name 名前 | Rytis Slatkevičius |
---|---|
date 日付 | February 20, 2023 21:00:13 UTC 2023 年 2 月 21 日 (火) 6 時 0 分 13 秒 (日本時間) |
composite number 合成数 | 768518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519<108> |
prime factors 素因数 | 887469273615664042034622405853704985462543361<45> 865966339755600959852790420345971847981850296081100388249913079<63> |
factorization results 素因数分解の結果 | P45 = 887469273615664042034622405853704985462543361 P63 = 865966339755600959852790420345971847981850296081100388249913079 |
software ソフトウェア | yafu2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 27, 2023 19:59:18 UTC 2023 年 2 月 28 日 (火) 4 時 59 分 18 秒 (日本時間) |
composite number 合成数 | 230555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557<126> |
prime factors 素因数 | 47619537234473532757081990653631667405580965589559<50> 4841616885530082750468078073116907144288074265887641545386328793880357392323<76> |
factorization results 素因数分解の結果 | Number: n N=230555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: Tue Feb 28 06:56:54 2023 prp50 factor: 47619537234473532757081990653631667405580965589559 Tue Feb 28 06:56:54 2023 prp76 factor: 4841616885530082750468078073116907144288074265887641545386328793880357392323 Tue Feb 28 06:56:54 2023 elapsed time 00:03:05 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 83x10^125+52 = 92(124)8 # n: 230555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 10000000000000000000000000000000 deg: 4 c4: 415 c0: 26 skew: 0.50 # Murphy_E = 1.588e-08 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved special-q in [100000, 8850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 520032 hash collisions in 8172250 relations (8304678 unique) Msieve: matrix is 279276 x 279523 (28.9 MB) Sieving start time: 2023/02/28 06:36:04 Sieving end time : 2023/02/28 06:53:42 Total sieving time: 0hrs 17min 38secs. Total relation processing time: 0hrs 1min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 6sec. Prototype def-par.txt line would be: snfs,126,4,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,75000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 17:23:04 UTC 2023 年 2 月 25 日 (土) 2 時 23 分 4 秒 (日本時間) |
composite number 合成数 | 4385879530859270315198471828523481925029529651303976940123401951951009366315231952470339776306616394130226295953951097253<121> |
prime factors 素因数 | 1664720150262636622959298745285167124033<40> 2634604699274725925644775176836578427244796352712751008190560721549131168081994341<82> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 4385879530859270315198471828523481925029529651303976940123401951951009366315231952470339776306616394130226295953951097253 (121 digits) Using B1=36480000, B2=192389627446, polynomial Dickson(12), sigma=1:1935578756 Step 1 took 56743ms Step 2 took 22624ms ********** Factor found in step 2: 1664720150262636622959298745285167124033 Found prime factor of 40 digits: 1664720150262636622959298745285167124033 Prime cofactor 2634604699274725925644775176836578427244796352712751008190560721549131168081994341 has 82 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 26, 2023 03:41:27 UTC 2023 年 2 月 26 日 (日) 12 時 41 分 27 秒 (日本時間) |
composite number 合成数 | 12792296263416498671450677221081704242110389810550716060342648590997922407787580067444684877964576128033931951148840678885621459<128> |
prime factors 素因数 | 99019755471218725114476557766500226538762576141<47> 129189334012592390272512862451109532455990064481069053178224251649669674965493599<81> |
factorization results 素因数分解の結果 | Number: n N=12792296263416498671450677221081704242110389810550716060342648590997922407787580067444684877964576128033931951148840678885621459 ( 128 digits) SNFS difficulty: 133 digits. Divisors found: Sun Feb 26 10:59:32 2023 prp47 factor: 99019755471218725114476557766500226538762576141 Sun Feb 26 10:59:32 2023 prp81 factor: 129189334012592390272512862451109532455990064481069053178224251649669674965493599 Sun Feb 26 10:59:32 2023 elapsed time 00:07:06 (Msieve 1.44 - dependency 7) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.764). Factorization parameters were as follows: # # N = 83x10^131+52 = 92(130)8 # n: 12792296263416498671450677221081704242110389810550716060342648590997922407787580067444684877964576128033931951148840678885621459 m: 500000000000000000000000000000000 deg: 4 c4: 166 c0: 65 skew: 0.79 # Murphy_E = 7.81e-09 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved special-q in [100000, 26175000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 346361 hash collisions in 5764964 relations (6071855 unique) Msieve: matrix is 220298 x 220546 (59.4 MB) Sieving start time: 2023/02/26 09:52:18 Sieving end time : 2023/02/26 10:36:32 Total sieving time: 0hrs 44min 14secs. Total relation processing time: 0hrs 3min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 31sec. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Norman Powell |
---|---|
date 日付 | March 9, 2023 14:16:08 UTC 2023 年 3 月 9 日 (木) 23 時 16 分 8 秒 (日本時間) |
composite number 合成数 | 3396464956625761129490075500147787000734745957741288182843714667642874313112870590118159997498933569953276560016006183<118> |
prime factors 素因数 | 342212831014601537484135831341688325340367946143604283<54> 9925007623343149160434304776799432201046581581228833719643799301<64> |
factorization results 素因数分解の結果 | 03/08/23 20:22:16, nfs: commencing nfs on c118: 3396464956625761129490075500147787000734745957741288182843714667642874313112870590118159997498933569953276560016006183 03/08/23 20:22:16, nfs: commencing poly selection with 4 threads 03/08/23 20:22:16, nfs: setting deadline of 2700 seconds 03/08/23 20:22:16, nfs: expecting degree 5 poly E from 3.66e-10 to > 4.21e-10 03/08/23 20:22:16, nfs: searching for avg quality poly E > 3.79e-10 03/08/23 21:06:47, nfs: completed 247 ranges of size 250 in 2670.4969 seconds 03/08/23 21:06:47, nfs: best poly = # norm 3.122064e-11 alpha -5.510281 e 3.734e-10 rroots 5 03/08/23 21:06:47, nfs: commencing lattice sieving with 4 threads 03/09/23 03:10:44, nfs: commencing msieve filtering 03/09/23 03:13:40, nfs: raising min_rels by 5.00 percent to 10687862 03/09/23 03:34:36, nfs: commencing msieve filtering 03/09/23 03:37:25, nfs: commencing msieve linear algebra 03/09/23 03:42:22, nfs: commencing msieve sqrt 03/09/23 03:44:24, prp54 = 342212831014601537484135831341688325340367946143604283 03/09/23 03:44:24, prp64 = 9925007623343149160434304776799432201046581581228833719643799301 03/09/23 03:44:24, NFS elapsed time = 26527.8691 seconds. |
software ソフトウェア | YAFU v2.09 |
execution environment 実行環境 | Windows 10 v22H2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 7, 2023 08:25:54 UTC 2023 年 3 月 7 日 (火) 17 時 25 分 54 秒 (日本時間) |
composite number 合成数 | 1599894944044973043134849460067372668864172377408236928628214715238959602353409211133186090248006172427<103> |
prime factors 素因数 | 2052488414906192480276010716781899635511567813<46> 779490365171242684427190989624236533299255262671111630479<57> |
factorization results 素因数分解の結果 | 2052488414906192480276010716781899635511567813 779490365171242684427190989624236533299255262671111630479 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 24, 2023 14:08:58 UTC 2023 年 2 月 24 日 (金) 23 時 8 分 58 秒 (日本時間) |
composite number 合成数 | 31323061395872162717302871330957240524100832936581355431024520857531432310025046495618150350877763152801266030477661747159115743<128> |
prime factors 素因数 | 389821203431232151021819241402188032638260270566877<51> 80352379809421585342457123979470439761116435968075039925728568174024669710059<77> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 31323061395872162717302871330957240524100832936581355431024520857531432310025046495618150350877763152801266030477661747159115743 (128 digits) Using B1=41160000, B2=192394462276, polynomial Dickson(12), sigma=1:2738337246 Step 1 took 66227ms Step 2 took 24251ms ********** Factor found in step 2: 389821203431232151021819241402188032638260270566877 Found prime factor of 51 digits: 389821203431232151021819241402188032638260270566877 Prime cofactor 80352379809421585342457123979470439761116435968075039925728568174024669710059 has 77 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 15:43:20 UTC 2023 年 2 月 26 日 (日) 0 時 43 分 20 秒 (日本時間) |
composite number 合成数 | 22542051809626859603372987143375414132934001986895135439581447494075077104712355095795560267229060361197511278991253970613882369<128> |
prime factors 素因数 | 1573802849996800323369876706196572335480346786484231320244669<61> 14323300920234506840925904387123199425119380329821151419295382673301<68> |
factorization results 素因数分解の結果 | Number: n N=22542051809626859603372987143375414132934001986895135439581447494075077104712355095795560267229060361197511278991253970613882369 ( 128 digits) SNFS difficulty: 149 digits. Divisors found: Sun Feb 26 02:40:18 2023 prp61 factor: 1573802849996800323369876706196572335480346786484231320244669 Sun Feb 26 02:40:18 2023 prp68 factor: 14323300920234506840925904387123199425119380329821151419295382673301 Sun Feb 26 02:40:18 2023 elapsed time 00:06:53 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 83x10^148+52 = 92(147)8 # n: 22542051809626859603372987143375414132934001986895135439581447494075077104712355095795560267229060361197511278991253970613882369 m: 10000000000000000000000000000000000000 deg: 4 c4: 83 c0: 52 skew: 0.89 # Murphy_E = 1.262e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 573725 hash collisions in 6584521 relations (6722925 unique) Msieve: matrix is 410384 x 410609 (114.8 MB) Sieving start time: 2023/02/26 01:17:56 Sieving end time : 2023/02/26 02:33:18 Total sieving time: 1hrs 15min 22secs. Total relation processing time: 0hrs 4min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 11sec. Prototype def-par.txt line would be: snfs,149,4,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 12, 2023 09:39:11 UTC 2023 年 3 月 12 日 (日) 18 時 39 分 11 秒 (日本時間) |
composite number 合成数 | 519763148213709243606045787761368590768243319955084414308293550938327822584686512295806842366084772660699397<108> |
prime factors 素因数 | 135896093536610938120864189605898888660469443<45> 3824710002231837682545934566119731079205533258355362654727113879<64> |
factorization results 素因数分解の結果 | 135896093536610938120864189605898888660469443 3824710002231837682545934566119731079205533258355362654727113879 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 06:42:12 UTC 2023 年 3 月 1 日 (水) 15 時 42 分 12 秒 (日本時間) |
composite number 合成数 | 90728111679090952417805796367639927889734081370217480749243677343725746626772532162569035348109554085541524398428895176456339227818507048153234752321<149> |
prime factors 素因数 | 44199246044416765725057132189757787958036369908660701615713479009<65> 2052707224641713040054181140243894890286403185230469113822347983040790510279069222369<85> |
factorization results 素因数分解の結果 | Number: n N=90728111679090952417805796367639927889734081370217480749243677343725746626772532162569035348109554085541524398428895176456339227818507048153234752321 ( 149 digits) SNFS difficulty: 155 digits. Divisors found: Wed Mar 1 17:37:27 2023 prp65 factor: 44199246044416765725057132189757787958036369908660701615713479009 Wed Mar 1 17:37:27 2023 prp85 factor: 2052707224641713040054181140243894890286403185230469113822347983040790510279069222369 Wed Mar 1 17:37:27 2023 elapsed time 00:10:14 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.076). Factorization parameters were as follows: # # N = 83x10^154+52 = 92(153)8 # n: 90728111679090952417805796367639927889734081370217480749243677343725746626772532162569035348109554085541524398428895176456339227818507048153234752321 m: 100000000000000000000000000000000000000 deg: 4 c4: 2075 c0: 13 skew: 0.28 # Murphy_E = 6.395e-10 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 19750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1103837 hash collisions in 12344079 relations (12541810 unique) Msieve: matrix is 539231 x 539462 (150.0 MB) Sieving start time: 2023/03/01 15:12:46 Sieving end time : 2023/03/01 17:27:04 Total sieving time: 2hrs 14min 18secs. Total relation processing time: 0hrs 7min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 24sec. Prototype def-par.txt line would be: snfs,155,4,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 21, 2023 14:14:29 UTC 2023 年 2 月 21 日 (火) 23 時 14 分 29 秒 (日本時間) |
composite number 合成数 | 75005842018393581722787326056817038573071352106690734731179598508380036295905212327951832879870223601063<104> |
prime factors 素因数 | 21093339638024392517942915360876451364817235830719<50> 3555901687714854796814726112310863130334932140894180377<55> |
factorization results 素因数分解の結果 | N=75005842018393581722787326056817038573071352106690734731179598508380036295905212327951832879870223601063 ( 104 digits) Divisors found: r1=21093339638024392517942915360876451364817235830719 (pp50) r2=3555901687714854796814726112310863130334932140894180377 (pp55) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.10 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 75005842018393581722787326056817038573071352106690734731179598508380036295905212327951832879870223601063 skew: 2359699.85 c0: -4878065735317413925989075168 c1: -201079564968180855428786 c2: -30492213281679977 c3: 25963378426 c4: 11760 Y0: -8936586081944508027124919 Y1: 11154477996883 rlim: 2360000 alim: 2360000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 40000 type: gnfs Factor base limits: 2360000/2360000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1180000, 1780001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 301572 x 301800 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,103,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2360000,2360000,26,26,52,52,2.5,2.5,100000 total time: 0.10 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 9, 2023 05:00:03 UTC 2023 年 3 月 9 日 (木) 14 時 0 分 3 秒 (日本時間) |
composite number 合成数 | 575143642026400281061727047776725644458905207226429573532787078753188521310685298790920018136736784084578286775139936476021908384329247237259281499<147> |
prime factors 素因数 | 325508042951368892109528997561233244957097<42> 1766910693854428370138272537385766917922332601925606977477304265453714290141687847735183700023742014548067<106> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:9280948725833859488 Step 1 took 9875ms Step 2 took 3875ms ********** Factor found in step 2: 325508042951368892109528997561233244957097 Found prime factor of 42 digits: 325508042951368892109528997561233244957097 Prime cofactor 1766910693854428370138272537385766917922332601925606977477304265453714290141687847735183700023742014548067 has 106 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 15, 2023 19:29:10 UTC 2023 年 3 月 16 日 (木) 4 時 29 分 10 秒 (日本時間) |
composite number 合成数 | 62689475935361787165076650257529844930373961635763224532188101465408241364745272633478658143744427902630829401479451903<119> |
prime factors 素因数 | 340643760863847969530274873021166818071039767<45> 184032362067591682481214971316843833966822505157521060005441671269057682009<75> |
factorization results 素因数分解の結果 | 184032362067591682481214971316843833966822505157521060005441671269057682009 340643760863847969530274873021166818071039767 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | April 6, 2023 12:25:18 UTC 2023 年 4 月 6 日 (木) 21 時 25 分 18 秒 (日本時間) |
composite number 合成数 | 103660752288436857542529162578424214017640964705374832349113332808134253676053559079792175542460219468228057296013513019986073365460542985677077<144> |
prime factors 素因数 | 52837464725829869528411889881195036777409879388645937<53> 1961879753813429270596615996337542946692654025168021321311598748758655676255482805794525221<91> |
factorization results 素因数分解の結果 | Thu Apr 06 20:06:45 2023 Thu Apr 06 20:06:45 2023 Thu Apr 06 20:06:45 2023 Msieve v. 1.54 (SVN Unversioned directory) Thu Apr 06 20:06:45 2023 random seeds: c18a7500 07cefe2f Thu Apr 06 20:06:45 2023 factoring 103660752288436857542529162578424214017640964705374832349113332808134253676053559079792175542460219468228057296013513019986073365460542985677077 (144 digits) Thu Apr 06 20:06:45 2023 searching for 15-digit factors Thu Apr 06 20:06:46 2023 commencing number field sieve (144-digit input) Thu Apr 06 20:06:46 2023 R0: -1000000000000000000000000000000000 Thu Apr 06 20:06:46 2023 R1: 1 Thu Apr 06 20:06:46 2023 A0: 13 Thu Apr 06 20:06:46 2023 A1: 0 Thu Apr 06 20:06:46 2023 A2: 0 Thu Apr 06 20:06:46 2023 A3: 0 Thu Apr 06 20:06:46 2023 A4: 0 Thu Apr 06 20:06:46 2023 A5: 2075 Thu Apr 06 20:06:46 2023 skew 0.36, size 6.440e-012, alpha 0.078, combined = 2.552e-010 rroots = 1 Thu Apr 06 20:06:46 2023 Thu Apr 06 20:06:46 2023 commencing relation filtering Thu Apr 06 20:06:46 2023 estimated available RAM is 15734.8 MB Thu Apr 06 20:06:46 2023 commencing duplicate removal, pass 1 Thu Apr 06 20:07:46 2023 found 1175204 hash collisions in 10654145 relations Thu Apr 06 20:07:55 2023 added 372590 free relations Thu Apr 06 20:07:55 2023 commencing duplicate removal, pass 2 Thu Apr 06 20:07:58 2023 found 927426 duplicates and 10099309 unique relations Thu Apr 06 20:07:58 2023 memory use: 49.3 MB Thu Apr 06 20:07:58 2023 reading ideals above 720000 Thu Apr 06 20:07:58 2023 commencing singleton removal, initial pass Thu Apr 06 20:08:52 2023 memory use: 344.5 MB Thu Apr 06 20:08:52 2023 reading all ideals from disk Thu Apr 06 20:08:52 2023 memory use: 292.5 MB Thu Apr 06 20:08:53 2023 commencing in-memory singleton removal Thu Apr 06 20:08:53 2023 begin with 10099309 relations and 10938749 unique ideals Thu Apr 06 20:08:57 2023 reduce to 4283930 relations and 3940183 ideals in 16 passes Thu Apr 06 20:08:57 2023 max relations containing the same ideal: 67 Thu Apr 06 20:08:58 2023 removing 726832 relations and 622326 ideals in 104506 cliques Thu Apr 06 20:08:58 2023 commencing in-memory singleton removal Thu Apr 06 20:08:59 2023 begin with 3557098 relations and 3940183 unique ideals Thu Apr 06 20:09:00 2023 reduce to 3447847 relations and 3205001 ideals in 11 passes Thu Apr 06 20:09:00 2023 max relations containing the same ideal: 60 Thu Apr 06 20:09:01 2023 removing 558904 relations and 454398 ideals in 104506 cliques Thu Apr 06 20:09:01 2023 commencing in-memory singleton removal Thu Apr 06 20:09:01 2023 begin with 2888943 relations and 3205001 unique ideals Thu Apr 06 20:09:03 2023 reduce to 2810167 relations and 2669341 ideals in 13 passes Thu Apr 06 20:09:03 2023 max relations containing the same ideal: 52 Thu Apr 06 20:09:04 2023 relations with 0 large ideals: 2911 Thu Apr 06 20:09:04 2023 relations with 1 large ideals: 2802 Thu Apr 06 20:09:04 2023 relations with 2 large ideals: 36163 Thu Apr 06 20:09:04 2023 relations with 3 large ideals: 193002 Thu Apr 06 20:09:04 2023 relations with 4 large ideals: 533907 Thu Apr 06 20:09:04 2023 relations with 5 large ideals: 820869 Thu Apr 06 20:09:04 2023 relations with 6 large ideals: 742387 Thu Apr 06 20:09:04 2023 relations with 7+ large ideals: 478126 Thu Apr 06 20:09:04 2023 commencing 2-way merge Thu Apr 06 20:09:05 2023 reduce to 1648635 relation sets and 1507810 unique ideals Thu Apr 06 20:09:05 2023 ignored 1 oversize relation sets Thu Apr 06 20:09:05 2023 commencing full merge Thu Apr 06 20:09:27 2023 memory use: 177.0 MB Thu Apr 06 20:09:27 2023 found 739635 cycles, need 724010 Thu Apr 06 20:09:27 2023 weight of 724010 cycles is about 65589474 (90.59/cycle) Thu Apr 06 20:09:27 2023 distribution of cycle lengths: Thu Apr 06 20:09:27 2023 1 relations: 69002 Thu Apr 06 20:09:27 2023 2 relations: 62118 Thu Apr 06 20:09:27 2023 3 relations: 61653 Thu Apr 06 20:09:27 2023 4 relations: 58323 Thu Apr 06 20:09:27 2023 5 relations: 55607 Thu Apr 06 20:09:27 2023 6 relations: 51783 Thu Apr 06 20:09:27 2023 7 relations: 47734 Thu Apr 06 20:09:27 2023 8 relations: 43829 Thu Apr 06 20:09:27 2023 9 relations: 39889 Thu Apr 06 20:09:27 2023 10+ relations: 234072 Thu Apr 06 20:09:27 2023 heaviest cycle: 26 relations Thu Apr 06 20:09:28 2023 commencing cycle optimization Thu Apr 06 20:09:29 2023 start with 5554303 relations Thu Apr 06 20:09:37 2023 pruned 180678 relations Thu Apr 06 20:09:37 2023 memory use: 166.3 MB Thu Apr 06 20:09:37 2023 distribution of cycle lengths: Thu Apr 06 20:09:37 2023 1 relations: 69002 Thu Apr 06 20:09:37 2023 2 relations: 63543 Thu Apr 06 20:09:37 2023 3 relations: 64009 Thu Apr 06 20:09:37 2023 4 relations: 60078 Thu Apr 06 20:09:37 2023 5 relations: 57665 Thu Apr 06 20:09:37 2023 6 relations: 53226 Thu Apr 06 20:09:37 2023 7 relations: 49154 Thu Apr 06 20:09:37 2023 8 relations: 44989 Thu Apr 06 20:09:37 2023 9 relations: 40657 Thu Apr 06 20:09:37 2023 10+ relations: 221687 Thu Apr 06 20:09:37 2023 heaviest cycle: 26 relations Thu Apr 06 20:09:38 2023 RelProcTime: 172 Thu Apr 06 20:09:38 2023 elapsed time 00:02:53 Thu Apr 06 20:09:38 2023 Thu Apr 06 20:09:38 2023 Thu Apr 06 20:09:38 2023 Msieve v. 1.54 (SVN Unversioned directory) Thu Apr 06 20:09:38 2023 random seeds: fcc20a60 fdeb1c6b Thu Apr 06 20:09:38 2023 factoring 103660752288436857542529162578424214017640964705374832349113332808134253676053559079792175542460219468228057296013513019986073365460542985677077 (144 digits) Thu Apr 06 20:09:38 2023 searching for 15-digit factors Thu Apr 06 20:09:38 2023 commencing number field sieve (144-digit input) Thu Apr 06 20:09:38 2023 R0: -1000000000000000000000000000000000 Thu Apr 06 20:09:38 2023 R1: 1 Thu Apr 06 20:09:38 2023 A0: 13 Thu Apr 06 20:09:38 2023 A1: 0 Thu Apr 06 20:09:38 2023 A2: 0 Thu Apr 06 20:09:38 2023 A3: 0 Thu Apr 06 20:09:38 2023 A4: 0 Thu Apr 06 20:09:38 2023 A5: 2075 Thu Apr 06 20:09:38 2023 skew 0.36, size 6.440e-012, alpha 0.078, combined = 2.552e-010 rroots = 1 Thu Apr 06 20:09:38 2023 Thu Apr 06 20:09:38 2023 commencing linear algebra Thu Apr 06 20:09:39 2023 read 724010 cycles Thu Apr 06 20:09:39 2023 cycles contain 2649401 unique relations Thu Apr 06 20:09:50 2023 read 2649401 relations Thu Apr 06 20:09:53 2023 using 20 quadratic characters above 4294917295 Thu Apr 06 20:10:01 2023 building initial matrix Thu Apr 06 20:10:20 2023 memory use: 324.2 MB Thu Apr 06 20:10:20 2023 read 724010 cycles Thu Apr 06 20:10:20 2023 matrix is 723823 x 724010 (266.3 MB) with weight 78648872 (108.63/col) Thu Apr 06 20:10:20 2023 sparse part has weight 61857872 (85.44/col) Thu Apr 06 20:10:25 2023 filtering completed in 2 passes Thu Apr 06 20:10:25 2023 matrix is 723003 x 723189 (266.2 MB) with weight 78607237 (108.70/col) Thu Apr 06 20:10:25 2023 sparse part has weight 61836360 (85.51/col) Thu Apr 06 20:10:27 2023 matrix starts at (0, 0) Thu Apr 06 20:10:27 2023 matrix is 723003 x 723189 (266.2 MB) with weight 78607237 (108.70/col) Thu Apr 06 20:10:27 2023 sparse part has weight 61836360 (85.51/col) Thu Apr 06 20:10:27 2023 saving the first 112 matrix rows for later Thu Apr 06 20:10:27 2023 matrix includes 128 packed rows Thu Apr 06 20:10:27 2023 matrix is 722891 x 723189 (242.3 MB) with weight 59308483 (82.01/col) Thu Apr 06 20:10:27 2023 sparse part has weight 54846774 (75.84/col) Thu Apr 06 20:10:27 2023 using block size 8192 and superblock size 393216 for processor cache size 8192 kB Thu Apr 06 20:10:29 2023 commencing Lanczos iteration (10 threads) Thu Apr 06 20:10:29 2023 memory use: 272.0 MB Thu Apr 06 20:10:31 2023 linear algebra at 0.4%, ETA 0h 7m Thu Apr 06 20:19:05 2023 lanczos halted after 5683 iterations (dim = 722888) Thu Apr 06 20:19:06 2023 recovered 36 nontrivial dependencies Thu Apr 06 20:19:06 2023 BLanczosTime: 568 Thu Apr 06 20:19:06 2023 elapsed time 00:09:28 Thu Apr 06 20:19:06 2023 Thu Apr 06 20:19:06 2023 Thu Apr 06 20:19:06 2023 Msieve v. 1.54 (SVN Unversioned directory) Thu Apr 06 20:19:06 2023 random seeds: 29ffa0f8 335cd696 Thu Apr 06 20:19:06 2023 factoring 103660752288436857542529162578424214017640964705374832349113332808134253676053559079792175542460219468228057296013513019986073365460542985677077 (144 digits) Thu Apr 06 20:19:07 2023 searching for 15-digit factors Thu Apr 06 20:19:07 2023 commencing number field sieve (144-digit input) Thu Apr 06 20:19:07 2023 R0: -1000000000000000000000000000000000 Thu Apr 06 20:19:07 2023 R1: 1 Thu Apr 06 20:19:07 2023 A0: 13 Thu Apr 06 20:19:07 2023 A1: 0 Thu Apr 06 20:19:07 2023 A2: 0 Thu Apr 06 20:19:07 2023 A3: 0 Thu Apr 06 20:19:07 2023 A4: 0 Thu Apr 06 20:19:07 2023 A5: 2075 Thu Apr 06 20:19:07 2023 skew 0.36, size 6.440e-012, alpha 0.078, combined = 2.552e-010 rroots = 1 Thu Apr 06 20:19:07 2023 Thu Apr 06 20:19:07 2023 commencing square root phase Thu Apr 06 20:19:07 2023 reading relations for dependency 1 Thu Apr 06 20:19:07 2023 read 361065 cycles Thu Apr 06 20:19:08 2023 cycles contain 1323138 unique relations Thu Apr 06 20:19:13 2023 read 1323138 relations Thu Apr 06 20:19:17 2023 multiplying 1323138 relations Thu Apr 06 20:19:44 2023 multiply complete, coefficients have about 42.33 million bits Thu Apr 06 20:19:44 2023 initial square root is modulo 1195891 Thu Apr 06 20:20:13 2023 sqrtTime: 66 Thu Apr 06 20:20:13 2023 p53 factor: 52837464725829869528411889881195036777409879388645937 Thu Apr 06 20:20:13 2023 p91 factor: 1961879753813429270596615996337542946692654025168021321311598748758655676255482805794525221 Thu Apr 06 20:20:13 2023 elapsed time 00:01:07 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:30:48 UTC 2023 年 3 月 23 日 (木) 20 時 30 分 48 秒 (日本時間) | |
45 | 11e6 | 4480 | def | March 25, 2023 05:22:29 UTC 2023 年 3 月 25 日 (土) 14 時 22 分 29 秒 (日本時間) | |
50 | 43e6 | 6744 | 1452 | ccc | April 4, 2023 13:50:19 UTC 2023 年 4 月 4 日 (火) 22 時 50 分 19 秒 (日本時間) |
3052 | ccc | April 5, 2023 05:08:14 UTC 2023 年 4 月 5 日 (水) 14 時 8 分 14 秒 (日本時間) | |||
684 | ccc | April 5, 2023 10:46:31 UTC 2023 年 4 月 5 日 (水) 19 時 46 分 31 秒 (日本時間) | |||
440 | ccc | April 5, 2023 12:57:12 UTC 2023 年 4 月 5 日 (水) 21 時 57 分 12 秒 (日本時間) | |||
372 | ccc | April 5, 2023 15:24:20 UTC 2023 年 4 月 6 日 (木) 0 時 24 分 20 秒 (日本時間) | |||
372 | ccc | April 5, 2023 15:24:28 UTC 2023 年 4 月 6 日 (木) 0 時 24 分 28 秒 (日本時間) | |||
372 | ccc | April 5, 2023 15:24:38 UTC 2023 年 4 月 6 日 (木) 0 時 24 分 38 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 13:48:14 UTC 2023 年 3 月 11 日 (土) 22 時 48 分 14 秒 (日本時間) |
composite number 合成数 | 85390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835391<167> |
prime factors 素因数 | 2340127427484457738497033490866259559<37> 127999113623119198500769996605756920461<39> 11846164101630735642843447889927856832907<41> 24065096855044249276413046706336654778680671333366087<53> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 85390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835391 (167 digits) Using B1=30120000, B2=144289285156, polynomial Dickson(12), sigma=1:271842812 Step 1 took 72887ms Step 2 took 25979ms ********** Factor found in step 2: 127999113623119198500769996605756920461 Found prime factor of 39 digits: 127999113623119198500769996605756920461 Composite cofactor 667121389242450983244298105216732657169843928361002458605757614258716876869953782648009769168490430034696807084695565207703955131 has 129 digits GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 667121389242450983244298105216732657169843928361002458605757614258716876869953782648009769168490430034696807084695565207703955131 (129 digits) Using B1=42860000, B2=240490660426, polynomial Dickson(12), sigma=1:3038672487 Step 1 took 70356ms Step 2 took 28761ms ********** Factor found in step 2: 11846164101630735642843447889927856832907 Found prime factor of 41 digits: 11846164101630735642843447889927856832907 Composite cofactor 56315393195559013429465884770386909415289929492204316660102552176412266620319278510175633 has 89 digits Msieve v. 1.54 (SVN 1034) Sun Mar 12 00:08:29 2023 random seeds: 4fb16085 39ced8c7 factoring 56315393195559013429465884770386909415289929492204316660102552176412266620319278510175633 (89 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (89-digit input) using multiplier of 1 using generic 32kb sieve core sieve interval: 32 blocks of size 32768 processing polynomials in batches of 7 using a sieve bound of 1556179 (58992 primes) using large prime bound of 124494320 (26 bits) using double large prime bound of 372622455260160 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors 59414 relations (16473 full + 42941 combined from 624207 partial), need 59088 begin with 640680 relations reduce to 143226 relations in 9 passes attempting to read 143226 relations recovered 143226 relations recovered 118045 polynomials attempting to build 59414 cycles found 59414 cycles in 5 passes distribution of cycle lengths: length 1 : 16473 length 2 : 11487 length 3 : 10326 length 4 : 7861 length 5 : 5485 length 6 : 3447 length 7 : 2031 length 9+: 2304 largest cycle: 20 relations matrix is 58992 x 59414 (15.2 MB) with weight 3511029 (59.09/col) sparse part has weight 3511029 (59.09/col) filtering completed in 3 passes matrix is 54553 x 54617 (14.0 MB) with weight 3244097 (59.40/col) sparse part has weight 3244097 (59.40/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 54505 x 54617 (10.2 MB) with weight 2669281 (48.87/col) sparse part has weight 2136472 (39.12/col) using block size 8192 and superblock size 3145728 for processor cache size 32768 kB commencing Lanczos iteration memory use: 8.7 MB lanczos halted after 863 iterations (dim = 54505) recovered 17 nontrivial dependencies p37 factor: 2340127427484457738497033490866259559 p53 factor: 24065096855044249276413046706336654778680671333366087 elapsed time 00:33:47 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 15, 2023 13:16:40 UTC 2023 年 4 月 15 日 (土) 22 時 16 分 40 秒 (日本時間) |
composite number 合成数 | 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809<143> |
prime factors 素因数 | 821879396485781971645656584575012992425472036382133<51> 52211135217601793204978494096149889412123151568764417245547261134753585182692380439114405773<92> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2500000, q1=2600000. -> client 1 q0: 2500000 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 84 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 89 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 84 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 83 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 84 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 114 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 88 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 110 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 87 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 112 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 87 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 Sat Apr 15 14:45:31 2023 Sat Apr 15 14:45:31 2023 Sat Apr 15 14:45:31 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 14:45:31 2023 random seeds: b189a4e4 9c2fa709 Sat Apr 15 14:45:31 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 14:45:32 2023 searching for 15-digit factors Sat Apr 15 14:45:32 2023 commencing number field sieve (143-digit input) Sat Apr 15 14:45:32 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 14:45:32 2023 R1: 1 Sat Apr 15 14:45:32 2023 A0: 65 Sat Apr 15 14:45:32 2023 A1: 0 Sat Apr 15 14:45:32 2023 A2: 0 Sat Apr 15 14:45:32 2023 A3: 0 Sat Apr 15 14:45:32 2023 A4: 0 Sat Apr 15 14:45:32 2023 A5: 332 Sat Apr 15 14:45:32 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 14:45:32 2023 Sat Apr 15 14:45:32 2023 commencing relation filtering Sat Apr 15 14:45:32 2023 estimated available RAM is 65413.5 MB Sat Apr 15 14:45:32 2023 commencing duplicate removal, pass 1 Sat Apr 15 14:45:49 2023 found 1275984 hash collisions in 10234141 relations Sat Apr 15 14:45:57 2023 added 371517 free relations Sat Apr 15 14:45:57 2023 commencing duplicate removal, pass 2 Sat Apr 15 14:46:01 2023 found 1085097 duplicates and 9520561 unique relations Sat Apr 15 14:46:01 2023 memory use: 49.3 MB Sat Apr 15 14:46:01 2023 reading ideals above 100000 Sat Apr 15 14:46:01 2023 commencing singleton removal, initial pass Sat Apr 15 14:46:37 2023 memory use: 344.5 MB Sat Apr 15 14:46:37 2023 reading all ideals from disk Sat Apr 15 14:46:37 2023 memory use: 349.6 MB Sat Apr 15 14:46:38 2023 keeping 10934232 ideals with weight <= 200, target excess is 49529 Sat Apr 15 14:46:38 2023 commencing in-memory singleton removal Sat Apr 15 14:46:39 2023 begin with 9520561 relations and 10934232 unique ideals Sat Apr 15 14:46:44 2023 reduce to 3369735 relations and 3472897 ideals in 23 passes Sat Apr 15 14:46:44 2023 max relations containing the same ideal: 97 Sat Apr 15 14:46:44 2023 filtering wants 1000000 more relations Sat Apr 15 14:46:44 2023 elapsed time 00:01:13 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 84 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 Sat Apr 15 14:48:37 2023 Sat Apr 15 14:48:37 2023 Sat Apr 15 14:48:37 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 14:48:37 2023 random seeds: aa0891b8 a39c319f Sat Apr 15 14:48:37 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 14:48:37 2023 searching for 15-digit factors Sat Apr 15 14:48:37 2023 commencing number field sieve (143-digit input) Sat Apr 15 14:48:37 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 14:48:37 2023 R1: 1 Sat Apr 15 14:48:37 2023 A0: 65 Sat Apr 15 14:48:37 2023 A1: 0 Sat Apr 15 14:48:37 2023 A2: 0 Sat Apr 15 14:48:37 2023 A3: 0 Sat Apr 15 14:48:37 2023 A4: 0 Sat Apr 15 14:48:37 2023 A5: 332 Sat Apr 15 14:48:37 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 14:48:37 2023 Sat Apr 15 14:48:37 2023 commencing relation filtering Sat Apr 15 14:48:37 2023 estimated available RAM is 65413.5 MB Sat Apr 15 14:48:37 2023 commencing duplicate removal, pass 1 Sat Apr 15 14:48:59 2023 found 1353817 hash collisions in 10872899 relations Sat Apr 15 14:49:06 2023 added 525 free relations Sat Apr 15 14:49:06 2023 commencing duplicate removal, pass 2 Sat Apr 15 14:49:10 2023 found 1134397 duplicates and 9739027 unique relations Sat Apr 15 14:49:10 2023 memory use: 49.3 MB Sat Apr 15 14:49:10 2023 reading ideals above 100000 Sat Apr 15 14:49:10 2023 commencing singleton removal, initial pass Sat Apr 15 14:49:47 2023 memory use: 344.5 MB Sat Apr 15 14:49:47 2023 reading all ideals from disk Sat Apr 15 14:49:47 2023 memory use: 357.8 MB Sat Apr 15 14:49:48 2023 keeping 11020254 ideals with weight <= 200, target excess is 50781 Sat Apr 15 14:49:49 2023 commencing in-memory singleton removal Sat Apr 15 14:49:49 2023 begin with 9739027 relations and 11020254 unique ideals Sat Apr 15 14:49:54 2023 reduce to 3685286 relations and 3709143 ideals in 20 passes Sat Apr 15 14:49:54 2023 max relations containing the same ideal: 104 Sat Apr 15 14:49:54 2023 filtering wants 1000000 more relations Sat Apr 15 14:49:54 2023 elapsed time 00:01:17 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 Sat Apr 15 14:51:45 2023 Sat Apr 15 14:51:45 2023 Sat Apr 15 14:51:45 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 14:51:45 2023 random seeds: f7cc8868 22fb3b09 Sat Apr 15 14:51:45 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 14:51:45 2023 searching for 15-digit factors Sat Apr 15 14:51:45 2023 commencing number field sieve (143-digit input) Sat Apr 15 14:51:45 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 14:51:45 2023 R1: 1 Sat Apr 15 14:51:45 2023 A0: 65 Sat Apr 15 14:51:45 2023 A1: 0 Sat Apr 15 14:51:45 2023 A2: 0 Sat Apr 15 14:51:45 2023 A3: 0 Sat Apr 15 14:51:45 2023 A4: 0 Sat Apr 15 14:51:45 2023 A5: 332 Sat Apr 15 14:51:45 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 14:51:45 2023 Sat Apr 15 14:51:45 2023 commencing relation filtering Sat Apr 15 14:51:45 2023 estimated available RAM is 65413.5 MB Sat Apr 15 14:51:45 2023 commencing duplicate removal, pass 1 Sat Apr 15 14:52:07 2023 found 1410930 hash collisions in 11137454 relations Sat Apr 15 14:52:14 2023 added 532 free relations Sat Apr 15 14:52:14 2023 commencing duplicate removal, pass 2 Sat Apr 15 14:52:18 2023 found 1184048 duplicates and 9953938 unique relations Sat Apr 15 14:52:18 2023 memory use: 49.3 MB Sat Apr 15 14:52:18 2023 reading ideals above 100000 Sat Apr 15 14:52:18 2023 commencing singleton removal, initial pass Sat Apr 15 14:52:56 2023 memory use: 344.5 MB Sat Apr 15 14:52:56 2023 reading all ideals from disk Sat Apr 15 14:52:56 2023 memory use: 365.8 MB Sat Apr 15 14:52:56 2023 keeping 11102622 ideals with weight <= 200, target excess is 51952 Sat Apr 15 14:52:57 2023 commencing in-memory singleton removal Sat Apr 15 14:52:58 2023 begin with 9953938 relations and 11102622 unique ideals Sat Apr 15 14:53:03 2023 reduce to 3991447 relations and 3931721 ideals in 19 passes Sat Apr 15 14:53:03 2023 max relations containing the same ideal: 109 Sat Apr 15 14:53:03 2023 filtering wants 1000000 more relations Sat Apr 15 14:53:03 2023 elapsed time 00:01:18 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 Sat Apr 15 14:54:52 2023 Sat Apr 15 14:54:52 2023 Sat Apr 15 14:54:52 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 14:54:52 2023 random seeds: 394c50a0 30e68c02 Sat Apr 15 14:54:52 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 14:54:52 2023 searching for 15-digit factors Sat Apr 15 14:54:52 2023 commencing number field sieve (143-digit input) Sat Apr 15 14:54:52 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 14:54:52 2023 R1: 1 Sat Apr 15 14:54:52 2023 A0: 65 Sat Apr 15 14:54:52 2023 A1: 0 Sat Apr 15 14:54:52 2023 A2: 0 Sat Apr 15 14:54:52 2023 A3: 0 Sat Apr 15 14:54:52 2023 A4: 0 Sat Apr 15 14:54:52 2023 A5: 332 Sat Apr 15 14:54:52 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 14:54:52 2023 Sat Apr 15 14:54:52 2023 commencing relation filtering Sat Apr 15 14:54:52 2023 estimated available RAM is 65413.5 MB Sat Apr 15 14:54:52 2023 commencing duplicate removal, pass 1 Sat Apr 15 14:55:15 2023 found 1468703 hash collisions in 11402038 relations Sat Apr 15 14:55:22 2023 added 549 free relations Sat Apr 15 14:55:22 2023 commencing duplicate removal, pass 2 Sat Apr 15 14:55:26 2023 found 1234148 duplicates and 10168439 unique relations Sat Apr 15 14:55:26 2023 memory use: 49.3 MB Sat Apr 15 14:55:26 2023 reading ideals above 720000 Sat Apr 15 14:55:26 2023 commencing singleton removal, initial pass Sat Apr 15 14:56:00 2023 memory use: 344.5 MB Sat Apr 15 14:56:00 2023 reading all ideals from disk Sat Apr 15 14:56:00 2023 memory use: 300.8 MB Sat Apr 15 14:56:01 2023 keeping 11120761 ideals with weight <= 200, target excess is 115738 Sat Apr 15 14:56:01 2023 commencing in-memory singleton removal Sat Apr 15 14:56:01 2023 begin with 10168439 relations and 11120761 unique ideals Sat Apr 15 14:56:06 2023 reduce to 4294623 relations and 4084049 ideals in 17 passes Sat Apr 15 14:56:06 2023 max relations containing the same ideal: 67 Sat Apr 15 14:56:07 2023 removing 396212 relations and 358053 ideals in 38159 cliques Sat Apr 15 14:56:07 2023 commencing in-memory singleton removal Sat Apr 15 14:56:08 2023 begin with 3898411 relations and 4084049 unique ideals Sat Apr 15 14:56:09 2023 reduce to 3865957 relations and 3693133 ideals in 8 passes Sat Apr 15 14:56:09 2023 max relations containing the same ideal: 64 Sat Apr 15 14:56:09 2023 removing 292087 relations and 253928 ideals in 38159 cliques Sat Apr 15 14:56:10 2023 commencing in-memory singleton removal Sat Apr 15 14:56:10 2023 begin with 3573870 relations and 3693133 unique ideals Sat Apr 15 14:56:10 2023 reduce to 3554001 relations and 3419123 ideals in 9 passes Sat Apr 15 14:56:10 2023 max relations containing the same ideal: 60 Sat Apr 15 14:56:11 2023 relations with 0 large ideals: 2830 Sat Apr 15 14:56:11 2023 relations with 1 large ideals: 2037 Sat Apr 15 14:56:11 2023 relations with 2 large ideals: 29828 Sat Apr 15 14:56:11 2023 relations with 3 large ideals: 175231 Sat Apr 15 14:56:11 2023 relations with 4 large ideals: 548181 Sat Apr 15 14:56:11 2023 relations with 5 large ideals: 965950 Sat Apr 15 14:56:11 2023 relations with 6 large ideals: 1020288 Sat Apr 15 14:56:11 2023 relations with 7+ large ideals: 809656 Sat Apr 15 14:56:11 2023 commencing 2-way merge Sat Apr 15 14:56:13 2023 reduce to 2092968 relation sets and 1958090 unique ideals Sat Apr 15 14:56:13 2023 ignored 1 oversize relation sets Sat Apr 15 14:56:13 2023 commencing full merge Sat Apr 15 14:56:37 2023 memory use: 230.1 MB Sat Apr 15 14:56:37 2023 found 1043030 cycles, need 1026290 Sat Apr 15 14:56:37 2023 weight of 1026290 cycles is about 72063660 (70.22/cycle) Sat Apr 15 14:56:37 2023 distribution of cycle lengths: Sat Apr 15 14:56:37 2023 1 relations: 136030 Sat Apr 15 14:56:37 2023 2 relations: 121911 Sat Apr 15 14:56:37 2023 3 relations: 115883 Sat Apr 15 14:56:37 2023 4 relations: 103673 Sat Apr 15 14:56:37 2023 5 relations: 92554 Sat Apr 15 14:56:37 2023 6 relations: 77818 Sat Apr 15 14:56:37 2023 7 relations: 67313 Sat Apr 15 14:56:37 2023 8 relations: 57444 Sat Apr 15 14:56:37 2023 9 relations: 48718 Sat Apr 15 14:56:37 2023 10+ relations: 204946 Sat Apr 15 14:56:37 2023 heaviest cycle: 23 relations Sat Apr 15 14:56:37 2023 commencing cycle optimization Sat Apr 15 14:56:38 2023 start with 6122651 relations Sat Apr 15 14:56:46 2023 pruned 140857 relations Sat Apr 15 14:56:46 2023 memory use: 203.4 MB Sat Apr 15 14:56:46 2023 distribution of cycle lengths: Sat Apr 15 14:56:46 2023 1 relations: 136030 Sat Apr 15 14:56:46 2023 2 relations: 124533 Sat Apr 15 14:56:46 2023 3 relations: 119857 Sat Apr 15 14:56:46 2023 4 relations: 105849 Sat Apr 15 14:56:46 2023 5 relations: 94454 Sat Apr 15 14:56:46 2023 6 relations: 78589 Sat Apr 15 14:56:46 2023 7 relations: 67874 Sat Apr 15 14:56:46 2023 8 relations: 57286 Sat Apr 15 14:56:46 2023 9 relations: 48282 Sat Apr 15 14:56:46 2023 10+ relations: 193536 Sat Apr 15 14:56:46 2023 heaviest cycle: 23 relations Sat Apr 15 14:56:47 2023 RelProcTime: 115 Sat Apr 15 14:56:47 2023 elapsed time 00:01:55 Sat Apr 15 14:56:47 2023 Sat Apr 15 14:56:47 2023 Sat Apr 15 14:56:47 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 14:56:47 2023 random seeds: 7cdd6730 a49579d5 Sat Apr 15 14:56:47 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 14:56:47 2023 searching for 15-digit factors Sat Apr 15 14:56:48 2023 commencing number field sieve (143-digit input) Sat Apr 15 14:56:48 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 14:56:48 2023 R1: 1 Sat Apr 15 14:56:48 2023 A0: 65 Sat Apr 15 14:56:48 2023 A1: 0 Sat Apr 15 14:56:48 2023 A2: 0 Sat Apr 15 14:56:48 2023 A3: 0 Sat Apr 15 14:56:48 2023 A4: 0 Sat Apr 15 14:56:48 2023 A5: 332 Sat Apr 15 14:56:48 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 14:56:48 2023 Sat Apr 15 14:56:48 2023 commencing linear algebra Sat Apr 15 14:56:48 2023 read 1026290 cycles Sat Apr 15 14:56:49 2023 cycles contain 3417600 unique relations Sat Apr 15 14:56:55 2023 read 3417600 relations Sat Apr 15 14:56:58 2023 using 20 quadratic characters above 134216610 Sat Apr 15 14:57:07 2023 building initial matrix Sat Apr 15 14:57:25 2023 memory use: 412.6 MB Sat Apr 15 14:57:26 2023 read 1026290 cycles Sat Apr 15 14:57:26 2023 matrix is 1026106 x 1026290 (307.9 MB) with weight 90667769 (88.35/col) Sat Apr 15 14:57:26 2023 sparse part has weight 69428671 (67.65/col) Sat Apr 15 14:57:30 2023 filtering completed in 2 passes Sat Apr 15 14:57:31 2023 matrix is 1023826 x 1024010 (307.7 MB) with weight 90586233 (88.46/col) Sat Apr 15 14:57:31 2023 sparse part has weight 69396399 (67.77/col) Sat Apr 15 14:57:32 2023 matrix starts at (0, 0) Sat Apr 15 14:57:32 2023 matrix is 1023826 x 1024010 (307.7 MB) with weight 90586233 (88.46/col) Sat Apr 15 14:57:32 2023 sparse part has weight 69396399 (67.77/col) Sat Apr 15 14:57:32 2023 saving the first 48 matrix rows for later Sat Apr 15 14:57:32 2023 matrix includes 64 packed rows Sat Apr 15 14:57:33 2023 matrix is 1023778 x 1024010 (290.7 MB) with weight 71981529 (70.29/col) Sat Apr 15 14:57:33 2023 sparse part has weight 65972166 (64.43/col) Sat Apr 15 14:57:33 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sat Apr 15 14:57:35 2023 commencing Lanczos iteration (32 threads) Sat Apr 15 14:57:35 2023 memory use: 232.1 MB Sat Apr 15 14:57:36 2023 linear algebra at 0.1%, ETA 0h11m Sat Apr 15 14:57:37 2023 checkpointing every 3640000 dimensions Sat Apr 15 15:08:21 2023 lanczos halted after 16190 iterations (dim = 1023776) Sat Apr 15 15:08:21 2023 recovered 38 nontrivial dependencies Sat Apr 15 15:08:21 2023 BLanczosTime: 693 Sat Apr 15 15:08:21 2023 elapsed time 00:11:34 Sat Apr 15 15:08:21 2023 Sat Apr 15 15:08:21 2023 Sat Apr 15 15:08:21 2023 Msieve v. 1.52 (SVN 927) Sat Apr 15 15:08:21 2023 random seeds: ebe1bc00 81f421c7 Sat Apr 15 15:08:21 2023 factoring 42911256302480118575689205158363048482547110168805961637840164397731539975808437708207401929560305299195547876668858559569170491508569049253809 (143 digits) Sat Apr 15 15:08:22 2023 searching for 15-digit factors Sat Apr 15 15:08:22 2023 commencing number field sieve (143-digit input) Sat Apr 15 15:08:22 2023 R0: -5000000000000000000000000000000000 Sat Apr 15 15:08:22 2023 R1: 1 Sat Apr 15 15:08:22 2023 A0: 65 Sat Apr 15 15:08:22 2023 A1: 0 Sat Apr 15 15:08:22 2023 A2: 0 Sat Apr 15 15:08:22 2023 A3: 0 Sat Apr 15 15:08:22 2023 A4: 0 Sat Apr 15 15:08:22 2023 A5: 332 Sat Apr 15 15:08:22 2023 skew 0.72, size 2.957e-012, alpha 1.259, combined = 1.627e-010 rroots = 1 Sat Apr 15 15:08:22 2023 Sat Apr 15 15:08:22 2023 commencing square root phase Sat Apr 15 15:08:22 2023 reading relations for dependency 1 Sat Apr 15 15:08:22 2023 read 512065 cycles Sat Apr 15 15:08:23 2023 cycles contain 1708660 unique relations Sat Apr 15 15:08:26 2023 read 1708660 relations Sat Apr 15 15:08:30 2023 multiplying 1708660 relations Sat Apr 15 15:08:58 2023 multiply complete, coefficients have about 51.31 million bits Sat Apr 15 15:08:58 2023 initial square root is modulo 23227471 Sat Apr 15 15:09:35 2023 GCD is 1, no factor found Sat Apr 15 15:09:35 2023 reading relations for dependency 2 Sat Apr 15 15:09:35 2023 read 512432 cycles Sat Apr 15 15:09:35 2023 cycles contain 1709690 unique relations Sat Apr 15 15:09:39 2023 read 1709690 relations Sat Apr 15 15:09:43 2023 multiplying 1709690 relations Sat Apr 15 15:10:10 2023 multiply complete, coefficients have about 51.34 million bits Sat Apr 15 15:10:10 2023 initial square root is modulo 23470801 Sat Apr 15 15:10:47 2023 GCD is N, no factor found Sat Apr 15 15:10:47 2023 reading relations for dependency 3 Sat Apr 15 15:10:47 2023 read 512492 cycles Sat Apr 15 15:10:47 2023 cycles contain 1707458 unique relations Sat Apr 15 15:10:51 2023 read 1707458 relations Sat Apr 15 15:10:55 2023 multiplying 1707458 relations Sat Apr 15 15:11:23 2023 multiply complete, coefficients have about 51.27 million bits Sat Apr 15 15:11:23 2023 initial square root is modulo 22986961 Sat Apr 15 15:11:59 2023 sqrtTime: 217 Sat Apr 15 15:11:59 2023 prp51 factor: 821879396485781971645656584575012992425472036382133 Sat Apr 15 15:11:59 2023 prp92 factor: 52211135217601793204978494096149889412123151568764417245547261134753585182692380439114405773 Sat Apr 15 15:11:59 2023 elapsed time 00:03:38 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2078 | Caleb Birtwistle | March 23, 2023 11:31:22 UTC 2023 年 3 月 23 日 (木) 20 時 31 分 22 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 19:30:01 UTC 2023 年 3 月 12 日 (日) 4 時 30 分 1 秒 (日本時間) |
composite number 合成数 | 41792823287930823466314654235475737897127766536146204261179126390875678802108601443826835204527480567458368187513749166090544600510527664793741<143> |
prime factors 素因数 | 34064196911052748777038954840342667767241<41> 1226884150448601392768352572374755076363806089932506925759109337096730173490447024414556120072655566501<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 41792823287930823466314654235475737897127766536146204261179126390875678802108601443826835204527480567458368187513749166090544600510527664793741 (143 digits) Using B1=31920000, B2=144291357226, polynomial Dickson(12), sigma=1:3157642682 Step 1 took 65280ms Step 2 took 22755ms ********** Factor found in step 2: 34064196911052748777038954840342667767241 Found prime factor of 41 digits: 34064196911052748777038954840342667767241 Prime cofactor 1226884150448601392768352572374755076363806089932506925759109337096730173490447024414556120072655566501 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 11, 2023 10:55:48 UTC 2023 年 3 月 11 日 (土) 19 時 55 分 48 秒 (日本時間) |
composite number 合成数 | 11428294474378314549623306891289106109098079000082063415743728620139463745869979605313523555229504937298593521175941209548656721021287470348394999308794719742420011577<167> |
prime factors 素因数 | 1050511590745561275066344846371186004832611032653580744450665187271558647<73> 10878789510801599410028106919135181614978626554909240660604724818376472948463219900232420730191<95> |
factorization results 素因数分解の結果 | Number: n N=11428294474378314549623306891289106109098079000082063415743728620139463745869979605313523555229504937298593521175941209548656721021287470348394999308794719742420011577 ( 167 digits) SNFS difficulty: 172 digits. Divisors found: Sat Mar 11 21:48:26 2023 prp73 factor: 1050511590745561275066344846371186004832611032653580744450665187271558647 Sat Mar 11 21:48:26 2023 prp95 factor: 10878789510801599410028106919135181614978626554909240660604724818376472948463219900232420730191 Sat Mar 11 21:48:26 2023 elapsed time 00:27:14 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.105). Factorization parameters were as follows: # # N = 83x10^171+52 = 92(170)8 # n: 11428294474378314549623306891289106109098079000082063415743728620139463745869979605313523555229504937298593521175941209548656721021287470348394999308794719742420011577 m: 10000000000000000000000000000000000 deg: 5 c5: 415 c0: 26 skew: 0.57 # Murphy_E = 1.492e-10 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 21050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1663199 hash collisions in 13622397 relations (12725957 unique) Msieve: matrix is 916235 x 916462 (258.4 MB) Sieving start time: 2023/03/11 18:50:49 Sieving end time : 2023/03/11 21:20:50 Total sieving time: 2hrs 30min 1secs. Total relation processing time: 0hrs 23min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 4sec. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 13, 2023 16:37:21 UTC 2023 年 3 月 14 日 (火) 1 時 37 分 21 秒 (日本時間) |
composite number 合成数 | 2315205920272912660653938113254122826766831730245696891434075381999021738513887805496646711349070465977297965525440258145523485705073229872714154911723056394056166271<166> |
prime factors 素因数 | 24397575278593881015820508097784349<35> 13202663034977600270473813558914835574058195878716771891269631<62> 7187558930778028246221137240773503127616133115826954855323542873814709<70> |
factorization results 素因数分解の結果 | Number: n N=94894918607106197940566733438676545428030104032637485792494395350670047605493089776804378415917701477845681106648987542154252802379 ( 131 digits) Divisors found: Tue Mar 14 03:29:12 2023 prp62 factor: 13202663034977600270473813558914835574058195878716771891269631 Tue Mar 14 03:29:12 2023 prp70 factor: 7187558930778028246221137240773503127616133115826954855323542873814709 Tue Mar 14 03:29:12 2023 elapsed time 00:33:11 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 83x10^175+52 = 92(174)8 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 2315205920272912660653938113254122826766831730245696891434075381999021738513887805496646711349070465977297965525440258145523485705073229872714154911723056394056166271 (166 digits) # Using B1=31380000, B2=144290666536, polynomial Dickson(12), sigma=1:1787524652 # Step 1 took 76050ms # Step 2 took 25875ms # ********** Factor found in step 2: 24397575278593881015820508097784349 # Found prime factor of 35 digits: 24397575278593881015820508097784349 # Composite cofactor 94894918607106197940566733438676545428030104032637485792494395350670047605493089776804378415917701477845681106648987542154252802379 has 131 digits n: 94894918607106197940566733438676545428030104032637485792494395350670047605493089776804378415917701477845681106648987542154252802379 Y0: -60204255095240914399830462 Y1: 820918926215033 c0: -11007308406742092278877831847437365 c1: 27520028727765452581589407826 c2: 22151471854246469732151 c3: -4017101014910420 c4: -1503901312 c5: 120 # skew 3718240.78, size 1.146e-12, alpha -6.790, combined = 6.609e-11 rroots = 5 skew: 3718240.78 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved special-q in [100000, 34040000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1567814 hash collisions in 7586568 relations (6042395 unique) Msieve: matrix is 1016648 x 1016875 (294.3 MB) Sieving start time: 2023/03/13 22:40:07 Sieving end time : 2023/03/14 02:55:48 Total sieving time: 4hrs 15min 41secs. Total relation processing time: 0hrs 29min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 46sec. Prototype def-par.txt line would be: gnfs,130,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,26,26,50,50,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 19, 2023 21:19:51 UTC 2023 年 3 月 20 日 (月) 6 時 19 分 51 秒 (日本時間) |
composite number 合成数 | 132217039717185745542083802177349059946410767341604784134072251383004699364647169458199347497093431084854120609444065856070790316456021859020695147412382687276778110303<168> |
prime factors 素因数 | 5327240794757774863070626542930652750482389718416256746315456480787294837667342333<82> 24819047009718948250108062040322619107027554724288557692742048002945784201912252126091<86> |
factorization results 素因数分解の結果 | Number: n N=132217039717185745542083802177349059946410767341604784134072251383004699364647169458199347497093431084854120609444065856070790316456021859020695147412382687276778110303 ( 168 digits) SNFS difficulty: 181 digits. Divisors found: Mon Mar 20 06:10:38 2023 prp82 factor: 5327240794757774863070626542930652750482389718416256746315456480787294837667342333 Mon Mar 20 06:10:38 2023 prp86 factor: 24819047009718948250108062040322619107027554724288557692742048002945784201912252126091 Mon Mar 20 06:10:38 2023 elapsed time 00:37:40 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.085). Factorization parameters were as follows: # # N = 83x10^179+52 = 92(178)8 # n: 132217039717185745542083802177349059946410767341604784134072251383004699364647169458199347497093431084854120609444065856070790316456021859020695147412382687276778110303 m: 500000000000000000000000000000000000 deg: 5 c5: 332 c0: 65 skew: 0.72 # Murphy_E = 6.476e-11 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 14800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1853717 hash collisions in 14870624 relations (13865556 unique) Msieve: matrix is 1062784 x 1063009 (298.7 MB) Sieving start time: 2023/03/20 00:03:01 Sieving end time : 2023/03/20 05:32:43 Total sieving time: 5hrs 29min 42secs. Total relation processing time: 0hrs 31min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 27sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7200000,7200000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 24, 2023 12:13:24 UTC 2023 年 2 月 24 日 (金) 21 時 13 分 24 秒 (日本時間) |
composite number 合成数 | 960290848900740529886710471467191165061253058096300116594414123269561637784775945104629440404548126296816936294539971<117> |
prime factors 素因数 | 850127666186484885213911504294172960757512661863199154929<57> 1129584281392025812311206238383593174209736525866811462138099<61> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1800000, q1=1900000. -> client 1 q0: 1800000 LatSieveTime: 90 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 84 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 136 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 87 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 Fri Feb 24 12:53:19 2023 Fri Feb 24 12:53:19 2023 Fri Feb 24 12:53:19 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 12:53:19 2023 random seeds: c99f5518 5122eac2 Fri Feb 24 12:53:19 2023 factoring 960290848900740529886710471467191165061253058096300116594414123269561637784775945104629440404548126296816936294539971 (117 digits) Fri Feb 24 12:53:19 2023 searching for 15-digit factors Fri Feb 24 12:53:19 2023 commencing number field sieve (117-digit input) Fri Feb 24 12:53:19 2023 R0: -36073666660963587494127 Fri Feb 24 12:53:19 2023 R1: 762406684303 Fri Feb 24 12:53:19 2023 A0: -10682745934411389143475488240 Fri Feb 24 12:53:19 2023 A1: 683029543605249786807772 Fri Feb 24 12:53:19 2023 A2: 10747618234868578694 Fri Feb 24 12:53:19 2023 A3: -521120515366727 Fri Feb 24 12:53:19 2023 A4: -2039310502 Fri Feb 24 12:53:19 2023 A5: 15720 Fri Feb 24 12:53:19 2023 skew 76056.18, size 2.400e-011, alpha -5.613, combined = 3.524e-010 rroots = 5 Fri Feb 24 12:53:19 2023 Fri Feb 24 12:53:19 2023 commencing relation filtering Fri Feb 24 12:53:19 2023 estimated available RAM is 65413.5 MB Fri Feb 24 12:53:19 2023 commencing duplicate removal, pass 1 Fri Feb 24 12:53:38 2023 found 1085310 hash collisions in 9540118 relations Fri Feb 24 12:53:48 2023 added 61748 free relations Fri Feb 24 12:53:48 2023 commencing duplicate removal, pass 2 Fri Feb 24 12:53:51 2023 found 625644 duplicates and 8976222 unique relations Fri Feb 24 12:53:51 2023 memory use: 41.3 MB Fri Feb 24 12:53:51 2023 reading ideals above 100000 Fri Feb 24 12:53:51 2023 commencing singleton removal, initial pass Fri Feb 24 12:54:23 2023 memory use: 188.3 MB Fri Feb 24 12:54:23 2023 reading all ideals from disk Fri Feb 24 12:54:23 2023 memory use: 312.3 MB Fri Feb 24 12:54:24 2023 keeping 10159114 ideals with weight <= 200, target excess is 47938 Fri Feb 24 12:54:24 2023 commencing in-memory singleton removal Fri Feb 24 12:54:24 2023 begin with 8976222 relations and 10159114 unique ideals Fri Feb 24 12:54:28 2023 reduce to 2733319 relations and 2686228 ideals in 22 passes Fri Feb 24 12:54:28 2023 max relations containing the same ideal: 91 Fri Feb 24 12:54:28 2023 filtering wants 1000000 more relations Fri Feb 24 12:54:28 2023 elapsed time 00:01:09 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 151 Fri Feb 24 12:57:04 2023 Fri Feb 24 12:57:04 2023 Fri Feb 24 12:57:04 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 12:57:04 2023 random seeds: ab7ea1d4 f436e441 Fri Feb 24 12:57:04 2023 factoring 960290848900740529886710471467191165061253058096300116594414123269561637784775945104629440404548126296816936294539971 (117 digits) Fri Feb 24 12:57:04 2023 searching for 15-digit factors Fri Feb 24 12:57:05 2023 commencing number field sieve (117-digit input) Fri Feb 24 12:57:05 2023 R0: -36073666660963587494127 Fri Feb 24 12:57:05 2023 R1: 762406684303 Fri Feb 24 12:57:05 2023 A0: -10682745934411389143475488240 Fri Feb 24 12:57:05 2023 A1: 683029543605249786807772 Fri Feb 24 12:57:05 2023 A2: 10747618234868578694 Fri Feb 24 12:57:05 2023 A3: -521120515366727 Fri Feb 24 12:57:05 2023 A4: -2039310502 Fri Feb 24 12:57:05 2023 A5: 15720 Fri Feb 24 12:57:05 2023 skew 76056.18, size 2.400e-011, alpha -5.613, combined = 3.524e-010 rroots = 5 Fri Feb 24 12:57:05 2023 Fri Feb 24 12:57:05 2023 commencing relation filtering Fri Feb 24 12:57:05 2023 estimated available RAM is 65413.5 MB Fri Feb 24 12:57:05 2023 commencing duplicate removal, pass 1 Fri Feb 24 12:57:25 2023 found 969276 hash collisions in 10289066 relations Fri Feb 24 12:57:35 2023 added 223 free relations Fri Feb 24 12:57:35 2023 commencing duplicate removal, pass 2 Fri Feb 24 12:57:39 2023 found 705004 duplicates and 9584285 unique relations Fri Feb 24 12:57:39 2023 memory use: 49.3 MB Fri Feb 24 12:57:39 2023 reading ideals above 100000 Fri Feb 24 12:57:39 2023 commencing singleton removal, initial pass Fri Feb 24 12:58:13 2023 memory use: 344.5 MB Fri Feb 24 12:58:13 2023 reading all ideals from disk Fri Feb 24 12:58:13 2023 memory use: 333.7 MB Fri Feb 24 12:58:13 2023 keeping 10439478 ideals with weight <= 200, target excess is 51435 Fri Feb 24 12:58:14 2023 commencing in-memory singleton removal Fri Feb 24 12:58:14 2023 begin with 9584285 relations and 10439478 unique ideals Fri Feb 24 12:58:19 2023 reduce to 3512299 relations and 3265767 ideals in 22 passes Fri Feb 24 12:58:19 2023 max relations containing the same ideal: 108 Fri Feb 24 12:58:20 2023 removing 693499 relations and 600065 ideals in 93434 cliques Fri Feb 24 12:58:20 2023 commencing in-memory singleton removal Fri Feb 24 12:58:20 2023 begin with 2818800 relations and 3265767 unique ideals Fri Feb 24 12:58:21 2023 reduce to 2704079 relations and 2546833 ideals in 11 passes Fri Feb 24 12:58:21 2023 max relations containing the same ideal: 84 Fri Feb 24 12:58:22 2023 removing 523002 relations and 429568 ideals in 93434 cliques Fri Feb 24 12:58:22 2023 commencing in-memory singleton removal Fri Feb 24 12:58:22 2023 begin with 2181077 relations and 2546833 unique ideals Fri Feb 24 12:58:22 2023 reduce to 2093538 relations and 2026739 ideals in 10 passes Fri Feb 24 12:58:22 2023 max relations containing the same ideal: 72 Fri Feb 24 12:58:23 2023 relations with 0 large ideals: 155 Fri Feb 24 12:58:23 2023 relations with 1 large ideals: 574 Fri Feb 24 12:58:23 2023 relations with 2 large ideals: 9211 Fri Feb 24 12:58:23 2023 relations with 3 large ideals: 67179 Fri Feb 24 12:58:23 2023 relations with 4 large ideals: 253738 Fri Feb 24 12:58:23 2023 relations with 5 large ideals: 524174 Fri Feb 24 12:58:23 2023 relations with 6 large ideals: 621462 Fri Feb 24 12:58:23 2023 relations with 7+ large ideals: 617045 Fri Feb 24 12:58:23 2023 commencing 2-way merge Fri Feb 24 12:58:23 2023 reduce to 1170787 relation sets and 1103988 unique ideals Fri Feb 24 12:58:23 2023 commencing full merge Fri Feb 24 12:58:36 2023 memory use: 127.1 MB Fri Feb 24 12:58:36 2023 found 579875 cycles, need 566188 Fri Feb 24 12:58:36 2023 weight of 566188 cycles is about 39783792 (70.27/cycle) Fri Feb 24 12:58:36 2023 distribution of cycle lengths: Fri Feb 24 12:58:36 2023 1 relations: 66350 Fri Feb 24 12:58:36 2023 2 relations: 62707 Fri Feb 24 12:58:36 2023 3 relations: 62529 Fri Feb 24 12:58:36 2023 4 relations: 57196 Fri Feb 24 12:58:36 2023 5 relations: 52824 Fri Feb 24 12:58:36 2023 6 relations: 45287 Fri Feb 24 12:58:36 2023 7 relations: 40984 Fri Feb 24 12:58:36 2023 8 relations: 35341 Fri Feb 24 12:58:36 2023 9 relations: 30638 Fri Feb 24 12:58:36 2023 10+ relations: 112332 Fri Feb 24 12:58:36 2023 heaviest cycle: 20 relations Fri Feb 24 12:58:36 2023 commencing cycle optimization Fri Feb 24 12:58:36 2023 start with 3398159 relations Fri Feb 24 12:58:40 2023 pruned 66560 relations Fri Feb 24 12:58:40 2023 memory use: 116.4 MB Fri Feb 24 12:58:40 2023 distribution of cycle lengths: Fri Feb 24 12:58:40 2023 1 relations: 66350 Fri Feb 24 12:58:40 2023 2 relations: 63954 Fri Feb 24 12:58:40 2023 3 relations: 64431 Fri Feb 24 12:58:40 2023 4 relations: 58208 Fri Feb 24 12:58:40 2023 5 relations: 53837 Fri Feb 24 12:58:40 2023 6 relations: 45866 Fri Feb 24 12:58:40 2023 7 relations: 41277 Fri Feb 24 12:58:40 2023 8 relations: 35434 Fri Feb 24 12:58:40 2023 9 relations: 30600 Fri Feb 24 12:58:40 2023 10+ relations: 106231 Fri Feb 24 12:58:40 2023 heaviest cycle: 20 relations Fri Feb 24 12:58:41 2023 RelProcTime: 96 Fri Feb 24 12:58:41 2023 elapsed time 00:01:37 Fri Feb 24 12:58:41 2023 Fri Feb 24 12:58:41 2023 Fri Feb 24 12:58:41 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 12:58:41 2023 random seeds: 3f4218d8 8635abb6 Fri Feb 24 12:58:41 2023 factoring 960290848900740529886710471467191165061253058096300116594414123269561637784775945104629440404548126296816936294539971 (117 digits) Fri Feb 24 12:58:41 2023 searching for 15-digit factors Fri Feb 24 12:58:41 2023 commencing number field sieve (117-digit input) Fri Feb 24 12:58:41 2023 R0: -36073666660963587494127 Fri Feb 24 12:58:41 2023 R1: 762406684303 Fri Feb 24 12:58:41 2023 A0: -10682745934411389143475488240 Fri Feb 24 12:58:41 2023 A1: 683029543605249786807772 Fri Feb 24 12:58:41 2023 A2: 10747618234868578694 Fri Feb 24 12:58:41 2023 A3: -521120515366727 Fri Feb 24 12:58:41 2023 A4: -2039310502 Fri Feb 24 12:58:41 2023 A5: 15720 Fri Feb 24 12:58:41 2023 skew 76056.18, size 2.400e-011, alpha -5.613, combined = 3.524e-010 rroots = 5 Fri Feb 24 12:58:41 2023 Fri Feb 24 12:58:41 2023 commencing linear algebra Fri Feb 24 12:58:41 2023 read 566188 cycles Fri Feb 24 12:58:42 2023 cycles contain 1977802 unique relations Fri Feb 24 12:58:47 2023 read 1977802 relations Fri Feb 24 12:58:48 2023 using 20 quadratic characters above 134214890 Fri Feb 24 12:58:53 2023 building initial matrix Fri Feb 24 12:59:03 2023 memory use: 249.9 MB Fri Feb 24 12:59:04 2023 read 566188 cycles Fri Feb 24 12:59:04 2023 matrix is 566001 x 566188 (172.6 MB) with weight 54644397 (96.51/col) Fri Feb 24 12:59:04 2023 sparse part has weight 38456860 (67.92/col) Fri Feb 24 12:59:06 2023 filtering completed in 2 passes Fri Feb 24 12:59:06 2023 matrix is 564042 x 564229 (172.4 MB) with weight 54552138 (96.68/col) Fri Feb 24 12:59:06 2023 sparse part has weight 38423364 (68.10/col) Fri Feb 24 12:59:07 2023 matrix starts at (0, 0) Fri Feb 24 12:59:07 2023 matrix is 564042 x 564229 (172.4 MB) with weight 54552138 (96.68/col) Fri Feb 24 12:59:07 2023 sparse part has weight 38423364 (68.10/col) Fri Feb 24 12:59:07 2023 saving the first 48 matrix rows for later Fri Feb 24 12:59:07 2023 matrix includes 64 packed rows Fri Feb 24 12:59:08 2023 matrix is 563994 x 564229 (165.5 MB) with weight 43317096 (76.77/col) Fri Feb 24 12:59:08 2023 sparse part has weight 37742086 (66.89/col) Fri Feb 24 12:59:08 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Fri Feb 24 12:59:09 2023 commencing Lanczos iteration (32 threads) Fri Feb 24 12:59:09 2023 memory use: 128.3 MB Fri Feb 24 12:59:11 2023 linear algebra at 0.5%, ETA 0h 6m Fri Feb 24 13:03:06 2023 lanczos halted after 8921 iterations (dim = 563994) Fri Feb 24 13:03:06 2023 recovered 32 nontrivial dependencies Fri Feb 24 13:03:06 2023 BLanczosTime: 265 Fri Feb 24 13:03:06 2023 elapsed time 00:04:25 Fri Feb 24 13:03:06 2023 Fri Feb 24 13:03:06 2023 Fri Feb 24 13:03:06 2023 Msieve v. 1.52 (SVN 927) Fri Feb 24 13:03:06 2023 random seeds: 7249f72c 7996116d Fri Feb 24 13:03:06 2023 factoring 960290848900740529886710471467191165061253058096300116594414123269561637784775945104629440404548126296816936294539971 (117 digits) Fri Feb 24 13:03:07 2023 searching for 15-digit factors Fri Feb 24 13:03:07 2023 commencing number field sieve (117-digit input) Fri Feb 24 13:03:07 2023 R0: -36073666660963587494127 Fri Feb 24 13:03:07 2023 R1: 762406684303 Fri Feb 24 13:03:07 2023 A0: -10682745934411389143475488240 Fri Feb 24 13:03:07 2023 A1: 683029543605249786807772 Fri Feb 24 13:03:07 2023 A2: 10747618234868578694 Fri Feb 24 13:03:07 2023 A3: -521120515366727 Fri Feb 24 13:03:07 2023 A4: -2039310502 Fri Feb 24 13:03:07 2023 A5: 15720 Fri Feb 24 13:03:07 2023 skew 76056.18, size 2.400e-011, alpha -5.613, combined = 3.524e-010 rroots = 5 Fri Feb 24 13:03:07 2023 Fri Feb 24 13:03:07 2023 commencing square root phase Fri Feb 24 13:03:07 2023 reading relations for dependency 1 Fri Feb 24 13:03:07 2023 read 281740 cycles Fri Feb 24 13:03:07 2023 cycles contain 988084 unique relations Fri Feb 24 13:03:10 2023 read 988084 relations Fri Feb 24 13:03:12 2023 multiplying 988084 relations Fri Feb 24 13:03:35 2023 multiply complete, coefficients have about 43.61 million bits Fri Feb 24 13:03:35 2023 initial square root is modulo 1822547 Fri Feb 24 13:04:03 2023 GCD is 1, no factor found Fri Feb 24 13:04:03 2023 reading relations for dependency 2 Fri Feb 24 13:04:03 2023 read 281675 cycles Fri Feb 24 13:04:04 2023 cycles contain 987412 unique relations Fri Feb 24 13:04:06 2023 read 987412 relations Fri Feb 24 13:04:08 2023 multiplying 987412 relations Fri Feb 24 13:04:31 2023 multiply complete, coefficients have about 43.58 million bits Fri Feb 24 13:04:31 2023 initial square root is modulo 1805359 Fri Feb 24 13:04:59 2023 sqrtTime: 112 Fri Feb 24 13:04:59 2023 prp57 factor: 850127666186484885213911504294172960757512661863199154929 Fri Feb 24 13:04:59 2023 prp61 factor: 1129584281392025812311206238383593174209736525866811462138099 Fri Feb 24 13:04:59 2023 elapsed time 00:01:53 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 1, 2023 04:22:02 UTC 2023 年 6 月 1 日 (木) 13 時 22 分 2 秒 (日本時間) |
composite number 合成数 | 22036822599207248089708138429878461463988281776845513462378765045518655621572539768719500914566700904111232029070949556244795091737<131> |
prime factors 素因数 | 8216965696292136022190248004817887552573142850382167110451<58> 2681868637853904173559387838767272033996780650019802701853223737033107587<73> |
factorization results 素因数分解の結果 | 22036822599207248089708138429878461463988281776845513462378765045518655621572539768719500914566700904111232029070949556244795091737=8216965696292136022190248004817887552573142850382167110451*2681868637853904173559387838767272033996780650019802701853223737033107587 cado polynomial n: 22036822599207248089708138429878461463988281776845513462378765045518655621572539768719500914566700904111232029070949556244795091737 skew: 26820.954 c0: -6789135650325458447242723464 c1: -7271256953705664567636762 c2: 106618049767115167177 c3: 14214873634733573 c4: -144909450644 c5: -4085760 Y0: -9451660482330635632947931 Y1: 285469417912948669 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 4.301e-07 # f(x) = -4085760*x^5-144909450644*x^4+14214873634733573*x^3+106618049767115167177*x^2-7271256953705664567636762*x-6789135650325458447242723464 # g(x) = 285469417912948669*x-9451660482330635632947931 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 8216965696292136022190248004817887552573142850382167110451 2681868637853904173559387838767272033996780650019802701853223737033107587 Info:Square Root: Total cpu/real time for sqrt: 769.72/234.513 Info:Generate Factor Base: Total cpu/real time for makefb: 39.08/10.7567 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 360.27/352.479 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 313.0s Info:Quadratic Characters: Total cpu/real time for characters: 68.03/29.9688 Info:Filtering - Merging: Merged matrix has 1765622 rows and total weight 301773707 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 447.03/124.636 Info:Filtering - Merging: Total cpu/real time for replay: 68.85/60.7827 Info:Generate Free Relations: Total cpu/real time for freerel: 256.45/65.5894 Info:Filtering - Singleton removal: Total cpu/real time for purge: 223.48/229.292 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 106.55/107.463 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 107.0s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6562.44 Info:Polynomial Selection (root optimized): Rootsieve time: 6559.56 Info:Square Root: Total cpu/real time for sqrt: 769.72/234.513 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 38210.8 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38656/39.750/46.553/50.050/0.835 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30566/37.860/41.809/47.360/1.009 Info:Polynomial Selection (size optimized): Total time: 5782.7 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 23800862 Info:Lattice Sieving: Average J: 7627.2 for 80583 special-q, max bucket fill -bkmult 1.0,1s:1.070050 Info:Lattice Sieving: Total time: 107971s Info:Linear Algebra: Total cpu/real time for bwc: 51401.9/13264.3 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 32910.83, WCT time 8436.56, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (55296 iterations) Info:Linear Algebra: Lingen CPU time 351.07, WCT time 89.22 Info:Linear Algebra: Mksol: CPU time 17814.14, WCT time 4609.36, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (27648 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 272515/49868 8216965696292136022190248004817887552573142850382167110451 2681868637853904173559387838767272033996780650019802701853223737033107587 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 12:33:17 UTC 2023 年 3 月 28 日 (火) 21 時 33 分 17 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 17, 2023 16:38:04 UTC 2023 年 6 月 18 日 (日) 1 時 38 分 4 秒 (日本時間) |
composite number 合成数 | 53418651373548107876402055593967973281885060487857120500214990767137984007866822054483106844304952974961682578272989617614477320728127162907<140> |
prime factors 素因数 | 30578943868299271812409524695963689801880482260096840238032008739341<68> 1746909625251198262434950551041077369391734838569876700012292129949782727<73> |
factorization results 素因数分解の結果 | 53418651373548107876402055593967973281885060487857120500214990767137984007866822054483106844304952974961682578272989617614477320728127162907=30578943868299271812409524695963689801880482260096840238032008739341*1746909625251198262434950551041077369391734838569876700012292129949782727 cado polynomial n: 53418651373548107876402055593967973281885060487857120500214990767137984007866822054483106844304952974961682578272989617614477320728127162907 skew: 0.36 type: snfs c0: 13 c5: 2075 Y0: 10000000000000000000000000000000000000 Y1: -1 # f(x) = 2075*x^5+13 # g(x) = -x+10000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 9600000 tasks.lim1 = 9600000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1746909625251198262434950551041077369391734838569876700012292129949782727 30578943868299271812409524695963689801880482260096840238032008739341 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 1594.27/483.918 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Free Relations: Total cpu/real time for freerel: 128.01/35.0975 Info:Square Root: Total cpu/real time for sqrt: 1594.27/483.918 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 98.4/104.375 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 103.60000000000001s Info:Quadratic Characters: Total cpu/real time for characters: 66.06/27.893 Info:Filtering - Singleton removal: Total cpu/real time for purge: 289.37/276.472 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 426.82/432.342 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 307.49999999999994s Info:Generate Factor Base: Total cpu/real time for makefb: 4.08/2.16489 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 24499174 Info:Lattice Sieving: Average J: 1895.33 for 1773381 special-q, max bucket fill -bkmult 1.0,1s:1.153900 Info:Lattice Sieving: Total time: 316247s Info:Filtering - Merging: Merged matrix has 1863521 rows and total weight 318409169 (170.9 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 536.5/146.853 Info:Filtering - Merging: Total cpu/real time for replay: 69.22/82.403 Info:Linear Algebra: Total cpu/real time for bwc: 64949.2/17205.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 41606.53, WCT time 10779.22, iteration CPU time 0.17, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (58368 iterations) Info:Linear Algebra: Lingen CPU time 278.22, WCT time 283.84 Info:Linear Algebra: Mksol: CPU time 22625.05, WCT time 5899.3, iteration CPU time 0.19, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (29184 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 661734/176646 Info:root: Cleaning up computation data in /tmp/cado.syozgc5q 1746909625251198262434950551041077369391734838569876700012292129949782727 30578943868299271812409524695963689801880482260096840238032008739341 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 09:55:17 UTC 2023 年 3 月 28 日 (火) 18 時 55 分 17 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 29, 2023 19:52:38 UTC 2023 年 3 月 30 日 (木) 4 時 52 分 38 秒 (日本時間) |
composite number 合成数 | 1922982170600746047890029365326283240200446907464592462207231412344066487751299746409204676308496211004443622204427574728835138797776124931599644487420107084421001<163> |
prime factors 素因数 | 52818823475253597874670959945152887683407756134835277200544990493721135695957<77> 36407137533112446427675350890744071250850151076979395149447536128411904810174812821093<86> |
factorization results 素因数分解の結果 | Number: n N=1922982170600746047890029365326283240200446907464592462207231412344066487751299746409204676308496211004443622204427574728835138797776124931599644487420107084421001 ( 163 digits) SNFS difficulty: 189 digits. Divisors found: Thu Mar 30 05:50:29 2023 prp77 factor: 52818823475253597874670959945152887683407756134835277200544990493721135695957 Thu Mar 30 05:50:29 2023 prp86 factor: 36407137533112446427675350890744071250850151076979395149447536128411904810174812821093 Thu Mar 30 05:50:29 2023 elapsed time 01:50:53 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 83x10^188+52 = 92(187)8 # n: 1922982170600746047890029365326283240200446907464592462207231412344066487751299746409204676308496211004443622204427574728835138797776124931599644487420107084421001 m: 10000000000000000000000000000000000000 deg: 5 c5: 20750 c0: 13 skew: 0.23 # Murphy_E = 2.702e-11 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 23414857) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1557240 hash collisions in 13015581 relations (12193829 unique) Msieve: matrix is 1899631 x 1899859 (539.9 MB) Sieving start time: 2023/03/29 20:22:48 Sieving end time : 2023/03/30 03:59:09 Total sieving time: 7hrs 36min 21secs. Total relation processing time: 1hrs 44min 1sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 15sec. Prototype def-par.txt line would be: snfs,189,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 28, 2023 09:22:33 UTC 2023 年 3 月 28 日 (火) 18 時 22 分 33 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | February 27, 2023 12:05:52 UTC 2023 年 2 月 27 日 (月) 21 時 5 分 52 秒 (日本時間) |
composite number 合成数 | 768518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519<189> |
prime factors 素因数 | 2226526313735647942799671440427321713775213<43> 345164803926841685873615578422670626219208791160132293398428995488809658633100424091781586516381122574343368800845492432088716339368927121666587763<147> |
factorization results 素因数分解の結果 | Mon Feb 27 20:43:22 2023 Msieve v. 1.53 (SVN unknown) Mon Feb 27 20:43:22 2023 random seeds: a6bdceb4 b69562a8 Mon Feb 27 20:43:22 2023 factoring 768518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 (189 digits) Mon Feb 27 20:43:23 2023 searching for 15-digit factors Mon Feb 27 20:43:23 2023 commencing number field sieve (189-digit input) Mon Feb 27 20:43:23 2023 R0: -50000000000000000000000000000000000000 Mon Feb 27 20:43:23 2023 R1: 1 Mon Feb 27 20:43:23 2023 A0: 65 Mon Feb 27 20:43:23 2023 A1: 0 Mon Feb 27 20:43:23 2023 A2: 0 Mon Feb 27 20:43:23 2023 A3: 0 Mon Feb 27 20:43:23 2023 A4: 0 Mon Feb 27 20:43:23 2023 A5: 332 Mon Feb 27 20:43:23 2023 skew 0.72, size 1.373e-13, alpha 1.259, combined = 2.532e-11 rroots = 1 Mon Feb 27 20:43:23 2023 Mon Feb 27 20:43:23 2023 commencing square root phase Mon Feb 27 20:43:23 2023 reading relations for dependency 1 Mon Feb 27 20:43:24 2023 read 1257635 cycles Mon Feb 27 20:43:25 2023 cycles contain 3983502 unique relations Mon Feb 27 20:43:51 2023 read 3983502 relations Mon Feb 27 20:44:03 2023 multiplying 3983502 relations Mon Feb 27 20:45:10 2023 multiply complete, coefficients have about 123.26 million bits Mon Feb 27 20:45:10 2023 initial square root is modulo 702947951 Mon Feb 27 20:46:31 2023 Newton iteration failed to converge Mon Feb 27 20:46:31 2023 algebraic square root failed Mon Feb 27 20:46:31 2023 reading relations for dependency 2 Mon Feb 27 20:46:32 2023 read 1257138 cycles Mon Feb 27 20:46:33 2023 cycles contain 3983854 unique relations Mon Feb 27 20:47:00 2023 read 3983854 relations Mon Feb 27 20:47:11 2023 multiplying 3983854 relations Mon Feb 27 20:48:27 2023 multiply complete, coefficients have about 123.27 million bits Mon Feb 27 20:48:28 2023 initial square root is modulo 704404691 Mon Feb 27 20:50:11 2023 Newton iteration failed to converge Mon Feb 27 20:50:11 2023 algebraic square root failed Mon Feb 27 20:50:11 2023 reading relations for dependency 3 Mon Feb 27 20:50:12 2023 read 1257500 cycles Mon Feb 27 20:50:14 2023 cycles contain 3986304 unique relations Mon Feb 27 20:50:45 2023 read 3986304 relations Mon Feb 27 20:51:03 2023 multiplying 3986304 relations Mon Feb 27 20:52:28 2023 multiply complete, coefficients have about 123.35 million bits Mon Feb 27 20:52:28 2023 initial square root is modulo 714314561 Mon Feb 27 20:54:12 2023 sqrtTime: 649 Mon Feb 27 20:54:12 2023 p43 factor: 2226526313735647942799671440427321713775213 Mon Feb 27 20:54:12 2023 p147 factor: 345164803926841685873615578422670626219208791160132293398428995488809658633100424091781586516381122574343368800845492432088716339368927121666587763 Mon Feb 27 20:54:12 2023 elapsed time 00:10:50 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 7, 2023 04:23:00 UTC 2023 年 4 月 7 日 (金) 13 時 23 分 0 秒 (日本時間) |
composite number 合成数 | 70772588106553283915781169592693362050533239387290540524781208969142863120225445752965909685700327655629220894890669124157977475330740434768357705910359364047621632635212955783163<179> |
prime factors 素因数 | 14592456433861917732518961555760151202390835109472614518127764481834759856778158958841<86> 4849943422981541251643472951602483969720562292328909643813021710075410144168315346339966833043<94> |
factorization results 素因数分解の結果 | Number: n N=70772588106553283915781169592693362050533239387290540524781208969142863120225445752965909685700327655629220894890669124157977475330740434768357705910359364047621632635212955783163 ( 179 digits) SNFS difficulty: 191 digits. Divisors found: Thu Apr 6 19:04:13 2023 prp86 factor: 14592456433861917732518961555760151202390835109472614518127764481834759856778158958841 Thu Apr 6 19:04:13 2023 prp94 factor: 4849943422981541251643472951602483969720562292328909643813021710075410144168315346339966833043 Thu Apr 6 19:04:13 2023 elapsed time 01:38:04 (Msieve 1.44 - dependency 12) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.088). Factorization parameters were as follows: # # N = 83x10^190+52 = 92(189)8 # n: 70772588106553283915781169592693362050533239387290540524781208969142863120225445752965909685700327655629220894890669124157977475330740434768357705910359364047621632635212955783163 m: 100000000000000000000000000000000000000 deg: 5 c5: 83 c0: 52 skew: 0.91 # Murphy_E = 2.798e-11 type: snfs lss: 1 rlim: 11100000 alim: 11100000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11100000/11100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 23950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1961836 hash collisions in 16588445 relations (15247858 unique) Msieve: matrix is 1557621 x 1557846 (439.4 MB) Sieving start time: 2023/04/06 07:13:45 Sieving end time : 2023/04/06 17:25:52 Total sieving time: 10hrs 12min 7secs. Total relation processing time: 1hrs 13min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 20min 37sec. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,11100000,11100000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 4, 2023 19:06:46 UTC 2023 年 3 月 5 日 (日) 4 時 6 分 46 秒 (日本時間) |
2350 | Ignacio Santos | April 4, 2023 14:39:26 UTC 2023 年 4 月 4 日 (火) 23 時 39 分 26 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 11, 2023 19:25:18 UTC 2023 年 4 月 12 日 (水) 4 時 25 分 18 秒 (日本時間) |
composite number 合成数 | 12887021999991015930232450110580551199082707280270841784148987762916809534018596165117294135645437438526918350417415215817167298276188311626593759615792309387407<161> |
prime factors 素因数 | 3005640451670792794159105234133752419541313603180097961132833125284206192211<76> 4287612642698930812787536907043928404094170637008711916108166895832613711403429559637<85> |
factorization results 素因数分解の結果 | Number: n N=12887021999991015930232450110580551199082707280270841784148987762916809534018596165117294135645437438526918350417415215817167298276188311626593759615792309387407 ( 161 digits) SNFS difficulty: 193 digits. Divisors found: Wed Apr 12 05:17:43 2023 prp76 factor: 3005640451670792794159105234133752419541313603180097961132833125284206192211 Wed Apr 12 05:17:43 2023 prp85 factor: 4287612642698930812787536907043928404094170637008711916108166895832613711403429559637 Wed Apr 12 05:17:43 2023 elapsed time 02:21:02 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 83x10^192+52 = 92(191)8 # n: 12887021999991015930232450110580551199082707280270841784148987762916809534018596165117294135645437438526918350417415215817167298276188311626593759615792309387407 m: 100000000000000000000000000000000000000 deg: 5 c5: 2075 c0: 13 skew: 0.36 # Murphy_E = 2.496e-11 type: snfs lss: 1 rlim: 11700000 alim: 11700000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11700000/11700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 24250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1529099 hash collisions in 13021818 relations (12238350 unique) Msieve: matrix is 2048578 x 2048804 (585.9 MB) Sieving start time: 2023/04/11 18:47:34 Sieving end time : 2023/04/12 02:56:29 Total sieving time: 8hrs 8min 55secs. Total relation processing time: 2hrs 14min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 17sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11700000,11700000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 4, 2023 19:06:55 UTC 2023 年 3 月 5 日 (日) 4 時 6 分 55 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 13, 2023 17:03:53 UTC 2023 年 4 月 14 日 (金) 2 時 3 分 53 秒 (日本時間) |
composite number 合成数 | 441404053327044624554997436869391902944400147895570861955560052328358696428306231214938426165509460305285492542408366956928985101565682014057617941193107816159862636104043687<174> |
prime factors 素因数 | 46758894764584490962734558958192374581<38> 9440001855248449875067437291678829727910133885485115135728670458485441539051004432293316185825205216699348577834928390127194757622530027<136> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2793308292 Step 1 took 7562ms Step 2 took 3547ms ********** Factor found in step 2: 46758894764584490962734558958192374581 Found prime factor of 38 digits: 46758894764584490962734558958192374581 Prime cofactor 9440001855248449875067437291678829727910133885485115135728670458485441539051004432293316185825205216699348577834928390127194757622530027 has 136 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 4, 2023 19:07:03 UTC 2023 年 3 月 5 日 (日) 4 時 7 分 3 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 19, 2023 14:48:01 UTC 2023 年 4 月 19 日 (水) 23 時 48 分 1 秒 (日本時間) |
composite number 合成数 | 2040314650934119960668633235004916420845624385447394296951819075712881022615535889872173058013765978367748279252704031465093411996066863323500491642084562438544739429695181907571288102261553589<193> |
prime factors 素因数 | 19852180575638764965193358756004945664602407412620120395190673089<65> 102775342142406977014025226546789977111043908056799445459607988442371488842997758158879912920313692865273771048524876912181824501<129> |
factorization results 素因数分解の結果 | Number: n N=2040314650934119960668633235004916420845624385447394296951819075712881022615535889872173058013765978367748279252704031465093411996066863323500491642084562438544739429695181907571288102261553589 ( 193 digits) SNFS difficulty: 195 digits. Divisors found: Thu Apr 20 00:38:56 2023 prp65 factor: 19852180575638764965193358756004945664602407412620120395190673089 Thu Apr 20 00:38:56 2023 prp129 factor: 102775342142406977014025226546789977111043908056799445459607988442371488842997758158879912920313692865273771048524876912181824501 Thu Apr 20 00:38:56 2023 elapsed time 02:05:52 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 83x10^194+52 = 92(193)8 # n: 2040314650934119960668633235004916420845624385447394296951819075712881022615535889872173058013765978367748279252704031465093411996066863323500491642084562438544739429695181907571288102261553589 m: 100000000000000000000000000000000 deg: 6 c6: 2075 c0: 13 skew: 0.43 # Murphy_E = 1.648e-11 type: snfs lss: 1 rlim: 12600000 alim: 12600000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12600000/12600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 39100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2055410 hash collisions in 14808478 relations (13780539 unique) Msieve: matrix is 1897977 x 1898202 (544.8 MB) Sieving start time: 2023/04/19 08:08:32 Sieving end time : 2023/04/19 22:32:48 Total sieving time: 14hrs 24min 16secs. Total relation processing time: 1hrs 45min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 16min 34sec. Prototype def-par.txt line would be: snfs,195,6,0,0,0,0,0,0,0,0,12600000,12600000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 4, 2023 19:07:14 UTC 2023 年 3 月 5 日 (日) 4 時 7 分 14 秒 (日本時間) |
2350 | Ignacio Santos | April 18, 2023 15:26:17 UTC 2023 年 4 月 19 日 (水) 0 時 26 分 17 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 19, 2023 06:10:09 UTC 2023 年 4 月 19 日 (水) 15 時 10 分 9 秒 (日本時間) |
composite number 合成数 | 2005205012426844210274203060572380851555874888232223822575347844123241678246281985330142983214359318518186042371819005188534543716913024366658934034359<151> |
prime factors 素因数 | 289469719115694807921240473335349745133957<42> 6927166746672410954596374242441161604945327867809394748388404645958585482719229438610541914145795768106949387<109> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2005205012426844210274203060572380851555874888232223822575347844123241678246281985330142983214359318518186042371819005188534543716913024366658934034359 (151 digits) Using B1=32590000, B2=144292047916, polynomial Dickson(12), sigma=1:2464459003 Step 1 took 63873ms Step 2 took 22535ms ********** Factor found in step 2: 289469719115694807921240473335349745133957 Found prime factor of 42 digits: 289469719115694807921240473335349745133957 Prime cofactor 6927166746672410954596374242441161604945327867809394748388404645958585482719229438610541914145795768106949387 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 4, 2023 19:07:35 UTC 2023 年 3 月 5 日 (日) 4 時 7 分 35 秒 (日本時間) |
2350 | Ignacio Santos | April 18, 2023 16:19:42 UTC 2023 年 4 月 19 日 (水) 1 時 19 分 42 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 5, 2023 01:20:01 UTC 2023 年 5 月 5 日 (金) 10 時 20 分 1 秒 (日本時間) |
composite number 合成数 | 429961288908565077820350913138211543026924284486562211339300727041952976630002435478771414831137309918507597723236508562896451930873557886914438689344679527251085219669102264791020083<183> |
prime factors 素因数 | 17249766422618623912683845078207140393238480231<47> 24925629621557172833569332502485799605782627463089175005802171602848627572139239487263364522531413061606752024121693865262553071051620693<137> |
factorization results 素因数分解の結果 | Number: n N=429961288908565077820350913138211543026924284486562211339300727041952976630002435478771414831137309918507597723236508562896451930873557886914438689344679527251085219669102264791020083 ( 183 digits) SNFS difficulty: 199 digits. Divisors found: Fri May 5 09:58:25 2023 prp47 factor: 17249766422618623912683845078207140393238480231 Fri May 5 09:58:25 2023 prp137 factor: 24925629621557172833569332502485799605782627463089175005802171602848627572139239487263364522531413061606752024121693865262553071051620693 Fri May 5 09:58:25 2023 elapsed time 03:53:19 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.104). Factorization parameters were as follows: # # N = 83x10^198+52 = 92(197)8 # n: 429961288908565077820350913138211543026924284486562211339300727041952976630002435478771414831137309918507597723236508562896451930873557886914438689344679527251085219669102264791020083 m: 1000000000000000000000000000000000000000 deg: 5 c5: 20750 c0: 13 skew: 0.23 # Murphy_E = 1.043e-11 type: snfs lss: 1 rlim: 14700000 alim: 14700000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 14700000/14700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 47350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2145386 hash collisions in 14304456 relations (12845360 unique) Msieve: matrix is 2666044 x 2666270 (756.9 MB) Sieving start time: 2023/05/04 11:11:28 Sieving end time : 2023/05/05 06:04:49 Total sieving time: 18hrs 53min 21secs. Total relation processing time: 3hrs 39min 46sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 13sec. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14700000,14700000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 4, 2023 19:07:43 UTC 2023 年 3 月 5 日 (日) 4 時 7 分 43 秒 (日本時間) |
2350 | Ignacio Santos | May 2, 2023 11:15:58 UTC 2023 年 5 月 2 日 (火) 20 時 15 分 58 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 18, 2023 00:33:44 UTC 2023 年 5 月 18 日 (木) 9 時 33 分 44 秒 (日本時間) |
composite number 合成数 | 1023041895642743254950853579723797745206200616855303006097692568735440525741952923863785097474827111791477785138053286193649361181739014587899594809206514257<157> |
prime factors 素因数 | 8771842957030718829130539987780719005891<40> 116627931057836034793576334287964084999302271012931825052158834263423310703411809110995340922389040568183386028347227<117> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1023041895642743254950853579723797745206200616855303006097692568735440525741952923863785097474827111791477785138053286193649361181739014587899594809206514257 (157 digits) Using B1=12190000, B2=35134690510, polynomial Dickson(12), sigma=1:3783737776 Step 1 took 28795ms Step 2 took 11155ms ********** Factor found in step 2: 8771842957030718829130539987780719005891 Found prime factor of 40 digits: 8771842957030718829130539987780719005891 Prime cofactor 116627931057836034793576334287964084999302271012931825052158834263423310703411809110995340922389040568183386028347227 has 117 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 4, 2023 19:07:52 UTC 2023 年 3 月 5 日 (日) 4 時 7 分 52 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 22, 2023 15:01:17 UTC 2023 年 2 月 23 日 (木) 0 時 1 分 17 秒 (日本時間) |
composite number 合成数 | 8204348852728076865977146414812834228776834649110111583402059018278343315920405657220423109026659999285126876225165663212827097421792513<136> |
prime factors 素因数 | 3320063044646694408625596748740802376569<40> 2471142488079212159689090091832209354355704461439405863094804570873165919997252480576767191954377<97> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:187226017 Step 1 took 5703ms Step 2 took 2672ms ********** Factor found in step 2: 3320063044646694408625596748740802376569 Found prime factor of 40 digits: 3320063044646694408625596748740802376569 Prime cofactor 2471142488079212159689090091832209354355704461439405863094804570873165919997252480576767191954377 has 97 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 27, 2023 16:45:37 UTC 2023 年 2 月 28 日 (火) 1 時 45 分 37 秒 (日本時間) |
composite number 合成数 | 112251667529508534847804085686631065205751178210579164891466514178781608180782464301495879726391528033765347373042534246012691<126> |
prime factors 素因数 | 4177950474715596438508414701538388633041<40> 26867639578027737926373444704509140053635383583297573780530137633580365840604663583651<86> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3216436756 Step 1 took 4406ms Step 2 took 2391ms ********** Factor found in step 2: 4177950474715596438508414701538388633041 Found prime factor of 40 digits: 4177950474715596438508414701538388633041 Prime cofactor 26867639578027737926373444704509140053635383583297573780530137633580365840604663583651 has 86 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 19, 2024 20:17:07 UTC 2024 年 6 月 20 日 (木) 5 時 17 分 7 秒 (日本時間) |
composite number 合成数 | 28347088314570451016818074768147873384013281141230994335365169716539977780749048390357799737870800469005255711343801546562661054820281982191522448097<149> |
prime factors 素因数 | 41946939469930591621881072911715665129693540726221<50> 675784423673886597324696621344221335320351522065497672345451914870395001355776559968025918549683557<99> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 28347088314570451016818074768147873384013281141230994335365169716539977780749048390357799737870800469005255711343801546562661054820281982191522448097 (149 digits) Using B1=71570000, B2=582191637310, polynomial Dickson(30), sigma=1:922820304 Step 1 took 130847ms Step 2 took 64196ms ********** Factor found in step 2: 41946939469930591621881072911715665129693540726221 Found prime factor of 50 digits: 41946939469930591621881072911715665129693540726221 Prime cofactor 675784423673886597324696621344221335320351522065497672345451914870395001355776559968025918549683557 has 99 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2023 21:42:48 UTC 2023 年 3 月 15 日 (水) 6 時 42 分 48 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:21:11 UTC 2023 年 4 月 6 日 (木) 18 時 21 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 14, 2023 12:05:14 UTC 2023 年 11 月 14 日 (火) 21 時 5 分 14 秒 (日本時間) |
composite number 合成数 | 1048192186429819660097827626063114854554806645635074151442385748064712894990985385303063227151385461217480043169392614674699364396013087183849136652431410809728891655227685154854579355521141<190> |
prime factors 素因数 | 5229915120355876075024175966628553814081053<43> |
composite cofactor 合成数の残り | 200422408836052796186558842850939528121528705959429401211218692567427490661886055533146038100822453097340111087632114128127880993735299936540503097<147> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2022967507 Step 1 took 7463ms ********** Factor found in step 1: 5229915120355876075024175966628553814081053 Found prime factor of 43 digits: 5229915120355876075024175966628553814081053 Composite cofactor 200422408836052796186558842850939528121528705959429401211218692567427490661886055533146038100822453097340111087632114128127880993735299936540503097 has 147 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 6, 2024 19:22:10 UTC 2024 年 9 月 7 日 (土) 4 時 22 分 10 秒 (日本時間) |
composite number 合成数 | 200422408836052796186558842850939528121528705959429401211218692567427490661886055533146038100822453097340111087632114128127880993735299936540503097<147> |
prime factors 素因数 | 206375081395597099802281555153830839334647020619<48> 971156049852095657855270983808879476109410056818270630772104828993228431921656169080808717176413963<99> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 200422408836052796186558842850939528121528705959429401211218692567427490661886055533146038100822453097340111087632114128127880993735299936540503097 (147 digits) Using B1=63030000, B2=388131795880, polynomial Dickson(30), sigma=1:2698664660 Step 1 took 122845ms Step 2 took 52716ms ********** Factor found in step 2: 206375081395597099802281555153830839334647020619 Found prime factor of 48 digits: 206375081395597099802281555153830839334647020619 Prime cofactor 971156049852095657855270983808879476109410056818270630772104828993228431921656169080808717176413963 has 99 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 14, 2023 21:46:01 UTC 2023 年 3 月 15 日 (水) 6 時 46 分 1 秒 (日本時間) |
1200 | Dmitry Domanov | November 14, 2023 10:52:08 UTC 2023 年 11 月 14 日 (火) 19 時 52 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 24, 2023 23:29:49 UTC 2023 年 3 月 25 日 (土) 8 時 29 分 49 秒 (日本時間) |
1200 | Dmitry Domanov | November 14, 2023 12:13:06 UTC 2023 年 11 月 14 日 (火) 21 時 13 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:45:45 UTC 2023 年 3 月 15 日 (水) 6 時 45 分 45 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 07:38:37 UTC 2024 年 9 月 22 日 (日) 16 時 38 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:45:54 UTC 2023 年 3 月 15 日 (水) 6 時 45 分 54 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 07:38:50 UTC 2024 年 9 月 22 日 (日) 16 時 38 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:46:09 UTC 2023 年 3 月 15 日 (水) 6 時 46 分 9 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 07:49:36 UTC 2024 年 9 月 22 日 (日) 16 時 49 分 36 秒 (日本時間) |
name 名前 | Jason Parker-Burlingham |
---|---|
date 日付 | August 29, 2024 13:46:38 UTC 2024 年 8 月 29 日 (木) 22 時 46 分 38 秒 (日本時間) |
composite number 合成数 | 237889694847710469324840384613179891614015658300974602552241150216737574992576695064390721499381486793395952779755415000005732281803559288417466033364173009436482305019300592832584124101608134337170522772635921<210> |
prime factors 素因数 | 75673054347509942070619826984852582554631<41> 165096036639349705412542453082134050872844467987222116487794117868309293<72> 19041349223550342723836099573920571927230985533786694543053114279767686702643952218629944275562787<98> |
factorization results 素因数分解の結果 | Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 83711234 Info:Lattice Sieving: , max bucket fill -bkmult 1.0,1l:1.259750,1s:1.500000,2s:1.100000 Info:Lattice Sieving: Total time: 6.89425e+06s Warning:Lattice Sieving: some stats could not be displayed for sieving (see log file for debug info) Info:Filtering - Merging: Total cpu/real time for merge: 3692.6/128.363 Info:Filtering - Merging: Total cpu/real time for replay: 154.92/149.521 Info:Generate Factor Base: Total cpu/real time for makefb: 10.77/1.07414 Info:Generate Free Relations: Total cpu/real time for freerel: 274.83/16.1381 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 110.38/250.457 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 250.3s Info:Filtering - Singleton removal: Total cpu/real time for purge: 2341.78/595.986 Info:Square Root: Total cpu/real time for sqrt: 10250.5/535.375 Info:Quadratic Characters: Total cpu/real time for characters: 165.29/29.8618 Info:Linear Algebra: Total cpu/real time for bwc: 1.18485e+06/51115.6 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 783458.62, WCT time 33695.64, iteration CPU time 0.17, COMM 0.02, cpu-wait 0.05, comm-wait 0.0 (142848 iterations) Info:Linear Algebra: Lingen CPU time 586.94, WCT time 95.05 Info:Linear Algebra: Mksol: CPU time 395287.41, WCT time 16963.91, iteration CPU time 0.17, COMM 0.02, cpu-wait 0.05, comm-wait 0.0 (71680 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 7.8329e+06/271199 [3d 03:19:59] 19041349223550342723836099573920571927230985533786694543053114279767686702643952218629944275562787 75673054347509942070619826984852582554631 165096036639349705412542453082134050872844467987222116487794117868309293 ==> 92228_214.poly <== n: 237889694847710469324840384613179891614015658300974602552241150216737574992576695064390721499381486793395952779755415000005732281803559288417466033364173009436482305019300592832584124101608134337170522772635921 poly0: -5000000000000000000000000000000000000000000,1 poly1: 65,0,0,0,0,332 skew: 0.72 ==> 92228_214.params <== name = 92228_214 N = 237889694847710469324840384613179891614015658300974602552241150216737574992576695064390721499381486793395952779755415000005732281803559288417466033364173009436482305019300592832584124101608134337170522772635921 tasks.polyselect.import = 92228_214.poly tasks.polyselect.admin = 0 tasks.polyselect.admax = 0 tasks.polyselect.adrange = 0 tasks.lim0 = 35000000 tasks.lim1 = 35000000 tasks.lpb0 = 30 tasks.lpb1 = 30 tasks.sieve.mfb0 = 67 tasks.sieve.mfb1 = 67 tasks.A = 28 tasks.qmin = 35000000 tasks.qmax = 56562278 tasks.sieve.qrange = 10000 tasks.sieve.sqside = 0 tasks.sieve.adjust_strategy = 2 tasks.sieve.lambda0 = 2.0 tasks.sieve.lambda1 = 2.0 tasks.sieve.bkmult = 1,1l:1.25975,1s:1.5,2s:1.1 tasks.filter.purge.keep = 160 tasks.filter.target_density = 170.0 tasks.linalg.bwc.interleaving = 0 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 |
software ソフトウェア | CADO-NFS-3.0.0-dev (git commit 2551f43ca) |
execution environment 実行環境 | AMD Ryzen Threadripper 2990WX 32-Core Processor w/ 78GiB RAM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 24, 2023 23:30:00 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3406 | 1000 | Dmitry Domanov | March 24, 2023 23:30:08 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 8 秒 (日本時間) |
56 | Mehrshad Alipour | September 18, 2024 11:25:07 UTC 2024 年 9 月 18 日 (水) 20 時 25 分 7 秒 (日本時間) | |||
2350 | Ignacio Santos | September 22, 2024 07:59:26 UTC 2024 年 9 月 22 日 (日) 16 時 59 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:45:14 UTC 2023 年 3 月 15 日 (水) 6 時 45 分 14 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 08:38:50 UTC 2024 年 9 月 22 日 (日) 17 時 38 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:45:05 UTC 2023 年 3 月 15 日 (水) 6 時 45 分 5 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 08:39:03 UTC 2024 年 9 月 22 日 (日) 17 時 39 分 3 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 22, 2024 08:40:17 UTC 2024 年 9 月 22 日 (日) 17 時 40 分 17 秒 (日本時間) |
composite number 合成数 | 24612066034917995667753204800815916225164087679669381349589824982257643369206977540798177293210358832063438397669152127778028647262135666140882066457998023043306280254557059943979231945807111600090335529842685653<212> |
prime factors 素因数 | 82399347206245358616130671559228283437<38> 298692488100834783841820875415952215960767089835155899193958511998642194077599920348294813892948726749640457158452026878741015042152876208240753188313903010134337438669930569<174> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:945842607 Step 1 took 8734ms Step 2 took 4094ms ********** Factor found in step 2: 82399347206245358616130671559228283437 Found prime factor of 38 digits: 82399347206245358616130671559228283437 Prime cofactor 298692488100834783841820875415952215960767089835155899193958511998642194077599920348294813892948726749640457158452026878741015042152876208240753188313903010134337438669930569 has 174 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 24, 2023 23:30:23 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 23 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 25, 2023 09:22:08 UTC 2023 年 3 月 25 日 (土) 18 時 22 分 8 秒 (日本時間) |
composite number 合成数 | 4099803233599007264817235063503756901776519465495993001125582579158502458029026833909594378980010804157857187586645145402806027263918234924943085289178446567803925163481961757345265619063608629679680216961<205> |
prime factors 素因数 | 82811262803320380782879057219477171640773<41> 49507797548458861627631952483429386189191837543786033410258559581252379343793127699961048198539808623253143790197487912169796603547737450436719771894403102294857357<164> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1379803942 Step 1 took 11082ms Step 2 took 5547ms ********** Factor found in step 2: 82811262803320380782879057219477171640773 Found prime factor of 41 digits: 82811262803320380782879057219477171640773 Prime cofactor 49507797548458861627631952483429386189191837543786033410258559581252379343793127699961048198539808623253143790197487912169796603547737450436719771894403102294857357 has 164 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 24, 2023 23:30:23 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 23 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:30:33 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 33 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 08:40:48 UTC 2024 年 9 月 22 日 (日) 17 時 40 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 26, 2023 22:21:13 UTC 2023 年 3 月 27 日 (月) 7 時 21 分 13 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 08:52:49 UTC 2024 年 9 月 22 日 (日) 17 時 52 分 49 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 26, 2023 15:00:04 UTC 2023 年 3 月 27 日 (月) 0 時 0 分 4 秒 (日本時間) |
composite number 合成数 | 5589008289531730002271515697323170873584744156556860091133076774908012012369604879268785901372325719495100832710442675795520325590933699278186402306687052291100617076935560868886859657993795944523061844378932691732292949<220> |
prime factors 素因数 | 12224847614495387541456398005317592733<38> 457184291025817493707349340797597544100181229965687181834194751391876120763493897144346564975111007542675519012461919944993551198122555679045772104931759378558009173574283978156105753<183> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3381264152 Step 1 took 12957ms Step 2 took 5637ms ********** Factor found in step 2: 12224847614495387541456398005317592733 Found prime factor of 38 digits: 12224847614495387541456398005317592733 Prime cofactor 457184291025817493707349340797597544100181229965687181834194751391876120763493897144346564975111007542675519012461919944993551198122555679045772104931759378558009173574283978156105753 has 183 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 24, 2023 23:30:40 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:44:57 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 22, 2024 09:01:05 UTC 2024 年 9 月 22 日 (日) 18 時 1 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | March 14, 2023 21:42:56 UTC 2023 年 3 月 15 日 (水) 6 時 42 分 56 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 6, 2023 09:21:22 UTC 2023 年 4 月 6 日 (木) 18 時 21 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:44:49 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 49 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 15:32:16 UTC 2024 年 9 月 21 日 (土) 0 時 32 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:30:48 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 48 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 15:32:26 UTC 2024 年 9 月 21 日 (土) 0 時 32 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 26, 2023 22:21:25 UTC 2023 年 3 月 27 日 (月) 7 時 21 分 25 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 15:32:49 UTC 2024 年 9 月 21 日 (土) 0 時 32 分 49 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:30:57 UTC 2023 年 3 月 25 日 (土) 8 時 30 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 15:41:58 UTC 2024 年 9 月 21 日 (土) 0 時 41 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:00:18 UTC 2023 年 3 月 29 日 (水) 6 時 0 分 18 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 15:59:36 UTC 2024 年 9 月 21 日 (土) 0 時 59 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:00:30 UTC 2023 年 3 月 29 日 (水) 6 時 0 分 30 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 16:13:32 UTC 2024 年 9 月 21 日 (土) 1 時 13 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:00:38 UTC 2023 年 3 月 29 日 (水) 6 時 0 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 16:30:59 UTC 2024 年 9 月 21 日 (土) 1 時 30 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:00:46 UTC 2023 年 3 月 29 日 (水) 6 時 0 分 46 秒 (日本時間) |
2350 | Ignacio Santos | September 20, 2024 16:39:27 UTC 2024 年 9 月 21 日 (土) 1 時 39 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:31:04 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 4 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 05:52:51 UTC 2024 年 9 月 21 日 (土) 14 時 52 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:44:42 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 42 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 06:08:49 UTC 2024 年 9 月 21 日 (土) 15 時 8 分 49 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 6, 2023 16:28:07 UTC 2023 年 3 月 7 日 (火) 1 時 28 分 7 秒 (日本時間) |
composite number 合成数 | 1027487682912965402406958394469946853290999114327772669828517587941748314359174859073744012257074159508933318596873834649720060835199660804568234259365791529<157> |
prime factors 素因数 | 553993112116651537203251928906104577718039<42> |
composite cofactor 合成数の残り | 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911<115> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:108871169 Step 1 took 23719ms Step 2 took 10187ms ********** Factor found in step 2: 553993112116651537203251928906104577718039 Found prime factor of 42 digits: 553993112116651537203251928906104577718039 Composite cofactor 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911 has 115 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 7, 2023 16:31:09 UTC 2023 年 3 月 8 日 (水) 1 時 31 分 9 秒 (日本時間) |
composite number 合成数 | 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911<115> |
prime factors 素因数 | 3131765297668650394123508598478882214399570886788773151<55> 592219975290107633757061291423356913523375499766142553105761<60> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 79 LatSieveTime: 81 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 80 LatSieveTime: 81 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 83 LatSieveTime: 83 LatSieveTime: 87 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 75 LatSieveTime: 84 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 81 LatSieveTime: 83 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 87 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 85 LatSieveTime: 87 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 77 LatSieveTime: 81 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 83 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 125 Tue Mar 07 17:20:54 2023 Tue Mar 07 17:20:54 2023 Tue Mar 07 17:20:54 2023 Msieve v. 1.52 (SVN 927) Tue Mar 07 17:20:54 2023 random seeds: a6ea6360 5795a467 Tue Mar 07 17:20:54 2023 factoring 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911 (115 digits) Tue Mar 07 17:20:54 2023 searching for 15-digit factors Tue Mar 07 17:20:54 2023 commencing number field sieve (115-digit input) Tue Mar 07 17:20:54 2023 R0: -12634844822774468151380 Tue Mar 07 17:20:54 2023 R1: 5911394357 Tue Mar 07 17:20:54 2023 A0: 8924861057843388568377904983 Tue Mar 07 17:20:54 2023 A1: 558301422180227789143731 Tue Mar 07 17:20:54 2023 A2: -13869717079228586237 Tue Mar 07 17:20:54 2023 A3: -275480849364671 Tue Mar 07 17:20:54 2023 A4: 6061059834 Tue Mar 07 17:20:54 2023 A5: 5760 Tue Mar 07 17:20:54 2023 skew 70011.00, size 4.133e-011, alpha -6.343, combined = 4.665e-010 rroots = 3 Tue Mar 07 17:20:54 2023 Tue Mar 07 17:20:54 2023 commencing relation filtering Tue Mar 07 17:20:54 2023 estimated available RAM is 65413.5 MB Tue Mar 07 17:20:54 2023 commencing duplicate removal, pass 1 Tue Mar 07 17:21:08 2023 found 757301 hash collisions in 7081147 relations Tue Mar 07 17:21:16 2023 added 57344 free relations Tue Mar 07 17:21:16 2023 commencing duplicate removal, pass 2 Tue Mar 07 17:21:18 2023 found 509327 duplicates and 6629164 unique relations Tue Mar 07 17:21:18 2023 memory use: 24.6 MB Tue Mar 07 17:21:18 2023 reading ideals above 100000 Tue Mar 07 17:21:18 2023 commencing singleton removal, initial pass Tue Mar 07 17:21:43 2023 memory use: 188.3 MB Tue Mar 07 17:21:43 2023 reading all ideals from disk Tue Mar 07 17:21:43 2023 memory use: 228.6 MB Tue Mar 07 17:21:43 2023 keeping 7709849 ideals with weight <= 200, target excess is 35844 Tue Mar 07 17:21:44 2023 commencing in-memory singleton removal Tue Mar 07 17:21:44 2023 begin with 6629164 relations and 7709849 unique ideals Tue Mar 07 17:21:46 2023 reduce to 1697149 relations and 1764356 ideals in 20 passes Tue Mar 07 17:21:46 2023 max relations containing the same ideal: 83 Tue Mar 07 17:21:46 2023 filtering wants 1000000 more relations Tue Mar 07 17:21:46 2023 elapsed time 00:00:52 -> makeJobFile(): Adjusted to q0=2950001, q1=3050000. -> client 1 q0: 2950001 LatSieveTime: 87 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 Tue Mar 07 17:23:47 2023 Tue Mar 07 17:23:47 2023 Tue Mar 07 17:23:47 2023 Msieve v. 1.52 (SVN 927) Tue Mar 07 17:23:47 2023 random seeds: a0208d00 6af73581 Tue Mar 07 17:23:47 2023 factoring 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911 (115 digits) Tue Mar 07 17:23:47 2023 searching for 15-digit factors Tue Mar 07 17:23:47 2023 commencing number field sieve (115-digit input) Tue Mar 07 17:23:47 2023 R0: -12634844822774468151380 Tue Mar 07 17:23:47 2023 R1: 5911394357 Tue Mar 07 17:23:47 2023 A0: 8924861057843388568377904983 Tue Mar 07 17:23:47 2023 A1: 558301422180227789143731 Tue Mar 07 17:23:47 2023 A2: -13869717079228586237 Tue Mar 07 17:23:47 2023 A3: -275480849364671 Tue Mar 07 17:23:47 2023 A4: 6061059834 Tue Mar 07 17:23:47 2023 A5: 5760 Tue Mar 07 17:23:47 2023 skew 70011.00, size 4.133e-011, alpha -6.343, combined = 4.665e-010 rroots = 3 Tue Mar 07 17:23:47 2023 Tue Mar 07 17:23:47 2023 commencing relation filtering Tue Mar 07 17:23:47 2023 estimated available RAM is 65413.5 MB Tue Mar 07 17:23:47 2023 commencing duplicate removal, pass 1 Tue Mar 07 17:24:03 2023 found 874481 hash collisions in 7725112 relations Tue Mar 07 17:24:11 2023 added 793 free relations Tue Mar 07 17:24:11 2023 commencing duplicate removal, pass 2 Tue Mar 07 17:24:13 2023 found 586518 duplicates and 7139387 unique relations Tue Mar 07 17:24:13 2023 memory use: 26.6 MB Tue Mar 07 17:24:13 2023 reading ideals above 100000 Tue Mar 07 17:24:13 2023 commencing singleton removal, initial pass Tue Mar 07 17:24:39 2023 memory use: 188.3 MB Tue Mar 07 17:24:39 2023 reading all ideals from disk Tue Mar 07 17:24:39 2023 memory use: 246.3 MB Tue Mar 07 17:24:39 2023 keeping 7989038 ideals with weight <= 200, target excess is 38736 Tue Mar 07 17:24:40 2023 commencing in-memory singleton removal Tue Mar 07 17:24:40 2023 begin with 7139387 relations and 7989038 unique ideals Tue Mar 07 17:24:42 2023 reduce to 2273187 relations and 2194356 ideals in 16 passes Tue Mar 07 17:24:42 2023 max relations containing the same ideal: 94 Tue Mar 07 17:24:42 2023 removing 191003 relations and 174054 ideals in 16949 cliques Tue Mar 07 17:24:42 2023 commencing in-memory singleton removal Tue Mar 07 17:24:42 2023 begin with 2082184 relations and 2194356 unique ideals Tue Mar 07 17:24:43 2023 reduce to 2068878 relations and 2006870 ideals in 9 passes Tue Mar 07 17:24:43 2023 max relations containing the same ideal: 87 Tue Mar 07 17:24:43 2023 removing 142242 relations and 125293 ideals in 16949 cliques Tue Mar 07 17:24:43 2023 commencing in-memory singleton removal Tue Mar 07 17:24:43 2023 begin with 1926636 relations and 2006870 unique ideals Tue Mar 07 17:24:43 2023 reduce to 1918110 relations and 1872978 ideals in 8 passes Tue Mar 07 17:24:43 2023 max relations containing the same ideal: 84 Tue Mar 07 17:24:44 2023 relations with 0 large ideals: 109 Tue Mar 07 17:24:44 2023 relations with 1 large ideals: 304 Tue Mar 07 17:24:44 2023 relations with 2 large ideals: 4894 Tue Mar 07 17:24:44 2023 relations with 3 large ideals: 39412 Tue Mar 07 17:24:44 2023 relations with 4 large ideals: 170398 Tue Mar 07 17:24:44 2023 relations with 5 large ideals: 407618 Tue Mar 07 17:24:44 2023 relations with 6 large ideals: 570780 Tue Mar 07 17:24:44 2023 relations with 7+ large ideals: 724595 Tue Mar 07 17:24:44 2023 commencing 2-way merge Tue Mar 07 17:24:44 2023 reduce to 1079071 relation sets and 1033939 unique ideals Tue Mar 07 17:24:44 2023 commencing full merge Tue Mar 07 17:24:56 2023 memory use: 120.1 MB Tue Mar 07 17:24:56 2023 found 539443 cycles, need 534139 Tue Mar 07 17:24:56 2023 weight of 534139 cycles is about 37597325 (70.39/cycle) Tue Mar 07 17:24:56 2023 distribution of cycle lengths: Tue Mar 07 17:24:56 2023 1 relations: 63180 Tue Mar 07 17:24:56 2023 2 relations: 63425 Tue Mar 07 17:24:56 2023 3 relations: 63041 Tue Mar 07 17:24:56 2023 4 relations: 55618 Tue Mar 07 17:24:56 2023 5 relations: 49662 Tue Mar 07 17:24:56 2023 6 relations: 41171 Tue Mar 07 17:24:56 2023 7 relations: 35943 Tue Mar 07 17:24:56 2023 8 relations: 30501 Tue Mar 07 17:24:56 2023 9 relations: 25078 Tue Mar 07 17:24:56 2023 10+ relations: 106520 Tue Mar 07 17:24:56 2023 heaviest cycle: 23 relations Tue Mar 07 17:24:56 2023 commencing cycle optimization Tue Mar 07 17:24:57 2023 start with 3224427 relations Tue Mar 07 17:25:00 2023 pruned 62003 relations Tue Mar 07 17:25:00 2023 memory use: 110.1 MB Tue Mar 07 17:25:00 2023 distribution of cycle lengths: Tue Mar 07 17:25:00 2023 1 relations: 63180 Tue Mar 07 17:25:00 2023 2 relations: 64680 Tue Mar 07 17:25:00 2023 3 relations: 64908 Tue Mar 07 17:25:00 2023 4 relations: 56625 Tue Mar 07 17:25:00 2023 5 relations: 50437 Tue Mar 07 17:25:00 2023 6 relations: 41425 Tue Mar 07 17:25:00 2023 7 relations: 36030 Tue Mar 07 17:25:00 2023 8 relations: 30302 Tue Mar 07 17:25:00 2023 9 relations: 24883 Tue Mar 07 17:25:00 2023 10+ relations: 101669 Tue Mar 07 17:25:00 2023 heaviest cycle: 23 relations Tue Mar 07 17:25:01 2023 RelProcTime: 74 Tue Mar 07 17:25:01 2023 elapsed time 00:01:14 Tue Mar 07 17:25:01 2023 Tue Mar 07 17:25:01 2023 Tue Mar 07 17:25:01 2023 Msieve v. 1.52 (SVN 927) Tue Mar 07 17:25:01 2023 random seeds: f66d3530 5d51c705 Tue Mar 07 17:25:01 2023 factoring 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911 (115 digits) Tue Mar 07 17:25:01 2023 searching for 15-digit factors Tue Mar 07 17:25:01 2023 commencing number field sieve (115-digit input) Tue Mar 07 17:25:01 2023 R0: -12634844822774468151380 Tue Mar 07 17:25:01 2023 R1: 5911394357 Tue Mar 07 17:25:01 2023 A0: 8924861057843388568377904983 Tue Mar 07 17:25:01 2023 A1: 558301422180227789143731 Tue Mar 07 17:25:01 2023 A2: -13869717079228586237 Tue Mar 07 17:25:01 2023 A3: -275480849364671 Tue Mar 07 17:25:01 2023 A4: 6061059834 Tue Mar 07 17:25:01 2023 A5: 5760 Tue Mar 07 17:25:01 2023 skew 70011.00, size 4.133e-011, alpha -6.343, combined = 4.665e-010 rroots = 3 Tue Mar 07 17:25:01 2023 Tue Mar 07 17:25:01 2023 commencing linear algebra Tue Mar 07 17:25:01 2023 read 534139 cycles Tue Mar 07 17:25:02 2023 cycles contain 1866780 unique relations Tue Mar 07 17:25:06 2023 read 1866780 relations Tue Mar 07 17:25:07 2023 using 20 quadratic characters above 134212388 Tue Mar 07 17:25:12 2023 building initial matrix Tue Mar 07 17:25:21 2023 memory use: 231.8 MB Tue Mar 07 17:25:21 2023 read 534139 cycles Tue Mar 07 17:25:21 2023 matrix is 533960 x 534139 (160.5 MB) with weight 50291221 (94.15/col) Tue Mar 07 17:25:21 2023 sparse part has weight 36197353 (67.77/col) Tue Mar 07 17:25:24 2023 filtering completed in 2 passes Tue Mar 07 17:25:24 2023 matrix is 533068 x 533247 (160.4 MB) with weight 50256072 (94.25/col) Tue Mar 07 17:25:24 2023 sparse part has weight 36187046 (67.86/col) Tue Mar 07 17:25:25 2023 matrix starts at (0, 0) Tue Mar 07 17:25:25 2023 matrix is 533068 x 533247 (160.4 MB) with weight 50256072 (94.25/col) Tue Mar 07 17:25:25 2023 sparse part has weight 36187046 (67.86/col) Tue Mar 07 17:25:25 2023 saving the first 48 matrix rows for later Tue Mar 07 17:25:25 2023 matrix includes 64 packed rows Tue Mar 07 17:25:25 2023 matrix is 533020 x 533247 (154.6 MB) with weight 39914248 (74.85/col) Tue Mar 07 17:25:25 2023 sparse part has weight 35195810 (66.00/col) Tue Mar 07 17:25:25 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Mar 07 17:25:27 2023 commencing Lanczos iteration (32 threads) Tue Mar 07 17:25:27 2023 memory use: 120.1 MB Tue Mar 07 17:25:28 2023 linear algebra at 0.6%, ETA 0h 2m Tue Mar 07 17:28:59 2023 lanczos halted after 8430 iterations (dim = 533020) Tue Mar 07 17:28:59 2023 recovered 32 nontrivial dependencies Tue Mar 07 17:28:59 2023 BLanczosTime: 238 Tue Mar 07 17:28:59 2023 elapsed time 00:03:58 Tue Mar 07 17:28:59 2023 Tue Mar 07 17:28:59 2023 Tue Mar 07 17:28:59 2023 Msieve v. 1.52 (SVN 927) Tue Mar 07 17:28:59 2023 random seeds: d8e57b18 e04b2b2c Tue Mar 07 17:28:59 2023 factoring 1854693967199744714680695273935019100102931818854010335963968541212342337370324952733695181688364999202661940222911 (115 digits) Tue Mar 07 17:28:59 2023 searching for 15-digit factors Tue Mar 07 17:28:59 2023 commencing number field sieve (115-digit input) Tue Mar 07 17:28:59 2023 R0: -12634844822774468151380 Tue Mar 07 17:28:59 2023 R1: 5911394357 Tue Mar 07 17:28:59 2023 A0: 8924861057843388568377904983 Tue Mar 07 17:28:59 2023 A1: 558301422180227789143731 Tue Mar 07 17:28:59 2023 A2: -13869717079228586237 Tue Mar 07 17:28:59 2023 A3: -275480849364671 Tue Mar 07 17:28:59 2023 A4: 6061059834 Tue Mar 07 17:28:59 2023 A5: 5760 Tue Mar 07 17:28:59 2023 skew 70011.00, size 4.133e-011, alpha -6.343, combined = 4.665e-010 rroots = 3 Tue Mar 07 17:28:59 2023 Tue Mar 07 17:28:59 2023 commencing square root phase Tue Mar 07 17:28:59 2023 reading relations for dependency 1 Tue Mar 07 17:29:00 2023 read 266551 cycles Tue Mar 07 17:29:00 2023 cycles contain 933676 unique relations Tue Mar 07 17:29:02 2023 read 933676 relations Tue Mar 07 17:29:04 2023 multiplying 933676 relations Tue Mar 07 17:29:26 2023 multiply complete, coefficients have about 41.71 million bits Tue Mar 07 17:29:26 2023 initial square root is modulo 974387 Tue Mar 07 17:29:52 2023 GCD is 1, no factor found Tue Mar 07 17:29:52 2023 reading relations for dependency 2 Tue Mar 07 17:29:52 2023 read 266369 cycles Tue Mar 07 17:29:52 2023 cycles contain 932114 unique relations Tue Mar 07 17:29:55 2023 read 932114 relations Tue Mar 07 17:29:57 2023 multiplying 932114 relations Tue Mar 07 17:30:19 2023 multiply complete, coefficients have about 41.64 million bits Tue Mar 07 17:30:19 2023 initial square root is modulo 951967 Tue Mar 07 17:30:45 2023 sqrtTime: 106 Tue Mar 07 17:30:45 2023 prp55 factor: 3131765297668650394123508598478882214399570886788773151 Tue Mar 07 17:30:45 2023 prp60 factor: 592219975290107633757061291423356913523375499766142553105761 Tue Mar 07 17:30:45 2023 elapsed time 00:01:46 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 08:32:11 UTC 2023 年 3 月 1 日 (水) 17 時 32 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 15, 2023 15:05:01 UTC 2023 年 3 月 16 日 (木) 0 時 5 分 1 秒 (日本時間) |
composite number 合成数 | 106595095930513057360659011905725351188581238148572724511545016667421958764674048706121725510835091041410041419932161927930368958024079189308051044121718050537399985823416324720032765641<186> |
prime factors 素因数 | 25386287042364418077649698320075950703837<41> |
composite cofactor 合成数の残り | 4198924236247233616318339717301335789910619603174450035718483306514696383674698298593565783348830649578279197255133502656041104844523613621302493<145> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1841295598 Step 1 took 9524ms Step 2 took 4745ms ********** Factor found in step 2: 25386287042364418077649698320075950703837 Found prime factor of 41 digits: 25386287042364418077649698320075950703837 Composite cofactor 4198924236247233616318339717301335789910619603174450035718483306514696383674698298593565783348830649578279197255133502656041104844523613621302493 has 145 digits |
name 名前 | NFS@Home |
---|---|
date 日付 | July 19, 2023 00:16:31 UTC 2023 年 7 月 19 日 (水) 9 時 16 分 31 秒 (日本時間) |
composite number 合成数 | 4198924236247233616318339717301335789910619603174450035718483306514696383674698298593565783348830649578279197255133502656041104844523613621302493<145> |
prime factors 素因数 | 48140301026202126109058277083398478724390981663136730025461<59> 87222641876747196788374508733653748607018288342676960232211701242879123883785881981513<86> |
factorization results 素因数分解の結果 | Msieve v. 1.53 (SVN 1005) Tue Jul 18 10:37:04 2023 random seeds: 541db8f0 68b63233 factoring 4198924236247233616318339717301335789910619603174450035718483306514696383674698298593565783348830649578279197255133502656041104844523613621302493 (145 digits) searching for 15-digit factors commencing number field sieve (145-digit input) R0: -10229291208461590107351406186 R1: 658448796960779657179 A0: 3111317225842969928040666666373410 A1: -14398789290158606610969567175 A2: -53716294930765355878932 A3: 117504807639652291 A4: 346706119536 A5: 876960 skew 353572.67, size 4.820e-014, alpha -6.709, combined = 1.111e-011 rroots = 3 commencing relation filtering setting target matrix density to 110.0 estimated available RAM is 16335.2 MB commencing duplicate removal, pass 1 error -9 reading relation 4571304 error -5 reading relation 6934907 error -9 reading relation 9892756 read 10M relations read 20M relations read 30M relations error -15 reading relation 36810393 read 40M relations read 50M relations error -15 reading relation 54020988 error -15 reading relation 55543474 read 60M relations read 70M relations read 80M relations read 90M relations error -1 reading relation 94333428 read 100M relations error -15 reading relation 105677717 error -9 reading relation 107661378 read 110M relations error -9 reading relation 111012174 error -15 reading relation 111324789 skipped 4 relations with composite factors found 17301653 hash collisions in 111351007 relations added 121181 free relations commencing duplicate removal, pass 2 found 15062647 duplicates and 96409541 unique relations memory use: 660.8 MB reading ideals above 41091072 commencing singleton removal, initial pass memory use: 1506.0 MB reading all ideals from disk memory use: 1576.3 MB commencing in-memory singleton removal begin with 96409541 relations and 70783128 unique ideals reduce to 63788857 relations and 35380317 ideals in 10 passes max relations containing the same ideal: 33 reading ideals above 720000 commencing singleton removal, initial pass memory use: 753.0 MB reading all ideals from disk memory use: 2188.0 MB keeping 40025820 ideals with weight <= 200, target excess is 342654 commencing in-memory singleton removal begin with 63788857 relations and 40025820 unique ideals reduce to 63788797 relations and 40025760 ideals in 4 passes max relations containing the same ideal: 200 removing 6098665 relations and 4098665 ideals in 2000000 cliques commencing in-memory singleton removal begin with 57690132 relations and 40025760 unique ideals reduce to 57265804 relations and 35486296 ideals in 6 passes max relations containing the same ideal: 195 removing 5202928 relations and 3202928 ideals in 2000000 cliques commencing in-memory singleton removal begin with 52062876 relations and 35486296 unique ideals reduce to 51796858 relations and 32008075 ideals in 6 passes max relations containing the same ideal: 185 removing 4953700 relations and 2953700 ideals in 2000000 cliques commencing in-memory singleton removal begin with 46843158 relations and 32008075 unique ideals reduce to 46625707 relations and 28829411 ideals in 5 passes max relations containing the same ideal: 174 removing 4800526 relations and 2800526 ideals in 2000000 cliques commencing in-memory singleton removal begin with 41825181 relations and 28829411 unique ideals reduce to 41630156 relations and 25826750 ideals in 5 passes max relations containing the same ideal: 161 removing 4690112 relations and 2690112 ideals in 2000000 cliques commencing in-memory singleton removal begin with 36940044 relations and 25826750 unique ideals reduce to 36757378 relations and 22947121 ideals in 6 passes max relations containing the same ideal: 150 removing 4599352 relations and 2599352 ideals in 2000000 cliques commencing in-memory singleton removal begin with 32158026 relations and 22947121 unique ideals reduce to 31981057 relations and 20163950 ideals in 5 passes max relations containing the same ideal: 139 removing 4517433 relations and 2517433 ideals in 2000000 cliques commencing in-memory singleton removal begin with 27463624 relations and 20163950 unique ideals reduce to 27287512 relations and 17463097 ideals in 5 passes max relations containing the same ideal: 122 removing 4443162 relations and 2443162 ideals in 2000000 cliques commencing in-memory singleton removal begin with 22844350 relations and 17463097 unique ideals reduce to 22659798 relations and 14827351 ideals in 6 passes max relations containing the same ideal: 107 removing 4372509 relations and 2372509 ideals in 2000000 cliques commencing in-memory singleton removal begin with 18287289 relations and 14827351 unique ideals reduce to 18089652 relations and 12247885 ideals in 6 passes max relations containing the same ideal: 95 removing 4299550 relations and 2299550 ideals in 2000000 cliques commencing in-memory singleton removal begin with 13790102 relations and 12247885 unique ideals reduce to 13580853 relations and 9728520 ideals in 6 passes max relations containing the same ideal: 76 removing 2938339 relations and 1569205 ideals in 1369134 cliques commencing in-memory singleton removal begin with 10642514 relations and 9728520 unique ideals reduce to 10441307 relations and 7947594 ideals in 6 passes max relations containing the same ideal: 61 removing 2080283 relations and 1132698 ideals in 947585 cliques commencing in-memory singleton removal begin with 8361024 relations and 7947594 unique ideals reduce to 8149166 relations and 6590472 ideals in 6 passes max relations containing the same ideal: 55 removing 1870055 relations and 1033712 ideals in 836343 cliques commencing in-memory singleton removal begin with 6279111 relations and 6590472 unique ideals reduce to 6040307 relations and 5301342 ideals in 8 passes max relations containing the same ideal: 46 removing 881623 relations and 540137 ideals in 341486 cliques commencing in-memory singleton removal begin with 5158684 relations and 5301342 unique ideals reduce to 5021562 relations and 4616556 ideals in 7 passes max relations containing the same ideal: 43 relations with 0 large ideals: 1069 relations with 1 large ideals: 15227 relations with 2 large ideals: 133095 relations with 3 large ideals: 516061 relations with 4 large ideals: 1096328 relations with 5 large ideals: 1396344 relations with 6 large ideals: 1113849 relations with 7+ large ideals: 749589 commencing 2-way merge reduce to 4020759 relation sets and 3615753 unique ideals commencing full merge memory use: 414.5 MB found 1729624 cycles, need 1685953 weight of 1685953 cycles is about 186201397 (110.44/cycle) distribution of cycle lengths: 1 relations: 48618 2 relations: 109869 3 relations: 139839 4 relations: 145609 5 relations: 148600 6 relations: 141214 7 relations: 133544 8 relations: 122292 9 relations: 110527 10+ relations: 585841 heaviest cycle: 25 relations commencing cycle optimization start with 13832000 relations pruned 955335 relations memory use: 345.5 MB distribution of cycle lengths: 1 relations: 48618 2 relations: 114775 3 relations: 150411 4 relations: 157369 5 relations: 162037 6 relations: 152948 7 relations: 144394 8 relations: 129859 9 relations: 116247 10+ relations: 509295 heaviest cycle: 25 relations RelProcTime: 2875 commencing linear algebra read 1685953 cycles cycles contain 4821177 unique relations read 4821177 relations using 20 quadratic characters above 4294917295 building initial matrix memory use: 691.8 MB read 1685953 cycles matrix is 1685768 x 1685953 (717.7 MB) with weight 224260179 (133.02/col) sparse part has weight 167920076 (99.60/col) filtering completed in 2 passes matrix is 1685404 x 1685589 (717.7 MB) with weight 224234600 (133.03/col) sparse part has weight 167907167 (99.61/col) matrix starts at (0, 0) matrix is 1685404 x 1685589 (717.7 MB) with weight 224234600 (133.03/col) sparse part has weight 167907167 (99.61/col) saving the first 48 matrix rows for later matrix includes 64 packed rows matrix is 1685356 x 1685589 (698.6 MB) with weight 187955482 (111.51/col) sparse part has weight 166271317 (98.64/col) using block size 8192 and superblock size 589824 for processor cache size 6144 kB commencing Lanczos iteration (4 threads) memory use: 563.8 MB linear algebra at 0.1%, ETA 1h32m1685589 dimensions (0.1%, ETA 1h32m) checkpointing every 1040000 dimensions89 dimensions (0.1%, ETA 1h37m) linear algebra completed 1685348 of 1685589 dimensions (100.0%, ETA 0h 0m) lanczos halted after 26650 iterations (dim = 1685355) recovered 32 nontrivial dependencies BLanczosTime: 5914 commencing square root phase handling dependencies 1 to 64 reading relations for dependency 1 read 842699 cycles cycles contain 2411066 unique relations read 2411066 relations multiplying 2411066 relations multiply complete, coefficients have about 127.97 million bits initial square root is modulo 1533383653 GCD is 1, no factor found reading relations for dependency 2 read 842970 cycles cycles contain 2409736 unique relations read 2409736 relations multiplying 2409736 relations multiply complete, coefficients have about 127.91 million bits initial square root is modulo 1515967471 sqrtTime: 738 p59 factor: 48140301026202126109058277083398478724390981663136730025461 p86 factor: 87222641876747196788374508733653748607018288342676960232211701242879123883785881981513 elapsed time 02:38:48 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 14, 2023 21:44:34 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 34 秒 (日本時間) |
2350 | Ignacio Santos | March 17, 2023 16:14:19 UTC 2023 年 3 月 18 日 (土) 1 時 14 分 19 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 18, 2023 09:44:41 UTC 2023 年 3 月 18 日 (土) 18 時 44 分 41 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | March 29, 2023 14:18:15 UTC 2023 年 3 月 29 日 (水) 23 時 18 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:31:12 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 12 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 06:13:19 UTC 2024 年 9 月 21 日 (土) 15 時 13 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:31:19 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 19 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 06:26:31 UTC 2024 年 9 月 21 日 (土) 15 時 26 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:31:27 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 06:34:42 UTC 2024 年 9 月 21 日 (土) 15 時 34 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 23:39:55 UTC 2023 年 3 月 30 日 (木) 8 時 39 分 55 秒 (日本時間) |
composite number 合成数 | 64383009091191163238077507834558937602780104874491917217412889013000713642992336094821434112135033665332464550560054609202891805516770610319898228303701635173291135312916938161283316267957429644109342517608365136988426572341679853548046790157932297<248> |
prime factors 素因数 | 29105615031733979929193960936616379<35> 2212047710415811024550510466501523668230236769300125675495160112757781683621335595401153561597003980164765967124673404686832729114650251839639508220245779717012330501542352434696033750121973509844967667623986732043<214> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:28:46 2023 Input number is 64383009091191163238077507834558937602780104874491917217412889013000713642992336094821434112135033665332464550560054609202891805516770610319898228303701635173291135312916938161283316267957429644109342517608365136988426572341679853548046790157932297 (248 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2738215171 Step 1 took 0ms Step 2 took 9208ms ********** Factor found in step 2: 29105615031733979929193960936616379 Found prime factor of 35 digits: 29105615031733979929193960936616379 Prime cofactor 2212047710415811024550510466501523668230236769300125675495160112757781683621335595401153561597003980164765967124673404686832729114650251839639508220245779717012330501542352434696033750121973509844967667623986732043 has 214 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 28, 2023 21:00:53 UTC 2023 年 3 月 29 日 (水) 6 時 0 分 53 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 3, 2024 11:46:15 UTC 2024 年 10 月 3 日 (木) 20 時 46 分 15 秒 (日本時間) |
composite number 合成数 | 565664625032277455210981064574774555019882732334883454903300003435959375663495215145617561084665785316149150944558010289681450652674006859443839615751239612884326626368080100895350759745775744670265030592691199319444587<219> |
prime factors 素因数 | 30045438908138627646286783035035018431<38> |
composite cofactor 合成数の残り | 18826971599973922952131585812897673381706906669949196197382076571622986698924698678117922528346665401441661183090376636599569108824815245913151578384377529497575001657142235569563477<182> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 565664625032277455210981064574774555019882732334883454903300003435959375663495215145617561084665785316149150944558010289681450652674006859443839615751239612884326626368080100895350759745775744670265030592691199319444587 (219 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1982807236 Step 1 took 10713ms Step 2 took 4431ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4178866938 Step 1 took 10129ms Step 2 took 4415ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3883604495 Step 1 took 10129ms Step 2 took 4402ms Run 13 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:461656897 Step 1 took 10159ms Step 2 took 4399ms ** Factor found in step 2: 30045438908138627646286783035035018431 Found prime factor of 38 digits: 30045438908138627646286783035035018431 Composite cofactor 18826971599973922952131585812897673381706906669949196197382076571622986698924698678117922528346665401441661183090376636599569108824815245913151578384377529497575001657142235569563477 has 182 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 24, 2023 23:31:34 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 28, 2023 21:01:01 UTC 2023 年 3 月 29 日 (水) 6 時 1 分 1 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 11:27:40 UTC 2024 年 10 月 3 日 (木) 20 時 27 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1000 | Dmitry Domanov | March 24, 2023 23:31:43 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 43 秒 (日本時間) |
1203 | Thomas Kozlowski | October 3, 2024 11:34:35 UTC 2024 年 10 月 3 日 (木) 20 時 34 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | March 24, 2023 23:31:54 UTC 2023 年 3 月 25 日 (土) 8 時 31 分 54 秒 (日本時間) |
1200 | Thomas Kozlowski | October 3, 2024 11:42:21 UTC 2024 年 10 月 3 日 (木) 20 時 42 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 04:39:25 UTC 2023 年 3 月 29 日 (水) 13 時 39 分 25 秒 (日本時間) |
composite number 合成数 | 1972682198114420090596500284367253814974990515530866000364124723265638719434576173299443463196512444981395832892320905699196062673042508942495529737651217243336380117251010781823676579071757176477424710505276228393158792612345415048690437299<241> |
prime factors 素因数 | 2235730196115826438670319982571470148613821<43> |
composite cofactor 合成数の残り | 882343585796531137145355330228960503431401885768850632296042722469375194997448253111036953716984464333401150285357023582156466120099275442015904408069507470597791497619220909793894167476764355100719<198> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:37:43 2023 Input number is 1972682198114420090596500284367253814974990515530866000364124723265638719434576173299443463196512444981395832892320905699196062673042508942495529737651217243336380117251010781823676579071757176477424710505276228393158792612345415048690437299 (241 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:365919995 Step 1 took 0ms Step 2 took 8836ms ********** Factor found in step 2: 2235730196115826438670319982571470148613821 Found prime factor of 43 digits: 2235730196115826438670319982571470148613821 Composite cofactor 882343585796531137145355330228960503431401885768850632296042722469375194997448253111036953716984464333401150285357023582156466120099275442015904408069507470597791497619220909793894167476764355100719 has 198 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 28, 2023 21:01:09 UTC 2023 年 3 月 29 日 (水) 6 時 1 分 9 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 11:44:54 UTC 2024 年 10 月 3 日 (木) 20 時 44 分 54 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 11:04:08 UTC 2023 年 3 月 29 日 (水) 20 時 4 分 8 秒 (日本時間) |
composite number 合成数 | 40803107618503584484705572234442745726397507664827298230991466843453364455558084266152293247803934047089020433728148188640632150145879852778910809068985815504534890859286474684205939908087032970108075109838070336260020697806888390843035008519<242> |
prime factors 素因数 | 8162493932095808103312673814386593593<37> |
composite cofactor 合成数の残り | 4998853041478089990212903679054175094231055926913114477199406591157748418912971388464381046677921270248361877306637954117105257945815548695791166621459624059258111444371503081430036337250907954776966117183<205> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:42:11 2023 Input number is 40803107618503584484705572234442745726397507664827298230991466843453364455558084266152293247803934047089020433728148188640632150145879852778910809068985815504534890859286474684205939908087032970108075109838070336260020697806888390843035008519 (242 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1662858628 Step 1 took 0ms Step 2 took 9120ms ********** Factor found in step 2: 8162493932095808103312673814386593593 Found prime factor of 37 digits: 8162493932095808103312673814386593593 Composite cofactor 4998853041478089990212903679054175094231055926913114477199406591157748418912971388464381046677921270248361877306637954117105257945815548695791166621459624059258111444371503081430036337250907954776966117183 has 205 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 28, 2023 21:01:17 UTC 2023 年 3 月 29 日 (水) 6 時 1 分 17 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 11:47:28 UTC 2024 年 10 月 3 日 (木) 20 時 47 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | 1000 | Dmitry Domanov | March 14, 2023 21:44:26 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 26 秒 (日本時間) |
1204 | Thomas Kozlowski | October 3, 2024 11:53:31 UTC 2024 年 10 月 3 日 (木) 20 時 53 分 31 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 11:04:32 UTC 2023 年 3 月 29 日 (水) 20 時 4 分 32 秒 (日本時間) |
composite number 合成数 | 110216839318966380288616935212638524232718119262992467206117679998187928928895269847211657221726801102807511722551862523263919229705548250133753473865499114355630892413494196318103481456539456641662401275596995766291373006620203163722253<237> |
prime factors 素因数 | 223196248066441882153730756595711488527<39> |
composite cofactor 合成数の残り | 493811344383157485420345557024573994715756316276312761529571361694375417335263913190460920313838060445663251202743204643164904981620726112648490585414884043692303896899216647431207912125716588271139<198> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:46:39 2023 Input number is 110216839318966380288616935212638524232718119262992467206117679998187928928895269847211657221726801102807511722551862523263919229705548250133753473865499114355630892413494196318103481456539456641662401275596995766291373006620203163722253 (237 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2399087288 Step 1 took 0ms Step 2 took 9116ms ********** Factor found in step 2: 223196248066441882153730756595711488527 Found prime factor of 39 digits: 223196248066441882153730756595711488527 Composite cofactor 493811344383157485420345557024573994715756316276312761529571361694375417335263913190460920313838060445663251202743204643164904981620726112648490585414884043692303896899216647431207912125716588271139 has 198 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 23:40:44 UTC 2023 年 3 月 30 日 (木) 8 時 40 分 44 秒 (日本時間) |
composite number 合成数 | 493811344383157485420345557024573994715756316276312761529571361694375417335263913190460920313838060445663251202743204643164904981620726112648490585414884043692303896899216647431207912125716588271139<198> |
prime factors 素因数 | 19280662625597227189405594107991624501<38> |
composite cofactor 合成数の残り | 25611741358285473195097396743043997642788562318829047606821490478391249799922191992291285202685780723713887346338102282574129719782889993596532154765659422715639<161> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:46:39 2023 Input number is 493811344383157485420345557024573994715756316276312761529571361694375417335263913190460920313838060445663251202743204643164904981620726112648490585414884043692303896899216647431207912125716588271139 (198 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2399088154 Step 1 took 0ms Step 2 took 7456ms ********** Factor found in step 2: 19280662625597227189405594107991624501 Found prime factor of 38 digits: 19280662625597227189405594107991624501 Composite cofactor 25611741358285473195097396743043997642788562318829047606821490478391249799922191992291285202685780723713887346338102282574129719782889993596532154765659422715639 has 161 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 28, 2023 21:01:25 UTC 2023 年 3 月 29 日 (水) 6 時 1 分 25 秒 (日本時間) |
2350 | Ignacio Santos | April 2, 2023 08:55:32 UTC 2023 年 4 月 2 日 (日) 17 時 55 分 32 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | April 2, 2023 13:55:08 UTC 2023 年 4 月 2 日 (日) 22 時 55 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 11:45:41 UTC 2023 年 3 月 1 日 (水) 20 時 45 分 41 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 12, 2023 09:26:16 UTC 2023 年 3 月 12 日 (日) 18 時 26 分 16 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | May 8, 2024 16:13:46 UTC 2024 年 5 月 9 日 (木) 1 時 13 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 20, 2023 09:02:01 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 1 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 11:57:11 UTC 2024 年 10 月 3 日 (木) 20 時 57 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 29, 2023 23:41:00 UTC 2023 年 3 月 30 日 (木) 8 時 41 分 0 秒 (日本時間) |
composite number 合成数 | 50604673027912899097910624291852319422215606608442707510862893356987513796366203176469274163161998359303772752995608441133221527843276861040404887555503019158680816231109996974997302767934351350801145898427733858842798970531046314091<233> |
prime factors 素因数 | 56455891333295773023575632856401082417<38> |
composite cofactor 合成数の残り | 896357702142379895425442154347618857983180863598568138846265966009648827555117549555694060715981660658535702904601950576712031058704874216041749800986786591697367377465958379105701531022198130523<195> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @26675c0fe11f with GMP-ECM 7.0.5-dev on Tue Mar 28 21:51:07 2023 Input number is 50604673027912899097910624291852319422215606608442707510862893356987513796366203176469274163161998359303772752995608441133221527843276861040404887555503019158680816231109996974997302767934351350801145898427733858842798970531046314091 (233 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1993123378 Step 1 took 0ms Step 2 took 8512ms ********** Factor found in step 2: 56455891333295773023575632856401082417 Found prime factor of 38 digits: 56455891333295773023575632856401082417 Composite cofactor 896357702142379895425442154347618857983180863598568138846265966009648827555117549555694060715981660658535702904601950576712031058704874216041749800986786591697367377465958379105701531022198130523 has 195 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 28, 2023 21:01:32 UTC 2023 年 3 月 29 日 (水) 6 時 1 分 32 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 11:59:44 UTC 2024 年 10 月 3 日 (木) 20 時 59 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 20, 2023 16:03:23 UTC 2023 年 3 月 21 日 (火) 1 時 3 分 23 秒 (日本時間) |
composite number 合成数 | 21997476915900730422245544848349924201465084968567460696074377974959980493803602285617360514793965800549141833370437511263768300310614975246212723552672030870676038121892525098326071515652662489796351069130384081247548473958167689681858177230756183146222264626997<263> |
prime factors 素因数 | 2019519491490204616991551664849765188349<40> |
composite cofactor 合成数の残り | 10892431099869592893583568400696068552030420857169985973091121000192569561265361607190467221226444004563895225123803274289253699838248656040248343111209638827418921011789501174865854401236700445763785093510199475383285030553<224> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @d3d9b6b29b12 with GMP-ECM 7.0.5-dev on Mon Mar 20 09:17:50 2023 Input number is 21997476915900730422245544848349924201465084968567460696074377974959980493803602285617360514793965800549141833370437511263768300310614975246212723552672030870676038121892525098326071515652662489796351069130384081247548473958167689681858177230756183146222264626997 (263 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1292073694 Step 1 took 0ms Step 2 took 6948ms ********** Factor found in step 2: 2019519491490204616991551664849765188349 Found prime factor of 40 digits: 2019519491490204616991551664849765188349 Composite cofactor 10892431099869592893583568400696068552030420857169985973091121000192569561265361607190467221226444004563895225123803274289253699838248656040248343111209638827418921011789501174865854401236700445763785093510199475383285030553 has 224 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 20, 2023 09:02:11 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 11 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 12:02:37 UTC 2024 年 10 月 3 日 (木) 21 時 2 分 37 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 3, 2024 18:37:26 UTC 2024 年 10 月 4 日 (金) 3 時 37 分 26 秒 (日本時間) |
composite number 合成数 | 20726626563360885515065113191838747845580743895884684353068631409137311499827019751764259291289985245807960473839211608538888158150314540566916175475984230560724955806430875480902005881520329<191> |
prime factors 素因数 | 60033431970932048732307106331965450141163<41> 345251402142003749637893767433928435009959845714130109176969913450465309977042222737417755232125715515831240350349787492760300114568331174889041062683<150> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 20726626563360885515065113191838747845580743895884684353068631409137311499827019751764259291289985245807960473839211608538888158150314540566916175475984230560724955806430875480902005881520329 (191 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4114918455 Step 1 took 9260ms Step 2 took 3713ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3584269335 Step 1 took 7590ms Step 2 took 3726ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2979062012 Step 1 took 9284ms Step 2 took 4532ms Run 26 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4178760724 Step 1 took 9164ms Step 2 took 4026ms ** Factor found in step 2: 60033431970932048732307106331965450141163 Found prime factor of 41 digits: 60033431970932048732307106331965450141163 Prime cofactor 345251402142003749637893767433928435009959845714130109176969913450465309977042222737417755232125715515831240350349787492760300114568331174889041062683 has 150 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 128GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 14, 2023 21:44:18 UTC 2023 年 3 月 15 日 (水) 6 時 44 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2206 | 1792 | Dmitry Domanov | March 28, 2023 21:02:03 UTC 2023 年 3 月 29 日 (水) 6 時 2 分 3 秒 (日本時間) |
414 | Thomas Kozlowski | October 3, 2024 12:11:11 UTC 2024 年 10 月 3 日 (木) 21 時 11 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 20, 2023 11:07:10 UTC 2023 年 3 月 20 日 (月) 20 時 7 分 10 秒 (日本時間) |
composite number 合成数 | 45370982441322654092970224572303546373754402813802064517016631858595576026592984541030497983004003738840085782949300109302085858870806245572215758442475527476974177213577913059397510218469064584968150958787581869833257747463139460457766449419688626097534724703277<263> |
prime factors 素因数 | 13868085551337454572183267906898139<35> |
composite cofactor 合成数の残り | 3271611086718961211385985436540443879321710434095178049288362444266556918936625013087037188871879856493736238356951458998615026361703897267987310340480717399259037110645316247736752778068223712432949205189539317750328784008974743<229> |
factorization results 素因数分解の結果 | GPU: factor 13868085551337454572183267906898139 found in Step 1 with curve 995 (-sigma 3:-97046099) Computing 1792 Step 1 took 309ms of CPU time / 267889ms of GPU time Throughput: 6.689 curves per second (on average 149.49ms per Step 1) ********** Factor found in step 1: 13868085551337454572183267906898139 Found prime factor of 35 digits: 13868085551337454572183267906898139 Composite cofactor 3271611086718961211385985436540443879321710434095178049288362444266556918936625013087037188871879856493736238356951458998615026361703897267987310340480717399259037110645316247736752778068223712432949205189539317750328784008974743 has 229 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 20, 2023 09:02:19 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 19 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 12:14:06 UTC 2024 年 10 月 3 日 (木) 21 時 14 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | March 20, 2023 09:02:26 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 26 秒 (日本時間) |
406 | Thomas Kozlowski | October 3, 2024 12:17:48 UTC 2024 年 10 月 3 日 (木) 21 時 17 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 28, 2023 21:02:11 UTC 2023 年 3 月 29 日 (水) 6 時 2 分 11 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 12:21:06 UTC 2024 年 10 月 3 日 (木) 21 時 21 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2210 | 1792 | Dmitry Domanov | March 28, 2023 21:02:19 UTC 2023 年 3 月 29 日 (水) 6 時 2 分 19 秒 (日本時間) |
418 | Thomas Kozlowski | October 3, 2024 12:24:25 UTC 2024 年 10 月 3 日 (木) 21 時 24 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1000 | Dmitry Domanov | March 24, 2023 23:32:01 UTC 2023 年 3 月 25 日 (土) 8 時 32 分 1 秒 (日本時間) |
1207 | Thomas Kozlowski | October 3, 2024 12:32:13 UTC 2024 年 10 月 3 日 (木) 21 時 32 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 20, 2023 09:02:33 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 33 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 12:36:18 UTC 2024 年 10 月 3 日 (木) 21 時 36 分 18 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 27, 2023 04:45:03 UTC 2023 年 3 月 27 日 (月) 13 時 45 分 3 秒 (日本時間) |
composite number 合成数 | 10004883415749112887273146143153183780570443743303614478588066724340875570907758817596684447331747885209922190406178037532455306152963881228840785820817320757874399225820515028288460056990882295125129608527<206> |
prime factors 素因数 | 216223396251053627943676321227049801061<39> |
composite cofactor 合成数の残り | 46271049244516528200661358341390340054938468222909036824935111706289290397500830389011552299814816858330998268039986808587413899277532694013773646956571877304354195107<167> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3872594578 Step 1 took 11168ms ********** Factor found in step 1: 216223396251053627943676321227049801061 Found prime factor of 39 digits: 216223396251053627943676321227049801061 Composite cofactor 46271049244516528200661358341390340054938468222909036824935111706289290397500830389011552299814816858330998268039986808587413899277532694013773646956571877304354195107 has 167 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 24, 2023 23:32:09 UTC 2023 年 3 月 25 日 (土) 8 時 32 分 9 秒 (日本時間) |
2350 | Ignacio Santos | March 31, 2023 09:14:48 UTC 2023 年 3 月 31 日 (金) 18 時 14 分 48 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 31, 2023 12:21:40 UTC 2023 年 3 月 31 日 (金) 21 時 21 分 40 秒 (日本時間) | |
50 | 43e6 | 1792 / 6415 | Dmitry Domanov | June 30, 2024 18:23:55 UTC 2024 年 7 月 1 日 (月) 3 時 23 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2208 | 1792 | Dmitry Domanov | March 20, 2023 09:02:41 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 41 秒 (日本時間) |
416 | Thomas Kozlowski | October 3, 2024 12:40:26 UTC 2024 年 10 月 3 日 (木) 21 時 40 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1792 | Dmitry Domanov | March 20, 2023 09:02:48 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 48 秒 (日本時間) |
415 | Thomas Kozlowski | October 3, 2024 12:44:37 UTC 2024 年 10 月 3 日 (木) 21 時 44 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 20, 2023 09:02:55 UTC 2023 年 3 月 20 日 (月) 18 時 2 分 55 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 12:48:42 UTC 2024 年 10 月 3 日 (木) 21 時 48 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 20, 2023 09:03:03 UTC 2023 年 3 月 20 日 (月) 18 時 3 分 3 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 12:52:46 UTC 2024 年 10 月 3 日 (木) 21 時 52 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 20, 2023 09:03:10 UTC 2023 年 3 月 20 日 (月) 18 時 3 分 10 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 12:56:51 UTC 2024 年 10 月 3 日 (木) 21 時 56 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1792 | Dmitry Domanov | March 26, 2023 22:21:33 UTC 2023 年 3 月 27 日 (月) 7 時 21 分 33 秒 (日本時間) |
415 | Thomas Kozlowski | October 3, 2024 12:59:46 UTC 2024 年 10 月 3 日 (木) 21 時 59 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | Thomas Kozlowski | October 3, 2024 13:17:31 UTC 2024 年 10 月 3 日 (木) 22 時 17 分 31 秒 (日本時間) |
composite cofactor 合成数の残り | 38250466743171467121355486887022320641626646266478866062760188078963957533235656170069179562091875634205972749841176201464646926494229866364699943879563095929<158> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 09:20:38 UTC 2023 年 3 月 1 日 (水) 18 時 20 分 38 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 7, 2023 14:12:30 UTC 2023 年 3 月 7 日 (火) 23 時 12 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2207 | 1792 | Dmitry Domanov | March 20, 2023 09:03:18 UTC 2023 年 3 月 20 日 (月) 18 時 3 分 18 秒 (日本時間) |
415 | Thomas Kozlowski | October 3, 2024 13:21:37 UTC 2024 年 10 月 3 日 (木) 22 時 21 分 37 秒 (日本時間) |