15:44:28 2023 prp70 factor: 7544019828856117934387593064209070396258985779468052077650098608529511 Thu Mar 9 15:44:28 2023 prp73 factor: 3258008842544424444616860812989609130540237788483504266235277190565347041 Thu Mar 9 15:44:28 2023 elapsed time 00:10:51 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.078). Factorization parameters were as follows: # # N = 85x10^164+32 = 94(163)8 # n: 24578483310743707781533131425556335765879208574856545590914885864098966055838177803734938687435385500872194955592869355365044861844466405026951 m: 500000000000000000000000000000000 deg: 5 c5: 17 c0: 2 skew: 0.65 # Murphy_E = 4.196e-10 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1527960 hash collisions in 13922972 relations (13233028 unique) Msieve: matrix is 540359 x 540586 (151.4 MB) Sieving start time: 2023/03/09 14:15:41 Sieving end time : 2023/03/09 15:33:09 Total sieving time: 1hrs 17min 28secs. Total relation processing time: 0hrs 7min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 29sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 11:33:32 UTC 2023 年 3 月 9 日 (木) 20 時 33 分 32 秒 (日本時間) |
composite number 合成数 | 12905341257403807999461091866163044239800377016050909127594068851284985529989124455066487672754960712984649868626105248890129<125> |
prime factors 素因数 | 1072207239920217799462844437844913613<37> 69895297508747656426059992340504146927777059<44> 172203827430821131886578504253767298770382887<45> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 12905341257403807999461091866163044239800377016050909127594068851284985529989124455066487672754960712984649868626105248890129 (125 digits) Using B1=30180000, B2=144289285156, polynomial Dickson(12), sigma=1:2811114911 Step 1 took 49164ms Step 2 took 19823ms ********** Factor found in step 2: 1072207239920217799462844437844913613 Found prime factor of 37 digits: 1072207239920217799462844437844913613 Composite cofactor 12036237750422283600116489267377649977590255693302014417401142271872193154509653204789333 has 89 digits Msieve v. 1.54 (SVN 1034) Thu Mar 9 21:47:51 2023 random seeds: a3a52176 64b5e635 factoring 12036237750422283600116489267377649977590255693302014417401142271872193154509653204789333 (89 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (89-digit input) using multiplier of 13 using generic 32kb sieve core sieve interval: 28 blocks of size 32768 processing polynomials in batches of 8 using a sieve bound of 1536349 (58333 primes) using large prime bound of 122907920 (26 bits) using double large prime bound of 364119260593040 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors 58576 relations (15762 full + 42814 combined from 616014 partial), need 58429 begin with 631776 relations reduce to 141513 relations in 11 passes attempting to read 141513 relations recovered 141513 relations recovered 121304 polynomials attempting to build 58576 cycles found 58576 cycles in 6 passes distribution of cycle lengths: length 1 : 15762 length 2 : 11542 length 3 : 10452 length 4 : 7741 length 5 : 5314 length 6 : 3384 length 7 : 2079 length 9+: 2302 largest cycle: 17 relations matrix is 58333 x 58576 (15.1 MB) with weight 3479638 (59.40/col) sparse part has weight 3479638 (59.40/col) filtering completed in 3 passes matrix is 54283 x 54347 (14.1 MB) with weight 3256387 (59.92/col) sparse part has weight 3256387 (59.92/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 54235 x 54347 (10.4 MB) with weight 2682599 (49.36/col) sparse part has weight 2192470 (40.34/col) using block size 8192 and superblock size 3145728 for processor cache size 32768 kB commencing Lanczos iteration memory use: 8.8 MB lanczos halted after 859 iterations (dim = 54234) recovered 17 nontrivial dependencies p44 factor: 69895297508747656426059992340504146927777059 p45 factor: 172203827430821131886578504253767298770382887 elapsed time 00:37:22 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | April 14, 2023 15:51:04 UTC 2023 年 4 月 15 日 (土) 0 時 51 分 4 秒 (日本時間) |
composite number 合成数 | 552482594905095478681083958155648742813677159644569794134914573707230507269913279440759970566350267436249855045160566082382325293121<132> |
prime factors 素因数 | 289924072363692272873553389994562145382701793296920219<54> 1905611322305239165026331508313243636728097042280580906226509947107976617675859<79> |
factorization results 素因数分解の結果 | nfs: commencing nfs on c132: 552482594905095478681083958155648742813677159644569794134914573707230507269913279440759970566350267436249855045160566082382325293121 nfs: commencing poly selection with 6 threads nfs: setting deadline of 12600 seconds nfs: completed 46 ranges of size 250 in 12285.4198 seconds nfs: best poly = # norm 1.593420e-012 alpha -8.201562 e 7.180e-011 rroots 5 nfs: commencing lattice sieving with 6 threads nfs: commencing msieve filtering nfs: commencing msieve linear algebra nfs: commencing msieve sqrt prp79 = 1905611322305239165026331508313243636728097042280580906226509947107976617675859 prp54 = 289924072363692272873553389994562145382701793296920219 NFS elapsed time = 87953.7826 seconds. |
software ソフトウェア | YAFU v1.35 r373 |
execution environment 実行環境 | Windows 10 Pro v22H2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:31:13 UTC 2023 年 3 月 23 日 (木) 20 時 31 分 13 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 19:36:21 UTC 2023 年 3 月 12 日 (日) 4 時 36 分 21 秒 (日本時間) |
composite number 合成数 | 2916499116276477015555296111771454109808612866656696840269023713543206094475017031419039781575666597479406905996044183832232608487150379621757051<145> |
prime factors 素因数 | 977917441124530259936835069467465042813486378239<48> 2982357194614226436406809395444511885775875533839844914107975196955069201708574152251017898111109<97> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2916499116276477015555296111771454109808612866656696840269023713543206094475017031419039781575666597479406905996044183832232608487150379621757051 (145 digits) Using B1=33050000, B2=144292047916, polynomial Dickson(12), sigma=1:2171573790 Step 1 took 66976ms Step 2 took 22305ms ********** Factor found in step 2: 977917441124530259936835069467465042813486378239 Found prime factor of 48 digits: 977917441124530259936835069467465042813486378239 Prime cofactor 2982357194614226436406809395444511885775875533839844914107975196955069201708574152251017898111109 has 97 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 23:52:52 UTC 2023 年 3 月 12 日 (日) 8 時 52 分 52 秒 (日本時間) |
composite number 合成数 | 5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919<160> |
prime factors 素因数 | 4338119775903178512263771805149867589047662001<46> 1288077489670527940365846735214184607985365135960133749331978370777567386283215967022805476919636717023994418622919<115> |
factorization results 素因数分解の結果 | Number: n N=5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919 ( 160 digits) SNFS difficulty: 171 digits. Divisors found: Sun Mar 12 10:44:19 2023 prp46 factor: 4338119775903178512263771805149867589047662001 Sun Mar 12 10:44:19 2023 prp115 factor: 1288077489670527940365846735214184607985365135960133749331978370777567386283215967022805476919636717023994418622919 Sun Mar 12 10:44:19 2023 elapsed time 00:19:38 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 85x10^170+32 = 94(169)8 # n: 5587834430835439403592181776709198376349459193519067187060933049940661333079049537366753715812113347381299083077597336770469330826631459793702909676690984000919 m: 10000000000000000000000000000000000 deg: 5 c5: 85 c0: 32 skew: 0.82 # Murphy_E = 2.259e-10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 28150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1301744 hash collisions in 13508331 relations (13060574 unique) Msieve: matrix is 763843 x 764069 (214.7 MB) Sieving start time: 2023/03/12 07:12:09 Sieving end time : 2023/03/12 10:24:09 Total sieving time: 3hrs 12min 0secs. Total relation processing time: 0hrs 16min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 44sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 23, 2023 01:58:19 UTC 2023 年 3 月 23 日 (木) 10 時 58 分 19 秒 (日本時間) |
composite number 合成数 | 70417292805604183198025100443962936571976780241252273222181385295079164055430125873848755463848712514690675532268305012498240207748921757752733860073<149> |
prime factors 素因数 | 13505252661249012818976775150878900176255842927<47> 5214067042792500160642899227820633095030108471478528612855485009877122545145956049712950013448819688999<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 70417292805604183198025100443962936571976780241252273222181385295079164055430125873848755463848712514690675532268305012498240207748921757752733860073 (149 digits) Using B1=31990000, B2=144291357226, polynomial Dickson(12), sigma=1:3758695963 Step 1 took 64614ms Step 2 took 23124ms ********** Factor found in step 2: 13505252661249012818976775150878900176255842927 Found prime factor of 47 digits: 13505252661249012818976775150878900176255842927 Prime cofactor 5214067042792500160642899227820633095030108471478528612855485009877122545145956049712950013448819688999 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 04:22:07 UTC 2023 年 3 月 11 日 (土) 13 時 22 分 7 秒 (日本時間) |
composite number 合成数 | 743246537778118826244944604118027005963019345437410644163031199292323805532490497784413383106991491524147926899954584858053074938689044711909427668814633<153> |
prime factors 素因数 | 1212159997258222048990396816074907038699331<43> 613158773973125687361851205088617367045433358449339445652614221894462075786798668251785229923628287178423281443<111> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 743246537778118826244944604118027005963019345437410644163031199292323805532490497784413383106991491524147926899954584858053074938689044711909427668814633 (153 digits) Using B1=30800000, B2=144289975846, polynomial Dickson(12), sigma=1:1041420250 Step 1 took 61498ms Step 2 took 23111ms ********** Factor found in step 2: 1212159997258222048990396816074907038699331 Found prime factor of 43 digits: 1212159997258222048990396816074907038699331 Prime cofactor 613158773973125687361851205088617367045433358449339445652614221894462075786798668251785229923628287178423281443 has 111 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 17, 2023 06:22:01 UTC 2023 年 3 月 17 日 (金) 15 時 22 分 1 秒 (日本時間) |
composite number 合成数 | 653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999<156> |
prime factors 素因数 | 2268832923561863352777054372920063656333018682406711212561059879466357204587<76> 288073717680283250713446085120315147463732552814321729676521792444007219436230477<81> |
factorization results 素因数分解の結果 | Number: n N=653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999 ( 156 digits) SNFS difficulty: 177 digits. Divisors found: Tue Mar 14 22:23:50 2023 prp76 factor: 2268832923561863352777054372920063656333018682406711212561059879466357204587 Tue Mar 14 22:23:50 2023 prp81 factor: 288073717680283250713446085120315147463732552814321729676521792444007219436230477 Tue Mar 14 22:23:50 2023 elapsed time 00:31:19 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 85x10^176+32 = 94(175)8 # n: 653591135085891892046924270308548587705916532636210198113360879182092946550865374381912902281891974962066760106557234372321755713399869218459422362373597999 m: 100000000000000000000000000000000000 deg: 5 c5: 425 c0: 16 skew: 0.52 # Murphy_E = 1.103e-10 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 21450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1951930 hash collisions in 13641991 relations (12374266 unique) Msieve: matrix is 950905 x 951130 (266.4 MB) Sieving start time: 2023/03/14 19:12:10 Sieving end time : 2023/03/14 21:52:18 Total sieving time: 2hrs 40min 8secs. Total relation processing time: 0hrs 25min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 11sec. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6100000,6100000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 29, 2023 12:39:52 UTC 2023 年 4 月 29 日 (土) 21 時 39 分 52 秒 (日本時間) |
composite number 合成数 | 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323<147> |
prime factors 素因数 | 3730487921707315512549135534719831777489456762674659906847980245741<67> 99198771235192781660990373654417668099732708313316084146310444158850045602831103<80> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3450000, q1=3550000. -> client 1 q0: 3450000 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3550001, q1=3650000. -> client 1 q0: 3550001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3650001, q1=3750000. -> client 1 q0: 3650001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=3750001, q1=3850000. -> client 1 q0: 3750001 LatSieveTime: 95 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=5050001, q1=5150000. -> client 1 q0: 5050001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=5150001, q1=5250000. -> client 1 q0: 5150001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5250001, q1=5350000. -> client 1 q0: 5250001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=5350001, q1=5450000. -> client 1 q0: 5350001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=5450001, q1=5550000. -> client 1 q0: 5450001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=5550001, q1=5650000. -> client 1 q0: 5550001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=5650001, q1=5750000. -> client 1 q0: 5650001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=5750001, q1=5850000. -> client 1 q0: 5750001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=5850001, q1=5950000. -> client 1 q0: 5850001 LatSieveTime: 104 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=5950001, q1=6050000. -> client 1 q0: 5950001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=6050001, q1=6150000. -> client 1 q0: 6050001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=6150001, q1=6250000. -> client 1 q0: 6150001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=6250001, q1=6350000. -> client 1 q0: 6250001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=6350001, q1=6450000. -> client 1 q0: 6350001 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=6450001, q1=6550000. -> client 1 q0: 6450001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=6550001, q1=6650000. -> client 1 q0: 6550001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=6650001, q1=6750000. -> client 1 q0: 6650001 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=6750001, q1=6850000. -> client 1 q0: 6750001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=6850001, q1=6950000. -> client 1 q0: 6850001 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=6950001, q1=7050000. -> client 1 q0: 6950001 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=7050001, q1=7150000. -> client 1 q0: 7050001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=7150001, q1=7250000. -> client 1 q0: 7150001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=7250001, q1=7350000. -> client 1 q0: 7250001 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 129 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=7350001, q1=7450000. -> client 1 q0: 7350001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=7450001, q1=7550000. -> client 1 q0: 7450001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=7550001, q1=7650000. -> client 1 q0: 7550001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=7650001, q1=7750000. -> client 1 q0: 7650001 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=7750001, q1=7850000. -> client 1 q0: 7750001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=7850001, q1=7950000. -> client 1 q0: 7850001 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=7950001, q1=8050000. -> client 1 q0: 7950001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=8050001, q1=8150000. -> client 1 q0: 8050001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=8150001, q1=8250000. -> client 1 q0: 8150001 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=8250001, q1=8350000. -> client 1 q0: 8250001 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 132 Sat Apr 29 14:07:22 2023 Sat Apr 29 14:07:22 2023 Sat Apr 29 14:07:22 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 14:07:22 2023 random seeds: d5f50158 422bc41d Sat Apr 29 14:07:22 2023 factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits) Sat Apr 29 14:07:23 2023 searching for 15-digit factors Sat Apr 29 14:07:23 2023 commencing number field sieve (147-digit input) Sat Apr 29 14:07:23 2023 R0: -500000000000000000000000000000000000 Sat Apr 29 14:07:23 2023 R1: 1 Sat Apr 29 14:07:23 2023 A0: 20 Sat Apr 29 14:07:23 2023 A1: 0 Sat Apr 29 14:07:23 2023 A2: 0 Sat Apr 29 14:07:23 2023 A3: 0 Sat Apr 29 14:07:23 2023 A4: 0 Sat Apr 29 14:07:23 2023 A5: 17 Sat Apr 29 14:07:23 2023 skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1 Sat Apr 29 14:07:23 2023 Sat Apr 29 14:07:23 2023 commencing relation filtering Sat Apr 29 14:07:23 2023 estimated available RAM is 65413.5 MB Sat Apr 29 14:07:23 2023 commencing duplicate removal, pass 1 Sat Apr 29 14:07:54 2023 found 2179346 hash collisions in 18193152 relations Sat Apr 29 14:08:08 2023 added 697342 free relations Sat Apr 29 14:08:08 2023 commencing duplicate removal, pass 2 Sat Apr 29 14:08:14 2023 found 1872177 duplicates and 17018317 unique relations Sat Apr 29 14:08:14 2023 memory use: 98.6 MB Sat Apr 29 14:08:14 2023 reading ideals above 720000 Sat Apr 29 14:08:14 2023 commencing singleton removal, initial pass Sat Apr 29 14:09:14 2023 memory use: 376.5 MB Sat Apr 29 14:09:14 2023 reading all ideals from disk Sat Apr 29 14:09:15 2023 memory use: 521.0 MB Sat Apr 29 14:09:15 2023 keeping 19251380 ideals with weight <= 200, target excess is 116002 Sat Apr 29 14:09:16 2023 commencing in-memory singleton removal Sat Apr 29 14:09:17 2023 begin with 17018317 relations and 19251380 unique ideals Sat Apr 29 14:09:27 2023 reduce to 6260531 relations and 5944653 ideals in 20 passes Sat Apr 29 14:09:27 2023 max relations containing the same ideal: 95 Sat Apr 29 14:09:29 2023 removing 808569 relations and 717911 ideals in 90658 cliques Sat Apr 29 14:09:29 2023 commencing in-memory singleton removal Sat Apr 29 14:09:30 2023 begin with 5451962 relations and 5944653 unique ideals Sat Apr 29 14:09:34 2023 reduce to 5359579 relations and 5132469 ideals in 14 passes Sat Apr 29 14:09:34 2023 max relations containing the same ideal: 85 Sat Apr 29 14:09:36 2023 removing 607384 relations and 516726 ideals in 90658 cliques Sat Apr 29 14:09:36 2023 commencing in-memory singleton removal Sat Apr 29 14:09:36 2023 begin with 4752195 relations and 5132469 unique ideals Sat Apr 29 14:09:40 2023 reduce to 4691248 relations and 4553704 ideals in 14 passes Sat Apr 29 14:09:40 2023 max relations containing the same ideal: 79 Sat Apr 29 14:09:41 2023 relations with 0 large ideals: 2883 Sat Apr 29 14:09:41 2023 relations with 1 large ideals: 1385 Sat Apr 29 14:09:41 2023 relations with 2 large ideals: 23223 Sat Apr 29 14:09:41 2023 relations with 3 large ideals: 157734 Sat Apr 29 14:09:41 2023 relations with 4 large ideals: 562985 Sat Apr 29 14:09:41 2023 relations with 5 large ideals: 1145829 Sat Apr 29 14:09:41 2023 relations with 6 large ideals: 1403666 Sat Apr 29 14:09:41 2023 relations with 7+ large ideals: 1393543 Sat Apr 29 14:09:41 2023 commencing 2-way merge Sat Apr 29 14:09:44 2023 reduce to 2705042 relation sets and 2567499 unique ideals Sat Apr 29 14:09:44 2023 ignored 1 oversize relation sets Sat Apr 29 14:09:44 2023 commencing full merge Sat Apr 29 14:10:16 2023 memory use: 307.6 MB Sat Apr 29 14:10:17 2023 found 1368471 cycles, need 1349699 Sat Apr 29 14:10:17 2023 weight of 1349699 cycles is about 94688747 (70.16/cycle) Sat Apr 29 14:10:17 2023 distribution of cycle lengths: Sat Apr 29 14:10:17 2023 1 relations: 183197 Sat Apr 29 14:10:17 2023 2 relations: 159424 Sat Apr 29 14:10:17 2023 3 relations: 151121 Sat Apr 29 14:10:17 2023 4 relations: 134493 Sat Apr 29 14:10:17 2023 5 relations: 122395 Sat Apr 29 14:10:17 2023 6 relations: 103180 Sat Apr 29 14:10:17 2023 7 relations: 90467 Sat Apr 29 14:10:17 2023 8 relations: 78085 Sat Apr 29 14:10:17 2023 9 relations: 65476 Sat Apr 29 14:10:17 2023 10+ relations: 261861 Sat Apr 29 14:10:17 2023 heaviest cycle: 23 relations Sat Apr 29 14:10:17 2023 commencing cycle optimization Sat Apr 29 14:10:19 2023 start with 7936374 relations Sat Apr 29 14:10:29 2023 pruned 165819 relations Sat Apr 29 14:10:29 2023 memory use: 267.6 MB Sat Apr 29 14:10:29 2023 distribution of cycle lengths: Sat Apr 29 14:10:29 2023 1 relations: 183197 Sat Apr 29 14:10:29 2023 2 relations: 162555 Sat Apr 29 14:10:29 2023 3 relations: 155699 Sat Apr 29 14:10:29 2023 4 relations: 137182 Sat Apr 29 14:10:29 2023 5 relations: 124498 Sat Apr 29 14:10:29 2023 6 relations: 104616 Sat Apr 29 14:10:29 2023 7 relations: 91181 Sat Apr 29 14:10:29 2023 8 relations: 77821 Sat Apr 29 14:10:29 2023 9 relations: 65088 Sat Apr 29 14:10:29 2023 10+ relations: 247862 Sat Apr 29 14:10:29 2023 heaviest cycle: 22 relations Sat Apr 29 14:10:30 2023 RelProcTime: 187 Sat Apr 29 14:10:30 2023 elapsed time 00:03:08 Sat Apr 29 14:10:30 2023 Sat Apr 29 14:10:30 2023 Sat Apr 29 14:10:30 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 14:10:30 2023 random seeds: 735712e0 3a2798c8 Sat Apr 29 14:10:30 2023 factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits) Sat Apr 29 14:10:31 2023 searching for 15-digit factors Sat Apr 29 14:10:31 2023 commencing number field sieve (147-digit input) Sat Apr 29 14:10:31 2023 R0: -500000000000000000000000000000000000 Sat Apr 29 14:10:31 2023 R1: 1 Sat Apr 29 14:10:31 2023 A0: 20 Sat Apr 29 14:10:31 2023 A1: 0 Sat Apr 29 14:10:31 2023 A2: 0 Sat Apr 29 14:10:31 2023 A3: 0 Sat Apr 29 14:10:31 2023 A4: 0 Sat Apr 29 14:10:31 2023 A5: 17 Sat Apr 29 14:10:31 2023 skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1 Sat Apr 29 14:10:31 2023 Sat Apr 29 14:10:31 2023 commencing linear algebra Sat Apr 29 14:10:31 2023 read 1349699 cycles Sat Apr 29 14:10:33 2023 cycles contain 4529559 unique relations Sat Apr 29 14:10:41 2023 read 4529559 relations Sat Apr 29 14:10:46 2023 using 20 quadratic characters above 268434374 Sat Apr 29 14:10:58 2023 building initial matrix Sat Apr 29 14:11:25 2023 memory use: 558.4 MB Sat Apr 29 14:11:26 2023 read 1349699 cycles Sat Apr 29 14:11:26 2023 matrix is 1349516 x 1349699 (405.4 MB) with weight 118902717 (88.10/col) Sat Apr 29 14:11:26 2023 sparse part has weight 91433427 (67.74/col) Sat Apr 29 14:11:33 2023 filtering completed in 2 passes Sat Apr 29 14:11:33 2023 matrix is 1346895 x 1347078 (405.2 MB) with weight 118811879 (88.20/col) Sat Apr 29 14:11:33 2023 sparse part has weight 91397610 (67.85/col) Sat Apr 29 14:11:35 2023 matrix starts at (0, 0) Sat Apr 29 14:11:36 2023 matrix is 1346895 x 1347078 (405.2 MB) with weight 118811879 (88.20/col) Sat Apr 29 14:11:36 2023 sparse part has weight 91397610 (67.85/col) Sat Apr 29 14:11:36 2023 saving the first 48 matrix rows for later Sat Apr 29 14:11:36 2023 matrix includes 64 packed rows Sat Apr 29 14:11:36 2023 matrix is 1346847 x 1347078 (383.0 MB) with weight 94496730 (70.15/col) Sat Apr 29 14:11:36 2023 sparse part has weight 86924664 (64.53/col) Sat Apr 29 14:11:36 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sat Apr 29 14:11:40 2023 commencing Lanczos iteration (32 threads) Sat Apr 29 14:11:40 2023 memory use: 306.8 MB Sat Apr 29 14:11:41 2023 linear algebra at 0.1%, ETA 0h14m Sat Apr 29 14:11:41 2023 checkpointing every 7270000 dimensions Sat Apr 29 14:29:30 2023 lanczos halted after 21303 iterations (dim = 1346845) Sat Apr 29 14:29:31 2023 recovered 38 nontrivial dependencies Sat Apr 29 14:29:31 2023 BLanczosTime: 1140 Sat Apr 29 14:29:31 2023 elapsed time 00:19:01 Sat Apr 29 14:29:31 2023 Sat Apr 29 14:29:31 2023 Sat Apr 29 14:29:31 2023 Msieve v. 1.52 (SVN 927) Sat Apr 29 14:29:31 2023 random seeds: a69d6ec4 81937786 Sat Apr 29 14:29:31 2023 factoring 370059817941093751813179730880117211276837805861513966003676065470411316202171272104403714948552454875682649227698266178066750994114093207258082323 (147 digits) Sat Apr 29 14:29:31 2023 searching for 15-digit factors Sat Apr 29 14:29:31 2023 commencing number field sieve (147-digit input) Sat Apr 29 14:29:31 2023 R0: -500000000000000000000000000000000000 Sat Apr 29 14:29:31 2023 R1: 1 Sat Apr 29 14:29:31 2023 A0: 20 Sat Apr 29 14:29:31 2023 A1: 0 Sat Apr 29 14:29:31 2023 A2: 0 Sat Apr 29 14:29:31 2023 A3: 0 Sat Apr 29 14:29:31 2023 A4: 0 Sat Apr 29 14:29:31 2023 A5: 17 Sat Apr 29 14:29:31 2023 skew 1.03, size 1.392e-012, alpha 1.170, combined = 1.006e-010 rroots = 1 Sat Apr 29 14:29:31 2023 Sat Apr 29 14:29:31 2023 commencing square root phase Sat Apr 29 14:29:31 2023 reading relations for dependency 1 Sat Apr 29 14:29:32 2023 read 674197 cycles Sat Apr 29 14:29:32 2023 cycles contain 2266850 unique relations Sat Apr 29 14:29:38 2023 read 2266850 relations Sat Apr 29 14:29:44 2023 multiplying 2266850 relations Sat Apr 29 14:30:16 2023 multiply complete, coefficients have about 59.50 million bits Sat Apr 29 14:30:17 2023 initial square root is modulo 348969211 Sat Apr 29 14:30:58 2023 GCD is N, no factor found Sat Apr 29 14:30:58 2023 reading relations for dependency 2 Sat Apr 29 14:30:58 2023 read 673339 cycles Sat Apr 29 14:30:59 2023 cycles contain 2263722 unique relations Sat Apr 29 14:31:04 2023 read 2263722 relations Sat Apr 29 14:31:10 2023 multiplying 2263722 relations Sat Apr 29 14:31:42 2023 multiply complete, coefficients have about 59.43 million bits Sat Apr 29 14:31:42 2023 initial square root is modulo 340486021 Sat Apr 29 14:32:23 2023 GCD is N, no factor found Sat Apr 29 14:32:23 2023 reading relations for dependency 3 Sat Apr 29 14:32:23 2023 read 674008 cycles Sat Apr 29 14:32:24 2023 cycles contain 2264782 unique relations Sat Apr 29 14:32:29 2023 read 2264782 relations Sat Apr 29 14:32:34 2023 multiplying 2264782 relations Sat Apr 29 14:33:06 2023 multiply complete, coefficients have about 59.45 million bits Sat Apr 29 14:33:06 2023 initial square root is modulo 342983441 Sat Apr 29 14:33:47 2023 Newton iteration failed to converge Sat Apr 29 14:33:47 2023 algebraic square root failed Sat Apr 29 14:33:47 2023 reading relations for dependency 4 Sat Apr 29 14:33:47 2023 read 672678 cycles Sat Apr 29 14:33:48 2023 cycles contain 2262826 unique relations Sat Apr 29 14:33:53 2023 read 2262826 relations Sat Apr 29 14:33:58 2023 multiplying 2262826 relations Sat Apr 29 14:34:30 2023 multiply complete, coefficients have about 59.40 million bits Sat Apr 29 14:34:30 2023 initial square root is modulo 337186981 Sat Apr 29 14:35:11 2023 Newton iteration failed to converge Sat Apr 29 14:35:11 2023 algebraic square root failed Sat Apr 29 14:35:11 2023 reading relations for dependency 5 Sat Apr 29 14:35:11 2023 read 673228 cycles Sat Apr 29 14:35:12 2023 cycles contain 2263508 unique relations Sat Apr 29 14:35:17 2023 read 2263508 relations Sat Apr 29 14:35:23 2023 multiplying 2263508 relations Sat Apr 29 14:35:54 2023 multiply complete, coefficients have about 59.42 million bits Sat Apr 29 14:35:55 2023 initial square root is modulo 339165601 Sat Apr 29 14:36:36 2023 GCD is 1, no factor found Sat Apr 29 14:36:36 2023 reading relations for dependency 6 Sat Apr 29 14:36:36 2023 read 672685 cycles Sat Apr 29 14:36:37 2023 cycles contain 2262832 unique relations Sat Apr 29 14:36:42 2023 read 2262832 relations Sat Apr 29 14:36:48 2023 multiplying 2262832 relations Sat Apr 29 14:37:20 2023 multiply complete, coefficients have about 59.40 million bits Sat Apr 29 14:37:20 2023 initial square root is modulo 337423291 Sat Apr 29 14:38:02 2023 Newton iteration failed to converge Sat Apr 29 14:38:02 2023 algebraic square root failed Sat Apr 29 14:38:02 2023 reading relations for dependency 7 Sat Apr 29 14:38:02 2023 read 673822 cycles Sat Apr 29 14:38:03 2023 cycles contain 2266962 unique relations Sat Apr 29 14:38:08 2023 read 2266962 relations Sat Apr 29 14:38:14 2023 multiplying 2266962 relations Sat Apr 29 14:38:45 2023 multiply complete, coefficients have about 59.51 million bits Sat Apr 29 14:38:46 2023 initial square root is modulo 349725931 Sat Apr 29 14:39:27 2023 sqrtTime: 596 Sat Apr 29 14:39:27 2023 prp67 factor: 3730487921707315512549135534719831777489456762674659906847980245741 Sat Apr 29 14:39:27 2023 prp80 factor: 99198771235192781660990373654417668099732708313316084146310444158850045602831103 Sat Apr 29 14:39:27 2023 elapsed time 00:09:56 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 12:49:18 UTC 2023 年 3 月 31 日 (金) 21 時 49 分 18 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 24, 2023 14:36:21 UTC 2023 年 2 月 24 日 (金) 23 時 36 分 21 秒 (日本時間) |
composite number 合成数 | 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409<117> |
prime factors 素因数 | 1068993152395198375738292760814540458645611940360943<52> 474362239557972496236962420921124969998080682678403468008747846063<66> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000. -> client 1 q0: 1800000 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 94 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 100 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 Fri Feb 24 15:08:15 2023 Fri Feb 24 15:08:15 2023 Fri Feb 24 15:08:15 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 15:08:15 2023 random seeds: 980b20b0 4da3c551 Fri Feb 24 15:08:15 2023 factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits) Fri Feb 24 15:08:16 2023 searching for 15-digit factors Fri Feb 24 15:08:16 2023 commencing number field sieve (117-digit input) Fri Feb 24 15:08:16 2023 R0: -26900438653216238571759 Fri Feb 24 15:08:16 2023 R1: 4057985117857 Fri Feb 24 15:08:16 2023 A0: 1102963749009010475939176580 Fri Feb 24 15:08:16 2023 A1: -285633358560084339196176 Fri Feb 24 15:08:16 2023 A2: 10024305885388348967 Fri Feb 24 15:08:16 2023 A3: -500943484545414 Fri Feb 24 15:08:16 2023 A4: -7844567392 Fri Feb 24 15:08:16 2023 A5: 36000 Fri Feb 24 15:08:16 2023 skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3 Fri Feb 24 15:08:16 2023 Fri Feb 24 15:08:16 2023 commencing relation filtering Fri Feb 24 15:08:16 2023 estimated available RAM is 65413.5 MB Fri Feb 24 15:08:16 2023 commencing duplicate removal, pass 1 Fri Feb 24 15:08:36 2023 found 1064329 hash collisions in 9567309 relations Fri Feb 24 15:08:46 2023 added 62154 free relations Fri Feb 24 15:08:46 2023 commencing duplicate removal, pass 2 Fri Feb 24 15:08:48 2023 found 593366 duplicates and 9036097 unique relations Fri Feb 24 15:08:48 2023 memory use: 41.3 MB Fri Feb 24 15:08:48 2023 reading ideals above 100000 Fri Feb 24 15:08:48 2023 commencing singleton removal, initial pass Fri Feb 24 15:09:23 2023 memory use: 188.3 MB Fri Feb 24 15:09:23 2023 reading all ideals from disk Fri Feb 24 15:09:23 2023 memory use: 313.9 MB Fri Feb 24 15:09:24 2023 keeping 10172718 ideals with weight <= 200, target excess is 47999 Fri Feb 24 15:09:24 2023 commencing in-memory singleton removal Fri Feb 24 15:09:25 2023 begin with 9036097 relations and 10172718 unique ideals Fri Feb 24 15:09:29 2023 reduce to 2834975 relations and 2756909 ideals in 22 passes Fri Feb 24 15:09:29 2023 max relations containing the same ideal: 90 Fri Feb 24 15:09:29 2023 removing 187005 relations and 175811 ideals in 11194 cliques Fri Feb 24 15:09:29 2023 commencing in-memory singleton removal Fri Feb 24 15:09:29 2023 begin with 2647970 relations and 2756909 unique ideals Fri Feb 24 15:09:30 2023 reduce to 2636794 relations and 2569857 ideals in 9 passes Fri Feb 24 15:09:30 2023 max relations containing the same ideal: 87 Fri Feb 24 15:09:30 2023 removing 133405 relations and 122211 ideals in 11194 cliques Fri Feb 24 15:09:30 2023 commencing in-memory singleton removal Fri Feb 24 15:09:30 2023 begin with 2503389 relations and 2569857 unique ideals Fri Feb 24 15:09:31 2023 reduce to 2497228 relations and 2441449 ideals in 10 passes Fri Feb 24 15:09:31 2023 max relations containing the same ideal: 84 Fri Feb 24 15:09:31 2023 relations with 0 large ideals: 129 Fri Feb 24 15:09:31 2023 relations with 1 large ideals: 516 Fri Feb 24 15:09:31 2023 relations with 2 large ideals: 7532 Fri Feb 24 15:09:31 2023 relations with 3 large ideals: 61225 Fri Feb 24 15:09:31 2023 relations with 4 large ideals: 254405 Fri Feb 24 15:09:31 2023 relations with 5 large ideals: 585589 Fri Feb 24 15:09:31 2023 relations with 6 large ideals: 757171 Fri Feb 24 15:09:31 2023 relations with 7+ large ideals: 830661 Fri Feb 24 15:09:31 2023 commencing 2-way merge Fri Feb 24 15:09:32 2023 reduce to 1345731 relation sets and 1289958 unique ideals Fri Feb 24 15:09:32 2023 ignored 6 oversize relation sets Fri Feb 24 15:09:32 2023 commencing full merge Fri Feb 24 15:09:47 2023 memory use: 138.7 MB Fri Feb 24 15:09:47 2023 found 662969 cycles, need 658158 Fri Feb 24 15:09:47 2023 weight of 658158 cycles is about 46241311 (70.26/cycle) Fri Feb 24 15:09:47 2023 distribution of cycle lengths: Fri Feb 24 15:09:47 2023 1 relations: 79909 Fri Feb 24 15:09:47 2023 2 relations: 80312 Fri Feb 24 15:09:47 2023 3 relations: 80702 Fri Feb 24 15:09:47 2023 4 relations: 70119 Fri Feb 24 15:09:47 2023 5 relations: 59310 Fri Feb 24 15:09:47 2023 6 relations: 50295 Fri Feb 24 15:09:47 2023 7 relations: 42595 Fri Feb 24 15:09:47 2023 8 relations: 34888 Fri Feb 24 15:09:47 2023 9 relations: 28573 Fri Feb 24 15:09:47 2023 10+ relations: 131455 Fri Feb 24 15:09:47 2023 heaviest cycle: 26 relations Fri Feb 24 15:09:47 2023 commencing cycle optimization Fri Feb 24 15:09:48 2023 start with 4031827 relations Fri Feb 24 15:09:53 2023 pruned 68390 relations Fri Feb 24 15:09:53 2023 memory use: 140.7 MB Fri Feb 24 15:09:53 2023 distribution of cycle lengths: Fri Feb 24 15:09:53 2023 1 relations: 79909 Fri Feb 24 15:09:53 2023 2 relations: 81901 Fri Feb 24 15:09:53 2023 3 relations: 82876 Fri Feb 24 15:09:53 2023 4 relations: 71046 Fri Feb 24 15:09:53 2023 5 relations: 60065 Fri Feb 24 15:09:53 2023 6 relations: 50549 Fri Feb 24 15:09:53 2023 7 relations: 42439 Fri Feb 24 15:09:53 2023 8 relations: 34587 Fri Feb 24 15:09:53 2023 9 relations: 28163 Fri Feb 24 15:09:53 2023 10+ relations: 126623 Fri Feb 24 15:09:53 2023 heaviest cycle: 26 relations Fri Feb 24 15:09:53 2023 RelProcTime: 97 Fri Feb 24 15:09:53 2023 elapsed time 00:01:38 Fri Feb 24 15:09:53 2023 Fri Feb 24 15:09:53 2023 Fri Feb 24 15:09:53 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 15:09:53 2023 random seeds: 5449fdc0 d1f3ed58 Fri Feb 24 15:09:53 2023 factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits) Fri Feb 24 15:09:54 2023 searching for 15-digit factors Fri Feb 24 15:09:54 2023 commencing number field sieve (117-digit input) Fri Feb 24 15:09:54 2023 R0: -26900438653216238571759 Fri Feb 24 15:09:54 2023 R1: 4057985117857 Fri Feb 24 15:09:54 2023 A0: 1102963749009010475939176580 Fri Feb 24 15:09:54 2023 A1: -285633358560084339196176 Fri Feb 24 15:09:54 2023 A2: 10024305885388348967 Fri Feb 24 15:09:54 2023 A3: -500943484545414 Fri Feb 24 15:09:54 2023 A4: -7844567392 Fri Feb 24 15:09:54 2023 A5: 36000 Fri Feb 24 15:09:54 2023 skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3 Fri Feb 24 15:09:54 2023 Fri Feb 24 15:09:54 2023 commencing linear algebra Fri Feb 24 15:09:54 2023 read 658158 cycles Fri Feb 24 15:09:55 2023 cycles contain 2415540 unique relations Fri Feb 24 15:10:00 2023 read 2415540 relations Fri Feb 24 15:10:02 2023 using 20 quadratic characters above 134217618 Fri Feb 24 15:10:08 2023 building initial matrix Fri Feb 24 15:10:21 2023 memory use: 304.3 MB Fri Feb 24 15:10:21 2023 read 658158 cycles Fri Feb 24 15:10:21 2023 matrix is 657980 x 658158 (200.8 MB) with weight 62683848 (95.24/col) Fri Feb 24 15:10:21 2023 sparse part has weight 44732531 (67.97/col) Fri Feb 24 15:10:24 2023 filtering completed in 2 passes Fri Feb 24 15:10:24 2023 matrix is 656288 x 656464 (200.6 MB) with weight 62610556 (95.38/col) Fri Feb 24 15:10:24 2023 sparse part has weight 44710111 (68.11/col) Fri Feb 24 15:10:25 2023 matrix starts at (0, 0) Fri Feb 24 15:10:25 2023 matrix is 656288 x 656464 (200.6 MB) with weight 62610556 (95.38/col) Fri Feb 24 15:10:25 2023 sparse part has weight 44710111 (68.11/col) Fri Feb 24 15:10:25 2023 saving the first 48 matrix rows for later Fri Feb 24 15:10:26 2023 matrix includes 64 packed rows Fri Feb 24 15:10:26 2023 matrix is 656240 x 656464 (191.9 MB) with weight 50279253 (76.59/col) Fri Feb 24 15:10:26 2023 sparse part has weight 43748480 (66.64/col) Fri Feb 24 15:10:26 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Fri Feb 24 15:10:28 2023 commencing Lanczos iteration (32 threads) Fri Feb 24 15:10:28 2023 memory use: 149.9 MB Fri Feb 24 15:10:29 2023 linear algebra at 0.5%, ETA 0h 3m Fri Feb 24 15:16:03 2023 lanczos halted after 10378 iterations (dim = 656240) Fri Feb 24 15:16:03 2023 recovered 33 nontrivial dependencies Fri Feb 24 15:16:03 2023 BLanczosTime: 369 Fri Feb 24 15:16:03 2023 elapsed time 00:06:10 Fri Feb 24 15:16:03 2023 Fri Feb 24 15:16:03 2023 Fri Feb 24 15:16:03 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 15:16:03 2023 random seeds: 6dee971c 5744e77f Fri Feb 24 15:16:03 2023 factoring 507089985842323292066548253522989219172835454551246403373441593529556388261853602446086917350516133675036266021517409 (117 digits) Fri Feb 24 15:16:04 2023 searching for 15-digit factors Fri Feb 24 15:16:04 2023 commencing number field sieve (117-digit input) Fri Feb 24 15:16:04 2023 R0: -26900438653216238571759 Fri Feb 24 15:16:04 2023 R1: 4057985117857 Fri Feb 24 15:16:04 2023 A0: 1102963749009010475939176580 Fri Feb 24 15:16:04 2023 A1: -285633358560084339196176 Fri Feb 24 15:16:04 2023 A2: 10024305885388348967 Fri Feb 24 15:16:04 2023 A3: -500943484545414 Fri Feb 24 15:16:04 2023 A4: -7844567392 Fri Feb 24 15:16:04 2023 A5: 36000 Fri Feb 24 15:16:04 2023 skew 55619.35, size 3.062e-011, alpha -6.649, combined = 4.045e-010 rroots = 3 Fri Feb 24 15:16:04 2023 Fri Feb 24 15:16:04 2023 commencing square root phase Fri Feb 24 15:16:04 2023 reading relations for dependency 1 Fri Feb 24 15:16:04 2023 read 328336 cycles Fri Feb 24 15:16:04 2023 cycles contain 1209252 unique relations Fri Feb 24 15:16:07 2023 read 1209252 relations Fri Feb 24 15:16:10 2023 multiplying 1209252 relations Fri Feb 24 15:16:38 2023 multiply complete, coefficients have about 55.10 million bits Fri Feb 24 15:16:38 2023 initial square root is modulo 81317329 Fri Feb 24 15:17:18 2023 sqrtTime: 74 Fri Feb 24 15:17:18 2023 prp52 factor: 1068993152395198375738292760814540458645611940360943 Fri Feb 24 15:17:18 2023 prp66 factor: 474362239557972496236962420921124969998080682678403468008747846063 Fri Feb 24 15:17:18 2023 elapsed time 00:01:15 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 22, 2023 19:22:57 UTC 2023 年 3 月 23 日 (木) 4 時 22 分 57 秒 (日本時間) |
composite number 合成数 | 23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463<176> |
prime factors 素因数 | 959612312023021884128905765579271511481<39> 102719503374511429582026977161779624811963439597<48> 237850258517966899553980142126137251318822886804510667268345125494582219927453042620762659<90> |
factorization results 素因数分解の結果 | Number: n N=23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463 ( 176 digits) SNFS difficulty: 184 digits. Divisors found: Thu Mar 23 06:14:52 2023 prp39 factor: 959612312023021884128905765579271511481 Thu Mar 23 06:14:52 2023 prp48 factor: 102719503374511429582026977161779624811963439597 Thu Mar 23 06:14:52 2023 prp90 factor: 237850258517966899553980142126137251318822886804510667268345125494582219927453042620762659 Thu Mar 23 06:14:52 2023 elapsed time 00:49:56 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.089). Factorization parameters were as follows: # # N = 85x10^183+32 = 94(182)8 # n: 23445114076621254241976896608666565745656087057284642096752003704403048471203358245923990238465120824047854529556762141526191707535748205238453602377414446252178586197968804463 m: 5000000000000000000000000000000000000 deg: 5 c5: 17 c0: 20 skew: 1.03 # Murphy_E = 6.304e-11 type: snfs lss: 1 rlim: 8300000 alim: 8300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8300000/8300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1427362 hash collisions in 13637857 relations (13047759 unique) Msieve: matrix is 1225199 x 1225426 (345.8 MB) Sieving start time: 2023/03/23 01:12:06 Sieving end time : 2023/03/23 05:24:41 Total sieving time: 4hrs 12min 35secs. Total relation processing time: 0hrs 44min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 39sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8300000,8300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 16, 2023 05:12:17 UTC 2023 年 6 月 16 日 (金) 14 時 12 分 17 秒 (日本時間) |
composite number 合成数 | 51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697<134> |
prime factors 素因数 | 274945573139593468658977843752953712549668899013356313533<57> 187667666433068013962339257765500608785038670233298103321114525699248397396309<78> |
factorization results 素因数分解の結果 | 51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697=274945573139593468658977843752953712549668899013356313533*187667666433068013962339257765500608785038670233298103321114525699248397396309 cado polynomial n: 51598394107209931759375355763817352777791099317479069139303793526336082872770458936697821719877585929713102557591382351863883860949697 skew: 0.52 type: snfs c0: 16 c5: 425 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 425*x^5+16 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 9400000 tasks.lim1 = 9400000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 274945573139593468658977843752953712549668899013356313533 187667666433068013962339257765500608785038670233298103321114525699248397396309 Info:Square Root: Total cpu/real time for sqrt: 882.36/276.816 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24172918 Info:Lattice Sieving: Average J: 1894.2 for 1605515 special-q, max bucket fill -bkmult 1.0,1s:1.156150 Info:Lattice Sieving: Total time: 294339s Info:Linear Algebra: Total cpu/real time for bwc: 51493.2/13281.5 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 33015.49, WCT time 8446.82, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (55040 iterations) Info:Linear Algebra: Lingen CPU time 347.1, WCT time 88.3 Info:Linear Algebra: Mksol: CPU time 17801.45, WCT time 4600.29, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (27648 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 3.99/2.13715 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 410.43/437.606 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 363.1s Info:Generate Free Relations: Total cpu/real time for freerel: 119.99/31.1374 Info:Square Root: Total cpu/real time for sqrt: 882.36/276.816 Info:Quadratic Characters: Total cpu/real time for characters: 62.66/26.5256 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 103.19/99.2724 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 98.80000000000001s Info:Filtering - Singleton removal: Total cpu/real time for purge: 286.12/274.279 Info:Filtering - Merging: Merged matrix has 1759077 rows and total weight 299606542 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 456.27/125.482 Info:Filtering - Merging: Total cpu/real time for replay: 65.34/57.7263 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 606614/161656 Info:root: Cleaning up computation data in /tmp/cado.0b6ni94w 274945573139593468658977843752953712549668899013356313533 187667666433068013962339257765500608785038670233298103321114525699248397396309 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | ccc | March 24, 2023 12:58:37 UTC 2023 年 3 月 24 日 (金) 21 時 58 分 37 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 31, 2023 17:37:41 UTC 2023 年 4 月 1 日 (土) 2 時 37 分 41 秒 (日本時間) |
composite number 合成数 | 176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551<168> |
prime factors 素因数 | 145613728444689436065693830544596711473003481546825581832699821399339268364618241<81> 1212017392231711036562872652002576540164272239899772244925216412125835651217733886667911<88> |
factorization results 素因数分解の結果 | Number: n N=176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551 ( 168 digits) SNFS difficulty: 189 digits. Divisors found: Fri Mar 31 22:07:26 2023 prp81 factor: 145613728444689436065693830544596711473003481546825581832699821399339268364618241 Fri Mar 31 22:07:26 2023 prp88 factor: 1212017392231711036562872652002576540164272239899772244925216412125835651217733886667911 Fri Mar 31 22:07:26 2023 elapsed time 01:30:50 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 85x10^188+32 = 94(187)8 # n: 176486371422669014505996620593835085280071812398949161008780858995356713985747196935485184744171032519841738279910723829936269328356143664541200866789175592095059964551 m: 50000000000000000000000000000000000000 deg: 5 c5: 17 c0: 20 skew: 1.03 # Murphy_E = 3.934e-11 type: snfs lss: 1 rlim: 10200000 alim: 10200000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10200000/10200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 16360801) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1411264 hash collisions in 13070042 relations (12442855 unique) Msieve: matrix is 1667284 x 1667509 (472.6 MB) Sieving start time: 2023/03/31 14:53:16 Sieving end time : 2023/03/31 20:36:21 Total sieving time: 5hrs 43min 5secs. Total relation processing time: 1hrs 18min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 33sec. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,10200000,10200000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 25, 2023 19:34:16 UTC 2023 年 4 月 26 日 (水) 4 時 34 分 16 秒 (日本時間) |
composite number 合成数 | 2548156331705405369187402379356684274602668686734572099049028676985290647329180472752927888271357261242939645470778693375020375879639407459286094209921<151> |
prime factors 素因数 | 33378861854978951846977637824400685434784767297<47> 76340419957288330795557462110021189024128000491121957258901056099393356728459419096540310073838611772993<104> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2548156331705405369187402379356684274602668686734572099049028676985290647329180472752927888271357261242939645470778693375020375879639407459286094209921 (151 digits) Using B1=36060000, B2=192389627446, polynomial Dickson(12), sigma=1:3954634289 Step 1 took 74134ms Step 2 took 28268ms ********** Factor found in step 2: 33378861854978951846977637824400685434784767297 Found prime factor of 47 digits: 33378861854978951846977637824400685434784767297 Prime cofactor 76340419957288330795557462110021189024128000491121957258901056099393356728459419096540310073838611772993 has 104 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 6, 2023 17:04:50 UTC 2023 年 3 月 7 日 (火) 2 時 4 分 50 秒 (日本時間) |
2350 | Ignacio Santos | April 22, 2023 07:41:08 UTC 2023 年 4 月 22 日 (土) 16 時 41 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 3, 2023 08:12:18 UTC 2023 年 5 月 3 日 (水) 17 時 12 分 18 秒 (日本時間) |
composite number 合成数 | 108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211<168> |
prime factors 素因数 | 5612471316965524375551871079394060534124640652439434174059254380163607094781<76> 19388854300630003464718454648164862433958211555101879905030452720031469506828195707728858031<92> |
factorization results 素因数分解の結果 | Number: n N=108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211 ( 168 digits) SNFS difficulty: 198 digits. Divisors found: Tue May 2 13:09:14 2023 prp76 factor: 5612471316965524375551871079394060534124640652439434174059254380163607094781 Tue May 2 13:09:14 2023 prp92 factor: 19388854300630003464718454648164862433958211555101879905030452720031469506828195707728858031 Tue May 2 13:09:14 2023 elapsed time 01:53:35 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.109). Factorization parameters were as follows: # # N = 85x10^197+32 = 94(196)8 # n: 108819388631109546615994938881295135598430637543885300630300787896468553346172901533888374716746341935704911050068035020418585261908990748902238026572538430126710036211 m: 1000000000000000000000000000000000000000 deg: 5 c5: 2125 c0: 8 skew: 0.33 # Murphy_E = 1.815e-11 type: snfs lss: 1 rlim: 14100000 alim: 14100000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14100000/14100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 32650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1974121 hash collisions in 14991122 relations (13837690 unique) Msieve: matrix is 1915143 x 1915368 (546.4 MB) Sieving start time: 2023/05/01 23:25:17 Sieving end time : 2023/05/02 11:15:22 Total sieving time: 11hrs 50min 5secs. Total relation processing time: 1hrs 47min 2sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 35sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,14100000,14100000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 6, 2023 17:05:04 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 4 秒 (日本時間) |
2350 | Ignacio Santos | April 24, 2023 15:26:56 UTC 2023 年 4 月 25 日 (火) 0 時 26 分 56 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 8, 2023 23:05:09 UTC 2023 年 5 月 9 日 (火) 8 時 5 分 9 秒 (日本時間) |
composite number 合成数 | 204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807<192> |
prime factors 素因数 | 2053619762349217184820982998503312815414281508977713565063129187<64> 99435231050893783340951930725408585406116815696682531143487533118672675639099756329685013668651378797526758898276629651939799261<128> |
factorization results 素因数分解の結果 | Number: n N=204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807 ( 192 digits) SNFS difficulty: 199 digits. Divisors found: Sun May 7 20:20:19 2023 prp64 factor: 2053619762349217184820982998503312815414281508977713565063129187 Sun May 7 20:20:19 2023 prp128 factor: 99435231050893783340951930725408585406116815696682531143487533118672675639099756329685013668651378797526758898276629651939799261 Sun May 7 20:20:19 2023 elapsed time 02:12:10 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.080). Factorization parameters were as follows: # # N = 85x10^198+32 = 94(197)8 # n: 204202155559875992691542390676219906560168660025647406357792311974306775483256653261780129264096560078714982069032744070296125990096973825915442587655865343198382711240355219883727965290130807 m: 1000000000000000000000000000000000 deg: 6 c6: 85 c0: 32 skew: 0.85 # Murphy_E = 1.578e-11 type: snfs lss: 1 rlim: 15000000 alim: 15000000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 33100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1774046 hash collisions in 13999183 relations (13251355 unique) Msieve: matrix is 2040047 x 2040271 (588.5 MB) Sieving start time: 2023/05/07 05:21:25 Sieving end time : 2023/05/07 18:07:52 Total sieving time: 12hrs 46min 27secs. Total relation processing time: 2hrs 1min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 38sec. Prototype def-par.txt line would be: snfs,199,6,0,0,0,0,0,0,0,0,15000000,15000000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 6, 2023 17:05:11 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 11 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 4, 2023 01:01:12 UTC 2023 年 5 月 4 日 (木) 10 時 1 分 12 秒 (日本時間) |
composite number 合成数 | 421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127<198> |
prime factors 素因数 | 61074796389322738195257050048579345851369887803<47> 6903452963466515978951139699023818896274528723676983328322949484464592234469555197282343612075471626661826652009080053834340210756997048479788977951309<151> |
factorization results 素因数分解の結果 | Number: n N=421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 ( 198 digits) SNFS difficulty: 199 digits. Divisors found: Thu May 4 10:53:11 2023 prp47 factor: 61074796389322738195257050048579345851369887803 Thu May 4 10:53:11 2023 prp151 factor: 6903452963466515978951139699023818896274528723676983328322949484464592234469555197282343612075471626661826652009080053834340210756997048479788977951309 Thu May 4 10:53:11 2023 elapsed time 03:25:50 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.110). Factorization parameters were as follows: # # N = 85x10^199+32 = 94(198)8 # n: 421626984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984126984127 m: 5000000000000000000000000000000000000000 deg: 5 c5: 17 c0: 2 skew: 0.65 # Murphy_E = 1.593e-11 type: snfs lss: 1 rlim: 14900000 alim: 14900000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14900000/14900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 33050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1826936 hash collisions in 13682827 relations (12579011 unique) Msieve: matrix is 2515273 x 2515499 (713.7 MB) Sieving start time: 2023/05/03 18:12:48 Sieving end time : 2023/05/04 07:27:01 Total sieving time: 13hrs 14min 13secs. Total relation processing time: 3hrs 15min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 38sec. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14900000,14900000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 6, 2023 17:05:18 UTC 2023 年 3 月 7 日 (火) 2 時 5 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 16, 2023 17:36:33 UTC 2023 年 6 月 17 日 (土) 2 時 36 分 33 秒 (日本時間) |
composite number 合成数 | 23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193<191> |
prime factors 素因数 | 28339637224868652042042505015839317458463409939567090871953223<62> 817566025483572289142229246178916070573081143225737767153877146221020750246306558776025333514432991268692616678334552864572710391<129> |
factorization results 素因数分解の結果 | Number: n N=23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193 ( 191 digits) SNFS difficulty: 201 digits. Divisors found: Sat Jun 17 03:29:03 2023 prp62 factor: 28339637224868652042042505015839317458463409939567090871953223 Sat Jun 17 03:29:03 2023 prp129 factor: 817566025483572289142229246178916070573081143225737767153877146221020750246306558776025333514432991268692616678334552864572710391 Sat Jun 17 03:29:03 2023 elapsed time 02:37:24 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 85x10^200+32 = 94(199)8 # n: 23169524569582158243410890738634348561748615649168335788095287571947086030398250330592567727298697241976039872897611700209695262029322396561308755712603944430611071622696157012689533278040193 m: 10000000000000000000000000000000000000000 deg: 5 c5: 85 c0: 32 skew: 0.82 # Murphy_E = 1.342e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 40900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2164197 hash collisions in 15305237 relations (13935189 unique) Msieve: matrix is 2208929 x 2209154 (626.0 MB) Sieving start time: 2023/06/16 08:35:45 Sieving end time : 2023/06/17 00:51:19 Total sieving time: 16hrs 15min 34secs. Total relation processing time: 2hrs 23min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 21sec. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16200000,16200000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3400 | 1000 | Dmitry Domanov | March 16, 2023 18:49:36 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 36 秒 (日本時間) |
2400 | ccc | June 9, 2023 03:15:31 UTC 2023 年 6 月 9 日 (金) 12 時 15 分 31 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 11, 2023 21:19:11 UTC 2023 年 8 月 12 日 (土) 6 時 19 分 11 秒 (日本時間) |
composite number 合成数 | 175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407<174> |
prime factors 素因数 | 49463766692349517696002930292795092515518544236559<50> 8495990539753191101036990017431508972374301857752439557843491<61> 418068801876526346196825310325835066922002721087888569253298003<63> |
factorization results 素因数分解の結果 | Number: n N=175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407 ( 174 digits) SNFS difficulty: 203 digits. Divisors found: Sat Aug 12 06:48:02 2023 prp50 factor: 49463766692349517696002930292795092515518544236559 Sat Aug 12 06:48:02 2023 prp61 factor: 8495990539753191101036990017431508972374301857752439557843491 Sat Aug 12 06:48:02 2023 prp63 factor: 418068801876526346196825310325835066922002721087888569253298003 Sat Aug 12 06:48:02 2023 elapsed time 02:30:08 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 85x10^202+32 = 94(201)8 # n: 175690777596059108986391117042532924259137872976350011241424864827260684850146311653850117685722787512762836961211179448725858233748481122521866352584714732951553285129924407 m: 10000000000000000000000000000000000000000 deg: 5 c5: 2125 c0: 8 skew: 0.33 # Murphy_E = 1.121e-11 type: snfs lss: 1 rlim: 17100000 alim: 17100000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17100000/17100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2956297 hash collisions in 17513110 relations (15328181 unique) Msieve: matrix is 2119277 x 2119502 (603.3 MB) Sieving start time: 2023/08/11 15:07:05 Sieving end time : 2023/08/12 04:17:32 Total sieving time: 13hrs 10min 27secs. Total relation processing time: 2hrs 18min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 39sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17100000,17100000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 15, 2023 16:55:42 UTC 2023 年 3 月 16 日 (木) 1 時 55 分 42 秒 (日本時間) |
2350 | Ignacio Santos | July 12, 2023 06:39:59 UTC 2023 年 7 月 12 日 (水) 15 時 39 分 59 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 2, 2023 12:27:13 UTC 2023 年 11 月 2 日 (木) 21 時 27 分 13 秒 (日本時間) |
composite number 合成数 | 296867084594011906782608149093574441614167711621535970933458378183435736247028695912462501622187968068592968966649629020400754452500188279854497857127547179683630578348182279173<177> |
prime factors 素因数 | 117990031071749863354303456174885345683850681<45> 2516035311606000993255737521499172951397152807017823463549158216382376993359368495779226485870758909926411434273099953815056595330733<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3983789501 Step 1 took 9332ms Step 2 took 3791ms ********** Factor found in step 2: 117990031071749863354303456174885345683850681 Found prime factor of 45 digits: 117990031071749863354303456174885345683850681 Prime cofactor 2516035311606000993255737521499172951397152807017823463549158216382376993359368495779226485870758909926411434273099953815056595330733 has 133 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 15, 2023 16:55:56 UTC 2023 年 3 月 16 日 (木) 1 時 55 分 56 秒 (日本時間) |
1200 | Dmitry Domanov | November 2, 2023 12:16:18 UTC 2023 年 11 月 2 日 (木) 21 時 16 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 10, 2024 23:03:13 UTC 2024 年 8 月 11 日 (日) 8 時 3 分 13 秒 (日本時間) |
composite number 合成数 | 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167<169> |
prime factors 素因数 | 144113472307488034291111490643851280738338204225097299<54> 7344997807741093430260720214738862344899460953402685309<55> 6712580421917530248788460949464244534520559313920478757052737<61> |
factorization results 素因数分解の結果 | 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, **************************** 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, Starting factorization of 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, using pretesting plan: normal 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, **************************** 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 2 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 3 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 47 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 73 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, div: found prime factor = 199 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C199 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C199 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, prp8 = 13885433 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C192 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C192 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C192 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00 08/07/24 18:20:45 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 59.08 08/07/24 18:20:46 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C192 input, B1=2K, B2=gmp-ecm default 08/07/24 18:20:46 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18 08/07/24 18:20:46 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 59.08 08/07/24 18:20:48 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C192 input, B1=11K, B2=gmp-ecm default 08/07/24 18:20:48 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24 08/07/24 18:20:48 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 59.08 08/07/24 18:20:49 v1.34.5 @ RYZEN-9, prp23 = 48681612161736256976719 (curve 6 stg2 B1=50000 sigma=3811070331 thread=0) 08/07/24 18:20:49 v1.34.5 @ RYZEN-9, Finished 6 curves using Lenstra ECM method on C192 input, B1=50K, B2=gmp-ecm default 08/07/24 18:20:49 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.38 08/07/24 18:20:49 v1.34.5 @ RYZEN-9, scheduled 208 curves at B1=50000 toward target pretesting depth of 52.00 08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c208: 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: input divides 85*10^206 + 32 08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 08/07/24 18:21:34 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 08/07/24 18:21:34 v1.34.5 @ RYZEN-9, gen: best 3 polynomials: n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 # 85*10^206+32, difficulty: 208.93, anorm: 1.65e+032, rnorm: 1.39e+047 # scaled difficulty: 211.42, suggest sieving rational side # size = 1.585e-014, alpha = 0.547, combined = 6.366e-012, rroots = 1 type: snfs size: 208 skew: 0.5190 c5: 425 c0: 16 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 # 85*10^206+32, difficulty: 209.93, anorm: 2.61e+038, rnorm: 1.59e+040 # scaled difficulty: 209.93, suggest sieving algebraic side # size = 1.905e-010, alpha = -0.463, combined = 5.295e-012, rroots = 0 type: snfs size: 209 skew: 0.3944 c6: 2125 c0: 8 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 # 85*10^206+32, difficulty: 209.13, anorm: 9.33e+032, rnorm: 1.96e+047 # scaled difficulty: 211.52, suggest sieving rational side # size = 9.986e-015, alpha = -0.146, combined = 4.871e-012, rroots = 1 type: snfs size: 209 skew: 1.0379 c5: 425 c0: 512 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 08/07/24 18:21:36 v1.34.5 @ RYZEN-9, test: fb generation took 1.7188 seconds 08/07/24 18:21:36 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 21400000-21402000 skew: 0.5190 c5: 425 c0: 16 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/07/24 18:24:43 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/07/24 18:24:46 v1.34.5 @ RYZEN-9, test: fb generation took 2.4844 seconds 08/07/24 18:24:46 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the algebraic side over range 21400000-21402000 skew: 0.3944 c6: 2125 c0: 8 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/07/24 18:27:39 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/07/24 18:27:40 v1.34.5 @ RYZEN-9, test: fb generation took 1.7500 seconds 08/07/24 18:27:40 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000 skew: 1.0379 c5: 425 c0: 512 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 08/07/24 18:30:53 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/07/24 18:30:53 v1.34.5 @ RYZEN-9, gen: selected polynomial: n: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 # 85*10^206+32, difficulty: 208.93, anorm: 1.65e+032, rnorm: 1.39e+047 # scaled difficulty: 211.42, suggest sieving rational side # size = 1.585e-014, alpha = 0.547, combined = 6.366e-012, rroots = 1 type: snfs size: 208 skew: 0.5190 c5: 425 c0: 16 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 08/07/24 18:30:53 v1.34.5 @ RYZEN-9, test: test sieving took 558.89 seconds 08/10/24 10:28:14 v1.34.5 @ RYZEN-9, nfs: previous data file found - commencing search for last special-q 08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 08/10/24 10:28:16 v1.34.5 @ RYZEN-9, nfs: resuming with filtering 08/10/24 19:59:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/10/24 20:01:31 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22196714 08/10/24 21:32:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/10/24 21:34:39 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23383649 08/10/24 23:05:03 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/10/24 23:07:23 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24553845 08/11/24 00:48:47 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/11/24 00:51:15 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25860807 08/11/24 02:00:08 v1.34.5 @ RYZEN-9, nfs: previous data file found - commencing search for last special-q 08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c169: 7105354567585215658493562997235072815540588905544853451270176069161128092120995447297511641785752496404962295297340427474610565596994900416694364056159737926446690180167 08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: resuming with filtering 08/11/24 02:00:11 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/11/24 02:02:39 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27054842 08/11/24 03:55:58 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 08/11/24 04:00:28 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra 08/11/24 07:43:05 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt 08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp54 = 144113472307488034291111490643851280738338204225097299 08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp61 = 6712580421917530248788460949464244534520559313920478757052737 08/11/24 07:56:50 v1.34.5 @ RYZEN-9, prp55 = 7344997807741093430260720214738862344899460953402685309 08/11/24 07:56:51 v1.34.5 @ RYZEN-9, NFS elapsed time = 21402.4019 seconds. |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 15, 2023 16:56:06 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 6 秒 (日本時間) |
1200 | Dmitry Domanov | November 2, 2023 12:27:59 UTC 2023 年 11 月 2 日 (木) 21 時 27 分 59 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | August 3, 2024 15:25:16 UTC 2024 年 8 月 4 日 (日) 0 時 25 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 16, 2023 14:40:03 UTC 2023 年 3 月 16 日 (木) 23 時 40 分 3 秒 (日本時間) |
composite number 合成数 | 5233601169458312618266730466793382529779090765562336994784403007329117923218259302875980569945650372765225769313767255794897881879664201363970321056129266295266698409<166> |
prime factors 素因数 | 4397632143450469606721115273180781<34> |
composite cofactor 合成数の残り | 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4251394510 Step 1 took 8189ms Step 2 took 4455ms ********** Factor found in step 2: 4397632143450469606721115273180781 Found prime factor of 34 digits: 4397632143450469606721115273180781 Composite cofactor 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989 has 133 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | March 22, 2023 13:32:50 UTC 2023 年 3 月 22 日 (水) 22 時 32 分 50 秒 (日本時間) |
composite number 合成数 | 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989<133> |
prime factors 素因数 | 2244638928008091949003222373106811331617936069245713<52> 530194520473527515212826266218039255421296434361509943520253982161398553888863453<81> |
factorization results 素因数分解の結果 | 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989=2244638928008091949003222373106811331617936069245713*530194520473527515212826266218039255421296434361509943520253982161398553888863453 cado polynomial n: 1190095260071463161147281767121253787870963256026292989444560856841543843187439779869834334544227112324581613143378610896280562626989 skew: 33015.593 c0: -15407799571893630232486166748 c1: 3468519727516751488104128 c2: -147986859946388418627 c3: -3420690670489961 c4: -83543248242 c5: -932760 Y0: -23806934567362452853756247 Y1: 272778890506612679 # MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.704e-07 # f(x) = -932760*x^5-83543248242*x^4-3420690670489961*x^3-147986859946388418627*x^2+3468519727516751488104128*x-15407799571893630232486166748 # g(x) = 272778890506612679*x-23806934567362452853756247 cado parameters (extracts) tasks.lim0 = 3341873 tasks.lim1 = 16407032 tasks.lpb0 = 27 tasks.lpb1 = 28 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 62 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 530194520473527515212826266218039255421296434361509943520253982161398553888863453 2244638928008091949003222373106811331617936069245713 Info:Square Root: Total cpu/real time for sqrt: 3866.84/495.409 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 14502.9 Info:Polynomial Selection (root optimized): Rootsieve time: 14497.1 Info:Filtering - Merging: Merged matrix has 1143546 rows and total weight 194995395 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 476.98/76.4125 Info:Filtering - Merging: Total cpu/real time for replay: 61.08/48.9708 Info:Linear Algebra: Total cpu/real time for bwc: 111385/24591.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 32804.73, WCT time 7843.3, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.05, comm-wait 0.0 (35840 iterations) Info:Linear Algebra: Lingen CPU time 60760.15, WCT time 12651.06 Info:Linear Algebra: Mksol: CPU time 17444.35, WCT time 3997.55, iteration CPU time 0.17, COMM 0.0, cpu-wait 0.05, comm-wait 0.0 (17920 iterations) Info:Filtering - Singleton removal: Total cpu/real time for purge: 216.54/188.7 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 201.34/190.105 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 189.8s Info:Generate Factor Base: Total cpu/real time for makefb: 36.1/9.4887 Info:Square Root: Total cpu/real time for sqrt: 3866.84/495.409 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 437.12/348.238 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 326.8s Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 17025964 Info:Lattice Sieving: Average J: 3793.98 for 473182 special-q, max bucket fill -bkmult 1.0,1s:1.151310 Info:Lattice Sieving: Total time: 533126s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 53395.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54242/38.950/47.462/52.010/0.994 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44383/37.470/42.224/48.190/0.947 Info:Polynomial Selection (size optimized): Total time: 27120.7 Info:Quadratic Characters: Total cpu/real time for characters: 65.06/19.9805 Info:Generate Free Relations: Total cpu/real time for freerel: 577.37/117.217 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 947058/120630 Info:root: Cleaning up computation data in /tmp/cado.zwu1xi8y 530194520473527515212826266218039255421296434361509943520253982161398553888863453 2244638928008091949003222373106811331617936069245713 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 15, 2023 16:56:14 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 14 秒 (日本時間) |
2350 | Ignacio Santos | March 17, 2023 16:14:04 UTC 2023 年 3 月 18 日 (土) 1 時 14 分 4 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 17, 2023 16:54:55 UTC 2023 年 3 月 18 日 (土) 1 時 54 分 55 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 1, 2024 23:31:20 UTC 2024 年 11 月 2 日 (土) 8 時 31 分 20 秒 (日本時間) |
composite number 合成数 | 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007<188> |
prime factors 素因数 | 642401944112724635030372996752751301495692132805609644499347345148453077<72> 61967503333649557813298057428462141267519024940265034985851474763999567278460277743731420925099894771849848390218091<116> |
factorization results 素因数分解の結果 | 10/31/24 10:32:57, 10/31/24 10:32:57, **************************** 10/31/24 10:32:57, Starting factorization of 850000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 10/31/24 10:32:57, using pretesting plan: normal 10/31/24 10:32:57, no tune info: using qs/gnfs crossover of 100 digits 10/31/24 10:32:57, no tune info: using qs/snfs crossover of 95 digits 10/31/24 10:32:57, **************************** 10/31/24 10:32:57, div: found prime factor = 2 10/31/24 10:32:57, div: found prime factor = 2 10/31/24 10:32:57, div: found prime factor = 2 10/31/24 10:32:57, div: found prime factor = 2 10/31/24 10:32:57, div: found prime factor = 2 10/31/24 10:32:57, div: found prime factor = 3 10/31/24 10:32:57, div: found prime factor = 3 10/31/24 10:32:57, rho: x^2 + 3, starting 1000 iterations on C208 10/31/24 10:32:57, prp8 = 63653039 10/31/24 10:32:57, rho: x^2 + 3, starting 1000 iterations on C200 10/31/24 10:32:57, rho: x^2 + 2, starting 1000 iterations on C200 10/31/24 10:32:57, rho: x^2 + 1, starting 1000 iterations on C200 10/31/24 10:32:58, nfs: input divides 85*10^208 + 32 10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151 10/31/24 10:32:58, nfs: input divides 85*10^208 + 32 10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151 10/31/24 10:32:58, nfs: commencing snfs on c200: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151 10/31/24 10:32:58, pm1: starting B1 = 150K, B2 = gmp-ecm default on C200 10/31/24 10:32:58, nfs: input divides 85*10^208 + 32 10/31/24 10:32:58, nfs: using supplied cofactor: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151 10/31/24 10:32:58, nfs: commencing snfs on c200: 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151 10/31/24 10:32:58, current ECM pretesting depth: 0.000000 10/31/24 10:32:58, scheduled 30 curves at B1=2000 toward target pretesting depth of 47.863780 10/31/24 10:32:58, ecm: commencing 32 curves using AVX-ECM method on 46366818226681822511080561116475348315873636275070682625049353714107646751773923769592350317930443020778456294740128415375248444758291727263625054710881736359655803533416352499507350919865568223520151, B1=2k, B2=200k 10/31/24 10:32:58, ecm: finished 0 curves using AVX-ECM method on C200 input, B1=2k, B2=200k 10/31/24 10:32:58, prp13 = 1164760004593 (curve=5 stg=2 B1=2000 B2=200000 sigma=4051810923 thread=0 vecpos=5) 10/31/24 10:32:58, nfs: input divides 85*10^208 + 32 10/31/24 10:32:58, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:58, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:58, current ECM pretesting depth: 0.000000 10/31/24 10:32:58, scheduled 30 curves at B1=2000 toward target pretesting depth of 44.991953 10/31/24 10:32:58, ecm: commencing 32 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=2k, B2=200k 10/31/24 10:32:58, ecm: finished 128 curves using AVX-ECM method on C188 input, B1=2k, B2=200k 10/31/24 10:32:58, nfs: input divides 85*10^208 + 32 10/31/24 10:32:58, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:58, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:58, current ECM pretesting depth: 15.758294 10/31/24 10:32:58, scheduled 74 curves at B1=11000 toward target pretesting depth of 44.991953 10/31/24 10:32:58, ecm: commencing 80 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=11k, B2=1100k 10/31/24 10:32:59, ecm: finished 128 curves using AVX-ECM method on C188 input, B1=11k, B2=1100k 10/31/24 10:32:59, nfs: input divides 85*10^208 + 32 10/31/24 10:32:59, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:59, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:32:59, current ECM pretesting depth: 20.426864 10/31/24 10:32:59, scheduled 214 curves at B1=50000 toward target pretesting depth of 44.991953 10/31/24 10:32:59, ecm: commencing 224 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=50k, B2=5M 10/31/24 10:33:01, ecm: finished 256 curves using AVX-ECM method on C188 input, B1=50k, B2=5M 10/31/24 10:33:02, nfs: input divides 85*10^208 + 32 10/31/24 10:33:02, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:02, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:02, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C188 10/31/24 10:33:03, nfs: input divides 85*10^208 + 32 10/31/24 10:33:03, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:03, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:03, current ECM pretesting depth: 25.402199 10/31/24 10:33:03, scheduled 430 curves at B1=250000 toward target pretesting depth of 44.991953 10/31/24 10:33:04, ecm: commencing 432 curves using AVX-ECM method on 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007, B1=250k, B2=25M 10/31/24 10:33:57, nfs: commencing nfs on c210: 850000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 10/31/24 10:33:57, nfs: input divides 85*10^208 + 32 10/31/24 10:33:57, nfs: using supplied cofactor: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:57, nfs: commencing snfs on c188: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 10/31/24 10:33:57, gen: best 3 polynomials: n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 # 85*10^208+32, difficulty: 211.33, anorm: 9.85e+41, rnorm: 3.03e+41 # scaled difficulty: 211.43, suggest sieving algebraic side # size = 2.198e-10, alpha = 0.150, combined = 5.853e-12, rroots = 0 type: snfs size: 211 skew: 0.9154 c6: 17 c0: 10 Y1: -1 Y0: 50000000000000000000000000000000000 n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 # 85*10^208+32, difficulty: 211.33, anorm: 2.41e+35, rnorm: 2.85e+48 # scaled difficulty: 213.94, suggest sieving rational side # size = 1.392e-14, alpha = 1.170, combined = 5.727e-12, rroots = 1 type: snfs size: 211 skew: 1.0330 c5: 17 c0: 20 Y1: -1 Y0: 500000000000000000000000000000000000000000 n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 # 85*10^208+32, difficulty: 209.93, anorm: 2.69e+36, rnorm: 1.27e+48 # scaled difficulty: 212.26, suggest sieving rational side # size = 1.064e-14, alpha = 0.365, combined = 5.034e-12, rroots = 1 type: snfs size: 209 skew: 0.2066 c5: 10625 c0: 4 Y1: -1 Y0: 100000000000000000000000000000000000000000 10/31/24 10:33:59, test: fb generation took 2.4103 seconds 10/31/24 10:33:59, test: commencing test sieving of polynomial 0 on the algebraic side over range 22600000-22601000 skew: 0.9154 c6: 17 c0: 10 Y1: -1 Y0: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 10/31/24 10:34:48, nfs: parsing special-q from .dat file 10/31/24 10:34:49, test: fb generation took 1.7349 seconds 10/31/24 10:34:49, test: commencing test sieving of polynomial 1 on the rational side over range 23800000-23801000 skew: 1.0330 c5: 17 c0: 20 Y1: -1 Y0: 500000000000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 10/31/24 10:36:33, nfs: parsing special-q from .dat file 10/31/24 10:36:35, test: fb generation took 1.7087 seconds 10/31/24 10:36:35, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22601000 skew: 0.2066 c5: 10625 c0: 4 Y1: -1 Y0: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 10/31/24 10:38:03, nfs: parsing special-q from .dat file 10/31/24 10:38:03, gen: selected polynomial: n: 39808044613348220751032129543412185620197695423523015509468168102545031299825367465825094910020761443604776077701322066771760870973929433428660983355405267873449816434854687329767310016007 # 85*10^208+32, difficulty: 211.33, anorm: 9.85e+41, rnorm: 3.03e+41 # scaled difficulty: 211.43, suggest sieving algebraic side # size = 2.198e-10, alpha = 0.150, combined = 5.853e-12, rroots = 0 type: snfs size: 211 skew: 0.9154 c6: 17 c0: 10 Y1: -1 Y0: 50000000000000000000000000000000000 10/31/24 10:38:05, test: fb generation took 2.3466 seconds 10/31/24 10:38:05, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22601000 skew: 0.9154 c6: 17 c0: 10 Y1: -1 Y0: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 10/31/24 10:39:29, nfs: parsing special-q from .dat file 11/02/24 03:32:44, nfs: commencing msieve filtering 11/02/24 07:23:07, nfs: commencing msieve linear algebra 11/02/24 09:00:57, nfs: commencing msieve sqrt 11/02/24 09:32:39, prp116 = 61967503333649557813298057428462141267519024940265034985851474763999567278460277743731420925099894771849848390218091 11/02/24 09:32:39, C23 = 21352468031423541540576 11/02/24 09:32:39, prp72 = 642401944112724635030372996752751301495692132805609644499347345148453077 10/31/24 10:38:03, test: test sieving took 245.79 seconds 10/31/24 10:39:29, test: test sieving took 86.24 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 16, 2023 18:49:31 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 31 秒 (日本時間) |
1200 | Dmitry Domanov | November 3, 2023 08:20:18 UTC 2023 年 11 月 3 日 (金) 17 時 20 分 18 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | November 24, 2024 18:51:51 UTC 2024 年 11 月 25 日 (月) 3 時 51 分 51 秒 (日本時間) |
composite number 合成数 | 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681<187> |
prime factors 素因数 | 164531219231246697482896933163922323498200239738538831633713729803459371399249937<81> 17526423605170560784278488862242991785623625241231791023774285662736025022566476563117388398114942000026513<107> |
factorization results 素因数分解の結果 | 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, **************************** 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, Starting factorization of 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, using pretesting plan: normal 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, **************************** 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 2 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, div: found prime factor = 3 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C208 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C208 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C208 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C208 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 64.00 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C208 input, B1=2K, B2=gmp-ecm default 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 11/21/24 17:57:10 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 64.00 11/21/24 17:57:13 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C208 input, B1=11K, B2=gmp-ecm default 11/21/24 17:57:13 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 11/21/24 17:57:13 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 64.00 11/21/24 17:57:27 v1.34.5 @ TRIGKEY, prp22 = 3411642870409219446323 (curve 102 stg2 B1=50000 sigma=3848723826 thread=0) 11/21/24 17:57:27 v1.34.5 @ TRIGKEY, Finished 102 curves using Lenstra ECM method on C208 input, B1=50K, B2=gmp-ecm default 11/21/24 17:57:27 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 22.63 11/21/24 17:57:27 v1.34.5 @ TRIGKEY, scheduled 112 curves at B1=50000 toward target pretesting depth of 57.54 11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c211: 8500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032 11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: input divides 85*10^209 + 32 11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 11/21/24 17:58:26 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c187: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 11/21/24 17:58:26 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 # 85*10^209+32, difficulty: 211.63, anorm: 1.17e+031, rnorm: 6.19e+047 # scaled difficulty: 214.42, suggest sieving rational side # size = 1.541e-014, alpha = 1.785, combined = 6.023e-012, rroots = 1 type: snfs size: 211 skew: 0.6518 c5: 17 c0: 2 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 # 85*10^209+32, difficulty: 211.63, anorm: 8.25e+036, rnorm: 6.33e+040 # scaled difficulty: 211.63, suggest sieving algebraic side # size = 2.204e-010, alpha = 1.099, combined = 5.864e-012, rroots = 0 type: snfs size: 211 skew: 0.6236 c6: 17 c0: 1 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 # 85*10^209+32, difficulty: 210.00, anorm: 6.60e+031, rnorm: 8.76e+047 # scaled difficulty: 212.69, suggest sieving rational side # size = 1.090e-014, alpha = 0.745, combined = 4.919e-012, rroots = 1 type: snfs size: 210 skew: 1.3036 c5: 17 c0: 64 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 11/21/24 17:58:28 v1.34.5 @ TRIGKEY, test: fb generation took 1.6262 seconds 11/21/24 17:58:28 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.6518 c5: 17 c0: 2 Y1: -1 Y0: 500000000000000000000000000000000000000000 m: 500000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/21/24 18:01:27 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 11/21/24 18:01:29 v1.34.5 @ TRIGKEY, test: fb generation took 2.4052 seconds 11/21/24 18:01:29 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the algebraic side over range 22600000-22602000 skew: 0.6236 c6: 17 c0: 1 Y1: -1 Y0: 50000000000000000000000000000000000 m: 50000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 11/21/24 18:04:55 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 11/21/24 18:04:56 v1.34.5 @ TRIGKEY, test: fb generation took 1.5976 seconds 11/21/24 18:04:56 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 21400000-21402000 skew: 1.3036 c5: 17 c0: 64 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 11/21/24 18:07:53 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 11/21/24 18:07:53 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 2883643844522014646132916319253531414832040064241222498717638795799596760674996301266690507030864860164332589188820329843694598632710939693925020758374373130545378691682630572562313579681 # 85*10^209+32, difficulty: 210.00, anorm: 6.60e+031, rnorm: 8.76e+047 # scaled difficulty: 212.69, suggest sieving rational side # size = 1.090e-014, alpha = 0.745, combined = 4.919e-012, rroots = 1 type: snfs size: 210 skew: 1.3036 c5: 17 c0: 64 Y1: -1 Y0: 1000000000000000000000000000000000000000000 m: 1000000000000000000000000000000000000000000 11/23/24 13:08:12 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/23/24 13:10:16 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22120929 11/23/24 15:40:10 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/23/24 15:42:20 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23273809 11/23/24 18:28:18 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/23/24 18:30:34 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24544871 11/23/24 21:15:04 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/23/24 21:17:25 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25793516 11/24/24 00:18:19 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/24/24 00:20:47 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 27151423 11/24/24 03:36:58 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 11/24/24 03:41:37 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 11/24/24 07:01:43 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 11/24/24 07:08:31 v1.34.5 @ TRIGKEY, prp107 = 17526423605170560784278488862242991785623625241231791023774285662736025022566476563117388398114942000026513 11/24/24 07:08:31 v1.34.5 @ TRIGKEY, prp81 = 164531219231246697482896933163922323498200239738538831633713729803459371399249937 11/24/24 07:08:31 v1.34.5 @ TRIGKEY, NFS elapsed time = 220205.2300 seconds. 11/24/24 07:08:31 v1.34.5 @ TRIGKEY, 11/24/24 07:08:31 v1.34.5 @ TRIGKEY, 11/21/24 18:07:53 v1.34.5 @ TRIGKEY, test: test sieving took 567.05 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | November 8, 2023 19:28:45 UTC 2023 年 11 月 9 日 (木) 4 時 28 分 45 秒 (日本時間) |
286 | ebina | September 24, 2024 03:05:02 UTC 2024 年 9 月 24 日 (火) 12 時 5 分 2 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 8, 2023 20:50:27 UTC 2023 年 11 月 9 日 (木) 5 時 50 分 27 秒 (日本時間) |
composite number 合成数 | 9440122258036260220201096755731761741282265483602433716080722480630664748823334384091351943501326920110356541392969357523787977052544601151682263495392741090836329976423015232935602226745242900095955391<202> |
prime factors 素因数 | 132191739204450326684655639695934967579<39> |
composite cofactor 合成数の残り | 71412346299763729486126533983072941675874531175259625396823106381841316784814458412537002650304198883077204128700519727551368086128601223989834213469090880158416429<164> |
factorization results 素因数分解の結果 | GPU: factor 132191739204450326684655639695934967579 found in Step 1 with curve 1370 (-sigma 3:640993744) Computing 1792 Step 1 took 221ms of CPU time / 175289ms of GPU time Throughput: 10.223 curves per second (on average 97.82ms per Step 1) ********** Factor found in step 1: 132191739204450326684655639695934967579 Found prime factor of 39 digits: 132191739204450326684655639695934967579 Composite cofactor 71412346299763729486126533983072941675874531175259625396823106381841316784814458412537002650304198883077204128700519727551368086128601223989834213469090880158416429 has 164 digits Peak memory usage: 9426MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1792 | Dmitry Domanov | November 8, 2023 19:28:54 UTC 2023 年 11 月 9 日 (木) 4 時 28 分 54 秒 (日本時間) |
286 | ebina | September 24, 2024 03:41:26 UTC 2024 年 9 月 24 日 (火) 12 時 41 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 16, 2023 18:49:25 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 06:30:28 UTC 2024 年 9 月 25 日 (水) 15 時 30 分 28 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 16, 2023 17:54:23 UTC 2023 年 3 月 17 日 (金) 2 時 54 分 23 秒 (日本時間) |
composite number 合成数 | 1272431362342632063234433717550388913031104102960312254307456379091293563698280731649878925501088377167869695983380724981594283043938583453613498088537488479232233<163> |
prime factors 素因数 | 144567886370325933615808292480467087<36> 8801618355844011776422216502541976314260395789574347384005072066185202293221087397554062670594089227669096017263870056033604359<127> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:666103135 Step 1 took 8021ms Step 2 took 4005ms ********** Factor found in step 2: 144567886370325933615808292480467087 Found prime factor of 36 digits: 144567886370325933615808292480467087 Prime cofactor 8801618355844011776422216502541976314260395789574347384005072066185202293221087397554062670594089227669096017263870056033604359 has 127 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 15, 2023 16:56:26 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 15, 2023 16:56:37 UTC 2023 年 3 月 16 日 (木) 1 時 56 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 06:30:39 UTC 2024 年 9 月 25 日 (水) 15 時 30 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:29:14 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 14 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 06:50:38 UTC 2024 年 9 月 25 日 (水) 15 時 50 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:29:23 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 06:50:51 UTC 2024 年 9 月 25 日 (水) 15 時 50 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 17, 2023 00:15:58 UTC 2023 年 3 月 17 日 (金) 9 時 15 分 58 秒 (日本時間) |
composite number 合成数 | 28672234374260520439891541416419871820091626601090230509606724648306189169219514901098650407580500013890895189763654180080927454873730691992321163093310933994705320950619116298604587299209909<191> |
prime factors 素因数 | 4967430979947678648282649479947419<34> |
composite cofactor 合成数の残り | 5772044843703600211529718525338944658578189344237097859403805406968944991621558969163225265239265058823203553991297715466185510476810584785214104896190505711<157> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3836424899 Step 1 took 9881ms Step 2 took 4694ms ********** Factor found in step 2: 4967430979947678648282649479947419 Found prime factor of 34 digits: 4967430979947678648282649479947419 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | 1000 | Dmitry Domanov | March 16, 2023 18:49:15 UTC 2023 年 3 月 17 日 (金) 3 時 49 分 15 秒 (日本時間) |
1078 | ebina | September 24, 2024 05:45:56 UTC 2024 年 9 月 24 日 (火) 14 時 45 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:29:37 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 07:10:12 UTC 2024 年 9 月 25 日 (水) 16 時 10 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:29:47 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 07:27:38 UTC 2024 年 9 月 25 日 (水) 16 時 27 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:29:55 UTC 2023 年 11 月 9 日 (木) 4 時 29 分 55 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 07:43:11 UTC 2024 年 9 月 25 日 (水) 16 時 43 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:30:05 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 07:43:27 UTC 2024 年 9 月 25 日 (水) 16 時 43 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:30:14 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 14 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 08:01:20 UTC 2024 年 9 月 25 日 (水) 17 時 1 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:30:23 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 08:13:59 UTC 2024 年 9 月 25 日 (水) 17 時 13 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:30:32 UTC 2023 年 11 月 9 日 (木) 4 時 30 分 32 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 08:27:47 UTC 2024 年 9 月 25 日 (水) 17 時 27 分 47 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 25, 2024 08:28:12 UTC 2024 年 9 月 25 日 (水) 17 時 28 分 12 秒 (日本時間) |
composite number 合成数 | 20314365778043859064721666799621379436601996325583525780326436118251321754911861859765765706231731526562118783323179349983827895101093747395709724601632447533694786810936789820390399661950870117086901<200> |
prime factors 素因数 | 6243287728944722054365158051926653924283<40> 3253792978956219760045507130000324013997819430567070817749504374980032462948910808439095192791612880345165459439280573461504208860011691210031522132927938183247<160> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2549845329 Step 1 took 8703ms Step 2 took 3843ms ********** Factor found in step 2: 6243287728944722054365158051926653924283 Found prime factor of 40 digits: 6243287728944722054365158051926653924283 Prime cofactor 3253792978956219760045507130000324013997819430567070817749504374980032462948910808439095192791612880345165459439280573461504208860011691210031522132927938183247 has 160 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | November 8, 2023 19:31:38 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 9, 2023 05:26:30 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 30 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 08:49:57 UTC 2024 年 9 月 25 日 (水) 17 時 49 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:31:47 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 09:06:44 UTC 2024 年 9 月 25 日 (水) 18 時 6 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 9, 2023 04:49:06 UTC 2023 年 11 月 9 日 (木) 13 時 49 分 6 秒 (日本時間) |
composite number 合成数 | 2143927474961030150495452442025180253577234121938097018053732303080700235620064447619511251868107890511751684689324555726388234766299122412449542291130891094511641287034052247389488478684131702520946777807370502547057066373<223> |
prime factors 素因数 | 5151652184296017601973028353653461419<37> |
composite cofactor 合成数の残り | 416163086765921026224566865696525277848769561855913901873937943808942899807828552954075359652221333618786331058739130529966188906124037579955034471001096679973759693376844055721028282767<186> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8b6ca5cb11b9 with GMP-ECM 7.0.5-dev on Wed Nov 8 20:20:16 2023 Input number is 2143927474961030150495452442025180253577234121938097018053732303080700235620064447619511251868107890511751684689324555726388234766299122412449542291130891094511641287034052247389488478684131702520946777807370502547057066373 (223 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3711364811 Step 1 took 0ms Step 2 took 5709ms ********** Factor found in step 2: 5151652184296017601973028353653461419 Found prime factor of 37 digits: 5151652184296017601973028353653461419 Composite cofactor 416163086765921026224566865696525277848769561855913901873937943808942899807828552954075359652221333618786331058739130529966188906124037579955034471001096679973759693376844055721028282767 has 186 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:31:56 UTC 2023 年 11 月 9 日 (木) 4 時 31 分 56 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 09:07:00 UTC 2024 年 9 月 25 日 (水) 18 時 7 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:32:05 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 09:18:24 UTC 2024 年 9 月 25 日 (水) 18 時 18 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:32:36 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 36 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 09:47:34 UTC 2024 年 9 月 25 日 (水) 18 時 47 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 16, 2023 18:50:44 UTC 2023 年 3 月 17 日 (金) 3 時 50 分 44 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 09:47:46 UTC 2024 年 9 月 25 日 (水) 18 時 47 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 9, 2023 05:26:39 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 39 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 10:02:05 UTC 2024 年 9 月 25 日 (水) 19 時 2 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | November 8, 2023 19:32:49 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 49 秒 (日本時間) |
2350 | Ignacio Santos | September 25, 2024 10:08:25 UTC 2024 年 9 月 25 日 (水) 19 時 8 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | November 8, 2023 19:32:58 UTC 2023 年 11 月 9 日 (木) 4 時 32 分 58 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 17:28:01 UTC 2024 年 10 月 4 日 (金) 2 時 28 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | 1000 | Dmitry Domanov | March 16, 2023 18:50:56 UTC 2023 年 3 月 17 日 (金) 3 時 50 分 56 秒 (日本時間) |
1206 | Thomas Kozlowski | October 3, 2024 17:34:54 UTC 2024 年 10 月 4 日 (金) 2 時 34 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 22, 2023 06:12:23 UTC 2023 年 3 月 22 日 (水) 15 時 12 分 23 秒 (日本時間) |
composite number 合成数 | 60232426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569161<251> |
prime factors 素因数 | 63462059582525353647090584808214709<35> |
composite cofactor 合成数の残り | 949109226837009610269672635276048219775491060237785052797262313156260663909566197410940141619188008658442197861393509884477873650820957950605735813143017790059005323087836852626369950308722287252459347381768991751429<216> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @d3d9b6b29b12 with GMP-ECM 7.0.5-dev on Mon Mar 20 10:02:17 2023 Input number is 60232426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569161 (251 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2369533810 Step 1 took 0ms Step 2 took 6906ms ********** Factor found in step 2: 63462059582525353647090584808214709 Found prime factor of 35 digits: 63462059582525353647090584808214709 Composite cofactor 949109226837009610269672635276048219775491060237785052797262313156260663909566197410940141619188008658442197861393509884477873650820957950605735813143017790059005323087836852626369950308722287252459347381768991751429 has 216 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1792 | Dmitry Domanov | March 20, 2023 09:04:20 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 20 秒 (日本時間) |
415 | Thomas Kozlowski | October 3, 2024 17:37:49 UTC 2024 年 10 月 4 日 (金) 2 時 37 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | November 9, 2023 05:26:48 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 48 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 17:41:08 UTC 2024 年 10 月 4 日 (金) 2 時 41 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2210 | 1792 | Dmitry Domanov | November 9, 2023 05:26:57 UTC 2023 年 11 月 9 日 (木) 14 時 26 分 57 秒 (日本時間) |
418 | Thomas Kozlowski | October 3, 2024 17:44:26 UTC 2024 年 10 月 4 日 (金) 2 時 44 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | November 9, 2023 05:27:07 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 7 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 17:47:47 UTC 2024 年 10 月 4 日 (金) 2 時 47 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | November 8, 2023 19:33:11 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 11 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 17:50:41 UTC 2024 年 10 月 4 日 (金) 2 時 50 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 20, 2023 09:04:27 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 27 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 17:54:23 UTC 2024 年 10 月 4 日 (金) 2 時 54 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | November 8, 2023 19:33:19 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 19 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 17:57:18 UTC 2024 年 10 月 4 日 (金) 2 時 57 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | November 8, 2023 19:33:28 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 28 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 17:59:50 UTC 2024 年 10 月 4 日 (金) 2 時 59 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | November 8, 2023 19:33:38 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 38 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 18:02:44 UTC 2024 年 10 月 4 日 (金) 3 時 2 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | November 9, 2023 05:27:23 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 23 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 18:06:02 UTC 2024 年 10 月 4 日 (金) 3 時 6 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 20, 2023 09:04:35 UTC 2023 年 3 月 20 日 (月) 18 時 4 分 35 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 18:09:25 UTC 2024 年 10 月 4 日 (金) 3 時 9 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | November 9, 2023 05:27:37 UTC 2023 年 11 月 9 日 (木) 14 時 27 分 37 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 18:12:43 UTC 2024 年 10 月 4 日 (金) 3 時 12 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 20, 2023 09:05:31 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 31 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 18:16:25 UTC 2024 年 10 月 4 日 (金) 3 時 16 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | November 8, 2023 19:33:48 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 48 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 18:19:20 UTC 2024 年 10 月 4 日 (金) 3 時 19 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 20, 2023 09:05:39 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 39 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 18:23:02 UTC 2024 年 10 月 4 日 (金) 3 時 23 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 20, 2023 09:05:47 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 47 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 18:27:08 UTC 2024 年 10 月 4 日 (金) 3 時 27 分 8 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 9, 2023 15:00:08 UTC 2023 年 11 月 10 日 (金) 0 時 0 分 8 秒 (日本時間) |
composite number 合成数 | 62893270229816599643161035190314429670606290107399255596118046856408052489099113862111604849051045986712647560560482984198569102013231603128326458629650192085066844733899969542224940322309609985597053742069536948578409147073386297<230> |
prime factors 素因数 | 4850538939037372025512394939194741019<37> |
composite cofactor 合成数の残り | 12966243755647134049473725691634972910962408637578468716331551993384849622236789727110434023607019203077223347323331302198156508192348515632707484363599786968027428222353895919569284568627515963<194> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @8b6ca5cb11b9 with GMP-ECM 7.0.5-dev on Wed Nov 8 20:36:27 2023 Input number is 62893270229816599643161035190314429670606290107399255596118046856408052489099113862111604849051045986712647560560482984198569102013231603128326458629650192085066844733899969542224940322309609985597053742069536948578409147073386297 (230 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3509659362 Step 1 took 0ms Step 2 took 5997ms ********** Factor found in step 2: 4850538939037372025512394939194741019 Found prime factor of 37 digits: 4850538939037372025512394939194741019 Composite cofactor 12966243755647134049473725691634972910962408637578468716331551993384849622236789727110434023607019203077223347323331302198156508192348515632707484363599786968027428222353895919569284568627515963 has 194 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | November 8, 2023 19:33:57 UTC 2023 年 11 月 9 日 (木) 4 時 33 分 57 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 18:29:42 UTC 2024 年 10 月 4 日 (金) 3 時 29 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 20, 2023 09:05:55 UTC 2023 年 3 月 20 日 (月) 18 時 5 分 55 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 18:33:24 UTC 2024 年 10 月 4 日 (金) 3 時 33 分 24 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 10, 2023 18:59:59 UTC 2023 年 11 月 11 日 (土) 3 時 59 分 59 秒 (日本時間) |
composite number 合成数 | 10357339840926238807587444838107260009489618299855498032259840860513073784055849771762759047914754060474628242654074660543778480842779595246015757533903385504069856289535830517908937275674783217061854345301474678604530973330989256747943323199<242> |
prime factors 素因数 | 734147480439716036871337913430519348697<39> |
composite cofactor 合成数の残り | 14107982546943745735932154902912862542488291214228197712422044436500421034791049843058507477793368761640196742466020591496191262767904984776558955906192913271616527421035077547646459767982516519224196567<203> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @bae5341798f6 with GMP-ECM 7.0.5-dev on Thu Nov 9 17:28:03 2023 Input number is 10357339840926238807587444838107260009489618299855498032259840860513073784055849771762759047914754060474628242654074660543778480842779595246015757533903385504069856289535830517908937275674783217061854345301474678604530973330989256747943323199 (242 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:4204654844 Step 1 took 0ms Step 2 took 6173ms ********** Factor found in step 2: 734147480439716036871337913430519348697 Found prime factor of 39 digits: 734147480439716036871337913430519348697 Composite cofactor 14107982546943745735932154902912862542488291214228197712422044436500421034791049843058507477793368761640196742466020591496191262767904984776558955906192913271616527421035077547646459767982516519224196567 has 203 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2212 | 1792 | Dmitry Domanov | November 9, 2023 05:28:35 UTC 2023 年 11 月 9 日 (木) 14 時 28 分 35 秒 (日本時間) |
420 | Thomas Kozlowski | October 3, 2024 18:35:59 UTC 2024 年 10 月 4 日 (金) 3 時 35 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 20, 2023 09:06:03 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 18:39:39 UTC 2024 年 10 月 4 日 (金) 3 時 39 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | November 9, 2023 05:28:52 UTC 2023 年 11 月 9 日 (木) 14 時 28 分 52 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 18:42:58 UTC 2024 年 10 月 4 日 (金) 3 時 42 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 20, 2023 09:06:09 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 9 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 18:47:06 UTC 2024 年 10 月 4 日 (金) 3 時 47 分 6 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | November 17, 2023 22:32:20 UTC 2023 年 11 月 18 日 (土) 7 時 32 分 20 秒 (日本時間) |
composite number 合成数 | 5474961865933817412164566227847006643647724686273304536948192073685764322105030722650054940193599614727563631730656212639442599914173138185784276884506443444747026884254246816863608983312160873791590218509834684616035941409921567829407287273<241> |
prime factors 素因数 | 21618438520504071379857282455172504900234229<44> |
composite cofactor 合成数の残り | 253254269994619351575334298767588989780267584858308647311788139689112721545184467442948939041727578030031243826243955733990704783091888593280526867778335396245432780434134721950434770873088117475237<198> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Thu Nov 16 23:56:02 2023 Input number is 5474961865933817412164566227847006643647724686273304536948192073685764322105030722650054940193599614727563631730656212639442599914173138185784276884506443444747026884254246816863608983312160873791590218509834684616035941409921567829407287273 (241 digits) Using mpz_mod Using lmax = 8388608 with NTT which takes about 2880MB of memory Using B1=4000000000-4000000000, B2=205705378426380, polynomial x^1 P = 24249225, l = 8388608, s_1 = 4147200, k = s_2 = 2, m_1 = 79 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.71 0.43 0.21 0.087 0.032 0.01 0.003 0.00079 0.00019 4.5e-05 Step 1 took 0ms Computing F from factored S_1 took 30066ms Computing h took 4142ms Computing DCT-I of h took 8876ms Multi-point evaluation 1 of 2: Computing g_i took 14087ms Computing g*h took 17119ms Computing gcd of coefficients and N took 3928ms Step 2 took 78649ms ********** Factor found in step 2: 21618438520504071379857282455172504900234229 Found prime factor of 44 digits: 21618438520504071379857282455172504900234229 Composite cofactor 253254269994619351575334298767588989780267584858308647311788139689112721545184467442948939041727578030031243826243955733990704783091888593280526867778335396245432780434134721950434770873088117475237 has 198 digits |
execution environment 実行環境 | 1080 ti for stage 1 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | November 9, 2023 05:29:07 UTC 2023 年 11 月 9 日 (木) 14 時 29 分 7 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 18:49:41 UTC 2024 年 10 月 4 日 (金) 3 時 49 分 41 秒 (日本時間) | |||
45 | 11e6 | 3584 | Dmitry Domanov | December 6, 2024 23:38:50 UTC 2024 年 12 月 7 日 (土) 8 時 38 分 50 秒 (日本時間) | |
50 | 43e6 | 1792 / 6660 | Dmitry Domanov | December 8, 2024 20:50:20 UTC 2024 年 12 月 9 日 (月) 5 時 50 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 20, 2023 09:06:16 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 16 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 18:53:21 UTC 2024 年 10 月 4 日 (金) 3 時 53 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 20, 2023 09:06:24 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 24 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 18:57:03 UTC 2024 年 10 月 4 日 (金) 3 時 57 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 20, 2023 09:06:33 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 19:01:08 UTC 2024 年 10 月 4 日 (金) 4 時 1 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | March 20, 2023 09:06:40 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 40 秒 (日本時間) |
406 | Thomas Kozlowski | October 3, 2024 19:05:14 UTC 2024 年 10 月 4 日 (金) 4 時 5 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 20, 2023 09:06:48 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 48 秒 (日本時間) |
408 | Thomas Kozlowski | October 3, 2024 19:09:20 UTC 2024 年 10 月 4 日 (金) 4 時 9 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 20, 2023 09:06:57 UTC 2023 年 3 月 20 日 (月) 18 時 6 分 57 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 19:13:01 UTC 2024 年 10 月 4 日 (金) 4 時 13 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 08:32:22 UTC 2023 年 2 月 22 日 (水) 17 時 32 分 22 秒 (日本時間) |
composite number 合成数 | 1032632130258684218880968201481542213685500041671515159977230272565794911439278722962513747439637534868305947823027740134215457924328039329668430743926945594817603520594757130562507771920683302516271938050302855836018774670242606367955947836810029468683649510729781227802179882037<280> |
prime factors 素因数 | 154726498126280026435396891010056422391<39> 6673919094426227750654086939143364164388911377474237618122015670842175699076468956468398029745745729099102866182207914119136216602863635903936987314020085135561423007835657759664870439804056832600537095934490095542045033711060713972025888307<241> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @d758d0e39ce3 with GMP-ECM 7.0.5-dev on Tue Feb 21 08:18:30 2023 Input number is 1032632130258684218880968201481542213685500041671515159977230272565794911439278722962513747439637534868305947823027740134215457924328039329668430743926945594817603520594757130562507771920683302516271938050302855836018774670242606367955947836810029468683649510729781227802179882037 (280 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:1439730784 Step 1 took 0ms Step 2 took 36464ms ********** Factor found in step 2: 154726498126280026435396891010056422391 Found prime factor of 39 digits: 154726498126280026435396891010056422391 Prime cofactor 6673919094426227750654086939143364164388911377474237618122015670842175699076468956468398029745745729099102866182207914119136216602863635903936987314020085135561423007835657759664870439804056832600537095934490095542045033711060713972025888307 has 241 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |