name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 22:59:23 UTC 2022 年 12 月 25 日 (日) 7 時 59 分 23 秒 (日本時間) |
composite number 合成数 | 1799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<121> |
prime factors 素因数 | 41256075385418382110064499382049757346206071082739<50> 43629937728788305455803763118843740463878608982890426400891644007974341<71> |
factorization results 素因数分解の結果 | N=1799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 121 digits) SNFS difficulty: 120 digits. Divisors found: r1=41256075385418382110064499382049757346206071082739 (pp50) r2=43629937728788305455803763118843740463878608982890426400891644007974341 (pp71) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 1000000000000000000000000000000 deg: 4 c4: 9 c0: -5 skew: 0.86 # Murphy_E = 4.37e-08 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63058 x 63283 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120.000,4,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 21:33:23 UTC 2022 年 12 月 26 日 (月) 6 時 33 分 23 秒 (日本時間) |
composite number 合成数 | 30584155164700918293424095094651407073056277178801669923706414897614674710866903449114698091001303248331083377<110> |
prime factors 素因数 | 169105095994067541553756168613379242858239<42> 180858861673653264564765121961307771707002809601863172899305246476943<69> |
factorization results 素因数分解の結果 | N=30584155164700918293424095094651407073056277178801669923706414897614674710866903449114698091001303248331083377 ( 110 digits) SNFS difficulty: 129 digits. Divisors found: r1=169105095994067541553756168613379242858239 (pp42) r2=180858861673653264564765121961307771707002809601863172899305246476943 (pp69) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 30584155164700918293424095094651407073056277178801669923706414897614674710866903449114698091001303248331083377 m: 100000000000000000000000000000000 deg: 4 c4: 18 c0: -1 skew: 0.49 # Murphy_E = 1.763e-08 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 103656 x 103882 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129.000,4,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,100000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 1, 2023 00:37:48 UTC 2023 年 1 月 1 日 (日) 9 時 37 分 48 秒 (日本時間) |
composite number 合成数 | 1398601795968091374976692215572460576724910763645953847633186196145229012971694353621113150128488438328509<106> |
prime factors 素因数 | 6645917382366332780889676783246737889384183181<46> 210445257667363277268974399514973644594278502810717099413489<60> |
factorization results 素因数分解の結果 | N=1398601795968091374976692215572460576724910763645953847633186196145229012971694353621113150128488438328509 ( 106 digits) SNFS difficulty: 134 digits. Divisors found: r1=6645917382366332780889676783246737889384183181 (pp46) r2=210445257667363277268974399514973644594278502810717099413489 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 1398601795968091374976692215572460576724910763645953847633186196145229012971694353621113150128488438328509 m: 1000000000000000000000000000000000 deg: 4 c4: 180 c0: -1 skew: 0.27 # Murphy_E = 9.169e-09 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1305001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 158443 x 158668 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134.000,4,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 7, 2023 10:56:45 UTC 2023 年 1 月 7 日 (土) 19 時 56 分 45 秒 (日本時間) |
composite number 合成数 | 4888766318899854686800637452474626029936784373744619497416844859759232398681968666961210733244552757459<103> |
prime factors 素因数 | 150569480546565449706635708948739770216712612259<48> 32468507569752450799694489860957554277751074807168982801<56> |
factorization results 素因数分解の結果 | 150569480546565449706635708948739770216712612259 |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | December 24, 2022 00:47:11 UTC 2022 年 12 月 24 日 (土) 9 時 47 分 11 秒 (日本時間) |
composite number 合成数 | 6000731714938163442688074509357772521439301643494593467195009278948183219023213072752418901510224408329<103> |
prime factors 素因数 | 57890216156001415511307331824511<32> 103657096369574949957733548584333755071670036947785351060311890439768439<72> |
factorization results 素因数分解の結果 | p32:57890216156001415511307331824511 p72:103657096369574949957733548584333755071670036947785351060311890439768439 |
software ソフトウェア | ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 9, 2023 08:45:06 UTC 2023 年 1 月 9 日 (月) 17 時 45 分 6 秒 (日本時間) |
composite number 合成数 | 160475985575966173816240072982513680190396819760206355131761557380351540290949162627935655755777610101454773134830077134007<123> |
prime factors 素因数 | 28872825890976559260500056514592385264923687889<47> 5558028375259198771009477355497122856640840360586750521923504150356920173063<76> |
factorization results 素因数分解の結果 | 160475985575966173816240072982513680190396819760206355131761557380351540290949162627935655755777610101454773134830077134007=28872825890976559260500056514592385264923687889*5558028375259198771009477355497122856640840360586750521923504150356920173063 cado polynomial n: 160475985575966173816240072982513680190396819760206355131761557380351540290949162627935655755777610101454773134830077134007 skew: 0.49 type: snfs c0: -1 c4: 18 Y0: 1000000000000000000000000000000000000 Y1: -1 # f(x) = 18*x^4-1 # g(x) = -x+1000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 1850000 tasks.lim1 = 1850000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 49 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 28872825890976559260500056514592385264923687889 5558028375259198771009477355497122856640840360586750521923504150356920173063 Info:Square Root: Total cpu/real time for sqrt: 62.32/13.1389 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 1.2/0.293864 Info:Generate Free Relations: Total cpu/real time for freerel: 30.39/4.07463 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6078183 Info:Lattice Sieving: Average J: 1896.65 for 127557 special-q, max bucket fill -bkmult 1.0,1s:1.106250 Info:Lattice Sieving: Total time: 11319.6s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 13.8/9.93684 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 9.9s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 58.53/19.0631 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 17.6s Info:Filtering - Singleton removal: Total cpu/real time for purge: 42.95/16.951 Info:Filtering - Merging: Merged matrix has 224085 rows and total weight 38152414 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 47.78/6.76177 Info:Filtering - Merging: Total cpu/real time for replay: 6.55/5.41748 Info:Linear Algebra: Total cpu/real time for bwc: 488.85/130.32 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 76.12, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (7040 iterations) Info:Linear Algebra: Lingen CPU time 19.23, WCT time 5.25 Info:Linear Algebra: Mksol: WCT time 44.48, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (3584 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 7.88/2.00087 Info:Square Root: Total cpu/real time for sqrt: 62.32/13.1389 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 30710.7/5990.88 Info:root: Cleaning up computation data in /tmp/cado.uacgxzz6 28872825890976559260500056514592385264923687889 5558028375259198771009477355497122856640840360586750521923504150356920173063 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 23, 2022 13:47:29 UTC 2022 年 12 月 23 日 (金) 22 時 47 分 29 秒 (日本時間) |
composite number 合成数 | 179999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<147> |
prime factors 素因数 | 1579792452785756610191352734572315013148500230986731<52> 113939017547902339137791501997722247389491266394391617666785260771999356045500473823243552000829<96> |
factorization results 素因数分解の結果 | Number: n N=179999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 147 digits) SNFS difficulty: 146 digits. Divisors found: Sat Dec 24 00:43:56 2022 p52 factor: 1579792452785756610191352734572315013148500230986731 Sat Dec 24 00:43:56 2022 p96 factor: 113939017547902339137791501997722247389491266394391617666785260771999356045500473823243552000829 Sat Dec 24 00:43:56 2022 elapsed time 00:03:09 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.290). Factorization parameters were as follows: # # N = 9x10^146-5 = 89(145)5 # n: 179999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 100000000000000000000000000000 deg: 5 c5: 18 c0: -1 skew: 0.56 # Murphy_E = 2.648e-09 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6560000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 744380 hash collisions in 7653914 relations (7415414 unique) Msieve: matrix is 280910 x 281136 (93.1 MB) Sieving start time : 2022/12/24 00:26:12 Sieving end time : 2022/12/24 00:40:29 Total sieving time: 0hrs 14min 17secs. Total relation processing time: 0hrs 1min 14sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 10sec. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 09:58:32 UTC 2022 年 12 月 25 日 (日) 18 時 58 分 32 秒 (日本時間) |
composite number 合成数 | 1691195739047336752261677897547709825202543043388976561055757617443372100547963700686672235279660814882004225031872827895603947203250783<136> |
prime factors 素因数 | 10929171088043259688638126000017685001<38> 67224367387601629019596087928470063442198161<44> 2301865411792360618475411349194366741681972530733173303<55> |
factorization results 素因数分解の結果 | Number: n N=1691195739047336752261677897547709825202543043388976561055757617443372100547963700686672235279660814882004225031872827895603947203250783 ( 136 digits) SNFS difficulty: 147 digits. Divisors found: Sun Dec 25 20:46:13 2022 found factor: 67224367387601629019596087928470063442198161 Sun Dec 25 20:47:00 2022 p38 factor: 10929171088043259688638126000017685001 Sun Dec 25 20:47:00 2022 p44 factor: 67224367387601629019596087928470063442198161 Sun Dec 25 20:47:00 2022 p55 factor: 2301865411792360618475411349194366741681972530733173303 Sun Dec 25 20:47:00 2022 elapsed time 00:04:10 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.311). Factorization parameters were as follows: # # N = 9x10^147-5 = 89(146)5 # n: 1691195739047336752261677897547709825202543043388976561055757617443372100547963700686672235279660814882004225031872827895603947203250783 m: 100000000000000000000000000000 deg: 5 c5: 180 c0: -1 skew: 0.35 # Murphy_E = 2.305e-09 type: snfs lss: 1 rlim: 1990000 alim: 1990000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1990000/1990000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6595000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 938618 hash collisions in 8297870 relations (7887386 unique) Msieve: matrix is 261836 x 262084 (86.0 MB) Sieving start time : 2022/12/25 20:31:43 Sieving end time : 2022/12/25 20:42:35 Total sieving time: 0hrs 10min 52secs. Total relation processing time: 0hrs 1min 0sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 59sec. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1990000,1990000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 02:30:12 UTC 2022 年 12 月 25 日 (日) 11 時 30 分 12 秒 (日本時間) |
composite number 合成数 | 13784030281982970596366070149993222851778025039456786682176253332097875804355600413214596675445051877729525163130169489967906182826782983461461<143> |
prime factors 素因数 | 608032195981726027851790228652625012239609<42> 22669901977357198620618670693083432669703204241394449784962369537985640826177082924006978347837799229<101> |
factorization results 素因数分解の結果 | Number: n N=13784030281982970596366070149993222851778025039456786682176253332097875804355600413214596675445051877729525163130169489967906182826782983461461 ( 143 digits) SNFS difficulty: 148 digits. Divisors found: Sun Dec 25 13:26:33 2022 p42 factor: 608032195981726027851790228652625012239609 Sun Dec 25 13:26:33 2022 p101 factor: 22669901977357198620618670693083432669703204241394449784962369537985640826177082924006978347837799229 Sun Dec 25 13:26:33 2022 elapsed time 00:03:19 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 9x10^148-5 = 89(147)5 # n: 13784030281982970596366070149993222851778025039456786682176253332097875804355600413214596675445051877729525163130169489967906182826782983461461 m: 10000000000000000000000000000000000000 deg: 4 c4: 9 c0: -5 skew: 0.86 # Murphy_E = 1.812e-09 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 539150 hash collisions in 6257202 relations (6400792 unique) Msieve: matrix is 306414 x 306640 (105.4 MB) Sieving start time : 2022/12/25 13:06:50 Sieving end time : 2022/12/25 13:22:55 Total sieving time: 0hrs 16min 5secs. Total relation processing time: 0hrs 1min 39sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 11sec. Prototype def-par.txt line would be: snfs,148,4,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 27, 2023 03:49:33 UTC 2023 年 1 月 27 日 (金) 12 時 49 分 33 秒 (日本時間) |
composite number 合成数 | 4367351866750397747320804872096469864484574258672103242968199581133380756777640392030089485119276861105818468515850539823<121> |
prime factors 素因数 | 7475988544203894142666518830145116228594019769<46> 584183862900163117135343878983108529997849282840064980751935285981465033767<75> |
factorization results 素因数分解の結果 | Fri Jan 27 11:42:30 2023 Msieve v. 1.53 (SVN unknown) Fri Jan 27 11:42:30 2023 random seeds: 1a273254 071d9d53 Fri Jan 27 11:42:30 2023 factoring 4367351866750397747320804872096469864484574258672103242968199581133380756777640392030089485119276861105818468515850539823 (121 digits) Fri Jan 27 11:42:30 2023 searching for 15-digit factors Fri Jan 27 11:42:30 2023 commencing number field sieve (121-digit input) Fri Jan 27 11:42:30 2023 R0: -10000000000000000000000000000000000000 Fri Jan 27 11:42:30 2023 R1: 1 Fri Jan 27 11:42:30 2023 A0: -1 Fri Jan 27 11:42:30 2023 A1: 0 Fri Jan 27 11:42:30 2023 A2: 0 Fri Jan 27 11:42:30 2023 A3: 0 Fri Jan 27 11:42:30 2023 A4: 18 Fri Jan 27 11:42:30 2023 skew 0.80, size 2.508e-15, alpha 1.041, combined = 1.787e-09 rroots = 2 Fri Jan 27 11:42:30 2023 Fri Jan 27 11:42:30 2023 commencing relation filtering Fri Jan 27 11:42:30 2023 estimated available RAM is 15734.8 MB Fri Jan 27 11:42:30 2023 commencing duplicate removal, pass 1 Fri Jan 27 11:43:03 2023 found 491862 hash collisions in 5687631 relations Fri Jan 27 11:43:06 2023 added 701708 free relations Fri Jan 27 11:43:06 2023 commencing duplicate removal, pass 2 Fri Jan 27 11:43:07 2023 found 314928 duplicates and 6074411 unique relations Fri Jan 27 11:43:07 2023 memory use: 24.6 MB Fri Jan 27 11:43:07 2023 reading ideals above 100000 Fri Jan 27 11:43:07 2023 commencing singleton removal, initial pass Fri Jan 27 11:43:44 2023 memory use: 188.3 MB Fri Jan 27 11:43:44 2023 reading all ideals from disk Fri Jan 27 11:43:44 2023 memory use: 203.4 MB Fri Jan 27 11:43:44 2023 keeping 7675506 ideals with weight <= 200, target excess is 30216 Fri Jan 27 11:43:44 2023 commencing in-memory singleton removal Fri Jan 27 11:43:45 2023 begin with 6074411 relations and 7675506 unique ideals Fri Jan 27 11:43:47 2023 reduce to 1921507 relations and 1793963 ideals in 14 passes Fri Jan 27 11:43:47 2023 max relations containing the same ideal: 93 Fri Jan 27 11:43:48 2023 removing 290609 relations and 244362 ideals in 46247 cliques Fri Jan 27 11:43:48 2023 commencing in-memory singleton removal Fri Jan 27 11:43:48 2023 begin with 1630898 relations and 1793963 unique ideals Fri Jan 27 11:43:48 2023 reduce to 1594406 relations and 1511925 ideals in 7 passes Fri Jan 27 11:43:48 2023 max relations containing the same ideal: 84 Fri Jan 27 11:43:49 2023 removing 224887 relations and 178640 ideals in 46247 cliques Fri Jan 27 11:43:49 2023 commencing in-memory singleton removal Fri Jan 27 11:43:49 2023 begin with 1369519 relations and 1511925 unique ideals Fri Jan 27 11:43:49 2023 reduce to 1343464 relations and 1306479 ideals in 8 passes Fri Jan 27 11:43:49 2023 max relations containing the same ideal: 73 Fri Jan 27 11:43:50 2023 relations with 0 large ideals: 1315 Fri Jan 27 11:43:50 2023 relations with 1 large ideals: 170 Fri Jan 27 11:43:50 2023 relations with 2 large ideals: 2180 Fri Jan 27 11:43:50 2023 relations with 3 large ideals: 19237 Fri Jan 27 11:43:50 2023 relations with 4 large ideals: 89503 Fri Jan 27 11:43:50 2023 relations with 5 large ideals: 274346 Fri Jan 27 11:43:50 2023 relations with 6 large ideals: 368878 Fri Jan 27 11:43:50 2023 relations with 7+ large ideals: 587835 Fri Jan 27 11:43:50 2023 commencing 2-way merge Fri Jan 27 11:43:51 2023 reduce to 821822 relation sets and 784836 unique ideals Fri Jan 27 11:43:51 2023 commencing full merge Fri Jan 27 11:44:02 2023 memory use: 99.9 MB Fri Jan 27 11:44:02 2023 found 408694 cycles, need 403036 Fri Jan 27 11:44:02 2023 weight of 403036 cycles is about 28216266 (70.01/cycle) Fri Jan 27 11:44:02 2023 distribution of cycle lengths: Fri Jan 27 11:44:02 2023 1 relations: 39811 Fri Jan 27 11:44:02 2023 2 relations: 41727 Fri Jan 27 11:44:02 2023 3 relations: 42443 Fri Jan 27 11:44:02 2023 4 relations: 40409 Fri Jan 27 11:44:02 2023 5 relations: 36908 Fri Jan 27 11:44:02 2023 6 relations: 33273 Fri Jan 27 11:44:02 2023 7 relations: 29293 Fri Jan 27 11:44:02 2023 8 relations: 25710 Fri Jan 27 11:44:02 2023 9 relations: 22075 Fri Jan 27 11:44:02 2023 10+ relations: 91387 Fri Jan 27 11:44:02 2023 heaviest cycle: 24 relations Fri Jan 27 11:44:02 2023 commencing cycle optimization Fri Jan 27 11:44:02 2023 start with 2600069 relations Fri Jan 27 11:44:06 2023 pruned 73337 relations Fri Jan 27 11:44:06 2023 memory use: 81.1 MB Fri Jan 27 11:44:06 2023 distribution of cycle lengths: Fri Jan 27 11:44:06 2023 1 relations: 39811 Fri Jan 27 11:44:06 2023 2 relations: 42542 Fri Jan 27 11:44:06 2023 3 relations: 43942 Fri Jan 27 11:44:06 2023 4 relations: 41525 Fri Jan 27 11:44:06 2023 5 relations: 37979 Fri Jan 27 11:44:06 2023 6 relations: 34108 Fri Jan 27 11:44:06 2023 7 relations: 29833 Fri Jan 27 11:44:06 2023 8 relations: 26029 Fri Jan 27 11:44:06 2023 9 relations: 22113 Fri Jan 27 11:44:06 2023 10+ relations: 85154 Fri Jan 27 11:44:06 2023 heaviest cycle: 24 relations Fri Jan 27 11:44:06 2023 RelProcTime: 96 Fri Jan 27 11:44:06 2023 elapsed time 00:01:36 Fri Jan 27 11:44:06 2023 LatSieveTime: 442.837 Fri Jan 27 11:44:06 2023 -> Running matrix solving step ... Fri Jan 27 11:44:06 2023 -> msieve-1.53-SVN998-win64-core2 -s c2\c2.dat -l c2\c2.log -i c2\c2.ini -nf c2\c2.fb -t 12 -nc2 Fri Jan 27 11:44:06 2023 Fri Jan 27 11:44:06 2023 Fri Jan 27 11:44:06 2023 Msieve v. 1.53 (SVN unknown) Fri Jan 27 11:44:06 2023 random seeds: e6699758 27036ed4 Fri Jan 27 11:44:06 2023 factoring 4367351866750397747320804872096469864484574258672103242968199581133380756777640392030089485119276861105818468515850539823 (121 digits) Fri Jan 27 11:44:07 2023 searching for 15-digit factors Fri Jan 27 11:44:07 2023 commencing number field sieve (121-digit input) Fri Jan 27 11:44:07 2023 R0: -10000000000000000000000000000000000000 Fri Jan 27 11:44:07 2023 R1: 1 Fri Jan 27 11:44:07 2023 A0: -1 Fri Jan 27 11:44:07 2023 A1: 0 Fri Jan 27 11:44:07 2023 A2: 0 Fri Jan 27 11:44:07 2023 A3: 0 Fri Jan 27 11:44:07 2023 A4: 18 Fri Jan 27 11:44:07 2023 skew 0.80, size 2.508e-15, alpha 1.041, combined = 1.787e-09 rroots = 2 Fri Jan 27 11:44:07 2023 Fri Jan 27 11:44:07 2023 commencing linear algebra Fri Jan 27 11:44:07 2023 read 403036 cycles Fri Jan 27 11:44:08 2023 cycles contain 1304246 unique relations Fri Jan 27 11:44:13 2023 read 1304246 relations Fri Jan 27 11:44:15 2023 using 20 quadratic characters above 4294917295 Fri Jan 27 11:44:18 2023 building initial matrix Fri Jan 27 11:44:26 2023 memory use: 157.3 MB Fri Jan 27 11:44:27 2023 read 403036 cycles Fri Jan 27 11:44:27 2023 matrix is 402859 x 403036 (119.9 MB) with weight 35921827 (89.13/col) Fri Jan 27 11:44:27 2023 sparse part has weight 27007388 (67.01/col) Fri Jan 27 11:44:29 2023 filtering completed in 2 passes Fri Jan 27 11:44:29 2023 matrix is 402603 x 402780 (119.9 MB) with weight 35911723 (89.16/col) Fri Jan 27 11:44:29 2023 sparse part has weight 27003300 (67.04/col) Fri Jan 27 11:44:29 2023 matrix starts at (0, 0) Fri Jan 27 11:44:29 2023 matrix is 402603 x 402780 (119.9 MB) with weight 35911723 (89.16/col) Fri Jan 27 11:44:29 2023 sparse part has weight 27003300 (67.04/col) Fri Jan 27 11:44:29 2023 saving the first 48 matrix rows for later Fri Jan 27 11:44:29 2023 matrix includes 64 packed rows Fri Jan 27 11:44:30 2023 matrix is 402555 x 402780 (113.6 MB) with weight 28540496 (70.86/col) Fri Jan 27 11:44:30 2023 sparse part has weight 25747889 (63.93/col) Fri Jan 27 11:44:30 2023 using block size 8192 and superblock size 786432 for processor cache size 8192 kB Fri Jan 27 11:44:31 2023 commencing Lanczos iteration (12 threads) Fri Jan 27 11:44:31 2023 memory use: 89.5 MB Fri Jan 27 11:44:35 2023 linear algebra at 3.0%, ETA 0h 2m Fri Jan 27 11:46:38 2023 lanczos halted after 6367 iterations (dim = 402551) Fri Jan 27 11:46:38 2023 recovered 36 nontrivial dependencies Fri Jan 27 11:46:38 2023 BLanczosTime: 151 Fri Jan 27 11:46:38 2023 elapsed time 00:02:32 Fri Jan 27 11:46:38 2023 -> Running square root step ... Fri Jan 27 11:46:38 2023 -> msieve-1.53-SVN998-win64-core2 -s c2\c2.dat -l c2\c2.log -i c2\c2.ini -nf c2\c2.fb -t 12 -nc3 Fri Jan 27 11:46:38 2023 Fri Jan 27 11:46:38 2023 Fri Jan 27 11:46:38 2023 Msieve v. 1.53 (SVN unknown) Fri Jan 27 11:46:38 2023 random seeds: 9d309660 cea48319 Fri Jan 27 11:46:38 2023 factoring 4367351866750397747320804872096469864484574258672103242968199581133380756777640392030089485119276861105818468515850539823 (121 digits) Fri Jan 27 11:46:38 2023 searching for 15-digit factors Fri Jan 27 11:46:39 2023 commencing number field sieve (121-digit input) Fri Jan 27 11:46:39 2023 R0: -10000000000000000000000000000000000000 Fri Jan 27 11:46:39 2023 R1: 1 Fri Jan 27 11:46:39 2023 A0: -1 Fri Jan 27 11:46:39 2023 A1: 0 Fri Jan 27 11:46:39 2023 A2: 0 Fri Jan 27 11:46:39 2023 A3: 0 Fri Jan 27 11:46:39 2023 A4: 18 Fri Jan 27 11:46:39 2023 skew 0.80, size 2.508e-15, alpha 1.041, combined = 1.787e-09 rroots = 2 Fri Jan 27 11:46:39 2023 Fri Jan 27 11:46:39 2023 commencing square root phase Fri Jan 27 11:46:39 2023 reading relations for dependency 1 Fri Jan 27 11:46:39 2023 read 201505 cycles Fri Jan 27 11:46:39 2023 cycles contain 652820 unique relations Fri Jan 27 11:46:42 2023 read 652820 relations Fri Jan 27 11:46:43 2023 multiplying 652820 relations Fri Jan 27 11:46:50 2023 multiply complete, coefficients have about 16.62 million bits Fri Jan 27 11:46:50 2023 initial square root is modulo 59333 Fri Jan 27 11:46:58 2023 GCD is N, no factor found Fri Jan 27 11:46:58 2023 reading relations for dependency 2 Fri Jan 27 11:46:58 2023 read 201541 cycles Fri Jan 27 11:46:58 2023 cycles contain 652188 unique relations Fri Jan 27 11:47:01 2023 read 652188 relations Fri Jan 27 11:47:03 2023 multiplying 652188 relations Fri Jan 27 11:47:09 2023 multiply complete, coefficients have about 16.60 million bits Fri Jan 27 11:47:10 2023 initial square root is modulo 58661 Fri Jan 27 11:47:17 2023 sqrtTime: 38 Fri Jan 27 11:47:17 2023 p46 factor: 7475988544203894142666518830145116228594019769 Fri Jan 27 11:47:17 2023 p75 factor: 584183862900163117135343878983108529997849282840064980751935285981465033767 Fri Jan 27 11:47:17 2023 elapsed time 00:00:39 Fri Jan 27 11:47:17 2023 -> Computing time scale for this machine... Fri Jan 27 11:47:17 2023 -> procrels -speedtest> PIPE |
software ソフトウェア | GGNFS snfs |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Rytis Slatkevičius |
---|---|
date 日付 | January 29, 2023 19:45:45 UTC 2023 年 1 月 30 日 (月) 4 時 45 分 45 秒 (日本時間) |
composite number 合成数 | 327023039641818357707421106636057966725177700528703923460143256156826081854878283194669437551897968428237750774629<114> |
prime factors 素因数 | 58798504675830291489824932288784785406224906502291<50> 5561757759738478886258215327524125807886856809907672709572622119<64> |
factorization results 素因数分解の結果 | NFS elapsed time = 4014.4533 seconds. pretesting / nfs ratio was 0.04 Total factoring time = 4180.3456 seconds ***factors found*** P64 = 5561757759738478886258215327524125807886856809907672709572622119 P50 = 58798504675830291489824932288784785406224906502291 |
software ソフトウェア | yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 03:23:33 UTC 2022 年 12 月 28 日 (水) 12 時 23 分 33 秒 (日本時間) |
composite number 合成数 | 109963956258781843728999938908913189565642372777811717270450241309792901215712627527643716781721546826318040197935121265807318712199890036043741218156271<153> |
prime factors 素因数 | 503320304642142775553829906457878404746155861995426681<54> 218477091515243855110747028058147474745501793330282591957086075446263890427736712166546425811604391<99> |
factorization results 素因数分解の結果 | Number: n N=109963956258781843728999938908913189565642372777811717270450241309792901215712627527643716781721546826318040197935121265807318712199890036043741218156271 ( 153 digits) SNFS difficulty: 156 digits. Divisors found: Wed Dec 28 14:11:29 2022 p54 factor: 503320304642142775553829906457878404746155861995426681 Wed Dec 28 14:11:29 2022 p99 factor: 218477091515243855110747028058147474745501793330282591957086075446263890427736712166546425811604391 Wed Dec 28 14:11:29 2022 elapsed time 00:05:24 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.328). Factorization parameters were as follows: # # N = 9x10^156-5 = 89(155)5 # n: 109963956258781843728999938908913189565642372777811717270450241309792901215712627527643716781721546826318040197935121265807318712199890036043741218156271 m: 10000000000000000000000000000000 deg: 5 c5: 18 c0: -1 skew: 0.56 # Murphy_E = 1.102e-09 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 28600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1100160 hash collisions in 13556820 relations (13360198 unique) Msieve: matrix is 358297 x 358523 (118.9 MB) Sieving start time : 2022/12/28 11:36:34 Sieving end time : 2022/12/28 14:04:14 Total sieving time: 2hrs 27min 40secs. Total relation processing time: 0hrs 2min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 16sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 17:21:14 UTC 2022 年 12 月 25 日 (日) 2 時 21 分 14 秒 (日本時間) |
composite number 合成数 | 11527998967194751443119152631233290371326488406902634687171283413804367447249636933402581633863704969<101> |
prime factors 素因数 | 73893209012048773231463688475840948942340902457<47> 156008909632210389846145922518671576402451794656177617<54> |
factorization results 素因数分解の結果 | 12/24/22 18:16:23, starting SIQS on c101: 11527998967194751443119152631233290371326488406902634687171283413804367447249636933402581633863704969 12/24/22 18:16:23, random seed: 10501803445515532485 12/24/22 18:16:23, ==== sieve params ==== 12/24/22 18:16:23, n = 101 digits, 333 bits 12/24/22 18:16:23, factor base: 122608 primes (max prime = 3422647) 12/24/22 18:16:23, single large prime cutoff: 513397050 (150 * pmax) 12/24/22 18:16:23, double large prime range from 11714512486609 to 13011840541221886 12/24/22 18:16:23, DLP MFB = 1.85 12/24/22 18:16:23, allocating 8 large prime slices of factor base 12/24/22 18:16:23, buckets hold 2048 elements 12/24/22 18:16:23, large prime hashtables have 1572864 bytes 12/24/22 18:16:23, using AVX2 enabled 32k sieve core 12/24/22 18:16:23, sieve interval: 12 blocks of size 32768 12/24/22 18:16:23, polynomial A has ~ 13 factors 12/24/22 18:16:23, using multiplier of 1 12/24/22 18:16:23, using multiplier of 1 12/24/22 18:16:23, using Q2(x) polynomials for kN mod 8 = 1 12/24/22 18:16:23, using SPV correction of 18 bits, starting at offset 24 12/24/22 18:16:23, trial factoring cutoff at 99 bits 12/24/22 18:16:23, ==== sieving started (46 threads) ==== 12/24/22 18:20:14, trial division touched 349945352 sieve locations out of 3592503164928 12/24/22 18:20:14, total reports = 349945352, total surviving reports = 84670348 12/24/22 18:20:14, total blocks sieved = 109635528, avg surviving reports per block = 0.77 12/24/22 18:20:14, dlp-ecm: 2 failures, 2219185 attempts, 72742418 outside range, 9247037 prp, 1762706 useful 12/24/22 18:20:14, 123424 relations found: 29495 full + 93929 from 2194919 partial, using 4568104 polys (3375 A polys) 12/24/22 18:20:14, on average, sieving found 0.49 rels/poly and 9626.95 rels/sec 12/24/22 18:20:14, trial division touched 349945352 sieve locations out of 3592503164928 12/24/22 18:20:14, ==== post processing stage (msieve-1.38) ==== 12/24/22 18:20:14, QS elapsed time = 231.0631 seconds. 12/24/22 18:20:15, begin singleton removal with 2224414 relations 12/24/22 18:20:16, reduce to 334269 relations in 11 passes 12/24/22 18:20:18, recovered 334269 relations 12/24/22 18:20:18, recovered 322494 polynomials 12/24/22 18:20:18, attempting to build 123424 cycles 12/24/22 18:20:18, found 123424 cycles from 334269 relations in 7 passes 12/24/22 18:20:18, distribution of cycle lengths: 12/24/22 18:20:18, length 1 : 29495 12/24/22 18:20:18, length 2 : 19935 12/24/22 18:20:18, length 3 : 19920 12/24/22 18:20:18, length 4 : 16495 12/24/22 18:20:18, length 5 : 13259 12/24/22 18:20:18, length 6 : 8993 12/24/22 18:20:18, length 7 : 6108 12/24/22 18:20:18, length 9+: 9219 12/24/22 18:20:18, largest cycle: 21 relations 12/24/22 18:20:18, matrix is 122608 x 123424 (38.2 MB) with weight 9030603 (73.17/col) 12/24/22 18:20:18, sparse part has weight 9030603 (73.17/col) 12/24/22 18:20:19, filtering completed in 4 passes 12/24/22 18:20:19, matrix is 117362 x 117426 (36.3 MB) with weight 8583229 (73.09/col) 12/24/22 18:20:19, sparse part has weight 8583229 (73.09/col) 12/24/22 18:20:19, saving the first 48 matrix rows for later 12/24/22 18:20:19, matrix is 117314 x 117426 (32.1 MB) with weight 7749932 (66.00/col) 12/24/22 18:20:19, sparse part has weight 7237887 (61.64/col) 12/24/22 18:20:19, matrix includes 64 packed rows 12/24/22 18:20:19, using block size 46970 for processor cache size 131072 kB 12/24/22 18:20:20, commencing Lanczos iteration 12/24/22 18:20:20, memory use: 24.7 MB 12/24/22 18:20:50, lanczos halted after 1857 iterations (dim = 117312) 12/24/22 18:20:50, recovered 16 nontrivial dependencies 12/24/22 18:20:52, prp54 = 156008909632210389846145922518671576402451794656177617 12/24/22 18:20:52, prp47 = 73893209012048773231463688475840948942340902457 12/24/22 18:20:52, Lanczos elapsed time = 35.8490 seconds. 12/24/22 18:20:52, Sqrt elapsed time = 2.1200 seconds. 12/24/22 18:20:52, SIQS elapsed time = 269.0365 seconds. 12/24/22 18:20:52, 12/24/22 18:20:52, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 09:39:26 UTC 2023 年 1 月 4 日 (水) 18 時 39 分 26 秒 (日本時間) |
composite number 合成数 | 234805857245307039838522139858286653605642124757125831820574643093314594247104508749017057074304538228011819604118466525204892203912262937<138> |
prime factors 素因数 | 103384782445399760202528287116575182264666463434068513792108666922449<69> 2271183937242545608065007785194789835900018770053859910181145991283913<70> |
factorization results 素因数分解の結果 | Number: n N=234805857245307039838522139858286653605642124757125831820574643093314594247104508749017057074304538228011819604118466525204892203912262937 ( 138 digits) SNFS difficulty: 161 digits. Divisors found: Wed Jan 4 19:03:42 2023 p69 factor: 103384782445399760202528287116575182264666463434068513792108666922449 Wed Jan 4 19:03:42 2023 p70 factor: 2271183937242545608065007785194789835900018770053859910181145991283913 Wed Jan 4 19:03:42 2023 elapsed time 00:05:56 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.331). Factorization parameters were as follows: # # N = 9x10^161-5 = 89(160)5 # n: 234805857245307039838522139858286653605642124757125831820574643093314594247104508749017057074304538228011819604118466525204892203912262937 m: 100000000000000000000000000000000 deg: 5 c5: 18 c0: -1 skew: 0.56 # Murphy_E = 7.057e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1126249 hash collisions in 13187961 relations (12926306 unique) Msieve: matrix is 423530 x 423756 (143.3 MB) Sieving start time : 2023/01/04 18:34:22 Sieving end time : 2023/01/04 18:57:28 Total sieving time: 0hrs 23min 6secs. Total relation processing time: 0hrs 2min 37sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 21sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 03:40:07 UTC 2023 年 1 月 2 日 (月) 12 時 40 分 7 秒 (日本時間) |
composite number 合成数 | 57543848148511511577407456579499830488077666554451096219424401926078636628063060158813978468257981346056824888173937413135972620148010397399<140> |
prime factors 素因数 | 6107896366685569458651610532054673671191991<43> 9421222085949945119305607378882081975040045367192508345848151240678283287908653649631820834232289<97> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 57543848148511511577407456579499830488077666554451096219424401926078636628063060158813978468257981346056824888173937413135972620148010397399 (140 digits) Using B1=26640000, B2=144285831706, polynomial Dickson(12), sigma=1:3914617134 Step 1 took 54700ms Step 2 took 22387ms ********** Factor found in step 2: 6107896366685569458651610532054673671191991 Found prime factor of 43 digits: 6107896366685569458651610532054673671191991 Prime cofactor 9421222085949945119305607378882081975040045367192508345848151240678283287908653649631820834232289 has 97 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 12:38:30 UTC 2022 年 12 月 27 日 (火) 21 時 38 分 30 秒 (日本時間) |
composite number 合成数 | 24440899757056828050564179409009964038587668848512332802486989776893899957467663966361249045767614644061564249195977<116> |
prime factors 素因数 | 74529410187635373848266655307785671851862193751680441<53> 327936309914762185039258218299339513209583771201175710361905297<63> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1700000, q1=1800000. -> client 1 q0: 1700000 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=1800001, q1=1900000. -> client 1 q0: 1800001 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=1900001, q1=2000000. -> client 1 q0: 1900001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 90 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 94 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 99 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 88 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 155 Tue Dec 27 13:27:53 2022 Tue Dec 27 13:27:53 2022 Tue Dec 27 13:27:53 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 13:27:53 2022 random seeds: 3bfe6c20 ef87e3e2 Tue Dec 27 13:27:53 2022 factoring 24440899757056828050564179409009964038587668848512332802486989776893899957467663966361249045767614644061564249195977 (116 digits) Tue Dec 27 13:27:53 2022 searching for 15-digit factors Tue Dec 27 13:27:53 2022 commencing number field sieve (116-digit input) Tue Dec 27 13:27:53 2022 R0: -26199210321186100248037 Tue Dec 27 13:27:53 2022 R1: 982382232343 Tue Dec 27 13:27:53 2022 A0: -18894980084666737284446827680 Tue Dec 27 13:27:53 2022 A1: 114741107779042708614148 Tue Dec 27 13:27:53 2022 A2: -6863568601502981071 Tue Dec 27 13:27:53 2022 A3: -65789198967725 Tue Dec 27 13:27:53 2022 A4: 1336629813 Tue Dec 27 13:27:53 2022 A5: 1980 Tue Dec 27 13:27:53 2022 skew 124292.75, size 3.707e-011, alpha -6.075, combined = 4.489e-010 rroots = 3 Tue Dec 27 13:27:53 2022 Tue Dec 27 13:27:53 2022 commencing relation filtering Tue Dec 27 13:27:53 2022 estimated available RAM is 65413.5 MB Tue Dec 27 13:27:53 2022 commencing duplicate removal, pass 1 Tue Dec 27 13:28:11 2022 found 787496 hash collisions in 9211609 relations Tue Dec 27 13:28:21 2022 added 62112 free relations Tue Dec 27 13:28:21 2022 commencing duplicate removal, pass 2 Tue Dec 27 13:28:24 2022 found 565675 duplicates and 8708046 unique relations Tue Dec 27 13:28:24 2022 memory use: 32.6 MB Tue Dec 27 13:28:24 2022 reading ideals above 100000 Tue Dec 27 13:28:24 2022 commencing singleton removal, initial pass Tue Dec 27 13:28:54 2022 memory use: 188.3 MB Tue Dec 27 13:28:54 2022 reading all ideals from disk Tue Dec 27 13:28:54 2022 memory use: 300.9 MB Tue Dec 27 13:28:54 2022 keeping 9928687 ideals with weight <= 200, target excess is 46261 Tue Dec 27 13:28:55 2022 commencing in-memory singleton removal Tue Dec 27 13:28:55 2022 begin with 8708046 relations and 9928687 unique ideals Tue Dec 27 13:28:59 2022 reduce to 2526034 relations and 2494551 ideals in 26 passes Tue Dec 27 13:28:59 2022 max relations containing the same ideal: 91 Tue Dec 27 13:28:59 2022 filtering wants 1000000 more relations Tue Dec 27 13:28:59 2022 elapsed time 00:01:06 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 105 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 Tue Dec 27 13:31:25 2022 Tue Dec 27 13:31:25 2022 Tue Dec 27 13:31:25 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 13:31:25 2022 random seeds: 0d0ec300 71babe16 Tue Dec 27 13:31:25 2022 factoring 24440899757056828050564179409009964038587668848512332802486989776893899957467663966361249045767614644061564249195977 (116 digits) Tue Dec 27 13:31:25 2022 searching for 15-digit factors Tue Dec 27 13:31:25 2022 commencing number field sieve (116-digit input) Tue Dec 27 13:31:25 2022 R0: -26199210321186100248037 Tue Dec 27 13:31:25 2022 R1: 982382232343 Tue Dec 27 13:31:25 2022 A0: -18894980084666737284446827680 Tue Dec 27 13:31:25 2022 A1: 114741107779042708614148 Tue Dec 27 13:31:25 2022 A2: -6863568601502981071 Tue Dec 27 13:31:25 2022 A3: -65789198967725 Tue Dec 27 13:31:25 2022 A4: 1336629813 Tue Dec 27 13:31:25 2022 A5: 1980 Tue Dec 27 13:31:25 2022 skew 124292.75, size 3.707e-011, alpha -6.075, combined = 4.489e-010 rroots = 3 Tue Dec 27 13:31:25 2022 Tue Dec 27 13:31:25 2022 commencing relation filtering Tue Dec 27 13:31:25 2022 estimated available RAM is 65413.5 MB Tue Dec 27 13:31:25 2022 commencing duplicate removal, pass 1 Tue Dec 27 13:31:45 2022 found 909080 hash collisions in 10057018 relations Tue Dec 27 13:31:55 2022 added 306 free relations Tue Dec 27 13:31:55 2022 commencing duplicate removal, pass 2 Tue Dec 27 13:31:58 2022 found 649760 duplicates and 9407564 unique relations Tue Dec 27 13:31:58 2022 memory use: 34.6 MB Tue Dec 27 13:31:58 2022 reading ideals above 100000 Tue Dec 27 13:31:58 2022 commencing singleton removal, initial pass Tue Dec 27 13:32:30 2022 memory use: 344.5 MB Tue Dec 27 13:32:30 2022 reading all ideals from disk Tue Dec 27 13:32:30 2022 memory use: 325.3 MB Tue Dec 27 13:32:31 2022 keeping 10264993 ideals with weight <= 200, target excess is 50139 Tue Dec 27 13:32:31 2022 commencing in-memory singleton removal Tue Dec 27 13:32:31 2022 begin with 9407564 relations and 10264993 unique ideals Tue Dec 27 13:32:35 2022 reduce to 3396999 relations and 3144466 ideals in 19 passes Tue Dec 27 13:32:35 2022 max relations containing the same ideal: 100 Tue Dec 27 13:32:36 2022 removing 698825 relations and 601639 ideals in 97186 cliques Tue Dec 27 13:32:36 2022 commencing in-memory singleton removal Tue Dec 27 13:32:36 2022 begin with 2698174 relations and 3144466 unique ideals Tue Dec 27 13:32:37 2022 reduce to 2579093 relations and 2419165 ideals in 13 passes Tue Dec 27 13:32:37 2022 max relations containing the same ideal: 85 Tue Dec 27 13:32:37 2022 removing 526453 relations and 429267 ideals in 97186 cliques Tue Dec 27 13:32:37 2022 commencing in-memory singleton removal Tue Dec 27 13:32:37 2022 begin with 2052640 relations and 2419165 unique ideals Tue Dec 27 13:32:38 2022 reduce to 1960415 relations and 1894084 ideals in 10 passes Tue Dec 27 13:32:38 2022 max relations containing the same ideal: 72 Tue Dec 27 13:32:38 2022 removing 74166 relations and 65997 ideals in 8169 cliques Tue Dec 27 13:32:38 2022 commencing in-memory singleton removal Tue Dec 27 13:32:38 2022 begin with 1886249 relations and 1894084 unique ideals Tue Dec 27 13:32:38 2022 reduce to 1884370 relations and 1826200 ideals in 6 passes Tue Dec 27 13:32:38 2022 max relations containing the same ideal: 69 Tue Dec 27 13:32:38 2022 relations with 0 large ideals: 147 Tue Dec 27 13:32:38 2022 relations with 1 large ideals: 607 Tue Dec 27 13:32:38 2022 relations with 2 large ideals: 8923 Tue Dec 27 13:32:38 2022 relations with 3 large ideals: 65148 Tue Dec 27 13:32:38 2022 relations with 4 large ideals: 239875 Tue Dec 27 13:32:38 2022 relations with 5 large ideals: 486338 Tue Dec 27 13:32:38 2022 relations with 6 large ideals: 557088 Tue Dec 27 13:32:38 2022 relations with 7+ large ideals: 526244 Tue Dec 27 13:32:38 2022 commencing 2-way merge Tue Dec 27 13:32:39 2022 reduce to 1055038 relation sets and 996868 unique ideals Tue Dec 27 13:32:39 2022 commencing full merge Tue Dec 27 13:32:49 2022 memory use: 114.8 MB Tue Dec 27 13:32:49 2022 found 530619 cycles, need 523068 Tue Dec 27 13:32:49 2022 weight of 523068 cycles is about 36785899 (70.33/cycle) Tue Dec 27 13:32:49 2022 distribution of cycle lengths: Tue Dec 27 13:32:49 2022 1 relations: 58661 Tue Dec 27 13:32:49 2022 2 relations: 57815 Tue Dec 27 13:32:49 2022 3 relations: 58695 Tue Dec 27 13:32:49 2022 4 relations: 53805 Tue Dec 27 13:32:49 2022 5 relations: 49093 Tue Dec 27 13:32:49 2022 6 relations: 42337 Tue Dec 27 13:32:49 2022 7 relations: 38124 Tue Dec 27 13:32:49 2022 8 relations: 33326 Tue Dec 27 13:32:49 2022 9 relations: 28367 Tue Dec 27 13:32:49 2022 10+ relations: 102845 Tue Dec 27 13:32:49 2022 heaviest cycle: 20 relations Tue Dec 27 13:32:49 2022 commencing cycle optimization Tue Dec 27 13:32:49 2022 start with 3144112 relations Tue Dec 27 13:32:53 2022 pruned 60009 relations Tue Dec 27 13:32:53 2022 memory use: 107.9 MB Tue Dec 27 13:32:53 2022 distribution of cycle lengths: Tue Dec 27 13:32:53 2022 1 relations: 58661 Tue Dec 27 13:32:53 2022 2 relations: 58973 Tue Dec 27 13:32:53 2022 3 relations: 60426 Tue Dec 27 13:32:53 2022 4 relations: 54777 Tue Dec 27 13:32:53 2022 5 relations: 49997 Tue Dec 27 13:32:53 2022 6 relations: 42854 Tue Dec 27 13:32:53 2022 7 relations: 38523 Tue Dec 27 13:32:53 2022 8 relations: 33239 Tue Dec 27 13:32:53 2022 9 relations: 28104 Tue Dec 27 13:32:53 2022 10+ relations: 97514 Tue Dec 27 13:32:53 2022 heaviest cycle: 20 relations Tue Dec 27 13:32:53 2022 RelProcTime: 88 Tue Dec 27 13:32:53 2022 elapsed time 00:01:28 Tue Dec 27 13:32:53 2022 Tue Dec 27 13:32:53 2022 Tue Dec 27 13:32:53 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 13:32:53 2022 random seeds: 0f641cc0 3eab06eb Tue Dec 27 13:32:53 2022 factoring 24440899757056828050564179409009964038587668848512332802486989776893899957467663966361249045767614644061564249195977 (116 digits) Tue Dec 27 13:32:53 2022 searching for 15-digit factors Tue Dec 27 13:32:54 2022 commencing number field sieve (116-digit input) Tue Dec 27 13:32:54 2022 R0: -26199210321186100248037 Tue Dec 27 13:32:54 2022 R1: 982382232343 Tue Dec 27 13:32:54 2022 A0: -18894980084666737284446827680 Tue Dec 27 13:32:54 2022 A1: 114741107779042708614148 Tue Dec 27 13:32:54 2022 A2: -6863568601502981071 Tue Dec 27 13:32:54 2022 A3: -65789198967725 Tue Dec 27 13:32:54 2022 A4: 1336629813 Tue Dec 27 13:32:54 2022 A5: 1980 Tue Dec 27 13:32:54 2022 skew 124292.75, size 3.707e-011, alpha -6.075, combined = 4.489e-010 rroots = 3 Tue Dec 27 13:32:54 2022 Tue Dec 27 13:32:54 2022 commencing linear algebra Tue Dec 27 13:32:54 2022 read 523068 cycles Tue Dec 27 13:32:54 2022 cycles contain 1831654 unique relations Tue Dec 27 13:32:58 2022 read 1831654 relations Tue Dec 27 13:33:00 2022 using 20 quadratic characters above 134216114 Tue Dec 27 13:33:04 2022 building initial matrix Tue Dec 27 13:33:12 2022 memory use: 228.0 MB Tue Dec 27 13:33:13 2022 read 523068 cycles Tue Dec 27 13:33:13 2022 matrix is 522891 x 523068 (157.3 MB) with weight 49548311 (94.73/col) Tue Dec 27 13:33:13 2022 sparse part has weight 35477313 (67.83/col) Tue Dec 27 13:33:15 2022 filtering completed in 2 passes Tue Dec 27 13:33:15 2022 matrix is 522084 x 522261 (157.2 MB) with weight 49517190 (94.81/col) Tue Dec 27 13:33:15 2022 sparse part has weight 35468943 (67.91/col) Tue Dec 27 13:33:16 2022 matrix starts at (0, 0) Tue Dec 27 13:33:16 2022 matrix is 522084 x 522261 (157.2 MB) with weight 49517190 (94.81/col) Tue Dec 27 13:33:16 2022 sparse part has weight 35468943 (67.91/col) Tue Dec 27 13:33:16 2022 saving the first 48 matrix rows for later Tue Dec 27 13:33:16 2022 matrix includes 64 packed rows Tue Dec 27 13:33:16 2022 matrix is 522036 x 522261 (151.2 MB) with weight 39414555 (75.47/col) Tue Dec 27 13:33:16 2022 sparse part has weight 34402072 (65.87/col) Tue Dec 27 13:33:16 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 13:33:18 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 13:33:18 2022 memory use: 117.5 MB Tue Dec 27 13:33:19 2022 linear algebra at 0.6%, ETA 0h 2m Tue Dec 27 13:37:13 2022 lanczos halted after 8257 iterations (dim = 522035) Tue Dec 27 13:37:13 2022 recovered 33 nontrivial dependencies Tue Dec 27 13:37:13 2022 BLanczosTime: 259 Tue Dec 27 13:37:13 2022 elapsed time 00:04:20 Tue Dec 27 13:37:13 2022 Tue Dec 27 13:37:13 2022 Tue Dec 27 13:37:13 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 13:37:13 2022 random seeds: 127365e0 b00381fc Tue Dec 27 13:37:13 2022 factoring 24440899757056828050564179409009964038587668848512332802486989776893899957467663966361249045767614644061564249195977 (116 digits) Tue Dec 27 13:37:13 2022 searching for 15-digit factors Tue Dec 27 13:37:13 2022 commencing number field sieve (116-digit input) Tue Dec 27 13:37:13 2022 R0: -26199210321186100248037 Tue Dec 27 13:37:13 2022 R1: 982382232343 Tue Dec 27 13:37:13 2022 A0: -18894980084666737284446827680 Tue Dec 27 13:37:13 2022 A1: 114741107779042708614148 Tue Dec 27 13:37:13 2022 A2: -6863568601502981071 Tue Dec 27 13:37:13 2022 A3: -65789198967725 Tue Dec 27 13:37:13 2022 A4: 1336629813 Tue Dec 27 13:37:13 2022 A5: 1980 Tue Dec 27 13:37:13 2022 skew 124292.75, size 3.707e-011, alpha -6.075, combined = 4.489e-010 rroots = 3 Tue Dec 27 13:37:13 2022 Tue Dec 27 13:37:13 2022 commencing square root phase Tue Dec 27 13:37:13 2022 reading relations for dependency 1 Tue Dec 27 13:37:14 2022 read 261313 cycles Tue Dec 27 13:37:14 2022 cycles contain 916470 unique relations Tue Dec 27 13:37:16 2022 read 916470 relations Tue Dec 27 13:37:18 2022 multiplying 916470 relations Tue Dec 27 13:37:39 2022 multiply complete, coefficients have about 38.60 million bits Tue Dec 27 13:37:39 2022 initial square root is modulo 349079 Tue Dec 27 13:38:04 2022 sqrtTime: 51 Tue Dec 27 13:38:04 2022 prp53 factor: 74529410187635373848266655307785671851862193751680441 Tue Dec 27 13:38:04 2022 prp63 factor: 327936309914762185039258218299339513209583771201175710361905297 Tue Dec 27 13:38:04 2022 elapsed time 00:00:51 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:19:28 UTC 2022 年 12 月 24 日 (土) 20 時 19 分 28 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 20:26:41 UTC 2022 年 12 月 28 日 (水) 5 時 26 分 41 秒 (日本時間) |
composite number 合成数 | 32166023377689054105242558950184845912369194822722017491190906823934026675897450943968504780883919455711411735213143540500353571975804772469382451176789487941<158> |
prime factors 素因数 | 417057757218814496371563801415893195484116734492418095418407256379823191342751<78> 77126064246331121950719983927334837944417693726692423246387884759330216124897691<80> |
factorization results 素因数分解の結果 | Number: n N=32166023377689054105242558950184845912369194822722017491190906823934026675897450943968504780883919455711411735213143540500353571975804772469382451176789487941 ( 158 digits) SNFS difficulty: 168 digits. Divisors found: Sun Dec 25 22:24:30 2022 p78 factor: 417057757218814496371563801415893195484116734492418095418407256379823191342751 Sun Dec 25 22:24:30 2022 p80 factor: 77126064246331121950719983927334837944417693726692423246387884759330216124897691 Sun Dec 25 22:24:30 2022 elapsed time 00:09:51 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.341). Factorization parameters were as follows: # # N = 9x10^168-5 = 89(167)5 # n: 32166023377689054105242558950184845912369194822722017491190906823934026675897450943968504780883919455711411735213143540500353571975804772469382451176789487941 m: 1000000000000000000000000000000000 deg: 5 c5: 1800 c0: -1 skew: 0.22 # Murphy_E = 2.714e-10 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1602274 hash collisions in 13996586 relations (13218329 unique) Msieve: matrix is 635841 x 636069 (218.7 MB) Sieving start time : 2022/12/25 20:53:31 Sieving end time : 2022/12/25 22:14:03 Total sieving time: 1hrs 20min 32secs. Total relation processing time: 0hrs 5min 50sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 41sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 30, 2023 08:42:02 UTC 2023 年 1 月 30 日 (月) 17 時 42 分 2 秒 (日本時間) |
composite number 合成数 | 168048954820425222464822619711105974016253951222013356564876432969247229192544975507538505516118609334247970529060942145194749<126> |
prime factors 素因数 | 285189759591229387141190164411325367376086643541<48> 589253117157132781675288270194579149927156181486636903837683847436403595495689<78> |
factorization results 素因数分解の結果 | Number: n N=168048954820425222464822619711105974016253951222013356564876432969247229192544975507538505516118609334247970529060942145194749 ( 126 digits) SNFS difficulty: 172 digits. Divisors found: Mon Jan 30 19:38:22 2023 prp48 factor: 285189759591229387141190164411325367376086643541 Mon Jan 30 19:38:22 2023 prp78 factor: 589253117157132781675288270194579149927156181486636903837683847436403595495689 Mon Jan 30 19:38:22 2023 elapsed time 00:31:28 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 9x10^172-5 = 89(171)5 # n: 168048954820425222464822619711105974016253951222013356564876432969247229192544975507538505516118609334247970529060942145194749 m: 10000000000000000000000000000000000 deg: 5 c5: 180 c0: -1 skew: 0.35 # Murphy_E = 2.476e-10 type: snfs lss: 1 rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 21000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 912171 hash collisions in 11337725 relations (11161310 unique) Msieve: matrix is 933954 x 934182 (264.2 MB) Sieving start time: 2023/01/30 16:47:01 Sieving end time : 2023/01/30 19:06:44 Total sieving time: 2hrs 19min 43secs. Total relation processing time: 0hrs 23min 54sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 15sec. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5200000,5200000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 03:24:03 UTC 2022 年 12 月 29 日 (木) 12 時 24 分 3 秒 (日本時間) |
composite number 合成数 | 1294109503960664367548831455999955122439641657436164319396858088481417148965499004553081605574400404572233319628070539226224365826250795772708051489759119<154> |
prime factors 素因数 | 1147631406708587344104437727485949329<37> 1127635141732637785053496904858145525730663564117795447451472527918199156557768084187262072352337562439345591270388511<118> |
factorization results 素因数分解の結果 | Number: n N=1294109503960664367548831455999955122439641657436164319396858088481417148965499004553081605574400404572233319628070539226224365826250795772708051489759119 ( 154 digits) SNFS difficulty: 174 digits. Divisors found: Thu Dec 29 14:14:53 2022 p37 factor: 1147631406708587344104437727485949329 Thu Dec 29 14:14:53 2022 p118 factor: 1127635141732637785053496904858145525730663564117795447451472527918199156557768084187262072352337562439345591270388511 Thu Dec 29 14:14:53 2022 elapsed time 00:16:28 (Msieve 1.54 - dependency 7) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.325). Factorization parameters were as follows: # # N = 9x10^174-5 = 89(173)5 # n: 1294109503960664367548831455999955122439641657436164319396858088481417148965499004553081605574400404572233319628070539226224365826250795772708051489759119 m: 10000000000000000000000000000000000 deg: 5 c5: 18000 c0: -1 skew: 0.14 # Murphy_E = 1.734e-10 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2247158 hash collisions in 16428454 relations (15088015 unique) Msieve: matrix is 686084 x 686309 (237.7 MB) Sieving start time : 2022/12/29 12:45:10 Sieving end time : 2022/12/29 13:58:03 Total sieving time: 1hrs 12min 53secs. Total relation processing time: 0hrs 6min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 5min 46sec. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 04:19:24 UTC 2023 年 1 月 4 日 (水) 13 時 19 分 24 秒 (日本時間) |
composite number 合成数 | 395036008711205344420493574227602282285371534298347506611449132695552570613921756229942305763634715052404461800054984261770675829839808001<138> |
prime factors 素因数 | 42974694025029236082292391062387879826171181585428143<53> 9192293689889432499937854756845647118228979599270783222216869441508092664236223677007<85> |
factorization results 素因数分解の結果 | Number: n N=395036008711205344420493574227602282285371534298347506611449132695552570613921756229942305763634715052404461800054984261770675829839808001 ( 138 digits) SNFS difficulty: 175 digits. Divisors found: Wed Jan 4 15:15:40 2023 p53 factor: 42974694025029236082292391062387879826171181585428143 Wed Jan 4 15:15:40 2023 p85 factor: 9192293689889432499937854756845647118228979599270783222216869441508092664236223677007 Wed Jan 4 15:15:40 2023 elapsed time 00:12:13 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.304). Factorization parameters were as follows: # # N = 9x10^175-5 = 89(174)5 # n: 395036008711205344420493574227602282285371534298347506611449132695552570613921756229942305763634715052404461800054984261770675829839808001 m: 100000000000000000000000000000000000 deg: 5 c5: 9 c0: -5 skew: 0.89 # Murphy_E = 1.8e-10 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 15550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1775944 hash collisions in 13368120 relations (12303831 unique) Msieve: matrix is 705179 x 705404 (243.4 MB) Sieving start time : 2023/01/04 13:56:27 Sieving end time : 2023/01/04 15:03:08 Total sieving time: 1hrs 6min 41secs. Total relation processing time: 0hrs 7min 7sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 52sec. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 04:58:04 UTC 2022 年 12 月 29 日 (木) 13 時 58 分 4 秒 (日本時間) |
composite number 合成数 | 62799295064267697098654729680526352976715143345194449585084256323769661365734047720580926918934118089038559566625450598087489422466633955335260696379784817<155> |
prime factors 素因数 | 901608508290345637049319104765854061662073<42> 155781962707255023677164062261498657131210873<45> 447115366575367123463143467860261798207437480356565455861941103057473<69> |
factorization results 素因数分解の結果 | Number: n N=62799295064267697098654729680526352976715143345194449585084256323769661365734047720580926918934118089038559566625450598087489422466633955335260696379784817 ( 155 digits) SNFS difficulty: 177 digits. Divisors found: Thu Dec 29 15:50:49 2022 found factor: 155781962707255023677164062261498657131210873 Thu Dec 29 15:52:29 2022 found factor: 155781962707255023677164062261498657131210873 Thu Dec 29 15:53:19 2022 p42 factor: 901608508290345637049319104765854061662073 Thu Dec 29 15:53:19 2022 p45 factor: 155781962707255023677164062261498657131210873 Thu Dec 29 15:53:19 2022 p69 factor: 447115366575367123463143467860261798207437480356565455861941103057473 Thu Dec 29 15:53:19 2022 elapsed time 00:15:32 (Msieve 1.54 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: # # N = 9x10^177-5 = 89(176)5 # n: 62799295064267697098654729680526352976715143345194449585084256323769661365734047720580926918934118089038559566625450598087489422466633955335260696379784817 m: 100000000000000000000000000000000000 deg: 5 c5: 180 c0: -1 skew: 0.35 # Murphy_E = 1.562e-10 type: snfs lss: 1 rlim: 6300000 alim: 6300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1841772 hash collisions in 14561300 relations (13535769 unique) Msieve: matrix is 763969 x 764194 (264.5 MB) Sieving start time : 2022/12/29 14:27:55 Sieving end time : 2022/12/29 15:37:26 Total sieving time: 1hrs 9min 31secs. Total relation processing time: 0hrs 8min 34sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 21sec. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6300000,6300000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 26, 2022 17:50:20 UTC 2022 年 12 月 27 日 (火) 2 時 50 分 20 秒 (日本時間) |
composite number 合成数 | 5710028460124207261288955514423965073577250166139805484291686384722389421827935706654674439344438913836903530765736040341672936950911007311508793035080386758951<160> |
prime factors 素因数 | 539296180985454552430293318852540727473650859064672273065373008959<66> 10587926748693615159651897147771062811236199647324826543105158598405500396314843985719694942489<95> |
factorization results 素因数分解の結果 | Number: n N=5710028460124207261288955514423965073577250166139805484291686384722389421827935706654674439344438913836903530765736040341672936950911007311508793035080386758951 ( 160 digits) SNFS difficulty: 178 digits. Divisors found: Tue Dec 27 04:39:37 2022 p66 factor: 539296180985454552430293318852540727473650859064672273065373008959 Tue Dec 27 04:39:37 2022 p95 factor: 10587926748693615159651897147771062811236199647324826543105158598405500396314843985719694942489 Tue Dec 27 04:39:37 2022 elapsed time 00:22:23 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.300). Factorization parameters were as follows: # # N = 9x10^178-5 = 89(177)5 # n: 5710028460124207261288955514423965073577250166139805484291686384722389421827935706654674439344438913836903530765736040341672936950911007311508793035080386758951 m: 100000000000000000000000000000000000 deg: 5 c5: 1800 c0: -1 skew: 0.22 # Murphy_E = 1.084e-10 type: snfs lss: 1 rlim: 6500000 alim: 6500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 16050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1695304 hash collisions in 11687266 relations (10567921 unique) Msieve: matrix is 1013434 x 1013660 (352.3 MB) Sieving start time : 2022/12/27 02:38:19 Sieving end time : 2022/12/27 04:16:54 Total sieving time: 1hrs 38min 35secs. Total relation processing time: 0hrs 16min 40sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 39sec. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6500000,6500000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 6, 2023 11:12:21 UTC 2023 年 1 月 6 日 (金) 20 時 12 分 21 秒 (日本時間) |
composite number 合成数 | 85085017436218132247956291687277097535597101491344870379985086098090511109434243010903107123816778652192246998049238607117400189373020857482321047<146> |
prime factors 素因数 | 943025286885455897364413135325723782917833863504051920438297<60> 90225594816475946780175351478764375780254964898644304979905024645695590217348830280751<86> |
factorization results 素因数分解の結果 | Number: n N=85085017436218132247956291687277097535597101491344870379985086098090511109434243010903107123816778652192246998049238607117400189373020857482321047 ( 146 digits) SNFS difficulty: 179 digits. Divisors found: Fri Jan 6 22:07:11 2023 prp60 factor: 943025286885455897364413135325723782917833863504051920438297 Fri Jan 6 22:07:11 2023 prp86 factor: 90225594816475946780175351478764375780254964898644304979905024645695590217348830280751 Fri Jan 6 22:07:11 2023 elapsed time 00:56:23 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.002). Factorization parameters were as follows: # # N = 9x10^179-5 = 89(178)5 # n: 85085017436218132247956291687277097535597101491344870379985086098090511109434243010903107123816778652192246998049238607117400189373020857482321047 m: 100000000000000000000000000000000000 deg: 5 c5: 18000 c0: -1 skew: 0.14 # Murphy_E = 1.093e-10 type: snfs lss: 1 rlim: 6300000 alim: 6300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6300000/6300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 35950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1085976 hash collisions in 11431555 relations (11053213 unique) Msieve: matrix is 1324455 x 1324680 (376.0 MB) Sieving start time: 2023/01/06 16:31:41 Sieving end time : 2023/01/06 21:10:36 Total sieving time: 4hrs 38min 55secs. Total relation processing time: 0hrs 51min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 13sec. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6300000,6300000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 13, 2023 15:47:34 UTC 2023 年 1 月 14 日 (土) 0 時 47 分 34 秒 (日本時間) |
composite number 合成数 | 37601688549869477395960230899637274688161877395717023623296238005789955080770322234484765852281805778725252437911452792187725768171789537<137> |
prime factors 素因数 | 7305815531290212538762952827209155760478635921532495963250503<61> 5146816038377168114528035664450193966722457729676879850822066513639780566679<76> |
factorization results 素因数分解の結果 | Number: 89995_181 N = 37601688549869477395960230899637274688161877395717023623296238005789955080770322234484765852281805778725252437911452792187725768171789537 (137 digits) SNFS difficulty: 182 digits. Divisors found: r1=7305815531290212538762952827209155760478635921532495963250503 (pp61) r2=5146816038377168114528035664450193966722457729676879850822066513639780566679 (pp76) Version: Msieve v. 1.52 (SVN unknown) Total time: 7.33 hours. Factorization parameters were as follows: n: 37601688549869477395960230899637274688161877395717023623296238005789955080770322234484765852281805778725252437911452792187725768171789537 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 3 c3: 18 c0: -1 skew: 1.00 type: snfs lss: 1 rlim: 20000000 alim: 20000000 lpbr: 29 lpba: 27 mfbr: 58 mfba: 54 rlambda: 2.8 alambda: 2.8 side: 1 maxa: 10000000 maxb: 10000000 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/27 Total raw relations: 20958111 Relations: 4507922 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 1.78 hours. Total relation processing time: 0.26 hours. Pruned matrix : 3470975 x 3471223 Matrix solve time: 5.19 hours. time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,182,3,0,0,0,0,0,0,0,0,20000000,20000000,29,27,58,54,2.8,2.8,100000 total time: 7.33 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22621-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 25, 2022 15:48:55 UTC 2022 年 12 月 26 日 (月) 0 時 48 分 55 秒 (日本時間) |
composite number 合成数 | 30791864105239748875241630600270284140479326684571565424157928049677540756453461518723164035102725079973313717775458884308123920146432420411584583540037976632396462356946131344407<179> |
prime factors 素因数 | 11397156984892034158825128006986032544629572136147258328335958820426893780565943<80> 2701714484239987131505404657121706959342523452400423286354048989209721775177793894479106028757452449<100> |
factorization results 素因数分解の結果 | Number: n N=30791864105239748875241630600270284140479326684571565424157928049677540756453461518723164035102725079973313717775458884308123920146432420411584583540037976632396462356946131344407 ( 179 digits) SNFS difficulty: 183 digits. Divisors found: Mon Dec 26 02:44:29 2022 p80 factor: 11397156984892034158825128006986032544629572136147258328335958820426893780565943 Mon Dec 26 02:44:29 2022 p100 factor: 2701714484239987131505404657121706959342523452400423286354048989209721775177793894479106028757452449 Mon Dec 26 02:44:29 2022 elapsed time 00:20:52 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: # # N = 9x10^183-5 = 89(182)5 # n: 30791864105239748875241630600270284140479326684571565424157928049677540756453461518723164035102725079973313717775458884308123920146432420411584583540037976632396462356946131344407 m: 1000000000000000000000000000000000000 deg: 5 c5: 1800 c0: -1 skew: 0.22 # Murphy_E = 6.808e-11 type: snfs lss: 1 rlim: 7900000 alim: 7900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 7900000/7900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 16750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1511103 hash collisions in 12525126 relations (11716742 unique) Msieve: matrix is 960037 x 960262 (331.1 MB) Sieving start time : 2022/12/25 22:37:51 Sieving end time : 2022/12/26 02:23:03 Total sieving time: 3hrs 45min 12secs. Total relation processing time: 0hrs 14min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 23sec. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,7900000,7900000,27,27,51,51,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 07:54:03 UTC 2022 年 12 月 29 日 (木) 16 時 54 分 3 秒 (日本時間) |
composite number 合成数 | 826094262996676969229823224348393861282525670422900048657078842917699533092718355198678737502088072905147769825960135738901446994704295850584279427365437481<156> |
prime factors 素因数 | 385279870577452091305531993441532558551928189<45> 2144140730110136355097801331567924792775517710868153804616710662833130106496202507078561962507656444963419680029<112> |
factorization results 素因数分解の結果 | Number: n N=826094262996676969229823224348393861282525670422900048657078842917699533092718355198678737502088072905147769825960135738901446994704295850584279427365437481 ( 156 digits) SNFS difficulty: 184 digits. Divisors found: Thu Dec 29 18:49:59 2022 p45 factor: 385279870577452091305531993441532558551928189 Thu Dec 29 18:49:59 2022 p112 factor: 2144140730110136355097801331567924792775517710868153804616710662833130106496202507078561962507656444963419680029 Thu Dec 29 18:49:59 2022 elapsed time 00:29:34 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 9x10^184-5 = 89(183)5 # n: 826094262996676969229823224348393861282525670422900048657078842917699533092718355198678737502088072905147769825960135738901446994704295850584279427365437481 m: 1000000000000000000000000000000000000 deg: 5 c5: 18000 c0: -1 skew: 0.14 # Murphy_E = 6.861e-11 type: snfs lss: 1 rlim: 8200000 alim: 8200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8200000/8200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 9768281) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1143030 hash collisions in 12382411 relations (12022744 unique) Msieve: matrix is 1192650 x 1192875 (418.6 MB) Sieving start time : 2022/12/29 16:01:32 Sieving end time : 2022/12/29 18:20:06 Total sieving time: 2hrs 18min 34secs. Total relation processing time: 0hrs 23min 59sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 59sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8200000,8200000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | ebina |
---|---|
date 日付 | December 28, 2022 22:04:04 UTC 2022 年 12 月 29 日 (木) 7 時 4 分 4 秒 (日本時間) |
composite number 合成数 | 17999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<188> |
prime factors 素因数 | 1927716215071081508755664617702340856901223<43> 44224621371713812751683128148072482897639853477990358002861921<62> 211137454451219456120182870555278094489929452898042866826767991093179600249942906953<84> |
factorization results 素因数分解の結果 | Number: 89995_187 N = 17999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (188 digits) SNFS difficulty: 188 digits. Divisors found: r1=1927716215071081508755664617702340856901223 (pp43) r2=44224621371713812751683128148072482897639853477990358002861921 (pp62) r3=211137454451219456120182870555278094489929452898042866826767991093179600249942906953 (pp84) Version: Msieve v. 1.53 (SVN unknown) Total time: 15.25 hours. Factorization parameters were as follows: n: 17999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 10000000000000000000000000000000000000 deg: 5 c5: 180 c0: -1 skew: 0.35 # Murphy_E = 6.138e-11 type: snfs lss: 1 rlim: 9200000 alim: 9200000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 9200000/9200000 Large primes per side: 3 Large prime bits: 28/28 Sieved rational special-q in [0, 0) Total raw relations: 21146638 Relations: 3088806 relations Pruned matrix : 1835554 x 1835781 Total sieving time: 13.53 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.28 hours. time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9200000,9200000,28,28,54,54,2.5,2.5,100000 total time: 15.25 hours. Intel64 Family 6 Model 94 Stepping 3, GenuineIntel processors: 8, speed: 2.81GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 16:05:03 UTC 2022 年 12 月 28 日 (水) 1 時 5 分 3 秒 (日本時間) |
composite number 合成数 | 1173636637869051248792908975588149294313985000507734871262064632871054071396464707393964519806824990505681157955966097<118> |
prime factors 素因数 | 12858111626186990734228233337664897541178396519<47> 91275972085886096487304939470108121628533504322856878500426024696846663<71> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1900000, q1=2000000. -> client 1 q0: 1900000 LatSieveTime: 88 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=2000001, q1=2100000. -> client 1 q0: 2000001 LatSieveTime: 82 LatSieveTime: 92 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2100001, q1=2200000. -> client 1 q0: 2100001 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=2200001, q1=2300000. -> client 1 q0: 2200001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=2300001, q1=2400000. -> client 1 q0: 2300001 LatSieveTime: 92 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=2400001, q1=2500000. -> client 1 q0: 2400001 LatSieveTime: 93 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=2500001, q1=2600000. -> client 1 q0: 2500001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=2600001, q1=2700000. -> client 1 q0: 2600001 LatSieveTime: 89 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 -> makeJobFile(): Adjusted to q0=2700001, q1=2800000. -> client 1 q0: 2700001 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=2800001, q1=2900000. -> client 1 q0: 2800001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 -> makeJobFile(): Adjusted to q0=2900001, q1=3000000. -> client 1 q0: 2900001 LatSieveTime: 97 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=3000001, q1=3100000. -> client 1 q0: 3000001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=3100001, q1=3200000. -> client 1 q0: 3100001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=3200001, q1=3300000. -> client 1 q0: 3200001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=3300001, q1=3400000. -> client 1 q0: 3300001 LatSieveTime: 97 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 142 Tue Dec 27 16:38:00 2022 Tue Dec 27 16:38:00 2022 Tue Dec 27 16:38:00 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 16:38:00 2022 random seeds: 2fcd7db0 5b823c84 Tue Dec 27 16:38:00 2022 factoring 1173636637869051248792908975588149294313985000507734871262064632871054071396464707393964519806824990505681157955966097 (118 digits) Tue Dec 27 16:38:00 2022 searching for 15-digit factors Tue Dec 27 16:38:00 2022 commencing number field sieve (118-digit input) Tue Dec 27 16:38:00 2022 R0: -46921986529479770574094 Tue Dec 27 16:38:00 2022 R1: 3077899737319 Tue Dec 27 16:38:00 2022 A0: -805567751087015767405953825 Tue Dec 27 16:38:00 2022 A1: 226324914812242639318014 Tue Dec 27 16:38:00 2022 A2: 1928062882271939463 Tue Dec 27 16:38:00 2022 A3: -598137432214110 Tue Dec 27 16:38:00 2022 A4: 363108226 Tue Dec 27 16:38:00 2022 A5: 5160 Tue Dec 27 16:38:00 2022 skew 64270.39, size 2.310e-011, alpha -5.303, combined = 3.392e-010 rroots = 5 Tue Dec 27 16:38:00 2022 Tue Dec 27 16:38:00 2022 commencing relation filtering Tue Dec 27 16:38:00 2022 estimated available RAM is 65413.5 MB Tue Dec 27 16:38:00 2022 commencing duplicate removal, pass 1 Tue Dec 27 16:38:18 2022 found 852317 hash collisions in 9368399 relations Tue Dec 27 16:38:28 2022 added 62342 free relations Tue Dec 27 16:38:28 2022 commencing duplicate removal, pass 2 Tue Dec 27 16:38:31 2022 found 632328 duplicates and 8798413 unique relations Tue Dec 27 16:38:31 2022 memory use: 34.6 MB Tue Dec 27 16:38:31 2022 reading ideals above 100000 Tue Dec 27 16:38:31 2022 commencing singleton removal, initial pass Tue Dec 27 16:39:01 2022 memory use: 188.3 MB Tue Dec 27 16:39:01 2022 reading all ideals from disk Tue Dec 27 16:39:02 2022 memory use: 307.6 MB Tue Dec 27 16:39:02 2022 keeping 10136900 ideals with weight <= 200, target excess is 46343 Tue Dec 27 16:39:02 2022 commencing in-memory singleton removal Tue Dec 27 16:39:03 2022 begin with 8798413 relations and 10136900 unique ideals Tue Dec 27 16:39:06 2022 reduce to 2420787 relations and 2470616 ideals in 25 passes Tue Dec 27 16:39:06 2022 max relations containing the same ideal: 86 Tue Dec 27 16:39:06 2022 filtering wants 1000000 more relations Tue Dec 27 16:39:06 2022 elapsed time 00:01:06 -> makeJobFile(): Adjusted to q0=3400001, q1=3500000. -> client 1 q0: 3400001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 Tue Dec 27 16:41:26 2022 Tue Dec 27 16:41:26 2022 Tue Dec 27 16:41:26 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 16:41:26 2022 random seeds: edb0f740 f5f7593b Tue Dec 27 16:41:26 2022 factoring 1173636637869051248792908975588149294313985000507734871262064632871054071396464707393964519806824990505681157955966097 (118 digits) Tue Dec 27 16:41:26 2022 searching for 15-digit factors Tue Dec 27 16:41:26 2022 commencing number field sieve (118-digit input) Tue Dec 27 16:41:26 2022 R0: -46921986529479770574094 Tue Dec 27 16:41:26 2022 R1: 3077899737319 Tue Dec 27 16:41:26 2022 A0: -805567751087015767405953825 Tue Dec 27 16:41:26 2022 A1: 226324914812242639318014 Tue Dec 27 16:41:26 2022 A2: 1928062882271939463 Tue Dec 27 16:41:26 2022 A3: -598137432214110 Tue Dec 27 16:41:26 2022 A4: 363108226 Tue Dec 27 16:41:26 2022 A5: 5160 Tue Dec 27 16:41:26 2022 skew 64270.39, size 2.310e-011, alpha -5.303, combined = 3.392e-010 rroots = 5 Tue Dec 27 16:41:26 2022 Tue Dec 27 16:41:26 2022 commencing relation filtering Tue Dec 27 16:41:26 2022 estimated available RAM is 65413.5 MB Tue Dec 27 16:41:26 2022 commencing duplicate removal, pass 1 Tue Dec 27 16:41:46 2022 found 956793 hash collisions in 10063601 relations Tue Dec 27 16:41:57 2022 added 204 free relations Tue Dec 27 16:41:57 2022 commencing duplicate removal, pass 2 Tue Dec 27 16:42:00 2022 found 707254 duplicates and 9356551 unique relations Tue Dec 27 16:42:00 2022 memory use: 34.6 MB Tue Dec 27 16:42:00 2022 reading ideals above 100000 Tue Dec 27 16:42:00 2022 commencing singleton removal, initial pass Tue Dec 27 16:42:34 2022 memory use: 344.5 MB Tue Dec 27 16:42:34 2022 reading all ideals from disk Tue Dec 27 16:42:34 2022 memory use: 327.3 MB Tue Dec 27 16:42:34 2022 keeping 10399582 ideals with weight <= 200, target excess is 49590 Tue Dec 27 16:42:35 2022 commencing in-memory singleton removal Tue Dec 27 16:42:35 2022 begin with 9356551 relations and 10399582 unique ideals Tue Dec 27 16:42:39 2022 reduce to 3161083 relations and 3043158 ideals in 20 passes Tue Dec 27 16:42:39 2022 max relations containing the same ideal: 103 Tue Dec 27 16:42:40 2022 removing 357063 relations and 326863 ideals in 30200 cliques Tue Dec 27 16:42:40 2022 commencing in-memory singleton removal Tue Dec 27 16:42:40 2022 begin with 2804020 relations and 3043158 unique ideals Tue Dec 27 16:42:41 2022 reduce to 2769027 relations and 2680811 ideals in 10 passes Tue Dec 27 16:42:41 2022 max relations containing the same ideal: 97 Tue Dec 27 16:42:41 2022 removing 261445 relations and 231245 ideals in 30200 cliques Tue Dec 27 16:42:41 2022 commencing in-memory singleton removal Tue Dec 27 16:42:41 2022 begin with 2507582 relations and 2680811 unique ideals Tue Dec 27 16:42:42 2022 reduce to 2485773 relations and 2427499 ideals in 11 passes Tue Dec 27 16:42:42 2022 max relations containing the same ideal: 86 Tue Dec 27 16:42:42 2022 relations with 0 large ideals: 150 Tue Dec 27 16:42:42 2022 relations with 1 large ideals: 493 Tue Dec 27 16:42:42 2022 relations with 2 large ideals: 7727 Tue Dec 27 16:42:42 2022 relations with 3 large ideals: 61497 Tue Dec 27 16:42:42 2022 relations with 4 large ideals: 253446 Tue Dec 27 16:42:42 2022 relations with 5 large ideals: 575432 Tue Dec 27 16:42:42 2022 relations with 6 large ideals: 748457 Tue Dec 27 16:42:42 2022 relations with 7+ large ideals: 838571 Tue Dec 27 16:42:42 2022 commencing 2-way merge Tue Dec 27 16:42:43 2022 reduce to 1365851 relation sets and 1307580 unique ideals Tue Dec 27 16:42:43 2022 ignored 3 oversize relation sets Tue Dec 27 16:42:43 2022 commencing full merge Tue Dec 27 16:42:58 2022 memory use: 146.0 MB Tue Dec 27 16:42:58 2022 found 680642 cycles, need 673780 Tue Dec 27 16:42:58 2022 weight of 673780 cycles is about 47352309 (70.28/cycle) Tue Dec 27 16:42:58 2022 distribution of cycle lengths: Tue Dec 27 16:42:58 2022 1 relations: 82128 Tue Dec 27 16:42:58 2022 2 relations: 80438 Tue Dec 27 16:42:58 2022 3 relations: 80343 Tue Dec 27 16:42:58 2022 4 relations: 70367 Tue Dec 27 16:42:58 2022 5 relations: 61492 Tue Dec 27 16:42:58 2022 6 relations: 52257 Tue Dec 27 16:42:58 2022 7 relations: 45172 Tue Dec 27 16:42:58 2022 8 relations: 37547 Tue Dec 27 16:42:58 2022 9 relations: 31213 Tue Dec 27 16:42:58 2022 10+ relations: 132823 Tue Dec 27 16:42:58 2022 heaviest cycle: 23 relations Tue Dec 27 16:42:59 2022 commencing cycle optimization Tue Dec 27 16:42:59 2022 start with 4041794 relations Tue Dec 27 16:43:04 2022 pruned 70447 relations Tue Dec 27 16:43:04 2022 memory use: 140.5 MB Tue Dec 27 16:43:04 2022 distribution of cycle lengths: Tue Dec 27 16:43:04 2022 1 relations: 82128 Tue Dec 27 16:43:04 2022 2 relations: 82033 Tue Dec 27 16:43:04 2022 3 relations: 82586 Tue Dec 27 16:43:04 2022 4 relations: 71362 Tue Dec 27 16:43:04 2022 5 relations: 62335 Tue Dec 27 16:43:04 2022 6 relations: 52623 Tue Dec 27 16:43:04 2022 7 relations: 45175 Tue Dec 27 16:43:04 2022 8 relations: 37193 Tue Dec 27 16:43:04 2022 9 relations: 30801 Tue Dec 27 16:43:04 2022 10+ relations: 127544 Tue Dec 27 16:43:04 2022 heaviest cycle: 23 relations Tue Dec 27 16:43:04 2022 RelProcTime: 98 Tue Dec 27 16:43:04 2022 elapsed time 00:01:38 Tue Dec 27 16:43:04 2022 Tue Dec 27 16:43:04 2022 Tue Dec 27 16:43:04 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 16:43:04 2022 random seeds: 4b082700 5f3bed02 Tue Dec 27 16:43:04 2022 factoring 1173636637869051248792908975588149294313985000507734871262064632871054071396464707393964519806824990505681157955966097 (118 digits) Tue Dec 27 16:43:04 2022 searching for 15-digit factors Tue Dec 27 16:43:05 2022 commencing number field sieve (118-digit input) Tue Dec 27 16:43:05 2022 R0: -46921986529479770574094 Tue Dec 27 16:43:05 2022 R1: 3077899737319 Tue Dec 27 16:43:05 2022 A0: -805567751087015767405953825 Tue Dec 27 16:43:05 2022 A1: 226324914812242639318014 Tue Dec 27 16:43:05 2022 A2: 1928062882271939463 Tue Dec 27 16:43:05 2022 A3: -598137432214110 Tue Dec 27 16:43:05 2022 A4: 363108226 Tue Dec 27 16:43:05 2022 A5: 5160 Tue Dec 27 16:43:05 2022 skew 64270.39, size 2.310e-011, alpha -5.303, combined = 3.392e-010 rroots = 5 Tue Dec 27 16:43:05 2022 Tue Dec 27 16:43:05 2022 commencing linear algebra Tue Dec 27 16:43:05 2022 read 673780 cycles Tue Dec 27 16:43:05 2022 cycles contain 2405824 unique relations Tue Dec 27 16:43:10 2022 read 2405824 relations Tue Dec 27 16:43:12 2022 using 20 quadratic characters above 134217248 Tue Dec 27 16:43:18 2022 building initial matrix Tue Dec 27 16:43:30 2022 memory use: 304.3 MB Tue Dec 27 16:43:30 2022 read 673780 cycles Tue Dec 27 16:43:30 2022 matrix is 673600 x 673780 (202.8 MB) with weight 63623255 (94.43/col) Tue Dec 27 16:43:30 2022 sparse part has weight 45755028 (67.91/col) Tue Dec 27 16:43:33 2022 filtering completed in 2 passes Tue Dec 27 16:43:33 2022 matrix is 671892 x 672072 (202.7 MB) with weight 63553869 (94.56/col) Tue Dec 27 16:43:33 2022 sparse part has weight 45733622 (68.05/col) Tue Dec 27 16:43:34 2022 matrix starts at (0, 0) Tue Dec 27 16:43:34 2022 matrix is 671892 x 672072 (202.7 MB) with weight 63553869 (94.56/col) Tue Dec 27 16:43:34 2022 sparse part has weight 45733622 (68.05/col) Tue Dec 27 16:43:34 2022 saving the first 48 matrix rows for later Tue Dec 27 16:43:35 2022 matrix includes 64 packed rows Tue Dec 27 16:43:35 2022 matrix is 671844 x 672072 (195.1 MB) with weight 50383674 (74.97/col) Tue Dec 27 16:43:35 2022 sparse part has weight 44432827 (66.11/col) Tue Dec 27 16:43:35 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 16:43:37 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 16:43:37 2022 memory use: 151.9 MB Tue Dec 27 16:43:38 2022 linear algebra at 0.5%, ETA 0h 3m Tue Dec 27 16:49:44 2022 lanczos halted after 10625 iterations (dim = 671844) Tue Dec 27 16:49:44 2022 recovered 30 nontrivial dependencies Tue Dec 27 16:49:44 2022 BLanczosTime: 399 Tue Dec 27 16:49:44 2022 elapsed time 00:06:40 Tue Dec 27 16:49:44 2022 Tue Dec 27 16:49:44 2022 Tue Dec 27 16:49:44 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 16:49:44 2022 random seeds: e96f56f8 560952db Tue Dec 27 16:49:44 2022 factoring 1173636637869051248792908975588149294313985000507734871262064632871054071396464707393964519806824990505681157955966097 (118 digits) Tue Dec 27 16:49:45 2022 searching for 15-digit factors Tue Dec 27 16:49:45 2022 commencing number field sieve (118-digit input) Tue Dec 27 16:49:45 2022 R0: -46921986529479770574094 Tue Dec 27 16:49:45 2022 R1: 3077899737319 Tue Dec 27 16:49:45 2022 A0: -805567751087015767405953825 Tue Dec 27 16:49:45 2022 A1: 226324914812242639318014 Tue Dec 27 16:49:45 2022 A2: 1928062882271939463 Tue Dec 27 16:49:45 2022 A3: -598137432214110 Tue Dec 27 16:49:45 2022 A4: 363108226 Tue Dec 27 16:49:45 2022 A5: 5160 Tue Dec 27 16:49:45 2022 skew 64270.39, size 2.310e-011, alpha -5.303, combined = 3.392e-010 rroots = 5 Tue Dec 27 16:49:45 2022 Tue Dec 27 16:49:45 2022 commencing square root phase Tue Dec 27 16:49:45 2022 reading relations for dependency 1 Tue Dec 27 16:49:45 2022 read 335879 cycles Tue Dec 27 16:49:45 2022 cycles contain 1202590 unique relations Tue Dec 27 16:49:48 2022 read 1202590 relations Tue Dec 27 16:49:51 2022 multiplying 1202590 relations Tue Dec 27 16:50:17 2022 multiply complete, coefficients have about 51.92 million bits Tue Dec 27 16:50:17 2022 initial square root is modulo 28425253 Tue Dec 27 16:50:54 2022 GCD is 1, no factor found Tue Dec 27 16:50:54 2022 reading relations for dependency 2 Tue Dec 27 16:50:54 2022 read 335928 cycles Tue Dec 27 16:50:54 2022 cycles contain 1201430 unique relations Tue Dec 27 16:50:57 2022 read 1201430 relations Tue Dec 27 16:51:00 2022 multiplying 1201430 relations Tue Dec 27 16:51:26 2022 multiply complete, coefficients have about 51.87 million bits Tue Dec 27 16:51:26 2022 initial square root is modulo 27981977 Tue Dec 27 16:52:02 2022 GCD is N, no factor found Tue Dec 27 16:52:02 2022 reading relations for dependency 3 Tue Dec 27 16:52:02 2022 read 335303 cycles Tue Dec 27 16:52:03 2022 cycles contain 1200812 unique relations Tue Dec 27 16:52:06 2022 read 1200812 relations Tue Dec 27 16:52:08 2022 multiplying 1200812 relations Tue Dec 27 16:52:34 2022 multiply complete, coefficients have about 51.84 million bits Tue Dec 27 16:52:35 2022 initial square root is modulo 27690683 Tue Dec 27 16:53:11 2022 GCD is 1, no factor found Tue Dec 27 16:53:11 2022 reading relations for dependency 4 Tue Dec 27 16:53:11 2022 read 335489 cycles Tue Dec 27 16:53:11 2022 cycles contain 1201694 unique relations Tue Dec 27 16:53:14 2022 read 1201694 relations Tue Dec 27 16:53:17 2022 multiplying 1201694 relations Tue Dec 27 16:53:43 2022 multiply complete, coefficients have about 51.88 million bits Tue Dec 27 16:53:44 2022 initial square root is modulo 28065889 Tue Dec 27 16:54:20 2022 sqrtTime: 275 Tue Dec 27 16:54:20 2022 prp47 factor: 12858111626186990734228233337664897541178396519 Tue Dec 27 16:54:20 2022 prp71 factor: 91275972085886096487304939470108121628533504322856878500426024696846663 Tue Dec 27 16:54:20 2022 elapsed time 00:04:36 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 10:40:26 UTC 2022 年 12 月 24 日 (土) 19 時 40 分 26 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 30, 2023 11:49:33 UTC 2023 年 5 月 30 日 (火) 20 時 49 分 33 秒 (日本時間) |
composite number 合成数 | 118045354708060417255761733654773453866870575758353873838573401616777388466077698524803896932885311350824778057248476670821748140596609281777<141> |
prime factors 素因数 | 62060992617031189624158172092070683826755656273995097<53> 1902086153157428347348927322840423686091934321208187876588723476075751499772961629252441<88> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM] Input number is 118045354708060417255761733654773453866870575758353873838573401616777388466077698524803896932885311350824778057248476670821748140596609281777 (141 digits) Using B1=37640000, B2=192391008826, polynomial Dickson(12), sigma=1:2366046453 Step 1 took 69214ms Step 2 took 22858ms ********** Factor found in step 2: 62060992617031189624158172092070683826755656273995097 Found prime factor of 53 digits: 62060992617031189624158172092070683826755656273995097 Prime cofactor 1902086153157428347348927322840423686091934321208187876588723476075751499772961629252441 has 88 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 22:59:08 UTC 2023 年 1 月 11 日 (水) 7 時 59 分 8 秒 (日本時間) |
2350 | Ignacio Santos | January 14, 2023 09:02:26 UTC 2023 年 1 月 14 日 (土) 18 時 2 分 26 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 20, 2023 12:34:25 UTC 2023 年 1 月 20 日 (金) 21 時 34 分 25 秒 (日本時間) |
composite number 合成数 | 5126736935917479459846557021027049470148483975263354778846259333949342035866750193248524929233089670154742813798597776273911211268982967929661997380998172068750941048268335749<175> |
prime factors 素因数 | 17457411122152031712085135039523181139321<41> 24392129087528409270150635303126861337531517447927492233294838361<65> 12039584079682036526785600452648687713749030594923425554634092089586229<71> |
factorization results 素因数分解の結果 | Number: n N=293671089031756156712865492564408773812154064866798288393307381202085608485944790271011542911995539211970856005569162247676025926530669 ( 135 digits) Divisors found: Fri Jan 20 22:47:14 2023 prp65 factor: 24392129087528409270150635303126861337531517447927492233294838361 Fri Jan 20 22:47:14 2023 prp71 factor: 12039584079682036526785600452648687713749030594923425554634092089586229 Fri Jan 20 22:47:14 2023 elapsed time 01:48:05 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.739). Factorization parameters were as follows: # # N = 9x10^192-5 = 89(191)5 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 5126736935917479459846557021027049470148483975263354778846259333949342035866750193248524929233089670154742813798597776273911211268982967929661997380998172068750941048268335749 (175 digits) # Using B1=27490000, B2=144286522396, polynomial Dickson(12), sigma=1:1908863909 # Step 1 took 77112ms # Step 2 took 28200ms # ********** Factor found in step 2: 17457411122152031712085135039523181139321 # Found prime factor of 41 digits: 17457411122152031712085135039523181139321 # Composite cofactor 293671089031756156712865492564408773812154064866798288393307381202085608485944790271011542911995539211970856005569162247676025926530669 has 135 digits n: 293671089031756156712865492564408773812154064866798288393307381202085608485944790271011542911995539211970856005569162247676025926530669 Y0: -300426470677389241010580853 Y1: 1177664290586071 c0: 5940683381186761227154838752028760 c1: -66652507383448297708464699986 c2: 39890281539866187315005 c3: 9703614439728100 c4: -777618048 c5: 120 # skew 3741713.16, size 5.083e-13, alpha -6.859, combined = 4.195e-11 rroots = 3 skew: 3741713.16 type: gnfs rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 31142183) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1226704 hash collisions in 11196361 relations (10312852 unique) Msieve: matrix is 1368537 x 1368763 (399.3 MB) Sieving start time: 2023/01/20 07:46:30 Sieving end time : 2023/01/20 20:58:59 Total sieving time: 13hrs 12min 29secs. Total relation processing time: 1hrs 38min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 36sec. Prototype def-par.txt line would be: gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5600000,5600000,27,27,52,52,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 10, 2023 22:59:15 UTC 2023 年 1 月 11 日 (水) 7 時 59 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 11, 2023 10:40:55 UTC 2023 年 1 月 11 日 (水) 19 時 40 分 55 秒 (日本時間) |
composite number 合成数 | 734498643288506745672847603391970171527985771582130607314840244760584044528822111870172214633200275292965309816370228057533227907851373948881628814729722286284874445379669614503<177> |
prime factors 素因数 | 16824093907604035704916532328893543<35> 43657545382371719394426297464602396851760772201518568006301069187843170769855570953508767524740458917006254344178217060815720712997114229590721<143> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:497597719 Step 1 took 9640ms Step 2 took 4483ms ********** Factor found in step 2: 16824093907604035704916532328893543 Found prime factor of 35 digits: 16824093907604035704916532328893543 Prime cofactor 43657545382371719394426297464602396851760772201518568006301069187843170769855570953508767524740458917006254344178217060815720712997114229590721 has 143 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 10, 2023 22:59:21 UTC 2023 年 1 月 11 日 (水) 7 時 59 分 21 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 17, 2023 12:16:48 UTC 2023 年 4 月 17 日 (月) 21 時 16 分 48 秒 (日本時間) |
composite number 合成数 | 15199041263600671589512107744549511075246090803191826212260552174136475714976144358669938463260673673949013797872398568775303141329698482485865172645356145599301713469<167> |
prime factors 素因数 | 175001882973208747808459045912649509845170255463374314722843416649<66> 86850729862875312011858737167735079517599230910894366703774757271607663873939152728106960832661700181<101> |
factorization results 素因数分解の結果 | Number: n N=15199041263600671589512107744549511075246090803191826212260552174136475714976144358669938463260673673949013797872398568775303141329698482485865172645356145599301713469 ( 167 digits) SNFS difficulty: 194 digits. Divisors found: Mon Apr 17 22:08:57 2023 prp66 factor: 175001882973208747808459045912649509845170255463374314722843416649 Mon Apr 17 22:08:57 2023 prp101 factor: 86850729862875312011858737167735079517599230910894366703774757271607663873939152728106960832661700181 Mon Apr 17 22:08:57 2023 elapsed time 01:21:05 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 9x10^194-5 = 89(193)5 # n: 15199041263600671589512107744549511075246090803191826212260552174136475714976144358669938463260673673949013797872398568775303141329698482485865172645356145599301713469 m: 100000000000000000000000000000000000000 deg: 5 c5: 18000 c0: -1 skew: 0.14 # Murphy_E = 2.667e-11 type: snfs lss: 1 rlim: 12100000 alim: 12100000 lpbr: 27 lpba: 27 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 12100000/12100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 55/55 Sieved special-q in [100000, 24450000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2021669 hash collisions in 15686640 relations (14551636 unique) Msieve: matrix is 1622280 x 1622505 (460.2 MB) Sieving start time: 2023/04/17 11:17:33 Sieving end time : 2023/04/17 20:47:36 Total sieving time: 9hrs 30min 3secs. Total relation processing time: 1hrs 14min 51sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 17sec. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,12100000,12100000,27,27,55,55,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 10, 2023 22:59:29 UTC 2023 年 1 月 11 日 (水) 7 時 59 分 29 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:53:12 UTC 2023 年 1 月 24 日 (火) 14 時 53 分 12 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 3, 2023 13:39:52 UTC 2023 年 2 月 3 日 (金) 22 時 39 分 52 秒 (日本時間) |
composite number 合成数 | 18164856792658887068893579884665471102886647024872462269851642871528414563932278144202744990407492333345587883943640060294810983614784502079225195391038959268346210181662595232667646162839<188> |
prime factors 素因数 | 24536726144653148794281648607947902149702759<44> 598943006729609502465336692306264987656377082097<48> 1236032425923916402094526359433712086232914301369756474421504662258496865140697010979715816311393<97> |
factorization results 素因数分解の結果 | Number: n N=18164856792658887068893579884665471102886647024872462269851642871528414563932278144202744990407492333345587883943640060294810983614784502079225195391038959268346210181662595232667646162839 ( 188 digits) SNFS difficulty: 195 digits. Divisors found: Sat Feb 4 00:35:35 2023 prp44 factor: 24536726144653148794281648607947902149702759 Sat Feb 4 00:35:35 2023 prp48 factor: 598943006729609502465336692306264987656377082097 Sat Feb 4 00:35:35 2023 prp97 factor: 1236032425923916402094526359433712086232914301369756474421504662258496865140697010979715816311393 Sat Feb 4 00:35:35 2023 elapsed time 02:13:43 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.084). Factorization parameters were as follows: # # N = 9x10^195-5 = 89(194)5 # n: 18164856792658887068893579884665471102886647024872462269851642871528414563932278144202744990407492333345587883943640060294810983614784502079225195391038959268346210181662595232667646162839 m: 1000000000000000000000000000000000000000 deg: 5 c5: 9 c0: -5 skew: 0.89 # Murphy_E = 2.739e-11 type: snfs lss: 1 rlim: 12500000 alim: 12500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 12500000/12500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 46250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1287252 hash collisions in 13276500 relations (12824453 unique) Msieve: matrix is 2015967 x 2016192 (571.7 MB) Sieving start time: 2023/02/03 04:45:34 Sieving end time : 2023/02/03 22:21:38 Total sieving time: 17hrs 36min 4secs. Total relation processing time: 2hrs 0min 25sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 35sec. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12500000,12500000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 10, 2023 22:59:35 UTC 2023 年 1 月 11 日 (水) 7 時 59 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:53:20 UTC 2023 年 1 月 24 日 (火) 14 時 53 分 20 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 27, 2023 16:57:35 UTC 2023 年 7 月 28 日 (金) 1 時 57 分 35 秒 (日本時間) |
composite number 合成数 | 1114264674954797802236322292997088011097200886743372364631911838967323170311263345565419323682134776512083072229302389181678903896533231645599341597980924105047131393843395795577<178> |
prime factors 素因数 | 1564497088727041915811756470084051334895384691547643031303852033<64> 712219078567556067497699572368380350566196935396631316204448989010385588080360710901007571691105038781238428994169<114> |
factorization results 素因数分解の結果 | Number: n N=1114264674954797802236322292997088011097200886743372364631911838967323170311263345565419323682134776512083072229302389181678903896533231645599341597980924105047131393843395795577 ( 178 digits) SNFS difficulty: 203 digits. Divisors found: Fri Jul 28 00:11:54 2023 prp64 factor: 1564497088727041915811756470084051334895384691547643031303852033 Fri Jul 28 00:11:54 2023 prp114 factor: 712219078567556067497699572368380350566196935396631316204448989010385588080360710901007571691105038781238428994169 Fri Jul 28 00:11:54 2023 elapsed time 03:23:57 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.079). Factorization parameters were as follows: # # N = 9x10^203-5 = 89(202)5 # n: 1114264674954797802236322292997088011097200886743372364631911838967323170311263345565419323682134776512083072229302389181678903896533231645599341597980924105047131393843395795577 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1800 c0: -1 skew: 0.22 # Murphy_E = 1.014e-11 type: snfs lss: 1 rlim: 17100000 alim: 17100000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17100000/17100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2878647 hash collisions in 16315960 relations (14083213 unique) Msieve: matrix is 2533432 x 2533657 (715.1 MB) Sieving start time: 2023/07/27 06:57:23 Sieving end time : 2023/07/27 20:47:35 Total sieving time: 13hrs 50min 12secs. Total relation processing time: 3hrs 16min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 23sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17100000,17100000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:40:49 UTC 2023 年 1 月 30 日 (月) 7 時 40 分 49 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:11:15 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 15 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 5, 2023 21:00:35 UTC 2023 年 2 月 6 日 (月) 6 時 0 分 35 秒 (日本時間) |
composite number 合成数 | 1389718713448203756418475157107924955048508555344985645537066965158882394616084518780336342604705783686553062087739099705292708150460354559835898941039249<154> |
prime factors 素因数 | 5542257629738773013343259805580368796251<40> 250749569271413734479304980234003505289763426920280760071712503957013618775647748252537311105312216888081449210499<114> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2554425077 Step 1 took 30592ms Step 2 took 11292ms ********** Factor found in step 2: 5542257629738773013343259805580368796251 Found probable prime factor of 40 digits: 5542257629738773013343259805580368796251 Probable prime cofactor 250749569271413734479304980234003505289763426920280760071712503957013618775647748252537311105312216888081449210499 has 114 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:08 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 8 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:11:23 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 23 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 12, 2023 20:39:02 UTC 2023 年 12 月 13 日 (水) 5 時 39 分 2 秒 (日本時間) |
composite number 合成数 | 475599122783840198694744629693238565804423071841889713847861125056147118661981134568129574338785108463022168203556424551483605041350701508706106164293074748328797526884561524030966787327925595159457817<201> |
prime factors 素因数 | 18061648654646768783553581810464082481920815553608649380153112733237668812354199609<83> 26331988395836807345273821188496462094290917130691109712708655540502802766951544960218999538180309196581657970200678113<119> |
factorization results 素因数分解の結果 | Number: n N=475599122783840198694744629693238565804423071841889713847861125056147118661981134568129574338785108463022168203556424551483605041350701508706106164293074748328797526884561524030966787327925595159457817 ( 201 digits) SNFS difficulty: 205 digits. Divisors found: Wed Dec 13 06:46:56 2023 prp83 factor: 18061648654646768783553581810464082481920815553608649380153112733237668812354199609 Wed Dec 13 06:46:56 2023 prp119 factor: 26331988395836807345273821188496462094290917130691109712708655540502802766951544960218999538180309196581657970200678113 Wed Dec 13 06:46:56 2023 elapsed time 02:34:29 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.101). Factorization parameters were as follows: # # N = 9x10^205-5 = 89(204)5 # n: 475599122783840198694744629693238565804423071841889713847861125056147118661981134568129574338785108463022168203556424551483605041350701508706106164293074748328797526884561524030966787327925595159457817 m: 100000000000000000000000000000000000000000 deg: 5 c5: 9 c0: -5 skew: 0.89 # Murphy_E = 1.042e-11 type: snfs lss: 1 rlim: 19000000 alim: 19000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19000000/19000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 42300000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3475311 hash collisions in 20215972 relations (17195777 unique) Msieve: matrix is 2188051 x 2188276 (615.9 MB) Sieving start time: 2023/12/12 11:28:54 Sieving end time : 2023/12/13 04:12:03 Total sieving time: 16hrs 43min 9secs. Total relation processing time: 2hrs 24min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 32sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,19000000,19000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:14 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 14 秒 (日本時間) | |
45 | 11e6 | 6272 | 1792 | Dmitry Domanov | February 10, 2023 23:18:44 UTC 2023 年 2 月 11 日 (土) 8 時 18 分 44 秒 (日本時間) |
4480 | Ignacio Santos | December 10, 2023 16:47:09 UTC 2023 年 12 月 11 日 (月) 1 時 47 分 9 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | August 26, 2024 21:18:03 UTC 2024 年 8 月 27 日 (火) 6 時 18 分 3 秒 (日本時間) |
composite number 合成数 | 110124758358537064068232573537418825042361526419144218655170905658806083153185872587420423295800452812470843464260684491031657441606373331028959714243481<153> |
prime factors 素因数 | 28932485245274485517831582427378203020137586908478871<53> 3806266811335318420604556420163837298253379350707739417295825448561180078129580412503582504349752911<100> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 110124758358537064068232573537418825042361526419144218655170905658806083153185872587420423295800452812470843464260684491031657441606373331028959714243481 (153 digits) Using B1=63700000, B2=388133141770, polynomial Dickson(30), sigma=1:3906791891 Step 1 took 119070ms Step 2 took 51400ms ********** Factor found in step 2: 28932485245274485517831582427378203020137586908478871 Found prime factor of 53 digits: 28932485245274485517831582427378203020137586908478871 Prime cofactor 3806266811335318420604556420163837298253379350707739417295825448561180078129580412503582504349752911 has 100 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:16 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 16 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | February 3, 2023 20:11:33 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 33 秒 (日本時間) |
4480 | Ignacio Santos | January 7, 2024 13:16:02 UTC 2024 年 1 月 7 日 (日) 22 時 16 分 2 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 11, 2024 22:06:40 UTC 2024 年 6 月 12 日 (水) 7 時 6 分 40 秒 (日本時間) |
composite number 合成数 | 9962698092945322252349383859865710611503175743469150544520092039411583998659706040323185861952793299905882658220032148293534067888314400276763487951481489785325113359<166> |
prime factors 素因数 | 8937873552474915387193658939481863618257815287<46> 1114660890473957406011008167263158906378505495418515819379164188571452028788137901998941646341019538878195118802116166057<121> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 9962698092945322252349383859865710611503175743469150544520092039411583998659706040323185861952793299905882658220032148293534067888314400276763487951481489785325113359 (166 digits) Using B1=50040000, B2=288591693406, polynomial Dickson(12), sigma=1:274441649 Step 1 took 205703ms Step 2 took 50231ms ********** Factor found in step 2: 8937873552474915387193658939481863618257815287 Found prime factor of 46 digits: 8937873552474915387193658939481863618257815287 Prime cofactor 1114660890473957406011008167263158906378505495418515819379164188571452028788137901998941646341019538878195118802116166057 has 121 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:24 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 24 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:11:41 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 41 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 7, 2024 14:06:50 UTC 2024 年 9 月 7 日 (土) 23 時 6 分 50 秒 (日本時間) |
composite number 合成数 | 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201<167> |
prime factors 素因数 | 243414582029704508248103396714425204325269323565543319<54> 180637013885170208003835790143847147721579676956482570615799722991750537589081829285729251266157219448286081010079<114> |
factorization results 素因数分解の結果 | 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, **************************** 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, Starting factorization of 89999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, using pretesting plan: normal 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, no tune info: using qs/gnfs crossover of 125 digits 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, **************************** 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, div: found prime factor = 5 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, div: found prime factor = 19 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, div: found prime factor = 3911 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, rho: x^2 + 3, starting 1000 iterations on C204 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C204 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, prp6 = 541579 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C198 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, prp7 = 3669469 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, rho: x^2 + 2, starting 1000 iterations on C192 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, rho: x^2 + 1, starting 1000 iterations on C192 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, pm1: starting B1 = 150K, B2 = gmp-ecm default on C192 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 0.00 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, scheduled 30 curves at B1=2000 toward target pretesting depth of 59.08 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, Finished 30 curves using Lenstra ECM method on C192 input, B1=2K, B2=gmp-ecm default 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 15.18 09/05/24 22:53:22 v1.34.5 @ RYZEN-9, scheduled 74 curves at B1=11000 toward target pretesting depth of 59.08 09/05/24 22:53:25 v1.34.5 @ RYZEN-9, Finished 74 curves using Lenstra ECM method on C192 input, B1=11K, B2=gmp-ecm default 09/05/24 22:53:25 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 20.24 09/05/24 22:53:25 v1.34.5 @ RYZEN-9, scheduled 214 curves at B1=50000 toward target pretesting depth of 59.08 09/05/24 22:53:50 v1.34.5 @ RYZEN-9, prp25 = 2772124379029723437802661 (curve 196 stg2 B1=50000 sigma=1195540608 thread=0) 09/05/24 22:53:50 v1.34.5 @ RYZEN-9, Finished 196 curves using Lenstra ECM method on C192 input, B1=50K, B2=gmp-ecm default 09/05/24 22:53:50 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 24.82 09/05/24 22:53:50 v1.34.5 @ RYZEN-9, scheduled 18 curves at B1=50000 toward target pretesting depth of 51.38 09/05/24 22:53:52 v1.34.5 @ RYZEN-9, Finished 18 curves using Lenstra ECM method on C167 input, B1=50K, B2=gmp-ecm default 09/05/24 22:53:52 v1.34.5 @ RYZEN-9, pm1: starting B1 = 3750K, B2 = gmp-ecm default on C167 09/05/24 22:53:53 v1.34.5 @ RYZEN-9, current ECM pretesting depth: 25.33 09/05/24 22:53:53 v1.34.5 @ RYZEN-9, scheduled 430 curves at B1=250000 toward target pretesting depth of 51.38 09/05/24 22:54:42 v1.34.5 @ RYZEN-9, nfs: commencing nfs on c209: 89999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995 09/05/24 22:54:42 v1.34.5 @ RYZEN-9, nfs: input divides 9*10^208 - 5 09/05/24 22:54:42 v1.34.5 @ RYZEN-9, nfs: using supplied cofactor: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 09/05/24 22:54:42 v1.34.5 @ RYZEN-9, nfs: commencing snfs on c167: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 09/05/24 22:54:42 v1.34.5 @ RYZEN-9, gen: best 3 polynomials: n: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 # 9*10^208-5, difficulty: 211.95, anorm: -3.65e+025, rnorm: 2.12e+047 # scaled difficulty: 215.58, suggest sieving rational side # size = 1.558e-014, alpha = 0.843, combined = 6.236e-012, rroots = 1 type: snfs size: 211 skew: 0.2233 c5: 1800 c0: -1 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 # 9*10^208-5, difficulty: 209.56, anorm: 7.33e+025, rnorm: 2.99e+047 # scaled difficulty: 213.16, suggest sieving rational side # size = 1.442e-014, alpha = 1.074, combined = 5.919e-012, rroots = 1 type: snfs size: 209 skew: 0.4467 c5: 225 c0: -4 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 # 9*10^208-5, difficulty: 212.95, anorm: -9.59e+030, rnorm: 2.26e+040 # scaled difficulty: 214.52, suggest sieving rational side # size = 1.810e-010, alpha = -0.308, combined = 5.074e-012, rroots = 2 type: snfs size: 212 skew: 0.1953 c6: 18000 c0: -1 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 09/05/24 22:54:43 v1.34.5 @ RYZEN-9, test: fb generation took 1.8594 seconds 09/05/24 22:54:43 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.2233 c5: 1800 c0: -1 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 09/05/24 22:57:52 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 09/05/24 22:57:54 v1.34.5 @ RYZEN-9, test: fb generation took 1.6719 seconds 09/05/24 22:57:54 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 0.4467 c5: 225 c0: -4 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 09/05/24 23:01:00 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 09/05/24 23:01:03 v1.34.5 @ RYZEN-9, test: fb generation took 2.8282 seconds 09/05/24 23:01:03 v1.34.5 @ RYZEN-9, test: commencing test sieving of polynomial 2 on the rational side over range 23800000-23802000 skew: 0.1953 c6: 18000 c0: -1 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 23800000 alim: 23800000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 09/05/24 23:04:19 v1.34.5 @ RYZEN-9, nfs: parsing special-q from .dat file 09/05/24 23:04:19 v1.34.5 @ RYZEN-9, gen: selected polynomial: n: 43969683233952635848971549496777395790952076502553675078223485709433192093824778547289281889416772203053021042188995142793515632160832682224168974182611622459950112201 # 9*10^208-5, difficulty: 209.56, anorm: 7.33e+025, rnorm: 2.99e+047 # scaled difficulty: 213.16, suggest sieving rational side # size = 1.442e-014, alpha = 1.074, combined = 5.919e-012, rroots = 1 type: snfs size: 209 skew: 0.4467 c5: 225 c0: -4 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 09/07/24 05:39:20 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 05:41:24 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 22167202 09/07/24 07:29:07 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 07:31:21 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 23309141 09/07/24 09:33:04 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 09:35:22 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 24580785 09/07/24 11:35:24 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 11:37:50 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 25832531 09/07/24 13:50:16 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 13:52:48 v1.34.5 @ RYZEN-9, nfs: raising min_rels by 5.00 percent to 27210671 09/07/24 16:18:01 v1.34.5 @ RYZEN-9, nfs: commencing msieve filtering 09/07/24 16:22:43 v1.34.5 @ RYZEN-9, nfs: commencing msieve linear algebra 09/07/24 21:03:53 v1.34.5 @ RYZEN-9, nfs: commencing msieve sqrt 09/07/24 21:07:26 v1.34.5 @ RYZEN-9, prp54 = 243414582029704508248103396714425204325269323565543319 09/07/24 21:07:27 v1.34.5 @ RYZEN-9, prp114 = 180637013885170208003835790143847147721579676956482570615799722991750537589081829285729251266157219448286081010079 09/07/24 21:07:27 v1.34.5 @ RYZEN-9, NFS elapsed time = 166365.4274 seconds. 09/07/24 21:07:27 v1.34.5 @ RYZEN-9, 09/07/24 21:07:27 v1.34.5 @ RYZEN-9, 09/05/24 23:04:19 v1.34.5 @ RYZEN-9, test: test sieving took 577.06 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:32 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 32 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:11:50 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:39 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 39 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:11:58 UTC 2023 年 2 月 4 日 (土) 5 時 11 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 30, 2023 13:01:52 UTC 2023 年 1 月 30 日 (月) 22 時 1 分 52 秒 (日本時間) |
composite number 合成数 | 234378539685334523168198981093633961433529560999220031841748530481792725610001909134799880453562938830212332613035671976768105231415374256537250108805739714056646512839334013888147198139589<189> |
prime factors 素因数 | 15670048852650687201742110948002249381<38> |
composite cofactor 合成数の残り | 14957103317880717444499740586079986752339383015667404995377336022375549656470165670776379885798691228578599129262224266349963303248203747177214444478369<152> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1335299192 Step 1 took 9643ms Step 2 took 4622ms ********** Factor found in step 2: 15670048852650687201742110948002249381 Found prime factor of 38 digits: 15670048852650687201742110948002249381 Composite cofactor 14957103317880717444499740586079986752339383015667404995377336022375549656470165670776379885798691228578599129262224266349963303248203747177214444478369 has 152 digits |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 1, 2023 14:21:43 UTC 2023 年 2 月 1 日 (水) 23 時 21 分 43 秒 (日本時間) |
composite number 合成数 | 14957103317880717444499740586079986752339383015667404995377336022375549656470165670776379885798691228578599129262224266349963303248203747177214444478369<152> |
prime factors 素因数 | 7362740535891396028166699283890779137628519<43> 2031458700054528436249783973141339975609320938470361641937143177483658506387344167644269215219191462579188151<109> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1222437199 Step 1 took 6448ms Step 2 took 3563ms ********** Factor found in step 2: 7362740535891396028166699283890779137628519 Found prime factor of 43 digits: 7362740535891396028166699283890779137628519 Prime cofactor 2031458700054528436249783973141339975609320938470361641937143177483658506387344167644269215219191462579188151 has 109 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 30, 2023 10:45:59 UTC 2023 年 1 月 30 日 (月) 19 時 45 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 11:18:07 UTC 2023 年 1 月 30 日 (月) 20 時 18 分 7 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 4, 2023 09:20:48 UTC 2023 年 2 月 4 日 (土) 18 時 20 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:22 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 22 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:01 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 1 秒 (日本時間) |
composite cofactor 合成数の残り | 24229058147220807325811388021622796829495537017841493272862148937569766293309226073511734891683682393303884274639598328489727315104031713057561941409001<152> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 29, 2023 22:41:47 UTC 2023 年 1 月 30 日 (月) 7 時 41 分 47 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 3, 2023 20:12:11 UTC 2023 年 2 月 4 日 (土) 5 時 12 分 11 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 31, 2023 06:02:35 UTC 2023 年 1 月 31 日 (火) 15 時 2 分 35 秒 (日本時間) |
composite number 合成数 | 179999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<216> |
prime factors 素因数 | 7612710356177608174921290419823090257<37> |
composite cofactor 合成数の残り | 23644666824074360445660198526026766937758014484882860494937446385426788073347529359320691882744797538734778553348582790758161151585091633768929095252623859701558983366051954102607<179> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @5e9ed72bc611 with GMP-ECM 7.0.5-dev on Mon Jan 30 14:10:23 2023 Input number is 179999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (216 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2424980581 Step 1 took 0ms Step 2 took 4758ms ********** Factor found in step 2: 7612710356177608174921290419823090257 Found prime factor of 37 digits: 7612710356177608174921290419823090257 Composite cofactor 23644666824074360445660198526026766937758014484882860494937446385426788073347529359320691882744797538734778553348582790758161151585091633768929095252623859701558983366051954102607 has 179 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:30 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 30 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 3, 2023 20:12:21 UTC 2023 年 2 月 4 日 (土) 5 時 12 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:39 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 39 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:09 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 9 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 6, 2023 09:17:06 UTC 2023 年 2 月 6 日 (月) 18 時 17 分 6 秒 (日本時間) |
composite number 合成数 | 41572300387596194040187421116954165988895315116857288539104012426474848583497987422027716134916839026164153664794333825323657874916789055986866064625131747276949422770205832705792771<182> |
prime factors 素因数 | 261323351236390582325146070135761388834822939<45> 159083756544933836364507449333282270913943129826829725154967103497097836175842843407153281651238118177825311959859347188923770423423800889<138> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2063690239 Step 1 took 42725ms Step 2 took 17821ms ********** Factor found in step 2: 261323351236390582325146070135761388834822939 Found prime factor of 45 digits: 261323351236390582325146070135761388834822939 Prime cofactor 159083756544933836364507449333282270913943129826829725154967103497097836175842843407153281651238118177825311959859347188923770423423800889 has 138 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 10:46:11 UTC 2023 年 1 月 30 日 (月) 19 時 46 分 11 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 4, 2023 09:20:58 UTC 2023 年 2 月 4 日 (土) 18 時 20 分 58 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:47 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 47 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:18 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 18 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:56:55 UTC 2023 年 1 月 30 日 (月) 22 時 56 分 55 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:25 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 25 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 18, 2023 10:27:39 UTC 2023 年 1 月 18 日 (水) 19 時 27 分 39 秒 (日本時間) |
composite number 合成数 | 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537<133> |
prime factors 素因数 | 16303755614391943456516531856194482531042401023802540931861031<62> 106489271411216015771872213095768269959511517286952378678546995227297727<72> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=4200000, q1=4300000. -> client 1 q0: 4200000 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 89 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 141 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 105 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 144 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 100 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 97 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=6600001, q1=6700000. -> client 1 q0: 6600001 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 LatSieveTime: 95 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=6800001, q1=6900000. -> client 1 q0: 6800001 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=6900001, q1=7000000. -> client 1 q0: 6900001 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=7000001, q1=7100000. -> client 1 q0: 7000001 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 154 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=7100001, q1=7200000. -> client 1 q0: 7100001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=7200001, q1=7300000. -> client 1 q0: 7200001 LatSieveTime: 108 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 154 LatSieveTime: 155 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=7300001, q1=7400000. -> client 1 q0: 7300001 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=7400001, q1=7500000. -> client 1 q0: 7400001 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=7500001, q1=7600000. -> client 1 q0: 7500001 LatSieveTime: 105 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=7600001, q1=7700000. -> client 1 q0: 7600001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=7700001, q1=7800000. -> client 1 q0: 7700001 LatSieveTime: 104 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=7800001, q1=7900000. -> client 1 q0: 7800001 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=7900001, q1=8000000. -> client 1 q0: 7900001 LatSieveTime: 97 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 165 -> makeJobFile(): Adjusted to q0=8000001, q1=8100000. -> client 1 q0: 8000001 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8100001, q1=8200000. -> client 1 q0: 8100001 LatSieveTime: 98 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 172 -> makeJobFile(): Adjusted to q0=8200001, q1=8300000. -> client 1 q0: 8200001 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=8300001, q1=8400000. -> client 1 q0: 8300001 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=8400001, q1=8500000. -> client 1 q0: 8400001 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=8500001, q1=8600000. -> client 1 q0: 8500001 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 152 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=8600001, q1=8700000. -> client 1 q0: 8600001 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 152 LatSieveTime: 152 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=8700001, q1=8800000. -> client 1 q0: 8700001 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=8800001, q1=8900000. -> client 1 q0: 8800001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=8900001, q1=9000000. -> client 1 q0: 8900001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=9000001, q1=9100000. -> client 1 q0: 9000001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=9100001, q1=9200000. -> client 1 q0: 9100001 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=9200001, q1=9300000. -> client 1 q0: 9200001 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=9300001, q1=9400000. -> client 1 q0: 9300001 LatSieveTime: 89 LatSieveTime: 97 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9400001, q1=9500000. -> client 1 q0: 9400001 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=9500001, q1=9600000. -> client 1 q0: 9500001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=9600001, q1=9700000. -> client 1 q0: 9600001 LatSieveTime: 93 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=9700001, q1=9800000. -> client 1 q0: 9700001 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=9800001, q1=9900000. -> client 1 q0: 9800001 LatSieveTime: 99 LatSieveTime: 107 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9900001, q1=10000000. -> client 1 q0: 9900001 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=10000001, q1=10100000. -> client 1 q0: 10000001 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=10100001, q1=10200000. -> client 1 q0: 10100001 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 -> makeJobFile(): Adjusted to q0=10200001, q1=10300000. -> client 1 q0: 10200001 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=10300001, q1=10400000. -> client 1 q0: 10300001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=10400001, q1=10500000. -> client 1 q0: 10400001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=10500001, q1=10600000. -> client 1 q0: 10500001 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=10600001, q1=10700000. -> client 1 q0: 10600001 LatSieveTime: 94 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=10700001, q1=10800000. -> client 1 q0: 10700001 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=10800001, q1=10900000. -> client 1 q0: 10800001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=10900001, q1=11000000. -> client 1 q0: 10900001 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=11000001, q1=11100000. -> client 1 q0: 11000001 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=11100001, q1=11200000. -> client 1 q0: 11100001 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 151 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=11200001, q1=11300000. -> client 1 q0: 11200001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=11300001, q1=11400000. -> client 1 q0: 11300001 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=11400001, q1=11500000. -> client 1 q0: 11400001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=11500001, q1=11600000. -> client 1 q0: 11500001 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=11600001, q1=11700000. -> client 1 q0: 11600001 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=11700001, q1=11800000. -> client 1 q0: 11700001 LatSieveTime: 102 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=11800001, q1=11900000. -> client 1 q0: 11800001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 148 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=11900001, q1=12000000. -> client 1 q0: 11900001 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=12000001, q1=12100000. -> client 1 q0: 12000001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=12100001, q1=12200000. -> client 1 q0: 12100001 LatSieveTime: 91 LatSieveTime: 96 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 145 Wed Jan 18 10:06:18 2023 Wed Jan 18 10:06:18 2023 Wed Jan 18 10:06:18 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:06:18 2023 random seeds: bdbab1f0 46425a21 Wed Jan 18 10:06:18 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:06:19 2023 searching for 15-digit factors Wed Jan 18 10:06:19 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:06:19 2023 R0: -31568067645183687867388717 Wed Jan 18 10:06:19 2023 R1: 335418975301223 Wed Jan 18 10:06:19 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:06:19 2023 A1: -325873214340492905295836156 Wed Jan 18 10:06:19 2023 A2: 4592082846567042312756 Wed Jan 18 10:06:19 2023 A3: -69716178035439491 Wed Jan 18 10:06:19 2023 A4: 6822593116 Wed Jan 18 10:06:19 2023 A5: 55380 Wed Jan 18 10:06:19 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:06:19 2023 Wed Jan 18 10:06:19 2023 commencing relation filtering Wed Jan 18 10:06:19 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:06:19 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:06:49 2023 error -15 reading relation 14894939 Wed Jan 18 10:06:50 2023 error -1 reading relation 14894940 Wed Jan 18 10:07:00 2023 found 2785165 hash collisions in 20117614 relations Wed Jan 18 10:07:21 2023 added 120500 free relations Wed Jan 18 10:07:21 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:07:28 2023 found 2493187 duplicates and 17744927 unique relations Wed Jan 18 10:07:28 2023 memory use: 98.6 MB Wed Jan 18 10:07:28 2023 reading ideals above 720000 Wed Jan 18 10:07:28 2023 commencing singleton removal, initial pass Wed Jan 18 10:08:29 2023 memory use: 376.5 MB Wed Jan 18 10:08:29 2023 reading all ideals from disk Wed Jan 18 10:08:29 2023 memory use: 554.0 MB Wed Jan 18 10:08:30 2023 keeping 20285360 ideals with weight <= 200, target excess is 118290 Wed Jan 18 10:08:31 2023 commencing in-memory singleton removal Wed Jan 18 10:08:31 2023 begin with 17744927 relations and 20285360 unique ideals Wed Jan 18 10:08:40 2023 reduce to 5323629 relations and 5515059 ideals in 23 passes Wed Jan 18 10:08:40 2023 max relations containing the same ideal: 86 Wed Jan 18 10:08:41 2023 filtering wants 1000000 more relations Wed Jan 18 10:08:41 2023 elapsed time 00:02:23 -> makeJobFile(): Adjusted to q0=12200001, q1=12300000. -> client 1 q0: 12200001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 150 LatSieveTime: 151 Wed Jan 18 10:11:18 2023 Wed Jan 18 10:11:18 2023 Wed Jan 18 10:11:18 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:11:18 2023 random seeds: 9a62581c 9cf74b06 Wed Jan 18 10:11:18 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:11:18 2023 searching for 15-digit factors Wed Jan 18 10:11:19 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:11:19 2023 R0: -31568067645183687867388717 Wed Jan 18 10:11:19 2023 R1: 335418975301223 Wed Jan 18 10:11:19 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:11:19 2023 A1: -325873214340492905295836156 Wed Jan 18 10:11:19 2023 A2: 4592082846567042312756 Wed Jan 18 10:11:19 2023 A3: -69716178035439491 Wed Jan 18 10:11:19 2023 A4: 6822593116 Wed Jan 18 10:11:19 2023 A5: 55380 Wed Jan 18 10:11:19 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:11:19 2023 Wed Jan 18 10:11:19 2023 commencing relation filtering Wed Jan 18 10:11:19 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:11:19 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:11:49 2023 error -15 reading relation 14894939 Wed Jan 18 10:11:49 2023 error -1 reading relation 14894940 Wed Jan 18 10:12:01 2023 found 2844019 hash collisions in 20467395 relations Wed Jan 18 10:12:22 2023 added 59 free relations Wed Jan 18 10:12:22 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:12:30 2023 found 2541373 duplicates and 17926081 unique relations Wed Jan 18 10:12:30 2023 memory use: 98.6 MB Wed Jan 18 10:12:30 2023 reading ideals above 720000 Wed Jan 18 10:12:30 2023 commencing singleton removal, initial pass Wed Jan 18 10:13:31 2023 memory use: 376.5 MB Wed Jan 18 10:13:31 2023 reading all ideals from disk Wed Jan 18 10:13:31 2023 memory use: 559.7 MB Wed Jan 18 10:13:32 2023 keeping 20368742 ideals with weight <= 200, target excess is 118687 Wed Jan 18 10:13:33 2023 commencing in-memory singleton removal Wed Jan 18 10:13:34 2023 begin with 17926081 relations and 20368742 unique ideals Wed Jan 18 10:13:43 2023 reduce to 5581882 relations and 5720395 ideals in 23 passes Wed Jan 18 10:13:43 2023 max relations containing the same ideal: 91 Wed Jan 18 10:13:43 2023 filtering wants 1000000 more relations Wed Jan 18 10:13:43 2023 elapsed time 00:02:25 -> makeJobFile(): Adjusted to q0=12300001, q1=12400000. -> client 1 q0: 12300001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 154 LatSieveTime: 158 Wed Jan 18 10:16:28 2023 Wed Jan 18 10:16:28 2023 Wed Jan 18 10:16:28 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:16:28 2023 random seeds: a5c9700c 8aa4748c Wed Jan 18 10:16:28 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:16:29 2023 searching for 15-digit factors Wed Jan 18 10:16:29 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:16:29 2023 R0: -31568067645183687867388717 Wed Jan 18 10:16:29 2023 R1: 335418975301223 Wed Jan 18 10:16:29 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:16:29 2023 A1: -325873214340492905295836156 Wed Jan 18 10:16:29 2023 A2: 4592082846567042312756 Wed Jan 18 10:16:29 2023 A3: -69716178035439491 Wed Jan 18 10:16:29 2023 A4: 6822593116 Wed Jan 18 10:16:29 2023 A5: 55380 Wed Jan 18 10:16:29 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:16:29 2023 Wed Jan 18 10:16:29 2023 commencing relation filtering Wed Jan 18 10:16:29 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:16:29 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:16:59 2023 error -15 reading relation 14894939 Wed Jan 18 10:16:59 2023 error -1 reading relation 14894940 Wed Jan 18 10:17:12 2023 found 2897530 hash collisions in 20701482 relations Wed Jan 18 10:17:33 2023 added 40 free relations Wed Jan 18 10:17:33 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:17:41 2023 found 2590960 duplicates and 18110562 unique relations Wed Jan 18 10:17:41 2023 memory use: 98.6 MB Wed Jan 18 10:17:41 2023 reading ideals above 720000 Wed Jan 18 10:17:41 2023 commencing singleton removal, initial pass Wed Jan 18 10:18:43 2023 memory use: 376.5 MB Wed Jan 18 10:18:43 2023 reading all ideals from disk Wed Jan 18 10:18:43 2023 memory use: 565.5 MB Wed Jan 18 10:18:44 2023 keeping 20452803 ideals with weight <= 200, target excess is 119121 Wed Jan 18 10:18:45 2023 commencing in-memory singleton removal Wed Jan 18 10:18:46 2023 begin with 18110562 relations and 20452803 unique ideals Wed Jan 18 10:18:55 2023 reduce to 5844919 relations and 5927436 ideals in 22 passes Wed Jan 18 10:18:55 2023 max relations containing the same ideal: 90 Wed Jan 18 10:18:56 2023 filtering wants 1000000 more relations Wed Jan 18 10:18:56 2023 elapsed time 00:02:28 -> makeJobFile(): Adjusted to q0=12400001, q1=12500000. -> client 1 q0: 12400001 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 144 Wed Jan 18 10:21:26 2023 Wed Jan 18 10:21:26 2023 Wed Jan 18 10:21:26 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:21:26 2023 random seeds: 929619f0 249bf918 Wed Jan 18 10:21:26 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:21:26 2023 searching for 15-digit factors Wed Jan 18 10:21:27 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:21:27 2023 R0: -31568067645183687867388717 Wed Jan 18 10:21:27 2023 R1: 335418975301223 Wed Jan 18 10:21:27 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:21:27 2023 A1: -325873214340492905295836156 Wed Jan 18 10:21:27 2023 A2: 4592082846567042312756 Wed Jan 18 10:21:27 2023 A3: -69716178035439491 Wed Jan 18 10:21:27 2023 A4: 6822593116 Wed Jan 18 10:21:27 2023 A5: 55380 Wed Jan 18 10:21:27 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:21:27 2023 Wed Jan 18 10:21:27 2023 commencing relation filtering Wed Jan 18 10:21:27 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:21:27 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:21:57 2023 error -15 reading relation 14894939 Wed Jan 18 10:21:57 2023 error -1 reading relation 14894940 Wed Jan 18 10:22:11 2023 found 2948038 hash collisions in 20922593 relations Wed Jan 18 10:22:31 2023 added 32 free relations Wed Jan 18 10:22:31 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:22:39 2023 found 2637810 duplicates and 18284815 unique relations Wed Jan 18 10:22:39 2023 memory use: 98.6 MB Wed Jan 18 10:22:39 2023 reading ideals above 720000 Wed Jan 18 10:22:39 2023 commencing singleton removal, initial pass Wed Jan 18 10:23:44 2023 memory use: 689.0 MB Wed Jan 18 10:23:44 2023 reading all ideals from disk Wed Jan 18 10:23:44 2023 memory use: 571.0 MB Wed Jan 18 10:23:45 2023 keeping 20531029 ideals with weight <= 200, target excess is 119560 Wed Jan 18 10:23:46 2023 commencing in-memory singleton removal Wed Jan 18 10:23:47 2023 begin with 18284815 relations and 20531029 unique ideals Wed Jan 18 10:23:57 2023 reduce to 6091098 relations and 6118787 ideals in 22 passes Wed Jan 18 10:23:57 2023 max relations containing the same ideal: 93 Wed Jan 18 10:23:58 2023 filtering wants 1000000 more relations Wed Jan 18 10:23:58 2023 elapsed time 00:02:32 -> makeJobFile(): Adjusted to q0=12500001, q1=12600000. -> client 1 q0: 12500001 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 147 LatSieveTime: 148 Wed Jan 18 10:26:32 2023 Wed Jan 18 10:26:32 2023 Wed Jan 18 10:26:32 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:26:32 2023 random seeds: c46ed98c 9e012f48 Wed Jan 18 10:26:32 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:26:32 2023 searching for 15-digit factors Wed Jan 18 10:26:33 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:26:33 2023 R0: -31568067645183687867388717 Wed Jan 18 10:26:33 2023 R1: 335418975301223 Wed Jan 18 10:26:33 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:26:33 2023 A1: -325873214340492905295836156 Wed Jan 18 10:26:33 2023 A2: 4592082846567042312756 Wed Jan 18 10:26:33 2023 A3: -69716178035439491 Wed Jan 18 10:26:33 2023 A4: 6822593116 Wed Jan 18 10:26:33 2023 A5: 55380 Wed Jan 18 10:26:33 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:26:33 2023 Wed Jan 18 10:26:33 2023 commencing relation filtering Wed Jan 18 10:26:33 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:26:33 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:27:03 2023 error -15 reading relation 14894939 Wed Jan 18 10:27:03 2023 error -1 reading relation 14894940 Wed Jan 18 10:27:17 2023 found 3000887 hash collisions in 21151890 relations Wed Jan 18 10:27:38 2023 added 57 free relations Wed Jan 18 10:27:38 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:27:46 2023 found 2686649 duplicates and 18465298 unique relations Wed Jan 18 10:27:46 2023 memory use: 98.6 MB Wed Jan 18 10:27:46 2023 reading ideals above 720000 Wed Jan 18 10:27:46 2023 commencing singleton removal, initial pass Wed Jan 18 10:28:52 2023 memory use: 689.0 MB Wed Jan 18 10:28:52 2023 reading all ideals from disk Wed Jan 18 10:28:52 2023 memory use: 576.7 MB Wed Jan 18 10:28:53 2023 keeping 20611004 ideals with weight <= 200, target excess is 120085 Wed Jan 18 10:28:54 2023 commencing in-memory singleton removal Wed Jan 18 10:28:55 2023 begin with 18465298 relations and 20611004 unique ideals Wed Jan 18 10:29:06 2023 reduce to 6346229 relations and 6314897 ideals in 21 passes Wed Jan 18 10:29:06 2023 max relations containing the same ideal: 96 Wed Jan 18 10:29:06 2023 filtering wants 1000000 more relations Wed Jan 18 10:29:06 2023 elapsed time 00:02:34 -> makeJobFile(): Adjusted to q0=12600001, q1=12700000. -> client 1 q0: 12600001 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 149 Wed Jan 18 10:31:41 2023 Wed Jan 18 10:31:41 2023 Wed Jan 18 10:31:41 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:31:41 2023 random seeds: ddb675cc 1d2c5ba7 Wed Jan 18 10:31:41 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:31:42 2023 searching for 15-digit factors Wed Jan 18 10:31:42 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:31:42 2023 R0: -31568067645183687867388717 Wed Jan 18 10:31:42 2023 R1: 335418975301223 Wed Jan 18 10:31:42 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:31:42 2023 A1: -325873214340492905295836156 Wed Jan 18 10:31:42 2023 A2: 4592082846567042312756 Wed Jan 18 10:31:42 2023 A3: -69716178035439491 Wed Jan 18 10:31:42 2023 A4: 6822593116 Wed Jan 18 10:31:42 2023 A5: 55380 Wed Jan 18 10:31:42 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:31:42 2023 Wed Jan 18 10:31:42 2023 commencing relation filtering Wed Jan 18 10:31:42 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:31:42 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:32:12 2023 error -15 reading relation 14894939 Wed Jan 18 10:32:12 2023 error -1 reading relation 14894940 Wed Jan 18 10:32:26 2023 found 3053831 hash collisions in 21380503 relations Wed Jan 18 10:32:47 2023 added 34 free relations Wed Jan 18 10:32:47 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:32:55 2023 found 2735811 duplicates and 18644726 unique relations Wed Jan 18 10:32:55 2023 memory use: 98.6 MB Wed Jan 18 10:32:55 2023 reading ideals above 720000 Wed Jan 18 10:32:55 2023 commencing singleton removal, initial pass Wed Jan 18 10:34:02 2023 memory use: 689.0 MB Wed Jan 18 10:34:02 2023 reading all ideals from disk Wed Jan 18 10:34:02 2023 memory use: 582.4 MB Wed Jan 18 10:34:03 2023 keeping 20689577 ideals with weight <= 200, target excess is 120624 Wed Jan 18 10:34:04 2023 commencing in-memory singleton removal Wed Jan 18 10:34:05 2023 begin with 18644726 relations and 20689577 unique ideals Wed Jan 18 10:34:15 2023 reduce to 6596686 relations and 6505159 ideals in 20 passes Wed Jan 18 10:34:15 2023 max relations containing the same ideal: 97 Wed Jan 18 10:34:15 2023 filtering wants 1000000 more relations Wed Jan 18 10:34:15 2023 elapsed time 00:02:34 -> makeJobFile(): Adjusted to q0=12700001, q1=12800000. -> client 1 q0: 12700001 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 Wed Jan 18 10:36:45 2023 Wed Jan 18 10:36:45 2023 Wed Jan 18 10:36:45 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:36:45 2023 random seeds: c82e4df8 1bacc88d Wed Jan 18 10:36:45 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:36:45 2023 searching for 15-digit factors Wed Jan 18 10:36:45 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:36:45 2023 R0: -31568067645183687867388717 Wed Jan 18 10:36:45 2023 R1: 335418975301223 Wed Jan 18 10:36:45 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:36:45 2023 A1: -325873214340492905295836156 Wed Jan 18 10:36:45 2023 A2: 4592082846567042312756 Wed Jan 18 10:36:45 2023 A3: -69716178035439491 Wed Jan 18 10:36:45 2023 A4: 6822593116 Wed Jan 18 10:36:45 2023 A5: 55380 Wed Jan 18 10:36:45 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:36:45 2023 Wed Jan 18 10:36:45 2023 commencing relation filtering Wed Jan 18 10:36:45 2023 estimated available RAM is 65413.5 MB Wed Jan 18 10:36:45 2023 commencing duplicate removal, pass 1 Wed Jan 18 10:37:16 2023 error -15 reading relation 14894939 Wed Jan 18 10:37:16 2023 error -1 reading relation 14894940 Wed Jan 18 10:37:30 2023 found 3106790 hash collisions in 21608837 relations Wed Jan 18 10:37:51 2023 added 52 free relations Wed Jan 18 10:37:51 2023 commencing duplicate removal, pass 2 Wed Jan 18 10:37:59 2023 found 2785035 duplicates and 18823854 unique relations Wed Jan 18 10:37:59 2023 memory use: 98.6 MB Wed Jan 18 10:37:59 2023 reading ideals above 720000 Wed Jan 18 10:37:59 2023 commencing singleton removal, initial pass Wed Jan 18 10:39:04 2023 memory use: 689.0 MB Wed Jan 18 10:39:04 2023 reading all ideals from disk Wed Jan 18 10:39:04 2023 memory use: 588.0 MB Wed Jan 18 10:39:05 2023 keeping 20767036 ideals with weight <= 200, target excess is 121178 Wed Jan 18 10:39:06 2023 commencing in-memory singleton removal Wed Jan 18 10:39:06 2023 begin with 18823854 relations and 20767036 unique ideals Wed Jan 18 10:39:17 2023 reduce to 6844737 relations and 6691510 ideals in 21 passes Wed Jan 18 10:39:17 2023 max relations containing the same ideal: 102 Wed Jan 18 10:39:19 2023 relations with 0 large ideals: 462 Wed Jan 18 10:39:19 2023 relations with 1 large ideals: 1423 Wed Jan 18 10:39:19 2023 relations with 2 large ideals: 24413 Wed Jan 18 10:39:19 2023 relations with 3 large ideals: 178891 Wed Jan 18 10:39:19 2023 relations with 4 large ideals: 699106 Wed Jan 18 10:39:19 2023 relations with 5 large ideals: 1555803 Wed Jan 18 10:39:19 2023 relations with 6 large ideals: 2024116 Wed Jan 18 10:39:19 2023 relations with 7+ large ideals: 2360523 Wed Jan 18 10:39:19 2023 commencing 2-way merge Wed Jan 18 10:39:23 2023 reduce to 3762783 relation sets and 3610707 unique ideals Wed Jan 18 10:39:23 2023 ignored 1151 oversize relation sets Wed Jan 18 10:39:23 2023 commencing full merge Wed Jan 18 10:40:10 2023 memory use: 396.7 MB Wed Jan 18 10:40:11 2023 found 1843352 cycles, need 1836907 Wed Jan 18 10:40:11 2023 weight of 1836907 cycles is about 128884219 (70.16/cycle) Wed Jan 18 10:40:11 2023 distribution of cycle lengths: Wed Jan 18 10:40:11 2023 1 relations: 276712 Wed Jan 18 10:40:11 2023 2 relations: 241062 Wed Jan 18 10:40:11 2023 3 relations: 230666 Wed Jan 18 10:40:11 2023 4 relations: 196498 Wed Jan 18 10:40:11 2023 5 relations: 163266 Wed Jan 18 10:40:11 2023 6 relations: 135925 Wed Jan 18 10:40:11 2023 7 relations: 111432 Wed Jan 18 10:40:11 2023 8 relations: 89727 Wed Jan 18 10:40:11 2023 9 relations: 72482 Wed Jan 18 10:40:11 2023 10+ relations: 319137 Wed Jan 18 10:40:11 2023 heaviest cycle: 28 relations Wed Jan 18 10:40:11 2023 commencing cycle optimization Wed Jan 18 10:40:13 2023 start with 10550282 relations Wed Jan 18 10:40:27 2023 pruned 200392 relations Wed Jan 18 10:40:27 2023 memory use: 367.8 MB Wed Jan 18 10:40:27 2023 distribution of cycle lengths: Wed Jan 18 10:40:27 2023 1 relations: 276712 Wed Jan 18 10:40:27 2023 2 relations: 246247 Wed Jan 18 10:40:27 2023 3 relations: 237962 Wed Jan 18 10:40:27 2023 4 relations: 199179 Wed Jan 18 10:40:27 2023 5 relations: 165208 Wed Jan 18 10:40:27 2023 6 relations: 136007 Wed Jan 18 10:40:27 2023 7 relations: 110712 Wed Jan 18 10:40:27 2023 8 relations: 88479 Wed Jan 18 10:40:27 2023 9 relations: 71033 Wed Jan 18 10:40:27 2023 10+ relations: 305368 Wed Jan 18 10:40:27 2023 heaviest cycle: 28 relations Wed Jan 18 10:40:28 2023 RelProcTime: 223 Wed Jan 18 10:40:28 2023 elapsed time 00:03:43 Wed Jan 18 10:40:28 2023 Wed Jan 18 10:40:28 2023 Wed Jan 18 10:40:28 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 10:40:28 2023 random seeds: c20e6594 827c4b3d Wed Jan 18 10:40:28 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 10:40:28 2023 searching for 15-digit factors Wed Jan 18 10:40:29 2023 commencing number field sieve (133-digit input) Wed Jan 18 10:40:29 2023 R0: -31568067645183687867388717 Wed Jan 18 10:40:29 2023 R1: 335418975301223 Wed Jan 18 10:40:29 2023 A0: -24187710368668121349667894078080 Wed Jan 18 10:40:29 2023 A1: -325873214340492905295836156 Wed Jan 18 10:40:29 2023 A2: 4592082846567042312756 Wed Jan 18 10:40:29 2023 A3: -69716178035439491 Wed Jan 18 10:40:29 2023 A4: 6822593116 Wed Jan 18 10:40:29 2023 A5: 55380 Wed Jan 18 10:40:29 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 10:40:29 2023 Wed Jan 18 10:40:29 2023 commencing linear algebra Wed Jan 18 10:40:29 2023 read 1836907 cycles Wed Jan 18 10:40:31 2023 cycles contain 6354632 unique relations Wed Jan 18 10:40:44 2023 read 6354632 relations Wed Jan 18 10:40:51 2023 using 20 quadratic characters above 268435110 Wed Jan 18 10:41:07 2023 building initial matrix Wed Jan 18 10:41:46 2023 memory use: 820.8 MB Wed Jan 18 10:41:48 2023 read 1836907 cycles Wed Jan 18 10:41:48 2023 matrix is 1836703 x 1836907 (552.8 MB) with weight 174118770 (94.79/col) Wed Jan 18 10:41:48 2023 sparse part has weight 124714052 (67.89/col) Wed Jan 18 10:41:57 2023 filtering completed in 2 passes Wed Jan 18 10:41:58 2023 matrix is 1831493 x 1831693 (552.2 MB) with weight 173840952 (94.91/col) Wed Jan 18 10:41:58 2023 sparse part has weight 124605741 (68.03/col) Wed Jan 18 10:42:00 2023 matrix starts at (0, 0) Wed Jan 18 10:42:01 2023 matrix is 1831493 x 1831693 (552.2 MB) with weight 173840952 (94.91/col) Wed Jan 18 10:42:01 2023 sparse part has weight 124605741 (68.03/col) Wed Jan 18 10:42:01 2023 saving the first 48 matrix rows for later Wed Jan 18 10:42:01 2023 matrix includes 64 packed rows Wed Jan 18 10:42:02 2023 matrix is 1831445 x 1831693 (533.7 MB) with weight 138497718 (75.61/col) Wed Jan 18 10:42:02 2023 sparse part has weight 121583856 (66.38/col) Wed Jan 18 10:42:02 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Wed Jan 18 10:42:07 2023 commencing Lanczos iteration (32 threads) Wed Jan 18 10:42:07 2023 memory use: 423.5 MB Wed Jan 18 10:42:09 2023 linear algebra at 0.1%, ETA 0h40m Wed Jan 18 10:42:09 2023 checkpointing every 3660000 dimensions Wed Jan 18 11:14:31 2023 lanczos halted after 28965 iterations (dim = 1831445) Wed Jan 18 11:14:33 2023 recovered 34 nontrivial dependencies Wed Jan 18 11:14:33 2023 BLanczosTime: 2044 Wed Jan 18 11:14:33 2023 elapsed time 00:34:05 Wed Jan 18 11:14:33 2023 Wed Jan 18 11:14:33 2023 Wed Jan 18 11:14:33 2023 Msieve v. 1.52 (SVN 927) Wed Jan 18 11:14:33 2023 random seeds: bfb3a854 468c216a Wed Jan 18 11:14:33 2023 factoring 1736175056643120592826213240961747804663062240859936345682069286668073927545756033332055123874596392367168126993310793288319226176537 (133 digits) Wed Jan 18 11:14:33 2023 searching for 15-digit factors Wed Jan 18 11:14:33 2023 commencing number field sieve (133-digit input) Wed Jan 18 11:14:33 2023 R0: -31568067645183687867388717 Wed Jan 18 11:14:33 2023 R1: 335418975301223 Wed Jan 18 11:14:33 2023 A0: -24187710368668121349667894078080 Wed Jan 18 11:14:33 2023 A1: -325873214340492905295836156 Wed Jan 18 11:14:33 2023 A2: 4592082846567042312756 Wed Jan 18 11:14:33 2023 A3: -69716178035439491 Wed Jan 18 11:14:33 2023 A4: 6822593116 Wed Jan 18 11:14:33 2023 A5: 55380 Wed Jan 18 11:14:33 2023 skew 402699.73, size 6.650e-013, alpha -6.509, combined = 4.742e-011 rroots = 3 Wed Jan 18 11:14:33 2023 Wed Jan 18 11:14:33 2023 commencing square root phase Wed Jan 18 11:14:33 2023 reading relations for dependency 1 Wed Jan 18 11:14:33 2023 read 915514 cycles Wed Jan 18 11:14:34 2023 cycles contain 3177000 unique relations Wed Jan 18 11:14:42 2023 read 3177000 relations Wed Jan 18 11:14:51 2023 multiplying 3177000 relations Wed Jan 18 11:16:32 2023 multiply complete, coefficients have about 152.45 million bits Wed Jan 18 11:16:33 2023 initial square root is modulo 295973 Wed Jan 18 11:18:35 2023 GCD is N, no factor found Wed Jan 18 11:18:35 2023 reading relations for dependency 2 Wed Jan 18 11:18:35 2023 read 915413 cycles Wed Jan 18 11:18:36 2023 cycles contain 3174488 unique relations Wed Jan 18 11:18:44 2023 read 3174488 relations Wed Jan 18 11:18:52 2023 multiplying 3174488 relations Wed Jan 18 11:20:36 2023 multiply complete, coefficients have about 152.33 million bits Wed Jan 18 11:20:37 2023 initial square root is modulo 293093 Wed Jan 18 11:22:40 2023 GCD is 1, no factor found Wed Jan 18 11:22:40 2023 reading relations for dependency 3 Wed Jan 18 11:22:40 2023 read 915797 cycles Wed Jan 18 11:22:41 2023 cycles contain 3176664 unique relations Wed Jan 18 11:22:49 2023 read 3176664 relations Wed Jan 18 11:22:58 2023 multiplying 3176664 relations Wed Jan 18 11:24:42 2023 multiply complete, coefficients have about 152.44 million bits Wed Jan 18 11:24:43 2023 initial square root is modulo 295541 Wed Jan 18 11:26:46 2023 sqrtTime: 733 Wed Jan 18 11:26:46 2023 prp62 factor: 16303755614391943456516531856194482531042401023802540931861031 Wed Jan 18 11:26:46 2023 prp72 factor: 106489271411216015771872213095768269959511517286952378678546995227297727 Wed Jan 18 11:26:46 2023 elapsed time 00:12:13 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 08:42:19 UTC 2022 年 12 月 24 日 (土) 17 時 42 分 19 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 2, 2023 12:48:06 UTC 2023 年 1 月 2 日 (月) 21 時 48 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 11:18:15 UTC 2023 年 1 月 30 日 (月) 20 時 18 分 15 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 4, 2023 09:21:07 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 7 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 13, 2023 08:10:36 UTC 2023 年 2 月 13 日 (月) 17 時 10 分 36 秒 (日本時間) |
composite number 合成数 | 449741065503268620503055571014561725901218970204141950044234922721243064183546288193661754521911379679717621563908909670488911255166571886466693844570864220375942353770934995753270158339761622038941239470581<207> |
prime factors 素因数 | 21903030460082717959563366007545934919<38> 20533280375192892346791591346832044212571437159025818678482806887971085046614730052008328324135810071995610911554124922766234671350684447108453460955601096466533845334499<170> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @fa4e76587125 with GMP-ECM 7.0.5-dev on Sat Feb 11 07:06:05 2023 Input number is 449741065503268620503055571014561725901218970204141950044234922721243064183546288193661754521911379679717621563908909670488911255166571886466693844570864220375942353770934995753270158339761622038941239470581 (207 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:2746423616 Step 1 took 0ms Step 2 took 17278ms ********** Factor found in step 2: 21903030460082717959563366007545934919 Found prime factor of 38 digits: 21903030460082717959563366007545934919 Prime cofactor 20533280375192892346791591346832044212571437159025818678482806887971085046614730052008328324135810071995610911554124922766234671350684447108453460955601096466533845334499 has 170 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:03 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 3 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:34 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 34 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | July 12, 2023 13:20:23 UTC 2023 年 7 月 12 日 (水) 22 時 20 分 23 秒 (日本時間) |
composite number 合成数 | 16138171834494319240453462377076319630124232321568540386146001632972356610419532102753668893142016935796008503981204524375838014930051469283279475503<149> |
prime factors 素因数 | 5096343647528050759441951498652766500146303981533239<52> 3166617667613925010541509139410765200268030755166593490250671041847131389283905329928248803659977<97> |
factorization results 素因数分解の結果 | Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1:2663716738 Step 1 took 82235ms Step 2 took 29015ms ********** Factor found in step 2: 5096343647528050759441951498652766500146303981533239 Found prime factor of 52 digits: 5096343647528050759441951498652766500146303981533239 Prime cofactor 3166617667613925010541509139410765200268030755166593490250671041847131389283905329928248803659977 has 97 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 12:25:20 UTC 2022 年 12 月 25 日 (日) 21 時 25 分 20 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 29, 2022 11:57:51 UTC 2022 年 12 月 29 日 (木) 20 時 57 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:11 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 11 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:19:42 UTC 2023 年 2 月 11 日 (土) 8 時 19 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:19 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 19 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 4, 2023 09:21:15 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 15 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:26 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 26 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 25, 2023 23:36:44 UTC 2023 年 2 月 26 日 (日) 8 時 36 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 4, 2023 22:54:12 UTC 2023 年 2 月 5 日 (日) 7 時 54 分 12 秒 (日本時間) |
composite number 合成数 | 147554513378227693163586418975849415336258027439508428865557115548621136376132222845040261169915974443341323975057090389801720771888704869390687260653110754872057287011562902078830641<183> |
prime factors 素因数 | 40589756177017973469834016256261512558319<41> |
composite cofactor 合成数の残り | 3635264837135765947143582893757871164063402649692256499810345412327099830915048739889951383887007145117955802415188169232108303840724120879839<142> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:625110527 Step 1 took 31910ms Step 2 took 13497ms ********** Factor found in step 2: 40589756177017973469834016256261512558319 Found prime factor of 41 digits: 40589756177017973469834016256261512558319 Composite cofactor 3635264837135765947143582893757871164063402649692256499810345412327099830915048739889951383887007145117955802415188169232108303840724120879839 has 142 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | August 28, 2023 04:39:51 UTC 2023 年 8 月 28 日 (月) 13 時 39 分 51 秒 (日本時間) |
composite number 合成数 | 3635264837135765947143582893757871164063402649692256499810345412327099830915048739889951383887007145117955802415188169232108303840724120879839<142> |
prime factors 素因数 | 88873277640127793924538935675557431730608166997341993194555450550999<68> 40903913230880799048054649201314608817830973795762896086355585309298831161<74> |
factorization results 素因数分解の結果 | 3635264837135765947143582893757871164063402649692256499810345412327099830915048739889951383887007145117955802415188169232108303840724120879839=88873277640127793924538935675557431730608166997341993194555450550999*40903913230880799048054649201314608817830973795762896086355585309298831161 cado polynomial n: 3635264837135765947143582893757871164063402649692256499810345412327099830915048739889951383887007145117955802415188169232108303840724120879839 skew: 630603.982 c0: -1306563389962234210926959486742810 c1: 5939140561184328448098016107 c2: 10260975101306008960206 c3: -30487094716273961 c4: -38624751818 c5: 11040 Y0: -3664613757555358468431300596 Y1: 3714433363300293659 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.144e-07 # f(x) = 11040*x^5-38624751818*x^4-30487094716273961*x^3+10260975101306008960206*x^2+5939140561184328448098016107*x-1306563389962234210926959486742810 # g(x) = 3714433363300293659*x-3664613757555358468431300596 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 40903913230880799048054649201314608817830973795762896086355585309298831161 88873277640127793924538935675557431730608166997341993194555450550999 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 1444.72/239.06 Info:HTTP server: Got notification to stop serving Workunits Info:Generate Free Relations: Total cpu/real time for freerel: 733.82/92.6516 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1125.9/958.926 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 652.9999999999999s Info:Linear Algebra: Total cpu/real time for bwc: 67371.8/17569.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 42880.45, WCT time 11146.25, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (66560 iterations) Info:Linear Algebra: Lingen CPU time 397.8, WCT time 101.74 Info:Linear Algebra: Mksol: CPU time 23365.88, WCT time 6081.94, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (33280 iterations) Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 14716.9 Info:Polynomial Selection (root optimized): Rootsieve time: 14712.3 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 34397290 Info:Lattice Sieving: Average J: 3825.54 for 1158926 special-q, max bucket fill -bkmult 1.0,1s:1.135690 Info:Lattice Sieving: Total time: 708780s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48451/42.400/50.971/56.340/0.921 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39624/41.710/45.583/51.720/1.114 Info:Polynomial Selection (size optimized): Total time: 38199.7 Info:Generate Factor Base: Total cpu/real time for makefb: 14.66/2.04556 Info:Square Root: Total cpu/real time for sqrt: 1444.72/239.06 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 302.41/246.097 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 245.0s Info:Quadratic Characters: Total cpu/real time for characters: 110.78/28.5199 Info:Filtering - Singleton removal: Total cpu/real time for purge: 711.16/576.13 Info:Filtering - Merging: Merged matrix has 2116093 rows and total weight 362258241 (171.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 1156.01/164.901 Info:Filtering - Merging: Total cpu/real time for replay: 82.64/70.8155 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.44248e+06/203534 Info:root: Cleaning up computation data in /tmp/cado.4lfcfnoa 40903913230880799048054649201314608817830973795762896086355585309298831161 88873277640127793924538935675557431730608166997341993194555450550999 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 10:46:21 UTC 2023 年 1 月 30 日 (月) 19 時 46 分 21 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | February 4, 2023 09:21:23 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 23 秒 (日本時間) |
4480 | Ignacio Santos | February 7, 2023 11:18:47 UTC 2023 年 2 月 7 日 (火) 20 時 18 分 47 秒 (日本時間) | |||
50 | 43e6 | 6454 | Ignacio Santos | February 7, 2023 15:51:55 UTC 2023 年 2 月 8 日 (水) 0 時 51 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:35 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 35 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:01 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:57:25 UTC 2023 年 1 月 29 日 (日) 19 時 57 分 25 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 07:50:33 UTC 2023 年 10 月 25 日 (水) 16 時 50 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 12, 2023 21:15:31 UTC 2023 年 2 月 13 日 (月) 6 時 15 分 31 秒 (日本時間) |
composite number 合成数 | 12268625491668380350079975540786480915240267886557253932129083821910012078424906050696241544872075479471129374694438907761321970236825829466020303990368350851575356912475156807273326837023842950008713273<203> |
prime factors 素因数 | 32562453525902654292412787649002538593599772405857<50> 376772145929021647802737767890871640375822900909738551621018313965492337458087074743396854238952184981818284734011316048390280609024263988349427043856089<153> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @fa4e76587125 with GMP-ECM 7.0.5-dev on Sat Feb 11 07:27:32 2023 Input number is 12268625491668380350079975540786480915240267886557253932129083821910012078424906050696241544872075479471129374694438907761321970236825829466020303990368350851575356912475156807273326837023842950008713273 (203 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:1026156434 Step 1 took 0ms Step 2 took 17339ms ********** Factor found in step 2: 32562453525902654292412787649002538593599772405857 Found prime factor of 50 digits: 32562453525902654292412787649002538593599772405857 Prime cofactor 376772145929021647802737767890871640375822900909738551621018313965492337458087074743396854238952184981818284734011316048390280609024263988349427043856089 has 153 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:43 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 43 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:11 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:57:51 UTC 2023 年 1 月 30 日 (月) 22 時 57 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 25, 2023 23:37:08 UTC 2023 年 2 月 26 日 (日) 8 時 37 分 8 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 11:18:23 UTC 2023 年 1 月 30 日 (月) 20 時 18 分 23 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 4, 2023 09:21:31 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:57:34 UTC 2023 年 1 月 29 日 (日) 19 時 57 分 34 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 07:51:56 UTC 2023 年 10 月 25 日 (水) 16 時 51 分 56 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 31, 2023 06:03:05 UTC 2023 年 1 月 31 日 (火) 15 時 3 分 5 秒 (日本時間) |
composite number 合成数 | 127796866158337058671621728030255160108135753659004019126783068862224158791436101325859579653772489940705849225494825243607784583758691723416250233967253078349692197202351429054619088092772691972879820037514801569<213> |
prime factors 素因数 | 15318200461048029854373906737518408531<38> |
composite cofactor 合成数の残り | 8342811969546032606111326044530075450217226985292908426525466400249198061569161111927586474346572749917504594084247705766679467443024256683426273854475974891953518203809447099<175> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @5e9ed72bc611 with GMP-ECM 7.0.5-dev on Mon Jan 30 14:42:36 2023 Input number is 127796866158337058671621728030255160108135753659004019126783068862224158791436101325859579653772489940705849225494825243607784583758691723416250233967253078349692197202351429054619088092772691972879820037514801569 (213 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3947183973 Step 1 took 0ms Step 2 took 4289ms ********** Factor found in step 2: 15318200461048029854373906737518408531 Found prime factor of 38 digits: 15318200461048029854373906737518408531 Composite cofactor 8342811969546032606111326044530075450217226985292908426525466400249198061569161111927586474346572749917504594084247705766679467443024256683426273854475974891953518203809447099 has 175 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:58:58 UTC 2023 年 1 月 30 日 (月) 22 時 58 分 58 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 3, 2023 20:13:27 UTC 2023 年 2 月 4 日 (土) 5 時 13 分 27 秒 (日本時間) |
composite cofactor 合成数の残り | 4668270140494500758251058629124331356883590964950048684359269416947314083144224569993808187511430573581180547067465908206546870591526538708592435410301858166169162881031<169> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 13:12:54 UTC 2022 年 12 月 26 日 (月) 22 時 12 分 54 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 1, 2023 13:23:47 UTC 2023 年 1 月 1 日 (日) 22 時 23 分 47 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | June 12, 2024 23:30:53 UTC 2024 年 6 月 13 日 (木) 8 時 30 分 53 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 29, 2023 19:01:37 UTC 2023 年 1 月 30 日 (月) 4 時 1 分 37 秒 (日本時間) |
composite number 合成数 | 216592665716772256533782786538791335505455342935613795475644178204354412403103916813514789358139559777885713390258322022372985130332308223911250067446053634762394133551068966569043579167521059554570853634448575426779212274880096075115761169<240> |
prime factors 素因数 | 1061822285363943358456669376262152469400729<43> |
composite cofactor 合成数の残り | 203982030422854000768008739761621701247969893673014616016054397987963182153705690049179546406370830329123169486554055540831819064221552849933098349969608592205504761016112308970729799913800536162361<198> |
factorization results 素因数分解の結果 | GPU: factor 1061822285363943358456669376262152469400729 found in Step 1 with curve 1367 (-sigma 3:-2079111489) Computing 1792 Step 1 took 306ms of CPU time / 267770ms of GPU time Throughput: 6.692 curves per second (on average 149.42ms per Step 1) ********** Factor found in step 1: 1061822285363943358456669376262152469400729 Found prime factor of 43 digits: 1061822285363943358456669376262152469400729 Composite cofactor 203982030422854000768008739761621701247969893673014616016054397987963182153705690049179546406370830329123169486554055540831819064221552849933098349969608592205504761016112308970729799913800536162361 has 198 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 29, 2023 10:57:42 UTC 2023 年 1 月 29 日 (日) 19 時 57 分 42 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | February 4, 2023 09:21:40 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 30, 2023 10:46:35 UTC 2023 年 1 月 30 日 (月) 19 時 46 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 4, 2023 09:21:48 UTC 2023 年 2 月 4 日 (土) 18 時 21 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:07 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 7 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:26 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:16 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 16 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:34 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:25 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 25 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:41 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:33 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 33 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 2, 2023 21:18:06 UTC 2023 年 3 月 3 日 (金) 6 時 18 分 6 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:57:49 UTC 2023 年 1 月 29 日 (日) 19 時 57 分 49 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 08:07:46 UTC 2023 年 10 月 25 日 (水) 17 時 7 分 46 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 4, 2023 21:15:45 UTC 2023 年 3 月 5 日 (日) 6 時 15 分 45 秒 (日本時間) |
composite number 合成数 | 89588035685583685606940555539304916822755669632304959887306506160578162104779039325546069911037677835335326314692786559676894515490918704503088889875108432053484973034059416513287757654787247347223181239772341919964445703<221> |
prime factors 素因数 | 113519924854745219388418724313680534821168742177<48> |
composite cofactor 合成数の残り | 789183359663216315348443732418771775891486657860570302854417869083521502417892344220364262789279112664856690286738663132786883270454957646658310289533147644904631309649190439<174> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @7c7ec50ae325 with GMP-ECM 7.0.5-dev on Sat Mar 4 05:20:32 2023 Input number is 89588035685583685606940555539304916822755669632304959887306506160578162104779039325546069911037677835335326314692786559676894515490918704503088889875108432053484973034059416513287757654787247347223181239772341919964445703 (221 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:1406411744 Step 1 took 0ms Step 2 took 13075ms ********** Factor found in step 2: 113519924854745219388418724313680534821168742177 Found prime factor of 48 digits: 113519924854745219388418724313680534821168742177 Composite cofactor 789183359663216315348443732418771775891486657860570302854417869083521502417892344220364262789279112664856690286738663132786883270454957646658310289533147644904631309649190439 has 174 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:40 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 40 秒 (日本時間) | |
45 | 11e6 | 6272 | 1792 | Dmitry Domanov | March 2, 2023 21:18:15 UTC 2023 年 3 月 3 日 (金) 6 時 18 分 15 秒 (日本時間) |
4480 | Ignacio Santos | March 11, 2023 13:18:21 UTC 2023 年 3 月 11 日 (土) 22 時 18 分 21 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6072 | Dmitry Domanov | May 24, 2024 18:45:12 UTC 2024 年 5 月 25 日 (土) 3 時 45 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:54 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 54 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:12 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 12 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 30, 2023 05:08:29 UTC 2023 年 1 月 30 日 (月) 14 時 8 分 29 秒 (日本時間) |
composite number 合成数 | 12744602931992834105504297780492410134908172153777943948996894329461269746227053458816013309221647235746977943372007753629694470512828406710123386820844603559163288299873922486160822296925618223850148436642674605566603055880751119991241599601711<245> |
prime factors 素因数 | 240208333349035833996754673578720871<36> |
composite cofactor 合成数の残り | 53056456261549551011379832648166098366174656177302736279429004658853169167539631516317051810903081436763831218051429513953821841914330800558262826637223911691439705304007363357806618780334375136442566211426041<209> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b8400992c270 with GMP-ECM 7.0.5-dev on Sun Jan 29 17:41:29 2023 Input number is 12744602931992834105504297780492410134908172153777943948996894329461269746227053458816013309221647235746977943372007753629694470512828406710123386820844603559163288299873922486160822296925618223850148436642674605566603055880751119991241599601711 (245 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2517457917 Step 1 took 0ms Step 2 took 4192ms ********** Factor found in step 2: 240208333349035833996754673578720871 Found prime factor of 36 digits: 240208333349035833996754673578720871 Composite cofactor 53056456261549551011379832648166098366174656177302736279429004658853169167539631516317051810903081436763831218051429513953821841914330800558262826637223911691439705304007363357806618780334375136442566211426041 has 209 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 29, 2023 10:57:57 UTC 2023 年 1 月 29 日 (日) 19 時 57 分 57 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:20:56 UTC 2023 年 2 月 11 日 (土) 8 時 20 分 56 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 14:46:48 UTC 2023 年 1 月 19 日 (木) 23 時 46 分 48 秒 (日本時間) |
composite number 合成数 | 122543808993857935516362908786804369558668046460657017014750769965659090704524598670860468455209492804254151715176553567997841638397531275167290315088735260946963624008235175599418209212388365733340395980557485173356861398632746735036585983394171405401<252> |
prime factors 素因数 | 15008175969060162015432833588462389477053449<44> |
composite cofactor 合成数の残り | 8165136739233731224240147535363498500548771800379702032247382275930139887222099184986552766069489446333285243928801020769443266843942418756360992028322763126257599299402434396070567984564510583660992295133649<208> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 09:43:59 2023 Input number is 122543808993857935516362908786804369558668046460657017014750769965659090704524598670860468455209492804254151715176553567997841638397531275167290315088735260946963624008235175599418209212388365733340395980557485173356861398632746735036585983394171405401 (252 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1119119911 Step 1 took 0ms Step 2 took 4553ms ********** Factor found in step 2: 15008175969060162015432833588462389477053449 Found prime factor of 44 digits: 15008175969060162015432833588462389477053449 Composite cofactor 8165136739233731224240147535363498500548771800379702032247382275930139887222099184986552766069489446333285243928801020769443266843942418756360992028322763126257599299402434396070567984564510583660992295133649 has 208 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:46 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 46 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:21:05 UTC 2023 年 2 月 11 日 (土) 8 時 21 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:38 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 38 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:22 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:58:05 UTC 2023 年 1 月 29 日 (日) 19 時 58 分 5 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 08:37:07 UTC 2023 年 10 月 25 日 (水) 17 時 37 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:31 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 31 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:30 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 30 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 13, 2023 08:09:26 UTC 2023 年 2 月 13 日 (月) 17 時 9 分 26 秒 (日本時間) |
composite number 合成数 | 28610790972782815477728313497354017102383383991886895073344293709576690931541392126772483936560961302337572321109508062179681346719498022525109550804207590810353726887421728471039576309611429761141024596087793<209> |
prime factors 素因数 | 68919474123143376398338536107736154259912423<44> |
composite cofactor 合成数の残り | 415133622779272220101600164621562005910888549147365701289869212673554092522842189229526111610310098468102996411781768412463599976943078234239224490870491182270905191<165> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @fa4e76587125 with GMP-ECM 7.0.5-dev on Sat Feb 11 04:13:55 2023 Input number is 28610790972782815477728313497354017102383383991886895073344293709576690931541392126772483936560961302337572321109508062179681346719498022525109550804207590810353726887421728471039576309611429761141024596087793 (209 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:4278645284 Step 1 took 0ms Step 2 took 17338ms ********** Factor found in step 2: 68919474123143376398338536107736154259912423 Found prime factor of 44 digits: 68919474123143376398338536107736154259912423 Composite cofactor 415133622779272220101600164621562005910888549147365701289869212673554092522842189229526111610310098468102996411781768412463599976943078234239224490870491182270905191 has 165 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:57 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 57 秒 (日本時間) | |
45 | 11e6 | 6272 | 1792 | Dmitry Domanov | February 10, 2023 23:21:34 UTC 2023 年 2 月 11 日 (土) 8 時 21 分 34 秒 (日本時間) |
4480 | Ignacio Santos | February 15, 2023 17:05:24 UTC 2023 年 2 月 16 日 (木) 2 時 5 分 24 秒 (日本時間) | |||
50 | 43e6 | 1792 / 6072 | Dmitry Domanov | September 26, 2024 06:02:19 UTC 2024 年 9 月 26 日 (木) 15 時 2 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 13:59:48 UTC 2023 年 1 月 30 日 (月) 22 時 59 分 48 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 2, 2023 21:18:32 UTC 2023 年 3 月 3 日 (金) 6 時 18 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:58:12 UTC 2023 年 1 月 29 日 (日) 19 時 58 分 12 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 08:37:39 UTC 2023 年 10 月 25 日 (水) 17 時 37 分 39 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 6, 2023 09:28:40 UTC 2023 年 2 月 6 日 (月) 18 時 28 分 40 秒 (日本時間) |
composite number 合成数 | 1031002018374258868057688315140747645770841376879859358004560074502322059555704845728713572935231334446537216330123544730876521223158278591963757551966743808210351049834559937472857616084360046734949667755016803562351142581948134046834836526127293068462488180279<262> |
prime factors 素因数 | 419671353528213873632158754707489782158600383<45> |
composite cofactor 合成数の残り | 2456689048958272901695377050080173264402100865927908895299670180040684060314621731264236764155576322967681539669430509365472977523220604511842852826046969572922894382460923658566997517730799949342556382564733715839113<217> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @2e96a0db8d46 with GMP-ECM 7.0.5-dev on Fri Feb 3 11:28:41 2023 Input number is 1031002018374258868057688315140747645770841376879859358004560074502322059555704845728713572935231334446537216330123544730876521223158278591963757551966743808210351049834559937472857616084360046734949667755016803562351142581948134046834836526127293068462488180279 (262 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3776354139 Step 1 took 0ms Step 2 took 13013ms ********** Factor found in step 2: 419671353528213873632158754707489782158600383 Found prime factor of 45 digits: 419671353528213873632158754707489782158600383 Composite cofactor 2456689048958272901695377050080173264402100865927908895299670180040684060314621731264236764155576322967681539669430509365472977523220604511842852826046969572922894382460923658566997517730799949342556382564733715839113 has 217 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:24 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 24 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:40 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 4, 2023 18:03:59 UTC 2023 年 3 月 5 日 (日) 3 時 3 分 59 秒 (日本時間) |
composite number 合成数 | 2380516780270397925668258210675672402547499076489303402285410455127777720742889633526691761085378477457299988920500983026092640151471295073597148908250214048526330258634577199731901195213113642843827156392657930550770301583<223> |
prime factors 素因数 | 904199288444147872392295998901481677103<39> 2632734631285259805036911488121873233504902784944635510359537391357860456354689479384764800492662263815189327746047163880237287673982852955647170986203448113225166087558815398112896161<184> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @7c7ec50ae325 with GMP-ECM 7.0.5-dev on Sat Mar 4 05:58:21 2023 Input number is 2380516780270397925668258210675672402547499076489303402285410455127777720742889633526691761085378477457299988920500983026092640151471295073597148908250214048526330258634577199731901195213113642843827156392657930550770301583 (223 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3191662550 Step 1 took 0ms Step 2 took 17774ms ********** Factor found in step 2: 904199288444147872392295998901481677103 Found prime factor of 39 digits: 904199288444147872392295998901481677103 Prime cofactor 2632734631285259805036911488121873233504902784944635510359537391357860456354689479384764800492662263815189327746047163880237287673982852955647170986203448113225166087558815398112896161 has 184 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 14:00:05 UTC 2023 年 1 月 30 日 (月) 23 時 0 分 5 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 2, 2023 21:18:41 UTC 2023 年 3 月 3 日 (金) 6 時 18 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:16 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 16 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:48 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:09 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 9 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:51:57 UTC 2023 年 2 月 3 日 (金) 8 時 51 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:58:19 UTC 2023 年 1 月 29 日 (日) 19 時 58 分 19 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 08:52:19 UTC 2023 年 10 月 25 日 (水) 17 時 52 分 19 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 05:45:56 UTC 2023 年 1 月 19 日 (木) 14 時 45 分 56 秒 (日本時間) |
composite number 合成数 | 8466483782729238492303896465208206952552535970904796768503484422737683746961787170723005604244959424770536702388505764835065097394241544405456765080608291976924959203282560900864892367635016043534886162611125118209705019964813834698914331518331768133379696955676390311<268> |
prime factors 素因数 | 173099265873767249846261609555980968881<39> |
composite cofactor 合成数の残り | 48911147831807832138866826448977292096644752722337675618204324767595122122939159432601208551790734025446126233681070174062173907383267539452580177495892961531227363709584854459811862552496021135206676712602027106903774692185955031<230> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 09:17:10 2023 Input number is 8466483782729238492303896465208206952552535970904796768503484422737683746961787170723005604244959424770536702388505764835065097394241544405456765080608291976924959203282560900864892367635016043534886162611125118209705019964813834698914331518331768133379696955676390311 (268 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:4102129581 Step 1 took 0ms Step 2 took 7581ms ********** Factor found in step 2: 173099265873767249846261609555980968881 Found prime factor of 39 digits: 173099265873767249846261609555980968881 Composite cofactor 48911147831807832138866826448977292096644752722337675618204324767595122122939159432601208551790734025446126233681070174062173907383267539452580177495892961531227363709584854459811862552496021135206676712602027106903774692185955031 has 230 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:27:02 UTC 2023 年 1 月 18 日 (水) 17 時 27 分 2 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | March 2, 2023 21:18:50 UTC 2023 年 3 月 3 日 (金) 6 時 18 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:26:51 UTC 2023 年 1 月 18 日 (水) 17 時 26 分 51 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:52:05 UTC 2023 年 2 月 3 日 (金) 8 時 52 分 5 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 14:42:34 UTC 2023 年 1 月 13 日 (金) 23 時 42 分 34 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:52:13 UTC 2023 年 2 月 3 日 (金) 8 時 52 分 13 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 12:38:43 UTC 2023 年 1 月 13 日 (金) 21 時 38 分 43 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 3, 2023 12:57:55 UTC 2023 年 2 月 3 日 (金) 21 時 57 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:58:26 UTC 2023 年 1 月 29 日 (日) 19 時 58 分 26 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 09:01:09 UTC 2023 年 10 月 25 日 (水) 18 時 1 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 14:42:29 UTC 2023 年 1 月 13 日 (金) 23 時 42 分 29 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 3, 2023 12:58:04 UTC 2023 年 2 月 3 日 (金) 21 時 58 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:26:34 UTC 2023 年 1 月 18 日 (水) 17 時 26 分 34 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:52:25 UTC 2023 年 2 月 3 日 (金) 8 時 52 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 12:38:51 UTC 2023 年 1 月 13 日 (金) 21 時 38 分 51 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 3, 2023 12:58:12 UTC 2023 年 2 月 3 日 (金) 21 時 58 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 12:39:00 UTC 2023 年 1 月 13 日 (金) 21 時 39 分 0 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 3, 2023 12:58:45 UTC 2023 年 2 月 3 日 (金) 21 時 58 分 45 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 10:58:35 UTC 2023 年 1 月 29 日 (日) 19 時 58 分 35 秒 (日本時間) |
2350 | Ignacio Santos | October 25, 2023 09:25:22 UTC 2023 年 10 月 25 日 (水) 18 時 25 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 14:42:43 UTC 2023 年 1 月 13 日 (金) 23 時 42 分 43 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:21:43 UTC 2023 年 2 月 11 日 (土) 8 時 21 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 14:00:25 UTC 2023 年 1 月 30 日 (月) 23 時 0 分 25 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 10, 2023 23:21:51 UTC 2023 年 2 月 11 日 (土) 8 時 21 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 12:39:07 UTC 2023 年 1 月 13 日 (金) 21 時 39 分 7 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 3, 2023 12:58:28 UTC 2023 年 2 月 3 日 (金) 21 時 58 分 28 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 13, 2023 08:10:09 UTC 2023 年 2 月 13 日 (月) 17 時 10 分 9 秒 (日本時間) |
composite number 合成数 | 554679389920498000598794495486597880666164975006480013651816292706349240804639703833750489650784699850427815622630943431063431903072421491221590800833111642695001779990070701446857052288471027240285618107033<207> |
prime factors 素因数 | 697483368481735373979077178854131335047946223<45> |
composite cofactor 合成数の残り | 795258231214760635230820804733063039546645465709039134928099862953802989408997193399869706221843433522608212578182570682113085801421742254557027472870573458132471<162> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @fa4e76587125 with GMP-ECM 7.0.5-dev on Sat Feb 11 06:33:55 2023 Input number is 554679389920498000598794495486597880666164975006480013651816292706349240804639703833750489650784699850427815622630943431063431903072421491221590800833111642695001779990070701446857052288471027240285618107033 (207 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:1935941518 Step 1 took 0ms Step 2 took 17287ms ********** Factor found in step 2: 697483368481735373979077178854131335047946223 Found prime factor of 45 digits: 697483368481735373979077178854131335047946223 Composite cofactor 795258231214760635230820804733063039546645465709039134928099862953802989408997193399869706221843433522608212578182570682113085801421742254557027472870573458132471 has 162 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 30, 2023 14:00:36 UTC 2023 年 1 月 30 日 (月) 23 時 0 分 36 秒 (日本時間) | |
45 | 11e6 | 6272 | 1792 | Dmitry Domanov | February 10, 2023 23:22:02 UTC 2023 年 2 月 11 日 (土) 8 時 22 分 2 秒 (日本時間) |
4480 | Ignacio Santos | February 15, 2023 16:08:52 UTC 2023 年 2 月 16 日 (木) 1 時 8 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 13, 2023 14:42:24 UTC 2023 年 1 月 13 日 (金) 23 時 42 分 24 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | February 2, 2023 23:52:36 UTC 2023 年 2 月 3 日 (金) 8 時 52 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:40:13 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 13 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:40:13 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 13 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:40:13 UTC 2022 年 12 月 30 日 (金) 19 時 40 分 13 秒 (日本時間) |