name 名前 | anonymous |
---|---|
date 日付 | March 1, 2023 01:11:32 UTC 2023 年 3 月 1 日 (水) 10 時 11 分 32 秒 (日本時間) |
composite number 合成数 | 1255051774712084235401796407643877528374501327370306852506162380741383572137544491202775807193436385328444753615735288153<121> |
prime factors 素因数 | 2805193032846008242526210342091471546611134117316992212943<58> 447402998658802319028969630963940462960233911700097459534544471<63> |
factorization results 素因数分解の結果 | p58 factor: 2805193032846008242526210342091471546611134117316992212943 p63 factor: 447402998658802319028969630963940462960233911700097459534544471 |
software ソフトウェア | GGNFS+Msieve 1.54 snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | February 28, 2023 12:53:44 UTC 2023 年 2 月 28 日 (火) 21 時 53 分 44 秒 (日本時間) |
composite number 合成数 | 1012289082575179115350807132474153953027208222203778425448430401855341760765964350659895339698920017<100> |
prime factors 素因数 | 460939196644809965328322289887769481917<39> 2196144502232965354089746641463246165361377257959603895339301<61> |
factorization results 素因数分解の結果 | starting SIQS on c100: 1012289082575179115350807132474153953027208222203778425448430401855341760765964350659895339698920017 ==== sieving in progress ( 12 threads): 114016 relations needed ==== ==== Press ctrl-c to abort and save state ==== 115142 rels found: 27944 full + 87198 from 1978691 partial, (1616.23 rels/sec) SIQS elapsed time = 1271.5793 seconds. ***factors found*** P39 = 460939196644809965328322289887769481917 P61 = 2196144502232965354089746641463246165361377257959603895339301 ans = 1 |
software ソフトウェア | yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | March 11, 2023 12:46:27 UTC 2023 年 3 月 11 日 (土) 21 時 46 分 27 秒 (日本時間) |
composite number 合成数 | 107277498073352734439514270403608241608492599061592418640360238303334935866309509683532243866486568289498639110072389<117> |
prime factors 素因数 | 12503127834440494086410640476364990297345256699<47> 8580052887074502567360330579541694808283611027598916466964058703461311<70> |
factorization results 素因数分解の結果 | p47 factor: 12503127834440494086410640476364990297345256699 p70 factor: 8580052887074502567360330579541694808283611027598916466964058703461311 |
software ソフトウェア | GGNFS+Msieve 1.54 snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 8, 2023 15:52:18 UTC 2023 年 3 月 9 日 (木) 0 時 52 分 18 秒 (日本時間) |
composite number 合成数 | 2058740360516253019688509347791433577769399782810373231516209426875198200944378611140654790050822335556312047<109> |
prime factors 素因数 | 123265882617568841830044652283239737979<39> 16701623488986601701463379858902019389000763830947027875758743080920093<71> |
factorization results 素因数分解の結果 | 16701623488986601701463379858902019389000763830947027875758743080920093 123265882617568841830044652283239737979 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 6, 2023 23:25:34 UTC 2023 年 3 月 7 日 (火) 8 時 25 分 34 秒 (日本時間) |
composite number 合成数 | 190765350582015571494774692661798289990866424260080541359240163529531096392134392049558733454135270493<102> |
prime factors 素因数 | 88304517148383271682800059167838254035219191221<47> 2160312481653246997657853958756606280024543691376596233<55> |
factorization results 素因数分解の結果 | 88304517148383271682800059167838254035219191221 2160312481653246997657853958756606280024543691376596233 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 13, 2023 21:24:24 UTC 2023 年 3 月 14 日 (火) 6 時 24 分 24 秒 (日本時間) |
composite number 合成数 | 235044186956011262827831911689114355410295815620160068443925549636629295125661948633061170927333617291052079548981<114> |
prime factors 素因数 | 1855598201112410065461406665083539855569903988656467869<55> 126667608760940240119997168990366925692515013807238069558649<60> |
factorization results 素因数分解の結果 | N=235044186956011262827831911689114355410295815620160068443925549636629295125661948633061170927333617291052079548981 ( 114 digits) SNFS difficulty: 136 digits. Divisors found: r1=1855598201112410065461406665083539855569903988656467869 (pp55) r2=126667608760940240119997168990366925692515013807238069558649 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.07 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 235044186956011262827831911689114355410295815620160068443925549636629295125661948633061170927333617291052079548981 m: 2000000000000000000000000000000000 deg: 4 c4: 1025 c0: 7 skew: 0.29 # Murphy_E = 5.68e-09 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1750001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 187049 x 187274 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,136.000,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,100000 total time: 0.07 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2023 17:38:55 UTC 2023 年 2 月 23 日 (木) 2 時 38 分 55 秒 (日本時間) |
composite number 合成数 | 60740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741<143> |
prime factors 素因数 | 7114696028317662887592065935600412542300171768594698549042709<61> 8537362734680804474422886716312732650704479182096293330024063766886754903331472049<82> |
factorization results 素因数分解の結果 | Number: n N=60740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 ( 143 digits) SNFS difficulty: 144 digits. Divisors found: Thu Feb 23 04:35:35 2023 prp61 factor: 7114696028317662887592065935600412542300171768594698549042709 Thu Feb 23 04:35:35 2023 prp82 factor: 8537362734680804474422886716312732650704479182096293330024063766886754903331472049 Thu Feb 23 04:35:35 2023 elapsed time 00:03:58 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.092). Factorization parameters were as follows: # # N = 82x10^143+35 = 91(142)5 # n: 60740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741 m: 200000000000000000000000000000000000 deg: 4 c4: 1025 c0: 7 skew: 0.29 # Murphy_E = 2.265e-09 type: snfs lss: 1 rlim: 1770000 alim: 1770000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1770000/1770000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 12085000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 539758 hash collisions in 6600087 relations (6775502 unique) Msieve: matrix is 309825 x 310051 (85.3 MB) Sieving start time: 2023/02/23 03:34:37 Sieving end time : 2023/02/23 04:31:30 Total sieving time: 0hrs 56min 53secs. Total relation processing time: 0hrs 2min 31sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 11sec. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1770000,1770000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 15, 2023 13:42:44 UTC 2023 年 3 月 15 日 (水) 22 時 42 分 44 秒 (日本時間) |
composite number 合成数 | 4826724422209456164449669121503671684225574180486257235117151309612548019972452626891203533755826040086175455123311499<118> |
prime factors 素因数 | 451241973206187878693636204958481436630381944859<48> 10696532478825857858003345277023754095049938871394350187459086986778961<71> |
factorization results 素因数分解の結果 | 10696532478825857858003345277023754095049938871394350187459086986778961 451241973206187878693636204958481436630381944859 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 25, 2023 00:37:50 UTC 2023 年 2 月 25 日 (土) 9 時 37 分 50 秒 (日本時間) |
composite number 合成数 | 171127900976598851289210130435033234852429752129951480255451286876801505217309515101372001469802098238407206509616784026436804806812946164083<141> |
prime factors 素因数 | 2813190068323141648996623893298777927505759524125933673924719837831<67> 60830550663291324700674827788989658204656203761927421132934007364913651893<74> |
factorization results 素因数分解の結果 | Number: n N=171127900976598851289210130435033234852429752129951480255451286876801505217309515101372001469802098238407206509616784026436804806812946164083 ( 141 digits) SNFS difficulty: 150 digits. Divisors found: Sat Feb 25 11:34:36 2023 prp67 factor: 2813190068323141648996623893298777927505759524125933673924719837831 Sat Feb 25 11:34:36 2023 prp74 factor: 60830550663291324700674827788989658204656203761927421132934007364913651893 Sat Feb 25 11:34:36 2023 elapsed time 00:06:46 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.078). Factorization parameters were as follows: # # N = 82x10^149+35 = 91(148)5 # n: 171127900976598851289210130435033234852429752129951480255451286876801505217309515101372001469802098238407206509616784026436804806812946164083 m: 10000000000000000000000000000000000000 deg: 4 c4: 164 c0: 7 skew: 0.45 # Murphy_E = 1.185e-09 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 26700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 955339 hash collisions in 12529262 relations (12909300 unique) Msieve: matrix is 402839 x 403065 (110.2 MB) Sieving start time: 2023/02/25 08:55:24 Sieving end time : 2023/02/25 11:27:18 Total sieving time: 2hrs 31min 54secs. Total relation processing time: 0hrs 4min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 14sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 12, 2023 19:04:07 UTC 2023 年 3 月 13 日 (月) 4 時 4 分 7 秒 (日本時間) |
composite number 合成数 | 176236907950248649077221412516757306400354584510108197730338970264065081482592323232962873739853037064653511919<111> |
prime factors 素因数 | 396778190746820373797937781067043591801691<42> 444169846176609552369381344437906213517643335490154867408790887443709<69> |
factorization results 素因数分解の結果 | 444169846176609552369381344437906213517643335490154867408790887443709 396778190746820373797937781067043591801691 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 21, 2023 15:13:12 UTC 2023 年 2 月 22 日 (水) 0 時 13 分 12 秒 (日本時間) |
composite number 合成数 | 114950878039197816444806690103739576994189758388114317623759186764095740046856766326819247061293041222477<105> |
prime factors 素因数 | 2016281629480117796841782142255017177325924399001<49> 57011320421957614775636830768674873692672379793401899477<56> |
factorization results 素因数分解の結果 | N=114950878039197816444806690103739576994189758388114317623759186764095740046856766326819247061293041222477 ( 105 digits) Divisors found: r1=2016281629480117796841782142255017177325924399001 (pp49) r2=57011320421957614775636830768674873692672379793401899477 (pp56) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.08 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 114950878039197816444806690103739576994189758388114317623759186764095740046856766326819247061293041222477 skew: 1587475.28 c0: 3624870308064486405506006285 c1: 46997916585398959129078 c2: -29488581552794645 c3: -6958063438 c4: 10920 Y0: -10129139058369730685261424 Y1: 17535453992327 rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 40000 type: gnfs Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [1250000, 1770001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 299657 x 299884 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,104,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,52,52,2.5,2.5,150000 total time: 0.08 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 1, 2023 02:51:54 UTC 2023 年 3 月 1 日 (水) 11 時 51 分 54 秒 (日本時間) |
composite number 合成数 | 23000267995195804997949820623855061735594332604940090122062282004967581052138003234819398880422686583608491569917932659619019914543626228142435105971<149> |
prime factors 素因数 | 3887166145584502474131315769057384373002021<43> 5916975795161777939981171543327959849637809917689541217266049265229868152735432366949178634134181500104951<106> |
factorization results 素因数分解の結果 | Number: n N=23000267995195804997949820623855061735594332604940090122062282004967581052138003234819398880422686583608491569917932659619019914543626228142435105971 ( 149 digits) SNFS difficulty: 156 digits. Divisors found: Wed Mar 1 13:48:32 2023 prp43 factor: 3887166145584502474131315769057384373002021 Wed Mar 1 13:48:32 2023 prp106 factor: 5916975795161777939981171543327959849637809917689541217266049265229868152735432366949178634134181500104951 Wed Mar 1 13:48:32 2023 elapsed time 00:10:03 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.111). Factorization parameters were as follows: # # N = 82x10^155+35 = 91(154)5 # n: 23000267995195804997949820623855061735594332604940090122062282004967581052138003234819398880422686583608491569917932659619019914543626228142435105971 m: 10000000000000000000000000000000 deg: 5 c5: 82 c0: 35 skew: 0.84 # Murphy_E = 6.848e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 19850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 912443 hash collisions in 11805157 relations (11663603 unique) Msieve: matrix is 510058 x 510286 (141.4 MB) Sieving start time: 2023/03/01 11:40:50 Sieving end time : 2023/03/01 13:38:11 Total sieving time: 1hrs 57min 21secs. Total relation processing time: 0hrs 6min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 59sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 3, 2023 21:02:23 UTC 2023 年 3 月 4 日 (土) 6 時 2 分 23 秒 (日本時間) |
composite number 合成数 | 362662919866137188662636253973475929086633309902577844135226872546698511376388467162831977209526288460687057903379194580881<123> |
prime factors 素因数 | 28464654498236033951509047351579517171558073<44> 12740815803283737561954449550932211980089465965918022960214788039990209660748697<80> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 362662919866137188662636253973475929086633309902577844135226872546698511376388467162831977209526288460687057903379194580881 (123 digits) Using B1=35360000, B2=192388936756, polynomial Dickson(12), sigma=1:399422872 Step 1 took 55345ms Step 2 took 22797ms ********** Factor found in step 2: 28464654498236033951509047351579517171558073 Found prime factor of 44 digits: 28464654498236033951509047351579517171558073 Prime cofactor 12740815803283737561954449550932211980089465965918022960214788039990209660748697 has 80 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 3, 2023 01:54:33 UTC 2023 年 3 月 3 日 (金) 10 時 54 分 33 秒 (日本時間) |
composite number 合成数 | 58384996315585811524342460672002056464882744525268680376108551666591365951684333687103440449683191954193027597400618568512831295844400411793807<143> |
prime factors 素因数 | 61798127421675269850953314927682137<35> 944769667812097394192558131314023762520765878809453208787315991522130623189456065881648488341409360779791911<108> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 58384996315585811524342460672002056464882744525268680376108551666591365951684333687103440449683191954193027597400618568512831295844400411793807 (143 digits) Using B1=31070000, B2=144289975846, polynomial Dickson(12), sigma=1:3672248605 Step 1 took 62263ms Step 2 took 22531ms ********** Factor found in step 2: 61798127421675269850953314927682137 Found prime factor of 35 digits: 61798127421675269850953314927682137 Prime cofactor 944769667812097394192558131314023762520765878809453208787315991522130623189456065881648488341409360779791911 has 108 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 5, 2023 00:30:07 UTC 2023 年 3 月 5 日 (日) 9 時 30 分 7 秒 (日本時間) |
composite number 合成数 | 39011992919651287538763575023072495306975034306988812074919763279161091729361394271691537917051238209551254337581321109504874982212119797882743603781<149> |
prime factors 素因数 | 2845212506526662610729287546386662631969<40> 13711451369681972979321356018613754528544499377440159206188262033883624142162229344412375121461420031397411749<110> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 39011992919651287538763575023072495306975034306988812074919763279161091729361394271691537917051238209551254337581321109504874982212119797882743603781 (149 digits) Using B1=31790000, B2=144291357226, polynomial Dickson(12), sigma=1:3059853126 Step 1 took 62100ms Step 2 took 22343ms ********** Factor found in step 2: 2845212506526662610729287546386662631969 Found prime factor of 40 digits: 2845212506526662610729287546386662631969 Prime cofactor 13711451369681972979321356018613754528544499377440159206188262033883624142162229344412375121461420031397411749 has 110 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 7, 2023 02:54:59 UTC 2023 年 3 月 7 日 (火) 11 時 54 分 59 秒 (日本時間) |
composite number 合成数 | 7072549919611203433818811149551634455676444501732297890360732243330817692655229763818580284935924985187308734216073438921029233<127> |
prime factors 素因数 | 95562158757228140474778137304828847530213054917516832457<56> 74009942968939566463163406161404266739609499955719717571154992947992169<71> |
factorization results 素因数分解の結果 | Number: n N=7072549919611203433818811149551634455676444501732297890360732243330817692655229763818580284935924985187308734216073438921029233 ( 127 digits) SNFS difficulty: 164 digits. Divisors found: Tue Mar 7 13:35:48 2023 prp56 factor: 95562158757228140474778137304828847530213054917516832457 Tue Mar 7 13:35:48 2023 prp71 factor: 74009942968939566463163406161404266739609499955719717571154992947992169 Tue Mar 7 13:35:48 2023 elapsed time 00:12:08 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.085). Factorization parameters were as follows: # # N = 82x10^163+35 = 91(162)5 # n: 7072549919611203433818811149551634455676444501732297890360732243330817692655229763818580284935924985187308734216073438921029233 m: 100000000000000000000000000000000 deg: 5 c5: 16400 c0: 7 skew: 0.21 # Murphy_E = 3.164e-10 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1844562 hash collisions in 14687136 relations (13671591 unique) Msieve: matrix is 569144 x 569370 (159.6 MB) Sieving start time: 2023/03/07 12:10:10 Sieving end time : 2023/03/07 13:23:18 Total sieving time: 1hrs 13min 8secs. Total relation processing time: 0hrs 8min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 41sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 07:07:48 UTC 2023 年 3 月 9 日 (木) 16 時 7 分 48 秒 (日本時間) |
composite number 合成数 | 3227621154392944477191712210736545783593968667220268876149880990457619041966913906788629937540201658345909061681085225885053945857677002257117<142> |
prime factors 素因数 | 2455572981419866531201728835823759431639<40> 1314406527036578909195919522754535152147424066761768588168545742781611856408498349701549634498670109803<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 3227621154392944477191712210736545783593968667220268876149880990457619041966913906788629937540201658345909061681085225885053945857677002257117 (142 digits) Using B1=35650000, B2=192388936756, polynomial Dickson(12), sigma=1:1520785380 Step 1 took 73566ms Step 2 took 27685ms ********** Factor found in step 2: 2455572981419866531201728835823759431639 Found prime factor of 40 digits: 2455572981419866531201728835823759431639 Prime cofactor 1314406527036578909195919522754535152147424066761768588168545742781611856408498349701549634498670109803 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 9, 2023 08:45:44 UTC 2023 年 3 月 9 日 (木) 17 時 45 分 44 秒 (日本時間) |
composite number 合成数 | 53437860087669340124367575797045830377489481779926702776513774916723599398788214984883549519602492020023489147010350489561763119168367286627<140> |
prime factors 素因数 | 55059069163657088350247796959113544889731<41> 970555094726195229308717942426435851320052327974568372873525816361602343294016190856315962422765217<99> |
factorization results 素因数分解の結果 | Number: n N=53437860087669340124367575797045830377489481779926702776513774916723599398788214984883549519602492020023489147010350489561763119168367286627 ( 140 digits) SNFS difficulty: 166 digits. Divisors found: Thu Mar 9 19:37:14 2023 prp41 factor: 55059069163657088350247796959113544889731 Thu Mar 9 19:37:14 2023 prp99 factor: 970555094726195229308717942426435851320052327974568372873525816361602343294016190856315962422765217 Thu Mar 9 19:37:14 2023 elapsed time 00:17:20 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 82x10^165+35 = 91(164)5 # n: 53437860087669340124367575797045830377489481779926702776513774916723599398788214984883549519602492020023489147010350489561763119168367286627 m: 1000000000000000000000000000000000 deg: 5 c5: 82 c0: 35 skew: 0.84 # Murphy_E = 2.797e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 13300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1498127 hash collisions in 12716419 relations (11940507 unique) Msieve: matrix is 649518 x 649743 (183.0 MB) Sieving start time: 2023/03/09 18:09:39 Sieving end time : 2023/03/09 19:19:41 Total sieving time: 1hrs 10min 2secs. Total relation processing time: 0hrs 11min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 20sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 21, 2023 15:26:22 UTC 2023 年 2 月 22 日 (水) 0 時 26 分 22 秒 (日本時間) |
composite number 合成数 | 81427682343186997823935898738276995066913251292158160196398052555888326697349056245349260194556336224295237<107> |
prime factors 素因数 | 1680226001854355096302625784239234346590345069<46> 48462339145639105840805810203793177550651557160592003588450873<62> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1250000, q1=1400000. -> client 1 q0: 1250000 LatSieveTime: 53 LatSieveTime: 56 LatSieveTime: 55 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 76 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=1400001, q1=1550000. -> client 1 q0: 1400001 LatSieveTime: 55 LatSieveTime: 55 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 76 -> makeJobFile(): Adjusted to q0=1550001, q1=1700000. -> client 1 q0: 1550001 LatSieveTime: 51 LatSieveTime: 56 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 -> makeJobFile(): Adjusted to q0=1700001, q1=1850000. -> client 1 q0: 1700001 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 57 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 73 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 -> makeJobFile(): Adjusted to q0=1850001, q1=2000000. -> client 1 q0: 1850001 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 -> makeJobFile(): Adjusted to q0=2000001, q1=2150000. -> client 1 q0: 2000001 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 -> makeJobFile(): Adjusted to q0=2150001, q1=2300000. -> client 1 q0: 2150001 LatSieveTime: 58 LatSieveTime: 59 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 78 Tue Feb 21 16:19:47 2023 Tue Feb 21 16:19:47 2023 Tue Feb 21 16:19:47 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 16:19:47 2023 random seeds: ea2a4840 b0d051bc Tue Feb 21 16:19:47 2023 factoring 81427682343186997823935898738276995066913251292158160196398052555888326697349056245349260194556336224295237 (107 digits) Tue Feb 21 16:19:47 2023 searching for 15-digit factors Tue Feb 21 16:19:47 2023 commencing number field sieve (107-digit input) Tue Feb 21 16:19:47 2023 R0: -237766286822038575526 Tue Feb 21 16:19:47 2023 R1: 161484018311 Tue Feb 21 16:19:47 2023 A0: 1410207298751679079205385 Tue Feb 21 16:19:47 2023 A1: 593484428338254307263 Tue Feb 21 16:19:47 2023 A2: 139104379937862443 Tue Feb 21 16:19:47 2023 A3: -13297084444847 Tue Feb 21 16:19:47 2023 A4: -4362710742 Tue Feb 21 16:19:47 2023 A5: 107160 Tue Feb 21 16:19:47 2023 skew 8589.16, size 2.529e-010, alpha -5.576, combined = 1.261e-009 rroots = 3 Tue Feb 21 16:19:47 2023 Tue Feb 21 16:19:47 2023 commencing relation filtering Tue Feb 21 16:19:47 2023 estimated available RAM is 65413.5 MB Tue Feb 21 16:19:47 2023 commencing duplicate removal, pass 1 Tue Feb 21 16:19:55 2023 found 447609 hash collisions in 4397588 relations Tue Feb 21 16:20:00 2023 added 31014 free relations Tue Feb 21 16:20:00 2023 commencing duplicate removal, pass 2 Tue Feb 21 16:20:01 2023 found 360776 duplicates and 4067826 unique relations Tue Feb 21 16:20:01 2023 memory use: 17.3 MB Tue Feb 21 16:20:01 2023 reading ideals above 100000 Tue Feb 21 16:20:01 2023 commencing singleton removal, initial pass Tue Feb 21 16:20:14 2023 memory use: 94.1 MB Tue Feb 21 16:20:14 2023 reading all ideals from disk Tue Feb 21 16:20:14 2023 memory use: 131.3 MB Tue Feb 21 16:20:14 2023 keeping 4625141 ideals with weight <= 200, target excess is 22775 Tue Feb 21 16:20:14 2023 commencing in-memory singleton removal Tue Feb 21 16:20:14 2023 begin with 4067826 relations and 4625141 unique ideals Tue Feb 21 16:20:15 2023 reduce to 1220660 relations and 1241020 ideals in 19 passes Tue Feb 21 16:20:15 2023 max relations containing the same ideal: 83 Tue Feb 21 16:20:15 2023 filtering wants 1000000 more relations Tue Feb 21 16:20:15 2023 elapsed time 00:00:28 -> makeJobFile(): Adjusted to q0=2300001, q1=2450000. -> client 1 q0: 2300001 LatSieveTime: 55 LatSieveTime: 56 LatSieveTime: 57 LatSieveTime: 59 LatSieveTime: 59 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 Tue Feb 21 16:21:33 2023 Tue Feb 21 16:21:33 2023 Tue Feb 21 16:21:33 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 16:21:33 2023 random seeds: 83e5d768 7237495a Tue Feb 21 16:21:33 2023 factoring 81427682343186997823935898738276995066913251292158160196398052555888326697349056245349260194556336224295237 (107 digits) Tue Feb 21 16:21:33 2023 searching for 15-digit factors Tue Feb 21 16:21:33 2023 commencing number field sieve (107-digit input) Tue Feb 21 16:21:33 2023 R0: -237766286822038575526 Tue Feb 21 16:21:33 2023 R1: 161484018311 Tue Feb 21 16:21:33 2023 A0: 1410207298751679079205385 Tue Feb 21 16:21:33 2023 A1: 593484428338254307263 Tue Feb 21 16:21:33 2023 A2: 139104379937862443 Tue Feb 21 16:21:33 2023 A3: -13297084444847 Tue Feb 21 16:21:33 2023 A4: -4362710742 Tue Feb 21 16:21:33 2023 A5: 107160 Tue Feb 21 16:21:33 2023 skew 8589.16, size 2.529e-010, alpha -5.576, combined = 1.261e-009 rroots = 3 Tue Feb 21 16:21:33 2023 Tue Feb 21 16:21:33 2023 commencing relation filtering Tue Feb 21 16:21:33 2023 estimated available RAM is 65413.5 MB Tue Feb 21 16:21:33 2023 commencing duplicate removal, pass 1 Tue Feb 21 16:21:42 2023 found 559034 hash collisions in 5031087 relations Tue Feb 21 16:21:47 2023 added 407 free relations Tue Feb 21 16:21:47 2023 commencing duplicate removal, pass 2 Tue Feb 21 16:21:48 2023 found 450938 duplicates and 4580556 unique relations Tue Feb 21 16:21:48 2023 memory use: 24.6 MB Tue Feb 21 16:21:48 2023 reading ideals above 100000 Tue Feb 21 16:21:48 2023 commencing singleton removal, initial pass Tue Feb 21 16:22:03 2023 memory use: 94.1 MB Tue Feb 21 16:22:03 2023 reading all ideals from disk Tue Feb 21 16:22:03 2023 memory use: 148.0 MB Tue Feb 21 16:22:03 2023 keeping 4872895 ideals with weight <= 200, target excess is 24557 Tue Feb 21 16:22:03 2023 commencing in-memory singleton removal Tue Feb 21 16:22:03 2023 begin with 4580556 relations and 4872895 unique ideals Tue Feb 21 16:22:04 2023 reduce to 1841812 relations and 1684621 ideals in 14 passes Tue Feb 21 16:22:04 2023 max relations containing the same ideal: 105 Tue Feb 21 16:22:05 2023 removing 374232 relations and 309880 ideals in 64352 cliques Tue Feb 21 16:22:05 2023 commencing in-memory singleton removal Tue Feb 21 16:22:05 2023 begin with 1467580 relations and 1684621 unique ideals Tue Feb 21 16:22:05 2023 reduce to 1407639 relations and 1312121 ideals in 9 passes Tue Feb 21 16:22:05 2023 max relations containing the same ideal: 86 Tue Feb 21 16:22:05 2023 removing 292785 relations and 228433 ideals in 64352 cliques Tue Feb 21 16:22:05 2023 commencing in-memory singleton removal Tue Feb 21 16:22:05 2023 begin with 1114854 relations and 1312121 unique ideals Tue Feb 21 16:22:05 2023 reduce to 1066623 relations and 1033242 ideals in 11 passes Tue Feb 21 16:22:05 2023 max relations containing the same ideal: 74 Tue Feb 21 16:22:06 2023 relations with 0 large ideals: 65 Tue Feb 21 16:22:06 2023 relations with 1 large ideals: 203 Tue Feb 21 16:22:06 2023 relations with 2 large ideals: 3531 Tue Feb 21 16:22:06 2023 relations with 3 large ideals: 28097 Tue Feb 21 16:22:06 2023 relations with 4 large ideals: 110809 Tue Feb 21 16:22:06 2023 relations with 5 large ideals: 246831 Tue Feb 21 16:22:06 2023 relations with 6 large ideals: 319491 Tue Feb 21 16:22:06 2023 relations with 7+ large ideals: 357596 Tue Feb 21 16:22:06 2023 commencing 2-way merge Tue Feb 21 16:22:06 2023 reduce to 626839 relation sets and 593458 unique ideals Tue Feb 21 16:22:06 2023 commencing full merge Tue Feb 21 16:22:13 2023 memory use: 74.4 MB Tue Feb 21 16:22:13 2023 found 311500 cycles, need 303658 Tue Feb 21 16:22:13 2023 weight of 303658 cycles is about 21259983 (70.01/cycle) Tue Feb 21 16:22:13 2023 distribution of cycle lengths: Tue Feb 21 16:22:13 2023 1 relations: 33220 Tue Feb 21 16:22:13 2023 2 relations: 31634 Tue Feb 21 16:22:13 2023 3 relations: 31741 Tue Feb 21 16:22:13 2023 4 relations: 29613 Tue Feb 21 16:22:13 2023 5 relations: 27320 Tue Feb 21 16:22:13 2023 6 relations: 25043 Tue Feb 21 16:22:13 2023 7 relations: 22670 Tue Feb 21 16:22:13 2023 8 relations: 19572 Tue Feb 21 16:22:13 2023 9 relations: 17202 Tue Feb 21 16:22:13 2023 10+ relations: 65643 Tue Feb 21 16:22:13 2023 heaviest cycle: 20 relations Tue Feb 21 16:22:13 2023 commencing cycle optimization Tue Feb 21 16:22:13 2023 start with 1896077 relations Tue Feb 21 16:22:15 2023 pruned 48936 relations Tue Feb 21 16:22:15 2023 memory use: 61.4 MB Tue Feb 21 16:22:15 2023 distribution of cycle lengths: Tue Feb 21 16:22:15 2023 1 relations: 33220 Tue Feb 21 16:22:15 2023 2 relations: 32346 Tue Feb 21 16:22:15 2023 3 relations: 32798 Tue Feb 21 16:22:15 2023 4 relations: 30410 Tue Feb 21 16:22:15 2023 5 relations: 28053 Tue Feb 21 16:22:15 2023 6 relations: 25572 Tue Feb 21 16:22:15 2023 7 relations: 23183 Tue Feb 21 16:22:15 2023 8 relations: 19765 Tue Feb 21 16:22:15 2023 9 relations: 17341 Tue Feb 21 16:22:15 2023 10+ relations: 60970 Tue Feb 21 16:22:15 2023 heaviest cycle: 20 relations Tue Feb 21 16:22:16 2023 RelProcTime: 43 Tue Feb 21 16:22:16 2023 elapsed time 00:00:43 Tue Feb 21 16:22:16 2023 Tue Feb 21 16:22:16 2023 Tue Feb 21 16:22:16 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 16:22:16 2023 random seeds: 6bacaba0 46ed430f Tue Feb 21 16:22:16 2023 factoring 81427682343186997823935898738276995066913251292158160196398052555888326697349056245349260194556336224295237 (107 digits) Tue Feb 21 16:22:16 2023 searching for 15-digit factors Tue Feb 21 16:22:16 2023 commencing number field sieve (107-digit input) Tue Feb 21 16:22:16 2023 R0: -237766286822038575526 Tue Feb 21 16:22:16 2023 R1: 161484018311 Tue Feb 21 16:22:16 2023 A0: 1410207298751679079205385 Tue Feb 21 16:22:16 2023 A1: 593484428338254307263 Tue Feb 21 16:22:16 2023 A2: 139104379937862443 Tue Feb 21 16:22:16 2023 A3: -13297084444847 Tue Feb 21 16:22:16 2023 A4: -4362710742 Tue Feb 21 16:22:16 2023 A5: 107160 Tue Feb 21 16:22:16 2023 skew 8589.16, size 2.529e-010, alpha -5.576, combined = 1.261e-009 rroots = 3 Tue Feb 21 16:22:16 2023 Tue Feb 21 16:22:16 2023 commencing linear algebra Tue Feb 21 16:22:16 2023 read 303658 cycles Tue Feb 21 16:22:16 2023 cycles contain 1012734 unique relations Tue Feb 21 16:22:19 2023 read 1012734 relations Tue Feb 21 16:22:19 2023 using 20 quadratic characters above 67108662 Tue Feb 21 16:22:22 2023 building initial matrix Tue Feb 21 16:22:27 2023 memory use: 127.2 MB Tue Feb 21 16:22:27 2023 read 303658 cycles Tue Feb 21 16:22:27 2023 matrix is 303478 x 303658 (90.2 MB) with weight 28941325 (95.31/col) Tue Feb 21 16:22:27 2023 sparse part has weight 20303810 (66.86/col) Tue Feb 21 16:22:28 2023 filtering completed in 2 passes Tue Feb 21 16:22:28 2023 matrix is 303072 x 303252 (90.1 MB) with weight 28919974 (95.37/col) Tue Feb 21 16:22:28 2023 sparse part has weight 20295205 (66.93/col) Tue Feb 21 16:22:28 2023 matrix starts at (0, 0) Tue Feb 21 16:22:28 2023 matrix is 303072 x 303252 (90.1 MB) with weight 28919974 (95.37/col) Tue Feb 21 16:22:28 2023 sparse part has weight 20295205 (66.93/col) Tue Feb 21 16:22:28 2023 saving the first 48 matrix rows for later Tue Feb 21 16:22:29 2023 matrix includes 64 packed rows Tue Feb 21 16:22:29 2023 matrix is 303024 x 303252 (86.8 MB) with weight 22744501 (75.00/col) Tue Feb 21 16:22:29 2023 sparse part has weight 19729619 (65.06/col) Tue Feb 21 16:22:29 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Feb 21 16:22:30 2023 commencing Lanczos iteration (32 threads) Tue Feb 21 16:22:30 2023 memory use: 66.5 MB Tue Feb 21 16:22:34 2023 linear algebra at 4.0%, ETA 0h 1m Tue Feb 21 16:24:17 2023 lanczos halted after 4794 iterations (dim = 303022) Tue Feb 21 16:24:17 2023 recovered 32 nontrivial dependencies Tue Feb 21 16:24:17 2023 BLanczosTime: 121 Tue Feb 21 16:24:17 2023 elapsed time 00:02:01 Tue Feb 21 16:24:17 2023 Tue Feb 21 16:24:17 2023 Tue Feb 21 16:24:17 2023 Msieve v. 1.52 (SVN 927) Tue Feb 21 16:24:17 2023 random seeds: 03031bd0 42439b50 Tue Feb 21 16:24:17 2023 factoring 81427682343186997823935898738276995066913251292158160196398052555888326697349056245349260194556336224295237 (107 digits) Tue Feb 21 16:24:18 2023 searching for 15-digit factors Tue Feb 21 16:24:18 2023 commencing number field sieve (107-digit input) Tue Feb 21 16:24:18 2023 R0: -237766286822038575526 Tue Feb 21 16:24:18 2023 R1: 161484018311 Tue Feb 21 16:24:18 2023 A0: 1410207298751679079205385 Tue Feb 21 16:24:18 2023 A1: 593484428338254307263 Tue Feb 21 16:24:18 2023 A2: 139104379937862443 Tue Feb 21 16:24:18 2023 A3: -13297084444847 Tue Feb 21 16:24:18 2023 A4: -4362710742 Tue Feb 21 16:24:18 2023 A5: 107160 Tue Feb 21 16:24:18 2023 skew 8589.16, size 2.529e-010, alpha -5.576, combined = 1.261e-009 rroots = 3 Tue Feb 21 16:24:18 2023 Tue Feb 21 16:24:18 2023 commencing square root phase Tue Feb 21 16:24:18 2023 reading relations for dependency 1 Tue Feb 21 16:24:18 2023 read 151720 cycles Tue Feb 21 16:24:18 2023 cycles contain 505514 unique relations Tue Feb 21 16:24:19 2023 read 505514 relations Tue Feb 21 16:24:20 2023 multiplying 505514 relations Tue Feb 21 16:24:30 2023 multiply complete, coefficients have about 22.56 million bits Tue Feb 21 16:24:30 2023 initial square root is modulo 3008801 Tue Feb 21 16:24:43 2023 GCD is N, no factor found Tue Feb 21 16:24:43 2023 reading relations for dependency 2 Tue Feb 21 16:24:43 2023 read 151921 cycles Tue Feb 21 16:24:43 2023 cycles contain 506538 unique relations Tue Feb 21 16:24:44 2023 read 506538 relations Tue Feb 21 16:24:45 2023 multiplying 506538 relations Tue Feb 21 16:24:55 2023 multiply complete, coefficients have about 22.60 million bits Tue Feb 21 16:24:55 2023 initial square root is modulo 3102481 Tue Feb 21 16:25:08 2023 GCD is N, no factor found Tue Feb 21 16:25:08 2023 reading relations for dependency 3 Tue Feb 21 16:25:08 2023 read 151424 cycles Tue Feb 21 16:25:08 2023 cycles contain 505490 unique relations Tue Feb 21 16:25:09 2023 read 505490 relations Tue Feb 21 16:25:10 2023 multiplying 505490 relations Tue Feb 21 16:25:20 2023 multiply complete, coefficients have about 22.55 million bits Tue Feb 21 16:25:20 2023 initial square root is modulo 3007139 Tue Feb 21 16:25:33 2023 GCD is N, no factor found Tue Feb 21 16:25:33 2023 reading relations for dependency 4 Tue Feb 21 16:25:33 2023 read 151762 cycles Tue Feb 21 16:25:33 2023 cycles contain 506254 unique relations Tue Feb 21 16:25:34 2023 read 506254 relations Tue Feb 21 16:25:35 2023 multiplying 506254 relations Tue Feb 21 16:25:45 2023 multiply complete, coefficients have about 22.59 million bits Tue Feb 21 16:25:45 2023 initial square root is modulo 3082129 Tue Feb 21 16:25:58 2023 sqrtTime: 100 Tue Feb 21 16:25:58 2023 prp46 factor: 1680226001854355096302625784239234346590345069 Tue Feb 21 16:25:58 2023 prp62 factor: 48462339145639105840805810203793177550651557160592003588450873 Tue Feb 21 16:25:58 2023 elapsed time 00:01:41 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Lionel Debroux |
---|---|
date 日付 | March 15, 2023 20:48:28 UTC 2023 年 3 月 16 日 (木) 5 時 48 分 28 秒 (日本時間) |
composite number 合成数 | 5473861966636446108231793528522721355779657315969966009057905094390943141468209255409150137974651798297219877268374934779<121> |
prime factors 素因数 | 406108839074509941316534661548615872014873<42> 13478805285575527986443466004096565471280775984230710440262852193184454754959923<80> |
factorization results 素因数分解の結果 | 13478805285575527986443466004096565471280775984230710440262852193184454754959923 406108839074509941316534661548615872014873 |
software ソフトウェア | CADO-NFS |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 12, 2023 19:01:38 UTC 2023 年 3 月 13 日 (月) 4 時 1 分 38 秒 (日本時間) |
composite number 合成数 | 891328989866168291421287298749831921109562096436234759455012685377874387974393422636892109261345888218974434252063378779795028864024922897042248129609503<153> |
prime factors 素因数 | 13979437775421362603828094917432007079430470597<47> 63760002668583873765750677139143121909298562057889362642545421235514250378637674966604545101204484423633299<107> |
factorization results 素因数分解の結果 | Number: n N=891328989866168291421287298749831921109562096436234759455012685377874387974393422636892109261345888218974434252063378779795028864024922897042248129609503 ( 153 digits) SNFS difficulty: 175 digits. Divisors found: Mon Mar 13 05:55:49 2023 prp47 factor: 13979437775421362603828094917432007079430470597 Mon Mar 13 05:55:49 2023 prp107 factor: 63760002668583873765750677139143121909298562057889362642545421235514250378637674966604545101204484423633299 Mon Mar 13 05:55:49 2023 elapsed time 01:08:48 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 82x10^174+35 = 91(173)5 # n: 891328989866168291421287298749831921109562096436234759455012685377874387974393422636892109261345888218974434252063378779795028864024922897042248129609503 m: 20000000000000000000000000000000000 deg: 5 c5: 5125 c0: 7 skew: 0.27 # Murphy_E = 1.213e-10 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 28500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1515545 hash collisions in 14906650 relations (14630030 unique) Msieve: matrix is 1403142 x 1403390 (399.2 MB) Sieving start time: 2023/03/13 00:56:11 Sieving end time : 2023/03/13 04:46:27 Total sieving time: 3hrs 50min 16secs. Total relation processing time: 0hrs 56min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 12sec. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 13, 2023 01:01:42 UTC 2023 年 3 月 13 日 (月) 10 時 1 分 42 秒 (日本時間) |
composite number 合成数 | 803210057766456101218701767217205888582220502086565284117237374645203908737034886049154804537033374444068493112210485414527913973455756453033424346862895998072126051<165> |
prime factors 素因数 | 36496359304958109579984747849761979821<38> 22007950191824702704984289751271928737296992832884779486319781620597347591876937604245741473945025841591895562416341586917079631<128> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 803210057766456101218701767217205888582220502086565284117237374645203908737034886049154804537033374444068493112210485414527913973455756453033424346862895998072126051 (165 digits) Using B1=30540000, B2=144289975846, polynomial Dickson(12), sigma=1:2832757239 Step 1 took 73583ms ********** Factor found in step 1: 36496359304958109579984747849761979821 Found prime factor of 38 digits: 36496359304958109579984747849761979821 Prime cofactor 22007950191824702704984289751271928737296992832884779486319781620597347591876937604245741473945025841591895562416341586917079631 has 128 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 13, 2023 11:52:37 UTC 2023 年 3 月 13 日 (月) 20 時 52 分 37 秒 (日本時間) |
composite number 合成数 | 48545251263560368521210707910238527980106392838296685664732345609154545080230351953367668442327634683249487692195163868787750778033853978193058721727164262004286012872839<170> |
prime factors 素因数 | 7369221069931960323602727491956054412888697859549<49> 6587568862825360262245748297399339269019635356553512897768627173236368395281940157613468365614595734012780060766014092211<121> |
factorization results 素因数分解の結果 | Number: n N=48545251263560368521210707910238527980106392838296685664732345609154545080230351953367668442327634683249487692195163868787750778033853978193058721727164262004286012872839 ( 170 digits) SNFS difficulty: 177 digits. Divisors found: Mon Mar 13 22:37:52 2023 prp49 factor: 7369221069931960323602727491956054412888697859549 Mon Mar 13 22:37:52 2023 prp121 factor: 6587568862825360262245748297399339269019635356553512897768627173236368395281940157613468365614595734012780060766014092211 Mon Mar 13 22:37:52 2023 elapsed time 00:29:33 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.025). Factorization parameters were as follows: # # N = 82x10^176+35 = 91(175)5 # n: 48545251263560368521210707910238527980106392838296685664732345609154545080230351953367668442327634683249487692195163868787750778033853978193058721727164262004286012872839 m: 100000000000000000000000000000000000 deg: 5 c5: 164 c0: 7 skew: 0.53 # Murphy_E = 1.17e-10 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 28500000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2370870 hash collisions in 15399069 relations (13766286 unique) Msieve: matrix is 918505 x 918730 (257.3 MB) Sieving start time: 2023/03/13 18:56:53 Sieving end time : 2023/03/13 22:08:05 Total sieving time: 3hrs 11min 12secs. Total relation processing time: 0hrs 24min 24sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 58sec. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | April 21, 2023 08:57:23 UTC 2023 年 4 月 21 日 (金) 17 時 57 分 23 秒 (日本時間) |
composite number 合成数 | 158713323964605530217173840184839911352822373107162579970684390906455432613270651096234549585064440956591798597327476034345409053<129> |
prime factors 素因数 | 1021186751155599271231030729535337604051695209955199461407<58> 155420469160025577419079709174871481194751572345831109404825069564339779<72> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=3400000, q1=3500000. -> client 1 q0: 3400000 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=3500001, q1=3600000. -> client 1 q0: 3500001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=3600001, q1=3700000. -> client 1 q0: 3600001 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=3700001, q1=3800000. -> client 1 q0: 3700001 LatSieveTime: 90 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 -> makeJobFile(): Adjusted to q0=3800001, q1=3900000. -> client 1 q0: 3800001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=3900001, q1=4000000. -> client 1 q0: 3900001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=4000001, q1=4100000. -> client 1 q0: 4000001 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=6600001, q1=6700000. -> client 1 q0: 6600001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=6800001, q1=6900000. -> client 1 q0: 6800001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=6900001, q1=7000000. -> client 1 q0: 6900001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7000001, q1=7100000. -> client 1 q0: 7000001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=7100001, q1=7200000. -> client 1 q0: 7100001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=7200001, q1=7300000. -> client 1 q0: 7200001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7300001, q1=7400000. -> client 1 q0: 7300001 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=7400001, q1=7500000. -> client 1 q0: 7400001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=7500001, q1=7600000. -> client 1 q0: 7500001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=7600001, q1=7700000. -> client 1 q0: 7600001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7700001, q1=7800000. -> client 1 q0: 7700001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=7800001, q1=7900000. -> client 1 q0: 7800001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 -> makeJobFile(): Adjusted to q0=7900001, q1=8000000. -> client 1 q0: 7900001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=8000001, q1=8100000. -> client 1 q0: 8000001 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=8100001, q1=8200000. -> client 1 q0: 8100001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=8200001, q1=8300000. -> client 1 q0: 8200001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=8300001, q1=8400000. -> client 1 q0: 8300001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=8400001, q1=8500000. -> client 1 q0: 8400001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 -> makeJobFile(): Adjusted to q0=8500001, q1=8600000. -> client 1 q0: 8500001 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 125 -> makeJobFile(): Adjusted to q0=8600001, q1=8700000. -> client 1 q0: 8600001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=8700001, q1=8800000. -> client 1 q0: 8700001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=8800001, q1=8900000. -> client 1 q0: 8800001 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=8900001, q1=9000000. -> client 1 q0: 8900001 LatSieveTime: 95 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=9000001, q1=9100000. -> client 1 q0: 9000001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=9100001, q1=9200000. -> client 1 q0: 9100001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 -> makeJobFile(): Adjusted to q0=9200001, q1=9300000. -> client 1 q0: 9200001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=9300001, q1=9400000. -> client 1 q0: 9300001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 Fri Apr 21 10:22:01 2023 Fri Apr 21 10:22:01 2023 Fri Apr 21 10:22:01 2023 Msieve v. 1.52 (SVN 927) Fri Apr 21 10:22:01 2023 random seeds: 69e4b74c b5985484 Fri Apr 21 10:22:01 2023 factoring 158713323964605530217173840184839911352822373107162579970684390906455432613270651096234549585064440956591798597327476034345409053 (129 digits) Fri Apr 21 10:22:02 2023 searching for 15-digit factors Fri Apr 21 10:22:02 2023 commencing number field sieve (129-digit input) Fri Apr 21 10:22:02 2023 R0: -100000000000000000000000000000000000 Fri Apr 21 10:22:02 2023 R1: 1 Fri Apr 21 10:22:02 2023 A0: 7 Fri Apr 21 10:22:02 2023 A1: 0 Fri Apr 21 10:22:02 2023 A2: 0 Fri Apr 21 10:22:02 2023 A3: 0 Fri Apr 21 10:22:02 2023 A4: 0 Fri Apr 21 10:22:02 2023 A5: 16400 Fri Apr 21 10:22:02 2023 skew 0.21, size 9.145e-013, alpha 0.336, combined = 8.046e-011 rroots = 1 Fri Apr 21 10:22:02 2023 Fri Apr 21 10:22:02 2023 commencing relation filtering Fri Apr 21 10:22:02 2023 estimated available RAM is 65413.5 MB Fri Apr 21 10:22:02 2023 commencing duplicate removal, pass 1 Fri Apr 21 10:22:33 2023 found 2705414 hash collisions in 18015284 relations Fri Apr 21 10:22:48 2023 added 694329 free relations Fri Apr 21 10:22:48 2023 commencing duplicate removal, pass 2 Fri Apr 21 10:22:55 2023 found 2126679 duplicates and 16582934 unique relations Fri Apr 21 10:22:55 2023 memory use: 82.6 MB Fri Apr 21 10:22:55 2023 reading ideals above 720000 Fri Apr 21 10:22:55 2023 commencing singleton removal, initial pass Fri Apr 21 10:23:55 2023 memory use: 376.5 MB Fri Apr 21 10:23:55 2023 reading all ideals from disk Fri Apr 21 10:23:55 2023 memory use: 510.7 MB Fri Apr 21 10:23:56 2023 commencing in-memory singleton removal Fri Apr 21 10:23:56 2023 begin with 16582934 relations and 19106127 unique ideals Fri Apr 21 10:24:07 2023 reduce to 5689819 relations and 5587895 ideals in 22 passes Fri Apr 21 10:24:07 2023 max relations containing the same ideal: 84 Fri Apr 21 10:24:07 2023 filtering wants 1000000 more relations Fri Apr 21 10:24:07 2023 elapsed time 00:02:06 -> makeJobFile(): Adjusted to q0=9400001, q1=9500000. -> client 1 q0: 9400001 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 Fri Apr 21 10:26:23 2023 Fri Apr 21 10:26:23 2023 Fri Apr 21 10:26:23 2023 Msieve v. 1.52 (SVN 927) Fri Apr 21 10:26:23 2023 random seeds: c6027248 ddf0803e Fri Apr 21 10:26:23 2023 factoring 158713323964605530217173840184839911352822373107162579970684390906455432613270651096234549585064440956591798597327476034345409053 (129 digits) Fri Apr 21 10:26:24 2023 searching for 15-digit factors Fri Apr 21 10:26:24 2023 commencing number field sieve (129-digit input) Fri Apr 21 10:26:24 2023 R0: -100000000000000000000000000000000000 Fri Apr 21 10:26:24 2023 R1: 1 Fri Apr 21 10:26:24 2023 A0: 7 Fri Apr 21 10:26:24 2023 A1: 0 Fri Apr 21 10:26:24 2023 A2: 0 Fri Apr 21 10:26:24 2023 A3: 0 Fri Apr 21 10:26:24 2023 A4: 0 Fri Apr 21 10:26:24 2023 A5: 16400 Fri Apr 21 10:26:24 2023 skew 0.21, size 9.145e-013, alpha 0.336, combined = 8.046e-011 rroots = 1 Fri Apr 21 10:26:24 2023 Fri Apr 21 10:26:24 2023 commencing relation filtering Fri Apr 21 10:26:24 2023 estimated available RAM is 65413.5 MB Fri Apr 21 10:26:24 2023 commencing duplicate removal, pass 1 Fri Apr 21 10:27:03 2023 found 2470207 hash collisions in 18972903 relations Fri Apr 21 10:27:16 2023 added 1101 free relations Fri Apr 21 10:27:16 2023 commencing duplicate removal, pass 2 Fri Apr 21 10:27:23 2023 found 2180253 duplicates and 16793751 unique relations Fri Apr 21 10:27:23 2023 memory use: 98.6 MB Fri Apr 21 10:27:23 2023 reading ideals above 720000 Fri Apr 21 10:27:23 2023 commencing singleton removal, initial pass Fri Apr 21 10:28:23 2023 memory use: 376.5 MB Fri Apr 21 10:28:23 2023 reading all ideals from disk Fri Apr 21 10:28:23 2023 memory use: 517.2 MB Fri Apr 21 10:28:24 2023 commencing in-memory singleton removal Fri Apr 21 10:28:25 2023 begin with 16793751 relations and 19200504 unique ideals Fri Apr 21 10:28:35 2023 reduce to 5958020 relations and 5783589 ideals in 20 passes Fri Apr 21 10:28:35 2023 max relations containing the same ideal: 89 Fri Apr 21 10:28:36 2023 removing 298532 relations and 278630 ideals in 19902 cliques Fri Apr 21 10:28:36 2023 commencing in-memory singleton removal Fri Apr 21 10:28:37 2023 begin with 5659488 relations and 5783589 unique ideals Fri Apr 21 10:28:39 2023 reduce to 5645338 relations and 5490723 ideals in 9 passes Fri Apr 21 10:28:39 2023 max relations containing the same ideal: 87 Fri Apr 21 10:28:41 2023 removing 215087 relations and 195185 ideals in 19902 cliques Fri Apr 21 10:28:41 2023 commencing in-memory singleton removal Fri Apr 21 10:28:41 2023 begin with 5430251 relations and 5490723 unique ideals Fri Apr 21 10:28:44 2023 reduce to 5423060 relations and 5288313 ideals in 9 passes Fri Apr 21 10:28:44 2023 max relations containing the same ideal: 84 Fri Apr 21 10:28:46 2023 relations with 0 large ideals: 2894 Fri Apr 21 10:28:46 2023 relations with 1 large ideals: 1213 Fri Apr 21 10:28:46 2023 relations with 2 large ideals: 21450 Fri Apr 21 10:28:46 2023 relations with 3 large ideals: 153543 Fri Apr 21 10:28:46 2023 relations with 4 large ideals: 581186 Fri Apr 21 10:28:46 2023 relations with 5 large ideals: 1255347 Fri Apr 21 10:28:46 2023 relations with 6 large ideals: 1642382 Fri Apr 21 10:28:46 2023 relations with 7+ large ideals: 1765045 Fri Apr 21 10:28:46 2023 commencing 2-way merge Fri Apr 21 10:28:49 2023 reduce to 3088969 relation sets and 2954221 unique ideals Fri Apr 21 10:28:49 2023 commencing full merge Fri Apr 21 10:29:28 2023 memory use: 351.3 MB Fri Apr 21 10:29:28 2023 found 1564545 cycles, need 1550421 Fri Apr 21 10:29:28 2023 weight of 1550421 cycles is about 108535636 (70.00/cycle) Fri Apr 21 10:29:28 2023 distribution of cycle lengths: Fri Apr 21 10:29:28 2023 1 relations: 218485 Fri Apr 21 10:29:28 2023 2 relations: 195759 Fri Apr 21 10:29:28 2023 3 relations: 185443 Fri Apr 21 10:29:28 2023 4 relations: 161954 Fri Apr 21 10:29:28 2023 5 relations: 140010 Fri Apr 21 10:29:28 2023 6 relations: 116096 Fri Apr 21 10:29:28 2023 7 relations: 98470 Fri Apr 21 10:29:28 2023 8 relations: 80952 Fri Apr 21 10:29:28 2023 9 relations: 65698 Fri Apr 21 10:29:28 2023 10+ relations: 287554 Fri Apr 21 10:29:28 2023 heaviest cycle: 26 relations Fri Apr 21 10:29:29 2023 commencing cycle optimization Fri Apr 21 10:29:30 2023 start with 9059713 relations Fri Apr 21 10:29:42 2023 pruned 182169 relations Fri Apr 21 10:29:42 2023 memory use: 308.6 MB Fri Apr 21 10:29:42 2023 distribution of cycle lengths: Fri Apr 21 10:29:42 2023 1 relations: 218485 Fri Apr 21 10:29:42 2023 2 relations: 199667 Fri Apr 21 10:29:42 2023 3 relations: 191167 Fri Apr 21 10:29:42 2023 4 relations: 164697 Fri Apr 21 10:29:42 2023 5 relations: 142181 Fri Apr 21 10:29:42 2023 6 relations: 117090 Fri Apr 21 10:29:42 2023 7 relations: 98300 Fri Apr 21 10:29:42 2023 8 relations: 80217 Fri Apr 21 10:29:42 2023 9 relations: 64492 Fri Apr 21 10:29:42 2023 10+ relations: 274125 Fri Apr 21 10:29:42 2023 heaviest cycle: 26 relations Fri Apr 21 10:29:43 2023 RelProcTime: 199 Fri Apr 21 10:29:43 2023 elapsed time 00:03:20 Fri Apr 21 10:29:43 2023 Fri Apr 21 10:29:43 2023 Fri Apr 21 10:29:43 2023 Msieve v. 1.52 (SVN 927) Fri Apr 21 10:29:43 2023 random seeds: 3d8ff1f8 a3c78a43 Fri Apr 21 10:29:43 2023 factoring 158713323964605530217173840184839911352822373107162579970684390906455432613270651096234549585064440956591798597327476034345409053 (129 digits) Fri Apr 21 10:29:44 2023 searching for 15-digit factors Fri Apr 21 10:29:44 2023 commencing number field sieve (129-digit input) Fri Apr 21 10:29:44 2023 R0: -100000000000000000000000000000000000 Fri Apr 21 10:29:44 2023 R1: 1 Fri Apr 21 10:29:44 2023 A0: 7 Fri Apr 21 10:29:44 2023 A1: 0 Fri Apr 21 10:29:44 2023 A2: 0 Fri Apr 21 10:29:44 2023 A3: 0 Fri Apr 21 10:29:44 2023 A4: 0 Fri Apr 21 10:29:44 2023 A5: 16400 Fri Apr 21 10:29:44 2023 skew 0.21, size 9.145e-013, alpha 0.336, combined = 8.046e-011 rroots = 1 Fri Apr 21 10:29:44 2023 Fri Apr 21 10:29:44 2023 commencing linear algebra Fri Apr 21 10:29:44 2023 read 1550421 cycles Fri Apr 21 10:29:46 2023 cycles contain 5256264 unique relations Fri Apr 21 10:29:56 2023 read 5256264 relations Fri Apr 21 10:30:01 2023 using 20 quadratic characters above 268432224 Fri Apr 21 10:30:15 2023 building initial matrix Fri Apr 21 10:30:45 2023 memory use: 634.5 MB Fri Apr 21 10:30:46 2023 read 1550421 cycles Fri Apr 21 10:30:46 2023 matrix is 1550242 x 1550421 (465.7 MB) with weight 135852550 (87.62/col) Fri Apr 21 10:30:46 2023 sparse part has weight 105032088 (67.74/col) Fri Apr 21 10:30:54 2023 filtering completed in 2 passes Fri Apr 21 10:30:54 2023 matrix is 1547025 x 1547203 (465.4 MB) with weight 135744487 (87.74/col) Fri Apr 21 10:30:54 2023 sparse part has weight 104991354 (67.86/col) Fri Apr 21 10:30:56 2023 matrix starts at (0, 0) Fri Apr 21 10:30:57 2023 matrix is 1547025 x 1547203 (465.4 MB) with weight 135744487 (87.74/col) Fri Apr 21 10:30:57 2023 sparse part has weight 104991354 (67.86/col) Fri Apr 21 10:30:57 2023 saving the first 48 matrix rows for later Fri Apr 21 10:30:57 2023 matrix includes 64 packed rows Fri Apr 21 10:30:57 2023 matrix is 1546977 x 1547203 (441.1 MB) with weight 108734460 (70.28/col) Fri Apr 21 10:30:57 2023 sparse part has weight 100148310 (64.73/col) Fri Apr 21 10:30:57 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Fri Apr 21 10:31:02 2023 commencing Lanczos iteration (32 threads) Fri Apr 21 10:31:02 2023 memory use: 353.6 MB Fri Apr 21 10:31:03 2023 linear algebra at 0.1%, ETA 0h16m Fri Apr 21 10:31:03 2023 checkpointing every 7300000 dimensions Fri Apr 21 10:54:30 2023 lanczos halted after 24461 iterations (dim = 1546976) Fri Apr 21 10:54:31 2023 recovered 40 nontrivial dependencies Fri Apr 21 10:54:31 2023 BLanczosTime: 1487 Fri Apr 21 10:54:31 2023 elapsed time 00:24:48 Fri Apr 21 10:54:31 2023 Fri Apr 21 10:54:31 2023 Fri Apr 21 10:54:31 2023 Msieve v. 1.52 (SVN 927) Fri Apr 21 10:54:31 2023 random seeds: 4004aec0 085255e6 Fri Apr 21 10:54:31 2023 factoring 158713323964605530217173840184839911352822373107162579970684390906455432613270651096234549585064440956591798597327476034345409053 (129 digits) Fri Apr 21 10:54:32 2023 searching for 15-digit factors Fri Apr 21 10:54:32 2023 commencing number field sieve (129-digit input) Fri Apr 21 10:54:32 2023 R0: -100000000000000000000000000000000000 Fri Apr 21 10:54:32 2023 R1: 1 Fri Apr 21 10:54:32 2023 A0: 7 Fri Apr 21 10:54:32 2023 A1: 0 Fri Apr 21 10:54:32 2023 A2: 0 Fri Apr 21 10:54:32 2023 A3: 0 Fri Apr 21 10:54:32 2023 A4: 0 Fri Apr 21 10:54:32 2023 A5: 16400 Fri Apr 21 10:54:32 2023 skew 0.21, size 9.145e-013, alpha 0.336, combined = 8.046e-011 rroots = 1 Fri Apr 21 10:54:32 2023 Fri Apr 21 10:54:32 2023 commencing square root phase Fri Apr 21 10:54:32 2023 reading relations for dependency 1 Fri Apr 21 10:54:32 2023 read 773196 cycles Fri Apr 21 10:54:33 2023 cycles contain 2627400 unique relations Fri Apr 21 10:54:39 2023 read 2627400 relations Fri Apr 21 10:54:45 2023 multiplying 2627400 relations Fri Apr 21 10:55:42 2023 multiply complete, coefficients have about 92.23 million bits Fri Apr 21 10:55:42 2023 initial square root is modulo 4167311 Fri Apr 21 10:57:00 2023 sqrtTime: 148 Fri Apr 21 10:57:00 2023 prp58 factor: 1021186751155599271231030729535337604051695209955199461407 Fri Apr 21 10:57:00 2023 prp72 factor: 155420469160025577419079709174871481194751572345831109404825069564339779 Fri Apr 21 10:57:00 2023 elapsed time 00:02:29 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 31, 2023 08:36:58 UTC 2023 年 3 月 31 日 (金) 17 時 36 分 58 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 21, 2023 03:49:06 UTC 2023 年 3 月 21 日 (火) 12 時 49 分 6 秒 (日本時間) |
composite number 合成数 | 41654074755604517353212646611597657387672361971533104343824525086651754181398256843112578457986682315493027040761154598819855792222481606125532779716425795969038137<164> |
prime factors 素因数 | 26739425873542134758994079075299016869456962168360908106238537701<65> 1557777453883928873115819299438673743609426649728239052380578473930821911746655214511379468572503237<100> |
factorization results 素因数分解の結果 | Number: n N=41654074755604517353212646611597657387672361971533104343824525086651754181398256843112578457986682315493027040761154598819855792222481606125532779716425795969038137 ( 164 digits) SNFS difficulty: 181 digits. Divisors found: Tue Mar 21 14:28:36 2023 prp65 factor: 26739425873542134758994079075299016869456962168360908106238537701 Tue Mar 21 14:28:36 2023 prp100 factor: 1557777453883928873115819299438673743609426649728239052380578473930821911746655214511379468572503237 Tue Mar 21 14:28:36 2023 elapsed time 00:35:30 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.095). Factorization parameters were as follows: # # N = 82x10^180+35 = 91(179)5 # n: 41654074755604517353212646611597657387672361971533104343824525086651754181398256843112578457986682315493027040761154598819855792222481606125532779716425795969038137 m: 1000000000000000000000000000000000000 deg: 5 c5: 82 c0: 35 skew: 0.84 # Murphy_E = 7.044e-11 type: snfs lss: 1 rlim: 7400000 alim: 7400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 22100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1642602 hash collisions in 14854625 relations (14119354 unique) Msieve: matrix is 1040990 x 1041216 (293.0 MB) Sieving start time: 2023/03/21 04:53:22 Sieving end time : 2023/03/21 13:52:34 Total sieving time: 8hrs 59min 12secs. Total relation processing time: 0hrs 29min 57sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 11sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 27, 2023 11:25:56 UTC 2023 年 3 月 27 日 (月) 20 時 25 分 56 秒 (日本時間) |
composite number 合成数 | 15034550267418353843439305919352710540106225881521748407453803662836312461554752728906092814750991315447883973681873078344977271656144360798257246270489582436359688377409821827836633<182> |
prime factors 素因数 | 60821077716977493385599092022348421205070841<44> 247193092128021183631049656518058687854516115781000279861467878925300300928522939992355054680327386842745504975392943457323897491210847713<138> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 15034550267418353843439305919352710540106225881521748407453803662836312461554752728906092814750991315447883973681873078344977271656144360798257246270489582436359688377409821827836633 (182 digits) Using B1=33710000, B2=144292738606, polynomial Dickson(12), sigma=1:2827297821 Step 1 took 93755ms ********** Factor found in step 1: 60821077716977493385599092022348421205070841 Found prime factor of 44 digits: 60821077716977493385599092022348421205070841 Prime cofactor 247193092128021183631049656518058687854516115781000279861467878925300300928522939992355054680327386842745504975392943457323897491210847713 has 138 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 29, 2023 15:54:24 UTC 2023 年 3 月 30 日 (木) 0 時 54 分 24 秒 (日本時間) |
composite number 合成数 | 152187336152121190339188731812070577099853721058782516343922333308769926089756211941392322778055844456302065062443252799042942097460528799212315466939096845923954048221652466242644909<183> |
prime factors 素因数 | 1310308198733607474409070066777686966271<40> |
composite cofactor 合成数の残り | 116146213768034029956244939656375568551304355930301716119053844851425602011043375193690878920706624975011094223494056435260524331094034370794579<144> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4012830688 Step 1 took 5375ms Step 2 took 2656ms ********** Factor found in step 2: 1310308198733607474409070066777686966271 Found prime factor of 40 digits: 1310308198733607474409070066777686966271 Composite cofactor 116146213768034029956244939656375568551304355930301716119053844851425602011043375193690878920706624975011094223494056435260524331094034370794579 has 144 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 24, 2023 13:11:14 UTC 2023 年 4 月 24 日 (月) 22 時 11 分 14 秒 (日本時間) |
composite number 合成数 | 116146213768034029956244939656375568551304355930301716119053844851425602011043375193690878920706624975011094223494056435260524331094034370794579<144> |
prime factors 素因数 | 38260779599103039695216098474649050848932966471<47> 3035646816008863673273101059680061152565517651399147475721871435255884815389491025166045181062549<97> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 116146213768034029956244939656375568551304355930301716119053844851425602011043375193690878920706624975011094223494056435260524331094034370794579 (144 digits) Using B1=33730000, B2=144292738606, polynomial Dickson(12), sigma=1:2851843173 Step 1 took 65560ms Step 2 took 795ms ********** Factor found in step 2: 38260779599103039695216098474649050848932966471 Found prime factor of 47 digits: 38260779599103039695216098474649050848932966471 Prime cofactor 3035646816008863673273101059680061152565517651399147475721871435255884815389491025166045181062549 has 97 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | April 2, 2023 07:30:24 UTC 2023 年 4 月 2 日 (日) 16 時 30 分 24 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 1, 2023 12:52:22 UTC 2023 年 3 月 1 日 (水) 21 時 52 分 22 秒 (日本時間) |
composite number 合成数 | 5910577254077691042152126288773266765093756481530473617145539199764930583296989667742088672301656339733286454237041195532228151157828933324363823610349134403743701258372176209<175> |
prime factors 素因数 | 1519770097182152615816945973132247<34> |
composite cofactor 合成数の残り | 3889125904659299652858604985514962148787136796781647677747776512300305426091745952555058222197805933616448865932452331949252108915205402029847<142> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2830642379 Step 1 took 6332ms Step 2 took 3377ms ********** Factor found in step 2: 1519770097182152615816945973132247 Found prime factor of 34 digits: 1519770097182152615816945973132247 Composite cofactor 3889125904659299652858604985514962148787136796781647677747776512300305426091745952555058222197805933616448865932452331949252108915205402029847 has 142 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 29, 2023 05:41:06 UTC 2023 年 6 月 29 日 (木) 14 時 41 分 6 秒 (日本時間) |
composite number 合成数 | 3889125904659299652858604985514962148787136796781647677747776512300305426091745952555058222197805933616448865932452331949252108915205402029847<142> |
prime factors 素因数 | 26769422280421704595855135617978704269974183177752799911047320608413<68> 145282399594543412658688267250536390879577450706329333855638270457624190019<75> |
factorization results 素因数分解の結果 | 3889125904659299652858604985514962148787136796781647677747776512300305426091745952555058222197805933616448865932452331949252108915205402029847=26769422280421704595855135617978704269974183177752799911047320608413*145282399594543412658688267250536390879577450706329333855638270457624190019 cado polynomial n: 3889125904659299652858604985514962148787136796781647677747776512300305426091745952555058222197805933616448865932452331949252108915205402029847 skew: 0.84 type: snfs c0: 35 c5: 82 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 82*x^5+35 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11100000 tasks.lim1 = 11100000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 145282399594543412658688267250536390879577450706329333855638270457624190019 26769422280421704595855135617978704269974183177752799911047320608413 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 672.45/217.581 Info:HTTP server: Got notification to stop serving Workunits Info:Square Root: Total cpu/real time for sqrt: 672.45/217.581 Info:Generate Free Relations: Total cpu/real time for freerel: 125.71/33.372 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 111.09/105.822 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 104.99999999999999s Info:Quadratic Characters: Total cpu/real time for characters: 80.72/35.9897 Info:Filtering - Singleton removal: Total cpu/real time for purge: 351.8/353.417 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 513.47/574.925 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 431.20000000000005s Info:Generate Factor Base: Total cpu/real time for makefb: 4.63/2.25103 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 27075591 Info:Lattice Sieving: Average J: 1894.41 for 3006002 special-q, max bucket fill -bkmult 1.0,1s:1.149440 Info:Lattice Sieving: Total time: 568205s Info:Filtering - Merging: Merged matrix has 2317725 rows and total weight 396273417 (171.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 694.21/191.675 Info:Filtering - Merging: Total cpu/real time for replay: 103.06/261.29 Info:Linear Algebra: Total cpu/real time for bwc: 106829/27987.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 68564.54, WCT time 17647.18, iteration CPU time 0.22, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (72704 iterations) Info:Linear Algebra: Lingen CPU time 398.56, WCT time 403.33 Info:Linear Algebra: Mksol: CPU time 36815.25, WCT time 9516.76, iteration CPU time 0.24, COMM 0.02, cpu-wait 0.0, comm-wait 0.0 (36352 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.17741e+06/313742 Info:root: Cleaning up computation data in /tmp/cado.bujousb9 145282399594543412658688267250536390879577450706329333855638270457624190019 26769422280421704595855135617978704269974183177752799911047320608413 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | 1000 | Dmitry Domanov | March 1, 2023 11:26:10 UTC 2023 年 3 月 1 日 (水) 20 時 26 分 10 秒 (日本時間) |
1350 | ccc | April 2, 2023 04:52:53 UTC 2023 年 4 月 2 日 (日) 13 時 52 分 53 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 8, 2023 17:31:53 UTC 2023 年 4 月 9 日 (日) 2 時 31 分 53 秒 (日本時間) |
composite number 合成数 | 11575030027513219508053929060853334243287111507775455029068705140698674845185810408673477452881955410743220968390836102048722998473972165986522345793959383177638529394023560071<176> |
prime factors 素因数 | 1517270926309531592583256060818937239921616222344143211495986068204097<70> 7628848498183013283967032086974281813974759667077084475481939082107585785771711241595486231689554775628743<106> |
factorization results 素因数分解の結果 | Number: n N=11575030027513219508053929060853334243287111507775455029068705140698674845185810408673477452881955410743220968390836102048722998473972165986522345793959383177638529394023560071 ( 176 digits) SNFS difficulty: 192 digits. Divisors found: Sat Apr 8 23:58:46 2023 prp70 factor: 1517270926309531592583256060818937239921616222344143211495986068204097 Sat Apr 8 23:58:46 2023 prp106 factor: 7628848498183013283967032086974281813974759667077084475481939082107585785771711241595486231689554775628743 Sat Apr 8 23:58:46 2023 elapsed time 01:33:42 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 82x10^191+35 = 91(190)5 # n: 11575030027513219508053929060853334243287111507775455029068705140698674845185810408673477452881955410743220968390836102048722998473972165986522345793959383177638529394023560071 m: 100000000000000000000000000000000000000 deg: 5 c5: 164 c0: 7 skew: 0.53 # Murphy_E = 2.866e-11 type: snfs lss: 1 rlim: 11200000 alim: 11200000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 11200000/11200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 24003937) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1740083 hash collisions in 14137817 relations (13197502 unique) Msieve: matrix is 1748571 x 1748796 (494.7 MB) Sieving start time: 2023/04/08 13:55:40 Sieving end time : 2023/04/08 22:24:47 Total sieving time: 8hrs 29min 7secs. Total relation processing time: 1hrs 27min 45sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 18sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11200000,11200000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | March 1, 2023 11:26:24 UTC 2023 年 3 月 1 日 (水) 20 時 26 分 24 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 30, 2023 22:00:06 UTC 2023 年 5 月 31 日 (水) 7 時 0 分 6 秒 (日本時間) |
composite number 合成数 | 3037865276877779742652405029815453286476748152632243351340928038217205273506022953898714474212869902818240839224151242245152200346362866192489049473110387728463<160> |
prime factors 素因数 | 121311786020224640582525227970662837010859964172831537<54> 25041798299559437468868226745576591381320759101273406242252303872016620226913992180182295299190540184879999<107> |
factorization results 素因数分解の結果 | Number: n N=3037865276877779742652405029815453286476748152632243351340928038217205273506022953898714474212869902818240839224151242245152200346362866192489049473110387728463 ( 160 digits) SNFS difficulty: 194 digits. Divisors found: Wed May 31 07:50:18 2023 prp54 factor: 121311786020224640582525227970662837010859964172831537 Wed May 31 07:50:18 2023 prp107 factor: 25041798299559437468868226745576591381320759101273406242252303872016620226913992180182295299190540184879999 Wed May 31 07:50:18 2023 elapsed time 02:06:52 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 82x10^193+35 = 91(192)5 # n: 3037865276877779742652405029815453286476748152632243351340928038217205273506022953898714474212869902818240839224151242245152200346362866192489049473110387728463 m: 100000000000000000000000000000000000000 deg: 5 c5: 16400 c0: 7 skew: 0.21 # Murphy_E = 1.965e-11 type: snfs lss: 1 rlim: 12100000 alim: 12100000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12100000/12100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 31650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2073450 hash collisions in 14959144 relations (13669682 unique) Msieve: matrix is 1946745 x 1946970 (550.5 MB) Sieving start time: 2023/05/30 17:18:41 Sieving end time : 2023/05/31 05:43:07 Total sieving time: 12hrs 24min 26secs. Total relation processing time: 1hrs 54min 28sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 30sec. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12100000,12100000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 1, 2023 11:26:33 UTC 2023 年 3 月 1 日 (水) 20 時 26 分 33 秒 (日本時間) |
2350 | Ignacio Santos | April 13, 2023 16:59:47 UTC 2023 年 4 月 14 日 (金) 1 時 59 分 47 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 23, 2023 13:34:16 UTC 2023 年 2 月 23 日 (木) 22 時 34 分 16 秒 (日本時間) |
composite number 合成数 | 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421<116> |
prime factors 素因数 | 59272426298273567327418783970558493016975233693<47> 177009866308678866383872847677794715769389951067486512088600676333497<69> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1700000, q1=1800000. -> client 1 q0: 1700000 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 91 LatSieveTime: 97 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 95 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 78 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 81 LatSieveTime: 87 LatSieveTime: 99 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 91 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 Thu Feb 23 13:49:54 2023 Thu Feb 23 13:49:54 2023 Thu Feb 23 13:49:54 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 13:49:54 2023 random seeds: 5c8357ac 6e289469 Thu Feb 23 13:49:54 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 13:49:54 2023 searching for 15-digit factors Thu Feb 23 13:49:54 2023 commencing number field sieve (116-digit input) Thu Feb 23 13:49:54 2023 R0: -22548559989760625755755 Thu Feb 23 13:49:54 2023 R1: 604106364001 Thu Feb 23 13:49:54 2023 A0: -115454287427146107854644272224 Thu Feb 23 13:49:54 2023 A1: 882469566061473608955284 Thu Feb 23 13:49:54 2023 A2: 45242330301180689159 Thu Feb 23 13:49:54 2023 A3: -157042591793174 Thu Feb 23 13:49:54 2023 A4: -2534771820 Thu Feb 23 13:49:54 2023 A5: 1800 Thu Feb 23 13:49:54 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 13:49:54 2023 Thu Feb 23 13:49:54 2023 commencing relation filtering Thu Feb 23 13:49:54 2023 estimated available RAM is 65413.5 MB Thu Feb 23 13:49:54 2023 commencing duplicate removal, pass 1 Thu Feb 23 13:50:09 2023 found 716214 hash collisions in 7556781 relations Thu Feb 23 13:50:18 2023 added 60975 free relations Thu Feb 23 13:50:18 2023 commencing duplicate removal, pass 2 Thu Feb 23 13:50:20 2023 found 406471 duplicates and 7211285 unique relations Thu Feb 23 13:50:20 2023 memory use: 24.6 MB Thu Feb 23 13:50:20 2023 reading ideals above 100000 Thu Feb 23 13:50:20 2023 commencing singleton removal, initial pass Thu Feb 23 13:50:47 2023 memory use: 188.3 MB Thu Feb 23 13:50:47 2023 reading all ideals from disk Thu Feb 23 13:50:47 2023 memory use: 248.7 MB Thu Feb 23 13:50:47 2023 keeping 9122622 ideals with weight <= 200, target excess is 37889 Thu Feb 23 13:50:47 2023 commencing in-memory singleton removal Thu Feb 23 13:50:48 2023 begin with 7211285 relations and 9122622 unique ideals Thu Feb 23 13:50:48 2023 reduce to 109 relations and 0 ideals in 19 passes Thu Feb 23 13:50:48 2023 max relations containing the same ideal: 0 Thu Feb 23 13:50:49 2023 filtering wants 1000000 more relations Thu Feb 23 13:50:49 2023 elapsed time 00:00:55 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 143 Thu Feb 23 13:53:17 2023 Thu Feb 23 13:53:17 2023 Thu Feb 23 13:53:17 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 13:53:17 2023 random seeds: df5cba30 ab598e4e Thu Feb 23 13:53:17 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 13:53:17 2023 searching for 15-digit factors Thu Feb 23 13:53:18 2023 commencing number field sieve (116-digit input) Thu Feb 23 13:53:18 2023 R0: -22548559989760625755755 Thu Feb 23 13:53:18 2023 R1: 604106364001 Thu Feb 23 13:53:18 2023 A0: -115454287427146107854644272224 Thu Feb 23 13:53:18 2023 A1: 882469566061473608955284 Thu Feb 23 13:53:18 2023 A2: 45242330301180689159 Thu Feb 23 13:53:18 2023 A3: -157042591793174 Thu Feb 23 13:53:18 2023 A4: -2534771820 Thu Feb 23 13:53:18 2023 A5: 1800 Thu Feb 23 13:53:18 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 13:53:18 2023 Thu Feb 23 13:53:18 2023 commencing relation filtering Thu Feb 23 13:53:18 2023 estimated available RAM is 65413.5 MB Thu Feb 23 13:53:18 2023 commencing duplicate removal, pass 1 Thu Feb 23 13:53:35 2023 found 668684 hash collisions in 8386013 relations Thu Feb 23 13:53:44 2023 added 557 free relations Thu Feb 23 13:53:44 2023 commencing duplicate removal, pass 2 Thu Feb 23 13:53:48 2023 found 480509 duplicates and 7906061 unique relations Thu Feb 23 13:53:48 2023 memory use: 32.6 MB Thu Feb 23 13:53:48 2023 reading ideals above 100000 Thu Feb 23 13:53:48 2023 commencing singleton removal, initial pass Thu Feb 23 13:54:18 2023 memory use: 188.3 MB Thu Feb 23 13:54:18 2023 reading all ideals from disk Thu Feb 23 13:54:18 2023 memory use: 272.9 MB Thu Feb 23 13:54:18 2023 keeping 9521980 ideals with weight <= 200, target excess is 41619 Thu Feb 23 13:54:18 2023 commencing in-memory singleton removal Thu Feb 23 13:54:19 2023 begin with 7906061 relations and 9521980 unique ideals Thu Feb 23 13:54:22 2023 reduce to 1438617 relations and 1597723 ideals in 36 passes Thu Feb 23 13:54:22 2023 max relations containing the same ideal: 63 Thu Feb 23 13:54:22 2023 filtering wants 1000000 more relations Thu Feb 23 13:54:22 2023 elapsed time 00:01:05 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 150 LatSieveTime: 153 Thu Feb 23 13:57:00 2023 Thu Feb 23 13:57:00 2023 Thu Feb 23 13:57:00 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 13:57:00 2023 random seeds: f4ca8d48 075a6c1f Thu Feb 23 13:57:00 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 13:57:01 2023 searching for 15-digit factors Thu Feb 23 13:57:01 2023 commencing number field sieve (116-digit input) Thu Feb 23 13:57:01 2023 R0: -22548559989760625755755 Thu Feb 23 13:57:01 2023 R1: 604106364001 Thu Feb 23 13:57:01 2023 A0: -115454287427146107854644272224 Thu Feb 23 13:57:01 2023 A1: 882469566061473608955284 Thu Feb 23 13:57:01 2023 A2: 45242330301180689159 Thu Feb 23 13:57:01 2023 A3: -157042591793174 Thu Feb 23 13:57:01 2023 A4: -2534771820 Thu Feb 23 13:57:01 2023 A5: 1800 Thu Feb 23 13:57:01 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 13:57:01 2023 Thu Feb 23 13:57:01 2023 commencing relation filtering Thu Feb 23 13:57:01 2023 estimated available RAM is 65413.5 MB Thu Feb 23 13:57:01 2023 commencing duplicate removal, pass 1 Thu Feb 23 13:57:20 2023 found 778698 hash collisions in 9158559 relations Thu Feb 23 13:57:30 2023 added 441 free relations Thu Feb 23 13:57:30 2023 commencing duplicate removal, pass 2 Thu Feb 23 13:57:32 2023 found 558975 duplicates and 8600025 unique relations Thu Feb 23 13:57:32 2023 memory use: 32.6 MB Thu Feb 23 13:57:32 2023 reading ideals above 100000 Thu Feb 23 13:57:32 2023 commencing singleton removal, initial pass Thu Feb 23 13:58:04 2023 memory use: 188.3 MB Thu Feb 23 13:58:04 2023 reading all ideals from disk Thu Feb 23 13:58:04 2023 memory use: 297.1 MB Thu Feb 23 13:58:05 2023 keeping 9887287 ideals with weight <= 200, target excess is 45557 Thu Feb 23 13:58:05 2023 commencing in-memory singleton removal Thu Feb 23 13:58:05 2023 begin with 8600025 relations and 9887287 unique ideals Thu Feb 23 13:58:09 2023 reduce to 2373702 relations and 2377838 ideals in 22 passes Thu Feb 23 13:58:09 2023 max relations containing the same ideal: 89 Thu Feb 23 13:58:09 2023 filtering wants 1000000 more relations Thu Feb 23 13:58:09 2023 elapsed time 00:01:09 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 153 Thu Feb 23 14:00:48 2023 Thu Feb 23 14:00:48 2023 Thu Feb 23 14:00:48 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 14:00:48 2023 random seeds: d9a0d3e0 8d042add Thu Feb 23 14:00:48 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 14:00:48 2023 searching for 15-digit factors Thu Feb 23 14:00:48 2023 commencing number field sieve (116-digit input) Thu Feb 23 14:00:48 2023 R0: -22548559989760625755755 Thu Feb 23 14:00:48 2023 R1: 604106364001 Thu Feb 23 14:00:48 2023 A0: -115454287427146107854644272224 Thu Feb 23 14:00:48 2023 A1: 882469566061473608955284 Thu Feb 23 14:00:48 2023 A2: 45242330301180689159 Thu Feb 23 14:00:48 2023 A3: -157042591793174 Thu Feb 23 14:00:48 2023 A4: -2534771820 Thu Feb 23 14:00:48 2023 A5: 1800 Thu Feb 23 14:00:48 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 14:00:48 2023 Thu Feb 23 14:00:48 2023 commencing relation filtering Thu Feb 23 14:00:48 2023 estimated available RAM is 65413.5 MB Thu Feb 23 14:00:48 2023 commencing duplicate removal, pass 1 Thu Feb 23 14:01:09 2023 found 897422 hash collisions in 9946696 relations Thu Feb 23 14:01:19 2023 added 321 free relations Thu Feb 23 14:01:19 2023 commencing duplicate removal, pass 2 Thu Feb 23 14:01:22 2023 found 644249 duplicates and 9302768 unique relations Thu Feb 23 14:01:22 2023 memory use: 34.6 MB Thu Feb 23 14:01:22 2023 reading ideals above 100000 Thu Feb 23 14:01:22 2023 commencing singleton removal, initial pass Thu Feb 23 14:01:56 2023 memory use: 344.5 MB Thu Feb 23 14:01:56 2023 reading all ideals from disk Thu Feb 23 14:01:57 2023 memory use: 321.6 MB Thu Feb 23 14:01:57 2023 keeping 10226675 ideals with weight <= 200, target excess is 49614 Thu Feb 23 14:01:57 2023 commencing in-memory singleton removal Thu Feb 23 14:01:58 2023 begin with 9302768 relations and 10226675 unique ideals Thu Feb 23 14:02:02 2023 reduce to 3254756 relations and 3044639 ideals in 20 passes Thu Feb 23 14:02:02 2023 max relations containing the same ideal: 99 Thu Feb 23 14:02:03 2023 removing 607274 relations and 530992 ideals in 76282 cliques Thu Feb 23 14:02:03 2023 commencing in-memory singleton removal Thu Feb 23 14:02:03 2023 begin with 2647482 relations and 3044639 unique ideals Thu Feb 23 14:02:03 2023 reduce to 2552796 relations and 2415904 ideals in 10 passes Thu Feb 23 14:02:03 2023 max relations containing the same ideal: 86 Thu Feb 23 14:02:04 2023 removing 457071 relations and 380789 ideals in 76282 cliques Thu Feb 23 14:02:04 2023 commencing in-memory singleton removal Thu Feb 23 14:02:04 2023 begin with 2095725 relations and 2415904 unique ideals Thu Feb 23 14:02:04 2023 reduce to 2024606 relations and 1961780 ideals in 10 passes Thu Feb 23 14:02:04 2023 max relations containing the same ideal: 73 Thu Feb 23 14:02:05 2023 relations with 0 large ideals: 143 Thu Feb 23 14:02:05 2023 relations with 1 large ideals: 583 Thu Feb 23 14:02:05 2023 relations with 2 large ideals: 9009 Thu Feb 23 14:02:05 2023 relations with 3 large ideals: 65600 Thu Feb 23 14:02:05 2023 relations with 4 large ideals: 248153 Thu Feb 23 14:02:05 2023 relations with 5 large ideals: 514580 Thu Feb 23 14:02:05 2023 relations with 6 large ideals: 602704 Thu Feb 23 14:02:05 2023 relations with 7+ large ideals: 583834 Thu Feb 23 14:02:05 2023 commencing 2-way merge Thu Feb 23 14:02:06 2023 reduce to 1122786 relation sets and 1059961 unique ideals Thu Feb 23 14:02:06 2023 ignored 1 oversize relation sets Thu Feb 23 14:02:06 2023 commencing full merge Thu Feb 23 14:02:18 2023 memory use: 119.9 MB Thu Feb 23 14:02:18 2023 found 551617 cycles, need 540161 Thu Feb 23 14:02:18 2023 weight of 540161 cycles is about 38020312 (70.39/cycle) Thu Feb 23 14:02:18 2023 distribution of cycle lengths: Thu Feb 23 14:02:18 2023 1 relations: 60812 Thu Feb 23 14:02:18 2023 2 relations: 59517 Thu Feb 23 14:02:18 2023 3 relations: 59351 Thu Feb 23 14:02:18 2023 4 relations: 54057 Thu Feb 23 14:02:18 2023 5 relations: 49986 Thu Feb 23 14:02:18 2023 6 relations: 43148 Thu Feb 23 14:02:18 2023 7 relations: 38814 Thu Feb 23 14:02:18 2023 8 relations: 33316 Thu Feb 23 14:02:18 2023 9 relations: 28841 Thu Feb 23 14:02:18 2023 10+ relations: 112319 Thu Feb 23 14:02:18 2023 heaviest cycle: 21 relations Thu Feb 23 14:02:18 2023 commencing cycle optimization Thu Feb 23 14:02:18 2023 start with 3309353 relations Thu Feb 23 14:02:22 2023 pruned 64480 relations Thu Feb 23 14:02:22 2023 memory use: 113.2 MB Thu Feb 23 14:02:22 2023 distribution of cycle lengths: Thu Feb 23 14:02:22 2023 1 relations: 60812 Thu Feb 23 14:02:22 2023 2 relations: 60737 Thu Feb 23 14:02:22 2023 3 relations: 61028 Thu Feb 23 14:02:22 2023 4 relations: 55180 Thu Feb 23 14:02:22 2023 5 relations: 50788 Thu Feb 23 14:02:22 2023 6 relations: 43694 Thu Feb 23 14:02:22 2023 7 relations: 39173 Thu Feb 23 14:02:22 2023 8 relations: 33328 Thu Feb 23 14:02:22 2023 9 relations: 28706 Thu Feb 23 14:02:22 2023 10+ relations: 106715 Thu Feb 23 14:02:22 2023 heaviest cycle: 21 relations Thu Feb 23 14:02:23 2023 RelProcTime: 95 Thu Feb 23 14:02:23 2023 elapsed time 00:01:35 Thu Feb 23 14:02:23 2023 Thu Feb 23 14:02:23 2023 Thu Feb 23 14:02:23 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 14:02:23 2023 random seeds: dbca2af0 dd9b5b57 Thu Feb 23 14:02:23 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 14:02:23 2023 searching for 15-digit factors Thu Feb 23 14:02:23 2023 commencing number field sieve (116-digit input) Thu Feb 23 14:02:23 2023 R0: -22548559989760625755755 Thu Feb 23 14:02:23 2023 R1: 604106364001 Thu Feb 23 14:02:23 2023 A0: -115454287427146107854644272224 Thu Feb 23 14:02:23 2023 A1: 882469566061473608955284 Thu Feb 23 14:02:23 2023 A2: 45242330301180689159 Thu Feb 23 14:02:23 2023 A3: -157042591793174 Thu Feb 23 14:02:23 2023 A4: -2534771820 Thu Feb 23 14:02:23 2023 A5: 1800 Thu Feb 23 14:02:23 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 14:02:23 2023 Thu Feb 23 14:02:23 2023 commencing linear algebra Thu Feb 23 14:02:23 2023 read 540161 cycles Thu Feb 23 14:02:24 2023 cycles contain 1920424 unique relations Thu Feb 23 14:02:28 2023 read 1920424 relations Thu Feb 23 14:02:30 2023 using 20 quadratic characters above 134216348 Thu Feb 23 14:02:35 2023 building initial matrix Thu Feb 23 14:02:44 2023 memory use: 236.6 MB Thu Feb 23 14:02:45 2023 read 540161 cycles Thu Feb 23 14:02:45 2023 matrix is 539977 x 540161 (162.6 MB) with weight 51494943 (95.33/col) Thu Feb 23 14:02:45 2023 sparse part has weight 36680144 (67.91/col) Thu Feb 23 14:02:47 2023 filtering completed in 2 passes Thu Feb 23 14:02:47 2023 matrix is 538195 x 538378 (162.4 MB) with weight 51415442 (95.50/col) Thu Feb 23 14:02:47 2023 sparse part has weight 36651665 (68.08/col) Thu Feb 23 14:02:48 2023 matrix starts at (0, 0) Thu Feb 23 14:02:48 2023 matrix is 538195 x 538378 (162.4 MB) with weight 51415442 (95.50/col) Thu Feb 23 14:02:48 2023 sparse part has weight 36651665 (68.08/col) Thu Feb 23 14:02:48 2023 saving the first 48 matrix rows for later Thu Feb 23 14:02:48 2023 matrix includes 64 packed rows Thu Feb 23 14:02:48 2023 matrix is 538147 x 538378 (157.2 MB) with weight 41265118 (76.65/col) Thu Feb 23 14:02:48 2023 sparse part has weight 35836371 (66.56/col) Thu Feb 23 14:02:48 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Thu Feb 23 14:02:50 2023 commencing Lanczos iteration (32 threads) Thu Feb 23 14:02:50 2023 memory use: 122.6 MB Thu Feb 23 14:02:51 2023 linear algebra at 0.6%, ETA 0h 2m Thu Feb 23 14:06:30 2023 lanczos halted after 8512 iterations (dim = 538145) Thu Feb 23 14:06:30 2023 recovered 31 nontrivial dependencies Thu Feb 23 14:06:30 2023 BLanczosTime: 247 Thu Feb 23 14:06:30 2023 elapsed time 00:04:07 Thu Feb 23 14:06:30 2023 Thu Feb 23 14:06:30 2023 Thu Feb 23 14:06:30 2023 Msieve v. 1.52 (SVN 927) Thu Feb 23 14:06:30 2023 random seeds: 8579d770 02ad3326 Thu Feb 23 14:06:30 2023 factoring 10491804254848425541541114668804270547850571344522728950404467483759084783760410577844463132000079742139965978914421 (116 digits) Thu Feb 23 14:06:30 2023 searching for 15-digit factors Thu Feb 23 14:06:30 2023 commencing number field sieve (116-digit input) Thu Feb 23 14:06:30 2023 R0: -22548559989760625755755 Thu Feb 23 14:06:30 2023 R1: 604106364001 Thu Feb 23 14:06:30 2023 A0: -115454287427146107854644272224 Thu Feb 23 14:06:30 2023 A1: 882469566061473608955284 Thu Feb 23 14:06:30 2023 A2: 45242330301180689159 Thu Feb 23 14:06:30 2023 A3: -157042591793174 Thu Feb 23 14:06:30 2023 A4: -2534771820 Thu Feb 23 14:06:30 2023 A5: 1800 Thu Feb 23 14:06:30 2023 skew 146951.38, size 3.860e-011, alpha -6.436, combined = 4.526e-010 rroots = 5 Thu Feb 23 14:06:30 2023 Thu Feb 23 14:06:30 2023 commencing square root phase Thu Feb 23 14:06:30 2023 reading relations for dependency 1 Thu Feb 23 14:06:31 2023 read 269703 cycles Thu Feb 23 14:06:31 2023 cycles contain 960902 unique relations Thu Feb 23 14:06:33 2023 read 960902 relations Thu Feb 23 14:06:35 2023 multiplying 960902 relations Thu Feb 23 14:06:57 2023 multiply complete, coefficients have about 41.20 million bits Thu Feb 23 14:06:57 2023 initial square root is modulo 823721 Thu Feb 23 14:07:24 2023 GCD is N, no factor found Thu Feb 23 14:07:24 2023 reading relations for dependency 2 Thu Feb 23 14:07:24 2023 read 269116 cycles Thu Feb 23 14:07:24 2023 cycles contain 958488 unique relations Thu Feb 23 14:07:27 2023 read 958488 relations Thu Feb 23 14:07:28 2023 multiplying 958488 relations Thu Feb 23 14:07:50 2023 multiply complete, coefficients have about 41.10 million bits Thu Feb 23 14:07:50 2023 initial square root is modulo 796001 Thu Feb 23 14:08:17 2023 sqrtTime: 107 Thu Feb 23 14:08:17 2023 prp47 factor: 59272426298273567327418783970558493016975233693 Thu Feb 23 14:08:17 2023 prp69 factor: 177009866308678866383872847677794715769389951067486512088600676333497 Thu Feb 23 14:08:17 2023 elapsed time 00:01:47 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 66 / 2078 | Rytis Slatkevičius | February 21, 2023 20:48:11 UTC 2023 年 2 月 22 日 (水) 5 時 48 分 11 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 11, 2023 12:27:55 UTC 2023 年 6 月 11 日 (日) 21 時 27 分 55 秒 (日本時間) |
composite number 合成数 | 2459533640400631424408048963421866812162848772127479064996869417425547390040584272217409213037535518135198369880031007797615406605805878513879<142> |
prime factors 素因数 | 176566472776237177551029077119479594834010490443649<51> 13929788604417556886068813323637403470223071782372430864574117183391951061054602661103965271<92> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM] Input number is 2459533640400631424408048963421866812162848772127479064996869417425547390040584272217409213037535518135198369880031007797615406605805878513879 (142 digits) Using B1=43480000, B2=240490660426, polynomial Dickson(12), sigma=1:3068748678 Step 1 took 79603ms Step 2 took 26776ms ********** Factor found in step 2: 176566472776237177551029077119479594834010490443649 Found prime factor of 51 digits: 176566472776237177551029077119479594834010490443649 Prime cofactor 13929788604417556886068813323637403470223071782372430864574117183391951061054602661103965271 has 92 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 1, 2023 12:51:28 UTC 2023 年 3 月 1 日 (水) 21 時 51 分 28 秒 (日本時間) |
2350 | Ignacio Santos | April 22, 2023 06:56:34 UTC 2023 年 4 月 22 日 (土) 15 時 56 分 34 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 8, 2023 04:32:44 UTC 2023 年 7 月 8 日 (土) 13 時 32 分 44 秒 (日本時間) |
composite number 合成数 | 42140565659403929215703093161578083472884024484428068794187452754993591952079269977481853436842966611579989515426866517268004937314561920471067415685006208477<158> |
prime factors 素因数 | 46151112200448224638742934561887190552002498040318505499423591741055365791031<77> 913099677346338263169489566151663695120383037561403336681824838881109339589187467<81> |
factorization results 素因数分解の結果 | 42140565659403929215703093161578083472884024484428068794187452754993591952079269977481853436842966611579989515426866517268004937314561920471067415685006208477=46151112200448224638742934561887190552002498040318505499423591741055365791031*913099677346338263169489566151663695120383037561403336681824838881109339589187467 cado polynomial n: 42140565659403929215703093161578083472884024484428068794187452754993591952079269977481853436842966611579989515426866517268004937314561920471067415685006208477 skew: 0.27 type: snfs c0: 7 c5: 5125 Y0: 2000000000000000000000000000000000000000 Y1: -1 # f(x) = 5125*x^5+7 # g(x) = -x+2000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 15200000 tasks.lim1 = 15200000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 913099677346338263169489566151663695120383037561403336681824838881109339589187467 46151112200448224638742934561887190552002498040318505499423591741055365791031 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 3597.89/195.588 Info:HTTP server: Got notification to stop serving Workunits Info:Linear Algebra: Total cpu/real time for bwc: 97334.4/12103.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 63787.73, WCT time 7942.07, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.04, comm-wait 0.0 (83456 iterations) Info:Linear Algebra: Lingen CPU time 502.66, WCT time 32.5 Info:Linear Algebra: Mksol: CPU time 32455.02, WCT time 4062.01, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.04, comm-wait 0.0 (41984 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 2.32/0.36335 Info:Square Root: Total cpu/real time for sqrt: 3597.89/195.588 Info:Generate Free Relations: Total cpu/real time for freerel: 135.37/12.2032 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 171.25/124.848 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 124.8s Info:Quadratic Characters: Total cpu/real time for characters: 77.3/14.588 Info:Filtering - Singleton removal: Total cpu/real time for purge: 164.24/86.2137 Info:Filtering - Merging: Merged matrix has 2663853 rows and total weight 455076764 (170.8 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 592.66/35.2456 Info:Filtering - Merging: Total cpu/real time for replay: 50.18/43.8471 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 43281006 Info:Lattice Sieving: Average J: 3790.39 for 1613747 special-q, max bucket fill -bkmult 1.0,1s:1.154130 Info:Lattice Sieving: Total time: 575676s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 391.18/223.432 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 199.60000000000002s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.19729e+06/61099.5 Info:root: Cleaning up computation data in /tmp/cado.x3j0bx09 913099677346338263169489566151663695120383037561403336681824838881109339589187467 46151112200448224638742934561887190552002498040318505499423591741055365791031 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | March 1, 2023 12:51:37 UTC 2023 年 3 月 1 日 (水) 21 時 51 分 37 秒 (日本時間) |
2350 | Ignacio Santos | May 9, 2023 15:26:35 UTC 2023 年 5 月 10 日 (水) 0 時 26 分 35 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | February 26, 2023 22:22:51 UTC 2023 年 2 月 27 日 (月) 7 時 22 分 51 秒 (日本時間) |
composite number 合成数 | 19311294087951059246675400337620432087734229882498780186463499195816674593175766206681321345925867154251951195175457187654664914071094046588366059230124238737<158> |
prime factors 素因数 | 3733058500764643327721486721305772210785113847351<49> 5173048877748774078500959838187007120529556721106853999734359837871880788818059958783641730088133430907399287<109> |
factorization results 素因数分解の結果 | Number: 91115_200 N = 19311294087951059246675400337620432087734229882498780186463499195816674593175766206681321345925867154251951195175457187654664914071094046588366059230124238737 (158 digits) SNFS difficulty: 202 digits. Divisors found: r1=3733058500764643327721486721305772210785113847351 (pp49) r2=5173048877748774078500959838187007120529556721106853999734359837871880788818059958783641730088133430907399287 (pp109) Version: Msieve v. 1.53 (SVN unknown) Total time: 45.46 hours. Factorization parameters were as follows: n: 19311294087951059246675400337620432087734229882498780186463499195816674593175766206681321345925867154251951195175457187654664914071094046588366059230124238737 m: 10000000000000000000000000000000000000000 deg: 5 c5: 82 c0: 35 skew: 0.84 # Murphy_E = 1.054e-11 type: snfs lss: 1 rlim: 16200000 alim: 16200000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16200000/16200000 Large primes per side: 3 Large prime bits: 29/29 Sieved rational special-q in [0, 0) Total raw relations: 39041515 Relations: 6123384 relations Pruned matrix : 3614243 x 3614472 Total sieving time: 41.08 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.94 hours. time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16200000,16200000,29,29,56,56,2.6,2.6,100000 total time: 45.46 hours. Intel64 Family 6 Model 45 Stepping 6, GenuineIntel processors: 12, speed: 3.30GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:40:39 UTC 2023 年 3 月 5 日 (日) 16 時 40 分 39 秒 (日本時間) |
composite number 合成数 | 7803026006353999086896321686171032647516905249202674009990779568369303899928803383602107570896813818772272200870039756282087242244289371204763367177022015486670688639983<169> |
prime factors 素因数 | 10674421086516375494476230718015371540437<41> 731002266362768764970192562232126123529290886923405977600860499510971009573690573396910009764547217069484123614945614187794516659<129> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 08:57:09 2023 Input number is 7803026006353999086896321686171032647516905249202674009990779568369303899928803383602107570896813818772272200870039756282087242244289371204763367177022015486670688639983 (169 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3432063692 Step 1 took 0ms Step 2 took 4133ms ********** Factor found in step 2: 10674421086516375494476230718015371540437 Found prime factor of 41 digits: 10674421086516375494476230718015371540437 Prime cofactor 731002266362768764970192562232126123529290886923405977600860499510971009573690573396910009764547217069484123614945614187794516659 has 129 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 27, 2023 17:27:19 UTC 2023 年 8 月 28 日 (月) 2 時 27 分 19 秒 (日本時間) |
composite number 合成数 | 1864024300442729978348687767898260285369456199443824583927150996092748727262115269706281615017196870558479849728171792840651776356457421253984271087542070169<157> |
prime factors 素因数 | 994532520975069792007897986264208166375724469<45> 1874271842428223586681650236068901373681484488898602871785808334644945852487441893608822710113691181125229145301<112> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1864024300442729978348687767898260285369456199443824583927150996092748727262115269706281615017196870558479849728171792840651776356457421253984271087542070169 (157 digits) Using B1=52220000, B2=288593765476, polynomial Dickson(12), sigma=1:2026067145 Step 1 took 122521ms Step 2 took 40070ms ********** Factor found in step 2: 994532520975069792007897986264208166375724469 Found prime factor of 45 digits: 994532520975069792007897986264208166375724469 Prime cofactor 1874271842428223586681650236068901373681484488898602871785808334644945852487441893608822710113691181125229145301 has 112 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:31:40 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 40 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:24:36 UTC 2023 年 4 月 6 日 (木) 18 時 24 分 36 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 19, 2024 05:43:38 UTC 2024 年 9 月 19 日 (木) 14 時 43 分 38 秒 (日本時間) |
composite number 合成数 | 80072018875061303024561226373009785092813651543611012569896410305925337164277435724047871898230812455709503019603213542745261653729823718429588049714619821993463146989688827889994443440494319014069<197> |
prime factors 素因数 | 14726765538003260446255314943151469395357<41> 5437176185662145591213879529635425927698813895476886452036817641809688609498337880978952994789705235593152376724819237824630221262898711192927362934232449017<157> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2756303478 Step 1 took 8609ms Step 2 took 3859ms ********** Factor found in step 2: 14726765538003260446255314943151469395357 Found prime factor of 41 digits: 14726765538003260446255314943151469395357 Prime cofactor 5437176185662145591213879529635425927698813895476886452036817641809688609498337880978952994789705235593152376724819237824630221262898711192927362934232449017 has 157 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | March 7, 2023 15:31:43 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:31:46 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 46 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:23:02 UTC 2023 年 4 月 6 日 (木) 18 時 23 分 2 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | February 24, 2023 15:57:57 UTC 2023 年 2 月 25 日 (土) 0 時 57 分 57 秒 (日本時間) |
composite number 合成数 | 20115523728394229109213219150905206124288234998319268181691917639315209624407947650678934890748410087547004100512372020033427620756401052670777<143> |
prime factors 素因数 | 330477360394589459786156433595243967<36> 60868083987285315794255641856330842458101898180388430742666933037323137263546029325070655119710271577863431<107> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2304019966 Step 1 took 5718ms Step 2 took 2735ms ********** Factor found in step 2: 330477360394589459786156433595243967 Found prime factor of 36 digits: 330477360394589459786156433595243967 Prime cofactor 60868083987285315794255641856330842458101898180388430742666933037323137263546029325070655119710271577863431 has 107 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 41316447488968751782073622802848502021051126570659425230036153378041879295092872433679934242416096350378953599196961575334116735226067525663150463813<149> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:31:50 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 50 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:24:27 UTC 2023 年 4 月 6 日 (木) 18 時 24 分 27 秒 (日本時間) |
composite cofactor 合成数の残り | 27893731961511396411104681754685020828326863603589329493133972426297712271303889138644549759124129134595307340902912743636729627907134157321057565838816472176012947<164> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:31:54 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 54 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:24:14 UTC 2023 年 4 月 6 日 (木) 18 時 24 分 14 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:42:58 UTC 2023 年 3 月 5 日 (日) 16 時 42 分 58 秒 (日本時間) |
composite number 合成数 | 1848937127748513368412923929249128677200274208408764561073264288724591408011362818402379103376523572123328056889214052781046761414450702286393440272419408392110499200112981<172> |
prime factors 素因数 | 1339647680222940777735782777371725677<37> |
composite cofactor 合成数の残り | 1380166707294874671289372224184230285494257061604144449914736839392092202468138330643790081976923427861553267200824649080358281241737353<136> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 11:31:51 2023 Input number is 1848937127748513368412923929249128677200274208408764561073264288724591408011362818402379103376523572123328056889214052781046761414450702286393440272419408392110499200112981 (172 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2400043957 Step 1 took 0ms Step 2 took 4128ms ********** Factor found in step 2: 1339647680222940777735782777371725677 Found prime factor of 37 digits: 1339647680222940777735782777371725677 Composite cofactor 1380166707294874671289372224184230285494257061604144449914736839392092202468138330643790081976923427861553267200824649080358281241737353 has 136 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 7, 2023 15:22:19 UTC 2023 年 3 月 8 日 (水) 0 時 22 分 19 秒 (日本時間) |
composite number 合成数 | 1380166707294874671289372224184230285494257061604144449914736839392092202468138330643790081976923427861553267200824649080358281241737353<136> |
prime factors 素因数 | 4045349340633889136610845283706017797387143<43> 341173676505922819524576579093371190416175810748690113060256253141590247529340818266496751471<93> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3219910219 Step 1 took 5719ms Step 2 took 2812ms ********** Factor found in step 2: 4045349340633889136610845283706017797387143 Found prime factor of 43 digits: 4045349340633889136610845283706017797387143 Prime cofactor 341173676505922819524576579093371190416175810748690113060256253141590247529340818266496751471 has 93 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:31:57 UTC 2023 年 3 月 8 日 (水) 0 時 31 分 57 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 05:44:09 UTC 2024 年 9 月 19 日 (木) 14 時 44 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:02 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 2 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 05:57:15 UTC 2024 年 9 月 19 日 (木) 14 時 57 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:06 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 6 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 06:03:57 UTC 2024 年 9 月 19 日 (木) 15 時 3 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:32:09 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 9 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:23:24 UTC 2023 年 4 月 6 日 (木) 18 時 23 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:13 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 13 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 06:50:58 UTC 2024 年 9 月 21 日 (土) 15 時 50 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 6, 2023 20:41:07 UTC 2023 年 4 月 7 日 (金) 5 時 41 分 7 秒 (日本時間) |
composite number 合成数 | 529551138382086471211311992800099254700546170761769460048416680882817271475287724680559917133923395776067352999512170747666186181431971188717731977548007711<156> |
prime factors 素因数 | 182009975943837765271967797624168430924027<42> |
composite cofactor 合成数の残り | 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693<115> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:93943804 Step 1 took 30070ms Step 2 took 13704ms ********** Factor found in step 2: 182009975943837765271967797624168430924027 Found prime factor of 42 digits: 182009975943837765271967797624168430924027 Composite cofactor 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693 has 115 digits |
name 名前 | anonymous |
---|---|
date 日付 | April 8, 2023 03:45:33 UTC 2023 年 4 月 8 日 (土) 12 時 45 分 33 秒 (日本時間) |
composite number 合成数 | 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693<115> |
prime factors 素因数 | 30360136424273035486892211047303700114650715168978967<53> 95831656446069491317317953571398295714994331795916577607749979<62> |
factorization results 素因数分解の結果 | Sat Apr 08 11:27:20 2023 Sat Apr 08 11:27:20 2023 Sat Apr 08 11:27:20 2023 Msieve v. 1.54 (SVN Unversioned directory) Sat Apr 08 11:27:20 2023 random seeds: 803a55b8 813f6a83 Sat Apr 08 11:27:20 2023 factoring 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693 (115 digits) Sat Apr 08 11:27:21 2023 searching for 15-digit factors Sat Apr 08 11:27:21 2023 commencing number field sieve (115-digit input) Sat Apr 08 11:27:21 2023 R0: -20953995449531555061949 Sat Apr 08 11:27:21 2023 R1: 22397965524917 Sat Apr 08 11:27:21 2023 A0: 337659774776387473313883252834 Sat Apr 08 11:27:21 2023 A1: 9013262813854628901615933 Sat Apr 08 11:27:21 2023 A2: -15535508006519110651 Sat Apr 08 11:27:21 2023 A3: -283778894951453 Sat Apr 08 11:27:21 2023 A4: 226770642 Sat Apr 08 11:27:21 2023 A5: 720 Sat Apr 08 11:27:21 2023 skew 308428.61, size 5.859e-011, alpha -7.261, combined = 5.826e-010 rroots = 5 Sat Apr 08 11:27:21 2023 Sat Apr 08 11:27:21 2023 commencing relation filtering Sat Apr 08 11:27:21 2023 estimated available RAM is 15734.8 MB Sat Apr 08 11:27:21 2023 commencing duplicate removal, pass 1 Sat Apr 08 11:28:07 2023 found 1129726 hash collisions in 8140709 relations Sat Apr 08 11:28:15 2023 added 58096 free relations Sat Apr 08 11:28:15 2023 commencing duplicate removal, pass 2 Sat Apr 08 11:28:18 2023 found 870158 duplicates and 7328647 unique relations Sat Apr 08 11:28:18 2023 memory use: 41.3 MB Sat Apr 08 11:28:18 2023 reading ideals above 100000 Sat Apr 08 11:28:19 2023 commencing singleton removal, initial pass Sat Apr 08 11:28:59 2023 memory use: 188.3 MB Sat Apr 08 11:28:59 2023 reading all ideals from disk Sat Apr 08 11:28:59 2023 memory use: 245.9 MB Sat Apr 08 11:28:59 2023 keeping 8049095 ideals with weight <= 200, target excess is 37259 Sat Apr 08 11:28:59 2023 commencing in-memory singleton removal Sat Apr 08 11:29:00 2023 begin with 7328647 relations and 8049095 unique ideals Sat Apr 08 11:29:02 2023 reduce to 2521574 relations and 2350635 ideals in 16 passes Sat Apr 08 11:29:02 2023 max relations containing the same ideal: 99 Sat Apr 08 11:29:03 2023 removing 436576 relations and 372717 ideals in 63859 cliques Sat Apr 08 11:29:03 2023 commencing in-memory singleton removal Sat Apr 08 11:29:03 2023 begin with 2084998 relations and 2350635 unique ideals Sat Apr 08 11:29:04 2023 reduce to 2025783 relations and 1916763 ideals in 9 passes Sat Apr 08 11:29:04 2023 max relations containing the same ideal: 84 Sat Apr 08 11:29:04 2023 removing 336574 relations and 272715 ideals in 63859 cliques Sat Apr 08 11:29:04 2023 commencing in-memory singleton removal Sat Apr 08 11:29:04 2023 begin with 1689209 relations and 1916763 unique ideals Sat Apr 08 11:29:05 2023 reduce to 1645253 relations and 1598703 ideals in 10 passes Sat Apr 08 11:29:05 2023 max relations containing the same ideal: 73 Sat Apr 08 11:29:06 2023 relations with 0 large ideals: 135 Sat Apr 08 11:29:06 2023 relations with 1 large ideals: 437 Sat Apr 08 11:29:06 2023 relations with 2 large ideals: 6607 Sat Apr 08 11:29:06 2023 relations with 3 large ideals: 49361 Sat Apr 08 11:29:06 2023 relations with 4 large ideals: 185609 Sat Apr 08 11:29:06 2023 relations with 5 large ideals: 396014 Sat Apr 08 11:29:06 2023 relations with 6 large ideals: 490080 Sat Apr 08 11:29:06 2023 relations with 7+ large ideals: 517010 Sat Apr 08 11:29:06 2023 commencing 2-way merge Sat Apr 08 11:29:06 2023 reduce to 954278 relation sets and 907728 unique ideals Sat Apr 08 11:29:06 2023 commencing full merge Sat Apr 08 11:29:20 2023 memory use: 116.0 MB Sat Apr 08 11:29:20 2023 found 436208 cycles, need 431928 Sat Apr 08 11:29:20 2023 weight of 431928 cycles is about 38945660 (90.17/cycle) Sat Apr 08 11:29:20 2023 distribution of cycle lengths: Sat Apr 08 11:29:20 2023 1 relations: 35200 Sat Apr 08 11:29:20 2023 2 relations: 36442 Sat Apr 08 11:29:20 2023 3 relations: 37099 Sat Apr 08 11:29:20 2023 4 relations: 35452 Sat Apr 08 11:29:20 2023 5 relations: 33397 Sat Apr 08 11:29:20 2023 6 relations: 31159 Sat Apr 08 11:29:20 2023 7 relations: 28499 Sat Apr 08 11:29:20 2023 8 relations: 26260 Sat Apr 08 11:29:20 2023 9 relations: 23939 Sat Apr 08 11:29:20 2023 10+ relations: 144481 Sat Apr 08 11:29:20 2023 heaviest cycle: 27 relations Sat Apr 08 11:29:20 2023 commencing cycle optimization Sat Apr 08 11:29:21 2023 start with 3428623 relations Sat Apr 08 11:29:26 2023 pruned 111547 relations Sat Apr 08 11:29:26 2023 memory use: 100.9 MB Sat Apr 08 11:29:26 2023 distribution of cycle lengths: Sat Apr 08 11:29:26 2023 1 relations: 35200 Sat Apr 08 11:29:26 2023 2 relations: 37258 Sat Apr 08 11:29:26 2023 3 relations: 38420 Sat Apr 08 11:29:26 2023 4 relations: 36507 Sat Apr 08 11:29:26 2023 5 relations: 34517 Sat Apr 08 11:29:26 2023 6 relations: 31924 Sat Apr 08 11:29:26 2023 7 relations: 29397 Sat Apr 08 11:29:26 2023 8 relations: 26995 Sat Apr 08 11:29:26 2023 9 relations: 24417 Sat Apr 08 11:29:26 2023 10+ relations: 137293 Sat Apr 08 11:29:26 2023 heaviest cycle: 27 relations Sat Apr 08 11:29:27 2023 RelProcTime: 126 Sat Apr 08 11:29:27 2023 elapsed time 00:02:07 Sat Apr 08 11:29:27 2023 Sat Apr 08 11:29:27 2023 Sat Apr 08 11:29:27 2023 Msieve v. 1.54 (SVN Unversioned directory) Sat Apr 08 11:29:27 2023 random seeds: 2708fe78 ce2aa99f Sat Apr 08 11:29:27 2023 factoring 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693 (115 digits) Sat Apr 08 11:29:27 2023 searching for 15-digit factors Sat Apr 08 11:29:27 2023 commencing number field sieve (115-digit input) Sat Apr 08 11:29:27 2023 R0: -20953995449531555061949 Sat Apr 08 11:29:27 2023 R1: 22397965524917 Sat Apr 08 11:29:27 2023 A0: 337659774776387473313883252834 Sat Apr 08 11:29:27 2023 A1: 9013262813854628901615933 Sat Apr 08 11:29:27 2023 A2: -15535508006519110651 Sat Apr 08 11:29:27 2023 A3: -283778894951453 Sat Apr 08 11:29:27 2023 A4: 226770642 Sat Apr 08 11:29:27 2023 A5: 720 Sat Apr 08 11:29:27 2023 skew 308428.61, size 5.859e-011, alpha -7.261, combined = 5.826e-010 rroots = 5 Sat Apr 08 11:29:27 2023 Sat Apr 08 11:29:27 2023 commencing linear algebra Sat Apr 08 11:29:27 2023 read 431928 cycles Sat Apr 08 11:29:28 2023 cycles contain 1584577 unique relations Sat Apr 08 11:29:35 2023 read 1584577 relations Sat Apr 08 11:29:36 2023 using 20 quadratic characters above 4294917295 Sat Apr 08 11:29:41 2023 building initial matrix Sat Apr 08 11:29:52 2023 memory use: 201.9 MB Sat Apr 08 11:29:52 2023 read 431928 cycles Sat Apr 08 11:29:52 2023 matrix is 431751 x 431928 (159.7 MB) with weight 50224466 (116.28/col) Sat Apr 08 11:29:52 2023 sparse part has weight 36669944 (84.90/col) Sat Apr 08 11:29:55 2023 filtering completed in 2 passes Sat Apr 08 11:29:55 2023 matrix is 431601 x 431777 (159.6 MB) with weight 50216662 (116.30/col) Sat Apr 08 11:29:55 2023 sparse part has weight 36667239 (84.92/col) Sat Apr 08 11:29:55 2023 matrix starts at (0, 0) Sat Apr 08 11:29:55 2023 matrix is 431601 x 431777 (159.6 MB) with weight 50216662 (116.30/col) Sat Apr 08 11:29:55 2023 sparse part has weight 36667239 (84.92/col) Sat Apr 08 11:29:55 2023 saving the first 112 matrix rows for later Sat Apr 08 11:29:55 2023 matrix includes 128 packed rows Sat Apr 08 11:29:56 2023 matrix is 431489 x 431777 (142.7 MB) with weight 35969631 (83.31/col) Sat Apr 08 11:29:56 2023 sparse part has weight 32228255 (74.64/col) Sat Apr 08 11:29:56 2023 using block size 8192 and superblock size 393216 for processor cache size 8192 kB Sat Apr 08 11:29:57 2023 commencing Lanczos iteration (10 threads) Sat Apr 08 11:29:57 2023 memory use: 158.6 MB Sat Apr 08 11:30:02 2023 linear algebra at 2.8%, ETA 0h 2m Sat Apr 08 11:32:33 2023 lanczos halted after 3393 iterations (dim = 431489) Sat Apr 08 11:32:33 2023 recovered 29 nontrivial dependencies Sat Apr 08 11:32:33 2023 BLanczosTime: 186 Sat Apr 08 11:32:33 2023 elapsed time 00:03:06 Sat Apr 08 11:32:33 2023 Sat Apr 08 11:32:33 2023 Sat Apr 08 11:32:33 2023 Msieve v. 1.54 (SVN Unversioned directory) Sat Apr 08 11:32:33 2023 random seeds: 73bc2618 5db7ce5b Sat Apr 08 11:32:33 2023 factoring 2909462163466734197955496223126343014951035617551527973709649738798542886035623139526629982433062735917907645691693 (115 digits) Sat Apr 08 11:32:34 2023 searching for 15-digit factors Sat Apr 08 11:32:34 2023 commencing number field sieve (115-digit input) Sat Apr 08 11:32:34 2023 R0: -20953995449531555061949 Sat Apr 08 11:32:34 2023 R1: 22397965524917 Sat Apr 08 11:32:34 2023 A0: 337659774776387473313883252834 Sat Apr 08 11:32:34 2023 A1: 9013262813854628901615933 Sat Apr 08 11:32:34 2023 A2: -15535508006519110651 Sat Apr 08 11:32:34 2023 A3: -283778894951453 Sat Apr 08 11:32:34 2023 A4: 226770642 Sat Apr 08 11:32:34 2023 A5: 720 Sat Apr 08 11:32:34 2023 skew 308428.61, size 5.859e-011, alpha -7.261, combined = 5.826e-010 rroots = 5 Sat Apr 08 11:32:34 2023 Sat Apr 08 11:32:34 2023 commencing square root phase Sat Apr 08 11:32:34 2023 reading relations for dependency 1 Sat Apr 08 11:32:34 2023 read 215538 cycles Sat Apr 08 11:32:34 2023 cycles contain 790528 unique relations Sat Apr 08 11:32:38 2023 read 790528 relations Sat Apr 08 11:32:40 2023 multiplying 790528 relations Sat Apr 08 11:32:57 2023 multiply complete, coefficients have about 31.17 million bits Sat Apr 08 11:32:57 2023 initial square root is modulo 891590159 Sat Apr 08 11:33:17 2023 GCD is N, no factor found Sat Apr 08 11:33:17 2023 reading relations for dependency 2 Sat Apr 08 11:33:17 2023 read 216353 cycles Sat Apr 08 11:33:18 2023 cycles contain 793084 unique relations Sat Apr 08 11:33:21 2023 read 793084 relations Sat Apr 08 11:33:23 2023 multiplying 793084 relations Sat Apr 08 11:33:40 2023 multiply complete, coefficients have about 31.27 million bits Sat Apr 08 11:33:41 2023 initial square root is modulo 952276813 Sat Apr 08 11:33:59 2023 sqrtTime: 85 Sat Apr 08 11:33:59 2023 p53 factor: 30360136424273035486892211047303700114650715168978967 Sat Apr 08 11:33:59 2023 p62 factor: 95831656446069491317317953571398295714994331795916577607749979 Sat Apr 08 11:33:59 2023 elapsed time 00:01:26 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:32:16 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 16 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:24:02 UTC 2023 年 4 月 6 日 (木) 18 時 24 分 2 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 13, 2023 01:58:56 UTC 2023 年 12 月 13 日 (水) 10 時 58 分 56 秒 (日本時間) |
composite number 合成数 | 5524919321188619337699536443759638949468798383802042009071314742132538399062037203570771066337470748384979671953512285821356635433015458761663<142> |
prime factors 素因数 | 99991582163034588522089113724600924132642674541957630297055009959003<68> 55253844390424101433290667144753785663351512398827110997402998835497274221<74> |
factorization results 素因数分解の結果 | 5524919321188619337699536443759638949468798383802042009071314742132538399062037203570771066337470748384979671953512285821356635433015458761663= 99991582163034588522089113724600924132642674541957630297055009959003*55253844390424101433290667144753785663351512398827110997402998835497274221 cado polynomial n: 5524919321188619337699536443759638949468798383802042009071314742132538399062037203570771066337470748384979671953512285821356635433015458761663 skew: 460153.332 c0: 1753392010801225308602753829550040 c1: -25559951625347139207480986406 c2: -83085194465933032564999 c3: 236560086285164811 c4: 163473557534 c5: 67320 Y0: -2716052346252263133618373023 Y1: 116482614630937244869 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.043e-07 # f(x) = 67320*x^5+163473557534*x^4+236560086285164811*x^3-83085194465933032564999*x^2-25559951625347139207480986406*x+1753392010801225308602753829550040 # g(x) = 116482614630937244869*x-2716052346252263133618373023 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 55253844390424101433290667144753785663351512398827110997402998835497274221 99991582163034588522089113724600924132642674541957630297055009959003 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2738.96/143.237 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Singleton removal: Total cpu/real time for purge: 405.33/276.024 Info:Filtering - Merging: Merged matrix has 2140631 rows and total weight 364879976 (170.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 451.43/27.6939 Info:Filtering - Merging: Total cpu/real time for replay: 41.38/35.6497 Info:Generate Free Relations: Total cpu/real time for freerel: 227.19/12.2037 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 616.06/377.018 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 250.19999999999996s Info:Linear Algebra: Total cpu/real time for bwc: 60080.5/7431.7 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 38815.95, WCT time 4833.89, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.03, comm-wait 0.0 (67072 iterations) Info:Linear Algebra: Lingen CPU time 442.64, WCT time 27.3 Info:Linear Algebra: Mksol: CPU time 20408.84, WCT time 2521.0, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.03, comm-wait 0.0 (33792 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 34971394 Info:Lattice Sieving: Average J: 3810.39 for 1268158 special-q, max bucket fill -bkmult 1.0,1s:1.169850 Info:Lattice Sieving: Total time: 364238s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5726.21 Info:Polynomial Selection (root optimized): Rootsieve time: 5724.73 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48180/42.150/51.045/55.930/0.921 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39540/41.340/45.656/51.760/1.135 Info:Polynomial Selection (size optimized): Total time: 16259.8 Info:Square Root: Total cpu/real time for sqrt: 2738.96/143.237 Info:Generate Factor Base: Total cpu/real time for makefb: 4.86/0.335294 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 150.68/112.888 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 112.3s Info:Quadratic Characters: Total cpu/real time for characters: 60.23/11.9004 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 777035/39384.9 Info:root: Cleaning up computation data in /tmp/cado.lrkk_yea 55253844390424101433290667144753785663351512398827110997402998835497274221 99991582163034588522089113724600924132642674541957630297055009959003 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 23, 2023 16:20:15 UTC 2023 年 2 月 24 日 (金) 1 時 20 分 15 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 3, 2023 14:31:50 UTC 2023 年 3 月 3 日 (金) 23 時 31 分 50 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | April 6, 2023 08:17:08 UTC 2023 年 4 月 6 日 (木) 17 時 17 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:23 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:08:45 UTC 2024 年 9 月 21 日 (土) 16 時 8 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:27 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:08:57 UTC 2024 年 9 月 21 日 (土) 16 時 8 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:32:30 UTC 2023 年 3 月 8 日 (水) 0 時 32 分 30 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:20:17 UTC 2024 年 9 月 21 日 (土) 16 時 20 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:33:41 UTC 2023 年 3 月 8 日 (水) 0 時 33 分 41 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:34:16 UTC 2024 年 9 月 21 日 (土) 16 時 34 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:33:46 UTC 2023 年 3 月 8 日 (水) 0 時 33 分 46 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:44:04 UTC 2024 年 9 月 21 日 (土) 16 時 44 分 4 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:41:05 UTC 2023 年 3 月 5 日 (日) 16 時 41 分 5 秒 (日本時間) |
composite number 合成数 | 2834765630677821918560118897441874079446580558847156101330543279945290700688520732541916463639059146627536037160375316092152216830539918774763822452355879572157863049955259369111654709187762182589<196> |
prime factors 素因数 | 32098922710278669565319030560580017849<38> |
composite cofactor 合成数の残り | 88313419620468367310593952100235898307868602092943388632786125849521529271771563391451093546107395095254720519609423154253413399184009992277700033632629076261<158> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 09:14:51 2023 Input number is 2834765630677821918560118897441874079446580558847156101330543279945290700688520732541916463639059146627536037160375316092152216830539918774763822452355879572157863049955259369111654709187762182589 (196 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:919335887 Step 1 took 0ms Step 2 took 4972ms ********** Factor found in step 2: 32098922710278669565319030560580017849 Found prime factor of 38 digits: 32098922710278669565319030560580017849 Composite cofactor 88313419620468367310593952100235898307868602092943388632786125849521529271771563391451093546107395095254720519609423154253413399184009992277700033632629076261 has 158 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 8, 2023 07:47:19 UTC 2023 年 3 月 8 日 (水) 16 時 47 分 19 秒 (日本時間) |
composite number 合成数 | 88313419620468367310593952100235898307868602092943388632786125849521529271771563391451093546107395095254720519609423154253413399184009992277700033632629076261<158> |
prime factors 素因数 | 341917668727287032681180570903497986548429293<45> 258288552180399325312996270161921050148578304052273723006077978667352686330335261226450029902062840530332293149977<114> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1381154637 Step 1 took 23781ms Step 2 took 10266ms ********** Factor found in step 2: 341917668727287032681180570903497986548429293 Found prime factor of 45 digits: 341917668727287032681180570903497986548429293 Prime cofactor 258288552180399325312996270161921050148578304052273723006077978667352686330335261226450029902062840530332293149977 has 114 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:33:52 UTC 2023 年 3 月 8 日 (水) 0 時 33 分 52 秒 (日本時間) |
2350 | Ignacio Santos | March 8, 2023 07:27:34 UTC 2023 年 3 月 8 日 (水) 16 時 27 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:33:56 UTC 2023 年 3 月 8 日 (水) 0 時 33 分 56 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 07:55:01 UTC 2024 年 9 月 21 日 (土) 16 時 55 分 1 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 3, 2023 16:59:03 UTC 2023 年 3 月 4 日 (土) 1 時 59 分 3 秒 (日本時間) |
composite number 合成数 | 2640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510467<232> |
prime factors 素因数 | 84230232870880236424248837107016956377109<41> |
composite cofactor 合成数の残り | 31353371364708130905484232413862937159621534278857196696799368119909325208267075071242596544652754825947699388744415194210922163406264316391548101390059029582430824770878596630447432558201463<191> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @fb95df2ef6c7 with GMP-ECM 7.0.5-dev on Fri Mar 3 08:54:23 2023 Input number is 2640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510466988727858293075684380032206119162640901771336553945249597423510467 (232 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2289499136 Step 1 took 0ms Step 2 took 6004ms ********** Factor found in step 2: 84230232870880236424248837107016956377109 Found prime factor of 41 digits: 84230232870880236424248837107016956377109 Composite cofactor 31353371364708130905484232413862937159621534278857196696799368119909325208267075071242596544652754825947699388744415194210922163406264316391548101390059029582430824770878596630447432558201463 has 191 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:01 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 1 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 08:06:38 UTC 2024 年 9 月 21 日 (土) 17 時 6 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:04 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 4 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 08:20:55 UTC 2024 年 9 月 21 日 (土) 17 時 20 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:08 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 8 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 08:50:38 UTC 2024 年 9 月 21 日 (土) 17 時 50 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:11 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 11 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 08:50:48 UTC 2024 年 9 月 21 日 (土) 17 時 50 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:16 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 16 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 08:52:12 UTC 2024 年 9 月 21 日 (土) 17 時 52 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:20 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 20 秒 (日本時間) |
2350 | Ignacio Santos | September 21, 2024 09:04:28 UTC 2024 年 9 月 21 日 (土) 18 時 4 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:34:23 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 23 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:25:03 UTC 2023 年 4 月 6 日 (木) 18 時 25 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:41:31 UTC 2023 年 3 月 5 日 (日) 16 時 41 分 31 秒 (日本時間) |
composite number 合成数 | 22911649281355131625614247126194564090244674539938106931140124450736536232066285863448319071958760350308908713586605710710493561223597423808411778554774104408101887727171918593823531998989050717939526173<203> |
prime factors 素因数 | 4200659255411939364670117370468643607187<40> |
composite cofactor 合成数の残り | 5454298453709807363528186363868506932196771714270170503598414171587673167086956611538753096157127339491574649056837896103302145450508807368127145539855366921883279<163> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 09:26:43 2023 Input number is 22911649281355131625614247126194564090244674539938106931140124450736536232066285863448319071958760350308908713586605710710493561223597423808411778554774104408101887727171918593823531998989050717939526173 (203 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3243793374 Step 1 took 0ms Step 2 took 5130ms ********** Factor found in step 2: 4200659255411939364670117370468643607187 Found prime factor of 40 digits: 4200659255411939364670117370468643607187 Composite cofactor 5454298453709807363528186363868506932196771714270170503598414171587673167086956611538753096157127339491574649056837896103302145450508807368127145539855366921883279 has 163 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:27 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 27 秒 (日本時間) |
2350 | Ignacio Santos | March 8, 2023 21:21:55 UTC 2023 年 3 月 9 日 (木) 6 時 21 分 55 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 8, 2023 22:16:58 UTC 2023 年 3 月 9 日 (木) 7 時 16 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:42:34 UTC 2023 年 3 月 5 日 (日) 16 時 42 分 34 秒 (日本時間) |
composite number 合成数 | 41737103511111289062370650845377401966739232711206898058604450180927631203018843317724518004579434760676877420574917064393865018578046301258433073971904858391620061111008707868444021185431383306543747566235447<209> |
prime factors 素因数 | 6471169314859216256117073003828529829063<40> |
composite cofactor 合成数の残り | 6449700429762175375223649687673111759021528053750111608307742891863799716920933311182880341519286437434048078940305276911852162099047923138428990287818646843286714122769<169> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 11:28:53 2023 Input number is 41737103511111289062370650845377401966739232711206898058604450180927631203018843317724518004579434760676877420574917064393865018578046301258433073971904858391620061111008707868444021185431383306543747566235447 (209 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2134929775 Step 1 took 0ms Step 2 took 5143ms ********** Factor found in step 2: 6471169314859216256117073003828529829063 Found prime factor of 40 digits: 6471169314859216256117073003828529829063 Composite cofactor 6449700429762175375223649687673111759021528053750111608307742891863799716920933311182880341519286437434048078940305276911852162099047923138428990287818646843286714122769 has 169 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:34:31 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 31 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 6, 2023 09:24:52 UTC 2023 年 4 月 6 日 (木) 18 時 24 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:34 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 34 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 06:26:15 UTC 2024 年 9 月 19 日 (木) 15 時 26 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:38 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 38 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 06:36:20 UTC 2024 年 9 月 19 日 (木) 15 時 36 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:43 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 43 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 06:49:01 UTC 2024 年 9 月 19 日 (木) 15 時 49 分 1 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 19, 2024 06:49:34 UTC 2024 年 9 月 19 日 (木) 15 時 49 分 34 秒 (日本時間) |
composite number 合成数 | 753131005931272297351176572370217716467056449091648738297625104779592853090196753083685091548720135558636114742268482752256746618763372965111394770733868896176598543353116503307778310329387610382159280178343304324524569867<222> |
prime factors 素因数 | 652217982287568092266072987386583784903<39> |
composite cofactor 合成数の残り | 1154722847857958707579173341595752178448754984700346081550134449108544719871345004511178702220378232911351351759888963942092426795022964337413703893947203881322394156728414458713554589<184> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3346856967 Step 1 took 9719ms Step 2 took 4375ms ********** Factor found in step 2: 652217982287568092266072987386583784903 Found prime factor of 39 digits: 652217982287568092266072987386583784903 Composite cofactor 1154722847857958707579173341595752178448754984700346081550134449108544719871345004511178702220378232911351351759888963942092426795022964337413703893947203881322394156728414458713554589 has 184 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:47 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 47 秒 (日本時間) |
2350 | Ignacio Santos | September 27, 2024 15:29:07 UTC 2024 年 9 月 28 日 (土) 0 時 29 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:34:50 UTC 2023 年 3 月 8 日 (水) 0 時 34 分 50 秒 (日本時間) |
2350 | Ignacio Santos | September 19, 2024 06:58:00 UTC 2024 年 9 月 19 日 (木) 15 時 58 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | 1792 | Dmitry Domanov | March 7, 2023 15:35:33 UTC 2023 年 3 月 8 日 (水) 0 時 35 分 33 秒 (日本時間) |
409 | Thomas Kozlowski | October 3, 2024 07:06:20 UTC 2024 年 10 月 3 日 (木) 16 時 6 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 7, 2023 15:35:36 UTC 2023 年 3 月 8 日 (水) 0 時 35 分 36 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 07:09:39 UTC 2024 年 10 月 3 日 (木) 16 時 9 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 7, 2023 15:35:39 UTC 2023 年 3 月 8 日 (水) 0 時 35 分 39 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 07:12:57 UTC 2024 年 10 月 3 日 (木) 16 時 12 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 7, 2023 15:35:43 UTC 2023 年 3 月 8 日 (水) 0 時 35 分 43 秒 (日本時間) |
408 | Thomas Kozlowski | October 3, 2024 07:15:52 UTC 2024 年 10 月 3 日 (木) 16 時 15 分 52 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | June 17, 2024 20:38:13 UTC 2024 年 6 月 18 日 (火) 5 時 38 分 13 秒 (日本時間) |
composite number 合成数 | 208461282923568247180140061491952203445491989140772794613649316348491024609868388763115299818481393254774880403553910368032976920226215942201213855296232769878245522239<168> |
prime factors 素因数 | 941747599542934544225661475049760986117264032001<48> 221355788987136608324602005523017982434564020289324028935499378700109148180040017144437810745994791629234257552173874239<120> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @cab8e1e4ae81 with GMP-ECM 7.0.5-dev on Mon Jun 17 12:01:18 2024 Input number is 208461282923568247180140061491952203445491989140772794613649316348491024609868388763115299818481393254774880403553910368032976920226215942201213855296232769878245522239 (168 digits) Using B1=43000000-43000000, B2=240490660426, polynomial Dickson(12), sigma=3:257686660 Step 1 took 0ms Step 2 took 24187ms ********** Factor found in step 2: 941747599542934544225661475049760986117264032001 Found prime factor of 48 digits: 941747599542934544225661475049760986117264032001 Prime cofactor 221355788987136608324602005523017982434564020289324028935499378700109148180040017144437810745994791629234257552173874239 has 120 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | March 1, 2023 10:51:08 UTC 2023 年 3 月 1 日 (水) 19 時 51 分 8 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | March 10, 2023 13:24:58 UTC 2023 年 3 月 10 日 (金) 22 時 24 分 58 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | June 16, 2024 22:04:31 UTC 2024 年 6 月 17 日 (月) 7 時 4 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2202 | 1792 | Dmitry Domanov | March 7, 2023 15:37:20 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 20 秒 (日本時間) |
410 | Thomas Kozlowski | October 3, 2024 07:18:49 UTC 2024 年 10 月 3 日 (木) 16 時 18 分 49 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 3, 2023 09:29:05 UTC 2023 年 3 月 3 日 (金) 18 時 29 分 5 秒 (日本時間) |
composite number 合成数 | 20292218453888088566205861810058872650680894711440253453232429727201747928311865001221535809189834415930110711814657355997031741244145307676173481714178735117046806639493466067605836592624515370293150250906209220461995769294008744598973039898838311<248> |
prime factors 素因数 | 31699641342528208164416194482990959771<38> 640140316876836960159306103892434383612269447031057607998857490049326424846016006831314216547713507613092555961611254604897009094469026918371324437082837031163259204675193193308355064766537661770345213051888741<210> |
factorization results 素因数分解の結果 | GPU: factor 31699641342528208164416194482990959771 found in Step 1 with curve 344 (-sigma 3:-1203578401) Computing 1792 Step 1 took 305ms of CPU time / 267690ms of GPU time Throughput: 6.694 curves per second (on average 149.38ms per Step 1) ********** Factor found in step 1: 31699641342528208164416194482990959771 Found prime factor of 38 digits: 31699641342528208164416194482990959771 Prime cofactor 640140316876836960159306103892434383612269447031057607998857490049326424846016006831314216547713507613092555961611254604897009094469026918371324437082837031163259204675193193308355064766537661770345213051888741 has 210 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 7, 2023 15:37:23 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 23 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 07:22:31 UTC 2024 年 10 月 3 日 (木) 16 時 22 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 7, 2023 15:37:26 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 26 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 07:25:24 UTC 2024 年 10 月 3 日 (木) 16 時 25 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2199 | 1792 | Dmitry Domanov | March 7, 2023 15:37:30 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 30 秒 (日本時間) |
407 | Thomas Kozlowski | October 3, 2024 07:28:43 UTC 2024 年 10 月 3 日 (木) 16 時 28 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 7, 2023 15:37:33 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 33 秒 (日本時間) |
401 | Thomas Kozlowski | October 3, 2024 07:32:24 UTC 2024 年 10 月 3 日 (木) 16 時 32 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2198 | 1792 | Dmitry Domanov | March 7, 2023 15:37:36 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 36 秒 (日本時間) |
406 | Thomas Kozlowski | October 3, 2024 07:36:06 UTC 2024 年 10 月 3 日 (木) 16 時 36 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 7, 2023 15:37:39 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 39 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 07:38:58 UTC 2024 年 10 月 3 日 (木) 16 時 38 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 7, 2023 15:37:43 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 43 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 07:41:32 UTC 2024 年 10 月 3 日 (木) 16 時 41 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:37:47 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 47 秒 (日本時間) |
2350 | Ignacio Santos | October 7, 2024 06:03:25 UTC 2024 年 10 月 7 日 (月) 15 時 3 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1792 | Dmitry Domanov | March 7, 2023 15:37:51 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 51 秒 (日本時間) |
408 | Thomas Kozlowski | October 3, 2024 07:49:28 UTC 2024 年 10 月 3 日 (木) 16 時 49 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2193 | 1792 | Dmitry Domanov | March 7, 2023 15:37:54 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 54 秒 (日本時間) |
401 | Thomas Kozlowski | October 3, 2024 07:53:06 UTC 2024 年 10 月 3 日 (木) 16 時 53 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2196 | 1792 | Dmitry Domanov | March 7, 2023 15:37:58 UTC 2023 年 3 月 8 日 (水) 0 時 37 分 58 秒 (日本時間) |
404 | Thomas Kozlowski | October 3, 2024 07:57:10 UTC 2024 年 10 月 3 日 (木) 16 時 57 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | March 7, 2023 15:38:02 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 2 秒 (日本時間) |
2350 | Ignacio Santos | August 27, 2023 07:32:11 UTC 2023 年 8 月 27 日 (日) 16 時 32 分 11 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | August 27, 2023 10:12:28 UTC 2023 年 8 月 27 日 (日) 19 時 12 分 28 秒 (日本時間) | |
50 | 43e6 | 1792 / 6385 | Dmitry Domanov | April 15, 2024 21:41:34 UTC 2024 年 4 月 16 日 (火) 6 時 41 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | March 7, 2023 15:38:32 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 32 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 08:00:30 UTC 2024 年 10 月 3 日 (木) 17 時 0 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2205 | 1792 | Dmitry Domanov | March 7, 2023 15:38:35 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 35 秒 (日本時間) |
413 | Thomas Kozlowski | October 3, 2024 08:04:36 UTC 2024 年 10 月 3 日 (木) 17 時 4 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | 1792 | Dmitry Domanov | March 7, 2023 15:38:39 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 39 秒 (日本時間) |
412 | Thomas Kozlowski | October 3, 2024 08:07:31 UTC 2024 年 10 月 3 日 (木) 17 時 7 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2194 | 1792 | Dmitry Domanov | March 7, 2023 15:38:42 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 42 秒 (日本時間) |
402 | Thomas Kozlowski | October 3, 2024 08:11:38 UTC 2024 年 10 月 3 日 (木) 17 時 11 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | 1792 | Dmitry Domanov | March 7, 2023 15:38:46 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 46 秒 (日本時間) |
411 | Thomas Kozlowski | October 3, 2024 08:14:58 UTC 2024 年 10 月 3 日 (木) 17 時 14 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2195 | 1792 | Dmitry Domanov | March 7, 2023 15:38:49 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 49 秒 (日本時間) |
403 | Thomas Kozlowski | October 3, 2024 08:19:02 UTC 2024 年 10 月 3 日 (木) 17 時 19 分 2 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | March 7, 2023 15:38:53 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 53 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | June 23, 2024 18:06:13 UTC 2024 年 6 月 24 日 (月) 3 時 6 分 13 秒 (日本時間) | |
50 | 43e6 | 1792 / 6675 | Dmitry Domanov | June 24, 2024 05:36:43 UTC 2024 年 6 月 24 日 (月) 14 時 36 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 7, 2023 15:38:57 UTC 2023 年 3 月 8 日 (水) 0 時 38 分 57 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 08:22:44 UTC 2024 年 10 月 3 日 (木) 17 時 22 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2197 | 1792 | Dmitry Domanov | March 7, 2023 15:39:00 UTC 2023 年 3 月 8 日 (水) 0 時 39 分 0 秒 (日本時間) |
405 | Thomas Kozlowski | October 3, 2024 08:26:24 UTC 2024 年 10 月 3 日 (木) 17 時 26 分 24 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 5, 2023 07:41:59 UTC 2023 年 3 月 5 日 (日) 16 時 41 分 59 秒 (日本時間) |
composite number 合成数 | 1724290119879316543492183954823787807118260356460808895729296451993955551995960220422462891783546745826371040933608183490885407902241096916775918896212689965205539248613909874106426080847969439484167621934290993868848258372335028078728021838141811482826167084756935676504622613291203<283> |
prime factors 素因数 | 2156644222018282159977742014732684431<37> |
composite cofactor 合成数の残り | 799524605067056585078318505557738312882706829102520074878171814843145276068660063771201890333947974366658310021503776682953986262609301339882437740908424248163907354267730231462259835894041264052349293407724353810176943731956678884415822118185613<246> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 09:46:00 2023 Input number is 1724290119879316543492183954823787807118260356460808895729296451993955551995960220422462891783546745826371040933608183490885407902241096916775918896212689965205539248613909874106426080847969439484167621934290993868848258372335028078728021838141811482826167084756935676504622613291203 (283 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:749821339 Step 1 took 0ms Step 2 took 7550ms ********** Factor found in step 2: 2156644222018282159977742014732684431 Found prime factor of 37 digits: 2156644222018282159977742014732684431 Composite cofactor 799524605067056585078318505557738312882706829102520074878171814843145276068660063771201890333947974366658310021503776682953986262609301339882437740908424248163907354267730231462259835894041264052349293407724353810176943731956678884415822118185613 has 246 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 7, 2023 14:42:39 UTC 2023 年 3 月 7 日 (火) 23 時 42 分 39 秒 (日本時間) |
composite number 合成数 | 799524605067056585078318505557738312882706829102520074878171814843145276068660063771201890333947974366658310021503776682953986262609301339882437740908424248163907354267730231462259835894041264052349293407724353810176943731956678884415822118185613<246> |
prime factors 素因数 | 2008398240299020584459937138836615991<37> |
composite cofactor 合成数の残り | 398090671971520588305905557460733406891030076458552451928110649430641084842523599923803156515510159378098765278783409752527468569462491860755451107105489696200592971136770269478303783649048977305236916700478043<210> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @846bf0a8b90a with GMP-ECM 7.0.5-dev on Sat Mar 4 09:46:00 2023 Input number is 799524605067056585078318505557738312882706829102520074878171814843145276068660063771201890333947974366658310021503776682953986262609301339882437740908424248163907354267730231462259835894041264052349293407724353810176943731956678884415822118185613 (246 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:749821545 Step 1 took 0ms Step 2 took 6311ms ********** Factor found in step 2: 2008398240299020584459937138836615991 Found prime factor of 37 digits: 2008398240299020584459937138836615991 Composite cofactor 398090671971520588305905557460733406891030076458552451928110649430641084842523599923803156515510159378098765278783409752527468569462491860755451107105489696200592971136770269478303783649048977305236916700478043 has 210 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2209 | 1792 | Dmitry Domanov | March 7, 2023 14:42:32 UTC 2023 年 3 月 7 日 (火) 23 時 42 分 32 秒 (日本時間) |
417 | Thomas Kozlowski | October 3, 2024 08:29:00 UTC 2024 年 10 月 3 日 (木) 17 時 29 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 20, 2023 17:02:12 UTC 2023 年 2 月 21 日 (火) 2 時 2 分 12 秒 (日本時間) |
composite number 合成数 | 448142959306051964726319581095537361493874507042131968961054857051846176438985898778693437444559524827457500331892657203014763422416871482696115318522174805473301089302755584539775819470883093497592901141052801221043505799290523239384889003882161782274052473094028982133230865208305739<285> |
prime factors 素因数 | 2072600473825986401226268664665714031490617<43> |
composite cofactor 合成数の残り | 216222549866925114272986412365676746835500513770309935571686997216026474724969672155637905827393141856975483332540156599905991847853775830831899225899799521379276477786574818196410336037618033484843442430472773450818515959588149337516982383267<243> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1fb4c068622 with GMP-ECM 7.0.5-dev on Mon Feb 20 13:54:58 2023 Input number is 448142959306051964726319581095537361493874507042131968961054857051846176438985898778693437444559524827457500331892657203014763422416871482696115318522174805473301089302755584539775819470883093497592901141052801221043505799290523239384889003882161782274052473094028982133230865208305739 (285 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:135578836 Step 1 took 0ms Step 2 took 7543ms ********** Factor found in step 2: 2072600473825986401226268664665714031490617 Found prime factor of 43 digits: 2072600473825986401226268664665714031490617 Composite cofactor 216222549866925114272986412365676746835500513770309935571686997216026474724969672155637905827393141856975483332540156599905991847853775830831899225899799521379276477786574818196410336037618033484843442430472773450818515959588149337516982383267 has 243 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | February 20, 2023 12:00:00 UTC 2023 年 2 月 20 日 (月) 21 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 08:57:59 UTC 2023 年 2 月 23 日 (木) 17 時 57 分 59 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | February 23, 2023 08:57:59 UTC 2023 年 2 月 23 日 (木) 17 時 57 分 59 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | February 23, 2023 08:57:59 UTC 2023 年 2 月 23 日 (木) 17 時 57 分 59 秒 (日本時間) |