name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2014 07:01:37 UTC 2014 年 11 月 18 日 (火) 16 時 1 分 37 秒 (日本時間) |
composite number 合成数 | 773602985199871306424433791688961326249706411980714271215157895098626304071687183412697219999747479<99> |
prime factors 素因数 | 382165915913608752482890746066852308590819<42> 2024259498261350993366947864664194096860564774185632318141<58> |
factorization results 素因数分解の結果 | N=773602985199871306424433791688961326249706411980714271215157895098626304071687183412697219999747479 ( 99 digits) SNFS difficulty: 109 digits. Divisors found: r1=382165915913608752482890746066852308590819 (pp42) r2=2024259498261350993366947864664194096860564774185632318141 (pp58) Version: Msieve v. 1.50 (SVN unknown) Total time: 0.89 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 773602985199871306424433791688961326249706411980714271215157895098626304071687183412697219999747479 m: 2000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 3.801e-08 type: snfs lss: 1 rlim: 480000 alim: 480000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 qintsize: 160000 Factor base limits: 480000/480000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [240000, 720001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 58642 x 58890 Total sieving time: 0.85 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000 total time: 0.89 hours. --------- CPU info (if available) ---------- [ 0.074811] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49295964k/51380224k available (5351k kernel code, 1057796k absent, 1026464k reserved, 7000k data, 1344k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.38 BogoMIPS (lpj=2400194) [ 0.709831] Total of 16 processors activated (76642.81 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 300 / 2318 | Serge Batalov | November 17, 2014 20:49:54 UTC 2014 年 11 月 18 日 (火) 5 時 49 分 54 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:36:06 UTC 2014 年 11 月 18 日 (火) 15 時 36 分 6 秒 (日本時間) |
composite number 合成数 | 2256593348368330537079091928175124601634857679869172618125253806203813496721640437202388391143608959<100> |
prime factors 素因数 | 19846390939014685138943216851051<32> 113702957646180668805972020876685041996488639531298546957584081224509<69> |
factorization results 素因数分解の結果 | Input number is 2256593348368330537079091928175124601634857679869172618125253806203813496721640437202388391143608959 (100 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1398415028 Step 1 took 2076ms Step 2 took 1704ms ********** Factor found in step 2: 19846390939014685138943216851051 Found probable prime factor of 32 digits: 19846390939014685138943216851051 Probable prime cofactor 113702957646180668805972020876685041996488639531298546957584081224509 has 69 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:30 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 30 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2014 11:15:39 UTC 2014 年 11 月 18 日 (火) 20 時 15 分 39 秒 (日本時間) |
composite number 合成数 | 22537264868052114614579988274205461420850358335781098252687028892940859389926728751620460179723947813<101> |
prime factors 素因数 | 9317478431822468399530802058668644718193051958841<49> 2418815888114044079864761305125719614294499016431693<52> |
factorization results 素因数分解の結果 | N=22537264868052114614579988274205461420850358335781098252687028892940859389926728751620460179723947813 ( 101 digits) SNFS difficulty: 131 digits. Divisors found: r1=9317478431822468399530802058668644718193051958841 (pp49) r2=2418815888114044079864761305125719614294499016431693 (pp52) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.71 hours. Scaled time: 3.39 units (timescale=1.978). Factorization parameters were as follows: n: 22537264868052114614579988274205461420850358335781098252687028892940859389926728751620460179723947813 m: 100000000000000000000000000 deg: 5 c5: 46 c0: -5 skew: 0.64 # Murphy_E = 7.184e-09 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148657 x 148882 Total sieving time: 1.61 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 1.71 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:30 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 30 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 18, 2014 12:10:08 UTC 2014 年 11 月 18 日 (火) 21 時 10 分 8 秒 (日本時間) |
composite number 合成数 | 6562171511489655574611376849973138344681985543000491872679541339195580278286912751318068150092789429<100> |
prime factors 素因数 | 833971472005728761421201350972862639791835371<45> 7868580319309265719389612071586209584238910699294168799<55> |
factorization results 素因数分解の結果 | N=6562171511489655574611376849973138344681985543000491872679541339195580278286912751318068150092789429 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=833971472005728761421201350972862639791835371 (pp45) r2=7868580319309265719389612071586209584238910699294168799 (pp55) Version: Msieve v. 1.50 (SVN unknown) Total time: 1.70 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 6562171511489655574611376849973138344681985543000491872679541339195580278286912751318068150092789429 m: 100000000000000000000000000 deg: 5 c5: 92 c0: -1 skew: 0.40 # Murphy_E = 8.501e-09 type: snfs lss: 1 rlim: 1110000 alim: 1110000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1110000/1110000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [555000, 855001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 150590 x 150815 Total sieving time: 1.57 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131.000,5,0,0,0,0,0,0,0,0,1110000,1110000,26,26,47,47,2.3,2.3,50000 total time: 1.70 hours. --------- CPU info (if available) ---------- [ 0.074811] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49295964k/51380224k available (5351k kernel code, 1057796k absent, 1026464k reserved, 7000k data, 1344k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.38 BogoMIPS (lpj=2400194) [ 0.709831] Total of 16 processors activated (76642.81 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:30 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 30 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:37:45 UTC 2014 年 11 月 18 日 (火) 15 時 37 分 45 秒 (日本時間) |
composite number 合成数 | 86921097812232978502667655027712568605196393690358633404217027854404619704985076288218057873306248176502070632875687775007<122> |
prime factors 素因数 | 70389578895662705539964966186579711<35> 1234857477142670035169245715821649961616008599834163151817829364444895726999514988448737<88> |
factorization results 素因数分解の結果 | Input number is 86921097812232978502667655027712568605196393690358633404217027854404619704985076288218057873306248176502070632875687775007 (122 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3254468497 Step 1 took 2527ms Step 2 took 1968ms ********** Factor found in step 2: 70389578895662705539964966186579711 Found probable prime factor of 35 digits: 70389578895662705539964966186579711 Probable prime cofactor 1234857477142670035169245715821649961616008599834163151817829364444895726999514988448737 has 88 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:31 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 31 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:35:02 UTC 2014 年 11 月 18 日 (火) 15 時 35 分 2 秒 (日本時間) |
composite number 合成数 | 78577799194212402085132015943979331039441593920082364284905931646024200982277609517386502915205263866537038174849<113> |
prime factors 素因数 | 18161244868483384112125946893152689<35> 4326674727599458093682566758400031169283291690056969042031146432965345876351441<79> |
factorization results 素因数分解の結果 | Input number is 78577799194212402085132015943979331039441593920082364284905931646024200982277609517386502915205263866537038174849 (113 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3411055044 Step 1 took 2042ms Step 2 took 1069ms ********** Factor found in step 2: 18161244868483384112125946893152689 Found probable prime factor of 35 digits: 18161244868483384112125946893152689 Probable prime cofactor 4326674727599458093682566758400031169283291690056969042031146432965345876351441 has 79 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:31 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 31 秒 (日本時間) |
name 名前 | KTakahashi |
---|---|
date 日付 | November 18, 2014 09:29:37 UTC 2014 年 11 月 18 日 (火) 18 時 29 分 37 秒 (日本時間) |
composite number 合成数 | 382259608240125966768887369609342134826892121581206120683673934554792740740340543506713734634003<96> |
prime factors 素因数 | 515457175460598890670841122783048630448667<42> 741593339734865262391825716221605840855294029533788009<54> |
factorization results 素因数分解の結果 | Number: 91999_136 N=382259608240125966768887369609342134826892121581206120683673934554792740740340543506713734634003 ( 96 digits) Divisors found: r1=515457175460598890670841122783048630448667 (pp42) r2=741593339734865262391825716221605840855294029533788009 (pp54) Version: Msieve v. 1.51 (SVN Official Release) Total time: 6.27 hours. Scaled time: 12.97 units (timescale=2.068). Factorization parameters were as follows: name: 91999_136 n: 382259608240125966768887369609342134826892121581206120683673934554792740740340543506713734634003 m: 9036264522779671870492 deg: 4 c4: 57332736 c3: -320389803020 c2: -385553826775585046 c1: 1314439193406540057 c0: 364090989288037488302007 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.845 # E(F1,F2) = 2.751196e-005 # GGNFS version 0.77.1-VC8(Sat 01/17/2009) polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1416264949. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1500001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194711 x 194942 Polynomial selection time: 0.17 hours. Total sieving time: 5.95 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.27 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 904 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
786 | KTakahashi | November 17, 2014 19:45:28 UTC 2014 年 11 月 18 日 (火) 4 時 45 分 28 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 19, 2014 11:43:42 UTC 2014 年 11 月 19 日 (水) 20 時 43 分 42 秒 (日本時間) |
composite number 合成数 | 621125693041716569461519202239990991430793181317336379626904332165139609874048521534615974009862460449658327076180158169<120> |
prime factors 素因数 | 3449320631834303784571792393420428253991044332761931943<55> 180071892218210522247290113280647548547143674631889382866796768383<66> |
factorization results 素因数分解の結果 | N=621125693041716569461519202239990991430793181317336379626904332165139609874048521534615974009862460449658327076180158169 ( 120 digits) SNFS difficulty: 139 digits. Divisors found: r1=3449320631834303784571792393420428253991044332761931943 (pp55) r2=180071892218210522247290113280647548547143674631889382866796768383 (pp66) Version: Msieve v. 1.50 (SVN unknown) Total time: 2.89 hours. Scaled time: 4.30 units (timescale=1.491). Factorization parameters were as follows: n: 621125693041716569461519202239990991430793181317336379626904332165139609874048521534615974009862460449658327076180158169 m: 2000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.32 # Murphy_E = 4.011e-09 type: snfs lss: 1 rlim: 1470000 alim: 1470000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1470000/1470000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [735000, 1335001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 209711 x 209937 Total sieving time: 2.75 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,139.000,5,0,0,0,0,0,0,0,0,1470000,1470000,26,26,48,48,2.3,2.3,75000 total time: 2.89 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:32 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 32 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:34:41 UTC 2014 年 11 月 18 日 (火) 15 時 34 分 41 秒 (日本時間) |
composite number 合成数 | 462390611238374838423420817653449166971782276730304304962118017715294990899854404277399417441161960796272755898649<114> |
prime factors 素因数 | 5443878871547934942388757829691<31> 84937711170435500041936052395624734710426895067454564649513308333838061322439127739<83> |
factorization results 素因数分解の結果 | Input number is 462390611238374838423420817653449166971782276730304304962118017715294990899854404277399417441161960796272755898649 (114 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2971269228 Step 1 took 2073ms ********** Factor found in step 1: 5443878871547934942388757829691 Found probable prime factor of 31 digits: 5443878871547934942388757829691 Probable prime cofactor 84937711170435500041936052395624734710426895067454564649513308333838061322439127739 has 83 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:32 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 20, 2014 07:50:14 UTC 2014 年 11 月 20 日 (木) 16 時 50 分 14 秒 (日本時間) |
composite number 合成数 | 74787652109787444734668130161159107868758286529001238372354935362665982990686399731984445002546172877296324272839108373216570229<128> |
prime factors 素因数 | 11455196413838559655487597078209151707281308743223<50> 6528709714609476785197980617734318944543120695927232125708456890283924928140723<79> |
factorization results 素因数分解の結果 | N=74787652109787444734668130161159107868758286529001238372354935362665982990686399731984445002546172877296324272839108373216570229 ( 128 digits) SNFS difficulty: 144 digits. Divisors found: r1=11455196413838559655487597078209151707281308743223 (pp50) r2=6528709714609476785197980617734318944543120695927232125708456890283924928140723 (pp79) Version: Msieve v. 1.50 (SVN unknown) Total time: 5.82 hours. Scaled time: 8.09 units (timescale=1.391). Factorization parameters were as follows: n: 74787652109787444734668130161159107868758286529001238372354935362665982990686399731984445002546172877296324272839108373216570229 m: 20000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 2.149e-09 type: snfs lss: 1 rlim: 1820000 alim: 1820000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1820000/1820000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [910000, 2010001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 273141 x 273366 Total sieving time: 5.56 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,144.000,5,0,0,0,0,0,0,0,0,1820000,1820000,26,26,49,49,2.3,2.3,100000 total time: 5.82 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:33 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 33 秒 (日本時間) | |||
40 | 3e6 | 106 / 2073 | Pierre Jammes | November 18, 2014 15:52:17 UTC 2014 年 11 月 19 日 (水) 0 時 52 分 17 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | November 18, 2014 21:41:00 UTC 2014 年 11 月 19 日 (水) 6 時 41 分 0 秒 (日本時間) |
composite number 合成数 | 9199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<148> |
prime factors 素因数 | 156938662599603144690219897682182450563202032026603<51> 58621628651646635764043801322545100239541051172917167126371484303933661280137156145739835541500733<98> |
factorization results 素因数分解の結果 | Number: 91999_146 N = 9199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (148 digits) SNFS difficulty: 148 digits. Divisors found: r1=156938662599603144690219897682182450563202032026603 (pp51) r2=58621628651646635764043801322545100239541051172917167126371484303933661280137156145739835541500733 (pp98) Version: Msieve v. 1.51 (SVN 845) Total time: 7.35 hours. Factorization parameters were as follows: n: 9199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 100000000000000000000000000000 deg: 5 c5: 920 c0: -1 skew: 0.26 # Murphy_E = 1.615e-09 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Sieved rational special-q in [0, 0) Total raw relations: 5281860 Relations: 456720 relations Pruned matrix : 302804 x 303029 Polynomial selection time: 0.00 hours. Total sieving time: 7.23 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 7.35 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:33 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 33 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:33:45 UTC 2014 年 11 月 18 日 (火) 15 時 33 分 45 秒 (日本時間) |
composite number 合成数 | 52245138297130158048935583332243129895641903986608324821765952407802998638445008629781118749297113565265229866417333<116> |
prime factors 素因数 | 5140928398066813147361361634547<31> 10162588204258269761972989074871753096068792900759234689574476801788238628510387610039<86> |
factorization results 素因数分解の結果 | Input number is 52245138297130158048935583332243129895641903986608324821765952407802998638445008629781118749297113565265229866417333 (116 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=851219302 Step 1 took 2693ms ********** Factor found in step 1: 5140928398066813147361361634547 Found probable prime factor of 31 digits: 5140928398066813147361361634547 Probable prime cofactor 10162588204258269761972989074871753096068792900759234689574476801788238628510387610039 has 86 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:33 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 25, 2014 13:54:00 UTC 2014 年 11 月 25 日 (火) 22 時 54 分 0 秒 (日本時間) |
composite number 合成数 | 1514888047103067786290748998119761100317323502371465728912834926892778669554627818771745142225034745550255707102458061157816603621<130> |
prime factors 素因数 | 9739051442286266707325971778386072147998796770151813801<55> 155547802173580471896918693812538255739598665461916579018874229954770073821<75> |
factorization results 素因数分解の結果 | N=1514888047103067786290748998119761100317323502371465728912834926892778669554627818771745142225034745550255707102458061157816603621 ( 130 digits) SNFS difficulty: 151 digits. Divisors found: r1=9739051442286266707325971778386072147998796770151813801 (pp55) r2=155547802173580471896918693812538255739598665461916579018874229954770073821 (pp75) Version: Msieve v. 1.50 (SVN unknown) Total time: 11.62 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1514888047103067786290748998119761100317323502371465728912834926892778669554627818771745142225034745550255707102458061157816603621 m: 1000000000000000000000000000000 deg: 5 c5: 46 c0: -5 skew: 0.64 # Murphy_E = 1.3e-09 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 392112 x 392339 Total sieving time: 11.36 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 11.62 hours. --------- CPU info (if available) ---------- [ 0.074811] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49295964k/51380224k available (5351k kernel code, 1057796k absent, 1026464k reserved, 7000k data, 1344k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.38 BogoMIPS (lpj=2400194) [ 0.709831] Total of 16 processors activated (76642.81 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:34 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 21, 2014 20:00:05 UTC 2014 年 11 月 22 日 (土) 5 時 0 分 5 秒 (日本時間) |
composite number 合成数 | 1375604256598040960111962224710936203362156229767777068377998107048925159652330976365025560820398416858927297819816775493909213109508565379330349867<148> |
prime factors 素因数 | 16278050252082741602425635118716370800120825164107948711<56> 84506696766219612024688813856462884839862168922655237383992674616898291030508553799134635997<92> |
factorization results 素因数分解の結果 | N=1375604256598040960111962224710936203362156229767777068377998107048925159652330976365025560820398416858927297819816775493909213109508565379330349867 ( 148 digits) SNFS difficulty: 152 digits. Divisors found: r1=16278050252082741602425635118716370800120825164107948711 (pp56) r2=84506696766219612024688813856462884839862168922655237383992674616898291030508553799134635997 (pp92) Version: Msieve v. 1.50 (SVN unknown) Total time: 12.81 hours. Scaled time: 27.23 units (timescale=2.126). Factorization parameters were as follows: n: 1375604256598040960111962224710936203362156229767777068377998107048925159652330976365025560820398416858927297819816775493909213109508565379330349867 m: 1000000000000000000000000000000 deg: 5 c5: 920 c0: -1 skew: 0.26 # Murphy_E = 1.043e-09 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416304 x 416529 Total sieving time: 12.40 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.18 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,152.000,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 12.81 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:34 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 20, 2014 09:29:47 UTC 2014 年 11 月 20 日 (木) 18 時 29 分 47 秒 (日本時間) |
composite number 合成数 | 59114464538629278289839648493245167315675378064371581360453427453323696036803285052109977593257866665202031<107> |
prime factors 素因数 | 10091130383175378542636765724567060141513774683737<50> 5858061713005804491936317809904530942561096612819986201863<58> |
factorization results 素因数分解の結果 | N=59114464538629278289839648493245167315675378064371581360453427453323696036803285052109977593257866665202031 ( 107 digits) Divisors found: r1=10091130383175378542636765724567060141513774683737 (pp50) r2=5858061713005804491936317809904530942561096612819986201863 (pp58) Version: Msieve v. 1.50 (SVN unknown) Total time: 7.32 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 59114464538629278289839648493245167315675378064371581360453427453323696036803285052109977593257866665202031 skew: 1924929.75 c0: 32004043159703136538330106976 c1: -86575397290294998811066 c2: 61062525798515833 c3: 38623577084 c4: 12648 Y0: -46496247806502002742578653 Y1: 9613015345951 rlim: 2780000 alim: 2780000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 160000 type: gnfs Factor base limits: 2780000/2780000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1390000, 2190001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 358426 x 358659 Total sieving time: 6.97 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,106,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2780000,2780000,26,26,52,52,2.5,2.5,150000 total time: 7.32 hours. --------- CPU info (if available) ---------- [ 0.074811] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49295964k/51380224k available (5351k kernel code, 1057796k absent, 1026464k reserved, 7000k data, 1344k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.38 BogoMIPS (lpj=2400194) [ 0.709831] Total of 16 processors activated (76642.81 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:35 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 35 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 864 / 4434 | Pierre Jammes | November 20, 2014 06:07:34 UTC 2014 年 11 月 20 日 (木) 15 時 7 分 34 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 25, 2014 00:56:57 UTC 2014 年 11 月 25 日 (火) 9 時 56 分 57 秒 (日本時間) |
composite number 合成数 | 10799356870596957523990821624975370904559541564522170880736589481892962464274041443381456154277544182248917427482668126985651473365858743813<140> |
prime factors 素因数 | 2217908017468376302677525623251036272298265997830875588661068861<64> 4869163547604578907309844910849774807858133321350919615337982180349819907433<76> |
factorization results 素因数分解の結果 | N=10799356870596957523990821624975370904559541564522170880736589481892962464274041443381456154277544182248917427482668126985651473365858743813 ( 140 digits) SNFS difficulty: 154 digits. Divisors found: r1=2217908017468376302677525623251036272298265997830875588661068861 (pp64) r2=4869163547604578907309844910849774807858133321350919615337982180349819907433 (pp76) Version: Msieve v. 1.50 (SVN unknown) Total time: 11.51 hours. Scaled time: 24.44 units (timescale=2.123). Factorization parameters were as follows: n: 10799356870596957523990821624975370904559541564522170880736589481892962464274041443381456154277544182248917427482668126985651473365858743813 m: 2000000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 8.987e-10 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2150001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 551956 x 552191 Total sieving time: 10.93 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.39 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,154.000,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 11.51 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:35 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 35 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 3, 2014 06:30:29 UTC 2014 年 12 月 3 日 (水) 15 時 30 分 29 秒 (日本時間) |
composite number 合成数 | 408892584595609612923652748428706328270141672048379268070080886815750345567097837118547830252158322825859335950724681883907947<126> |
prime factors 素因数 | 39949044889231326511101023743787645704742994353<47> 10235353203796639193716864489086873062547469391441712008296455219844250710939099<80> |
factorization results 素因数分解の結果 | N=408892584595609612923652748428706328270141672048379268070080886815750345567097837118547830252158322825859335950724681883907947 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=39949044889231326511101023743787645704742994353 (pp47) r2=10235353203796639193716864489086873062547469391441712008296455219844250710939099 (pp80) Version: Msieve v. 1.50 (SVN unknown) Total time: 20.07 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 408892584595609612923652748428706328270141672048379268070080886815750345567097837118547830252158322825859335950724681883907947 m: 10000000000000000000000000000000 deg: 5 c5: 920 c0: -1 skew: 0.26 # Murphy_E = 6.709e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2700001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 555367 x 555595 Total sieving time: 19.61 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.31 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 20.07 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:36 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 36 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 1, 2014 12:34:20 UTC 2014 年 12 月 1 日 (月) 21 時 34 分 20 秒 (日本時間) |
composite number 合成数 | 725085573952576826478319070249264099551846623561415721901462886507125450898424873395672321619881742803379251882876225166506156910065686801764890729<147> |
prime factors 素因数 | 51058421988669139844146204594342120796737<41> 14201096424669909777588683427354576845108141090319287385153929060189576438537733825106055148739673245592617<107> |
factorization results 素因数分解の結果 | N=725085573952576826478319070249264099551846623561415721901462886507125450898424873395672321619881742803379251882876225166506156910065686801764890729 ( 147 digits) SNFS difficulty: 159 digits. Divisors found: r1=51058421988669139844146204594342120796737 (pp41) r2=14201096424669909777588683427354576845108141090319287385153929060189576438537733825106055148739673245592617 (pp107) Version: Msieve v. 1.50 (SVN unknown) Total time: 22.21 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 725085573952576826478319070249264099551846623561415721901462886507125450898424873395672321619881742803379251882876225166506156910065686801764890729 m: 20000000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 5.768e-10 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 2900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 525719 x 525948 Total sieving time: 21.79 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.27 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,159.000,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 22.21 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:36 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 36 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 9, 2015 15:49:10 UTC 2015 年 2 月 10 日 (火) 0 時 49 分 10 秒 (日本時間) |
composite number 合成数 | 64719270523203376127397832504752376820866909006217689479631209211744152913737675992500399685950567340212272234989362958530228440211406068865096652429683<152> |
prime factors 素因数 | 7363800513520031149183126763551060701928560973205071145145416017382606180249<76> 8788840817235335817851665618819616439292198284767441689877421958480395897067<76> |
factorization results 素因数分解の結果 | Number: 91999_164 N=64719270523203376127397832504752376820866909006217689479631209211744152913737675992500399685950567340212272234989362958530228440211406068865096652429683 ( 152 digits) SNFS difficulty: 166 digits. Divisors found: r1=7363800513520031149183126763551060701928560973205071145145416017382606180249 r2=8788840817235335817851665618819616439292198284767441689877421958480395897067 Version: Total time: 14.18 hours. Scaled time: 74.53 units (timescale=5.256). Factorization parameters were as follows: n: 64719270523203376127397832504752376820866909006217689479631209211744152913737675992500399685950567340212272234989362958530228440211406068865096652429683 m: 1000000000000000000000000000000000 deg: 5 c5: 46 c0: -5 skew: 0.64 # Murphy_E = 3.414e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9731029 Max relations in full relation-set: Initial matrix: Pruned matrix : 789878 x 790126 Total sieving time: 13.08 hours. Total relation processing time: 0.46 hours. Matrix solve time: 0.60 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 14.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.24 BogoMIPS (lpj=3400121) Total of 12 processors activated (81602.90 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:37 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 37 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | March 9, 2015 12:36:44 UTC 2015 年 3 月 9 日 (月) 21 時 36 分 44 秒 (日本時間) |
composite number 合成数 | 292196922455806301969144713049777509936752498910666876075338107569017824048461886689427178184332935869585812108762634927665837504358452882715095418342813073<156> |
prime factors 素因数 | 42175307470753480100106423591683219015207664149<47> 6928151564951378827124711246656617662580162044017418007793796511618176556477838158467462237172178461999886477<109> |
factorization results 素因数分解の結果 | 03/09/15 07:47:38 v1.34.3, 03/09/15 07:47:38 v1.34.3, **************************** 03/09/15 07:47:38 v1.34.3, Starting factorization of 292196922455806301969144713049777509936752498910666876075338107569017824048461886689427178184332935869585812108762634927665837504358452882715095418342813073 03/09/15 07:47:38 v1.34.3, using pretesting plan: none 03/09/15 07:47:38 v1.34.3, no tune info: using qs/gnfs crossover of 95 digits 03/09/15 07:47:38 v1.34.3, **************************** 03/09/15 07:47:38 v1.34.3, nfs: commencing nfs on c156: 292196922455806301969144713049777509936752498910666876075338107569017824048461886689427178184332935869585812108762634927665837504358452882715095418342813073 03/09/15 07:47:38 v1.34.3, nfs: continuing with sieving - could not determine last special q; using default startq 03/09/15 07:47:38 v1.34.3, nfs: commencing lattice sieving with 8 threads 03/09/15 07:52:20 v1.34.3, nfs: commencing lattice sieving with 8 threads [64 lines snipped] 03/09/15 12:58:47 v1.34.3, nfs: commencing lattice sieving with 8 threads 03/09/15 13:03:30 v1.34.3, nfs: commencing lattice sieving with 8 threads 03/09/15 13:08:22 v1.34.3, nfs: commencing msieve filtering 03/09/15 13:10:26 v1.34.3, nfs: commencing msieve linear algebra 03/09/15 13:35:27 v1.34.3, nfs: commencing msieve sqrt 03/09/15 13:36:43 v1.34.3, prp47 = 42175307470753480100106423591683219015207664149 03/09/15 13:36:43 v1.34.3, prp109 = 6928151564951378827124711246656617662580162044017418007793796511618176556477838158467462237172178461999886477 03/09/15 13:36:43 v1.34.3, NFS elapsed time = 20944.2597 seconds. 03/09/15 13:36:43 v1.34.3, 03/09/15 13:36:43 v1.34.3, 03/09/15 13:36:43 v1.34.3, Total factoring time = 20944.2608 seconds -- Mon Mar 9 13:08:22 2015 Mon Mar 9 13:08:22 2015 commencing relation filtering Mon Mar 9 13:08:22 2015 estimated available RAM is 15987.3 MB Mon Mar 9 13:08:22 2015 commencing duplicate removal, pass 1 Mon Mar 9 13:08:52 2015 found 1441846 hash collisions in 10149514 relations Mon Mar 9 13:09:01 2015 added 365419 free relations Mon Mar 9 13:09:01 2015 commencing duplicate removal, pass 2 Mon Mar 9 13:09:09 2015 found 1021659 duplicates and 9493274 unique relations Mon Mar 9 13:09:09 2015 memory use: 41.3 MB Mon Mar 9 13:09:09 2015 reading ideals above 100000 Mon Mar 9 13:09:09 2015 commencing singleton removal, initial pass Mon Mar 9 13:09:52 2015 memory use: 344.5 MB Mon Mar 9 13:09:52 2015 reading all ideals from disk Mon Mar 9 13:09:52 2015 memory use: 343.4 MB Mon Mar 9 13:09:52 2015 keeping 10390270 ideals with weight <= 200, target excess is 49923 Mon Mar 9 13:09:53 2015 commencing in-memory singleton removal Mon Mar 9 13:09:53 2015 begin with 9493274 relations and 10390270 unique ideals Mon Mar 9 13:09:57 2015 reduce to 4043231 relations and 3759396 ideals in 18 passes Mon Mar 9 13:09:57 2015 max relations containing the same ideal: 116 Mon Mar 9 13:09:58 2015 removing 701559 relations and 588597 ideals in 112962 cliques Mon Mar 9 13:09:58 2015 commencing in-memory singleton removal Mon Mar 9 13:09:58 2015 begin with 3341672 relations and 3759396 unique ideals Mon Mar 9 13:10:00 2015 reduce to 3239546 relations and 3064973 ideals in 10 passes Mon Mar 9 13:10:00 2015 max relations containing the same ideal: 101 Mon Mar 9 13:10:01 2015 removing 549691 relations and 436729 ideals in 112962 cliques Mon Mar 9 13:10:01 2015 commencing in-memory singleton removal Mon Mar 9 13:10:01 2015 begin with 2689855 relations and 3064973 unique ideals Mon Mar 9 13:10:02 2015 reduce to 2612542 relations and 2548257 ideals in 10 passes Mon Mar 9 13:10:02 2015 max relations containing the same ideal: 84 Mon Mar 9 13:10:03 2015 relations with 0 large ideals: 1078 Mon Mar 9 13:10:03 2015 relations with 1 large ideals: 267 Mon Mar 9 13:10:03 2015 relations with 2 large ideals: 4554 Mon Mar 9 13:10:03 2015 relations with 3 large ideals: 39354 Mon Mar 9 13:10:03 2015 relations with 4 large ideals: 179284 Mon Mar 9 13:10:03 2015 relations with 5 large ideals: 471256 Mon Mar 9 13:10:03 2015 relations with 6 large ideals: 756789 Mon Mar 9 13:10:03 2015 relations with 7+ large ideals: 1159960 Mon Mar 9 13:10:03 2015 commencing 2-way merge Mon Mar 9 13:10:04 2015 reduce to 1560502 relation sets and 1496217 unique ideals Mon Mar 9 13:10:04 2015 commencing full merge Mon Mar 9 13:10:20 2015 memory use: 189.5 MB Mon Mar 9 13:10:20 2015 found 785290 cycles, need 772417 Mon Mar 9 13:10:20 2015 weight of 772417 cycles is about 54268541 (70.26/cycle) Mon Mar 9 13:10:20 2015 distribution of cycle lengths: Mon Mar 9 13:10:20 2015 1 relations: 91007 Mon Mar 9 13:10:20 2015 2 relations: 84094 Mon Mar 9 13:10:20 2015 3 relations: 84283 Mon Mar 9 13:10:20 2015 4 relations: 78489 Mon Mar 9 13:10:20 2015 5 relations: 72515 Mon Mar 9 13:10:20 2015 6 relations: 64366 Mon Mar 9 13:10:20 2015 7 relations: 55866 Mon Mar 9 13:10:20 2015 8 relations: 49016 Mon Mar 9 13:10:20 2015 9 relations: 41687 Mon Mar 9 13:10:20 2015 10+ relations: 151094 Mon Mar 9 13:10:20 2015 heaviest cycle: 21 relations Mon Mar 9 13:10:20 2015 commencing cycle optimization Mon Mar 9 13:10:21 2015 start with 4639397 relations Mon Mar 9 13:10:25 2015 pruned 114712 relations Mon Mar 9 13:10:25 2015 memory use: 151.8 MB Mon Mar 9 13:10:25 2015 distribution of cycle lengths: Mon Mar 9 13:10:25 2015 1 relations: 91007 Mon Mar 9 13:10:25 2015 2 relations: 85890 Mon Mar 9 13:10:25 2015 3 relations: 87047 Mon Mar 9 13:10:25 2015 4 relations: 80449 Mon Mar 9 13:10:25 2015 5 relations: 74435 Mon Mar 9 13:10:25 2015 6 relations: 65507 Mon Mar 9 13:10:25 2015 7 relations: 56890 Mon Mar 9 13:10:25 2015 8 relations: 49125 Mon Mar 9 13:10:25 2015 9 relations: 41467 Mon Mar 9 13:10:25 2015 10+ relations: 140600 Mon Mar 9 13:10:25 2015 heaviest cycle: 21 relations Mon Mar 9 13:10:26 2015 RelProcTime: 124 Mon Mar 9 13:10:26 2015 Mon Mar 9 13:10:26 2015 commencing linear algebra Mon Mar 9 13:10:26 2015 read 772417 cycles Mon Mar 9 13:10:27 2015 cycles contain 2519238 unique relations Mon Mar 9 13:10:39 2015 read 2519238 relations Mon Mar 9 13:10:41 2015 using 20 quadratic characters above 134217104 Mon Mar 9 13:10:48 2015 building initial matrix Mon Mar 9 13:11:02 2015 memory use: 309.8 MB Mon Mar 9 13:11:02 2015 read 772417 cycles Mon Mar 9 13:11:02 2015 matrix is 772239 x 772417 (231.3 MB) with weight 68457522 (88.63/col) Mon Mar 9 13:11:02 2015 sparse part has weight 52143506 (67.51/col) Mon Mar 9 13:11:06 2015 filtering completed in 2 passes Mon Mar 9 13:11:06 2015 matrix is 771340 x 771518 (231.2 MB) with weight 68426548 (88.69/col) Mon Mar 9 13:11:06 2015 sparse part has weight 52131864 (67.57/col) Mon Mar 9 13:11:08 2015 matrix starts at (0, 0) Mon Mar 9 13:11:08 2015 matrix is 771340 x 771518 (231.2 MB) with weight 68426548 (88.69/col) Mon Mar 9 13:11:08 2015 sparse part has weight 52131864 (67.57/col) Mon Mar 9 13:11:08 2015 saving the first 48 matrix rows for later Mon Mar 9 13:11:08 2015 matrix includes 64 packed rows Mon Mar 9 13:11:08 2015 matrix is 771292 x 771518 (218.5 MB) with weight 53983374 (69.97/col) Mon Mar 9 13:11:08 2015 sparse part has weight 49560060 (64.24/col) Mon Mar 9 13:11:08 2015 using block size 65536 for processor cache size 8192 kB Mon Mar 9 13:11:10 2015 commencing Lanczos iteration (8 threads) Mon Mar 9 13:11:10 2015 memory use: 213.5 MB Mon Mar 9 13:11:15 2015 linear algebra at 0.4%, ETA 0h21m Mon Mar 9 13:35:26 2015 lanczos halted after 12201 iterations (dim = 771290) Mon Mar 9 13:35:27 2015 recovered 36 nontrivial dependencies Mon Mar 9 13:35:27 2015 BLanczosTime: 1501 Mon Mar 9 13:35:27 2015 Mon Mar 9 13:35:27 2015 commencing square root phase Mon Mar 9 13:35:27 2015 reading relations for dependency 1 Mon Mar 9 13:35:27 2015 read 385919 cycles Mon Mar 9 13:35:27 2015 cycles contain 1260792 unique relations Mon Mar 9 13:35:36 2015 read 1260792 relations Mon Mar 9 13:35:39 2015 multiplying 1260792 relations Mon Mar 9 13:36:07 2015 multiply complete, coefficients have about 38.55 million bits Mon Mar 9 13:36:07 2015 initial square root is modulo 342841 Mon Mar 9 13:36:43 2015 sqrtTime: 76 -- n: 292196922455806301969144713049777509936752498910666876075338107569017824048461886689427178184332935869585812108762634927665837504358452882715095418342813073 m: 1000000000000000000000000000000000 deg: 5 c5: 920 c0: -1 skew: 0.26 # Murphy_E = 2.733e-10 type: snfs lss: 1 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 |
software ソフトウェア | yafu v1.34.3 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:37 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 37 秒 (日本時間) | |||
40 | 3e6 | 2350 | Ignacio Santos | February 18, 2015 22:57:59 UTC 2015 年 2 月 19 日 (木) 7 時 57 分 59 秒 (日本時間) |
name 名前 | Rich Smith |
---|---|
date 日付 | December 2, 2014 06:23:39 UTC 2014 年 12 月 2 日 (火) 15 時 23 分 39 秒 (日本時間) |
composite number 合成数 | 8141698038970967112953073404607472429911171084769797808657902100575525744837179118052596312214449241121107741110969809201<121> |
prime factors 素因数 | 5781228710851127513462111705783258820097383923<46> 1408298900835619279845690058821375143420748101644544113732348707447357997387<76> |
factorization results 素因数分解の結果 | P76 = 1408298900835619279845690058821375143420748101644544113732348707447357997387 P46 = 5781228710851127513462111705783258820097383923 |
software ソフトウェア | YAFU 1.31 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:37 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 37 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1890 / 3332 | 945 | Pierre Jammes | November 23, 2014 08:54:19 UTC 2014 年 11 月 23 日 (日) 17 時 54 分 19 秒 (日本時間) |
945 | Pierre Jammes | November 23, 2014 10:10:10 UTC 2014 年 11 月 23 日 (日) 19 時 10 分 10 秒 (日本時間) | |||
50 | 43e6 | 314 / 7123 | 136 | Pierre Jammes | November 26, 2014 06:12:47 UTC 2014 年 11 月 26 日 (水) 15 時 12 分 47 秒 (日本時間) |
178 | Pierre Jammes | November 27, 2014 07:33:48 UTC 2014 年 11 月 27 日 (木) 16 時 33 分 48 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:34:48 UTC 2014 年 11 月 18 日 (火) 15 時 34 分 48 秒 (日本時間) |
composite number 合成数 | 1344581335973947397183807633948630958746170757803578811355188123897274152981216490359958017126843246589614714050977070295440462803941<133> |
prime factors 素因数 | 845799939616998004276484529673<30> |
composite cofactor 合成数の残り | 1589715573381113782558942861537322052556789522774639653548175507153350575782659748391461912279490731517<103> |
factorization results 素因数分解の結果 | Input number is 1344581335973947397183807633948630958746170757803578811355188123897274152981216490359958017126843246589614714050977070295440462803941 (133 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3457514316 Step 1 took 2995ms Step 2 took 2530ms ********** Factor found in step 2: 845799939616998004276484529673 Found probable prime factor of 30 digits: 845799939616998004276484529673 Composite cofactor 1589715573381113782558942861537322052556789522774639653548175507153350575782659748391461912279490731517 has 103 digits |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 19, 2014 04:03:50 UTC 2014 年 11 月 19 日 (水) 13 時 3 分 50 秒 (日本時間) |
composite number 合成数 | 1589715573381113782558942861537322052556789522774639653548175507153350575782659748391461912279490731517<103> |
prime factors 素因数 | 48986073269399369864276761373301631<35> 32452398554961898278064496505087822005594219122495319431251886847107<68> |
factorization results 素因数分解の結果 | Divisors found: r1=48986073269399369864276761373301631 (pp35) r2=32452398554961898278064496505087822005594219122495319431251886847107 (pp68) Version: Msieve v. 1.51 (SVN 719M) Total time: 2.51 hours. Scaled time: 6.03 units (timescale=2.400). Factorization parameters were as follows: name: test type: gnfs n: 1589715573381113782558942861537322052556789522774639653548175507153350575782659748391461912279490731517 skew: 4904479.51 Y0: -7900712223061066400656686 Y1: 24197216203063 c0: 18985387316127557572021610005 c1: 16487256339592047166494 c2: -33759288524843593 c3: -1750599594 c4: 408 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 293510 x 293737 Total sieving time: 2.35 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,102,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 2.51 hours. |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:38 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 38 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:23:51 UTC 2014 年 11 月 18 日 (火) 15 時 23 分 51 秒 (日本時間) |
composite number 合成数 | 193163961664982488338313690078250768533539291938991831503293290658856883442403196914241172496613424611854068579133288713099708619888175437869267<144> |
prime factors 素因数 | 166399013170941088413446970191423<33> 1160848000141358216539281241013546789564577838165580750706390904877060481268367431392002782608267601877110866029<112> |
factorization results 素因数分解の結果 | Input number is 193163961664982488338313690078250768533539291938991831503293290658856883442403196914241172496613424611854068579133288713099708619888175437869267 (144 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2833803252 Step 1 took 3766ms Step 2 took 3156ms ********** Factor found in step 2: 166399013170941088413446970191423 Found probable prime factor of 33 digits: 166399013170941088413446970191423 Probable prime cofactor 1160848000141358216539281241013546789564577838165580750706390904877060481268367431392002782608267601877110866029 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:38 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 38 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 26, 2015 02:34:34 UTC 2015 年 4 月 26 日 (日) 11 時 34 分 34 秒 (日本時間) |
composite number 合成数 | 162983738774780912779852085112865287217528798311459607927169375689925649231014093226116096761238368832721944683961254027831767507518637941028710507879979209<156> |
prime factors 素因数 | 2312837249424184963622699160114520123751385704368565707<55> 70469177550369410910558673830344441608415428760156665758222610385230728407619702370997605246059856187<101> |
factorization results 素因数分解の結果 | Number: 91999_171 N=162983738774780912779852085112865287217528798311459607927169375689925649231014093226116096761238368832721944683961254027831767507518637941028710507879979209 ( 156 digits) SNFS difficulty: 173 digits. Divisors found: r1=2312837249424184963622699160114520123751385704368565707 r2=70469177550369410910558673830344441608415428760156665758222610385230728407619702370997605246059856187 Version: Total time: 30.35 hours. Scaled time: 158.89 units (timescale=5.235). Factorization parameters were as follows: n: 162983738774780912779852085112865287217528798311459607927169375689925649231014093226116096761238368832721944683961254027831767507518637941028710507879979209 m: 20000000000000000000000000000000000 deg: 5 c5: 115 c0: -4 skew: 0.51 # Murphy_E = 1.732e-10 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3100000, 7000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 11663863 Max relations in full relation-set: Initial matrix: Pruned matrix : 1072996 x 1073244 Total sieving time: 27.88 hours. Total relation processing time: 1.14 hours. Matrix solve time: 1.20 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.4,2.4,100000 total time: 30.35 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.00 BogoMIPS (lpj=3400000) Total of 12 processors activated (81600.00 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:39 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 39 秒 (日本時間) | |||
40 | 3e6 | 2350 | Ignacio Santos | February 28, 2015 21:21:36 UTC 2015 年 3 月 1 日 (日) 6 時 21 分 36 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 30, 2015 13:25:04 UTC 2015 年 4 月 30 日 (木) 22 時 25 分 4 秒 (日本時間) |
composite number 合成数 | 195752302857176993077030571727745127379375363488987515443651242482461827633116401036558968144704860224827559932114805081090786747<129> |
prime factors 素因数 | 1737893244037864346577183579382777013507954680899455028621999721<64> 112637702878895615326741116861166531089893583221231884906246104707<66> |
factorization results 素因数分解の結果 | Number: 91999_172 N=195752302857176993077030571727745127379375363488987515443651242482461827633116401036558968144704860224827559932114805081090786747 ( 129 digits) SNFS difficulty: 174 digits. Divisors found: r1=1737893244037864346577183579382777013507954680899455028621999721 r2=112637702878895615326741116861166531089893583221231884906246104707 Version: Total time: 23.84 hours. Scaled time: 121.98 units (timescale=5.116). Factorization parameters were as follows: n: 195752302857176993077030571727745127379375363488987515443651242482461827633116401036558968144704860224827559932114805081090786747 m: 20000000000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.32 # Murphy_E = 1.818e-10 type: snfs lss: 1 rlim: 6400000 alim: 6400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 6400000/6400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [3200000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 15666334 Max relations in full relation-set: Initial matrix: Pruned matrix : 1112875 x 1113123 Total sieving time: 21.31 hours. Total relation processing time: 1.12 hours. Matrix solve time: 1.34 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,52,52,2.4,2.4,100000 total time: 23.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.00 BogoMIPS (lpj=3400000) Total of 12 processors activated (81600.00 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:39 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 39 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 631 / 3069 | Pierre Jammes | December 3, 2014 20:42:13 UTC 2014 年 12 月 4 日 (木) 5 時 42 分 13 秒 (日本時間) | |
50 | 43e6 | 389 / 7406 | 143 | Pierre Jammes | December 4, 2014 06:03:12 UTC 2014 年 12 月 4 日 (木) 15 時 3 分 12 秒 (日本時間) |
246 | Pierre Jammes | December 5, 2014 07:08:03 UTC 2014 年 12 月 5 日 (金) 16 時 8 分 3 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 17, 2014 21:37:21 UTC 2014 年 11 月 18 日 (火) 6 時 37 分 21 秒 (日本時間) |
composite number 合成数 | 9199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<175> |
prime factors 素因数 | 27258773924917360111669463116038407<35> 227482002761143806744214685342776496267<39> 1483660267582785489284309138516385974363491674967391677718055217580636819020226979461482195343187288571<103> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2128309758 Step 1 took 4616ms Step 2 took 3035ms ********** Factor found in step 2: 227482002761143806744214685342776496267 Found probable prime factor of 39 digits: 227482002761143806744214685342776496267 Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2880816253 Step 1 took 5773ms Step 2 took 4078ms ********** Factor found in step 2: 27258773924917360111669463116038407 Found probable prime factor of 35 digits: 27258773924917360111669463116038407 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:40 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 40 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | May 11, 2015 12:46:40 UTC 2015 年 5 月 11 日 (月) 21 時 46 分 40 秒 (日本時間) |
composite number 合成数 | 436084799497218397472240148350337575586139245514029250648713636358482404521313151106479529169016955009827823735438443669308046084555064960849<141> |
prime factors 素因数 | 65935497964936493851374769977115693134635118345104093646586357<62> 6613809146161628067699013613995883862445486703825268214489571981254875245480557<79> |
factorization results 素因数分解の結果 | Number: 91999_174 N=436084799497218397472240148350337575586139245514029250648713636358482404521313151106479529169016955009827823735438443669308046084555064960849 ( 141 digits) SNFS difficulty: 176 digits. Divisors found: r1=65935497964936493851374769977115693134635118345104093646586357 r2=6613809146161628067699013613995883862445486703825268214489571981254875245480557 Version: Total time: 31.20 hours. Scaled time: 163.94 units (timescale=5.255). Factorization parameters were as follows: n: 436084799497218397472240148350337575586139245514029250648713636358482404521313151106479529169016955009827823735438443669308046084555064960849 m: 100000000000000000000000000000000000 deg: 5 c5: 46 c0: -5 skew: 0.64 # Murphy_E = 1.367e-10 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3700000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: 17861633 Max relations in full relation-set: Initial matrix: Pruned matrix : 1350502 x 1350750 Total sieving time: 27.39 hours. Total relation processing time: 1.54 hours. Matrix solve time: 2.10 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,53,53,2.5,2.5,100000 total time: 31.20 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49373664k/51380224k available (5220k kernel code, 1086460k absent, 920100k reserved, 7121k data, 1264k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6800.18 BogoMIPS (lpj=3400094) Total of 12 processors activated (81602.25 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:40 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 40 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | KTakahashi | April 28, 2015 20:35:57 UTC 2015 年 4 月 29 日 (水) 5 時 35 分 57 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | September 21, 2015 10:50:22 UTC 2015 年 9 月 21 日 (月) 19 時 50 分 22 秒 (日本時間) |
composite number 合成数 | 54651037391833936234726710756637448617517573279705472187777909191628144399714579467422904851183354471649413091541969870134920342892194774975304385376318565413<158> |
prime factors 素因数 | 2156461724375752171093633047893772156521870423535967809177522928325729719006823<79> 25342920198434868648896141130398653444075766677758096015523579309385780253309331<80> |
factorization results 素因数分解の結果 | Number: 99919_176 N=54651037391833936234726710756637448617517573279705472187777909191628144399714579467422904851183354471649413091541969870134920342892194774975304385376318565413 ( 158 digits) SNFS difficulty: 178 digits. Divisors found: r1=2156461724375752171093633047893772156521870423535967809177522928325729719006823 r2=25342920198434868648896141130398653444075766677758096015523579309385780253309331 Version: Total time: 44.81 hours. Scaled time: 235.54 units (timescale=5.257). Factorization parameters were as follows: n: 54651037391833936234726710756637448617517573279705472187777909191628144399714579467422904851183354471649413091541969870134920342892194774975304385376318565413 m: 200000000000000000000000000000000000 deg: 5 c5: 115 c0: -4 skew: 0.51 # Murphy_E = 1.092e-10 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4000000, 9000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18760754 Max relations in full relation-set: Initial matrix: Pruned matrix : 1510837 x 1511085 Total sieving time: 39.51 hours. Total relation processing time: 2.29 hours. Matrix solve time: 2.75 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000 total time: 44.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365540k/51380224k available (5394k kernel code, 1086460k absent, 928224k reserved, 7014k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399854) Total of 12 processors activated (81596.49 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:41 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 41 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | KTakahashi | May 7, 2015 20:44:44 UTC 2015 年 5 月 8 日 (金) 5 時 44 分 44 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | October 19, 2015 04:59:27 UTC 2015 年 10 月 19 日 (月) 13 時 59 分 27 秒 (日本時間) |
composite number 合成数 | 1294323643906033708458004632896043562016427731191697024504079194462322249464636454319214263221439207294519416058354529455667957504110508730359064815466136103226541<163> |
prime factors 素因数 | 975346964618489413870303944420816398158372649781519982745183236652125045766963687<81> 1327039187959449083715034623949101908783902359485773347548432796189077893771924043<82> |
factorization results 素因数分解の結果 | Number: 91999_177 N=1294323643906033708458004632896043562016427731191697024504079194462322249464636454319214263221439207294519416058354529455667957504110508730359064815466136103226541 ( 163 digits) SNFS difficulty: 179 digits. Divisors found: r1=975346964618489413870303944420816398158372649781519982745183236652125045766963687 r2=1327039187959449083715034623949101908783902359485773347548432796189077893771924043 Version: Total time: 38.11 hours. Scaled time: 199.99 units (timescale=5.248). Factorization parameters were as follows: n: 1294323643906033708458004632896043562016427731191697024504079194462322249464636454319214263221439207294519416058354529455667957504110508730359064815466136103226541 m: 200000000000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.32 # Murphy_E = 1.146e-10 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [4500000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18215492 Max relations in full relation-set: Initial matrix: Pruned matrix : 1448790 x 1449037 Total sieving time: 33.56 hours. Total relation processing time: 1.86 hours. Matrix solve time: 2.60 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,53,53,2.5,2.5,100000 total time: 38.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365480k/51380224k available (5395k kernel code, 1086460k absent, 928284k reserved, 7013k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.95 BogoMIPS (lpj=3399977) Total of 12 processors activated (81599.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:41 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 41 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | 1 | KTakahashi | May 7, 2015 20:50:01 UTC 2015 年 5 月 8 日 (金) 5 時 50 分 1 秒 (日本時間) |
600 | KTakahashi | May 12, 2015 10:27:18 UTC 2015 年 5 月 12 日 (火) 19 時 27 分 18 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:37:59 UTC 2014 年 11 月 18 日 (火) 15 時 37 分 59 秒 (日本時間) |
composite number 合成数 | 57619859786386113655809437573811069763105174952078880520032113681020423517797393273912501690422007934229387376839132956862898876378216300629138253344280345254803<161> |
prime factors 素因数 | 2093135724858610687812067972074253<34> 27528009341237668647822634336179219410765891131239440131433829119266732984461916104930641125917135043314948914370528665215064351<128> |
factorization results 素因数分解の結果 | Input number is 57619859786386113655809437573811069763105174952078880520032113681020423517797393273912501690422007934229387376839132956862898876378216300629138253344280345254803 (161 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4083070990 Step 1 took 4303ms Step 2 took 3111ms ********** Factor found in step 2: 2093135724858610687812067972074253 Found probable prime factor of 34 digits: 2093135724858610687812067972074253 Probable prime cofactor 27528009341237668647822634336179219410765891131239440131433829119266732984461916104930641125917135043314948914370528665215064351 has 128 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:42 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 42 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 5, 2014 04:03:13 UTC 2014 年 12 月 5 日 (金) 13 時 3 分 13 秒 (日本時間) |
composite number 合成数 | 931949020482098822936657467080013952926693187258617735822170114872587429213094866083627821618455010673029761104047207289502747444602096939491861<144> |
prime factors 素因数 | 46369315214584339683849134250706687<35> 20098399473214065018532105552842038471280780714139596179223269814475865359843348936684966076590463371180231403<110> |
factorization results 素因数分解の結果 | Run 171 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4066401431 Step 1 took 42011ms Step 2 took 14952ms ********** Factor found in step 2: 46369315214584339683849134250706687 Found probable prime factor of 35 digits: 46369315214584339683849134250706687 Probable prime cofactor 20098399473214065018532105552842038471280780714139596179223269814475865359843348936684966076590463371180231403 has 110 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:42 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 42 秒 (日本時間) | |||
40 | 3e6 | 0 / 1483 | - | - | |
45 | 11e6 | 171 / 4434 | Cyp | December 5, 2014 04:03:13 UTC 2014 年 12 月 5 日 (金) 13 時 3 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | November 21, 2014 11:38:00 UTC 2014 年 11 月 21 日 (金) 20 時 38 分 0 秒 (日本時間) |
composite number 合成数 | 172868204017901474498151789086255814686833999394801986241792602520145845514248725080235572157200316637780395439<111> |
prime factors 素因数 | 314958861895419710949994391602906622830981804585373<51> 548859628770507092836937527393544476301905379833208126662843<60> |
factorization results 素因数分解の結果 | N=172868204017901474498151789086255814686833999394801986241792602520145845514248725080235572157200316637780395439 ( 111 digits) Divisors found: r1=314958861895419710949994391602906622830981804585373 (pp51) r2=548859628770507092836937527393544476301905379833208126662843 (pp60) Version: Msieve v. 1.50 (SVN unknown) Total time: 17.58 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 172868204017901474498151789086255814686833999394801986241792602520145845514248725080235572157200316637780395439 skew: 135359.69 c0: -1881601474719258598429724088 c1: 437233860464635816229686 c2: -3106043940170265901 c3: -42343374656396 c4: 136184322 c5: 1008 Y0: -2798020406987281774055 Y1: 9523496597 rlim: 3460000 alim: 3460000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 type: gnfs qintsize: 120000 Factor base limits: 3460000/3460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1730000, 2570001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 338969 x 339194 Total sieving time: 17.27 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3460000,3460000,26,26,52,52,2.5,2.5,100000 total time: 17.58 hours. --------- CPU info (if available) ---------- [ 0.074811] CPU0: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz stepping 02 [ 0.000000] Memory: 49295964k/51380224k available (5351k kernel code, 1057796k absent, 1026464k reserved, 7000k data, 1344k init) [ 0.000007] Calibrating delay loop (skipped), value calculated using timer frequency.. 4800.38 BogoMIPS (lpj=2400194) [ 0.709831] Total of 16 processors activated (76642.81 BogoMIPS). |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:43 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 43 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 15, 2016 11:52:10 UTC 2016 年 3 月 15 日 (火) 20 時 52 分 10 秒 (日本時間) |
composite number 合成数 | 45257962626843437672696812076383176415599405309693831443759088482478861276379803526740962484438011059408462469590666708197502626738305670153243429395451383<155> |
prime factors 素因数 | 1774520658225684390167867474798336851651730583032344284612191037327201061<73> 25504331221534592151434663717624899484640247453105680250637105524649912056913076203<83> |
factorization results 素因数分解の結果 | Number: 91999_182 N=45257962626843437672696812076383176415599405309693831443759088482478861276379803526740962484438011059408462469590666708197502626738305670153243429395451383 ( 155 digits) SNFS difficulty: 184 digits. Divisors found: r1=1774520658225684390167867474798336851651730583032344284612191037327201061 r2=25504331221534592151434663717624899484640247453105680250637105524649912056913076203 Version: Total time: 57.69 hours. Scaled time: 301.97 units (timescale=5.234). Factorization parameters were as follows: n: 45257962626843437672696812076383176415599405309693831443759088482478861276379803526740962484438011059408462469590666708197502626738305670153243429395451383 m: 2000000000000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.32 # Murphy_E = 7.193e-11 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3300000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 18391977 Max relations in full relation-set: Initial matrix: Pruned matrix : 1328105 x 1328353 Total sieving time: 54.34 hours. Total relation processing time: 1.29 hours. Matrix solve time: 1.97 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,6600000,6600000,28,28,53,53,2.5,2.5,100000 total time: 57.69 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365468k/51380224k available (5397k kernel code, 1086460k absent, 928296k reserved, 7011k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.82 BogoMIPS (lpj=3399914) Total of 12 processors activated (81597.93 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:43 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 43 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 5, 2014 20:49:03 UTC 2014 年 12 月 6 日 (土) 5 時 49 分 3 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | April 25, 2016 00:30:18 UTC 2016 年 4 月 25 日 (月) 9 時 30 分 18 秒 (日本時間) |
composite number 合成数 | 356145059367975804355357725443758824808074338870191335834025334368059593190508417488302025149426776933121637408219001592121290641585549082468570037248680367641160659715300809<174> |
prime factors 素因数 | 1100446348168450265843610229655842630159531850651<49> 50460613106935693160728850154534987509488510101701531297<56> 6413654003948319778297618368323598703324379593332398201544910687089547<70> |
factorization results 素因数分解の結果 | Number: 91999_183 N=356145059367975804355357725443758824808074338870191335834025334368059593190508417488302025149426776933121637408219001592121290641585549082468570037248680367641160659715300809 ( 174 digits) SNFS difficulty: 184 digits. Divisors found: r1=1100446348168450265843610229655842630159531850651 r2=50460613106935693160728850154534987509488510101701531297 r3=6413654003948319778297618368323598703324379593332398201544910687089547 Version: Total time: 68.57 hours. Scaled time: 360.46 units (timescale=5.257). Factorization parameters were as follows: n: 356145059367975804355357725443758824808074338870191335834025334368059593190508417488302025149426776933121637408219001592121290641585549082468570037248680367641160659715300809 m: 2000000000000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 5.849e-11 type: snfs lss: 1 rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3600000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20398729 Max relations in full relation-set: Initial matrix: Pruned matrix : 1490552 x 1490800 Total sieving time: 63.78 hours. Total relation processing time: 1.69 hours. Matrix solve time: 2.63 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,54,54,2.5,2.5,100000 total time: 68.57 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49365464k/51380224k available (5398k kernel code, 1086460k absent, 928300k reserved, 7010k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.67 BogoMIPS (lpj=3399839) Total of 12 processors activated (81596.13 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:43 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 43 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | KTakahashi | May 31, 2015 00:00:51 UTC 2015 年 5 月 31 日 (日) 9 時 0 分 51 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | December 2, 2014 03:22:59 UTC 2014 年 12 月 2 日 (火) 12 時 22 分 59 秒 (日本時間) |
composite number 合成数 | 1181001283697047496790757381258023106546854942233632862644415917843388960205391527599486521181001283697047496790757381258023106546854942233632862644415917843388960205391527599486521181<184> |
prime factors 素因数 | 49928288805986229286944333494457503874690210992319723929<56> 23653950734947870357400952986114742840968990547594073540993636551417181393415786668114339837499469275403279584530871737310463589<128> |
factorization results 素因数分解の結果 | prp56 factor: 49928288805986229286944333494457503874690210992319723929 prp128 factor: 23653950734947870357400952986114742840968990547594073540993636551417181393415786668114339837499469275403279584530871737310463589 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:44 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 44 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:23 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 23 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:21 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 21 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 21, 2014 09:25:05 UTC 2014 年 11 月 21 日 (金) 18 時 25 分 5 秒 (日本時間) |
composite number 合成数 | 9199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<187> |
prime factors 素因数 | 254037731178391893509758617696395375081<39> |
composite cofactor 合成数の残り | 36215092763285313032204560519903265194222014203561125450243430207586248259710103742008314343589389206034721380781847118951317681930291343749722720679<149> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1891064333 Step 1 took 55352ms Step 2 took 20896ms ********** Factor found in step 2: 254037731178391893509758617696395375081 Found probable prime factor of 39 digits: 254037731178391893509758617696395375081 Composite cofactor |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | August 18, 2016 23:57:41 UTC 2016 年 8 月 19 日 (金) 8 時 57 分 41 秒 (日本時間) |
composite number 合成数 | 36215092763285313032204560519903265194222014203561125450243430207586248259710103742008314343589389206034721380781847118951317681930291343749722720679<149> |
prime factors 素因数 | 1790623014325464419375771294981446453772405866365768600487303651<64> 20224856082801827537695730446565731744650749777668489684713596391594400388749684894829<86> |
factorization results 素因数分解の結果 | Number: 91999_185 N=36215092763285313032204560519903265194222014203561125450243430207586248259710103742008314343589389206034721380781847118951317681930291343749722720679 ( 149 digits) SNFS difficulty: 186 digits. Divisors found: r1=1790623014325464419375771294981446453772405866365768600487303651 r2=20224856082801827537695730446565731744650749777668489684713596391594400388749684894829 Version: Total time: 66.71 hours. Scaled time: 350.00 units (timescale=5.247). Factorization parameters were as follows: n: 36215092763285313032204560519903265194222014203561125450243430207586248259710103742008314343589389206034721380781847118951317681930291343749722720679 m: 10000000000000000000000000000000000000 deg: 5 c5: 92 c0: -1 skew: 0.40 # Murphy_E = 6.326e-11 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20350326 Max relations in full relation-set: Initial matrix: Pruned matrix : 1504749 x 1504996 Total sieving time: 62.17 hours. Total relation processing time: 1.60 hours. Matrix solve time: 2.76 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,54,54,2.5,2.5,100000 total time: 66.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49368528k/51380224k available (5398k kernel code, 1086460k absent, 925236k reserved, 7010k data, 1296k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852) Total of 12 processors activated (81596.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:44 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 44 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 3000 / 4434 | Serge Batalov | November 21, 2014 09:24:25 UTC 2014 年 11 月 21 日 (金) 18 時 24 分 25 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | November 13, 2016 04:33:47 UTC 2016 年 11 月 13 日 (日) 13 時 33 分 47 秒 (日本時間) |
composite number 合成数 | 309522337702675169102011986943409244129941221817818034633145729455788350507654585974888065074719474821769330443473441969335129165299423477540496643135349258418463007902318709<174> |
prime factors 素因数 | 6878018651350997166645988168738434262936881236326613<52> 45001671759334068985232960682235237899240708343973151963966204070169402008127630748960390181702998804980629812563376584993<122> |
factorization results 素因数分解の結果 | Number: 91999_186 N=309522337702675169102011986943409244129941221817818034633145729455788350507654585974888065074719474821769330443473441969335129165299423477540496643135349258418463007902318709 ( 174 digits) SNFS difficulty: 188 digits. Divisors found: r1=6878018651350997166645988168738434262936881236326613 r2=45001671759334068985232960682235237899240708343973151963966204070169402008127630748960390181702998804980629812563376584993 Version: Total time: 99.24 hours. Scaled time: 520.71 units (timescale=5.247). Factorization parameters were as follows: n: 309522337702675169102011986943409244129941221817818034633145729455788350507654585974888065074719474821769330443473441969335129165299423477540496643135349258418463007902318709 m: 20000000000000000000000000000000000000 deg: 5 c5: 115 c0: -4 skew: 0.51 # Murphy_E = 4.288e-11 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4000000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 21087407 Max relations in full relation-set: Initial matrix: Pruned matrix : 1767444 x 1767692 Total sieving time: 92.10 hours. Total relation processing time: 2.50 hours. Matrix solve time: 4.23 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,54,54,2.5,2.5,100000 total time: 99.24 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz stepping 04 Memory: 49367844k/51380224k available (5460k kernel code, 1086464k absent, 925916k reserved, 6959k data, 1316k init) Calibrating delay loop (skipped), value calculated using timer frequency.. 6799.70 BogoMIPS (lpj=3399852) Total of 12 processors activated (81596.44 BogoMIPS). |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:45 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 45 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 15:08:54 UTC 2015 年 7 月 18 日 (土) 0 時 8 分 54 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 22, 2014 05:54:40 UTC 2014 年 11 月 22 日 (土) 14 時 54 分 40 秒 (日本時間) |
composite number 合成数 | 171320921409306776492723200768046697433500046860919694170914614444663728342138164513045004888120534182553753647510625602881<123> |
prime factors 素因数 | 10689531374074584918970114168951497596767<41> 16026981484409403013869951652220987894995936994717820527964298542910891818149115743<83> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=892550296 Step 1 took 7964ms Step 2 took 7497ms ********** Factor found in step 2: 10689531374074584918970114168951497596767 Found probable prime factor of 41 digits: 10689531374074584918970114168951497596767 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:45 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 45 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:02 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 2 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:54:57 UTC 2014 年 11 月 22 日 (土) 13 時 54 分 57 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:24:18 UTC 2014 年 11 月 18 日 (火) 15 時 24 分 18 秒 (日本時間) |
composite number 合成数 | 12198636377253449836445944508181337289754290516002764687809129856741743147826165564665091983286812445766986086456091515218605623643644298236665971409731154787509223<164> |
prime factors 素因数 | 2093842272458410741774849213<28> 5825957636690013427459366899169729979015677872536693974998454853898323791337704828351511646215212804759379532062224000619660990694182771<136> |
factorization results 素因数分解の結果 | Input number is 12198636377253449836445944508181337289754290516002764687809129856741743147826165564665091983286812445766986086456091515218605623643644298236665971409731154787509223 (164 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1670893190 Step 1 took 4444ms Step 2 took 3586ms ********** Factor found in step 2: 2093842272458410741774849213 Found probable prime factor of 28 digits: 2093842272458410741774849213 Probable prime cofactor 5825957636690013427459366899169729979015677872536693974998454853898323791337704828351511646215212804759379532062224000619660990694182771 has 136 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:45 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 45 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | January 22, 2017 01:23:14 UTC 2017 年 1 月 22 日 (日) 10 時 23 分 14 秒 (日本時間) |
composite number 合成数 | 1618148863693488977572401017809978216669625083111814631852712313482979138841406041651253907104114063683364505501174024846715730639231192409077576279486161202829323243538521799<175> |
prime factors 素因数 | 1722629084482594670703191736423467488337865593394537356709160959274904401454251<79> 939348393841563892213292870882089464767363105128776873861150062500625716450909367081855328638549<96> |
factorization results 素因数分解の結果 | Number: 91999_189 N=1618148863693488977572401017809978216669625083111814631852712313482979138841406041651253907104114063683364505501174024846715730639231192409077576279486161202829323243538521799 ( 175 digits) SNFS difficulty: 191 digits. Divisors found: r1=1722629084482594670703191736423467488337865593394537356709160959274904401454251 r2=939348393841563892213292870882089464767363105128776873861150062500625716450909367081855328638549 Version: Total time: 115.43 hours. Scaled time: 606.59 units (timescale=5.255). Factorization parameters were as follows: n: 1618148863693488977572401017809978216669625083111814631852712313482979138841406041651253907104114063683364505501174024846715730639231192409077576279486161202829323243538521799 m: 100000000000000000000000000000000000000 deg: 5 c5: 46 c0: -5 skew: 0.64 # Murphy_E = 3.349e-11 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 9600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 21211217 Max relations in full relation-set: Initial matrix: Pruned matrix : 1957340 x 1957587 Total sieving time: 106.52 hours. Total relation processing time: 2.81 hours. Matrix solve time: 5.53 hours. Time per square root: 0.57 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 115.43 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:46 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 46 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 14:40:09 UTC 2015 年 7 月 17 日 (金) 23 時 40 分 9 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | March 2, 2017 10:31:56 UTC 2017 年 3 月 2 日 (木) 19 時 31 分 56 秒 (日本時間) |
composite number 合成数 | 464948387973862100637800230295902151719714346849255310761807018080362741225714725377541092199934569341392746928620500304217882022979829250654060006565151630290098179770827<171> |
prime factors 素因数 | 2004552512413221820019051360930826073018277438198757852777068812559565133123115093<82> 231946224952782309259984713811064472930590653783716678937348084547647200799640931598465439<90> |
factorization results 素因数分解の結果 | Number: 91999_190 N=464948387973862100637800230295902151719714346849255310761807018080362741225714725377541092199934569341392746928620500304217882022979829250654060006565151630290098179770827 ( 171 digits) SNFS difficulty: 191 digits. Divisors found: r1=2004552512413221820019051360930826073018277438198757852777068812559565133123115093 r2=231946224952782309259984713811064472930590653783716678937348084547647200799640931598465439 Version: Total time: 98.10 hours. Scaled time: 515.51 units (timescale=5.255). Factorization parameters were as follows: n: 464948387973862100637800230295902151719714346849255310761807018080362741225714725377541092199934569341392746928620500304217882022979829250654060006565151630290098179770827 m: 100000000000000000000000000000000000000 deg: 5 c5: 92 c0: -1 skew: 0.40 # Murphy_E = 3.94e-11 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8800001) Primes: rational ideals reading, algebraic ideals reading, Relations: 20786889 Max relations in full relation-set: Initial matrix: Pruned matrix : 1875680 x 1875927 Total sieving time: 90.72 hours. Total relation processing time: 2.33 hours. Matrix solve time: 4.91 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 98.10 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:46 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 46 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 19, 2015 06:05:20 UTC 2015 年 6 月 19 日 (金) 15 時 5 分 20 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | February 28, 2015 16:11:15 UTC 2015 年 3 月 1 日 (日) 1 時 11 分 15 秒 (日本時間) |
composite number 合成数 | 17481231407576746748972740029248234018382357720454568259551385682239331497561642133585754717415663979404472555283020292637143767907<131> |
prime factors 素因数 | 6829015805371370925444301895040078339419009712237968591<55> 2559846382816519814569519855069928831404987688066705987928663879974835250477<76> |
factorization results 素因数分解の結果 | Number: 91999_191 N = 17481231407576746748972740029248234018382357720454568259551385682239331497561642133585754717415663979404472555283020292637143767907 (131 digits) Divisors found: r1=6829015805371370925444301895040078339419009712237968591 (pp55) r2=2559846382816519814569519855069928831404987688066705987928663879974835250477 (pp76) Version: Msieve v. 1.52 (SVN 958) Total time: 51.19 hours. Factorization parameters were as follows: # Murphy_E = 7.307e-11, selected by Erik Branger # expecting poly E from 8.03e-011 to > 9.24e-011 n: 17481231407576746748972740029248234018382357720454568259551385682239331497561642133585754717415663979404472555283020292637143767907 Y0: -24500830524205183449712236 Y1: 25319744882801 c0: 1050423680185970478630562644905815 c1: 2600754919711563702114905529 c2: -12016345495951619198353 c3: -6100684530410661 c4: 12354249642 c5: 1980 skew: 1032672.09 type: gnfs # selected mechanically rlim: 9900000 alim: 9900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 9900000/9900000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 19135846 Relations: 2605566 relations Pruned matrix : 1508747 x 1508972 Polynomial selection time: 0.00 hours. Total sieving time: 50.09 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.89 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,130,5,65,2000,1e-05,0.28,250,20,50000,3600,9900000,9900000,28,28,54,54,2.6,2.6,100000 total time: 51.19 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:47 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 47 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:11 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 11 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:07 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 7 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:22:40 UTC 2014 年 11 月 18 日 (火) 15 時 22 分 40 秒 (日本時間) |
composite number 合成数 | 23690079793380193701597221569006243915890154723358237095804845644632327369291431005766772218647871305741147172524058583222868699677938418721251139<146> |
prime factors 素因数 | 11235942362767274144947901748553<32> |
composite cofactor 合成数の残り | 2108419483521239688714857948816142970588479558551914131661453286542876051025817538371839949086106798340667719429163<115> |
factorization results 素因数分解の結果 | Input number is 23690079793380193701597221569006243915890154723358237095804845644632327369291431005766772218647871305741147172524058583222868699677938418721251139 (146 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=340876272 Step 1 took 3067ms Step 2 took 2209ms ********** Factor found in step 2: 11235942362767274144947901748553 Found probable prime factor of 32 digits: 11235942362767274144947901748553 Composite cofactor 2108419483521239688714857948816142970588479558551914131661453286542876051025817538371839949086106798340667719429163 has 115 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | November 24, 2014 07:33:07 UTC 2014 年 11 月 24 日 (月) 16 時 33 分 7 秒 (日本時間) |
composite number 合成数 | 2108419483521239688714857948816142970588479558551914131661453286542876051025817538371839949086106798340667719429163<115> |
prime factors 素因数 | 940889234273900903297116985949963927413393<42> 2240879592110903826385589532995122423316963011466126733262516518658672891<73> |
factorization results 素因数分解の結果 | Number: 91999_193 N = 2108419483521239688714857948816142970588479558551914131661453286542876051025817538371839949086106798340667719429163 (115 digits) Divisors found: r1=940889234273900903297116985949963927413393 (pp42) r2=2240879592110903826385589532995122423316963011466126733262516518658672891 (pp73) Version: Msieve v. 1.51 (SVN 845) Total time: 20.52 hours. Factorization parameters were as follows: n: 2108419483521239688714857948816142970588479558551914131661453286542876051025817538371839949086106798340667719429163 Y0: -8911062632932060685911 Y1: 1464717070229 c0: -57844756976027716205093088 c1: 139914313884993263533668 c2: -585887695065410432 c3: -364085998628603 c4: 216917656 c5: 37524 skew: 39834.68 type: gnfs Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Sieved algebraic special-q in [0, 0) Total raw relations: 8581971 Relations: 637872 relations Pruned matrix : 388869 x 389094 Polynomial selection time: 5.42 hours. Total sieving time: 14.90 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,114,5,61,2000,0.00016,0.25,250,15,50000,2800,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 20.52 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:47 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 47 秒 (日本時間) |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 11, 2017 05:19:13 UTC 2017 年 2 月 11 日 (土) 14 時 19 分 13 秒 (日本時間) |
composite number 合成数 | 12398368002762968102973855197585592199251339298337078594485012575352439323434892138078339965578486002683023667003396099038158838699252710808567797812022158878524876077859<170> |
prime factors 素因数 | 4850380797679911929623650398803670642453<40> 2556163839485240691388801536641834546268176969189739868182330716711951096187947862715499897017921424221738447205456976189486108503<130> |
factorization results 素因数分解の結果 | GMP-ECM 6.4.4 [configured with GMP 6.0.0, --enable-asm-redc] [ECM] Input number is 12398368002762968102973855197585592199251339298337078594485012575352439323434892138078339965578486002683023667003396099038158838699252710808567797812022158878524876077859 (170 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3360003631 Step 1 took 29913ms Step 2 took 10046ms ********** Factor found in step 2: 4850380797679911929623650398803670642453 Found probable prime factor of 40 digits: 4850380797679911929623650398803670642453 Probable prime cofactor 2556163839485240691388801536641834546268176969189739868182330716711951096187947862715499897017921424221738447205456976189486108503 has 130 digits |
execution environment 実行環境 | Core i7-4930K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:48 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 48 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 4, 2015 05:59:42 UTC 2015 年 6 月 4 日 (木) 14 時 59 分 42 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 7, 2014 13:37:50 UTC 2014 年 12 月 7 日 (日) 22 時 37 分 50 秒 (日本時間) |
composite number 合成数 | 1010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989<199> |
prime factors 素因数 | 3780390781938705207443995896361982659040007037<46> 5758528591032419775429046257513800467858658864107<49> 46440641703204391177736387125232356155789343617203125753748023822433423047545951331746914340586687153171<104> |
factorization results 素因数分解の結果 | Number: n N=1010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989 ( 199 digits) SNFS difficulty: 199 digits. Divisors found: Mon Dec 8 00:32:22 2014 prp46 factor: 3780390781938705207443995896361982659040007037 Mon Dec 8 00:32:22 2014 prp49 factor: 5758528591032419775429046257513800467858658864107 Mon Dec 8 00:32:22 2014 prp104 factor: 46440641703204391177736387125232356155789343617203125753748023822433423047545951331746914340586687153171 Mon Dec 8 00:32:22 2014 elapsed time 03:31:30 (Msieve 1.44 - dependency 5) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.846). Factorization parameters were as follows: # # N = 92*10^198-1 919(198) # # n: 1010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989 m: 2000000000000000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 1.405e-11 type: snfs lss: 1 rlim: 15100000 alim: 15100000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 15100000/15100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 21550000) Primes: RFBsize:976761, AFBsize:976817, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4943229 hash collisions in 32353792 relations (28970515 unique) Msieve: matrix is 1871117 x 1871342 (527.6 MB) Total sieving time: 0.00 hours. Total relation processing time: 2hrs 56min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 27min 53sec. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,15100000,15100000,28,28,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038567] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059648K/16661464K available (7373K kernel code, 1159K rwdata, 3228K rodata, 1468K init, 1504K bss, 601816K reserved) [ 1.136330] [drm] Memory usable by graphics device = 2048M [ 0.000027] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.63 BogoMIPS (lpj=3600319) [ 0.136557] smpboot: Total of 8 processors activated (57605.10 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:48 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 48 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:28 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 28 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:27 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 27 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | August 29, 2016 17:32:13 UTC 2016 年 8 月 30 日 (火) 2 時 32 分 13 秒 (日本時間) |
composite number 合成数 | 153362755176424051290163737260617704418704997097049813103044708528226944942376450192497476308016417173237261569642109143446476991244482977259<141> |
prime factors 素因数 | 298417088811046891945370904652356295281904536831139<51> 513920820645532761849046615557606346930207816372376850339651124819613393988465691985645081<90> |
factorization results 素因数分解の結果 | Number: 91999_199 N = 153362755176424051290163737260617704418704997097049813103044708528226944942376450192497476308016417173237261569642109143446476991244482977259 (141 digits) Divisors found: r1=298417088811046891945370904652356295281904536831139 (pp51) r2=513920820645532761849046615557606346930207816372376850339651124819613393988465691985645081 (pp90) Version: Msieve v. 1.52 (SVN unknown) Total time: 197.08 hours. Factorization parameters were as follows: # Murphy_E = 2.024e-11, selected by Maksym Voznyy # expecting poly E from 2.00e-011 to > 2.30e-011; sieved all c5<2772 n: 153362755176424051290163737260617704418704997097049813103044708528226944942376450192497476308016417173237261569642109143446476991244482977259 Y0: -2345593782321184011921581465 Y1: 1049241675832847 c0: -10061504337251985247967739207957648 c1: -90439695085311370651386208017 c2: -169606837423410159162838 c3: 142510848456085898 c4: 23818488540 c5: 2160 skew: 1720038.76 type: gnfs # selected mechanically rlim: 18400000 alim: 18400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18400000/18400000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23197045 Relations: 3706872 relations Pruned matrix : 2302120 x 2302351 Polynomial selection time: 0.00 hours. Total sieving time: 194.50 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.31 hours. time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,140,5,65,2000,1e-05,0.28,250,20,50000,3600,18400000,18400000,28,28,56,56,2.6,2.6,100000 total time: 197.08 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-8-6.2.9200 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:49 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 49 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:14 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 14 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:12 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 12 秒 (日本時間) | |||
45 | 11e6 | 800 / 2921 | Dmitry Domanov | February 29, 2016 06:30:41 UTC 2016 年 2 月 29 日 (月) 15 時 30 分 41 秒 (日本時間) | |
50 | 43e6 | 300 / 7289 | Rich Dickerson | June 7, 2016 13:11:35 UTC 2016 年 6 月 7 日 (火) 22 時 11 分 35 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | March 28, 2021 19:16:33 UTC 2021 年 3 月 29 日 (月) 4 時 16 分 33 秒 (日本時間) |
composite number 合成数 | 7033841770465803957688610083653190347747085210723144842016873681983117533398765360955062137323750378214082200489715470259085597762868996792472801964364966208152471676641257051440616530253<187> |
prime factors 素因数 | 1433887443360338132806937792665477258264510414225101828315859<61> 4905435083511076286823012435570698303199213074346692368053159952860454390486016892211062287873018083180364329037158839744790367<127> |
factorization results 素因数分解の結果 | 7033841770465803957688610083653190347747085210723144842016873681983117533398765360955062137323750378214082200489715470259085597762868996792472801964364966208152471676641257051440616530253=1433887443360338132806937792665477258264510414225101828315859*4905435083511076286823012435570698303199213074346692368053159952860454390486016892211062287873018083180364329037158839744790367 cado polynomial n: 7033841770465803957688610083653190347747085210723144842016873681983117533398765360955062137323750378214082200489715470259085597762868996792472801964364966208152471676641257051440616530253 skew: 0.40 type: snfs c0: -1 c5: 92 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 92*x^5-1 # g(x) = -x+10000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 16300000 tasks.lim1 = 16300000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 4905435083511076286823012435570698303199213074346692368053159952860454390486016892211062287873018083180364329037158839744790367 1433887443360338132806937792665477258264510414225101828315859 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 6.79/2.52774 Info:Generate Free Relations: Total cpu/real time for freerel: 203.56/52.4565 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 46668975 Info:Lattice Sieving: Average J: 1895.68 for 3686174 special-q, max bucket fill -bkmult 1.0,1s:1.077160 Info:Lattice Sieving: Total time: 1.227e+06s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 87.72/237.352 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 236.5s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 738.59/632.093 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 543.1s Info:Filtering - Singleton removal: Total cpu/real time for purge: 551.34/556.757 Info:Filtering - Merging: Merged matrix has 3337354 rows and total weight 569370840 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 492.32/142.058 Info:Filtering - Merging: Total cpu/real time for replay: 133.08/116.27 Info:Linear Algebra: Total cpu/real time for bwc: 204576/52280.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 33477.03, iteration CPU time 0.3, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (104448 iterations) Info:Linear Algebra: Lingen CPU time 703.94, WCT time 202.67 Info:Linear Algebra: Mksol: WCT time 18191.07, iteration CPU time 0.33, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (52224 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 121.92/50.537 Info:Square Root: Total cpu/real time for sqrt: 960.75/303.152 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 2.37139e+06/293592 Info:root: Cleaning up computation data in /tmp/cado.u1xmf3ir 4905435083511076286823012435570698303199213074346692368053159952860454390486016892211062287873018083180364329037158839744790367 1433887443360338132806937792665477258264510414225101828315859 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | 6 x Linux Ubuntu 20.04.1 LTS [5.4.0-48-generic|libc 2.31 (Ubuntu GLIBC 2.31-0ubuntu9.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:49 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 49 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 13:24:02 UTC 2015 年 7 月 17 日 (金) 22 時 24 分 2 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 3, 2022 08:13:43 UTC 2022 年 2 月 3 日 (木) 17 時 13 分 43 秒 (日本時間) |
composite number 合成数 | 167088026140992330104116772258820025377251055736686119782443996544148894583482470728663670529265412978425054058253598910569813608012714123698311506687746637348501873<165> |
prime factors 素因数 | 1180860387464696058009554012008226010257503057404755398510813<61> 141496850867975895007309304209543870372119011485506120503730908739424225093631021684279164119624755699621<105> |
factorization results 素因数分解の結果 | Number: n N=167088026140992330104116772258820025377251055736686119782443996544148894583482470728663670529265412978425054058253598910569813608012714123698311506687746637348501873 ( 165 digits) SNFS difficulty: 202 digits. Divisors found: Thu Feb 3 19:07:38 2022 p61 factor: 1180860387464696058009554012008226010257503057404755398510813 Thu Feb 3 19:07:38 2022 p105 factor: 141496850867975895007309304209543870372119011485506120503730908739424225093631021684279164119624755699621 Thu Feb 3 19:07:38 2022 elapsed time 01:51:53 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.321). Factorization parameters were as follows: # # N = 92x10^201-1 = 919(201) # n: 167088026140992330104116772258820025377251055736686119782443996544148894583482470728663670529265412978425054058253598910569813608012714123698311506687746637348501873 m: 10000000000000000000000000000000000000000 deg: 5 c5: 920 c0: -1 skew: 0.26 # Murphy_E = 1.022e-11 type: snfs lss: 1 rlim: 16900000 alim: 16900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 16900000/16900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved special-q in [100000, 50050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 6033410 hash collisions in 35861223 relations (31416140 unique) Msieve: matrix is 2179842 x 2180067 (752.9 MB) Sieving start time : 2022/02/03 01:36:50 Sieving end time : 2022/02/03 17:14:37 Total sieving time: 15hrs 37min 47secs. Total relation processing time: 1hrs 33min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 42sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16900000,16900000,28,28,55,55,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.116821] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16221996K/16727236K available (14339K kernel code, 2400K rwdata, 9492K rodata, 2736K init, 4964K bss, 505240K reserved, 0K cma-reserved) [ 0.152622] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.24 BogoMIPS (lpj=12798480) [ 0.150214] smpboot: Total of 16 processors activated (102387.84 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:50 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 50 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4601 | 601 | Cyp | December 2, 2014 23:42:56 UTC 2014 年 12 月 3 日 (水) 8 時 42 分 56 秒 (日本時間) |
1000 | Ignacio Santos | September 25, 2021 13:08:28 UTC 2021 年 9 月 25 日 (土) 22 時 8 分 28 秒 (日本時間) | |||
1000 | Ignacio Santos | September 25, 2021 15:16:28 UTC 2021 年 9 月 26 日 (日) 0 時 16 分 28 秒 (日本時間) | |||
1000 | Ignacio Santos | September 28, 2021 13:33:26 UTC 2021 年 9 月 28 日 (火) 22 時 33 分 26 秒 (日本時間) | |||
1000 | Ignacio Santos | October 2, 2021 16:11:59 UTC 2021 年 10 月 3 日 (日) 1 時 11 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 14, 2023 20:27:06 UTC 2023 年 9 月 15 日 (金) 5 時 27 分 6 秒 (日本時間) |
composite number 合成数 | 101101217678988167463046035987103978714833456325822001606544148522082906831544036000168802388700370637933173079681035089976195626279012536984540754609419<153> |
prime factors 素因数 | 33781657353734235003460400954311246756008525055441<50> 2992784416120791869276270920187546321511587970671276961326549359613562573639868254080598585398488082459<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM] Input number is 101101217678988167463046035987103978714833456325822001606544148522082906831544036000168802388700370637933173079681035089976195626279012536984540754609419 (153 digits) Using B1=62640000, B2=388131795880, polynomial Dickson(30), sigma=1:1600257862 Step 1 took 115485ms Step 2 took 45293ms ********** Factor found in step 2: 33781657353734235003460400954311246756008525055441 Found prime factor of 50 digits: 33781657353734235003460400954311246756008525055441 Prime cofactor 2992784416120791869276270920187546321511587970671276961326549359613562573639868254080598585398488082459 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:50 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 50 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 5081 | 601 | Cyp | November 30, 2014 12:23:39 UTC 2014 年 11 月 30 日 (日) 21 時 23 分 39 秒 (日本時間) |
4480 | Ignacio Santos | February 9, 2022 20:01:52 UTC 2022 年 2 月 10 日 (木) 5 時 1 分 52 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | October 28, 2021 19:48:25 UTC 2021 年 10 月 29 日 (金) 4 時 48 分 25 秒 (日本時間) |
composite number 合成数 | 5278581076378236655645082827196092162534631969717362380870001639342349669965815526744000804264379097718198056206714831908799625810506921262755017180677684925054308310791398870176049<181> |
prime factors 素因数 | 781844746844942966045202494016318287304747266029625357<54> 6751444065691338011103757852207427576497299491297098540626218795440928776815299164661452370400355463820279669664435218929535157<127> |
factorization results 素因数分解の結果 | Number: n N=5278581076378236655645082827196092162534631969717362380870001639342349669965815526744000804264379097718198056206714831908799625810506921262755017180677684925054308310791398870176049 ( 181 digits) SNFS difficulty: 205 digits. Divisors found: Fri Oct 29 06:43:28 2021 p54 factor: 781844746844942966045202494016318287304747266029625357 Fri Oct 29 06:43:28 2021 p127 factor: 6751444065691338011103757852207427576497299491297098540626218795440928776815299164661452370400355463820279669664435218929535157 Fri Oct 29 06:43:28 2021 elapsed time 02:04:45 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.339). Factorization parameters were as follows: # # N = 92x10^204-1 = 919(204) # n: 5278581076378236655645082827196092162534631969717362380870001639342349669965815526744000804264379097718198056206714831908799625810506921262755017180677684925054308310791398870176049 m: 10000000000000000000000000000000000 deg: 6 c6: 92 c0: -1 skew: 0.47 # Murphy_E = 9.537e-12 type: snfs lss: 1 rlim: 19000000 alim: 19000000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19000000/19000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved special-q in [100000, 43900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 9874012 hash collisions in 64759841 relations (57798196 unique) Msieve: matrix is 2273119 x 2273347 (784.6 MB) Sieving start time : 2021/10/28 14:19:55 Sieving end time : 2021/10/29 04:36:05 Total sieving time: 14hrs 16min 10secs. Total relation processing time: 1hrs 45min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 26sec. Prototype def-par.txt line would be: snfs,205,6,0,0,0,0,0,0,0,0,19000000,19000000,29,29,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.118892] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16239956K/16727236K available (14339K kernel code, 2400K rwdata, 5016K rodata, 2728K init, 4972K bss, 487280K reserved, 0K cma-reserved) [ 0.152618] x86/mm: Memory block size: 128MB [ 0.000004] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.04 BogoMIPS (lpj=12798084) [ 0.150210] smpboot: Total of 16 processors activated (102384.67 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:50 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 50 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | 254 | Cyp | December 6, 2014 15:43:09 UTC 2014 年 12 月 7 日 (日) 0 時 43 分 9 秒 (日本時間) |
347 | Cyp | May 14, 2015 05:47:14 UTC 2015 年 5 月 14 日 (木) 14 時 47 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 11, 2021 03:05:00 UTC 2021 年 6 月 11 日 (金) 12 時 5 分 0 秒 (日本時間) |
composite number 合成数 | 7756605603276347691110909565191203243493801663154749163467660607997309594406904450344112855194056339489916923407985938646709148356626918156108714441048358579621373000066179578900744889<184> |
prime factors 素因数 | 293961387975530999155614476257086473471127737<45> 26386477682307032908007769139131865722459005789064786092126445998308586527970773273938601643326291320862716471778299734427824417635381111297<140> |
factorization results 素因数分解の結果 | # # N = 92x10^205-1 = 919(205) # n: 7756605603276347691110909565191203243493801663154749163467660607997309594406904450344112855194056339489916923407985938646709148356626918156108714441048358579621373000066179578900744889 m: 100000000000000000000000000000000000000000 deg: 5 c5: 92 c0: -1 skew: 0.40 # Murphy_E = 9.283e-12 type: snfs lss: 1 rlim: 19700000 alim: 19700000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 7756605603276347691110909565191203243493801663154749163467660607997309594406904450344112855194056339489916923407985938646709148356626918156108714441048358579621373000066179578900744889 (184 digits) Using B1=39880000, B2=192393080896, polynomial Dickson(12), sigma=1:57370377 Step 1 took 105381ms Step 2 took 33144ms ********** Factor found in step 2: 293961387975530999155614476257086473471127737 Found prime factor of 45 digits: 293961387975530999155614476257086473471127737 Prime cofactor 26386477682307032908007769139131865722459005789064786092126445998308586527970773273938601643326291320862716471778299734427824417635381111297 has 140 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:51 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 51 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 5, 2014 18:43:44 UTC 2014 年 12 月 6 日 (土) 3 時 43 分 44 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:41:03 UTC 2014 年 11 月 18 日 (火) 15 時 41 分 3 秒 (日本時間) |
composite number 合成数 | 22025377064879099832415609288963370840316016279626526214986832655015561407708881972707684941345463251137179794110605697869284175245391429255446492698108690447689729470912137898012927938711994254249461335887<206> |
prime factors 素因数 | 307794099616957318677242472155161381<36> |
composite cofactor 合成数の残り | 71558802109232032922594825875571080754829614100811040967861097131282698150456673672471763676879348323850677826748252354222966032319949631367397724920188098499021328150627<170> |
factorization results 素因数分解の結果 | Input number is 22025377064879099832415609288963370840316016279626526214986832655015561407708881972707684941345463251137179794110605697869284175245391429255446492698108690447689729470912137898012927938711994254249461335887 (206 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3247179636 Step 1 took 5357ms Step 2 took 3297ms ********** Factor found in step 2: 307794099616957318677242472155161381 Found probable prime factor of 36 digits: 307794099616957318677242472155161381 Composite cofactor 71558802109232032922594825875571080754829614100811040967861097131282698150456673672471763676879348323850677826748252354222966032319949631367397724920188098499021328150627 has 170 digits |
name 名前 | Jo Yeong Uk |
---|---|
date 日付 | February 9, 2024 07:32:26 UTC 2024 年 2 月 9 日 (金) 16 時 32 分 26 秒 (日本時間) |
composite number 合成数 | 71558802109232032922594825875571080754829614100811040967861097131282698150456673672471763676879348323850677826748252354222966032319949631367397724920188098499021328150627<170> |
prime factors 素因数 | 1437119666947195344817004309430745117977533543386871179439137<61> 49793210513388198057558560639077167684040112080224039406514429258499093682169362784361056346550483987846048771<110> |
factorization results 素因数分解の結果 | Number: 91999_207 N=71558802109232032922594825875571080754829614100811040967861097131282698150456673672471763676879348323850677826748252354222966032319949631367397724920188098499021328150627 ( 170 digits) SNFS difficulty: 209 digits. Divisors found: r1=1437119666947195344817004309430745117977533543386871179439137 r2=49793210513388198057558560639077167684040112080224039406514429258499093682169362784361056346550483987846048771 Version: Total time: 466.76 hours. Scaled time: 3242.57 units (timescale=6.947). Factorization parameters were as follows: n: 71558802109232032922594825875571080754829614100811040967861097131282698150456673672471763676879348323850677826748252354222966032319949631367397724920188098499021328150627 m: 200000000000000000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.32 # Murphy_E = 6.574e-12 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [10000000, 24700001) Primes: rational ideals reading, algebraic ideals reading, Relations: 43406025 Max relations in full relation-set: Initial matrix: Pruned matrix : 4071430 x 4071676 Total sieving time: 385.62 hours. Total relation processing time: 17.03 hours. Matrix solve time: 63.59 hours. Time per square root: 0.52 hours. Prototype def-par.txt line would be: snfs,209,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,57,57,2.6,2.6,100000 total time: 466.76 hours. --------- CPU info (if available) ---------- |
software ソフトウェア | GGNFS / Msieve v1.39 |
execution environment 実行環境 | Core i7-10700K |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:51 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 51 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | May 21, 2015 17:59:08 UTC 2015 年 5 月 22 日 (金) 2 時 59 分 8 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 30, 2021 11:15:32 UTC 2021 年 5 月 30 日 (日) 20 時 15 分 32 秒 (日本時間) |
composite number 合成数 | 562676153633638285034810965211677625348518394737993971125083107662453050997418009658999182102854767528819029324044262407685700653393214862536735789263817034059856464141352960029413858158503606118129<198> |
prime factors 素因数 | 5974176237750202674948591184373052616337613708953149<52> 14132267107061540358823817901087786508456329238146056713685999591<65> 6664516425794528404039500027023115790539578195517199968759367116915196586200367731<82> |
factorization results 素因数分解の結果 | Number: n N=562676153633638285034810965211677625348518394737993971125083107662453050997418009658999182102854767528819029324044262407685700653393214862536735789263817034059856464141352960029413858158503606118129 ( 198 digits) SNFS difficulty: 209 digits. Divisors found: Sun May 30 20:57:54 2021 found factor: 5974176237750202674948591184373052616337613708953149 Sun May 30 21:07:14 2021 p52 factor: 5974176237750202674948591184373052616337613708953149 Sun May 30 21:07:14 2021 p65 factor: 14132267107061540358823817901087786508456329238146056713685999591 Sun May 30 21:07:14 2021 p82 factor: 6664516425794528404039500027023115790539578195517199968759367116915196586200367731 Sun May 30 21:07:14 2021 elapsed time 03:31:23 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.351). Factorization parameters were as follows: # # N = 92x10^208-1 = 919(208) # n: 562676153633638285034810965211677625348518394737993971125083107662453050997418009658999182102854767528819029324044262407685700653393214862536735789263817034059856464141352960029413858158503606118129 m: 200000000000000000000000000000000000000000 deg: 5 c5: 2875 c0: -1 skew: 0.20 # Murphy_E = 5.318e-12 type: snfs lss: 1 rlim: 22000000 alim: 22000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 22000000/22000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 45400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 8181869 hash collisions in 56496235 relations (50339193 unique) Msieve: matrix is 2904704 x 2904929 (1016.2 MB) Sieving start time : 2021/05/30 01:37:34 Sieving end time : 2021/05/30 17:34:40 Total sieving time: 15hrs 57min 6secs. Total relation processing time: 2hrs 59min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 14min 2sec. Prototype def-par.txt line would be: snfs,209,5,0,0,0,0,0,0,0,0,22000000,22000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.117662] smpboot: CPU0: AMD Ryzen 7 2700 Eight-Core Processor (family: 0x17, model: 0x8, stepping: 0x2) [ 0.000000] Memory: 16241088K/16727236K available (14339K kernel code, 2400K rwdata, 5008K rodata, 2732K init, 4972K bss, 486148K reserved, 0K cma-reserved) [ 0.152608] x86/mm: Memory block size: 128MB [ 0.000005] Calibrating delay loop (skipped), value calculated using timer frequency.. 6399.07 BogoMIPS (lpj=12798140) [ 0.150211] smpboot: Total of 16 processors activated (102385.12 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:52 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 52 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 14:58:40 UTC 2015 年 7 月 17 日 (金) 23 時 58 分 40 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:40:14 UTC 2014 年 11 月 18 日 (火) 15 時 40 分 14 秒 (日本時間) |
composite number 合成数 | 1203052777807672476936464808228221936508811191236314964081747802398528938447282286121440619609841353560957108513909048922311206137169750080038970540938166447922467119161841498764196725648639308732150668813<205> |
prime factors 素因数 | 2033985222368958492509359034009891<34> |
composite cofactor 合成数の残り | 591475672771354336002539046124837768630615168038270222844517111000949811393497299712407521878787311834013551255255512223910557576662413552512244586242150503510632789878543<171> |
factorization results 素因数分解の結果 | Input number is 1203052777807672476936464808228221936508811191236314964081747802398528938447282286121440619609841353560957108513909048922311206137169750080038970540938166447922467119161841498764196725648639308732150668813 (205 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=633122125 Step 1 took 5333ms Step 2 took 3261ms ********** Factor found in step 2: 2033985222368958492509359034009891 Found probable prime factor of 34 digits: 2033985222368958492509359034009891 Composite cofactor 591475672771354336002539046124837768630615168038270222844517111000949811393497299712407521878787311834013551255255512223910557576662413552512244586242150503510632789878543 has 171 digits |
name 名前 | Cyp |
---|---|
date 日付 | June 13, 2015 16:09:37 UTC 2015 年 6 月 14 日 (日) 1 時 9 分 37 秒 (日本時間) |
composite number 合成数 | 591475672771354336002539046124837768630615168038270222844517111000949811393497299712407521878787311834013551255255512223910557576662413552512244586242150503510632789878543<171> |
prime factors 素因数 | 1220509479135464232477934664279340881<37> |
composite cofactor 合成数の残り | 484613747687007113054845141739684141083872734379941998507670517003683956467433805829483297595324185427241213114662435778001211000823903<135> |
factorization results 素因数分解の結果 | Run 61 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3911135866 Step 1 took 50416ms Step 2 took 17353ms ********** Factor found in step 2: 1220509479135464232477934664279340881 Found probable prime factor of 37 digits: 1220509479135464232477934664279340881 Composite cofactor 484613747687007113054845141739684141083872734379941998507670517003683956467433805829483297595324185427241213114662435778001211000823903 has 135 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Erik Branger |
---|---|
date 日付 | August 11, 2015 18:27:08 UTC 2015 年 8 月 12 日 (水) 3 時 27 分 8 秒 (日本時間) |
composite number 合成数 | 484613747687007113054845141739684141083872734379941998507670517003683956467433805829483297595324185427241213114662435778001211000823903<135> |
prime factors 素因数 | 90942144685076607869589987731499361342868419840964462169683<59> 5328813712994950840254100020556821501250810875450169016493376851337813814341<76> |
factorization results 素因数分解の結果 | Number: 91999_210 N = 484613747687007113054845141739684141083872734379941998507670517003683956467433805829483297595324185427241213114662435778001211000823903 (135 digits) Divisors found: r1=90942144685076607869589987731499361342868419840964462169683 (pp59) r2=5328813712994950840254100020556821501250810875450169016493376851337813814341 (pp76) Version: Msieve v. 1.51 (SVN 845) Total time: 165.00 hours. Factorization parameters were as follows: # Murphy_E = 4.06e-11, selected by Erik Branger # expecting poly E from 4.32e-011 to > 4.97e-011 n: 484613747687007113054845141739684141083872734379941998507670517003683956467433805829483297595324185427241213114662435778001211000823903 Y0: -187556460422617406400674782 Y1: 211153586746333 c0: 4704084719523114043247739909934425 c1: 22698005017724159738056069743 c2: -73031459652716327911556 c3: -9275360149626599 c4: 21759680499 c5: 2088 skew: 1753507.27 type: gnfs # selected mechanically rlim: 13100000 alim: 13100000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 13100000/13100000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 20680083 Relations: 3343820 relations Pruned matrix : 2000914 x 2001162 Polynomial selection time: 0.00 hours. Total sieving time: 160.17 hours. Total relation processing time: 0.14 hours. Matrix solve time: 3.49 hours. time per square root: 1.20 hours. Prototype def-par.txt line would be: gnfs,134,5,65,2000,1e-05,0.28,250,20,50000,3600,13100000,13100000,28,28,54,54,2.6,2.6,100000 total time: 165.00 hours. Intel64 Family 6 Model 58 Stepping 9, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 2.29GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:52 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 52 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 13, 2015 16:09:37 UTC 2015 年 6 月 14 日 (日) 1 時 9 分 37 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 29, 2016 13:16:33 UTC 2016 年 2 月 29 日 (月) 22 時 16 分 33 秒 (日本時間) |
composite number 合成数 | 18709756549164279136094209556902990565413837003034829850812999460264771552279888492548918476233335041959687518949555951061575115439472516976003<143> |
prime factors 素因数 | 54132903245662139723827244495672786057<38> 345626327563791950375997159636817329432193788911127099415789473980797011339262980057631951613411339857579<105> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1682977650 Step 1 took 48125ms Step 2 took 17368ms ********** Factor found in step 2: 54132903245662139723827244495672786057 Found probable prime factor of 38 digits: 54132903245662139723827244495672786057 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:52 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 52 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:16 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 16 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:14 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 14 秒 (日本時間) | |||
45 | 11e6 | 800 / 3974 | Dmitry Domanov | February 29, 2016 11:38:42 UTC 2016 年 2 月 29 日 (月) 20 時 38 分 42 秒 (日本時間) |
name 名前 | Robert Backstrom |
---|---|
date 日付 | December 5, 2014 07:22:58 UTC 2014 年 12 月 5 日 (金) 16 時 22 分 58 秒 (日本時間) |
composite number 合成数 | 116727171904031574374755077317850950170638270616797517494566895123981629340833977057180125879801561757458193392442264320782931404436601799256743544683576959736242115451733573925883638790611<189> |
prime factors 素因数 | 271307248294801190702668359057935920737919<42> 430239784000154591387291874222557203012658991136641083231302146459151056669628691704637773016378509407709667140517380296539043741409521269301981869<147> |
factorization results 素因数分解の結果 | Number: n N=116727171904031574374755077317850950170638270616797517494566895123981629340833977057180125879801561757458193392442264320782931404436601799256743544683576959736242115451733573925883638790611 ( 189 digits) SNFS difficulty: 214 digits. Divisors found: Fri Dec 5 18:17:29 2014 prp42 factor: 271307248294801190702668359057935920737919 Fri Dec 5 18:17:29 2014 prp147 factor: 430239784000154591387291874222557203012658991136641083231302146459151056669628691704637773016378509407709667140517380296539043741409521269301981869 Fri Dec 5 18:17:29 2014 elapsed time 11:15:47 (Msieve 1.44 - dependency 1) Version: GGNFS-0.77.1-20060513-nocona Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.940). Factorization parameters were as follows: # # N = 92*10^212-1 # # n: 116727171904031574374755077317850950170638270616797517494566895123981629340833977057180125879801561757458193392442264320782931404436601799256743544683576959736242115451733573925883638790611 m: 2000000000000000000000000000000000000000000 deg: 5 c5: 575 c0: -2 skew: 0.22 # Murphy_E = 2.524e-12 type: snfs lss: 1 rlim: 26000000 alim: 26000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.6 alambda: 2.6 Factor base limits: 26000000/26000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved special-q in [100000, 66200000) Primes: RFBsize:1624527, AFBsize:1624254, Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 14073707 hash collisions in 79719103 relations (66568488 unique) Msieve: matrix is 3069958 x 3070183 (872.2 MB) Total sieving time: 0.00 hours. Total relation processing time: 10hrs 41min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 7sec. Prototype def-par.txt line would be: snfs,214,5,0,0,0,0,0,0,0,0,26000000,26000000,29,29,57,57,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 0.038777] smpboot: CPU0: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (fam: 06, model: 3c, stepping: 03) [ 0.000000] Memory: 16059644K/16661464K available (7373K kernel code, 1159K rwdata, 3228K rodata, 1468K init, 1504K bss, 601820K reserved) [ 1.135479] [drm] Memory usable by graphics device = 2048M [ 0.000019] Calibrating delay loop (skipped), value calculated using timer frequency.. 7200.69 BogoMIPS (lpj=3600346) [ 0.136769] smpboot: Total of 8 processors activated (57605.53 BogoMIPS) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:53 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 53 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:35:09 UTC 2014 年 11 月 18 日 (火) 15 時 35 分 9 秒 (日本時間) |
composite number 合成数 | 7239265255202665772733457970034885617140229433008515457124689335503042696896542339129559973787425770594490402132888068918104354594653508499<139> |
prime factors 素因数 | 61257572976905700913521996290686237<35> 118177474284394057027721575198209371873799491860206290965074116222135290662570514811820227275104462857327<105> |
factorization results 素因数分解の結果 | Input number is 7239265255202665772733457970034885617140229433008515457124689335503042696896542339129559973787425770594490402132888068918104354594653508499 (139 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2543294357 Step 1 took 3114ms Step 2 took 2332ms ********** Factor found in step 2: 61257572976905700913521996290686237 Found probable prime factor of 35 digits: 61257572976905700913521996290686237 Probable prime cofactor 118177474284394057027721575198209371873799491860206290965074116222135290662570514811820227275104462857327 has 105 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:54 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 54 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:37:30 UTC 2014 年 11 月 18 日 (火) 15 時 37 分 30 秒 (日本時間) |
composite number 合成数 | 700209792769159684519649504280459856788434434105369283896878369787929840256156660637346747004041761512520097970185721936204419048197142627594693711514388284239166313084950082581<177> |
prime factors 素因数 | 653836017998469796302789351926564147<36> |
composite cofactor 合成数の残り | 1070925696190078073948195140572126471540565404633652726699227479089039788907497718908874628601344924231705643996520112974659009636997507977623<142> |
factorization results 素因数分解の結果 | Input number is 700209792769159684519649504280459856788434434105369283896878369787929840256156660637346747004041761512520097970185721936204419048197142627594693711514388284239166313084950082581 (177 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2950202186 Step 1 took 4642ms Step 2 took 2834ms ********** Factor found in step 2: 653836017998469796302789351926564147 Found probable prime factor of 36 digits: 653836017998469796302789351926564147 Composite cofactor 1070925696190078073948195140572126471540565404633652726699227479089039788907497718908874628601344924231705643996520112974659009636997507977623 has 142 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | October 2, 2016 07:02:07 UTC 2016 年 10 月 2 日 (日) 16 時 2 分 7 秒 (日本時間) |
composite number 合成数 | 1070925696190078073948195140572126471540565404633652726699227479089039788907497718908874628601344924231705643996520112974659009636997507977623<142> |
prime factors 素因数 | 3602867665893084063780287711222236052176453334136416889451571085566809<70> 297242584380244079478653758795715419643639150918793746572002608989646447<72> |
factorization results 素因数分解の結果 | Number: 91999_214 N = 1070925696190078073948195140572126471540565404633652726699227479089039788907497718908874628601344924231705643996520112974659009636997507977623 (142 digits) Divisors found: r1=3602867665893084063780287711222236052176453334136416889451571085566809 (pp70) r2=297242584380244079478653758795715419643639150918793746572002608989646447 (pp72) Version: Msieve v. 1.52 (SVN unknown) Total time: 301.53 hours. Factorization parameters were as follows: # Murphy_E = 3.61e-10, selected by Maksym Voznyy # polynomial selection by CADO-NFS 2.1.1 n: 1070925696190078073948195140572126471540565404633652726699227479089039788907497718908874628601344924231705643996520112974659009636997507977623 Y0: -639288333664203587059601604 Y1: 140344547412628220101 c0: 568507703155237571746481677107551 c1: -9739157944570031023381408977 c2: -22003494437688545892433 c3: 297650663966540373 c4: 2609551800446 c5: 9442440 skew: 141632 type: gnfs # selected mechanically rlim: 19400000 alim: 19400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19400000/19400000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 23194111 Relations: 4316572 relations Pruned matrix : 2653482 x 2653711 Polynomial selection time: 0.00 hours. Total sieving time: 296.90 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.69 hours. time per square root: 0.77 hours. Prototype def-par.txt line would be: gnfs,141,5,65,2000,1e-05,0.28,250,20,50000,3600,19400000,19400000,28,28,56,56,2.6,2.6,100000 total time: 301.53 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-8-6.2.9200 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:54 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 54 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:15 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 15 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:12 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 12 秒 (日本時間) | |||
45 | 11e6 | 800 / 3974 | Dmitry Domanov | February 29, 2016 07:51:11 UTC 2016 年 2 月 29 日 (月) 16 時 51 分 11 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | March 29, 2024 08:15:03 UTC 2024 年 3 月 29 日 (金) 17 時 15 分 3 秒 (日本時間) |
composite number 合成数 | 1140055021652712145144543273110127791282139975854657060831106404999246610825870989472699493108069601080797771228510785140823411844101153945721711229683747200566782979810062742826071874139<187> |
prime factors 素因数 | 7680035837916574881556252368429233554714423<43> |
composite cofactor 合成数の残り | 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693<144> |
factorization results 素因数分解の結果 | Y:\ALL\ECM>ecm-svn3038-skylake\ecm -primetest -one -sigma 1:2373139667 11e6 GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 1140055021652712145144543273110127791282139975854657060831106404999246610825870989472699493108069601080797771228510785140823411844101153945721711229683747200566782979810062742826071874139 (187 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2373139667 Step 1 took 17031ms ********** Factor found in step 1: 7680035837916574881556252368429233554714423 Found prime factor of 43 digits: 7680035837916574881556252368429233554714423 Composite cofactor 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 has 144 digits |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 31, 2024 21:31:05 UTC 2024 年 4 月 1 日 (月) 6 時 31 分 5 秒 (日本時間) |
composite number 合成数 | 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693<144> |
prime factors 素因数 | 5462708464228228658388729645366822549124146044042848133<55> 27174060734065696910890498354096483576824817277371795025774085744703681847744275663031321<89> |
factorization results 素因数分解の結果 | CADO: STA:Sat 30 Mar 2024 07:23:24 AEDT (148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 - C144) /home/vboxuser/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 2>&1 | tee -a log-56 Debug:root: Looking for parameter file for c144 in directory /home/vboxuser/Math/cado-nfs/parameters/factor Info:root: Using default parameter file /home/vboxuser/Math/cado-nfs/parameters/factor/params.c145 Debug:Parameters: Reading parameter file /home/vboxuser/Math/cado-nfs/parameters/factor/params.c145 Info:root: No database exists yet Info:root: Created temporary directory /tmp/cado.hwaqkqal Info:Database: Opened connection to database /tmp/cado.hwaqkqal/c145.db Info:root: Set tasks.threads=20 based on --server-threads 20 Info:root: tasks.threads = 20 [via tasks.threads] Info:root: tasks.polyselect.threads = 2 [via tasks.polyselect.threads] Info:root: tasks.sieve.las.threads = 2 [via tasks.sieve.las.threads] Info:root: tasks.linalg.bwc.threads = 20 [via tasks.threads] Info:root: tasks.sqrt.threads = 8 [via tasks.sqrt.threads] Info:root: slaves.scriptpath is /home/vboxuser/Math/cado-nfs/build/Ubuntu Info:root: Command line parameters: /home/vboxuser/Math/cado-nfs/cado-nfs.py -t 20 --no-colors --screenlog DEBUG 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 Debug:root: Root parameter dictionary: N = 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 name = c145 === Info:Polynomial Selection (root optimized): Best polynomial is: n: 148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 skew: 450259.758 c0: 89116274301590574961768869340650 c1: 868050948804458533754589865 c2: -37687405475289397242584 c3: -10506513101565423 c4: 72474401832 c5: 50400 Y0: -5660111644171257232510149784 Y1: 55178270038633169821 # MurphyE (Bf=1.074e+09,Bg=1.074e+09,area=2.684e+14) = 6.125e-07 # f(x) = 50400*x^5+72474401832*x^4-10506513101565423*x^3-37687405475289397242584*x^2+868050948804458533754589865*x+89116274301590574961768869340650 # g(x) = 55178270038633169821*x-5660111644171257232510149784 === Debug:Command: Process with PID 357793 finished successfully Info:Square Root: finished Info:Square Root: Factors: 5462708464228228658388729645366822549124146044042848133 27174060734065696910890498354096483576824817277371795025774085744703681847744275663031321 Debug:Square Root: Exit SqrtTask.run(sqrt) Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 4644.08/564.574 Info:HTTP server: Got notification to stop serving Workunits Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 8427.03 Info:Polynomial Selection (root optimized): Rootsieve time: 8422.94 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 85090232 Info:Lattice Sieving: Average J: 7840.15 for 353681 special-q, max bucket fill -bkmult 1.0,1s:1.178910 Info:Lattice Sieving: Total time: 1.40481e+06s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 133692 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 92054/42.230/53.308/64.580/2.268 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 78386/41.700/46.282/55.810/1.166 Info:Polynomial Selection (size optimized): Total time: 135313 Info:Square Root: Total cpu/real time for sqrt: 4644.08/564.574 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1704.61/1517.32 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 994.7s Info:Quadratic Characters: Total cpu/real time for characters: 110.79/26.2286 Info:Filtering - Singleton removal: Total cpu/real time for purge: 892.41/177.778 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 1027.4/3380.47 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 3379.5s Info:Filtering - Merging: Total cpu/real time for merge: 656.08/137.25 Info:Filtering - Merging: Total cpu/real time for replay: 44.76/41.2209 Info:Generate Factor Base: Total cpu/real time for makefb: 17.24/4.94421 Info:Generate Free Relations: Total cpu/real time for freerel: 1501.81/112.66 Info:Linear Algebra: Total cpu/real time for bwc: 73344.4/15257.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 36296.55, WCT time 8769.21, iteration CPU time 0.05, COMM 0.06, cpu-wait 0.02, comm-wait 0.01 (64000 iterations) Info:Linear Algebra: Lingen CPU time 9275.56, WCT time 809.94 Info:Linear Algebra: Mksol: CPU time 23324.87, WCT time 4908.79, iteration CPU time 0.07, COMM 0.06, cpu-wait 0.02, comm-wait 0.0 (32000 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 2.18648e+06/173774 [2d 00:16:14] Info:root: Cleaning up computation data in /tmp/cado.hwaqkqal 5462708464228228658388729645366822549124146044042848133 27174060734065696910890498354096483576824817277371795025774085744703681847744275663031321 END:Mon 01 Apr 2024 07:39:42 AEDT (148443971579432635071489851018238069927436975109699747209249793540073277068139532330698903749470242104778970642657388788669877023842353225373693 - C144) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:54 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 54 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 4449 | 601 | Cyp | June 9, 2015 16:46:56 UTC 2015 年 6 月 10 日 (水) 1 時 46 分 56 秒 (日本時間) |
3848 | ebina | March 29, 2024 08:14:10 UTC 2024 年 3 月 29 日 (金) 17 時 14 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:55 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 55 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | May 25, 2015 18:56:45 UTC 2015 年 5 月 26 日 (火) 3 時 56 分 45 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | July 17, 2015 13:54:25 UTC 2015 年 7 月 17 日 (金) 22 時 54 分 25 秒 (日本時間) |
composite number 合成数 | 279542847421324387770135673318371257118109520209671858957029116373690906843150920536522980605034311460993782916794807164577419342895220219809068988950386139638453311088801446724689399335322694464361443<201> |
prime factors 素因数 | 1295319634525859536856440752136814201<37> |
composite cofactor 合成数の残り | 215809935995950999981744087950932190700372769449279020890284056861966429847276391448427512413082676720625225029298922519672122521586710836582494173901510428871990843<165> |
factorization results 素因数分解の結果 | Run 565 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=336964284 Step 1 took 69342ms Step 2 took 21056ms ********** Factor found in step 2: 1295319634525859536856440752136814201 Found probable prime factor of 37 digits: 1295319634525859536856440752136814201 Composite cofactor 215809935995950999981744087950932190700372769449279020890284056861966429847276391448427512413082676720625225029298922519672122521586710836582494173901510428871990843 has 165 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Erik Branger |
---|---|
date 日付 | January 6, 2020 15:32:55 UTC 2020 年 1 月 7 日 (火) 0 時 32 分 55 秒 (日本時間) |
composite number 合成数 | 215809935995950999981744087950932190700372769449279020890284056861966429847276391448427512413082676720625225029298922519672122521586710836582494173901510428871990843<165> |
prime factors 素因数 | 279244274200223998627386118448403310965978157326732701<54> 772835670897985008182015247716456037830309316181079604842231165168525923587015018005924769280872815077845794743<111> |
factorization results 素因数分解の結果 | Number: 91999_218 N = 215809935995950999981744087950932190700372769449279020890284056861966429847276391448427512413082676720625225029298922519672122521586710836582494173901510428871990843 (165 digits) SNFS difficulty: 222 digits. Divisors found: r1=279244274200223998627386118448403310965978157326732701 (pp54) r2=772835670897985008182015247716456037830309316181079604842231165168525923587015018005924769280872815077845794743 (pp111) Version: Msieve v. 1.52 (SVN unknown) Total time: 47.59 hours. Factorization parameters were as follows: n: 215809935995950999981744087950932190700372769449279020890284056861966429847276391448427512413082676720625225029298922519672122521586710836582494173901510428871990843 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 23 c0: -25 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Relations: 7016664 relations Pruned matrix : 6357589 x 6357814 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 24.50 hours. Total relation processing time: 0.30 hours. Matrix solve time: 22.66 hours. time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 47.59 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:55 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 55 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 13:54:25 UTC 2015 年 7 月 17 日 (金) 22 時 54 分 25 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | February 20, 2020 06:56:17 UTC 2020 年 2 月 20 日 (木) 15 時 56 分 17 秒 (日本時間) |
composite number 合成数 | 1182831850758849996856966089767547302747268064737451488764696003170072938419149298575194630816633761746369362118161696909394838659112658420149348595034077268005374983250033513832204187246245803898025286417<205> |
prime factors 素因数 | 4072781826055623489613004784607329572519175623<46> 17470989834892274338695235148498069919171159363128744311189<59> 16623189409282583510373216801886787762659894634584186246089252010614009651642797185544121403850105611<101> |
factorization results 素因数分解の結果 | Number: 91999_219 N = 1182831850758849996856966089767547302747268064737451488764696003170072938419149298575194630816633761746369362118161696909394838659112658420149348595034077268005374983250033513832204187246245803898025286417 (205 digits) SNFS difficulty: 222 digits. Divisors found: r1=4072781826055623489613004784607329572519175623 (pp46) r2=17470989834892274338695235148498069919171159363128744311189 (pp59) r3=16623189409282583510373216801886787762659894634584186246089252010614009651642797185544121403850105611 (pp101) Version: Msieve v. 1.52 (SVN unknown) Total time: 80.38 hours. Factorization parameters were as follows: n: 1182831850758849996856966089767547302747268064737451488764696003170072938419149298575194630816633761746369362118161696909394838659112658420149348595034077268005374983250033513832204187246245803898025286417 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 46 c0: -5 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 60000000 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Factor base limits: 536870912/60000000 Large primes per side: 3 Large prime bits: 29/28 Relations: 7781554 relations Pruned matrix : 6843986 x 6844211 Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G relations. Total batch smoothness checking time: 40.33 hours. Total relation processing time: 0.42 hours. Matrix solve time: 39.20 hours. time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,222,4,0,0,0,0,0,0,0,0,536870912,60000000,29,28,58,56,2.8,2.8,100000 total time: 80.38 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-10-10.0.17763-SP0 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:56 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 56 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | January 24, 2015 09:14:19 UTC 2015 年 1 月 24 日 (土) 18 時 14 分 19 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:41:14 UTC 2014 年 11 月 18 日 (火) 15 時 41 分 14 秒 (日本時間) |
composite number 合成数 | 4987668978532830252885762993606631519134032989899381625747498491182652343373366906877896323688124417632563110090731829786304575390732487026506384231193350900520858603485074636794515356315104840029288657299<205> |
prime factors 素因数 | 86801752671103057412006317103686321<35> |
composite cofactor 合成数の残り | 57460463931314856735472925540759495834149519712644312129518594905979226424181291854589889769014215573587449520626792032930954228256555293222946696438342303940369033593219<170> |
factorization results 素因数分解の結果 | Input number is 4987668978532830252885762993606631519134032989899381625747498491182652343373366906877896323688124417632563110090731829786304575390732487026506384231193350900520858603485074636794515356315104840029288657299 (205 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1185856201 Step 1 took 5394ms Step 2 took 3277ms ********** Factor found in step 2: 86801752671103057412006317103686321 Found probable prime factor of 35 digits: 86801752671103057412006317103686321 Composite cofactor 57460463931314856735472925540759495834149519712644312129518594905979226424181291854589889769014215573587449520626792032930954228256555293222946696438342303940369033593219 has 170 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | February 2, 2020 20:57:44 UTC 2020 年 2 月 3 日 (月) 5 時 57 分 44 秒 (日本時間) |
composite number 合成数 | 57460463931314856735472925540759495834149519712644312129518594905979226424181291854589889769014215573587449520626792032930954228256555293222946696438342303940369033593219<170> |
prime factors 素因数 | 683915972544967340175750829931607132175777708776551665207967046459491019389<75> 84016847446177816202218446232053531730358874506120809028966222761295076940302365698304620649471<95> |
factorization results 素因数分解の結果 | Number: 91999_221 N = 57460463931314856735472925540759495834149519712644312129518594905979226424181291854589889769014215573587449520626792032930954228256555293222946696438342303940369033593219 (170 digits) SNFS difficulty: 223 digits. Divisors found: r1=683915972544967340175750829931607132175777708776551665207967046459491019389 (pp75) r2=84016847446177816202218446232053531730358874506120809028966222761295076940302365698304620649471 (pp95) Version: Msieve v. 1.52 (SVN unknown) Total time: 65.44 hours. Factorization parameters were as follows: n: 57460463931314856735472925540759495834149519712644312129518594905979226424181291854589889769014215573587449520626792032930954228256555293222946696438342303940369033593219 m: 10000000000000000000000000000000000000000000000000000000 deg: 4 c4: 920 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 536870912 alim: 44739242 lpbr: 29 lpba: 28 mfbr: 58 mfba: 56 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 6 Number of threads per core: 1 Factor base limits: 536870912/44739242 Large primes per side: 3 Large prime bits: 29/28 Total raw relations: 33144621 Relations: 9910046 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 31.36 hours. Total relation processing time: 0.32 hours. Pruned matrix : 8435691 x 8435916 Matrix solve time: 33.53 hours. time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,223,4,0,0,0,0,0,0,0,0,536870912,44739242,29,28,58,56,2.8,2.8,100000 total time: 65.44 hours. Intel64 Family 6 Model 158 Stepping 10, GenuineIntel Windows-10-10.0.18362-SP0 processors: 12, speed: 3.19GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:56 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 56 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 17, 2015 07:05:27 UTC 2015 年 6 月 17 日 (水) 16 時 5 分 27 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:57 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 57 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 15, 2015 06:51:43 UTC 2015 年 6 月 15 日 (月) 15 時 51 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:57 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 57 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | 345 | Cyp | January 2, 2015 02:42:42 UTC 2015 年 1 月 2 日 (金) 11 時 42 分 42 秒 (日本時間) |
256 | Cyp | July 1, 2015 05:25:16 UTC 2015 年 7 月 1 日 (水) 14 時 25 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:57 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 57 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 6, 2014 09:14:05 UTC 2014 年 12 月 6 日 (土) 18 時 14 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:58 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 58 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 4, 2014 22:07:11 UTC 2014 年 12 月 5 日 (金) 7 時 7 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:58 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 58 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 15:28:05 UTC 2015 年 7 月 18 日 (土) 0 時 28 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:59 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 59 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 7, 2015 05:59:44 UTC 2015 年 6 月 7 日 (日) 14 時 59 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:59 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 59 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | May 15, 2015 19:04:21 UTC 2015 年 5 月 16 日 (土) 4 時 4 分 21 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | June 2, 2015 07:27:46 UTC 2015 年 6 月 2 日 (火) 16 時 27 分 46 秒 (日本時間) |
composite number 合成数 | 172290811867673732755045683966692064174204295974439706295967904312737687047804372945017018063509720519693963373487856484699314864611397808123297833505155956197628861610970027682793001<183> |
prime factors 素因数 | 6817555943974962876883882563772517<34> 25271638881076772853696624307042215827275673376383553167079225520944865211791474770919404980923842680141558806201821888049742928823498353977109108853<149> |
factorization results 素因数分解の結果 | Run 70 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=692836515 Step 1 took 59245ms Step 2 took 18945ms ********** Factor found in step 2: 6817555943974962876883882563772517 Found probable prime factor of 34 digits: 6817555943974962876883882563772517 Probable prime cofactor 25271638881076772853696624307042215827275673376383553167079225520944865211791474770919404980923842680141558806201821888049742928823498353977109108853 has 149 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:50:59 UTC 2014 年 11 月 18 日 (火) 5 時 50 分 59 秒 (日本時間) | |||
40 | 3e6 | 0 / 1831 | - | - | |
45 | 11e6 | 70 / 4434 | Cyp | June 2, 2015 07:27:45 UTC 2015 年 6 月 2 日 (火) 16 時 27 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:00 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 0 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | February 8, 2015 12:27:45 UTC 2015 年 2 月 8 日 (日) 21 時 27 分 45 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | July 16, 2015 22:43:16 UTC 2015 年 7 月 17 日 (金) 7 時 43 分 16 秒 (日本時間) |
composite number 合成数 | 400266690225023765291809483871250876728155120436349833318595782541639924877847082382544061656644996789957040145329574306558146713195562077419433689820448981827089028602406341575239324803867248366433324827<204> |
prime factors 素因数 | 745492804701394197999052426591296453799<39> 536915564712056299590235107891330346402074091545202297753524446672312384257012439279607796450452047473902677541827105622583357738667035123533966067803409787082302573<165> |
factorization results 素因数分解の結果 | Run 146 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1058299489 Step 1 took 69669ms Step 2 took 21630ms ********** Factor found in step 2: 745492804701394197999052426591296453799 Found probable prime factor of 39 digits: 745492804701394197999052426591296453799 Probable prime cofactor 536915564712056299590235107891330346402074091545202297753524446672312384257012439279607796450452047473902677541827105622583357738667035123533966067803409787082302573 has 165 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:01 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 1 秒 (日本時間) | |||
40 | 3e6 | 0 / 1569 | - | - | |
45 | 11e6 | 146 / 4434 | Cyp | July 16, 2015 22:43:15 UTC 2015 年 7 月 17 日 (金) 7 時 43 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:01 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 1 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | May 11, 2015 05:31:11 UTC 2015 年 5 月 11 日 (月) 14 時 31 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:01 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 1 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | January 25, 2015 00:27:04 UTC 2015 年 1 月 25 日 (日) 9 時 27 分 4 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:39:38 UTC 2014 年 11 月 18 日 (火) 15 時 39 分 38 秒 (日本時間) |
composite number 合成数 | 38037264135195509978388586877510389449985034558939155890384258301567730384431363450673603267999087053305406327555954355729987212265495062811652549443494446668414659718673749651059171511715768240467713<200> |
prime factors 素因数 | 4139729812419799669455664465403<31> 9188344616375230709281258500741093603206163553484574948354878388196009324698076028436230835783871902351993158906773946071243145846687194790956270292901376384076274014771<169> |
factorization results 素因数分解の結果 | Input number is 38037264135195509978388586877510389449985034558939155890384258301567730384431363450673603267999087053305406327555954355729987212265495062811652549443494446668414659718673749651059171511715768240467713 (200 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2402377952 Step 1 took 5333ms Step 2 took 3160ms ********** Factor found in step 2: 4139729812419799669455664465403 Found probable prime factor of 31 digits: 4139729812419799669455664465403 Probable prime cofactor 9188344616375230709281258500741093603206163553484574948354878388196009324698076028436230835783871902351993158906773946071243145846687194790956270292901376384076274014771 has 169 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:02 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:02 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 2 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 2, 2014 10:21:53 UTC 2014 年 12 月 2 日 (火) 19 時 21 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:03 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 3 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 4, 2014 01:29:28 UTC 2014 年 12 月 4 日 (木) 10 時 29 分 28 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:36:51 UTC 2014 年 11 月 18 日 (火) 15 時 36 分 51 秒 (日本時間) |
composite number 合成数 | 673055496307293860911898248026900293857484712529439762078167570066016504586200668388130837731638416790588515444968837717894467044064429326171784353430476577091410493060647<171> |
prime factors 素因数 | 424836109178387628132018497555831167<36> |
composite cofactor 合成数の残り | 1584270926520230247216201231076530638810954690782830599476110350134709592797420127391076035342689911538942848170835999339312572676548441<136> |
factorization results 素因数分解の結果 | Input number is 673055496307293860911898248026900293857484712529439762078167570066016504586200668388130837731638416790588515444968837717894467044064429326171784353430476577091410493060647 (171 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1305574931 Step 1 took 3661ms Step 2 took 2745ms ********** Factor found in step 2: 424836109178387628132018497555831167 Found probable prime factor of 36 digits: 424836109178387628132018497555831167 Composite cofactor 1584270926520230247216201231076530638810954690782830599476110350134709592797420127391076035342689911538942848170835999339312572676548441 has 136 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | January 17, 2015 09:34:39 UTC 2015 年 1 月 17 日 (土) 18 時 34 分 39 秒 (日本時間) |
composite number 合成数 | 1584270926520230247216201231076530638810954690782830599476110350134709592797420127391076035342689911538942848170835999339312572676548441<136> |
prime factors 素因数 | 1015578005288044598548468268876907796542550857506069134517822609<64> 1559969710126687312723939081959211462839761073850590577635591521520933449<73> |
factorization results 素因数分解の結果 | Number: 97999_239 N = 1584270926520230247216201231076530638810954690782830599476110350134709592797420127391076035342689911538942848170835999339312572676548441 (136 digits) Divisors found: r1=1015578005288044598548468268876907796542550857506069134517822609 (pp64) r2=1559969710126687312723939081959211462839761073850590577635591521520933449 (pp73) Version: Msieve v. 1.51 (SVN Official Release) Total time: 81.94 hours. Factorization parameters were as follows: # Murphy_E = 4.714e-11, selected by Erik Branger # expecting poly E from 4.02e-011 to > 4.62e-011 n: 1584270926520230247216201231076530638810954690782830599476110350134709592797420127391076035342689911538942848170835999339312572676548441 Y0: -209262029094395175925773317 Y1: 29132080515659 c0: 86437815014667125759453873947800 c1: 499426748828042968656034730 c2: -2433054435196967995791 c3: -6327720709563826 c4: 9654925846 c5: 3948 skew: 552797.35 type: gnfs # selected mechanically rlim: 13500000 alim: 13500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.6 alambda: 2.6 Factor base limits: 13500000/13500000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 21688133 Relations: 3397738 relations Pruned matrix : 1999551 x 1999780 Polynomial selection time: 0.00 hours. Total sieving time: 79.21 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.44 hours. time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,135,5,65,2000,1e-05,0.28,250,20,50000,3600,13500000,13500000,28,28,55,55,2.6,2.6,100000 total time: 81.94 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:03 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 3 秒 (日本時間) | |||
40 | 3e6 | 2080 | 2000 | Serge Batalov | November 22, 2014 04:47:13 UTC 2014 年 11 月 22 日 (土) 13 時 47 分 13 秒 (日本時間) |
80 | Serge Batalov | November 22, 2014 04:55:10 UTC 2014 年 11 月 22 日 (土) 13 時 55 分 10 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:38:46 UTC 2014 年 11 月 18 日 (火) 15 時 38 分 46 秒 (日本時間) |
composite number 合成数 | 224370710944433511417839328377673531881314663225827874477222769927759387067012893960471369413719908034092736312881579785875338473571479112384109498271546421513911224698553781884408727827894710344559<198> |
prime factors 素因数 | 1243823061678435684247976489323<31> 180387965022664810471453124071239849243496279860912460225745255932558506672071844621401296621415471796119084857327653446877905744396121652961404931040766266484347800333<168> |
factorization results 素因数分解の結果 | Input number is 224370710944433511417839328377673531881314663225827874477222769927759387067012893960471369413719908034092736312881579785875338473571479112384109498271546421513911224698553781884408727827894710344559 (198 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3970263768 Step 1 took 6098ms Step 2 took 3787ms ********** Factor found in step 2: 1243823061678435684247976489323 Found probable prime factor of 31 digits: 1243823061678435684247976489323 Probable prime cofactor 180387965022664810471453124071239849243496279860912460225745255932558506672071844621401296621415471796119084857327653446877905744396121652961404931040766266484347800333 has 168 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:03 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:04 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 4 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 17, 2015 14:20:04 UTC 2015 年 7 月 17 日 (金) 23 時 20 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:04 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 4 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | July 2, 2015 11:14:58 UTC 2015 年 7 月 2 日 (木) 20 時 14 分 58 秒 (日本時間) |
name 名前 | Cyp |
---|---|
date 日付 | December 5, 2014 01:16:44 UTC 2014 年 12 月 5 日 (金) 10 時 16 分 44 秒 (日本時間) |
composite number 合成数 | 39849534063658289512210674351093243925702134104031470986666766507827013851165179376229959715104926230043353222544589234269159874806079805610809293313051513185736814906821899<173> |
prime factors 素因数 | 213061202838580379206619514771899730842623<42> |
composite cofactor 合成数の残り | 187033272753318348041976579480235937744427439794661745005454781828926882418362718947513271473623925711243960756647364463154905978613<132> |
factorization results 素因数分解の結果 | Run 357 out of 601: Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1455669988 Step 1 took 49423ms Step 2 took 16935ms ********** Factor found in step 2: 213061202838580379206619514771899730842623 Found probable prime factor of 42 digits: 213061202838580379206619514771899730842623 Composite cofactor 187033272753318348041976579480235937744427439794661745005454781828926882418362718947513271473623925711243960756647364463154905978613 has 132 digits |
software ソフトウェア | GMP-ECM 6.4.4 |
execution environment 実行環境 | Gentoo Linux, Intel(R) Core(TM) i7-3770K CPU |
name 名前 | Erik Branger |
---|---|
date 日付 | March 4, 2015 23:49:40 UTC 2015 年 3 月 5 日 (木) 8 時 49 分 40 秒 (日本時間) |
composite number 合成数 | 187033272753318348041976579480235937744427439794661745005454781828926882418362718947513271473623925711243960756647364463154905978613<132> |
prime factors 素因数 | 41726051786716354983110288451377944657211347766010377<53> 4482410023103625912889116354227611063904149241702541635353633203094768382793869<79> |
factorization results 素因数分解の結果 | Number: 91999_245 N = 187033272753318348041976579480235937744427439794661745005454781828926882418362718947513271473623925711243960756647364463154905978613 (132 digits) Divisors found: r1=41726051786716354983110288451377944657211347766010377 (pp53) r2=4482410023103625912889116354227611063904149241702541635353633203094768382793869 (pp79) Version: Msieve v. 1.52 (SVN 958) Total time: 59.81 hours. Factorization parameters were as follows: # Murphy_E = 6.294e-11, selected by Erik Branger # expecting poly E from 6.96e-011 to > 8.00e-011 n: 187033272753318348041976579480235937744427439794661745005454781828926882418362718947513271473623925711243960756647364463154905978613 Y0: -30107872394503124044731751 Y1: 52712171701739 c0: 45238125189377616293271447314880 c1: 2411279683722972773620914488 c2: 18438080605416080542150 c3: -36051185861007369 c4: -32370582834 c5: 7560 skew: 655281.82 type: gnfs # selected mechanically rlim: 10600000 alim: 10600000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 10600000/10600000 Large primes per side: 3 Large prime bits: 28/28 Sieved algebraic special-q in [0, 0) Total raw relations: 19269470 Relations: 2811200 relations Pruned matrix : 1629734 x 1629961 Polynomial selection time: 0.00 hours. Total sieving time: 58.50 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.08 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,131,5,65,2000,1e-05,0.28,250,20,50000,3600,10600000,10600000,28,28,54,54,2.6,2.6,100000 total time: 59.81 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel Windows-7-6.1.7601-SP1 processors: 8, speed: 3.50GHz |
software ソフトウェア | GGNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:05 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 5 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | December 5, 2014 01:16:43 UTC 2014 年 12 月 5 日 (金) 10 時 16 分 43 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 17, 2014 22:27:41 UTC 2014 年 11 月 18 日 (火) 7 時 27 分 41 秒 (日本時間) |
composite number 合成数 | 926959229844387424584939647044756745293397256307481484921380910106909532940408078284447535472840542931708666668795986056961382707198738174733245567087006740938200222609259047129640014073256237798332382209351102241678603869625562174324335639<240> |
prime factors 素因数 | 55378952926910711466246264103583<32> 16738475194137214325166351275272535546435892866601250734046011283483600126185739460565678511540624065355132139230234176747862139703059050321098763394825854793299971037749864236157001852798328075512457289597833<209> |
factorization results 素因数分解の結果 | Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=798665769 Step 1 took 7044ms Step 2 took 4034ms ********** Factor found in step 2: 55378952926910711466246264103583 Found probable prime factor of 32 digits: 55378952926910711466246264103583 Probable prime cofactor |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:05 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:06 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 6 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | Cyp | June 20, 2015 20:36:38 UTC 2015 年 6 月 21 日 (日) 5 時 36 分 38 秒 (日本時間) |
name 名前 | Serge Batalov |
---|---|
date 日付 | November 18, 2014 06:40:29 UTC 2014 年 11 月 18 日 (火) 15 時 40 分 29 秒 (日本時間) |
composite number 合成数 | 4401777270362769481262463049355940016124923307564631860783290501852976859274336322420185734997454897782177922628700795255426689714420404943166909593632668584806861297687382353902044231853599730616440608132660881212044343<220> |
prime factors 素因数 | 78115547822826692578744745004697<32> |
composite cofactor 合成数の残り | 56349566674567892434809526349624422302706407730425650916041153028001341389891904795385840369366275885366191719939535373271713786977490087888807244833951917148880847171484136340451543018319<188> |
factorization results 素因数分解の結果 | Input number is 4401777270362769481262463049355940016124923307564631860783290501852976859274336322420185734997454897782177922628700795255426689714420404943166909593632668584806861297687382353902044231853599730616440608132660881212044343 (220 digits) Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4102933922 Step 1 took 7078ms Step 2 took 4300ms ********** Factor found in step 2: 78115547822826692578744745004697 Found probable prime factor of 32 digits: 78115547822826692578744745004697 Composite cofactor 56349566674567892434809526349624422302706407730425650916041153028001341389891904795385840369366275885366191719939535373271713786977490087888807244833951917148880847171484136340451543018319 has 188 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1018 | 118 | Makoto Kamada | November 17, 2014 07:00:00 UTC 2014 年 11 月 17 日 (月) 16 時 0 分 0 秒 (日本時間) |
900 | Serge Batalov | November 17, 2014 20:51:06 UTC 2014 年 11 月 18 日 (火) 5 時 51 分 6 秒 (日本時間) | |||
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 601 / 4434 | 301 | Cyp | December 6, 2014 15:43:14 UTC 2014 年 12 月 7 日 (日) 0 時 43 分 14 秒 (日本時間) |
300 | Cyp | July 16, 2015 23:56:00 UTC 2015 年 7 月 17 日 (金) 8 時 56 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Seth Troisi |
---|---|
date 日付 | December 1, 2023 10:49:43 UTC 2023 年 12 月 1 日 (金) 19 時 49 分 43 秒 (日本時間) |
composite number 合成数 | 5528342207013009162023840595665343079400707291183007140147390611243116265252487630711451145388611007112193966128199180180316218425916471749393396829336389856800026427128761257044382491<184> |
prime factors 素因数 | 769074279201501480527391811545497830591910202048077989<54> |
composite cofactor 合成数の残り | 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319<130> |
factorization results 素因数分解の結果 | Resuming P-1 residue saved by five@five with GMP-ECM 7.0.6-dev on Sun Nov 19 19:18:15 2023 Input number is 494728920412036273050766420452726939084401530792048788165071905124161767486019734505257392944534254317716458998311150309059381893827291214570923152698210543611427493100613221506984255137 (186 digits) -- Using lmax = 16777216 with NTT which takes about 4608MB of memory Using B1=4000000000-4000000000, B2=2114508355760232, polynomial x^1 P = 111546435, l = 16777216, s_1 = 7299072, k = s_2 = 5, m_1 = 13 Probability of finding a factor of n digits (assuming one exists): 20 25 30 35 40 45 50 55 60 65 0.77 0.5 0.25 0.11 0.04 0.013 0.0039 0.0011 0.00026 6.1e-05 Step 1 took 0ms Computing F from factored S_1 took 76899ms Computing h took 8532ms Computing DCT-I of h took 25468ms Multi-point evaluation 1 of 5: Computing g_i took 30935ms Computing g*h took 52170ms Computing gcd of coefficients and N took 12727ms Multi-point evaluation 2 of 5: Computing g_i took 30939ms Computing g*h took 52158ms Computing gcd of coefficients and N took 12725ms Multi-point evaluation 3 of 5: Computing g_i took 30921ms Computing g*h took 52156ms Computing gcd of coefficients and N took 12712ms Multi-point evaluation 4 of 5: Computing g_i took 30966ms Computing g*h took 52218ms Computing gcd of coefficients and N took 12791ms Multi-point evaluation 5 of 5: Computing g_i took 30848ms Computing g*h took 52148ms Computing gcd of coefficients and N took 12701ms Step 2 took 590493ms ********** Factor found in step 2: 769074279201501480527391811545497830591910202048077989 Found prime factor of 54 digits: 769074279201501480527391811545497830591910202048077989 Composite cofactor 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 has 130 digits |
execution environment 実行環境 | 1080 TI for stage 1 |
name 名前 | Seth Troisi |
---|---|
date 日付 | December 7, 2023 05:11:35 UTC 2023 年 12 月 7 日 (木) 14 時 11 分 35 秒 (日本時間) |
composite number 合成数 | 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319<130> |
prime factors 素因数 | 772916119706440649461962734675752212373872843252981551297<57> 9300242359778923969495126644028316070077165905703166070353709535704172927<73> |
factorization results 素因数分解の結果 | PID2903292 2023-12-06 17:32:52,660 Info:root: Command line parameters: ./cado-nfs.py -t 8 workdir=/home/five/Documents/math/GNFS/c130.718 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 N = 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 name = c130 slaves.basepath = /home/five/Documents/math/GNFS/c130.718/client slaves.hostnames = localhost slaves.nrclients = 4 slaves.scriptpath = /home/five/Projects/cado-nfs/build/five tasks.I = 13 tasks.execpath = /home/five/Projects/cado-nfs/build/five tasks.lim0 = 6500000 tasks.lim1 = 8000000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.qmin = 700000 tasks.threads = 8 tasks.workdir = /home/five/Documents/math/GNFS/c130.718 tasks.filter.target_density = 115.0 tasks.filter.purge.keep = 165 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.bwc.cpubinding = /home/five/Projects/cado-nfs/parameters/misc/cpubinding.conf tasks.linalg.bwc.interleaving = 0 tasks.linalg.bwc.interval = 3000 tasks.linalg.characters.nchar = 50 tasks.polyselect.P = 65000 tasks.polyselect.admax = 10e3 tasks.polyselect.admin = 960 tasks.polyselect.adrange = 240 tasks.polyselect.degree = 5 tasks.polyselect.incr = 60 tasks.polyselect.nq = 78125 tasks.polyselect.nrkeep = 48 tasks.polyselect.ropteffort = 8 tasks.polyselect.threads = 2 tasks.sieve.lambda0 = 1.86 tasks.sieve.lambda1 = 1.95 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 57 tasks.sieve.ncurves0 = 12 tasks.sieve.ncurves1 = 13 tasks.sieve.qrange = 10000 tasks.sieve.rels_wanted = 41000000 tasks.sieve.las.threads = 2 PID2903292 2023-12-06 17:32:52,661 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /home/five/Documents/math/GNFS/c130.718/c130.parameters_snapshot.0 PID2903292 2023-12-06 17:32:52,742 Info:Server Launcher: Adding five to whitelist to allow clients on localhost to connect PID2903292 2023-12-06 17:32:52,894 Info:HTTP server: Using non-threaded HTTPS server PID2903292 2023-12-06 17:32:52,894 Info:HTTP server: Using whitelist: localhost,five PID2903292 2023-12-06 17:32:53,200 Info:Complete Factorization / Discrete logarithm: Factoring 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 PID2903292 2023-12-06 17:32:53,205 Info:HTTP server: serving at https://five:33413 (0.0.0.0) PID2903292 2023-12-06 17:32:53,205 Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added PID2903292 2023-12-06 17:32:53,205 Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://five:33413 --certsha1=12e8bfa8d1ceb3938e096235be84c7130817d2b3 PID2903292 2023-12-06 17:32:53,205 Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist PID2903292 2023-12-06 17:32:53,205 Info:Client Launcher: Starting client id localhost on host localhost PID2903292 2023-12-06 17:32:53,295 Info:Client Launcher: Starting client id localhost+2 on host localhost PID2903292 2023-12-06 17:32:53,372 Info:Client Launcher: Starting client id localhost+3 on host localhost PID2903292 2023-12-06 17:32:53,454 Info:Client Launcher: Starting client id localhost+4 on host localhost PID2903292 2023-12-06 17:32:53,535 Info:Client Launcher: Running clients: localhost (Host localhost, PID 2903318), localhost+2 (Host localhost, PID 2903320), localhost+3 (Host localhost, PID 2903322), localhost+4 (Host localhost, PID 2903324) PID2903292 2023-12-06 17:32:53,535 Info:Polynomial Selection (size optimized): Starting PID2903292 2023-12-06 17:32:53,535 Info:Polynomial Selection (size optimized): 0 polynomials in queue from previous run PID2903292 2023-12-06 17:32:53,546 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_960-1200 to database PID2903292 2023-12-06 17:32:53,554 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_1200-1440 to database PID2903292 2023-12-06 17:32:53,560 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_1440-1680 to database PID2903292 2023-12-06 17:32:53,566 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_1680-1920 to database PID2903292 2023-12-06 17:32:53,572 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_1920-2160 to database PID2903292 2023-12-06 17:32:53,578 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_2160-2400 to database PID2903292 2023-12-06 17:32:53,583 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_2400-2640 to database PID2903292 2023-12-06 17:32:53,588 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_2640-2880 to database PID2903292 2023-12-06 17:32:53,592 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_2880-3120 to database PID2903292 2023-12-06 17:32:53,596 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_3120-3360 to database PID2903292 2023-12-06 17:32:54,865 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_3360-3600 to database PID2903292 2023-12-06 17:32:54,869 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_3600-3840 to database PID2903292 2023-12-06 17:32:54,875 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_3840-4080 to database PID2903292 2023-12-06 17:32:56,158 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_4080-4320 to database PID2903292 2023-12-06 17:33:04,241 Info:HTTP server: Got notification to stop serving Workunits PID2903292 2023-12-06 17:33:04,243 Info:Client Launcher: Stopped client localhost (Host localhost, PID 2903318) PID2903292 2023-12-06 17:33:04,250 Info:Client Launcher: Stopped client localhost+2 (Host localhost, PID 2903320) PID2903292 2023-12-06 17:33:04,255 Info:Client Launcher: Stopped client localhost+3 (Host localhost, PID 2903322) PID2903292 2023-12-06 17:33:04,260 Info:Client Launcher: Stopped client localhost+4 (Host localhost, PID 2903324) PID2903292 2023-12-06 17:33:04,271 Info:HTTP server: Shutting down HTTP server PID2903292 2023-12-06 17:33:04,425 Critical:Complete Factorization / Discrete logarithm: Received KeyboardInterrupt. Terminating PID2903437 2023-12-06 17:33:09,366 Info:root: Command line parameters: ./cado-nfs.py -t 12 workdir=/home/five/Documents/math/GNFS/c130.718 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 N = 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 name = c130 slaves.basepath = /home/five/Documents/math/GNFS/c130.718/client slaves.hostnames = localhost slaves.nrclients = 6 slaves.scriptpath = /home/five/Projects/cado-nfs/build/five tasks.I = 13 tasks.execpath = /home/five/Projects/cado-nfs/build/five tasks.lim0 = 6500000 tasks.lim1 = 8000000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.qmin = 700000 tasks.threads = 12 tasks.workdir = /home/five/Documents/math/GNFS/c130.718 tasks.filter.target_density = 115.0 tasks.filter.purge.keep = 165 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.bwc.cpubinding = /home/five/Projects/cado-nfs/parameters/misc/cpubinding.conf tasks.linalg.bwc.interleaving = 0 tasks.linalg.bwc.interval = 3000 tasks.linalg.characters.nchar = 50 tasks.polyselect.P = 65000 tasks.polyselect.admax = 10e3 tasks.polyselect.admin = 960 tasks.polyselect.adrange = 240 tasks.polyselect.degree = 5 tasks.polyselect.incr = 60 tasks.polyselect.nq = 78125 tasks.polyselect.nrkeep = 48 tasks.polyselect.ropteffort = 8 tasks.polyselect.threads = 2 tasks.sieve.lambda0 = 1.86 tasks.sieve.lambda1 = 1.95 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 57 tasks.sieve.ncurves0 = 12 tasks.sieve.ncurves1 = 13 tasks.sieve.qrange = 10000 tasks.sieve.rels_wanted = 41000000 tasks.sieve.las.threads = 2 tasks.sqrt.threads = 8 PID2903437 2023-12-06 17:33:09,366 Info:root: If this computation gets interrupted, it can be resumed with ./cado-nfs.py /home/five/Documents/math/GNFS/c130.718/c130.parameters_snapshot.1 PID2903437 2023-12-06 17:33:09,371 Info:Server Launcher: Adding five to whitelist to allow clients on localhost to connect PID2903437 2023-12-06 17:33:09,398 Info:HTTP server: Using non-threaded HTTPS server PID2903437 2023-12-06 17:33:09,399 Info:HTTP server: Using whitelist: localhost,five PID2903437 2023-12-06 17:33:09,433 Info:Complete Factorization / Discrete logarithm: Factoring 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 PID2903437 2023-12-06 17:33:09,437 Info:HTTP server: serving at https://five:33413 (0.0.0.0) PID2903437 2023-12-06 17:33:09,437 Info:HTTP server: For debugging purposes, the URL above can be accessed if the server.only_registered=False parameter is added PID2903437 2023-12-06 17:33:09,437 Info:HTTP server: You can start additional cado-nfs-client.py scripts with parameters: --server=https://five:33413 --certsha1=12e8bfa8d1ceb3938e096235be84c7130817d2b3 PID2903437 2023-12-06 17:33:09,437 Info:HTTP server: If you want to start additional clients, remember to add their hosts to server.whitelist PID2903437 2023-12-06 17:33:09,437 Info:Client Launcher: Starting client id localhost on host localhost PID2903437 2023-12-06 17:33:09,516 Info:Client Launcher: Starting client id localhost+2 on host localhost PID2903437 2023-12-06 17:33:09,596 Info:Client Launcher: Starting client id localhost+3 on host localhost PID2903437 2023-12-06 17:33:09,681 Info:Client Launcher: Starting client id localhost+4 on host localhost PID2903437 2023-12-06 17:33:09,756 Info:Client Launcher: Starting client id localhost+5 on host localhost PID2903437 2023-12-06 17:33:09,837 Info:Client Launcher: Starting client id localhost+6 on host localhost PID2903437 2023-12-06 17:33:09,916 Info:Client Launcher: Running clients: localhost (Host localhost, PID 2903454), localhost+2 (Host localhost, PID 2903459), localhost+3 (Host localhost, PID 2903461), localhost+4 (Host localhost, PID 2903463), localhost+5 (Host localhost, PID 2903465), localhost+6 (Host localhost, PID 2903467) PID2903437 2023-12-06 17:33:09,916 Info:Polynomial Selection (size optimized): Starting PID2903437 2023-12-06 17:33:09,916 Info:Polynomial Selection (size optimized): 0 polynomials in queue from previous run PID2903437 2023-12-06 17:33:11,311 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_4320-4560 to database PID2903437 2023-12-06 17:33:11,321 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_4560-4800 to database PID2903437 2023-12-06 17:33:59,746 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_4800-5040 to database PID2903437 2023-12-06 17:34:00,371 Info:Polynomial Selection (size optimized): Parsed 698 polynomials, added 166 to priority queue (has 48) PID2903437 2023-12-06 17:34:00,371 Info:Polynomial Selection (size optimized): Worst polynomial in queue now has exp_E 35.360000 PID2903437 2023-12-06 17:34:00,390 Info:Polynomial Selection (size optimized): Marking workunit c130_polyselect1_1680-1920 as ok (2.7% => ETA Unknown) PID2903437 2023-12-06 17:34:03,226 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_5040-5280 to database PID2903437 2023-12-06 17:34:03,231 Info:Polynomial Selection (size optimized): Adding workunit c130_polyselect1_5280-5520 to database PID2903437 2023-12-06 17:34:03,435 Info:Polynomial Selection (size optimized): Parsed 689 polynomials, added 31 to priority queue (has 48) PID2903437 2023-12-06 17:34:03,435 Info:Polynomial Selection (size optimized): Worst polynomial in queue now has exp_E 35.050000 PID2903437 2023-12-06 17:34:03,449 Info:Polynomial Selection (size optimized): Marking workunit c130_polyselect1_1200-1440 as ok (5.3% => ETA Wed Dec 6 18:05:03 2023) PID2903437 2023-12-06 17:34:03,543 Info:Polynomial Selection (size optimized): Parsed 702 polynomials, added 13 to priority queue (has 48) PID2903437 2023-12-06 17:34:03,543 Info:Polynomial Selection (size optimized): Worst polynomial in queue now has exp_E 34.990000 PID2903437 2023-12-06 17:39:03,707 Info:Polynomial Selection (size optimized): Worst polynomial in queue now has exp_E 34.170000 PID2903437 2023-12-06 17:39:03,721 Info:Polynomial Selection (size optimized): Marking workunit c130_polyselect1_9600-9840 as ok (98.2% => ETA Wed Dec 6 17:39:10 2023) PID2903437 2023-12-06 17:39:20,475 Info:Polynomial Selection (size optimized): Parsed 568 polynomials, added 1 to priority queue (has 48) PID2903437 2023-12-06 17:39:20,475 Info:Polynomial Selection (size optimized): Worst polynomial in queue now has exp_E 34.170000 PID2903437 2023-12-06 17:39:20,485 Info:Polynomial Selection (size optimized): Marking workunit c130_polyselect1_9840-10000 as ok (100.0% => ETA Wed Dec 6 17:39:20 2023) PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): Finished PID2903437 2023-12-06 17:39:20,490 Info:Complete Factorization / Discrete logarithm: Polynomial Selection (size optimized) PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): Aggregate statistics: PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): potential collisions: 47846.6 PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 32890/39.500/47.694/59.020/2.240 PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 27286/37.980/41.990/57.140/1.699 PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (size optimized): Total time: 3644.94 PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (root optimized): Starting PID2903437 2023-12-06 17:39:20,490 Info:Polynomial Selection (root optimized): No polynomial was previously found PID2903437 2023-12-06 17:39:20,503 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_0-1 to database PID2903437 2023-12-06 17:39:20,515 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_6-7 to database PID2903437 2023-12-06 17:39:20,524 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_12-13 to database PID2903437 2023-12-06 17:39:20,532 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_18-19 to database PID2903437 2023-12-06 17:39:20,541 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_24-25 to database PID2903437 2023-12-06 17:39:20,549 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_30-31 to database PID2903437 2023-12-06 17:39:20,558 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_36-37 to database PID2903437 2023-12-06 17:39:20,567 Info:Polynomial Selection (root optimized): Adding workunit c130_polyselect2_42-43 to database PID2903437 2023-12-06 17:39:56,380 Info:Polynomial Selection (root optimized): New best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0: Murphy E = 1.889e-06 n: 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 skew: 17474.781 c0: -30564674677044869883677766480 c1: -5640912979228412247181322 c2: 246930662556109760879 c3: 49878401762210301 c4: -393310924560 c5: -475200 Y0: 5724466568039128040364160 Y1: 455627993216019727423 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=2.349e+13) = 1.889e-06 # f(x) = -475200*x^5-393310924560*x^4+49878401762210301*x^3+246930662556109760879*x^2-5640912979228412247181322*x-30564674677044869883677766480 # g(x) = 455627993216019727423*x+5724466568039128040364160 PID2903437 2023-12-06 17:39:56,380 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0 with E=1.589e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:39:56,381 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0 with E=1.595e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:39:56,381 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0 with E=1.598e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:39:56,381 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0 with E=1.863e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:39:56,381 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.w2en4g7d.opt_0 with E=1.815e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:39:56,386 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_0-1 as ok (12.5% => ETA Unknown) PID2903437 2023-12-06 17:40:03,587 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.715e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,587 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.869e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,587 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.563e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,587 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.595e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,587 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.655e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,588 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.1_dsu502.opt_12 with E=1.854e-06 is no better than current best with E=1.889e-06 PID2903437 2023-12-06 17:40:03,588 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_12-13 as ok (25.0% => ETA Wed Dec 6 17:44:22 2023) PID2903437 2023-12-06 17:40:19,414 Info:Polynomial Selection (root optimized): New best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30: Murphy E = 1.915e-06 n: 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 skew: 123195.067 c0: -1157130844850115467015570544405 c1: 34128420266045430555999996 c2: 501830161453916426380 c3: -1470920243084992 c4: -3869902751 c5: -50820 Y0: -16792346274783609082394116 Y1: 51929623633836000337 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=2.349e+13) = 1.915e-06 # f(x) = -50820*x^5-3869902751*x^4-1470920243084992*x^3+501830161453916426380*x^2+34128420266045430555999996*x-1157130844850115467015570544405 # g(x) = 51929623633836000337*x-16792346274783609082394116 PID2903437 2023-12-06 17:40:19,414 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30 with E=1.766e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:19,415 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30 with E=1.636e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:19,415 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30 with E=1.671e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:19,415 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30 with E=1.753e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:19,415 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.nvm_msde.opt_30 with E=1.899e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:19,416 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_30-31 as ok (37.5% => ETA Wed Dec 6 17:42:46 2023) PID2903437 2023-12-06 17:40:22,285 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.762e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,285 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.658e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,285 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.680e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,286 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.714e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,286 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.722e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,286 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.7ha1xykm.opt_6 with E=1.832e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:22,287 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_6-7 as ok (50.0% => ETA Wed Dec 6 17:41:44 2023) PID2903437 2023-12-06 17:40:26,514 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24 with E=1.796e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:26,514 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24 with E=1.805e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:26,515 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24 with E=1.824e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:26,515 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24 with E=1.822e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:26,515 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24 with E=1.792e-06 is no better than current best with E=1.915e-06 PID2903437 2023-12-06 17:40:26,515 Info:Polynomial Selection (root optimized): New best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.cf17wlk2.opt_24: Murphy E = 1.974e-06 n: 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 skew: 338420.485 c0: 3854555329121571878306553240294 c1: 193062357449265608823604931 c2: -1086688742215991762464 c3: -3639712392303006 c4: 3697275120 c5: 5400 Y0: -22745285677826592782610893 Y1: 3731193510836588027 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=2.349e+13) = 1.974e-06 # f(x) = 5400*x^5+3697275120*x^4-3639712392303006*x^3-1086688742215991762464*x^2+193062357449265608823604931*x+3854555329121571878306553240294 # g(x) = 3731193510836588027*x-22745285677826592782610893 PID2903437 2023-12-06 17:40:26,516 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_24-25 as ok (62.5% => ETA Wed Dec 6 17:41:16 2023) PID2903437 2023-12-06 17:40:30,737 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.651e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,737 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.707e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,738 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.643e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,738 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.839e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,738 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.814e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,738 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2._3rw2zbf.opt_36 with E=1.842e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:30,739 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_36-37 as ok (75.0% => ETA Wed Dec 6 17:40:58 2023) PID2903437 2023-12-06 17:40:33,534 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.771e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,534 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.780e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,535 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.970e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,535 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.855e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,535 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.826e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,535 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.3t8xz6hd.opt_18 with E=1.907e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:33,536 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_18-19 as ok (87.5% => ETA Wed Dec 6 17:40:45 2023) PID2903437 2023-12-06 17:40:47,571 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42 with E=1.812e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:47,571 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42 with E=1.799e-06 is no better than current best with E=1.974e-06 PID2903437 2023-12-06 17:40:47,572 Info:Polynomial Selection (root optimized): New best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42: Murphy E = 2.005e-06 n: 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 skew: 98441.673 c0: 549607029456287575765405332480 c1: 72203480824773851912428 c2: -183386040961485189976 c3: -5151810936365487 c4: 7778923280 c5: 9600 Y0: 6692824651835533050360733 Y1: 73091476313584700813 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=2.349e+13) = 2.005e-06 # f(x) = 9600*x^5+7778923280*x^4-5151810936365487*x^3-183386040961485189976*x^2+72203480824773851912428*x+549607029456287575765405332480 # g(x) = 73091476313584700813*x+6692824651835533050360733 PID2903437 2023-12-06 17:40:47,572 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42 with E=1.971e-06 is no better than current best with E=2.005e-06 PID2903437 2023-12-06 17:40:47,572 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42 with E=1.599e-06 is no better than current best with E=2.005e-06 PID2903437 2023-12-06 17:40:47,572 Info:Polynomial Selection (root optimized): Best polynomial from file /home/five/Documents/math/GNFS/c130.718/c130.upload/c130.polyselect2.v8jqn4rz.opt_42 with E=1.966e-06 is no better than current best with E=2.005e-06 PID2903437 2023-12-06 17:40:47,573 Info:Polynomial Selection (root optimized): Marking workunit c130_polyselect2_42-43 as ok (100.0% => ETA Wed Dec 6 17:40:47 2023) PID2903437 2023-12-06 17:40:47,577 Info:Polynomial Selection (root optimized): Kept 42 polynomials with MurphyE from 2.005e-06 to 1.636e-06 PID2903437 2023-12-06 17:40:47,753 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.0 had MurphyE 2.005e-06, refined to 2.001e-06 PID2903437 2023-12-06 17:40:47,753 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.1 had MurphyE 1.974e-06, refined to 1.988e-06 PID2903437 2023-12-06 17:40:47,753 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.2 had MurphyE 1.971e-06, refined to 1.996e-06 PID2903437 2023-12-06 17:40:47,754 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.3 had MurphyE 1.970e-06, refined to 1.965e-06 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.40 had MurphyE 1.643e-06, refined to 1.640e-06 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Polynomial /home/five/Documents/math/GNFS/c130.718/c130.poly.41 had MurphyE 1.636e-06, refined to 1.633e-06 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Best polynomial is /home/five/Documents/math/GNFS/c130.718/c130.poly.0 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Finished, best polynomial has Murphy_E = 2.005e-06 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Best polynomial is: n: 7188307237049796865294127614318396754493847742787736561258074356261437902498686946309415410869594622843190543022104737348809136319 skew: 98441.673 c0: 549607029456287575765405332480 c1: 72203480824773851912428 c2: -183386040961485189976 c3: -5151810936365487 c4: 7778923280 c5: 9600 Y0: 6692824651835533050360733 Y1: 73091476313584700813 # MurphyE (Bf=5.369e+08,Bg=5.369e+08,area=2.349e+13) = 2.005e-06 # f(x) = 9600*x^5+7778923280*x^4-5151810936365487*x^3-183386040961485189976*x^2+72203480824773851912428*x+549607029456287575765405332480 # g(x) = 73091476313584700813*x+6692824651835533050360733 PID2903437 2023-12-06 17:40:47,759 Info:Polynomial Selection (root optimized): Best overall polynomial was 1-th in list after size optimization PID2903437 2023-12-06 17:40:47,763 Info:Complete Factorization / Discrete logarithm: Polynomial Selection (root optimized) PID2903437 2023-12-06 17:40:47,763 Info:Polynomial Selection (root optimized): Aggregate statistics: PID2903437 2023-12-06 17:40:47,763 Info:Polynomial Selection (root optimized): Total time: 639.59 PID2903437 2023-12-06 17:40:47,763 Info:Polynomial Selection (root optimized): Rootsieve time: 639.25 PID2903437 2023-12-06 17:40:47,763 Info:Generate Factor Base: Starting PID2903437 2023-12-06 17:40:48,573 Info:Generate Factor Base: Finished PID2903437 2023-12-06 17:40:48,573 Info:Complete Factorization / Discrete logarithm: Generate Factor Base PID2903437 2023-12-06 17:40:48,573 Info:Generate Factor Base: Total cpu/real time for makefb: 4.6/0.78273 PID2903437 2023-12-06 17:40:48,573 Info:Generate Free Relations: Starting PID2903437 2023-12-06 17:41:19,052 Info:Generate Free Relations: Found 234280 free relations PID2903437 2023-12-06 17:41:19,052 Info:Generate Free Relations: Finished PID2903437 2023-12-06 17:41:19,052 Info:Complete Factorization / Discrete logarithm: Generate Free Relations PID2903437 2023-12-06 17:41:19,052 Info:Generate Free Relations: Total cpu/real time for freerel: 359.04/30.4343 PID2903437 2023-12-06 20:30:46,825 Info:Filtering - Duplicate Removal, splitting pass: Starting PID2903437 2023-12-06 20:30:46,826 Info:Filtering - Duplicate Removal, splitting pass: Splitting 445 new files PID2903437 2023-12-06 20:31:35,464 Info:Filtering - Duplicate Removal, splitting pass: Relations per slice: 0: 20538318, 1: 20529109 PID2903437 2023-12-06 20:31:35,464 Info:Complete Factorization / Discrete logarithm: Filtering - Duplicate Removal, splitting pass PID2903437 2023-12-06 20:31:35,464 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 167.6/48.4294 PID2903437 2023-12-06 20:31:35,465 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: PID2903437 2023-12-06 20:31:35,465 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 48.3s PID2903437 2023-12-06 20:31:35,465 Info:Filtering - Duplicate Removal, removal pass: Starting PID2903437 2023-12-06 20:32:47,751 Info:Filtering - Duplicate Removal, removal pass: 14083881 unique relations remain on slice 0 PID2903437 2023-12-06 20:33:57,740 Info:Filtering - Duplicate Removal, removal pass: 14080829 unique relations remain on slice 1 PID2903437 2023-12-06 20:33:57,744 Info:Filtering - Duplicate Removal, removal pass: Of 41067427 newly added relations 28164710 were unique (ratio 0.685816) PID2903437 2023-12-06 20:33:57,748 Info:Filtering - Duplicate Removal, removal pass: 28164710 unique relations remain in total PID2903437 2023-12-06 20:33:57,748 Info:Complete Factorization / Discrete logarithm: Filtering - Duplicate Removal, removal pass PID2903437 2023-12-06 20:33:57,749 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 525.19/142.23 PID2903437 2023-12-06 20:33:57,749 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: PID2903437 2023-12-06 20:33:57,749 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 121.4s PID2903437 2023-12-06 20:33:57,749 Info:Filtering - Singleton removal: Starting PID2903437 2023-12-06 20:33:57,753 Info:Filtering - Singleton removal: Reading 28164710 unique and 234280 free relations, total 28398990 PID2903437 2023-12-06 20:34:53,455 Info:Filtering - Singleton removal: After purge, 5657257 relations with 5657092 primes remain with weight 104947496 and excess 165 PID2903437 2023-12-06 20:34:53,460 Info:Filtering - Singleton removal: Have enough relations PID2903437 2023-12-06 20:34:53,460 Info:HTTP server: Got notification to stop serving Workunits PID2903437 2023-12-06 20:34:53,462 Info:Client Launcher: Stopped client localhost (Host localhost, PID 2903454) PID2903437 2023-12-06 20:34:53,467 Info:Client Launcher: Stopped client localhost+2 (Host localhost, PID 2903459) PID2903437 2023-12-06 20:34:53,473 Info:Client Launcher: Stopped client localhost+3 (Host localhost, PID 2903461) PID2903437 2023-12-06 20:34:53,479 Info:Client Launcher: Stopped client localhost+4 (Host localhost, PID 2903463) PID2903437 2023-12-06 20:34:53,485 Info:Client Launcher: Stopped client localhost+5 (Host localhost, PID 2903465) PID2903437 2023-12-06 20:34:53,490 Info:Client Launcher: Stopped client localhost+6 (Host localhost, PID 2903467) PID2903437 2023-12-06 20:34:53,495 Info:Complete Factorization / Discrete logarithm: Filtering - Singleton removal PID2903437 2023-12-06 20:34:53,495 Info:Filtering - Singleton removal: Total cpu/real time for purge: 149.89/55.6899 PID2903437 2023-12-06 20:34:53,495 Info:Filtering - Merging: Starting PID2903437 2023-12-06 20:35:09,731 Info:Filtering - Merging: Merged matrix has 1255367 rows and total weight 144849971 (115.4 entries per row on average) PID2903437 2023-12-06 20:35:31,681 Info:Complete Factorization / Discrete logarithm: Filtering - Merging PID2903437 2023-12-06 20:35:31,682 Info:Filtering - Merging: Total cpu/real time for merge: 115.56/16.2193 PID2903437 2023-12-06 20:35:31,682 Info:Filtering - Merging: Total cpu/real time for replay: 25.82/21.4826 PID2903437 2023-12-06 20:35:31,682 Info:Linear Algebra: Starting PID2903437 2023-12-06 20:38:55,020 Info:Linear Algebra: krylov: N=3000 ; ETA (N=42000): Wed Dec 6 20:55:04 2023 [0.025 s/iter] PID2903437 2023-12-06 20:40:09,684 Info:Linear Algebra: krylov: N=6000 ; ETA (N=42000): Wed Dec 6 20:55:04 2023 [0.025 s/iter] PID2903437 2023-12-06 20:41:24,395 Info:Linear Algebra: krylov: N=9000 ; ETA (N=42000): Wed Dec 6 20:55:05 2023 [0.025 s/iter] PID2903437 2023-12-06 20:42:38,944 Info:Linear Algebra: krylov: N=12000 ; ETA (N=42000): Wed Dec 6 20:55:04 2023 [0.025 s/iter] PID2903437 2023-12-06 20:43:55,503 Info:Linear Algebra: krylov: N=15000 ; ETA (N=42000): Wed Dec 6 20:55:10 2023 [0.025 s/iter] PID2903437 2023-12-06 20:45:11,573 Info:Linear Algebra: krylov: N=18000 ; ETA (N=42000): Wed Dec 6 20:55:12 2023 [0.025 s/iter] PID2903437 2023-12-06 20:46:29,993 Info:Linear Algebra: krylov: N=21000 ; ETA (N=42000): Wed Dec 6 20:55:18 2023 [0.025 s/iter] PID2903437 2023-12-06 20:47:47,973 Info:Linear Algebra: krylov: N=24000 ; ETA (N=42000): Wed Dec 6 20:55:22 2023 [0.025 s/iter] PID2903437 2023-12-06 20:49:05,438 Info:Linear Algebra: krylov: N=27000 ; ETA (N=42000): Wed Dec 6 20:55:25 2023 [0.025 s/iter] PID2903437 2023-12-06 20:50:21,515 Info:Linear Algebra: krylov: N=30000 ; ETA (N=42000): Wed Dec 6 20:55:25 2023 [0.025 s/iter] PID2903437 2023-12-06 20:51:37,628 Info:Linear Algebra: krylov: N=33000 ; ETA (N=42000): Wed Dec 6 20:55:25 2023 [0.025 s/iter] PID2903437 2023-12-06 20:52:52,502 Info:Linear Algebra: krylov: N=36000 ; ETA (N=42000): Wed Dec 6 20:55:24 2023 [0.025 s/iter] PID2903437 2023-12-06 20:54:11,803 Info:Linear Algebra: krylov: N=39000 ; ETA (N=42000): Wed Dec 6 20:55:27 2023 [0.025 s/iter] PID2903437 2023-12-06 20:55:27,853 Info:Linear Algebra: krylov: N=42000 ; ETA (N=42000): Wed Dec 6 20:55:27 2023 [0.025 s/iter] PID2903437 2023-12-06 20:55:29,131 Info:Linear Algebra: lingen ETA: not available yet PID2903437 2023-12-06 20:55:34,159 Info:Linear Algebra: lingen ETA: not available yet PID2903437 2023-12-06 20:55:39,168 Info:Linear Algebra: lingen ETA: not available yet PID2903437 2023-12-06 20:55:44,281 Info:Linear Algebra: lingen ETA: not available yet PID2903437 2023-12-06 20:55:51,111 Info:Linear Algebra: lingen ETA: not available yet PID2903437 2023-12-06 20:55:52,438 Info:Linear Algebra: lingen ETA: Wed Dec 6 20:55:53 2023 PID2903437 2023-12-06 20:57:19,878 Info:Linear Algebra: mksol: N=3000 ; ETA (N=21000): Wed Dec 6 21:05:56 2023 [0.029 s/iter] PID2903437 2023-12-06 20:58:47,400 Info:Linear Algebra: mksol: N=6000 ; ETA (N=21000): Wed Dec 6 21:06:01 2023 [0.029 s/iter] PID2903437 2023-12-06 21:00:16,179 Info:Linear Algebra: mksol: N=9000 ; ETA (N=21000): Wed Dec 6 21:06:06 2023 [0.029 s/iter] PID2903437 2023-12-06 21:01:44,923 Info:Linear Algebra: mksol: N=12000 ; ETA (N=21000): Wed Dec 6 21:06:07 2023 [0.029 s/iter] PID2903437 2023-12-06 21:03:17,111 Info:Linear Algebra: mksol: N=15000 ; ETA (N=21000): Wed Dec 6 21:06:14 2023 [0.030 s/iter] PID2903437 2023-12-06 21:04:47,949 Info:Linear Algebra: mksol: N=18000 ; ETA (N=21000): Wed Dec 6 21:06:16 2023 [0.030 s/iter] PID2903437 2023-12-06 21:05:35,087 Info:Linear Algebra: mksol: N=19538 ; ETA (N=21000): Wed Dec 6 21:06:18 2023 [0.030 s/iter] PID2903437 2023-12-06 21:05:36,510 Info:Complete Factorization / Discrete logarithm: Linear Algebra PID2903437 2023-12-06 21:05:36,510 Info:Linear Algebra: Total cpu/real time for bwc: 17604/1804.37 PID2903437 2023-12-06 21:05:36,510 Info:Linear Algebra: Aggregate statistics: PID2903437 2023-12-06 21:05:36,510 Info:Linear Algebra: Krylov: CPU time 10580.26, WCT time 1068.4, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (42000 iterations) PID2903437 2023-12-06 21:05:36,510 Info:Linear Algebra: Lingen CPU time 205.42, WCT time 24.59 PID2903437 2023-12-06 21:05:36,510 Info:Linear Algebra: Mksol: CPU time 5691.92, WCT time 582.59, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (21000 iterations) PID2903437 2023-12-06 21:05:36,511 Info:Quadratic Characters: Starting PID2903437 2023-12-06 21:05:45,659 Info:Complete Factorization / Discrete logarithm: Quadratic Characters PID2903437 2023-12-06 21:05:45,659 Info:Quadratic Characters: Total cpu/real time for characters: 33.67/9.1204 PID2903437 2023-12-06 21:05:45,659 Info:Square Root: Starting PID2903437 2023-12-06 21:05:45,663 Info:Square Root: Creating file of (a,b) values PID2903437 2023-12-06 21:07:46,753 Info:Square Root: finished PID2903437 2023-12-06 21:07:46,754 Info:Square Root: Factors: 9300242359778923969495126644028316070077165905703166070353709535704172927 772916119706440649461962734675752212373872843252981551297 PID2903437 2023-12-06 21:07:46,754 Info:Complete Factorization / Discrete logarithm: Square Root PID2903437 2023-12-06 21:07:46,754 Info:Square Root: Total cpu/real time for sqrt: 1992.01/120.898 PID2903437 2023-12-06 21:07:46,754 Info:HTTP server: Got notification to stop serving Workunits PID2903437 2023-12-06 21:07:46,754 Info:Generate Free Relations: Total cpu/real time for freerel: 359.04/30.4343 PID2903437 2023-12-06 21:07:46,754 Info:Filtering - Merging: Total cpu/real time for merge: 115.56/16.2193 PID2903437 2023-12-06 21:07:46,754 Info:Filtering - Merging: Total cpu/real time for replay: 25.82/21.4826 PID2903437 2023-12-06 21:07:46,754 Info:Generate Factor Base: Total cpu/real time for makefb: 4.6/0.78273 PID2903437 2023-12-06 21:07:46,754 Info:Polynomial Selection (root optimized): Aggregate statistics: PID2903437 2023-12-06 21:07:46,754 Info:Polynomial Selection (root optimized): Total time: 639.59 PID2903437 2023-12-06 21:07:46,754 Info:Polynomial Selection (root optimized): Rootsieve time: 639.25 PID2903437 2023-12-06 21:07:46,754 Info:Quadratic Characters: Total cpu/real time for characters: 33.67/9.1204 PID2903437 2023-12-06 21:07:46,755 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 167.6/48.4294 PID2903437 2023-12-06 21:07:46,755 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: PID2903437 2023-12-06 21:07:46,755 Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 48.3s PID2903437 2023-12-06 21:07:46,755 Info:Square Root: Total cpu/real time for sqrt: 1992.01/120.898 PID2903437 2023-12-06 21:07:46,755 Info:Polynomial Selection (size optimized): Aggregate statistics: PID2903437 2023-12-06 21:07:46,755 Info:Polynomial Selection (size optimized): potential collisions: 47846.6 PID2903437 2023-12-06 21:07:46,755 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 32890/39.500/47.694/59.020/2.240 PID2903437 2023-12-06 21:07:46,755 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 27286/37.980/41.990/57.140/1.699 PID2903437 2023-12-06 21:07:46,755 Info:Polynomial Selection (size optimized): Total time: 3644.94 PID2903437 2023-12-06 21:07:46,755 Info:Linear Algebra: Total cpu/real time for bwc: 17604/1804.37 PID2903437 2023-12-06 21:07:46,756 Info:Linear Algebra: Aggregate statistics: PID2903437 2023-12-06 21:07:46,756 Info:Linear Algebra: Krylov: CPU time 10580.26, WCT time 1068.4, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (42000 iterations) PID2903437 2023-12-06 21:07:46,756 Info:Linear Algebra: Lingen CPU time 205.42, WCT time 24.59 PID2903437 2023-12-06 21:07:46,756 Info:Linear Algebra: Mksol: CPU time 5691.92, WCT time 582.59, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (21000 iterations) PID2903437 2023-12-06 21:07:46,756 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 525.19/142.23 PID2903437 2023-12-06 21:07:46,756 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: PID2903437 2023-12-06 21:07:46,756 Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 121.4s PID2903437 2023-12-06 21:07:46,756 Info:Filtering - Singleton removal: Total cpu/real time for purge: 149.89/55.6899 PID2903437 2023-12-06 21:07:46,764 Info:HTTP server: Shutting down HTTP server PID2903437 2023-12-06 21:07:47,116 Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 143436/12888.4 [03:34:48] |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 16, 2018 19:49:14 UTC 2018 年 12 月 17 日 (月) 4 時 49 分 14 秒 (日本時間) |
composite number 合成数 | 3992060315939705814173224530192301910894820754817412781811357616431621685115469120575869924981688170799749882871468086051436537495382721281327878467735876177323092600365148764757411<181> |
prime factors 素因数 | 3470739820132612857238540749395646361755589491418861<52> 1150204429840313964624312811472619752824228921627990986480373190551662296350875395636554691390172188901693936595987242532347065551<130> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3732612769 Step 1 took 85819ms Step 2 took 1551ms ********** Factor found in step 2: 3470739820132612857238540749395646361755589491418861 Found probable prime factor of 52 digits: 3470739820132612857238540749395646361755589491418861 Probable prime cofactor 1150204429840313964624312811472619752824228921627990986480373190551662296350875395636554691390172188901693936595987242532347065551 has 130 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 / 3844 | Dmitry Domanov | December 16, 2018 00:55:38 UTC 2018 年 12 月 16 日 (日) 9 時 55 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 2000 | Dmitry Domanov | December 23, 2018 22:01:22 UTC 2018 年 12 月 24 日 (月) 7 時 1 分 22 秒 (日本時間) | |
50 | 43e6 | 540 | Dmitry Domanov | December 28, 2018 17:51:26 UTC 2018 年 12 月 29 日 (土) 2 時 51 分 26 秒 (日本時間) | |
55 | 11e7 | 0 | - | - | |
60 | 26e7 | 10000 / 41918 | yoyo@home | December 18, 2019 17:03:11 UTC 2019 年 12 月 19 日 (木) 2 時 3 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
40 | 3e6 | 2880 | Erik Branger | December 12, 2018 00:00:00 UTC 2018 年 12 月 12 日 (水) 9 時 0 分 0 秒 (日本時間) | |
45 | 11e6 | 4000 | ebina | March 11, 2024 20:39:08 UTC 2024 年 3 月 12 日 (火) 5 時 39 分 8 秒 (日本時間) |