name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 15:20:58 UTC 2022 年 12 月 24 日 (土) 0 時 20 分 58 秒 (日本時間) |
composite number 合成数 | 7450331125827814569536423841059602649006622516556291390728476821192052980132450331125827814569536423841059602649<112> |
prime factors 素因数 | 68323635856314184487071986086392049652235439<44> 109044710991317745380170619820817049191422994874837188929918484614391<69> |
factorization results 素因数分解の結果 | N=7450331125827814569536423841059602649006622516556291390728476821192052980132450331125827814569536423841059602649 ( 112 digits) SNFS difficulty: 114 digits. Divisors found: r1=68323635856314184487071986086392049652235439 (pp44) r2=109044710991317745380170619820817049191422994874837188929918484614391 (pp69) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 7450331125827814569536423841059602649006622516556291390728476821192052980132450331125827814569536423841059602649 m: 10000000000000000000000000000 deg: 4 c4: 225 c0: -2 skew: 0.31 # Murphy_E = 7.933e-08 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 560001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61383 x 61616 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114.000,4,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,20000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 22:51:01 UTC 2022 年 12 月 25 日 (日) 7 時 51 分 1 秒 (日本時間) |
composite number 合成数 | 74060015520385506751466047137498802457777925979731996210847347437419680226245566175813714621819419972372928301<110> |
prime factors 素因数 | 1957074234256874954651451524466241049253263178391<49> 37842210695961158208692839389656753183039662938556309297826011<62> |
factorization results 素因数分解の結果 | N=74060015520385506751466047137498802457777925979731996210847347437419680226245566175813714621819419972372928301 ( 110 digits) SNFS difficulty: 119 digits. Divisors found: r1=1957074234256874954651451524466241049253263178391 (pp49) r2=37842210695961158208692839389656753183039662938556309297826011 (pp62) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 74060015520385506751466047137498802457777925979731996210847347437419680226245566175813714621819419972372928301 m: 500000000000000000000000000000 deg: 4 c4: 9 c0: -5 skew: 0.86 # Murphy_E = 4.985e-08 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 595001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56676 x 56901 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119.000,4,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 7, 2023 00:09:11 UTC 2023 年 1 月 7 日 (土) 9 時 9 分 11 秒 (日本時間) |
composite number 合成数 | 2696666924697571100790247354112621078912242376486224769878891802187771372294783719913086116711310538709750552959880216101161<124> |
prime factors 素因数 | 7468591093773337762601307298680931634769277799570369<52> 361067688783473183273231191663759098796228231385732632821579717223915369<72> |
factorization results 素因数分解の結果 | N=2696666924697571100790247354112621078912242376486224769878891802187771372294783719913086116711310538709750552959880216101161 ( 124 digits) SNFS difficulty: 138 digits. Divisors found: r1=7468591093773337762601307298680931634769277799570369 (pp52) r2=361067688783473183273231191663759098796228231385732632821579717223915369 (pp72) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.10 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 2696666924697571100790247354112621078912242376486224769878891802187771372294783719913086116711310538709750552959880216101161 m: 10000000000000000000000000000000000 deg: 4 c4: 225 c0: -2 skew: 0.31 # Murphy_E = 5.533e-09 type: snfs lss: 1 rlim: 1420000 alim: 1420000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1420000/1420000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [710000, 1810001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 191625 x 191850 Total sieving time: 0.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138.000,4,0,0,0,0,0,0,0,0,1420000,1420000,26,26,48,48,2.3,2.3,100000 total time: 0.10 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 9, 2023 02:45:46 UTC 2023 年 1 月 9 日 (月) 11 時 45 分 46 秒 (日本時間) |
composite number 合成数 | 630982934934051004873649175846971151338486199121679280910804478614470886195431699078811927146355694160482571461107139279<120> |
prime factors 素因数 | 20702642568941549207549358420518834145967<41> 30478376508352714444875049822987149033951652971820791140382262959779324318765537<80> |
factorization results 素因数分解の結果 | 630982934934051004873649175846971151338486199121679280910804478614470886195431699078811927146355694160482571461107139279=20702642568941549207549358420518834145967*30478376508352714444875049822987149033951652971820791140382262959779324318765537 cado polynomial n: 630982934934051004873649175846971151338486199121679280910804478614470886195431699078811927146355694160482571461107139279 skew: 0.77 type: snfs c0: -5 c5: 18 Y0: 50000000000000000000000000000 Y1: -1 # f(x) = 18*x^5-5 # g(x) = -x+50000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 1810000 tasks.lim1 = 1810000 tasks.lpb0 = 26 tasks.lpb1 = 26 tasks.sieve.mfb0 = 49 tasks.sieve.mfb1 = 49 tasks.sieve.lambda0 = 2.3 tasks.sieve.lambda1 = 2.3 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 30478376508352714444875049822987149033951652971820791140382262959779324318765537 20702642568941549207549358420518834145967 Info:Square Root: Total cpu/real time for sqrt: 36.3/7.53823 Warning:Polynomial Selection (size optimized): some stats could not be displayed for polyselect1 (see log file for debug info) Warning:Polynomial Selection (root optimized): some stats could not be displayed for polyselect2 (see log file for debug info) Info:Generate Factor Base: Total cpu/real time for makefb: 1.08/0.257489 Info:Generate Free Relations: Total cpu/real time for freerel: 24.2/3.30485 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 6099245 Info:Lattice Sieving: Average J: 1893.79 for 62036 special-q, max bucket fill -bkmult 1.0,1s:1.145800 Info:Lattice Sieving: Total time: 7040.43s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 13.21/9.29884 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 9.2s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 56.57/17.3314 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 16.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 47.8/18.8793 Info:Filtering - Merging: Merged matrix has 173551 rows and total weight 29679482 (171.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 36.84/5.19315 Info:Filtering - Merging: Total cpu/real time for replay: 5.04/4.1681 Info:Linear Algebra: Total cpu/real time for bwc: 300.68/80.22 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 46.69, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (5504 iterations) Info:Linear Algebra: Lingen CPU time 13.79, WCT time 3.76 Info:Linear Algebra: Mksol: WCT time 26.36, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (2816 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 6.44/1.57634 Info:Square Root: Total cpu/real time for sqrt: 36.3/7.53823 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 19896.6/3831.02 Info:root: Cleaning up computation data in /tmp/cado.xfalhg9b 30478376508352714444875049822987149033951652971820791140382262959779324318765537 20702642568941549207549358420518834145967 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 23:57:32 UTC 2022 年 12 月 25 日 (日) 8 時 57 分 32 秒 (日本時間) |
composite number 合成数 | 38793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931<146> |
prime factors 素因数 | 1572229720658033841885835834502598456716963085061<49> 24673941052354342877973420920815079236336865850744711206960984639090684989686316941214710531542671<98> |
factorization results 素因数分解の結果 | Number: n N=38793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931 ( 146 digits) SNFS difficulty: 147 digits. Divisors found: Sun Dec 25 10:46:59 2022 p49 factor: 1572229720658033841885835834502598456716963085061 Sun Dec 25 10:46:59 2022 p98 factor: 24673941052354342877973420920815079236336865850744711206960984639090684989686316941214710531542671 Sun Dec 25 10:46:59 2022 elapsed time 00:03:09 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.301). Factorization parameters were as follows: # # N = 9x10^147-8 = 89(146)2 # n: 38793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931 m: 100000000000000000000000000000 deg: 5 c5: 225 c0: -2 skew: 0.39 # Murphy_E = 2.157e-09 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 679529 hash collisions in 6863692 relations (6618623 unique) Msieve: matrix is 287621 x 287846 (95.9 MB) Sieving start time : 2022/12/25 10:34:37 Sieving end time : 2022/12/25 10:43:36 Total sieving time: 0hrs 8min 59secs. Total relation processing time: 0hrs 1min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 14sec. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 13:34:01 UTC 2022 年 12 月 29 日 (木) 22 時 34 分 1 秒 (日本時間) |
composite number 合成数 | 1121559992801193106256812343423501267619883785399422822441268955745450775323235144407356673810815819247352126564377391334513164432871<133> |
prime factors 素因数 | 983059845818475162208304551280473890748819798889<48> 1140886790943440076100421112460985181144096720139798169150021658370865558538028485839<85> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1121559992801193106256812343423501267619883785399422822441268955745450775323235144407356673810815819247352126564377391334513164432871 (133 digits) Using B1=29910000, B2=144289285156, polynomial Dickson(12), sigma=1:2989857791 Step 1 took 46015ms Step 2 took 19537ms ********** Factor found in step 2: 983059845818475162208304551280473890748819798889 Found prime factor of 48 digits: 983059845818475162208304551280473890748819798889 Prime cofactor 1140886790943440076100421112460985181144096720139798169150021658370865558538028485839 has 85 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2022 03:06:16 UTC 2022 年 12 月 29 日 (木) 12 時 6 分 16 秒 (日本時間) |
composite number 合成数 | 1414817348187901153706716108351011197834470314060964595188644372424759292879614363019335081656992284515254930678426061982658056417<130> |
prime factors 素因数 | 1183657393100514027617268470319360422800229301169<49> 1195292959292788740420289998074593975807515426797352419445864752612046566947513393<82> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 1414817348187901153706716108351011197834470314060964595188644372424759292879614363019335081656992284515254930678426061982658056417 (130 digits) Using B1=26110000, B2=96191014936, polynomial Dickson(12), sigma=1:1928289257 Step 1 took 40932ms Step 2 took 15591ms ********** Factor found in step 2: 1183657393100514027617268470319360422800229301169 Found prime factor of 49 digits: 1183657393100514027617268470319360422800229301169 Prime cofactor 1195292959292788740420289998074593975807515426797352419445864752612046566947513393 has 82 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 2, 2023 17:43:45 UTC 2023 年 2 月 3 日 (金) 2 時 43 分 45 秒 (日本時間) |
composite number 合成数 | 393165412502222194951541710402849496656957253039220220116033735961683132620178581428805650431581814376604066790306090281<120> |
prime factors 素因数 | 4387606513894315251100831161043598447055476713<46> 89608175039666378895781177238889810851539258405723029571530023351954326337<74> |
factorization results 素因数分解の結果 | Number: n N=393165412502222194951541710402849496656957253039220220116033735961683132620178581428805650431581814376604066790306090281 ( 120 digits) SNFS difficulty: 156 digits. Divisors found: Fri Feb 3 04:40:11 2023 prp46 factor: 4387606513894315251100831161043598447055476713 Fri Feb 3 04:40:11 2023 prp74 factor: 89608175039666378895781177238889810851539258405723029571530023351954326337 Fri Feb 3 04:40:11 2023 elapsed time 00:13:32 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.113). Factorization parameters were as follows: # # N = 9x10^156-8 = 89(155)2 # n: 393165412502222194951541710402849496656957253039220220116033735961683132620178581428805650431581814376604066790306090281 m: 10000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 9.409e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 12650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1744848 hash collisions in 17800378 relations (17306076 unique) Msieve: matrix is 642146 x 642376 (80.4 MB) Sieving start time: 2023/02/03 02:44:59 Sieving end time : 2023/02/03 04:26:31 Total sieving time: 1hrs 41min 32secs. Total relation processing time: 0hrs 8min 28sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 3sec. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 13, 2023 22:36:30 UTC 2023 年 1 月 14 日 (土) 7 時 36 分 30 秒 (日本時間) |
composite number 合成数 | 4080858473469481622236342361866718570460415333165991597207757289280396063632537692273174431033190716257653818607832760712379196449<130> |
prime factors 素因数 | 128398104289347811763967822750397740921154330527939009925021<60> 31782856110345537151380423421873599589154183758306132006059242544970069<71> |
factorization results 素因数分解の結果 | 4080858473469481622236342361866718570460415333165991597207757289280396063632537692273174431033190716257653818607832760712379196449=128398104289347811763967822750397740921154330527939009925021*31782856110345537151380423421873599589154183758306132006059242544970069 cado polynomial n: 4080858473469481622236342361866718570460415333165991597207757289280396063632537692273174431033190716257653818607832760712379196449 skew: 0.39 type: snfs c0: -2 c5: 225 Y0: 10000000000000000000000000000000 Y1: -1 # f(x) = 225*x^5-2 # g(x) = -x+10000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 2900000 tasks.lim1 = 2900000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 50 tasks.sieve.lambda0 = 2.4 tasks.sieve.lambda1 = 2.4 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 128398104289347811763967822750397740921154330527939009925021 31782856110345537151380423421873599589154183758306132006059242544970069 Info:Square Root: Total cpu/real time for sqrt: 141.89/44.587 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 103.33/92.3111 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 83.1s Info:Square Root: Total cpu/real time for sqrt: 141.89/44.587 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 45/43.3727 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 43.2s Info:Filtering - Singleton removal: Total cpu/real time for purge: 89.62/72.0659 Info:Filtering - Merging: Merged matrix has 295749 rows and total weight 50293590 (170.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 59.83/16.8184 Info:Filtering - Merging: Total cpu/real time for replay: 8.85/7.58208 Info:Generate Factor Base: Total cpu/real time for makefb: 1.25/0.7486 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11663687 Info:Lattice Sieving: Average J: 1894.31 for 194819 special-q, max bucket fill -bkmult 1.0,1s:1.246480 Info:Lattice Sieving: Total time: 23953.3s Info:Linear Algebra: Total cpu/real time for bwc: 1233.15/330.04 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 751.43, WCT time 198.84, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9344 iterations) Info:Linear Algebra: Lingen CPU time 46.0, WCT time 11.97 Info:Linear Algebra: Mksol: CPU time 409.82, WCT time 108.47, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (4736 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 9.09/3.67351 Info:Generate Free Relations: Total cpu/real time for freerel: 59.89/17.0895 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 45698.3/12778.5 Info:root: Cleaning up computation data in /tmp/cado.agn3f_c7 128398104289347811763967822750397740921154330527939009925021 31782856110345537151380423421873599589154183758306132006059242544970069 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 00:33:04 UTC 2022 年 12 月 28 日 (水) 9 時 33 分 4 秒 (日本時間) |
composite number 合成数 | 426551605161084843957943907516028861429497654914064069946880106770606234099104052050670539123313225374701887822615197370167170313524908717956495527843393<153> |
prime factors 素因数 | 143604941234661915236700934207001377176642955419749949553037972283754433<72> 2970312870112634474081856312243618918857225018408712836933842598294545270555029121<82> |
factorization results 素因数分解の結果 | Number: n N=426551605161084843957943907516028861429497654914064069946880106770606234099104052050670539123313225374701887822615197370167170313524908717956495527843393 ( 153 digits) SNFS difficulty: 158 digits. Divisors found: Wed Dec 28 11:06:16 2022 p72 factor: 143604941234661915236700934207001377176642955419749949553037972283754433 Wed Dec 28 11:06:16 2022 p82 factor: 2970312870112634474081856312243618918857225018408712836933842598294545270555029121 Wed Dec 28 11:06:16 2022 elapsed time 00:05:24 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.331). Factorization parameters were as follows: # # N = 9x10^158-8 = 89(157)2 # n: 426551605161084843957943907516028861429497654914064069946880106770606234099104052050670539123313225374701887822615197370167170313524908717956495527843393 m: 10000000000000000000000000000000 deg: 5 c5: 1125 c0: -1 skew: 0.25 # Murphy_E = 7.834e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1174882 hash collisions in 12924808 relations (12570452 unique) Msieve: matrix is 394115 x 394350 (132.6 MB) Sieving start time : 2022/12/28 10:36:51 Sieving end time : 2022/12/28 11:00:35 Total sieving time: 0hrs 23min 44secs. Total relation processing time: 0hrs 2min 8sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 22sec. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 22:32:34 UTC 2022 年 12 月 28 日 (水) 7 時 32 分 34 秒 (日本時間) |
composite number 合成数 | 1124999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<160> |
prime factors 素因数 | 76251200417245693501475512256578914035329343756295479903373181531759<68> 14753866087930588794845195723960036136025362808574634345561902880686146498922219047625365361<92> |
factorization results 素因数分解の結果 | Number: n N=1124999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 160 digits) SNFS difficulty: 159 digits. Divisors found: Wed Dec 28 08:35:46 2022 p68 factor: 76251200417245693501475512256578914035329343756295479903373181531759 Wed Dec 28 08:35:46 2022 p92 factor: 14753866087930588794845195723960036136025362808574634345561902880686146498922219047625365361 Wed Dec 28 08:35:46 2022 elapsed time 00:05:38 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.328). Factorization parameters were as follows: # # N = 9x10^159-8 = 89(158)2 # n: 1124999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 50000000000000000000000000000000 deg: 5 c5: 18 c0: -5 skew: 0.77 # Murphy_E = 7.845e-10 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 14400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1456965 hash collisions in 13881580 relations (13274733 unique) Msieve: matrix is 369648 x 369879 (123.4 MB) Sieving start time : 2022/12/28 07:30:09 Sieving end time : 2022/12/28 08:29:24 Total sieving time: 0hrs 59min 15secs. Total relation processing time: 0hrs 2min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 17sec. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 19:49:45 UTC 2022 年 12 月 28 日 (水) 4 時 49 分 45 秒 (日本時間) |
composite number 合成数 | 11249999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<164> |
prime factors 素因数 | 5444575571590553717796821590823776579<37> 2066276765208619523137639174672879269646526619976624674435465896715659099061507397792931007648352866667827418544245891908344981<127> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 11249999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (164 digits) Using B1=25160000, B2=96190324246, polynomial Dickson(12), sigma=1:557027749 Step 1 took 60348ms Step 2 took 19625ms ********** Factor found in step 2: 5444575571590553717796821590823776579 Found prime factor of 37 digits: 5444575571590553717796821590823776579 Prime cofactor 2066276765208619523137639174672879269646526619976624674435465896715659099061507397792931007648352866667827418544245891908344981 has 127 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 15:47:59 UTC 2023 年 1 月 1 日 (日) 0 時 47 分 59 秒 (日本時間) |
composite number 合成数 | 1746046616718540335477771533536391905104086868573175476954422187425054620297425169847568214994049335730245249649461517848667002829051858083094130131167<151> |
prime factors 素因数 | 512870652530623548511014147730347190057645496739351418583<57> 3404458040449650703151413971032578656006973730843209321029241569438805368433518626657525288249<94> |
factorization results 素因数分解の結果 | Number: n N=1746046616718540335477771533536391905104086868573175476954422187425054620297425169847568214994049335730245249649461517848667002829051858083094130131167 ( 151 digits) SNFS difficulty: 164 digits. Divisors found: Sun Jan 1 02:42:53 2023 p57 factor: 512870652530623548511014147730347190057645496739351418583 Sun Jan 1 02:42:53 2023 p94 factor: 3404458040449650703151413971032578656006973730843209321029241569438805368433518626657525288249 Sun Jan 1 02:42:53 2023 elapsed time 00:07:24 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.298). Factorization parameters were as follows: # # N = 9x10^164-8 = 89(163)2 # n: 1746046616718540335477771533536391905104086868573175476954422187425054620297425169847568214994049335730245249649461517848667002829051858083094130131167 m: 500000000000000000000000000000000 deg: 5 c5: 18 c0: -5 skew: 0.77 # Murphy_E = 5.008e-10 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1059583 hash collisions in 12536978 relations (12290677 unique) Msieve: matrix is 513650 x 513875 (175.6 MB) Sieving start time : 2023/01/01 01:51:32 Sieving end time : 2023/01/01 02:35:10 Total sieving time: 0hrs 43min 38secs. Total relation processing time: 0hrs 3min 55sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 28sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 10:50:12 UTC 2022 年 12 月 31 日 (土) 19 時 50 分 12 秒 (日本時間) |
composite number 合成数 | 14228146793601588396870951484888583293445574343975606780414506544116850703095887468760557980650561344575435658651642697770840910540455520278161<143> |
prime factors 素因数 | 42052342748728208645797619666488581520739569<44> 338343736961762755448088458857491353092012317406397633125619433453123611306356388335190267740939169<99> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 14228146793601588396870951484888583293445574343975606780414506544116850703095887468760557980650561344575435658651642697770840910540455520278161 (143 digits) Using B1=26200000, B2=144285141016, polynomial Dickson(12), sigma=1:296468163 Step 1 took 53463ms Step 2 took 22330ms ********** Factor found in step 2: 42052342748728208645797619666488581520739569 Found prime factor of 44 digits: 42052342748728208645797619666488581520739569 Prime cofactor 338343736961762755448088458857491353092012317406397633125619433453123611306356388335190267740939169 has 99 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 07:35:26 UTC 2023 年 1 月 1 日 (日) 16 時 35 分 26 秒 (日本時間) |
composite number 合成数 | 9579990636282337293587105380993905545639285726305469161216899065378129567869910610300703073198138788225946518207606646651215808782803744167222066519<148> |
prime factors 素因数 | 36865770622720614459813342814716082911699535159000332067296502668833<68> 259861396478665407070228230857676618228744237906412160437909129242195857172429943<81> |
factorization results 素因数分解の結果 | Number: n N=9579990636282337293587105380993905545639285726305469161216899065378129567869910610300703073198138788225946518207606646651215808782803744167222066519 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: Sun Jan 1 18:31:55 2023 p68 factor: 36865770622720614459813342814716082911699535159000332067296502668833 Sun Jan 1 18:31:55 2023 p81 factor: 259861396478665407070228230857676618228744237906412160437909129242195857172429943 Sun Jan 1 18:31:55 2023 elapsed time 00:07:00 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.289). Factorization parameters were as follows: # # N = 9x10^166-8 = 89(165)2 # n: 9579990636282337293587105380993905545639285726305469161216899065378129567869910610300703073198138788225946518207606646651215808782803744167222066519 m: 1000000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 3.84e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1221570 hash collisions in 12648853 relations (12213071 unique) Msieve: matrix is 522085 x 522310 (178.8 MB) Sieving start time : 2023/01/01 17:50:45 Sieving end time : 2023/01/01 18:24:38 Total sieving time: 0hrs 33min 53secs. Total relation processing time: 0hrs 3min 35sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 30sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 18:32:36 UTC 2022 年 12 月 31 日 (土) 3 時 32 分 36 秒 (日本時間) |
composite number 合成数 | 27724639387407171251726304810296282470826668981751806083128112524913366957448769204198676348595358902446459818244155772328928138963963887535930681076394898316701<161> |
prime factors 素因数 | 2672623411953566382956189106093522519795232903073067313747909<61> 10373567508017045505388878182995763502893990869707860098347136324761166983791804956151590014536119289<101> |
factorization results 素因数分解の結果 | Number: n N=27724639387407171251726304810296282470826668981751806083128112524913366957448769204198676348595358902446459818244155772328928138963963887535930681076394898316701 ( 161 digits) SNFS difficulty: 173 digits. Divisors found: Sat Dec 31 05:28:14 2022 p61 factor: 2672623411953566382956189106093522519795232903073067313747909 Sat Dec 31 05:28:14 2022 p101 factor: 10373567508017045505388878182995763502893990869707860098347136324761166983791804956151590014536119289 Sat Dec 31 05:28:14 2022 elapsed time 00:16:46 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.297). Factorization parameters were as follows: # # N = 9x10^173-8 = 89(172)2 # n: 27724639387407171251726304810296282470826668981751806083128112524913366957448769204198676348595358902446459818244155772328928138963963887535930681076394898316701 m: 10000000000000000000000000000000000 deg: 5 c5: 1125 c0: -1 skew: 0.25 # Murphy_E = 2.022e-10 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 58700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1373637 hash collisions in 14938897 relations (14558725 unique) Msieve: matrix is 841583 x 841809 (287.1 MB) Sieving start time : 2022/12/30 22:50:27 Sieving end time : 2022/12/31 05:09:45 Total sieving time: 6hrs 19min 18secs. Total relation processing time: 0hrs 10min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 52sec. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 3, 2023 03:33:08 UTC 2023 年 1 月 3 日 (火) 12 時 33 分 8 秒 (日本時間) |
composite number 合成数 | 6435283716819523976327663560480644670128219602821118210675589782995805477589588277630913875829848682266967205679460570957285884848621943874599<142> |
prime factors 素因数 | 772289548920076347618178736683018503701<39> 53306600228112384039727712304642695275722675661<47> 156317123915499491584527829918456114574977718568796746359<57> |
factorization results 素因数分解の結果 | Number: n N=8332734433371837000697916521669899599431495475774133871374947230897658288456020689283279916374639668299 ( 103 digits) Divisors found: Tue Jan 3 14:29:26 2023 p47 factor: 53306600228112384039727712304642695275722675661 Tue Jan 3 14:29:26 2023 p57 factor: 156317123915499491584527829918456114574977718568796746359 Tue Jan 3 14:29:26 2023 elapsed time 00:03:22 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.284). Factorization parameters were as follows: # # N = 9x10^175-8 = 89(174)2 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 6435283716819523976327663560480644670128219602821118210675589782995805477589588277630913875829848682266967205679460570957285884848621943874599 (142 digits) # Using B1=30080000, B2=144289285156, polynomial Dickson(12), sigma=1:2924063559 # Step 1 took 60561ms # Step 2 took 22223ms # ********** Factor found in step 2: 772289548920076347618178736683018503701 # Found prime factor of 39 digits: 772289548920076347618178736683018503701 # Composite cofactor 8332734433371837000697916521669899599431495475774133871374947230897658288456020689283279916374639668299 has 103 digits # n: 8332734433371837000697916521669899599431495475774133871374947230897658288456020689283279916374639668299 Y0: -7936733359694288208351123 Y1: 16843733316191 c0: 2263285324992642751554154940 c1: -4949516939852453728363 c2: -40459296661326323 c3: 2473957345 c4: 2100 # skew 2243498.09, size 3.360e-14, alpha -4.812, combined = 7.462e-09 rroots = 4 skew: 2243498.09 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 6750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 454804 hash collisions in 6623169 relations (6602102 unique) Msieve: matrix is 245223 x 245450 (85.2 MB) Sieving start time : 2023/01/03 14:15:11 Sieving end time : 2023/01/03 14:25:49 Total sieving time: 0hrs 10min 38secs. Total relation processing time: 0hrs 1min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 13sec. Prototype def-par.txt line would be: gnfs,102,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 02:15:18 UTC 2022 年 12 月 31 日 (土) 11 時 15 分 18 秒 (日本時間) |
composite number 合成数 | 21249955839522327406894867847024244083495070351850076471384970305053877053980144032574679505110756895775616804434024625456358078010884393225103132547620113566303326151<167> |
prime factors 素因数 | 206462535543126514455677098283239967<36> 102924028243775843850387815132700763607667868006506832305843845283773161039731317270963027267412798893561302147081481275494130193753<132> |
factorization results 素因数分解の結果 | Number: n N=21249955839522327406894867847024244083495070351850076471384970305053877053980144032574679505110756895775616804434024625456358078010884393225103132547620113566303326151 ( 167 digits) SNFS difficulty: 176 digits. Divisors found: Sat Dec 31 13:10:19 2022 p36 factor: 206462535543126514455677098283239967 Sat Dec 31 13:10:19 2022 p132 factor: 102924028243775843850387815132700763607667868006506832305843845283773161039731317270963027267412798893561302147081481275494130193753 Sat Dec 31 13:10:19 2022 elapsed time 00:18:28 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: # # N = 9x10^176-8 = 89(175)2 # n: 21249955839522327406894867847024244083495070351850076471384970305053877053980144032574679505110756895775616804434024625456358078010884393225103132547620113566303326151 m: 100000000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 1.537e-10 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1354830 hash collisions in 12020388 relations (11360275 unique) Msieve: matrix is 896135 x 896361 (311.5 MB) Sieving start time : 2022/12/31 11:53:32 Sieving end time : 2022/12/31 12:51:34 Total sieving time: 0hrs 58min 2secs. Total relation processing time: 0hrs 12min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 58sec. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 14:38:49 UTC 2023 年 1 月 4 日 (水) 23 時 38 分 49 秒 (日本時間) |
composite number 合成数 | 13830096248390149436757482324428360638174747470230418541280414237461822473019974163490139765897563533498634369047213989755173908983904214281778819481<149> |
prime factors 素因数 | 3237985161343141901404333661501<31> 4271204332095615882581793490219857647370279087620053502831263551104621008221056019549860725796817620738331359456387981<118> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 13830096248390149436757482324428360638174747470230418541280414237461822473019974163490139765897563533498634369047213989755173908983904214281778819481 (149 digits) Using B1=25020000, B2=96190324246, polynomial Dickson(12), sigma=1:3345886049 Step 1 took 51107ms Step 2 took 18246ms ********** Factor found in step 2: 3237985161343141901404333661501 Found prime factor of 31 digits: 3237985161343141901404333661501 Prime cofactor 4271204332095615882581793490219857647370279087620053502831263551104621008221056019549860725796817620738331359456387981 has 118 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 7, 2023 09:22:47 UTC 2023 年 1 月 7 日 (土) 18 時 22 分 47 秒 (日本時間) |
composite number 合成数 | 60828499675867351375353774326152563545869948482856845120078960003757878598049404491809978772185939187954760943140745407414251388993394673062300330074526646881<158> |
prime factors 素因数 | 64735686974622049787331927644974792205009<41> 939643997285663933034367379745499178199762624694263997258342464401801974506147881591126529534998247756967019106200209<117> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 60828499675867351375353774326152563545869948482856845120078960003757878598049404491809978772185939187954760943140745407414251388993394673062300330074526646881 (158 digits) Using B1=28720000, B2=144287903776, polynomial Dickson(12), sigma=1:3926032360 Step 1 took 69165ms Step 2 took 25065ms ********** Factor found in step 2: 64735686974622049787331927644974792205009 Found prime factor of 41 digits: 64735686974622049787331927644974792205009 Prime cofactor 939643997285663933034367379745499178199762624694263997258342464401801974506147881591126529534998247756967019106200209 has 117 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 11, 2023 19:04:11 UTC 2023 年 1 月 12 日 (木) 4 時 4 分 11 秒 (日本時間) |
composite number 合成数 | 19869211605344167406284106665108300493054266122235463581845095034649894816584305348003889119919035092117820744616127979008983932643340221822707328442041246980264163001<167> |
prime factors 素因数 | 244900718425885233820762685344177372174501856084334486923766503541654293353<75> 81131699951942870179641354407414575362977117952974936326004659730353022567294389958295992017<92> |
factorization results 素因数分解の結果 | Number: n N=19869211605344167406284106665108300493054266122235463581845095034649894816584305348003889119919035092117820744616127979008983932643340221822707328442041246980264163001 ( 167 digits) SNFS difficulty: 184 digits. Divisors found: Thu Jan 12 05:51:26 2023 prp75 factor: 244900718425885233820762685344177372174501856084334486923766503541654293353 Thu Jan 12 05:51:26 2023 prp92 factor: 81131699951942870179641354407414575362977117952974936326004659730353022567294389958295992017 Thu Jan 12 05:51:26 2023 elapsed time 01:01:25 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 9x10^184-8 = 89(183)2 # n: 19869211605344167406284106665108300493054266122235463581845095034649894816584305348003889119919035092117820744616127979008983932643340221822707328442041246980264163001 m: 5000000000000000000000000000000000000 deg: 5 c5: 18 c0: -5 skew: 0.77 # Murphy_E = 7.935e-11 type: snfs lss: 1 rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 916967 hash collisions in 11867533 relations (11737821 unique) Msieve: matrix is 1417678 x 1417907 (403.0 MB) Sieving start time: 2023/01/11 22:16:32 Sieving end time : 2023/01/12 04:49:48 Total sieving time: 6hrs 33min 16secs. Total relation processing time: 0hrs 56min 49sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 36sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,8000000,8000000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 28, 2023 16:55:25 UTC 2023 年 3 月 29 日 (水) 1 時 55 分 25 秒 (日本時間) |
composite number 合成数 | 12247048751126428929285783109597085105214017772803944800863691828651686802481253904545311862172788115059059544097169239192232452900384741411503323052960953<155> |
prime factors 素因数 | 4667217113790796814008683931859755349463049206083453162071799120694341823967<76> 2624058074122709483752225319560898279530385245147114911159234475260733376710759<79> |
factorization results 素因数分解の結果 | Number: n N=12247048751126428929285783109597085105214017772803944800863691828651686802481253904545311862172788115059059544097169239192232452900384741411503323052960953 ( 155 digits) SNFS difficulty: 186 digits. Divisors found: Mon Mar 27 05:12:35 2023 prp76 factor: 4667217113790796814008683931859755349463049206083453162071799120694341823967 Mon Mar 27 05:12:35 2023 prp79 factor: 2624058074122709483752225319560898279530385245147114911159234475260733376710759 Mon Mar 27 05:12:35 2023 elapsed time 01:09:22 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: # # N = 9x10^186-8 = 89(185)2 # n: 12247048751126428929285783109597085105214017772803944800863691828651686802481253904545311862172788115059059544097169239192232452900384741411503323052960953 m: 10000000000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 6.046e-11 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1204266 hash collisions in 12463304 relations (12034251 unique) Msieve: matrix is 1406553 x 1406782 (400.0 MB) Sieving start time: 2023/03/27 00:14:16 Sieving end time : 2023/03/27 04:02:59 Total sieving time: 3hrs 48min 43secs. Total relation processing time: 0hrs 58min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 2sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 16, 2023 10:11:59 UTC 2023 年 2 月 16 日 (木) 19 時 11 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 13, 2023 21:35:11 UTC 2023 年 1 月 14 日 (土) 6 時 35 分 11 秒 (日本時間) |
composite number 合成数 | 2051605194152057150890381632054631017207946181215222675974782587383749454565217200139167228545010563963627206562049302155528961414583660400925287<145> |
prime factors 素因数 | 539589729407050031992014454149160157499127<42> 3802157606681184206625483211986982687953636327472908311075784042855119777772553283800668790455180248081<103> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 2051605194152057150890381632054631017207946181215222675974782587383749454565217200139167228545010563963627206562049302155528961414583660400925287 (145 digits) Using B1=26040000, B2=96191014936, polynomial Dickson(12), sigma=1:231958674 Step 1 took 51961ms Step 2 took 17369ms ********** Factor found in step 2: 539589729407050031992014454149160157499127 Found prime factor of 42 digits: 539589729407050031992014454149160157499127 Prime cofactor 3802157606681184206625483211986982687953636327472908311075784042855119777772553283800668790455180248081 has 103 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 13, 2023 14:07:23 UTC 2023 年 1 月 13 日 (金) 23 時 7 分 23 秒 (日本時間) |
composite number 合成数 | 1869191124520362878754754495708855388149808802324242792843906252314182206928946417921900371256687898290415461468060309880283218887756369<136> |
prime factors 素因数 | 404200708956467421023784689613508411<36> |
composite cofactor 合成数の残り | 4624413275637464344217914158155472514857643670013695001569934884857783118785593183278889679724202979<100> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4223826997 Step 1 took 3500ms Step 2 took 2109ms ********** Factor found in step 2: 404200708956467421023784689613508411 Found prime factor of 36 digits: 404200708956467421023784689613508411 Composite cofactor 4624413275637464344217914158155472514857643670013695001569934884857783118785593183278889679724202979 has 100 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 13, 2023 19:45:12 UTC 2023 年 1 月 14 日 (土) 4 時 45 分 12 秒 (日本時間) |
composite number 合成数 | 4624413275637464344217914158155472514857643670013695001569934884857783118785593183278889679724202979<100> |
prime factors 素因数 | 15515956357234042576138241850950176395461<41> 298042426078455211977367705198482503806014710674616313980039<60> |
factorization results 素因数分解の結果 | N=4624413275637464344217914158155472514857643670013695001569934884857783118785593183278889679724202979 ( 100 digits) Divisors found: r1=15515956357234042576138241850950176395461 (pp41) r2=298042426078455211977367705198482503806014710674616313980039 (pp60) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.05 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 4624413275637464344217914158155472514857643670013695001569934884857783118785593183278889679724202979 skew: 406633.76 c0: 166923251982114164650561140 c1: -1914728319358082038891 c2: 1660744034701097 c3: 17648268953 c4: 17640 Y0: -715546429533921826793819 Y1: 11169702183979 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 50000 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 52/52 Sieved algebraic special-q in [900000, 1200001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 233561 x 233787 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,99,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,52,52,2.5,2.5,100000 total time: 0.05 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 24, 2023 21:55:02 UTC 2023 年 1 月 25 日 (水) 6 時 55 分 2 秒 (日本時間) |
composite number 合成数 | 25565561283810102516369904864219283817288603530235378129735786027716297463853677913183400172887925750497054875764850995290623036380236159631901935177617023<155> |
prime factors 素因数 | 1510933448799237887133058290866232390384925699630202139773158778416116601<73> 16920375483200433700160425592491035362465827483411209570173045490039931688274615223<83> |
factorization results 素因数分解の結果 | Number: n N=25565561283810102516369904864219283817288603530235378129735786027716297463853677913183400172887925750497054875764850995290623036380236159631901935177617023 ( 155 digits) SNFS difficulty: 190 digits. Divisors found: Tue Jan 24 20:33:24 2023 prp73 factor: 1510933448799237887133058290866232390384925699630202139773158778416116601 Tue Jan 24 20:33:24 2023 prp83 factor: 16920375483200433700160425592491035362465827483411209570173045490039931688274615223 Tue Jan 24 20:33:24 2023 elapsed time 01:36:55 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.021). Factorization parameters were as follows: # # N = 9x10^190-8 = 89(189)2 # n: 25565561283810102516369904864219283817288603530235378129735786027716297463853677913183400172887925750497054875764850995290623036380236159631901935177617023 m: 100000000000000000000000000000000000000 deg: 5 c5: 9 c0: -8 skew: 0.98 # Murphy_E = 4.791e-11 type: snfs lss: 1 rlim: 10300000 alim: 10300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 10300000/10300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 30750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1044707 hash collisions in 12185598 relations (11928325 unique) Msieve: matrix is 1748484 x 1748709 (496.7 MB) Sieving start time: 2023/01/24 08:11:03 Sieving end time : 2023/01/24 18:56:18 Total sieving time: 10hrs 45min 15secs. Total relation processing time: 1hrs 31min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 15sec. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,10300000,10300000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 11, 2023 05:49:10 UTC 2023 年 1 月 11 日 (水) 14 時 49 分 10 秒 (日本時間) |
2350 | Ignacio Santos | January 13, 2023 17:03:29 UTC 2023 年 1 月 14 日 (土) 2 時 3 分 29 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 4, 2023 14:37:18 UTC 2023 年 4 月 4 日 (火) 23 時 37 分 18 秒 (日本時間) |
composite number 合成数 | 9453903065205069992882250646610235499225674731868010130866354980068681711678590877978857093877971936575215897452503271359980890438216276240642132286222989<154> |
prime factors 素因数 | 5195087656928758107142196979380308421414355590012353806735875579<64> 1819777391551088197323979345470053112746064395294770470016524835883194646673844274204160791<91> |
factorization results 素因数分解の結果 | Number: n N=9453903065205069992882250646610235499225674731868010130866354980068681711678590877978857093877971936575215897452503271359980890438216276240642132286222989 ( 154 digits) SNFS difficulty: 191 digits. Divisors found: Tue Apr 4 11:13:38 2023 prp64 factor: 5195087656928758107142196979380308421414355590012353806735875579 Tue Apr 4 11:13:38 2023 prp91 factor: 1819777391551088197323979345470053112746064395294770470016524835883194646673844274204160791 Tue Apr 4 11:13:38 2023 elapsed time 01:23:40 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.097). Factorization parameters were as follows: # # N = 9x10^191-8 = 89(190)2 # n: 9453903065205069992882250646610235499225674731868010130866354980068681711678590877978857093877971936575215897452503271359980890438216276240642132286222989 m: 100000000000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 3.767e-11 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 16650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1425540 hash collisions in 13263863 relations (12634623 unique) Msieve: matrix is 1656774 x 1657004 (471.0 MB) Sieving start time: 2023/04/04 04:00:11 Sieving end time : 2023/04/04 09:49:44 Total sieving time: 5hrs 49min 33secs. Total relation processing time: 1hrs 18min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 10sec. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 15, 2023 10:30:32 UTC 2023 年 1 月 15 日 (日) 19 時 30 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 11, 2023 09:43:31 UTC 2023 年 1 月 11 日 (水) 18 時 43 分 31 秒 (日本時間) |
composite number 合成数 | 5447710178067836272547467740631980978456951282972374143130107561517867006515341476912517751959157263173785023985265050821763310628765872762145060849041593945321348913<166> |
prime factors 素因数 | 5928642013040410247881037829155795729<37> 918879933395415842704896247879934799374942856245450117311320627387744272452252788678137724649475580763527903325536021838802020897<129> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3123996843 Step 1 took 7094ms Step 2 took 3693ms ********** Factor found in step 2: 5928642013040410247881037829155795729 Found prime factor of 37 digits: 5928642013040410247881037829155795729 Prime cofactor 918879933395415842704896247879934799374942856245450117311320627387744272452252788678137724649475580763527903325536021838802020897 has 129 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 11, 2023 05:49:03 UTC 2023 年 1 月 11 日 (水) 14 時 49 分 3 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 23, 2023 01:51:04 UTC 2023 年 1 月 23 日 (月) 10 時 51 分 4 秒 (日本時間) |
composite number 合成数 | 128006910826574820592751600342440608880162003130463577310535018307543154158183151898127355515760924470319409840488543688427879330074645822951475930688403750504270739<165> |
prime factors 素因数 | 7262799040040675213597316719684982857184522919<46> 17625010704668749793424575502453102774179614922233896284596430760322177108396990378483907611031378339193590688722409781<119> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 128006910826574820592751600342440608880162003130463577310535018307543154158183151898127355515760924470319409840488543688427879330074645822951475930688403750504270739 (165 digits) Using B1=27230000, B2=144286522396, polynomial Dickson(12), sigma=1:2739039853 Step 1 took 64673ms Step 2 took 25493ms ********** Factor found in step 2: 7262799040040675213597316719684982857184522919 Found prime factor of 46 digits: 7262799040040675213597316719684982857184522919 Prime cofactor 17625010704668749793424575502453102774179614922233896284596430760322177108396990378483907611031378339193590688722409781 has 119 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 11, 2023 05:48:56 UTC 2023 年 1 月 11 日 (水) 14 時 48 分 56 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 24, 2022 19:32:03 UTC 2022 年 12 月 25 日 (日) 4 時 32 分 3 秒 (日本時間) |
composite number 合成数 | 512034104412416889295051048019462713846437964937011576785442432646637515756303988192570918748950168558447296017340595701<120> |
prime factors 素因数 | 25877676049782522580878354518749915940374714460053621511<56> 19786711272966880354605917313298337431094163031276791434922976291<65> |
factorization results 素因数分解の結果 | 512034104412416889295051048019462713846437964937011576785442432646637515756303988192570918748950168558447296017340595701=25877676049782522580878354518749915940374714460053621511*19786711272966880354605917313298337431094163031276791434922976291 cado polynomial n: 512034104412416889295051048019462713846437964937011576785442432646637515756303988192570918748950168558447296017340595701 skew: 195374.053 c0: -219752780502305306001175816386 c1: 3414240536505418988866585 c2: 33942217859579854758 c3: -91701971096317 c4: -293802624 c5: 1080 Y0: -310161570094846494968456 Y1: 10125985643585141 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=8.389e+12) = 1.464e-06 # f(x) = 1080*x^5-293802624*x^4-91701971096317*x^3+33942217859579854758*x^2+3414240536505418988866585*x-219752780502305306001175816386 # g(x) = 10125985643585141*x-310161570094846494968456 cado parameters (extracts) tasks.lim0 = 3000000 tasks.lim1 = 5500000 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 54 tasks.sieve.mfb1 = 54 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 19786711272966880354605917313298337431094163031276791434922976291 25877676049782522580878354518749915940374714460053621511 Info:Square Root: Total cpu/real time for sqrt: 1016.69/135.501 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19893.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20420/35.400/42.781/47.770/1.042 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16319/34.670/37.853/43.290/0.830 Info:Polynomial Selection (size optimized): Total time: 3084.24 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 1825.65 Info:Polynomial Selection (root optimized): Rootsieve time: 1783.17 Info:Generate Factor Base: Total cpu/real time for makefb: 5.36/0.883628 Info:Generate Free Relations: Total cpu/real time for freerel: 130.39/16.3974 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 13427142 Info:Lattice Sieving: Average J: 1945.68 for 258246 special-q, max bucket fill -bkmult 1.0,1s:1.237790 Info:Lattice Sieving: Total time: 52291.5s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 32.33/60.9183 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 60.8s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 149.41/98.5915 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 93.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 61.31/65.7615 Info:Filtering - Merging: Merged matrix has 765347 rows and total weight 77813955 (101.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 54.86/10.1176 Info:Filtering - Merging: Total cpu/real time for replay: 17.23/13.6473 Info:Linear Algebra: Total cpu/real time for bwc: 3950.62/1051.55 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 639.04, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (24064 iterations) Info:Linear Algebra: Lingen CPU time 74.59, WCT time 20.22 Info:Linear Algebra: Mksol: WCT time 376.08, iteration CPU time 0.03, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12032 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 33.6/7.5862 Info:Square Root: Total cpu/real time for sqrt: 1016.69/135.501 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 133694/15340.9 Info:root: Cleaning up computation data in /tmp/cado.gu93hnow 19786711272966880354605917313298337431094163031276791434922976291 25877676049782522580878354518749915940374714460053621511 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 09:20:49 UTC 2022 年 12 月 24 日 (土) 18 時 20 分 49 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 10, 2023 01:55:56 UTC 2023 年 2 月 10 日 (金) 10 時 55 分 56 秒 (日本時間) |
composite number 合成数 | 431199693369106937523955538520505940973553085473361441165197393637408968953622077424300498275201226523572249904177845917976236105787658106554235339210425450364124185511690302798006899195093905711<195> |
prime factors 素因数 | 10486671172327718832539360280571243613815155166319423<53> 1311501759085838033177791275015581473178417778609923141303614781801<67> 31352481174336382232498890183222827101633213834403528987025385305813890775657<77> |
factorization results 素因数分解の結果 | Number: n N=431199693369106937523955538520505940973553085473361441165197393637408968953622077424300498275201226523572249904177845917976236105787658106554235339210425450364124185511690302798006899195093905711 ( 195 digits) SNFS difficulty: 198 digits. Divisors found: Fri Feb 10 11:36:56 2023 prp53 factor: 10486671172327718832539360280571243613815155166319423 Fri Feb 10 11:36:56 2023 prp67 factor: 1311501759085838033177791275015581473178417778609923141303614781801 Fri Feb 10 11:36:56 2023 prp77 factor: 31352481174336382232498890183222827101633213834403528987025385305813890775657 Fri Feb 10 11:36:56 2023 elapsed time 03:04:50 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.788). Factorization parameters were as follows: # # N = 9x10^198-8 = 89(197)2 # n: 431199693369106937523955538520505940973553085473361441165197393637408968953622077424300498275201226523572249904177845917976236105787658106554235339210425450364124185511690302798006899195093905711 m: 1000000000000000000000000000000000000000 deg: 5 c5: 1125 c0: -1 skew: 0.25 # Murphy_E = 1.932e-11 type: snfs lss: 1 rlim: 13500000 alim: 13500000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 13500000/13500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 32355431) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1690213 hash collisions in 13155088 relations (12177666 unique) Msieve: matrix is 2220532 x 2220757 (629.0 MB) Sieving start time: 2023/02/09 21:38:30 Sieving end time : 2023/02/10 08:31:49 Total sieving time: 10hrs 53min 19secs. Total relation processing time: 2hrs 50min 11sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 8min 32sec. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,13500000,13500000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 11, 2023 05:50:17 UTC 2023 年 1 月 11 日 (水) 14 時 50 分 17 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:52:35 UTC 2023 年 1 月 24 日 (火) 14 時 52 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 18, 2023 07:31:28 UTC 2023 年 2 月 18 日 (土) 16 時 31 分 28 秒 (日本時間) |
composite number 合成数 | 6410543598972070699175494758994092168094373247181565213234754321164481343860638436458574602360795444715306970638009705492514436639003252178646110636683740883555591136199099579<175> |
prime factors 素因数 | 273305110064218372216663441160725527013154555353282026934028302394999689<72> 23455630220253797329712631094048353578350192067216496086788879619871302518136205955465390897338762527011<104> |
factorization results 素因数分解の結果 | Number: n N=6410543598972070699175494758994092168094373247181565213234754321164481343860638436458574602360795444715306970638009705492514436639003252178646110636683740883555591136199099579 ( 175 digits) SNFS difficulty: 199 digits. Divisors found: Sat Feb 18 17:55:01 2023 prp72 factor: 273305110064218372216663441160725527013154555353282026934028302394999689 Sat Feb 18 17:55:01 2023 prp104 factor: 23455630220253797329712631094048353578350192067216496086788879619871302518136205955465390897338762527011 Sat Feb 18 17:55:01 2023 elapsed time 02:23:44 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 9x10^199-8 = 89(198)2 # n: 6410543598972070699175494758994092168094373247181565213234754321164481343860638436458574602360795444715306970638009705492514436639003252178646110636683740883555591136199099579 m: 5000000000000000000000000000000000000000 deg: 5 c5: 18 c0: -5 skew: 0.77 # Murphy_E = 1.903e-11 type: snfs lss: 1 rlim: 14400000 alim: 14400000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 14400000/14400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 32800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1762280 hash collisions in 13592302 relations (12565464 unique) Msieve: matrix is 2136358 x 2136583 (605.6 MB) Sieving start time: 2023/02/18 04:03:19 Sieving end time : 2023/02/18 15:30:59 Total sieving time: 11hrs 27min 40secs. Total relation processing time: 2hrs 15min 2sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 53sec. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,14400000,14400000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 11, 2023 05:48:48 UTC 2023 年 1 月 11 日 (水) 14 時 48 分 48 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | January 24, 2023 05:52:43 UTC 2023 年 1 月 24 日 (火) 14 時 52 分 43 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 31, 2023 07:24:17 UTC 2023 年 5 月 31 日 (水) 16 時 24 分 17 秒 (日本時間) |
composite number 合成数 | 9587838784739721920658544369855845589373896367821464736595352206360409263576595245732236301009376103060893233572585318975083308203330420680297418756714934494571555940173123636680420818497<187> |
prime factors 素因数 | 243368825502158364667718968521502365447364811963146097818894992123833138082562043729<84> 39396330918541127084356993061864003144933888346425881160685516445764094515562244394670092099454914577393<104> |
factorization results 素因数分解の結果 | Number: n N=9587838784739721920658544369855845589373896367821464736595352206360409263576595245732236301009376103060893233572585318975083308203330420680297418756714934494571555940173123636680420818497 ( 187 digits) SNFS difficulty: 200 digits. Divisors found: Tue May 23 06:07:33 2023 prp84 factor: 243368825502158364667718968521502365447364811963146097818894992123833138082562043729 Tue May 23 06:07:33 2023 prp104 factor: 39396330918541127084356993061864003144933888346425881160685516445764094515562244394670092099454914577393 Tue May 23 06:07:33 2023 elapsed time 02:34:17 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.105). Factorization parameters were as follows: # # N = 9x10^200-8 = 89(199)2 # n: 9587838784739721920658544369855845589373896367821464736595352206360409263576595245732236301009376103060893233572585318975083308203330420680297418756714934494571555940173123636680420818497 m: 10000000000000000000000000000000000000000 deg: 5 c5: 9 c0: -8 skew: 0.98 # Murphy_E = 1.838e-11 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 33400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1751460 hash collisions in 13931695 relations (12953875 unique) Msieve: matrix is 2197270 x 2197495 (623.4 MB) Sieving start time: 2023/05/22 16:02:06 Sieving end time : 2023/05/23 03:32:52 Total sieving time: 11hrs 30min 46secs. Total relation processing time: 2hrs 27min 42sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 32sec. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 11, 2023 05:50:24 UTC 2023 年 1 月 11 日 (水) 14 時 50 分 24 秒 (日本時間) |
2350 | Ignacio Santos | May 19, 2023 13:29:06 UTC 2023 年 5 月 19 日 (金) 22 時 29 分 6 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 5, 2023 11:23:34 UTC 2023 年 6 月 5 日 (月) 20 時 23 分 34 秒 (日本時間) |
composite number 合成数 | 13710284626463142137833204644939427802832405385588540361204958868477532037667876240764675097687535555086196362013544996134232766728009754337014064476560413721058449667667284435069268221<185> |
prime factors 素因数 | 17961037381695305399876259650245620265422871<44> 31314220089408713858012074057428513544449224988129965315100662851<65> 24376618157535100687792894181975437435953734373011206954841175085072523343001<77> |
factorization results 素因数分解の結果 | Number: n N=763334786020530878332775311524739776781181867784742147936646720481212023459610485757059208122308158335786819025360287339359545751785531555851 ( 141 digits) Divisors found: Mon Jun 5 21:13:49 2023 prp65 factor: 31314220089408713858012074057428513544449224988129965315100662851 Mon Jun 5 21:13:49 2023 prp77 factor: 24376618157535100687792894181975437435953734373011206954841175085072523343001 Mon Jun 5 21:13:49 2023 elapsed time 01:11:06 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.069). Factorization parameters were as follows: # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 13710284626463142137833204644939427802832405385588540361204958868477532037667876240764675097687535555086196362013544996134232766728009754337014064476560413721058449667667284435069268221 (185 digits) # Using B1=40700000, B2=192393771586, polynomial Dickson(12), sigma=1:354318392 # Step 1 took 115131ms # Step 2 took 35205ms # ********** Factor found in step 2: 17961037381695305399876259650245620265422871 # Found prime factor of 44 digits: 17961037381695305399876259650245620265422871 # Composite cofactor 763334786020530878332775311524739776781181867784742147936646720481212023459610485757059208122308158335786819025360287339359545751785531555851 has 141 digits n: 763334786020530878332775311524739776781181867784742147936646720481212023459610485757059208122308158335786819025360287339359545751785531555851 Y0: -5763768349939813974978078908 Y1: 686004140615423 c0: -1821456743240484541134455217227187435 c1: -134471959828898527165977424644 c2: -55313255590412137080353 c3: -42754083908013260 c4: 2829202284 c5: 120 # skew 10222678.22, size 1.282e-13, alpha -6.959, combined = 1.935e-11 rroots = 3 skew: 10222678.22 type: gnfs rlim: 5600000 alim: 5600000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved special-q in [100000, 48400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1973915 hash collisions in 8794878 relations (6819925 unique) Msieve: matrix is 1516923 x 1517148 (442.8 MB) Sieving start time: 2023/06/04 23:51:00 Sieving end time : 2023/06/05 20:02:22 Total sieving time: 20hrs 11min 22secs. Total relation processing time: 1hrs 6min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 29sec. Prototype def-par.txt line would be: gnfs,140,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5600000,5600000,26,26,51,51,2.6,2.6,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 26, 2023 07:18:14 UTC 2023 年 6 月 26 日 (月) 16 時 18 分 14 秒 (日本時間) |
composite number 合成数 | 1607142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857<202> |
prime factors 素因数 | 9778164792606516886430843893284481016008650228766261868027905144755559<70> 164360377558583673991297644276209153878567195464994836129743339103021531779228562356888044279104769468553012817052167957544604835023<132> |
factorization results 素因数分解の結果 | Number: n N=1607142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857 ( 202 digits) SNFS difficulty: 202 digits. Divisors found: Sun Jun 25 20:53:35 2023 prp70 factor: 9778164792606516886430843893284481016008650228766261868027905144755559 Sun Jun 25 20:53:35 2023 prp132 factor: 164360377558583673991297644276209153878567195464994836129743339103021531779228562356888044279104769468553012817052167957544604835023 Sun Jun 25 20:53:35 2023 elapsed time 02:51:49 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 9x10^202-8 = 89(201)2 # n: 1607142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857 m: 10000000000000000000000000000000000000000 deg: 5 c5: 225 c0: -2 skew: 0.39 # Murphy_E = 1.371e-11 type: snfs lss: 1 rlim: 16500000 alim: 16500000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16500000/16500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 41050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2242695 hash collisions in 15545039 relations (14096232 unique) Msieve: matrix is 2262517 x 2262742 (639.0 MB) Sieving start time: 2023/06/25 00:31:07 Sieving end time : 2023/06/25 18:01:31 Total sieving time: 17hrs 30min 24secs. Total relation processing time: 2hrs 33min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 14min 19sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16500000,16500000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 11, 2023 17:42:18 UTC 2023 年 7 月 12 日 (水) 2 時 42 分 18 秒 (日本時間) |
composite number 合成数 | 5250934939379059513015735713165087756169956897035806980147447560275877742997845927155453508496325804150330857308706635417746942885106940027752927690918950562934121732099953893131831<181> |
prime factors 素因数 | 24963214880686526036040596870488638513812328073317790201481<59> 12939575418675325162602669601052494954097630956446202509600169<62> 16256090034341889630627869602576188171247984405656354654231079<62> |
factorization results 素因数分解の結果 | Number: n N=5250934939379059513015735713165087756169956897035806980147447560275877742997845927155453508496325804150330857308706635417746942885106940027752927690918950562934121732099953893131831 ( 181 digits) SNFS difficulty: 203 digits. Divisors found: Wed Jul 12 03:36:23 2023 prp59 factor: 24963214880686526036040596870488638513812328073317790201481 Wed Jul 12 03:36:23 2023 prp62 factor: 12939575418675325162602669601052494954097630956446202509600169 Wed Jul 12 03:36:23 2023 prp62 factor: 16256090034341889630627869602576188171247984405656354654231079 Wed Jul 12 03:36:23 2023 elapsed time 02:26:37 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.082). Factorization parameters were as follows: # # N = 9x10^203-8 = 89(202)2 # n: 5250934939379059513015735713165087756169956897035806980147447560275877742997845927155453508496325804150330857308706635417746942885106940027752927690918950562934121732099953893131831 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1125 c0: -1 skew: 0.25 # Murphy_E = 1.193e-11 type: snfs lss: 1 rlim: 17000000 alim: 17000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 17000000/17000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 34100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2943800 hash collisions in 16799954 relations (14528853 unique) Msieve: matrix is 2102471 x 2102696 (591.4 MB) Total sieving time: 0.00 hours. Total relation processing time: 2hrs 11min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 11min 3sec. Prototype def-par.txt line would be: snfs,203,5,0,0,0,0,0,0,0,0,17000000,17000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | August 31, 2023 11:12:06 UTC 2023 年 8 月 31 日 (木) 20 時 12 分 6 秒 (日本時間) |
composite number 合成数 | 623349778632734810357415293341777249995950739412590137993857052656721528863511816788027908182276074110213833052322808069597335794516626367832810975070464706854221050177<168> |
prime factors 素因数 | 160815815353420131773562220072065457001<39> 3876172111945691111142036444974567457653756304674350881736890987072982220209313352218609555976495195711614246550416677054058161177<130> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:14861298015754464106 Step 1 took 23313ms ********** Factor found in step 2: 160815815353420131773562220072065457001 Found prime factor of 39 digits: 160815815353420131773562220072065457001 Prime cofactor 3876172111945691111142036444974567457653756304674350881736890987072982220209313352218609555976495195711614246550416677054058161177 has 130 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 29, 2023 15:10:13 UTC 2023 年 12 月 30 日 (土) 0 時 10 分 13 秒 (日本時間) |
composite number 合成数 | 11249999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<206> |
prime factors 素因数 | 4365395412522487173344256056084948144937787046641822653523581133621<67> 2577086136969052541082931673639865950992425470609121861680078848732892743538617822260284484097834165790951043948773906265651433507760597219<139> |
factorization results 素因数分解の結果 | Number: n N=11249999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 206 digits) SNFS difficulty: 205 digits. Divisors found: Fri Dec 29 16:14:26 2023 prp67 factor: 4365395412522487173344256056084948144937787046641822653523581133621 Fri Dec 29 16:14:26 2023 prp139 factor: 2577086136969052541082931673639865950992425470609121861680078848732892743538617822260284484097834165790951043948773906265651433507760597219 Fri Dec 29 16:14:26 2023 elapsed time 02:41:26 (Msieve 1.44 - dependency 6) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.091). Factorization parameters were as follows: # # N = 9x10^205-8 = 89(204)2 # n: 11249999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 100000000000000000000000000000000000000000 deg: 5 c5: 9 c0: -8 skew: 0.98 # Murphy_E = 1.131e-11 type: snfs lss: 1 rlim: 19000000 alim: 19000000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19000000/19000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 35100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3438904 hash collisions in 19135648 relations (16486346 unique) Msieve: matrix is 2183315 x 2183540 (614.9 MB) Sieving start time: 2023/12/28 22:15:07 Sieving end time : 2023/12/29 13:32:34 Total sieving time: 15hrs 17min 27secs. Total relation processing time: 2hrs 22min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 13min 36sec. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,19000000,19000000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2080 | Dmitry Domanov | November 20, 2023 07:49:44 UTC 2023 年 11 月 20 日 (月) 16 時 49 分 44 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 9, 2024 21:27:42 UTC 2024 年 4 月 10 日 (水) 6 時 27 分 42 秒 (日本時間) |
composite number 合成数 | 169930256253716488987440988267089717973079587431924660385564037718041637758961284695583364242800951125171788110643824318511664075742131115551835111089253591697<159> |
prime factors 素因数 | 16035403955974408010950434752401308702526223011289645593395386208044770049<74> 10597192108179135678259906505101208272452407909105552243452800245603781131839613015953<86> |
factorization results 素因数分解の結果 | Number: n N=169930256253716488987440988267089717973079587431924660385564037718041637758961284695583364242800951125171788110643824318511664075742131115551835111089253591697 ( 159 digits) SNFS difficulty: 206 digits. Divisors found: Wed Apr 10 07:23:29 2024 prp74 factor: 16035403955974408010950434752401308702526223011289645593395386208044770049 Wed Apr 10 07:23:29 2024 prp86 factor: 10597192108179135678259906505101208272452407909105552243452800245603781131839613015953 Wed Apr 10 07:23:29 2024 elapsed time 02:43:19 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.086). Factorization parameters were as follows: # # N = 9x10^206-8 = 89(205)2 # n: 169930256253716488987440988267089717973079587431924660385564037718041637758961284695583364242800951125171788110643824318511664075742131115551835111089253591697 m: 100000000000000000000000000000000000000000 deg: 5 c5: 45 c0: -4 skew: 0.62 # Murphy_E = 8.884e-12 type: snfs lss: 1 rlim: 19500000 alim: 19500000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19500000/19500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 35350000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3768004 hash collisions in 19735689 relations (16275215 unique) Msieve: matrix is 2244511 x 2244736 (631.9 MB) Sieving start time: 2024/04/09 15:34:59 Sieving end time : 2024/04/10 04:39:44 Total sieving time: 13hrs 4min 45secs. Total relation processing time: 2hrs 33min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 55sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19500000,19500000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | February 3, 2023 20:32:40 UTC 2023 年 2 月 4 日 (土) 5 時 32 分 40 秒 (日本時間) |
1200 | Dmitry Domanov | November 20, 2023 09:55:37 UTC 2023 年 11 月 20 日 (月) 18 時 55 分 37 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 15, 2024 09:03:28 UTC 2024 年 3 月 15 日 (金) 18 時 3 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 14, 2024 00:09:42 UTC 2024 年 9 月 14 日 (土) 9 時 9 分 42 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 16:19:12 UTC 2022 年 12 月 25 日 (日) 1 時 19 分 12 秒 (日本時間) |
composite number 合成数 | 34349957459700770808349734858525944680435905633550025958159925263785510505162165587444397257969724535321084769<110> |
prime factors 素因数 | 61298894757716884379580034387509716909<38> 560368300202940827504917539693549515692230752217832282904016713991393541<72> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4037731290 Step 1 took 3485ms Step 2 took 2140ms ********** Factor found in step 2: 61298894757716884379580034387509716909 Found prime factor of 38 digits: 61298894757716884379580034387509716909 Prime cofactor 560368300202940827504917539693549515692230752217832282904016713991393541 has 72 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 14, 2024 04:07:38 UTC 2024 年 9 月 14 日 (土) 13 時 7 分 38 秒 (日本時間) |
composite cofactor 合成数の残り | 18136482655309877659450396080259880099204736358524922659491038253999615639883282646613329061480538554526757272267116311436674363053521928379146337769571945401655624793<167> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3500 | 1000 | Dmitry Domanov | February 3, 2023 20:32:48 UTC 2023 年 2 月 4 日 (土) 5 時 32 分 48 秒 (日本時間) |
2500 | ccc | September 14, 2024 15:26:29 UTC 2024 年 9 月 15 日 (日) 0 時 26 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 14, 2024 15:26:21 UTC 2024 年 9 月 15 日 (日) 0 時 26 分 21 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 23, 2022 17:35:59 UTC 2022 年 12 月 24 日 (土) 2 時 35 分 59 秒 (日本時間) |
composite number 合成数 | 8652394830651784199748719865793410730762304961974222986986091835259337554954932257736977609592174200153096862690834720396962980954183266270788391<145> |
prime factors 素因数 | 17773633196499293271484433573824708463<38> |
composite cofactor 合成数の残り | 486810700715707675077798690726406201230424835098705063947254493858951291190706508735246489066794335967962057<108> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:910351156 Step 1 took 3469ms ********** Factor found in step 2: 17773633196499293271484433573824708463 Found prime factor of 38 digits: 17773633196499293271484433573824708463 Composite cofactor 486810700715707675077798690726406201230424835098705063947254493858951291190706508735246489066794335967962057 has 108 digits |
software ソフトウェア | GMP-ECM |
name 名前 | ebina |
---|---|
date 日付 | December 25, 2022 00:01:53 UTC 2022 年 12 月 25 日 (日) 9 時 1 分 53 秒 (日本時間) |
composite number 合成数 | 486810700715707675077798690726406201230424835098705063947254493858951291190706508735246489066794335967962057<108> |
prime factors 素因数 | 84452587128139390656609379719872491177199<41> 5764307728987304973004339006179201492541030417960582940899361657543<67> |
factorization results 素因数分解の結果 | Number: 89992_218 N = 486810700715707675077798690726406201230424835098705063947254493858951291190706508735246489066794335967962057 (108 digits) Divisors found: r1=84452587128139390656609379719872491177199 (pp41) r2=5764307728987304973004339006179201492541030417960582940899361657543 (pp67) Version: Msieve v. 1.53 (SVN unknown) Total time: 1.02 hours. Factorization parameters were as follows: n: 486810700715707675077798690726406201230424835098705063947254493858951291190706508735246489066794335967962057 # norm 8.851302e-15 alpha -5.799411 e 3.711e-09 rroots 4 skew: 17224398.00 c0: 11879204640246828406874756145192 c1: 2604299582511920635744470 c2: -391338468359441905 c3: -23240617820 c4: 588 Y0: -169627850794138636312445555 Y1: 57791777917969 type: gnfs Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved algebraic special-q in [0, 0) Total raw relations: 4961136 Relations: 700200 relations Pruned matrix : 404632 x 404858 Polynomial selection time: 0.05 hours. Total sieving time: 0.85 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. time per square root: 0.01 hours. Prototype def-par.txt line would be: gnfs,107,4,59,2000,0.0006,0.25,200,15,15000,2000,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 1.02 hours. Intel64 Family 6 Model 60 Stepping 3, GenuineIntel processors: 8, speed: 2.29GHz Windows-post2008Server-6.2.9200 Running Python 3.2 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:44:23 UTC 2022 年 12 月 25 日 (日) 1 時 44 分 23 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 3, 2023 21:56:18 UTC 2023 年 2 月 4 日 (土) 6 時 56 分 18 秒 (日本時間) |
composite number 合成数 | 743127973669518023416594526520998411407307508319594182469413478657491257569006200022059664455885550427491531422175746705369567018173741290279419530584102058126411333309<168> |
prime factors 素因数 | 398712558242037085584998330291219<33> 297579748543620075599362116291305513249<39> 6263258298899376899782094369247451215935960567568310988175239161773979637324568258773048253434639<97> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1530221090 Step 1 took 8107ms Step 2 took 4165ms ********** Factor found in step 2: 297579748543620075599362116291305513249 Found prime factor of 39 digits: 297579748543620075599362116291305513249 Composite cofactor 2497239739284839933249888028738399208573884149356942614480916703031052184461048961622186609562846152677487782607623918469852134941 has 130 digits -- Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:959074236 Step 1 took 5369ms ********** Factor found in step 1: 398712558242037085584998330291219 Found prime factor of 33 digits: 398712558242037085584998330291219 Prime cofactor 6263258298899376899782094369247451215935960567568310988175239161773979637324568258773048253434639 has 97 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 3, 2023 20:32:55 UTC 2023 年 2 月 4 日 (土) 5 時 32 分 55 秒 (日本時間) |
composite cofactor 合成数の残り | 3322728698607329158138534946350910883896137015870107341428377637653516784786411177670317106337782276493320221725564549090836960852496612402906978242764503291889987300903<169> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3500 | 1000 | Dmitry Domanov | February 3, 2023 20:33:05 UTC 2023 年 2 月 4 日 (土) 5 時 33 分 5 秒 (日本時間) |
2500 | ccc | September 14, 2024 15:26:07 UTC 2024 年 9 月 15 日 (日) 0 時 26 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 14, 2024 18:36:52 UTC 2024 年 9 月 15 日 (日) 3 時 36 分 52 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3500 | 1000 | Dmitry Domanov | February 3, 2023 20:33:13 UTC 2023 年 2 月 4 日 (土) 5 時 33 分 13 秒 (日本時間) |
2500 | ccc | September 15, 2024 19:28:03 UTC 2024 年 9 月 16 日 (月) 4 時 28 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3500 | 1000 | Dmitry Domanov | February 3, 2023 20:33:21 UTC 2023 年 2 月 4 日 (土) 5 時 33 分 21 秒 (日本時間) |
2500 | ccc | September 14, 2024 21:32:32 UTC 2024 年 9 月 15 日 (日) 6 時 32 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 00:17:11 UTC 2024 年 9 月 15 日 (日) 9 時 17 分 11 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | September 15, 2024 01:31:24 UTC 2024 年 9 月 15 日 (日) 10 時 31 分 24 秒 (日本時間) |
composite number 合成数 | 2768870385608239031325482407518603070865459250678346735097844410039303929504436807540341460858355743935127831796031138944594767303917640055568652096804968491562521632985087831151<178> |
prime factors 素因数 | 2522301828146296483456632553732984355509<40> 1097755373568099908016578335674364209874519330114802155278784337405164597226926915360477197835263481115084597761553117333502013493033790739<139> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:292157666570003609 Step 1 took 17828ms Step 2 took 6204ms ********** Factor found in step 2: 2522301828146296483456632553732984355509 Found prime factor of 40 digits: 2522301828146296483456632553732984355509 Prime cofactor 1097755373568099908016578335674364209874519330114802155278784337405164597226926915360477197835263481115084597761553117333502013493033790739 has 139 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 3, 2023 20:33:29 UTC 2023 年 2 月 4 日 (土) 5 時 33 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 05:25:40 UTC 2024 年 9 月 15 日 (日) 14 時 25 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 19:28:25 UTC 2024 年 9 月 16 日 (月) 4 時 28 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 19:28:39 UTC 2024 年 9 月 16 日 (月) 4 時 28 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4292 | 1792 | Dmitry Domanov | January 29, 2023 11:01:18 UTC 2023 年 1 月 29 日 (日) 20 時 1 分 18 秒 (日本時間) |
2500 | ccc | September 15, 2024 19:28:50 UTC 2024 年 9 月 16 日 (月) 4 時 28 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4292 | 1792 | Dmitry Domanov | January 29, 2023 11:01:29 UTC 2023 年 1 月 29 日 (日) 20 時 1 分 29 秒 (日本時間) |
2500 | ccc | September 15, 2024 19:29:00 UTC 2024 年 9 月 16 日 (月) 4 時 29 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 19:34:12 UTC 2024 年 9 月 16 日 (月) 4 時 34 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 15, 2024 19:41:22 UTC 2024 年 9 月 16 日 (月) 4 時 41 分 22 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 29, 2023 22:11:55 UTC 2023 年 1 月 30 日 (月) 7 時 11 分 55 秒 (日本時間) |
composite number 合成数 | 9874571004748571478727979706659410685602436605254149514171106566370283246583398432356994268360119021495843902781556934582064268096797128035881996682144142404479983147398818562438009637581300634605763238508193699584829147978126728049925831<238> |
prime factors 素因数 | 1513097750556356139119141586352385329<37> |
composite cofactor 合成数の残り | 6526062841027789746462092308377675240924488784659892491464093516491123864305365597910000996110266335182871489733284130625491536994209639232410577620782695296165804884456462985405265287770062805288562039<202> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b8400992c270 with GMP-ECM 7.0.5-dev on Sun Jan 29 18:17:16 2023 Input number is 9874571004748571478727979706659410685602436605254149514171106566370283246583398432356994268360119021495843902781556934582064268096797128035881996682144142404479983147398818562438009637581300634605763238508193699584829147978126728049925831 (238 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3177203934 Step 1 took 0ms Step 2 took 4176ms ********** Factor found in step 2: 1513097750556356139119141586352385329 Found prime factor of 37 digits: 1513097750556356139119141586352385329 Composite cofactor 6526062841027789746462092308377675240924488784659892491464093516491123864305365597910000996110266335182871489733284130625491536994209639232410577620782695296165804884456462985405265287770062805288562039 has 202 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 29, 2023 11:01:37 UTC 2023 年 1 月 29 日 (日) 20 時 1 分 37 秒 (日本時間) |
2350 | Ignacio Santos | September 18, 2024 09:13:07 UTC 2024 年 9 月 18 日 (水) 18 時 13 分 7 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 18, 2024 09:28:01 UTC 2024 年 9 月 18 日 (水) 18 時 28 分 1 秒 (日本時間) |
composite number 合成数 | 5141760268593771435464815746132590838134120685092964769110785680774858309628040914009423566833461220331636885872521533462062609006364874890463942433822811740816464358947177064374463759862673669667383903562945608999<214> |
prime factors 素因数 | 665337036935148442607612636010104249<36> 7728053577595963210422817404840777650425855769817493668944141089913303149609501091403748950396621336107695152448138319155133928010829395312524743000529384280844855383887616182751<178> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:195859441 Step 1 took 9516ms Step 2 took 4140ms ********** Factor found in step 2: 665337036935148442607612636010104249 Found prime factor of 36 digits: 665337036935148442607612636010104249 Prime cofactor 7728053577595963210422817404840777650425855769817493668944141089913303149609501091403748950396621336107695152448138319155133928010829395312524743000529384280844855383887616182751 has 178 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3500 | 1000 | Dmitry Domanov | February 3, 2023 20:33:38 UTC 2023 年 2 月 4 日 (土) 5 時 33 分 38 秒 (日本時間) |
2500 | ccc | September 15, 2024 23:40:27 UTC 2024 年 9 月 16 日 (月) 8 時 40 分 27 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | September 16, 2024 05:20:39 UTC 2024 年 9 月 16 日 (月) 14 時 20 分 39 秒 (日本時間) |
composite number 合成数 | 15029974051947831137587025069204959828934135354026691581181102608079263827301874095132709533120982641152496411346710230577766767438815604060320561153995787305423529229688155777159258900503593<191> |
prime factors 素因数 | 4536347951771326504746729014612894310407<40> |
composite cofactor 合成数の残り | 3313232188478623017829756659872680580834533043305909251001957511300098941072438850411547696733197567529240674596317823076882564021620884392581482001999<151> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=0:2408477736742334228 Step 1 took 18437ms Step 2 took 6844ms ********** Factor found in step 2: 4536347951771326504746729014612894310407 Found prime factor of 40 digits: 4536347951771326504746729014612894310407 Composite cofactor 3313232188478623017829756659872680580834533043305909251001957511300098941072438850411547696733197567529240674596317823076882564021620884392581482001999 has 151 digits |
software ソフトウェア | GMP-ECM 7.0.5 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ccc | September 20, 2024 00:38:09 UTC 2024 年 9 月 20 日 (金) 9 時 38 分 9 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | September 26, 2024 09:49:39 UTC 2024 年 9 月 26 日 (木) 18 時 49 分 39 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | September 27, 2024 14:37:45 UTC 2024 年 9 月 27 日 (金) 23 時 37 分 45 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 29, 2023 18:59:44 UTC 2023 年 1 月 30 日 (月) 3 時 59 分 44 秒 (日本時間) |
composite number 合成数 | 1094006787704336156681221008820125835091847947643266266665370066029387453443933367693250221232483735765756128869137339181002207462584967860511703441502241498351696439858800190600293680044343741794949092217478824890842433849056236811140392675503<244> |
prime factors 素因数 | 34833275414194459828523030599289<32> |
composite cofactor 合成数の残り | 31406945648830127767206628275555715946003254721302697007524020025024820639262471461141510161093289556961258893181424044349756675726581121097134542159051737939331321060300484581398930037645733538350459375181172327<212> |
factorization results 素因数分解の結果 | GPU: factor 34833275414194459828523030599289 found in Step 1 with curve 851 (-sigma 3:-539475219) Computing 1792 Step 1 took 352ms of CPU time / 267996ms of GPU time Throughput: 6.687 curves per second (on average 149.55ms per Step 1) ********** Factor found in step 1: 34833275414194459828523030599289 Found prime factor of 32 digits: 34833275414194459828523030599289 Composite cofactor 31406945648830127767206628275555715946003254721302697007524020025024820639262471461141510161093289556961258893181424044349756675726581121097134542159051737939331321060300484581398930037645733538350459375181172327 has 212 digits Peak memory usage: 9428MB |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 1, 2023 14:20:36 UTC 2023 年 2 月 1 日 (水) 23 時 20 分 36 秒 (日本時間) |
composite number 合成数 | 31406945648830127767206628275555715946003254721302697007524020025024820639262471461141510161093289556961258893181424044349756675726581121097134542159051737939331321060300484581398930037645733538350459375181172327<212> |
prime factors 素因数 | 106174697850146351905657712134351063<36> |
composite cofactor 合成数の残り | 295804426899876845052192855324900994795549112058698657577187932506441456433421362993675093681889543078687612354033786397424897861862719355835923779851357819014186265455201420529<177> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b8400992c270 with GMP-ECM 7.0.5-dev on Sun Jan 29 18:21:44 2023 Input number is 31406945648830127767206628275555715946003254721302697007524020025024820639262471461141510161093289556961258893181424044349756675726581121097134542159051737939331321060300484581398930037645733538350459375181172327 (212 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3755492150 Step 1 took 0ms Step 2 took 3518ms ********** Factor found in step 2: 106174697850146351905657712134351063 Found prime factor of 36 digits: 106174697850146351905657712134351063 Composite cofactor 295804426899876845052192855324900994795549112058698657577187932506441456433421362993675093681889543078687612354033786397424897861862719355835923779851357819014186265455201420529 has 177 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4292 | 1792 | Dmitry Domanov | January 29, 2023 11:01:45 UTC 2023 年 1 月 29 日 (日) 20 時 1 分 45 秒 (日本時間) |
2500 | ccc | September 16, 2024 00:57:24 UTC 2024 年 9 月 16 日 (月) 9 時 57 分 24 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 1, 2023 11:08:58 UTC 2023 年 1 月 1 日 (日) 20 時 8 分 58 秒 (日本時間) |
composite number 合成数 | 442584865655095597493658742851051864802712754459878058930651278749906215542551142104610334438226742368334237524566425400626755566199310341308379132913486745185951<162> |
prime factors 素因数 | 15142494080361621572322784745599590404959<41> |
composite cofactor 合成数の残り | 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489<122> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2973906673 Step 1 took 23594ms Step 2 took 10110ms ********** Factor found in step 2: 15142494080361621572322784745599590404959 Found prime factor of 41 digits: 15142494080361621572322784745599590404959 Composite cofactor 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 has 122 digits |
software ソフトウェア | GMP-ECM |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 3, 2023 12:22:21 UTC 2023 年 1 月 3 日 (火) 21 時 22 分 21 秒 (日本時間) |
composite number 合成数 | 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489<122> |
prime factors 素因数 | 97899783070788796630900067103863923090082154741260151109<56> 298550234715869656438777772575974814248256667720588501919707391821<66> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=2350000, q1=2450000. -> client 1 q0: 2350000 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 126 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 91 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 87 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 126 LatSieveTime: 129 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 131 -> makeJobFile(): Adjusted to q0=2950001, q1=3050000. -> client 1 q0: 2950001 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 96 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 127 -> makeJobFile(): Adjusted to q0=3050001, q1=3150000. -> client 1 q0: 3050001 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=3150001, q1=3250000. -> client 1 q0: 3150001 LatSieveTime: 90 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=3250001, q1=3350000. -> client 1 q0: 3250001 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=3350001, q1=3450000. -> client 1 q0: 3350001 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=3450001, q1=3550000. -> client 1 q0: 3450001 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=3550001, q1=3650000. -> client 1 q0: 3550001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=3650001, q1=3750000. -> client 1 q0: 3650001 LatSieveTime: 89 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 132 LatSieveTime: 132 -> makeJobFile(): Adjusted to q0=3750001, q1=3850000. -> client 1 q0: 3750001 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 135 LatSieveTime: 139 -> makeJobFile(): Adjusted to q0=3850001, q1=3950000. -> client 1 q0: 3850001 LatSieveTime: 93 LatSieveTime: 98 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=3950001, q1=4050000. -> client 1 q0: 3950001 LatSieveTime: 85 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 137 LatSieveTime: 137 -> makeJobFile(): Adjusted to q0=4050001, q1=4150000. -> client 1 q0: 4050001 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=4150001, q1=4250000. -> client 1 q0: 4150001 LatSieveTime: 91 LatSieveTime: 97 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4250001, q1=4350000. -> client 1 q0: 4250001 LatSieveTime: 88 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 -> makeJobFile(): Adjusted to q0=4350001, q1=4450000. -> client 1 q0: 4350001 LatSieveTime: 88 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 97 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 -> makeJobFile(): Adjusted to q0=4450001, q1=4550000. -> client 1 q0: 4450001 LatSieveTime: 98 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 133 -> makeJobFile(): Adjusted to q0=4550001, q1=4650000. -> client 1 q0: 4550001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 Tue Jan 03 12:56:26 2023 Tue Jan 03 12:56:26 2023 Tue Jan 03 12:56:26 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 12:56:26 2023 random seeds: ef9207a0 fb3dfbaa Tue Jan 03 12:56:26 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 12:56:26 2023 searching for 15-digit factors Tue Jan 03 12:56:26 2023 commencing number field sieve (122-digit input) Tue Jan 03 12:56:26 2023 R0: -284795009126269821446562 Tue Jan 03 12:56:26 2023 R1: 18020248160653 Tue Jan 03 12:56:26 2023 A0: 223416249625625910947135345375 Tue Jan 03 12:56:26 2023 A1: 8733911624339172250361819 Tue Jan 03 12:56:26 2023 A2: -56868255662493227112 Tue Jan 03 12:56:26 2023 A3: -1286798813637561 Tue Jan 03 12:56:26 2023 A4: 7196671003 Tue Jan 03 12:56:26 2023 A5: 15600 Tue Jan 03 12:56:26 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 12:56:26 2023 Tue Jan 03 12:56:26 2023 commencing relation filtering Tue Jan 03 12:56:26 2023 estimated available RAM is 65413.5 MB Tue Jan 03 12:56:26 2023 commencing duplicate removal, pass 1 Tue Jan 03 12:56:44 2023 found 1154821 hash collisions in 9269053 relations Tue Jan 03 12:56:54 2023 added 62377 free relations Tue Jan 03 12:56:54 2023 commencing duplicate removal, pass 2 Tue Jan 03 12:56:57 2023 found 760714 duplicates and 8570716 unique relations Tue Jan 03 12:56:57 2023 memory use: 41.3 MB Tue Jan 03 12:56:57 2023 reading ideals above 100000 Tue Jan 03 12:56:57 2023 commencing singleton removal, initial pass Tue Jan 03 12:57:29 2023 memory use: 344.5 MB Tue Jan 03 12:57:29 2023 reading all ideals from disk Tue Jan 03 12:57:29 2023 memory use: 307.2 MB Tue Jan 03 12:57:30 2023 keeping 10221310 ideals with weight <= 200, target excess is 45296 Tue Jan 03 12:57:30 2023 commencing in-memory singleton removal Tue Jan 03 12:57:30 2023 begin with 8570716 relations and 10221310 unique ideals Tue Jan 03 12:57:35 2023 reduce to 1769333 relations and 2024943 ideals in 40 passes Tue Jan 03 12:57:35 2023 max relations containing the same ideal: 73 Tue Jan 03 12:57:35 2023 filtering wants 1000000 more relations Tue Jan 03 12:57:35 2023 elapsed time 00:01:09 -> makeJobFile(): Adjusted to q0=4650001, q1=4750000. -> client 1 q0: 4650001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 134 Tue Jan 03 12:59:54 2023 Tue Jan 03 12:59:54 2023 Tue Jan 03 12:59:54 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 12:59:54 2023 random seeds: eea841c4 73a28f89 Tue Jan 03 12:59:54 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 12:59:54 2023 searching for 15-digit factors Tue Jan 03 12:59:54 2023 commencing number field sieve (122-digit input) Tue Jan 03 12:59:54 2023 R0: -284795009126269821446562 Tue Jan 03 12:59:54 2023 R1: 18020248160653 Tue Jan 03 12:59:54 2023 A0: 223416249625625910947135345375 Tue Jan 03 12:59:54 2023 A1: 8733911624339172250361819 Tue Jan 03 12:59:54 2023 A2: -56868255662493227112 Tue Jan 03 12:59:54 2023 A3: -1286798813637561 Tue Jan 03 12:59:54 2023 A4: 7196671003 Tue Jan 03 12:59:54 2023 A5: 15600 Tue Jan 03 12:59:54 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 12:59:54 2023 Tue Jan 03 12:59:54 2023 commencing relation filtering Tue Jan 03 12:59:54 2023 estimated available RAM is 65413.5 MB Tue Jan 03 12:59:54 2023 commencing duplicate removal, pass 1 Tue Jan 03 13:00:13 2023 found 1246522 hash collisions in 9733578 relations Tue Jan 03 13:00:24 2023 added 112 free relations Tue Jan 03 13:00:24 2023 commencing duplicate removal, pass 2 Tue Jan 03 13:00:26 2023 found 817228 duplicates and 8916462 unique relations Tue Jan 03 13:00:26 2023 memory use: 41.3 MB Tue Jan 03 13:00:26 2023 reading ideals above 100000 Tue Jan 03 13:00:27 2023 commencing singleton removal, initial pass Tue Jan 03 13:01:00 2023 memory use: 344.5 MB Tue Jan 03 13:01:00 2023 reading all ideals from disk Tue Jan 03 13:01:00 2023 memory use: 319.8 MB Tue Jan 03 13:01:00 2023 keeping 10389957 ideals with weight <= 200, target excess is 47204 Tue Jan 03 13:01:01 2023 commencing in-memory singleton removal Tue Jan 03 13:01:01 2023 begin with 8916462 relations and 10389957 unique ideals Tue Jan 03 13:01:06 2023 reduce to 2321968 relations and 2499972 ideals in 30 passes Tue Jan 03 13:01:06 2023 max relations containing the same ideal: 79 Tue Jan 03 13:01:06 2023 filtering wants 1000000 more relations Tue Jan 03 13:01:06 2023 elapsed time 00:01:12 -> makeJobFile(): Adjusted to q0=4750001, q1=4850000. -> client 1 q0: 4750001 LatSieveTime: 94 LatSieveTime: 99 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 Tue Jan 03 13:03:21 2023 Tue Jan 03 13:03:21 2023 Tue Jan 03 13:03:21 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 13:03:21 2023 random seeds: 85a1b640 3c629835 Tue Jan 03 13:03:21 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 13:03:21 2023 searching for 15-digit factors Tue Jan 03 13:03:21 2023 commencing number field sieve (122-digit input) Tue Jan 03 13:03:21 2023 R0: -284795009126269821446562 Tue Jan 03 13:03:21 2023 R1: 18020248160653 Tue Jan 03 13:03:21 2023 A0: 223416249625625910947135345375 Tue Jan 03 13:03:21 2023 A1: 8733911624339172250361819 Tue Jan 03 13:03:21 2023 A2: -56868255662493227112 Tue Jan 03 13:03:21 2023 A3: -1286798813637561 Tue Jan 03 13:03:21 2023 A4: 7196671003 Tue Jan 03 13:03:21 2023 A5: 15600 Tue Jan 03 13:03:21 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 13:03:21 2023 Tue Jan 03 13:03:21 2023 commencing relation filtering Tue Jan 03 13:03:21 2023 estimated available RAM is 65413.5 MB Tue Jan 03 13:03:21 2023 commencing duplicate removal, pass 1 Tue Jan 03 13:03:41 2023 found 1098892 hash collisions in 10136962 relations Tue Jan 03 13:03:52 2023 added 114 free relations Tue Jan 03 13:03:52 2023 commencing duplicate removal, pass 2 Tue Jan 03 13:03:55 2023 found 875677 duplicates and 9261399 unique relations Tue Jan 03 13:03:55 2023 memory use: 49.3 MB Tue Jan 03 13:03:55 2023 reading ideals above 100000 Tue Jan 03 13:03:55 2023 commencing singleton removal, initial pass Tue Jan 03 13:04:30 2023 memory use: 344.5 MB Tue Jan 03 13:04:30 2023 reading all ideals from disk Tue Jan 03 13:04:30 2023 memory use: 332.3 MB Tue Jan 03 13:04:30 2023 keeping 10551093 ideals with weight <= 200, target excess is 49044 Tue Jan 03 13:04:31 2023 commencing in-memory singleton removal Tue Jan 03 13:04:31 2023 begin with 9261399 relations and 10551093 unique ideals Tue Jan 03 13:04:36 2023 reduce to 2827665 relations and 2911294 ideals in 24 passes Tue Jan 03 13:04:36 2023 max relations containing the same ideal: 92 Tue Jan 03 13:04:36 2023 filtering wants 1000000 more relations Tue Jan 03 13:04:36 2023 elapsed time 00:01:15 -> makeJobFile(): Adjusted to q0=4850001, q1=4950000. -> client 1 q0: 4850001 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 127 Tue Jan 03 13:06:48 2023 Tue Jan 03 13:06:48 2023 Tue Jan 03 13:06:48 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 13:06:48 2023 random seeds: 48b76588 fe265c30 Tue Jan 03 13:06:48 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 13:06:48 2023 searching for 15-digit factors Tue Jan 03 13:06:48 2023 commencing number field sieve (122-digit input) Tue Jan 03 13:06:48 2023 R0: -284795009126269821446562 Tue Jan 03 13:06:48 2023 R1: 18020248160653 Tue Jan 03 13:06:48 2023 A0: 223416249625625910947135345375 Tue Jan 03 13:06:48 2023 A1: 8733911624339172250361819 Tue Jan 03 13:06:48 2023 A2: -56868255662493227112 Tue Jan 03 13:06:48 2023 A3: -1286798813637561 Tue Jan 03 13:06:48 2023 A4: 7196671003 Tue Jan 03 13:06:48 2023 A5: 15600 Tue Jan 03 13:06:48 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 13:06:48 2023 Tue Jan 03 13:06:48 2023 commencing relation filtering Tue Jan 03 13:06:48 2023 estimated available RAM is 65413.5 MB Tue Jan 03 13:06:48 2023 commencing duplicate removal, pass 1 Tue Jan 03 13:07:09 2023 found 1173909 hash collisions in 10540521 relations Tue Jan 03 13:07:20 2023 added 93 free relations Tue Jan 03 13:07:20 2023 commencing duplicate removal, pass 2 Tue Jan 03 13:07:23 2023 found 936271 duplicates and 9604343 unique relations Tue Jan 03 13:07:23 2023 memory use: 49.3 MB Tue Jan 03 13:07:23 2023 reading ideals above 100000 Tue Jan 03 13:07:23 2023 commencing singleton removal, initial pass Tue Jan 03 13:07:59 2023 memory use: 344.5 MB Tue Jan 03 13:07:59 2023 reading all ideals from disk Tue Jan 03 13:07:59 2023 memory use: 344.7 MB Tue Jan 03 13:08:00 2023 keeping 10704635 ideals with weight <= 200, target excess is 50932 Tue Jan 03 13:08:00 2023 commencing in-memory singleton removal Tue Jan 03 13:08:01 2023 begin with 9604343 relations and 10704635 unique ideals Tue Jan 03 13:08:05 2023 reduce to 3317872 relations and 3292833 ideals in 20 passes Tue Jan 03 13:08:05 2023 max relations containing the same ideal: 100 Tue Jan 03 13:08:05 2023 filtering wants 1000000 more relations Tue Jan 03 13:08:05 2023 elapsed time 00:01:17 -> makeJobFile(): Adjusted to q0=4950001, q1=5050000. -> client 1 q0: 4950001 LatSieveTime: 86 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 Tue Jan 03 13:10:21 2023 Tue Jan 03 13:10:21 2023 Tue Jan 03 13:10:21 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 13:10:21 2023 random seeds: b5598408 84cf021f Tue Jan 03 13:10:21 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 13:10:21 2023 searching for 15-digit factors Tue Jan 03 13:10:21 2023 commencing number field sieve (122-digit input) Tue Jan 03 13:10:21 2023 R0: -284795009126269821446562 Tue Jan 03 13:10:21 2023 R1: 18020248160653 Tue Jan 03 13:10:21 2023 A0: 223416249625625910947135345375 Tue Jan 03 13:10:21 2023 A1: 8733911624339172250361819 Tue Jan 03 13:10:21 2023 A2: -56868255662493227112 Tue Jan 03 13:10:21 2023 A3: -1286798813637561 Tue Jan 03 13:10:21 2023 A4: 7196671003 Tue Jan 03 13:10:21 2023 A5: 15600 Tue Jan 03 13:10:21 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 13:10:21 2023 Tue Jan 03 13:10:21 2023 commencing relation filtering Tue Jan 03 13:10:21 2023 estimated available RAM is 65413.5 MB Tue Jan 03 13:10:21 2023 commencing duplicate removal, pass 1 Tue Jan 03 13:10:43 2023 found 1248605 hash collisions in 10936007 relations Tue Jan 03 13:10:54 2023 added 69 free relations Tue Jan 03 13:10:54 2023 commencing duplicate removal, pass 2 Tue Jan 03 13:10:57 2023 found 997113 duplicates and 9938963 unique relations Tue Jan 03 13:10:57 2023 memory use: 49.3 MB Tue Jan 03 13:10:57 2023 reading ideals above 100000 Tue Jan 03 13:10:57 2023 commencing singleton removal, initial pass Tue Jan 03 13:11:34 2023 memory use: 344.5 MB Tue Jan 03 13:11:34 2023 reading all ideals from disk Tue Jan 03 13:11:34 2023 memory use: 356.8 MB Tue Jan 03 13:11:35 2023 keeping 10848176 ideals with weight <= 200, target excess is 52835 Tue Jan 03 13:11:35 2023 commencing in-memory singleton removal Tue Jan 03 13:11:36 2023 begin with 9938963 relations and 10848176 unique ideals Tue Jan 03 13:11:41 2023 reduce to 3781821 relations and 3638319 ideals in 21 passes Tue Jan 03 13:11:41 2023 max relations containing the same ideal: 109 Tue Jan 03 13:11:42 2023 removing 439021 relations and 397914 ideals in 41107 cliques Tue Jan 03 13:11:42 2023 commencing in-memory singleton removal Tue Jan 03 13:11:42 2023 begin with 3342800 relations and 3638319 unique ideals Tue Jan 03 13:11:43 2023 reduce to 3299513 relations and 3196398 ideals in 10 passes Tue Jan 03 13:11:43 2023 max relations containing the same ideal: 97 Tue Jan 03 13:11:44 2023 removing 323171 relations and 282064 ideals in 41107 cliques Tue Jan 03 13:11:44 2023 commencing in-memory singleton removal Tue Jan 03 13:11:44 2023 begin with 2976342 relations and 3196398 unique ideals Tue Jan 03 13:11:44 2023 reduce to 2948742 relations and 2886339 ideals in 8 passes Tue Jan 03 13:11:44 2023 max relations containing the same ideal: 91 Tue Jan 03 13:11:45 2023 relations with 0 large ideals: 160 Tue Jan 03 13:11:45 2023 relations with 1 large ideals: 419 Tue Jan 03 13:11:45 2023 relations with 2 large ideals: 6775 Tue Jan 03 13:11:45 2023 relations with 3 large ideals: 56322 Tue Jan 03 13:11:45 2023 relations with 4 large ideals: 246301 Tue Jan 03 13:11:45 2023 relations with 5 large ideals: 606444 Tue Jan 03 13:11:45 2023 relations with 6 large ideals: 867454 Tue Jan 03 13:11:45 2023 relations with 7+ large ideals: 1164867 Tue Jan 03 13:11:45 2023 commencing 2-way merge Tue Jan 03 13:11:46 2023 reduce to 1664998 relation sets and 1602595 unique ideals Tue Jan 03 13:11:46 2023 commencing full merge Tue Jan 03 13:12:05 2023 memory use: 186.9 MB Tue Jan 03 13:12:05 2023 found 836654 cycles, need 828795 Tue Jan 03 13:12:05 2023 weight of 828795 cycles is about 58256456 (70.29/cycle) Tue Jan 03 13:12:05 2023 distribution of cycle lengths: Tue Jan 03 13:12:05 2023 1 relations: 107410 Tue Jan 03 13:12:05 2023 2 relations: 99581 Tue Jan 03 13:12:05 2023 3 relations: 97941 Tue Jan 03 13:12:05 2023 4 relations: 85765 Tue Jan 03 13:12:05 2023 5 relations: 75237 Tue Jan 03 13:12:05 2023 6 relations: 63275 Tue Jan 03 13:12:05 2023 7 relations: 55156 Tue Jan 03 13:12:05 2023 8 relations: 46241 Tue Jan 03 13:12:05 2023 9 relations: 38640 Tue Jan 03 13:12:05 2023 10+ relations: 159549 Tue Jan 03 13:12:05 2023 heaviest cycle: 23 relations Tue Jan 03 13:12:06 2023 commencing cycle optimization Tue Jan 03 13:12:06 2023 start with 4887936 relations Tue Jan 03 13:12:12 2023 pruned 92997 relations Tue Jan 03 13:12:12 2023 memory use: 168.0 MB Tue Jan 03 13:12:12 2023 distribution of cycle lengths: Tue Jan 03 13:12:12 2023 1 relations: 107410 Tue Jan 03 13:12:12 2023 2 relations: 101589 Tue Jan 03 13:12:12 2023 3 relations: 100727 Tue Jan 03 13:12:12 2023 4 relations: 87338 Tue Jan 03 13:12:12 2023 5 relations: 76368 Tue Jan 03 13:12:12 2023 6 relations: 63790 Tue Jan 03 13:12:12 2023 7 relations: 55119 Tue Jan 03 13:12:12 2023 8 relations: 46144 Tue Jan 03 13:12:12 2023 9 relations: 38118 Tue Jan 03 13:12:12 2023 10+ relations: 152192 Tue Jan 03 13:12:12 2023 heaviest cycle: 23 relations Tue Jan 03 13:12:13 2023 RelProcTime: 112 Tue Jan 03 13:12:13 2023 elapsed time 00:01:52 Tue Jan 03 13:12:13 2023 Tue Jan 03 13:12:13 2023 Tue Jan 03 13:12:13 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 13:12:13 2023 random seeds: caa245f0 25b7ede7 Tue Jan 03 13:12:13 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 13:12:13 2023 searching for 15-digit factors Tue Jan 03 13:12:13 2023 commencing number field sieve (122-digit input) Tue Jan 03 13:12:13 2023 R0: -284795009126269821446562 Tue Jan 03 13:12:13 2023 R1: 18020248160653 Tue Jan 03 13:12:13 2023 A0: 223416249625625910947135345375 Tue Jan 03 13:12:13 2023 A1: 8733911624339172250361819 Tue Jan 03 13:12:13 2023 A2: -56868255662493227112 Tue Jan 03 13:12:13 2023 A3: -1286798813637561 Tue Jan 03 13:12:13 2023 A4: 7196671003 Tue Jan 03 13:12:13 2023 A5: 15600 Tue Jan 03 13:12:13 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 13:12:13 2023 Tue Jan 03 13:12:13 2023 commencing linear algebra Tue Jan 03 13:12:13 2023 read 828795 cycles Tue Jan 03 13:12:14 2023 cycles contain 2867474 unique relations Tue Jan 03 13:12:20 2023 read 2867474 relations Tue Jan 03 13:12:22 2023 using 20 quadratic characters above 134216604 Tue Jan 03 13:12:30 2023 building initial matrix Tue Jan 03 13:12:45 2023 memory use: 363.8 MB Tue Jan 03 13:12:46 2023 read 828795 cycles Tue Jan 03 13:12:46 2023 matrix is 828618 x 828795 (248.9 MB) with weight 78459688 (94.67/col) Tue Jan 03 13:12:46 2023 sparse part has weight 56135625 (67.73/col) Tue Jan 03 13:12:50 2023 filtering completed in 2 passes Tue Jan 03 13:12:50 2023 matrix is 827084 x 827261 (248.8 MB) with weight 78397749 (94.77/col) Tue Jan 03 13:12:50 2023 sparse part has weight 56117818 (67.84/col) Tue Jan 03 13:12:51 2023 matrix starts at (0, 0) Tue Jan 03 13:12:51 2023 matrix is 827084 x 827261 (248.8 MB) with weight 78397749 (94.77/col) Tue Jan 03 13:12:51 2023 sparse part has weight 56117818 (67.84/col) Tue Jan 03 13:12:51 2023 saving the first 48 matrix rows for later Tue Jan 03 13:12:52 2023 matrix includes 64 packed rows Tue Jan 03 13:12:52 2023 matrix is 827036 x 827261 (240.4 MB) with weight 62455396 (75.50/col) Tue Jan 03 13:12:52 2023 sparse part has weight 54743365 (66.17/col) Tue Jan 03 13:12:52 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Jan 03 13:12:54 2023 commencing Lanczos iteration (32 threads) Tue Jan 03 13:12:54 2023 memory use: 188.0 MB Tue Jan 03 13:12:56 2023 linear algebra at 0.4%, ETA 0h 9m Tue Jan 03 13:20:27 2023 lanczos halted after 13079 iterations (dim = 827032) Tue Jan 03 13:20:27 2023 recovered 29 nontrivial dependencies Tue Jan 03 13:20:27 2023 BLanczosTime: 494 Tue Jan 03 13:20:27 2023 elapsed time 00:08:14 Tue Jan 03 13:20:27 2023 Tue Jan 03 13:20:27 2023 Tue Jan 03 13:20:27 2023 Msieve v. 1.52 (SVN 927) Tue Jan 03 13:20:27 2023 random seeds: 1cd2d140 30f5c5d5 Tue Jan 03 13:20:27 2023 factoring 29228003214416717871050074908762502388131650957507903995985237693370172767420027680111818888567786211367900280298730679489 (122 digits) Tue Jan 03 13:20:28 2023 searching for 15-digit factors Tue Jan 03 13:20:28 2023 commencing number field sieve (122-digit input) Tue Jan 03 13:20:28 2023 R0: -284795009126269821446562 Tue Jan 03 13:20:28 2023 R1: 18020248160653 Tue Jan 03 13:20:28 2023 A0: 223416249625625910947135345375 Tue Jan 03 13:20:28 2023 A1: 8733911624339172250361819 Tue Jan 03 13:20:28 2023 A2: -56868255662493227112 Tue Jan 03 13:20:28 2023 A3: -1286798813637561 Tue Jan 03 13:20:28 2023 A4: 7196671003 Tue Jan 03 13:20:28 2023 A5: 15600 Tue Jan 03 13:20:28 2023 skew 133266.08, size 7.151e-012, alpha -5.361, combined = 1.792e-010 rroots = 3 Tue Jan 03 13:20:28 2023 Tue Jan 03 13:20:28 2023 commencing square root phase Tue Jan 03 13:20:28 2023 reading relations for dependency 1 Tue Jan 03 13:20:28 2023 read 413043 cycles Tue Jan 03 13:20:28 2023 cycles contain 1432976 unique relations Tue Jan 03 13:20:32 2023 read 1432976 relations Tue Jan 03 13:20:35 2023 multiplying 1432976 relations Tue Jan 03 13:21:08 2023 multiply complete, coefficients have about 64.80 million bits Tue Jan 03 13:21:08 2023 initial square root is modulo 2006698051 Tue Jan 03 13:21:53 2023 sqrtTime: 85 Tue Jan 03 13:21:53 2023 prp56 factor: 97899783070788796630900067103863923090082154741260151109 Tue Jan 03 13:21:53 2023 prp66 factor: 298550234715869656438777772575974814248256667720588501919707391821 Tue Jan 03 13:21:53 2023 elapsed time 00:01:26 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 12:39:17 UTC 2022 年 12 月 26 日 (月) 21 時 39 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | September 18, 2024 09:28:54 UTC 2024 年 9 月 18 日 (水) 18 時 28 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 4, 2024 10:15:50 UTC 2024 年 10 月 4 日 (金) 19 時 15 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:01:53 UTC 2023 年 1 月 29 日 (日) 20 時 1 分 53 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 10:18:38 UTC 2024 年 10 月 4 日 (金) 19 時 18 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:01 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 1 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 10:21:48 UTC 2024 年 10 月 4 日 (金) 19 時 21 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 21:49:59 UTC 2023 年 1 月 20 日 (金) 6 時 49 分 59 秒 (日本時間) |
composite number 合成数 | 852918877937831690674753601213040181956027293404094010614101592115238817285822592873388931008339651250947687642153146322971948445792266868840030326004548900682335102350265352539802880970432145564821834723275208491281273692191053828658074298711144806671721<255> |
prime factors 素因数 | 1175597645819838333627886853021151757793<40> |
composite cofactor 合成数の残り | 725519382392964124387108874082629122895863285273430101846009275597919174074036059314532835440683165755377730159977464897765980765893871072252218519713885223399635935107761509878375985352799817262401600550045588930697<216> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 09:52:55 2023 Input number is 852918877937831690674753601213040181956027293404094010614101592115238817285822592873388931008339651250947687642153146322971948445792266868840030326004548900682335102350265352539802880970432145564821834723275208491281273692191053828658074298711144806671721 (255 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1542460864 Step 1 took 0ms Step 2 took 6269ms ********** Factor found in step 2: 1175597645819838333627886853021151757793 Found prime factor of 40 digits: 1175597645819838333627886853021151757793 Composite cofactor 725519382392964124387108874082629122895863285273430101846009275597919174074036059314532835440683165755377730159977464897765980765893871072252218519713885223399635935107761509878375985352799817262401600550045588930697 has 216 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:28:44 UTC 2023 年 1 月 18 日 (水) 17 時 28 分 44 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 10:24:34 UTC 2024 年 10 月 4 日 (金) 19 時 24 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 4, 2024 10:38:26 UTC 2024 年 10 月 4 日 (金) 19 時 38 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:08 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 8 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 10:41:35 UTC 2024 年 10 月 4 日 (金) 19 時 41 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2500 | ddd | September 17, 2024 00:43:19 UTC 2024 年 9 月 17 日 (火) 9 時 43 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:16 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 16 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 10:44:27 UTC 2024 年 10 月 4 日 (金) 19 時 44 分 27 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 10:49:13 UTC 2024 年 10 月 4 日 (金) 19 時 49 分 13 秒 (日本時間) |
composite number 合成数 | 2933283327221816414798118954123957775252451142249020785015977675430007362879678536650662756115468620733907301915823498416218395343122935216769395172901427088567321371927647057269980052922964122082451916647826192637461122775413191<229> |
prime factors 素因数 | 3486846562177404459794603048828645591<37> |
composite cofactor 合成数の残り | 841242444975867066355552521034433111442429678345626078643357238158768179043674684399476070643876525599173539494128312999550134334164186842020642967121281449601981130031530902322144461489043601<192> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 2933283327221816414798118954123957775252451142249020785015977675430007362879678536650662756115468620733907301915823498416218395343122935216769395172901427088567321371927647057269980052922964122082451916647826192637461122775413191 (229 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1471294879 Step 1 took 11375ms Step 2 took 4447ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2945351879 Step 1 took 10115ms Step 2 took 4439ms Run 3 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3289622721 Step 1 took 10112ms Step 2 took 4427ms Run 4 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2160490080 Step 1 took 10112ms Step 2 took 4529ms Run 5 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:62010942 Step 1 took 10226ms Step 2 took 4434ms ** Factor found in step 2: 3486846562177404459794603048828645591 Found prime factor of 37 digits: 3486846562177404459794603048828645591 Composite cofactor 841242444975867066355552521034433111442429678345626078643357238158768179043674684399476070643876525599173539494128312999550134334164186842020642967121281449601981130031530902322144461489043601 has 192 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2208 | Thomas Kozlowski | October 7, 2024 03:00:00 UTC 2024 年 10 月 7 日 (月) 12 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 4, 2024 10:59:34 UTC 2024 年 10 月 4 日 (金) 19 時 59 分 34 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 11:04:24 UTC 2024 年 10 月 4 日 (金) 20 時 4 分 24 秒 (日本時間) |
composite number 合成数 | 79136970128446564653295627337004324814466940975406087368409706371890737923463858548607827826534880188854520583765384546514146802936241436220199260979960384367631522429632327678681034671082144942996947310108936201<212> |
prime factors 素因数 | 994862843436827836861101506310269535713<39> 79545608372569231250408540084272335253735837076597188551291629119463117726375673235077676858433216830471715834851119011657307712409617418027471382191681598256974033271355177<173> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 79136970128446564653295627337004324814466940975406087368409706371890737923463858548607827826534880188854520583765384546514146802936241436220199260979960384367631522429632327678681034671082144942996947310108936201 (212 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1392176057 Step 1 took 11374ms Step 2 took 4162ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2242798590 Step 1 took 9388ms Step 2 took 4157ms Run 3 out of 0: ... Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:940606255 Step 1 took 9197ms Step 2 took 4150ms Run 18 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:238809891 Step 1 took 9324ms Step 2 took 4167ms ** Factor found in step 2: 994862843436827836861101506310269535713 Found prime factor of 39 digits: 994862843436827836861101506310269535713 Prime cofactor 79545608372569231250408540084272335253735837076597188551291629119463117726375673235077676858433216830471715834851119011657307712409617418027471382191681598256974033271355177 has 173 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:23 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 23 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 11:06:51 UTC 2024 年 10 月 4 日 (金) 20 時 6 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2204 | Thomas Kozlowski | October 4, 2024 11:20:44 UTC 2024 年 10 月 4 日 (金) 20 時 20 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 4, 2024 11:34:37 UTC 2024 年 10 月 4 日 (金) 20 時 34 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:39:40 UTC 2023 年 1 月 13 日 (金) 21 時 39 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 11:38:26 UTC 2024 年 10 月 4 日 (金) 20 時 38 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 29, 2023 18:59:20 UTC 2023 年 1 月 30 日 (月) 3 時 59 分 20 秒 (日本時間) |
composite number 合成数 | 2259716074316642197292190195214880513155901700765095709877144965000528033643760636350130313284454290189067578223954437131360151819509800424826279184331992774666865298641239870689302232037736597948902554530164427232073111256950983471<232> |
prime factors 素因数 | 16945272926639982268837057956619623247<38> |
composite cofactor 合成数の残り | 133353772706965377754176230190078198990531673145059814593638579046321493280705143486823249915410011016946572682133463476087769501426424170945952710021722901667709079213454508891373227174892034593<195> |
factorization results 素因数分解の結果 | GPU: factor 16945272926639982268837057956619623247 found in Step 1 with curve 711 (-sigma 3:-1953728642) Computing 1792 Step 1 took 283ms of CPU time / 267611ms of GPU time Throughput: 6.696 curves per second (on average 149.34ms per Step 1) ********** Factor found in step 1: 16945272926639982268837057956619623247 Found prime factor of 38 digits: 16945272926639982268837057956619623247 Composite cofactor 133353772706965377754176230190078198990531673145059814593638579046321493280705143486823249915410011016946572682133463476087769501426424170945952710021722901667709079213454508891373227174892034593 has 195 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4292 | 1792 | Dmitry Domanov | January 29, 2023 11:02:30 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 30 秒 (日本時間) |
2500 | ccc | September 16, 2024 02:02:53 UTC 2024 年 9 月 16 日 (月) 11 時 2 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:39:49 UTC 2023 年 1 月 13 日 (金) 21 時 39 分 49 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 11:42:19 UTC 2024 年 10 月 4 日 (金) 20 時 42 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:28:51 UTC 2023 年 1 月 18 日 (水) 17 時 28 分 51 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 11:45:48 UTC 2024 年 10 月 4 日 (金) 20 時 45 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 14, 2023 11:39:56 UTC 2023 年 1 月 14 日 (土) 20 時 39 分 56 秒 (日本時間) |
composite number 合成数 | 15845070422535211267605633802816901408450704225352112676056338028169014084507042253521126760563380281690140845070422535211267605633802816901408450704225352112676056338028169014084507042253521126760563380281690140845070422535211267605633802816901408450704225352112676056338028169<278> |
prime factors 素因数 | 25297558390427510858874315561340669181<38> |
composite cofactor 合成数の残り | 626347814994308657281583845458390617768479943977033857128075147015970193180262082146406277800078210478289881280628840264242378917612632723545192727819506117803744444864944499082293488804120553194606568262842823341105912767988155255234964349<240> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @1498b1fa0be1 with GMP-ECM 7.0.5-dev on Fri Jan 13 14:31:50 2023 Input number is 15845070422535211267605633802816901408450704225352112676056338028169014084507042253521126760563380281690140845070422535211267605633802816901408450704225352112676056338028169014084507042253521126760563380281690140845070422535211267605633802816901408450704225352112676056338028169 (278 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:77502544 Step 1 took 0ms Step 2 took 4304ms ********** Factor found in step 2: 25297558390427510858874315561340669181 Found prime factor of 38 digits: 25297558390427510858874315561340669181 Composite cofactor 626347814994308657281583845458390617768479943977033857128075147015970193180262082146406277800078210478289881280628840264242378917612632723545192727819506117803744444864944499082293488804120553194606568262842823341105912767988155255234964349 has 240 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:39:57 UTC 2023 年 1 月 13 日 (金) 21 時 39 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 11:48:57 UTC 2024 年 10 月 4 日 (金) 20 時 48 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | Thomas Kozlowski | October 4, 2024 12:02:47 UTC 2024 年 10 月 4 日 (金) 21 時 2 分 47 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 30, 2023 05:00:39 UTC 2023 年 1 月 30 日 (月) 14 時 0 分 39 秒 (日本時間) |
composite number 合成数 | 272346265435741315228214548731629567603849309214248095833793407030411920242272170827258001986794895507208331706676978456455374016205026644340965327014942082275197150871148877486665502189025280578050349806318994096194825221520680273575000666201<243> |
prime factors 素因数 | 40986643369786809523419022546680927019<38> 6644756511983623655194892112950868326824427297782259284701811634225085868795988094630596850131169709563518579383216544165188881723305994779603883532619443430240627510944316820266877487501623727499103754379<205> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b8400992c270 with GMP-ECM 7.0.5-dev on Sun Jan 29 18:51:28 2023 Input number is 272346265435741315228214548731629567603849309214248095833793407030411920242272170827258001986794895507208331706676978456455374016205026644340965327014942082275197150871148877486665502189025280578050349806318994096194825221520680273575000666201 (243 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3075768295 Step 1 took 0ms Step 2 took 6102ms ********** Factor found in step 2: 40986643369786809523419022546680927019 Found prime factor of 38 digits: 40986643369786809523419022546680927019 Prime cofactor 6644756511983623655194892112950868326824427297782259284701811634225085868795988094630596850131169709563518579383216544165188881723305994779603883532619443430240627510944316820266877487501623727499103754379 has 205 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 29, 2023 11:02:38 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:28:59 UTC 2023 年 1 月 18 日 (水) 17 時 28 分 59 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:06:16 UTC 2024 年 10 月 4 日 (金) 21 時 6 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2201 | Thomas Kozlowski | October 4, 2024 12:20:09 UTC 2024 年 10 月 4 日 (金) 21 時 20 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:45 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 45 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:23:17 UTC 2024 年 10 月 4 日 (金) 21 時 23 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 29, 2023 11:02:55 UTC 2023 年 1 月 29 日 (日) 20 時 2 分 55 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:26:24 UTC 2024 年 10 月 4 日 (金) 21 時 26 分 24 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 20:25:16 UTC 2024 年 10 月 5 日 (土) 5 時 25 分 16 秒 (日本時間) |
composite number 合成数 | 13302066159355144617545343416877928061856061892156821002928064923620836207579888310040212236578371714142054475064838360607420132187308602541496479177491665533841043916847978134594244225994722769158732937153389133948547470609<224> |
prime factors 素因数 | 15494783690671526346622715005225081<35> 858486728495830209368637653600135430396139786241705513316408867252551990930785209264153918146441292062725526319155842126378521959566489273278722799399540962936152351888017544844308736326489<189> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 13302066159355144617545343416877928061856061892156821002928064923620836207579888310040212236578371714142054475064838360607420132187308602541496479177491665533841043916847978134594244225994722769158732937153389133948547470609 (224 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1792780155 Step 1 took 11389ms Step 2 took 4462ms Run 2 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4272003980 Step 1 took 10205ms Step 2 took 4430ms Run 3 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:1641996683 Step 1 took 10165ms Step 2 took 4476ms Run 4 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4274808193 Step 1 took 10301ms Step 2 took 4479ms Run 5 out of 0: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3976204574 Step 1 took 10221ms Step 2 took 4451ms ** Factor found in step 2: 15494783690671526346622715005225081 Found prime factor of 35 digits: 15494783690671526346622715005225081 Prime cofactor 858486728495830209368637653600135430396139786241705513316408867252551990930785209264153918146441292062725526319155842126378521959566489273278722799399540962936152351888017544844308736326489 has 189 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:29:07 UTC 2023 年 1 月 18 日 (水) 17 時 29 分 7 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:31:10 UTC 2024 年 10 月 4 日 (金) 21 時 31 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:29:15 UTC 2023 年 1 月 18 日 (水) 17 時 29 分 15 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:34:40 UTC 2024 年 10 月 4 日 (金) 21 時 34 分 40 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:29:23 UTC 2023 年 1 月 18 日 (水) 17 時 29 分 23 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:38:09 UTC 2024 年 10 月 4 日 (金) 21 時 38 分 9 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2203 | Thomas Kozlowski | October 4, 2024 12:52:01 UTC 2024 年 10 月 4 日 (金) 21 時 52 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:29:31 UTC 2023 年 1 月 18 日 (水) 17 時 29 分 31 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:55:34 UTC 2024 年 10 月 4 日 (金) 21 時 55 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:29:38 UTC 2023 年 1 月 18 日 (水) 17 時 29 分 38 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 12:59:04 UTC 2024 年 10 月 4 日 (金) 21 時 59 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 13, 2023 12:40:05 UTC 2023 年 1 月 13 日 (金) 21 時 40 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 13:02:57 UTC 2024 年 10 月 4 日 (金) 22 時 2 分 57 秒 (日本時間) |