name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 15:42:37 UTC 2022 年 12 月 24 日 (土) 0 時 42 分 37 秒 (日本時間) |
composite number 合成数 | 3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<115> |
prime factors 素因数 | 30155816084572813104933515948989432222124153177269<50> 116432302852096714034324859551591005977285960740733179420083947019<66> |
factorization results 素因数分解の結果 | N=3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 115 digits) SNFS difficulty: 115 digits. Divisors found: r1=30155816084572813104933515948989432222124153177269 (pp50) r2=116432302852096714034324859551591005977285960740733179420083947019 (pp66) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 10000000000000000000000000000 deg: 4 c4: 3160 c0: -1 skew: 0.13 # Murphy_E = 6.67e-08 type: snfs lss: 1 rlim: 590000 alim: 590000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 590000/590000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [295000, 635001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63907 x 64132 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,4,0,0,0,0,0,0,0,0,590000,590000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 24, 2022 22:26:08 UTC 2022 年 12 月 25 日 (日) 7 時 26 分 8 秒 (日本時間) |
composite number 合成数 | 25590237503417860535433021135839698132210633113405400701050139450923304033190885609186590649848999412209637<107> |
prime factors 素因数 | 41986310286915371149011615928556075657239<41> 609490029691721002746151776322534024422239646247740303331143549283<66> |
factorization results 素因数分解の結果 | N=25590237503417860535433021135839698132210633113405400701050139450923304033190885609186590649848999412209637 ( 107 digits) SNFS difficulty: 118 digits. Divisors found: r1=41986310286915371149011615928556075657239 (pp41) r2=609490029691721002746151776322534024422239646247740303331143549283 (pp66) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 25590237503417860535433021135839698132210633113405400701050139450923304033190885609186590649848999412209637 m: 100000000000000000000000000000 deg: 4 c4: 316 c0: -1 skew: 0.24 # Murphy_E = 5.343e-08 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 580001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 56352 x 56577 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118.000,4,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 21:18:38 UTC 2022 年 12 月 26 日 (月) 6 時 18 分 38 秒 (日本時間) |
composite number 合成数 | 4275570244033583792449748857604162565298849506286644241571342422167370444471234409897566266941439706273736349125747362237<121> |
prime factors 素因数 | 1379555907764947558448804499375262963020263<43> 3099236660122415956741707773893542295271212055774326442863923210237487280077499<79> |
factorization results 素因数分解の結果 | N=4275570244033583792449748857604162565298849506286644241571342422167370444471234409897566266941439706273736349125747362237 ( 121 digits) SNFS difficulty: 127 digits. Divisors found: r1=1379555907764947558448804499375262963020263 (pp43) r2=3099236660122415956741707773893542295271212055774326442863923210237487280077499 (pp79) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 4275570244033583792449748857604162565298849506286644241571342422167370444471234409897566266941439706273736349125747362237 m: 10000000000000000000000000000000 deg: 4 c4: 3160 c0: -1 skew: 0.13 # Murphy_E = 1.796e-08 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 840001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 115394 x 115619 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127.000,4,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,75000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 22:55:52 UTC 2022 年 12 月 27 日 (火) 7 時 55 分 52 秒 (日本時間) |
composite number 合成数 | 4661908700408544974666026650210599157876716264150758906617541234983250174153636501584821152347443508073793818295597718563<121> |
prime factors 素因数 | 8772229937013493355640610739298163899885065717294413<52> 531439409805950925988373197842874692098968757127103270569679758069551<69> |
factorization results 素因数分解の結果 | N=4661908700408544974666026650210599157876716264150758906617541234983250174153636501584821152347443508073793818295597718563 ( 121 digits) SNFS difficulty: 132 digits. Divisors found: r1=8772229937013493355640610739298163899885065717294413 (pp52) r2=531439409805950925988373197842874692098968757127103270569679758069551 (pp69) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 4661908700408544974666026650210599157876716264150758906617541234983250174153636501584821152347443508073793818295597718563 m: 100000000000000000000000000 deg: 5 c5: 316 c0: -1 skew: 0.32 # Murphy_E = 8.184e-09 type: snfs lss: 1 rlim: 1130000 alim: 1130000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1130000/1130000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [565000, 865001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 138755 x 138980 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132.000,5,0,0,0,0,0,0,0,0,1130000,1130000,26,26,47,47,2.3,2.3,50000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | December 24, 2022 00:25:15 UTC 2022 年 12 月 24 日 (土) 9 時 25 分 15 秒 (日本時間) |
composite number 合成数 | 5488778314323227554500876380727370817867918802904397466755112423554432092956282054421931768579905408895746387871467402301917199<127> |
prime factors 素因数 | 16628182694890849091112933772921644381544691<44> 330088886743450412667145876561886769999513182946451565114439978993664508326469116789<84> |
factorization results 素因数分解の結果 | p44:16628182694890849091112933772921644381544691 p84:330088886743450412667145876561886769999513182946451565114439978993664508326469116789 |
software ソフトウェア | ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 6, 2023 20:40:45 UTC 2023 年 1 月 7 日 (土) 5 時 40 分 45 秒 (日本時間) |
composite number 合成数 | 963708205316279503197455009344885861005349557206403795303848147616677990718536965557581574423578084770292833712199737<117> |
prime factors 素因数 | 17868327989704171919489722152115197630773237<44> 53933877074092966575702599474721852603389583822372176887862614774521784501<74> |
factorization results 素因数分解の結果 | N=963708205316279503197455009344885861005349557206403795303848147616677990718536965557581574423578084770292833712199737 ( 117 digits) SNFS difficulty: 135 digits. Divisors found: r1=17868327989704171919489722152115197630773237 (pp44) r2=53933877074092966575702599474721852603389583822372176887862614774521784501 (pp74) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 963708205316279503197455009344885861005349557206403795303848147616677990718536965557581574423578084770292833712199737 m: 1000000000000000000000000000000000 deg: 4 c4: 3160 c0: -1 skew: 0.13 # Murphy_E = 7.307e-09 type: snfs lss: 1 rlim: 1270000 alim: 1270000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1270000/1270000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [635000, 1435001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178433 x 178658 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135.000,4,0,0,0,0,0,0,0,0,1270000,1270000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | anonymous |
---|---|
date 日付 | January 13, 2023 10:38:34 UTC 2023 年 1 月 13 日 (金) 19 時 38 分 34 秒 (日本時間) |
composite number 合成数 | 495573095106189123317363220438294835224352753272385788932664173286165059100290926017972325592120753991557534631641844151<120> |
prime factors 素因数 | 11345787224717148447469587391023960487<38> 43679040095743008931800435092555381368276748135674730036660018542242655580853397873<83> |
factorization results 素因数分解の結果 | 11345787224717148447469587391023960487 |
software ソフトウェア | GMP-ECM 7.0.4 B1=3000000, sigma=4043790735 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 06:53:32 UTC 2022 年 12 月 31 日 (土) 15 時 53 分 32 秒 (日本時間) |
composite number 合成数 | 71469863875040189108084710452859917286490435864876352460940999684250302402318819983787293254572258184551242016090892494909106989<128> |
prime factors 素因数 | 41231796304665059124641621547668764076025411841<47> 1733367698728030588101602114719133144741235383254446299505816105276729106480899629<82> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 71469863875040189108084710452859917286490435864876352460940999684250302402318819983787293254572258184551242016090892494909106989 (128 digits) Using B1=36780000, B2=192390318136, polynomial Dickson(12), sigma=1:170022965 Step 1 took 57519ms Step 2 took 24025ms ********** Factor found in step 2: 41231796304665059124641621547668764076025411841 Found prime factor of 47 digits: 41231796304665059124641621547668764076025411841 Prime cofactor 1733367698728030588101602114719133144741235383254446299505816105276729106480899629 has 82 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 10:29:19 UTC 2022 年 12 月 30 日 (金) 19 時 29 分 19 秒 (日本時間) |
composite number 合成数 | 1795954662784855570227508230851355853141139456702065136861564808802058570095578808590060274844909436346360741915838211520132694250426163723<139> |
prime factors 素因数 | 364799968193978476817111001960947621837944209749<48> 4923121763623279455262165173620644229161535661310273629537812206064869744762595679743874527<91> |
factorization results 素因数分解の結果 | Number: n N=1795954662784855570227508230851355853141139456702065136861564808802058570095578808590060274844909436346360741915838211520132694250426163723 ( 139 digits) SNFS difficulty: 151 digits. Divisors found: Fri Dec 30 21:25:26 2022 p48 factor: 364799968193978476817111001960947621837944209749 Fri Dec 30 21:25:26 2022 p91 factor: 4923121763623279455262165173620644229161535661310273629537812206064869744762595679743874527 Fri Dec 30 21:25:26 2022 elapsed time 00:05:09 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.305). Factorization parameters were as follows: # # N = 79x10^151-25 = 87(150)5 # n: 1795954662784855570227508230851355853141139456702065136861564808802058570095578808590060274844909436346360741915838211520132694250426163723 m: 10000000000000000000000000000000000000 deg: 4 c4: 3160 c0: -1 skew: 0.13 # Murphy_E = 1.144e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 13950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1277718 hash collisions in 12726281 relations (12727744 unique) Msieve: matrix is 356002 x 356227 (117.1 MB) Sieving start time : 2022/12/30 20:33:36 Sieving end time : 2022/12/30 21:19:59 Total sieving time: 0hrs 46min 23secs. Total relation processing time: 0hrs 2min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 13sec. Prototype def-par.txt line would be: snfs,151,4,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 25, 2022 08:58:42 UTC 2022 年 12 月 25 日 (日) 17 時 58 分 42 秒 (日本時間) |
composite number 合成数 | 5178515928461866629612430867278840961429265711979765276877343288561235063174011007881083101527131446292511<106> |
prime factors 素因数 | 66096890289223157668909209321534835973008718309<47> 78347345931132309620497703823924853722245312179323251052979<59> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1250000, q1=1400000. -> client 1 q0: 1250000 LatSieveTime: 56 LatSieveTime: 58 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 75 LatSieveTime: 75 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 78 LatSieveTime: 78 -> makeJobFile(): Adjusted to q0=1400001, q1=1550000. -> client 1 q0: 1400001 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 77 -> makeJobFile(): Adjusted to q0=1550001, q1=1700000. -> client 1 q0: 1550001 LatSieveTime: 62 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 76 LatSieveTime: 77 LatSieveTime: 79 -> makeJobFile(): Adjusted to q0=1700001, q1=1850000. -> client 1 q0: 1700001 LatSieveTime: 60 LatSieveTime: 60 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 70 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 76 -> makeJobFile(): Adjusted to q0=1850001, q1=2000000. -> client 1 q0: 1850001 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 61 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 76 -> makeJobFile(): Adjusted to q0=2000001, q1=2150000. -> client 1 q0: 2000001 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 62 LatSieveTime: 63 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 64 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 65 LatSieveTime: 66 LatSieveTime: 66 LatSieveTime: 67 LatSieveTime: 67 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 68 LatSieveTime: 69 LatSieveTime: 69 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 70 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 71 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 72 LatSieveTime: 73 LatSieveTime: 73 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 74 LatSieveTime: 75 LatSieveTime: 76 LatSieveTime: 76 LatSieveTime: 77 LatSieveTime: 77 Sun Dec 25 09:49:19 2022 Sun Dec 25 09:49:19 2022 Sun Dec 25 09:49:19 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:49:19 2022 random seeds: a2741f58 a5e23ea8 Sun Dec 25 09:49:19 2022 factoring 5178515928461866629612430867278840961429265711979765276877343288561235063174011007881083101527131446292511 (106 digits) Sun Dec 25 09:49:19 2022 searching for 15-digit factors Sun Dec 25 09:49:20 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:49:20 2022 R0: -235166044333333363809 Sun Dec 25 09:49:20 2022 R1: 116338995223 Sun Dec 25 09:49:20 2022 A0: -19768489748388143042522440 Sun Dec 25 09:49:20 2022 A1: 4251746825168583320676 Sun Dec 25 09:49:20 2022 A2: 19718975933216637 Sun Dec 25 09:49:20 2022 A3: -11971012506096 Sun Dec 25 09:49:20 2022 A4: -8384792 Sun Dec 25 09:49:20 2022 A5: 7200 Sun Dec 25 09:49:20 2022 skew 26525.64, size 4.527e-010, alpha -5.771, combined = 1.749e-009 rroots = 5 Sun Dec 25 09:49:20 2022 Sun Dec 25 09:49:20 2022 commencing relation filtering Sun Dec 25 09:49:20 2022 estimated available RAM is 65413.5 MB Sun Dec 25 09:49:20 2022 commencing duplicate removal, pass 1 Sun Dec 25 09:49:28 2022 found 542311 hash collisions in 4602235 relations Sun Dec 25 09:49:32 2022 added 31780 free relations Sun Dec 25 09:49:32 2022 commencing duplicate removal, pass 2 Sun Dec 25 09:49:33 2022 found 336296 duplicates and 4297719 unique relations Sun Dec 25 09:49:33 2022 memory use: 20.6 MB Sun Dec 25 09:49:33 2022 reading ideals above 100000 Sun Dec 25 09:49:33 2022 commencing singleton removal, initial pass Sun Dec 25 09:49:47 2022 memory use: 94.1 MB Sun Dec 25 09:49:47 2022 reading all ideals from disk Sun Dec 25 09:49:47 2022 memory use: 138.0 MB Sun Dec 25 09:49:47 2022 keeping 4721438 ideals with weight <= 200, target excess is 23480 Sun Dec 25 09:49:47 2022 commencing in-memory singleton removal Sun Dec 25 09:49:47 2022 begin with 4297719 relations and 4721438 unique ideals Sun Dec 25 09:49:48 2022 reduce to 1510255 relations and 1438505 ideals in 18 passes Sun Dec 25 09:49:48 2022 max relations containing the same ideal: 94 Sun Dec 25 09:49:48 2022 removing 199554 relations and 177297 ideals in 22257 cliques Sun Dec 25 09:49:49 2022 commencing in-memory singleton removal Sun Dec 25 09:49:49 2022 begin with 1310701 relations and 1438505 unique ideals Sun Dec 25 09:49:49 2022 reduce to 1289155 relations and 1239235 ideals in 9 passes Sun Dec 25 09:49:49 2022 max relations containing the same ideal: 83 Sun Dec 25 09:49:49 2022 removing 148868 relations and 126611 ideals in 22257 cliques Sun Dec 25 09:49:49 2022 commencing in-memory singleton removal Sun Dec 25 09:49:49 2022 begin with 1140287 relations and 1239235 unique ideals Sun Dec 25 09:49:49 2022 reduce to 1125796 relations and 1097881 ideals in 12 passes Sun Dec 25 09:49:49 2022 max relations containing the same ideal: 74 Sun Dec 25 09:49:49 2022 relations with 0 large ideals: 78 Sun Dec 25 09:49:49 2022 relations with 1 large ideals: 180 Sun Dec 25 09:49:49 2022 relations with 2 large ideals: 3268 Sun Dec 25 09:49:49 2022 relations with 3 large ideals: 25966 Sun Dec 25 09:49:49 2022 relations with 4 large ideals: 109242 Sun Dec 25 09:49:49 2022 relations with 5 large ideals: 254245 Sun Dec 25 09:49:49 2022 relations with 6 large ideals: 340732 Sun Dec 25 09:49:49 2022 relations with 7+ large ideals: 392085 Sun Dec 25 09:49:49 2022 commencing 2-way merge Sun Dec 25 09:49:50 2022 reduce to 642897 relation sets and 614982 unique ideals Sun Dec 25 09:49:50 2022 commencing full merge Sun Dec 25 09:49:56 2022 memory use: 73.9 MB Sun Dec 25 09:49:56 2022 found 314515 cycles, need 311182 Sun Dec 25 09:49:56 2022 weight of 311182 cycles is about 21866673 (70.27/cycle) Sun Dec 25 09:49:56 2022 distribution of cycle lengths: Sun Dec 25 09:49:56 2022 1 relations: 35592 Sun Dec 25 09:49:56 2022 2 relations: 33890 Sun Dec 25 09:49:56 2022 3 relations: 32710 Sun Dec 25 09:49:56 2022 4 relations: 30258 Sun Dec 25 09:49:56 2022 5 relations: 27655 Sun Dec 25 09:49:56 2022 6 relations: 24003 Sun Dec 25 09:49:56 2022 7 relations: 20939 Sun Dec 25 09:49:56 2022 8 relations: 18310 Sun Dec 25 09:49:56 2022 9 relations: 15738 Sun Dec 25 09:49:56 2022 10+ relations: 72087 Sun Dec 25 09:49:56 2022 heaviest cycle: 24 relations Sun Dec 25 09:49:56 2022 commencing cycle optimization Sun Dec 25 09:49:57 2022 start with 2003015 relations Sun Dec 25 09:49:59 2022 pruned 45503 relations Sun Dec 25 09:49:59 2022 memory use: 65.6 MB Sun Dec 25 09:49:59 2022 distribution of cycle lengths: Sun Dec 25 09:49:59 2022 1 relations: 35592 Sun Dec 25 09:49:59 2022 2 relations: 34568 Sun Dec 25 09:49:59 2022 3 relations: 33748 Sun Dec 25 09:49:59 2022 4 relations: 30918 Sun Dec 25 09:49:59 2022 5 relations: 28309 Sun Dec 25 09:49:59 2022 6 relations: 24364 Sun Dec 25 09:49:59 2022 7 relations: 21157 Sun Dec 25 09:49:59 2022 8 relations: 18262 Sun Dec 25 09:49:59 2022 9 relations: 15757 Sun Dec 25 09:49:59 2022 10+ relations: 68507 Sun Dec 25 09:49:59 2022 heaviest cycle: 23 relations Sun Dec 25 09:49:59 2022 RelProcTime: 39 Sun Dec 25 09:49:59 2022 elapsed time 00:00:40 Sun Dec 25 09:49:59 2022 Sun Dec 25 09:49:59 2022 Sun Dec 25 09:49:59 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:49:59 2022 random seeds: dc0c0ce8 d1a33003 Sun Dec 25 09:49:59 2022 factoring 5178515928461866629612430867278840961429265711979765276877343288561235063174011007881083101527131446292511 (106 digits) Sun Dec 25 09:49:59 2022 searching for 15-digit factors Sun Dec 25 09:50:00 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:50:00 2022 R0: -235166044333333363809 Sun Dec 25 09:50:00 2022 R1: 116338995223 Sun Dec 25 09:50:00 2022 A0: -19768489748388143042522440 Sun Dec 25 09:50:00 2022 A1: 4251746825168583320676 Sun Dec 25 09:50:00 2022 A2: 19718975933216637 Sun Dec 25 09:50:00 2022 A3: -11971012506096 Sun Dec 25 09:50:00 2022 A4: -8384792 Sun Dec 25 09:50:00 2022 A5: 7200 Sun Dec 25 09:50:00 2022 skew 26525.64, size 4.527e-010, alpha -5.771, combined = 1.749e-009 rroots = 5 Sun Dec 25 09:50:00 2022 Sun Dec 25 09:50:00 2022 commencing linear algebra Sun Dec 25 09:50:00 2022 read 311182 cycles Sun Dec 25 09:50:00 2022 cycles contain 1092853 unique relations Sun Dec 25 09:50:02 2022 read 1092853 relations Sun Dec 25 09:50:03 2022 using 20 quadratic characters above 67108530 Sun Dec 25 09:50:05 2022 building initial matrix Sun Dec 25 09:50:10 2022 memory use: 134.7 MB Sun Dec 25 09:50:11 2022 read 311182 cycles Sun Dec 25 09:50:11 2022 matrix is 311005 x 311182 (93.1 MB) with weight 29820126 (95.83/col) Sun Dec 25 09:50:11 2022 sparse part has weight 20979216 (67.42/col) Sun Dec 25 09:50:12 2022 filtering completed in 2 passes Sun Dec 25 09:50:12 2022 matrix is 310639 x 310816 (93.1 MB) with weight 29803739 (95.89/col) Sun Dec 25 09:50:12 2022 sparse part has weight 20973956 (67.48/col) Sun Dec 25 09:50:12 2022 matrix starts at (0, 0) Sun Dec 25 09:50:13 2022 matrix is 310639 x 310816 (93.1 MB) with weight 29803739 (95.89/col) Sun Dec 25 09:50:13 2022 sparse part has weight 20973956 (67.48/col) Sun Dec 25 09:50:13 2022 saving the first 48 matrix rows for later Sun Dec 25 09:50:13 2022 matrix includes 64 packed rows Sun Dec 25 09:50:13 2022 matrix is 310591 x 310816 (89.6 MB) with weight 23492933 (75.58/col) Sun Dec 25 09:50:13 2022 sparse part has weight 20385448 (65.59/col) Sun Dec 25 09:50:13 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Sun Dec 25 09:50:14 2022 commencing Lanczos iteration (32 threads) Sun Dec 25 09:50:14 2022 memory use: 68.9 MB Sun Dec 25 09:50:18 2022 linear algebra at 3.9%, ETA 0h 1m Sun Dec 25 09:52:10 2022 lanczos halted after 4912 iterations (dim = 310589) Sun Dec 25 09:52:11 2022 recovered 31 nontrivial dependencies Sun Dec 25 09:52:11 2022 BLanczosTime: 131 Sun Dec 25 09:52:11 2022 elapsed time 00:02:12 Sun Dec 25 09:52:11 2022 Sun Dec 25 09:52:11 2022 Sun Dec 25 09:52:11 2022 Msieve v. 1.52 (SVN 927) Sun Dec 25 09:52:11 2022 random seeds: 77cff840 a247d064 Sun Dec 25 09:52:11 2022 factoring 5178515928461866629612430867278840961429265711979765276877343288561235063174011007881083101527131446292511 (106 digits) Sun Dec 25 09:52:11 2022 searching for 15-digit factors Sun Dec 25 09:52:11 2022 commencing number field sieve (106-digit input) Sun Dec 25 09:52:11 2022 R0: -235166044333333363809 Sun Dec 25 09:52:11 2022 R1: 116338995223 Sun Dec 25 09:52:11 2022 A0: -19768489748388143042522440 Sun Dec 25 09:52:11 2022 A1: 4251746825168583320676 Sun Dec 25 09:52:11 2022 A2: 19718975933216637 Sun Dec 25 09:52:11 2022 A3: -11971012506096 Sun Dec 25 09:52:11 2022 A4: -8384792 Sun Dec 25 09:52:11 2022 A5: 7200 Sun Dec 25 09:52:11 2022 skew 26525.64, size 4.527e-010, alpha -5.771, combined = 1.749e-009 rroots = 5 Sun Dec 25 09:52:11 2022 Sun Dec 25 09:52:11 2022 commencing square root phase Sun Dec 25 09:52:11 2022 reading relations for dependency 1 Sun Dec 25 09:52:11 2022 read 155470 cycles Sun Dec 25 09:52:11 2022 cycles contain 546500 unique relations Sun Dec 25 09:52:13 2022 read 546500 relations Sun Dec 25 09:52:14 2022 multiplying 546500 relations Sun Dec 25 09:52:23 2022 multiply complete, coefficients have about 21.78 million bits Sun Dec 25 09:52:23 2022 initial square root is modulo 1803493 Sun Dec 25 09:52:35 2022 sqrtTime: 24 Sun Dec 25 09:52:35 2022 prp47 factor: 66096890289223157668909209321534835973008718309 Sun Dec 25 09:52:35 2022 prp59 factor: 78347345931132309620497703823924853722245312179323251052979 Sun Dec 25 09:52:35 2022 elapsed time 00:00:24 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 16:42:42 UTC 2022 年 12 月 25 日 (日) 1 時 42 分 42 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 10:24:59 UTC 2022 年 12 月 28 日 (水) 19 時 24 分 59 秒 (日本時間) |
composite number 合成数 | 38567380525568898490067402587697191858617831565652979089892788284172988473629386969204235905687176322419854539243200029832601128562838594063782751<146> |
prime factors 素因数 | 661908824412251802020128369606310308977111431859891769758168069403<66> 58266907923179855811373216563832659373127460626902340338437077708995824547394317<80> |
factorization results 素因数分解の結果 | Number: n N=38567380525568898490067402587697191858617831565652979089892788284172988473629386969204235905687176322419854539243200029832601128562838594063782751 ( 146 digits) SNFS difficulty: 154 digits. Divisors found: Wed Dec 28 19:10:47 2022 p66 factor: 661908824412251802020128369606310308977111431859891769758168069403 Wed Dec 28 19:10:47 2022 p80 factor: 58266907923179855811373216563832659373127460626902340338437077708995824547394317 Wed Dec 28 19:10:47 2022 elapsed time 00:05:27 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.289). Factorization parameters were as follows: # # N = 79x10^154-25 = 87(153)5 # n: 38567380525568898490067402587697191858617831565652979089892788284172988473629386969204235905687176322419854539243200029832601128562838594063782751 m: 100000000000000000000000000000000000000 deg: 4 c4: 316 c0: -1 skew: 0.24 # Murphy_E = 8.827e-10 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 14100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1702453 hash collisions in 13922493 relations (13536246 unique) Msieve: matrix is 386399 x 386625 (129.6 MB) Sieving start time : 2022/12/28 17:51:34 Sieving end time : 2022/12/28 19:04:37 Total sieving time: 1hrs 13min 3secs. Total relation processing time: 0hrs 1min 58sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 28sec. Prototype def-par.txt line would be: snfs,154,4,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 02:20:48 UTC 2022 年 12 月 30 日 (金) 11 時 20 分 48 秒 (日本時間) |
composite number 合成数 | 23869608939849399278484036071237530918242357352898765139343263098812650149333329506306120976658265817413048726384299043043350133558332369745579<143> |
prime factors 素因数 | 36913778883507501969740507638277126431877824175104061004724048236473<68> 646631411408111526545341876686522616501080025693468053087123216633255297923<75> |
factorization results 素因数分解の結果 | Number: n N=23869608939849399278484036071237530918242357352898765139343263098812650149333329506306120976658265817413048726384299043043350133558332369745579 ( 143 digits) SNFS difficulty: 157 digits. Divisors found: Fri Dec 30 13:16:48 2022 p68 factor: 36913778883507501969740507638277126431877824175104061004724048236473 Fri Dec 30 13:16:48 2022 p75 factor: 646631411408111526545341876686522616501080025693468053087123216633255297923 Fri Dec 30 13:16:48 2022 elapsed time 00:05:46 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.325). Factorization parameters were as follows: # # N = 79x10^156-25 = 87(155)5 # n: 23869608939849399278484036071237530918242357352898765139343263098812650149333329506306120976658265817413048726384299043043350133558332369745579 m: 10000000000000000000000000000000 deg: 5 c5: 158 c0: -5 skew: 0.50 # Murphy_E = 7.355e-10 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7050000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1451234 hash collisions in 14305028 relations (13751621 unique) Msieve: matrix is 379115 x 379341 (125.8 MB) Sieving start time : 2022/12/30 12:43:34 Sieving end time : 2022/12/30 13:10:44 Total sieving time: 0hrs 27min 10secs. Total relation processing time: 0hrs 2min 16sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 18sec. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 3, 2023 09:49:59 UTC 2023 年 1 月 3 日 (火) 18 時 49 分 59 秒 (日本時間) |
composite number 合成数 | 3218268805655873663467432248966792486466238250883156001236617424156941875854820310932455038484634091754342797347817704652147589530420183057359<142> |
prime factors 素因数 | 22407950678911933400334654813621660922808957995717069<53> 143621737291870176447595917940055832585111564450331293553967315537849737454185784546918411<90> |
factorization results 素因数分解の結果 | Number: n N=3218268805655873663467432248966792486466238250883156001236617424156941875854820310932455038484634091754342797347817704652147589530420183057359 ( 142 digits) SNFS difficulty: 164 digits. Divisors found: Tue Jan 3 20:45:46 2023 p53 factor: 22407950678911933400334654813621660922808957995717069 Tue Jan 3 20:45:46 2023 p90 factor: 143621737291870176447595917940055832585111564450331293553967315537849737454185784546918411 Tue Jan 3 20:45:46 2023 elapsed time 00:12:19 (Msieve 1.54 - dependency 7) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.279). Factorization parameters were as follows: # # N = 79x10^164-25 = 87(163)5 # n: 3218268805655873663467432248966792486466238250883156001236617424156941875854820310932455038484634091754342797347817704652147589530420183057359 m: 100000000000000000000000000000000 deg: 5 c5: 31600 c0: -1 skew: 0.13 # Murphy_E = 3.259e-10 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1310275 hash collisions in 12382967 relations (11811336 unique) Msieve: matrix is 556746 x 556972 (191.7 MB) Sieving start time : 2023/01/03 19:55:11 Sieving end time : 2023/01/03 20:33:10 Total sieving time: 0hrs 37min 59secs. Total relation processing time: 0hrs 4min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 54sec. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 10:13:39 UTC 2023 年 1 月 1 日 (日) 19 時 13 分 39 秒 (日本時間) |
composite number 合成数 | 21038478920928296986976681725859776373698676149278438316600617639230290188415522652141596469142097546000263274703680279265302971450783533<137> |
prime factors 素因数 | 10367920374874366769952256259381182300391055629<47> 2029189862598962201597263583957704819408282330707184523808564307066066170796619984504546977<91> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 21038478920928296986976681725859776373698676149278438316600617639230290188415522652141596469142097546000263274703680279265302971450783533 (137 digits) Using B1=32660000, B2=144292047916, polynomial Dickson(12), sigma=1:2567536714 Step 1 took 65787ms Step 2 took 22317ms ********** Factor found in step 2: 10367920374874366769952256259381182300391055629 Found prime factor of 47 digits: 10367920374874366769952256259381182300391055629 Prime cofactor 2029189862598962201597263583957704819408282330707184523808564307066066170796619984504546977 has 91 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 26, 2022 08:55:28 UTC 2022 年 12 月 26 日 (月) 17 時 55 分 28 秒 (日本時間) |
composite number 合成数 | 1072641961278304085170487274766403360220665533603734151799883027715235283674762737368707435886730366663645618104838531743243458835837239481235045385314377441660667<163> |
prime factors 素因数 | 12751665725806954212510284538828998394908957130601191067<56> 84117791694263133518247790674070082090464211096080047439349427552941081645068345947011664085739212709248801<107> |
factorization results 素因数分解の結果 | Number: n N=1072641961278304085170487274766403360220665533603734151799883027715235283674762737368707435886730366663645618104838531743243458835837239481235045385314377441660667 ( 163 digits) SNFS difficulty: 168 digits. Divisors found: Mon Dec 26 19:43:16 2022 p56 factor: 12751665725806954212510284538828998394908957130601191067 Mon Dec 26 19:43:16 2022 p107 factor: 84117791694263133518247790674070082090464211096080047439349427552941081645068345947011664085739212709248801 Mon Dec 26 19:43:16 2022 elapsed time 00:12:20 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.319). Factorization parameters were as follows: # # N = 79x10^168-25 = 87(167)5 # n: 1072641961278304085170487274766403360220665533603734151799883027715235283674762737368707435886730366663645618104838531743243458835837239481235045385314377441660667 m: 1000000000000000000000000000000000 deg: 5 c5: 3160 c0: -1 skew: 0.20 # Murphy_E = 2.577e-10 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 7850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1383417 hash collisions in 12786042 relations (12163869 unique) Msieve: matrix is 681447 x 681672 (235.7 MB) Sieving start time : 2022/12/26 18:46:36 Sieving end time : 2022/12/26 19:30:38 Total sieving time: 0hrs 44min 2secs. Total relation processing time: 0hrs 6min 42sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 33sec. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 27, 2022 10:05:09 UTC 2022 年 12 月 27 日 (火) 19 時 5 分 9 秒 (日本時間) |
composite number 合成数 | 2137748937287583624544997197989361017306329969851513474643936657578026934331388840411717942743123333433914761877669<115> |
prime factors 素因数 | 1498553051705127607333150205448159841993515207487<49> 1426542046579630529530160098322187510544167418833600513636825224987<67> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=1750000, q1=1850000. -> client 1 q0: 1750000 LatSieveTime: 74 LatSieveTime: 85 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 -> makeJobFile(): Adjusted to q0=1850001, q1=1950000. -> client 1 q0: 1850001 LatSieveTime: 84 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=1950001, q1=2050000. -> client 1 q0: 1950001 LatSieveTime: 79 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 88 LatSieveTime: 88 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2050001, q1=2150000. -> client 1 q0: 2050001 LatSieveTime: 78 LatSieveTime: 83 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2150001, q1=2250000. -> client 1 q0: 2150001 LatSieveTime: 76 LatSieveTime: 85 LatSieveTime: 89 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 90 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=2250001, q1=2350000. -> client 1 q0: 2250001 LatSieveTime: 85 LatSieveTime: 86 LatSieveTime: 86 LatSieveTime: 91 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 -> makeJobFile(): Adjusted to q0=2350001, q1=2450000. -> client 1 q0: 2350001 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 121 -> makeJobFile(): Adjusted to q0=2450001, q1=2550000. -> client 1 q0: 2450001 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 118 -> makeJobFile(): Adjusted to q0=2550001, q1=2650000. -> client 1 q0: 2550001 LatSieveTime: 82 LatSieveTime: 89 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 123 -> makeJobFile(): Adjusted to q0=2650001, q1=2750000. -> client 1 q0: 2650001 LatSieveTime: 80 LatSieveTime: 81 LatSieveTime: 81 LatSieveTime: 82 LatSieveTime: 83 LatSieveTime: 84 LatSieveTime: 85 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 93 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 -> makeJobFile(): Adjusted to q0=2750001, q1=2850000. -> client 1 q0: 2750001 LatSieveTime: 86 LatSieveTime: 87 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 94 LatSieveTime: 95 LatSieveTime: 95 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 Tue Dec 27 10:54:29 2022 Tue Dec 27 10:54:29 2022 Tue Dec 27 10:54:29 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 10:54:29 2022 random seeds: 0d5fab18 bcd06edf Tue Dec 27 10:54:29 2022 factoring 2137748937287583624544997197989361017306329969851513474643936657578026934331388840411717942743123333433914761877669 (115 digits) Tue Dec 27 10:54:29 2022 searching for 15-digit factors Tue Dec 27 10:54:29 2022 commencing number field sieve (115-digit input) Tue Dec 27 10:54:29 2022 R0: -15816139675004530664406 Tue Dec 27 10:54:29 2022 R1: 151532508919 Tue Dec 27 10:54:29 2022 A0: -57855034847159545866848725 Tue Dec 27 10:54:29 2022 A1: 11869751718067749267920 Tue Dec 27 10:54:29 2022 A2: -538473014913038942 Tue Dec 27 10:54:29 2022 A3: -64379486608116 Tue Dec 27 10:54:29 2022 A4: 254267287 Tue Dec 27 10:54:29 2022 A5: 2160 Tue Dec 27 10:54:29 2022 skew 49737.04, size 4.289e-011, alpha -4.245, combined = 4.866e-010 rroots = 3 Tue Dec 27 10:54:29 2022 Tue Dec 27 10:54:29 2022 commencing relation filtering Tue Dec 27 10:54:29 2022 estimated available RAM is 65413.5 MB Tue Dec 27 10:54:29 2022 commencing duplicate removal, pass 1 Tue Dec 27 10:54:43 2022 found 730269 hash collisions in 7091007 relations Tue Dec 27 10:54:51 2022 added 57388 free relations Tue Dec 27 10:54:51 2022 commencing duplicate removal, pass 2 Tue Dec 27 10:54:53 2022 found 474759 duplicates and 6673636 unique relations Tue Dec 27 10:54:53 2022 memory use: 24.6 MB Tue Dec 27 10:54:53 2022 reading ideals above 100000 Tue Dec 27 10:54:53 2022 commencing singleton removal, initial pass Tue Dec 27 10:55:16 2022 memory use: 188.3 MB Tue Dec 27 10:55:16 2022 reading all ideals from disk Tue Dec 27 10:55:16 2022 memory use: 228.7 MB Tue Dec 27 10:55:16 2022 keeping 7726636 ideals with weight <= 200, target excess is 35848 Tue Dec 27 10:55:17 2022 commencing in-memory singleton removal Tue Dec 27 10:55:17 2022 begin with 6673636 relations and 7726636 unique ideals Tue Dec 27 10:55:19 2022 reduce to 1752314 relations and 1799428 ideals in 21 passes Tue Dec 27 10:55:19 2022 max relations containing the same ideal: 77 Tue Dec 27 10:55:19 2022 filtering wants 1000000 more relations Tue Dec 27 10:55:19 2022 elapsed time 00:00:50 -> makeJobFile(): Adjusted to q0=2850001, q1=2950000. -> client 1 q0: 2850001 LatSieveTime: 88 LatSieveTime: 89 LatSieveTime: 90 LatSieveTime: 91 LatSieveTime: 91 LatSieveTime: 92 LatSieveTime: 93 LatSieveTime: 97 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 99 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 Tue Dec 27 10:57:23 2022 Tue Dec 27 10:57:23 2022 Tue Dec 27 10:57:23 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 10:57:23 2022 random seeds: 08816ca8 5cda954b Tue Dec 27 10:57:23 2022 factoring 2137748937287583624544997197989361017306329969851513474643936657578026934331388840411717942743123333433914761877669 (115 digits) Tue Dec 27 10:57:23 2022 searching for 15-digit factors Tue Dec 27 10:57:24 2022 commencing number field sieve (115-digit input) Tue Dec 27 10:57:24 2022 R0: -15816139675004530664406 Tue Dec 27 10:57:24 2022 R1: 151532508919 Tue Dec 27 10:57:24 2022 A0: -57855034847159545866848725 Tue Dec 27 10:57:24 2022 A1: 11869751718067749267920 Tue Dec 27 10:57:24 2022 A2: -538473014913038942 Tue Dec 27 10:57:24 2022 A3: -64379486608116 Tue Dec 27 10:57:24 2022 A4: 254267287 Tue Dec 27 10:57:24 2022 A5: 2160 Tue Dec 27 10:57:24 2022 skew 49737.04, size 4.289e-011, alpha -4.245, combined = 4.866e-010 rroots = 3 Tue Dec 27 10:57:24 2022 Tue Dec 27 10:57:24 2022 commencing relation filtering Tue Dec 27 10:57:24 2022 estimated available RAM is 65413.5 MB Tue Dec 27 10:57:24 2022 commencing duplicate removal, pass 1 Tue Dec 27 10:57:39 2022 found 853329 hash collisions in 7781173 relations Tue Dec 27 10:57:47 2022 added 853 free relations Tue Dec 27 10:57:47 2022 commencing duplicate removal, pass 2 Tue Dec 27 10:57:49 2022 found 553249 duplicates and 7228777 unique relations Tue Dec 27 10:57:49 2022 memory use: 26.6 MB Tue Dec 27 10:57:49 2022 reading ideals above 100000 Tue Dec 27 10:57:49 2022 commencing singleton removal, initial pass Tue Dec 27 10:58:15 2022 memory use: 188.3 MB Tue Dec 27 10:58:15 2022 reading all ideals from disk Tue Dec 27 10:58:15 2022 memory use: 247.9 MB Tue Dec 27 10:58:15 2022 keeping 8028910 ideals with weight <= 200, target excess is 38981 Tue Dec 27 10:58:16 2022 commencing in-memory singleton removal Tue Dec 27 10:58:16 2022 begin with 7228777 relations and 8028910 unique ideals Tue Dec 27 10:58:18 2022 reduce to 2371925 relations and 2255653 ideals in 17 passes Tue Dec 27 10:58:18 2022 max relations containing the same ideal: 96 Tue Dec 27 10:58:19 2022 removing 309185 relations and 273658 ideals in 35527 cliques Tue Dec 27 10:58:19 2022 commencing in-memory singleton removal Tue Dec 27 10:58:19 2022 begin with 2062740 relations and 2255653 unique ideals Tue Dec 27 10:58:19 2022 reduce to 2030213 relations and 1948797 ideals in 10 passes Tue Dec 27 10:58:19 2022 max relations containing the same ideal: 88 Tue Dec 27 10:58:19 2022 removing 233850 relations and 198323 ideals in 35527 cliques Tue Dec 27 10:58:19 2022 commencing in-memory singleton removal Tue Dec 27 10:58:19 2022 begin with 1796363 relations and 1948797 unique ideals Tue Dec 27 10:58:20 2022 reduce to 1773420 relations and 1727120 ideals in 8 passes Tue Dec 27 10:58:20 2022 max relations containing the same ideal: 78 Tue Dec 27 10:58:20 2022 relations with 0 large ideals: 122 Tue Dec 27 10:58:20 2022 relations with 1 large ideals: 319 Tue Dec 27 10:58:20 2022 relations with 2 large ideals: 5408 Tue Dec 27 10:58:20 2022 relations with 3 large ideals: 41628 Tue Dec 27 10:58:20 2022 relations with 4 large ideals: 171497 Tue Dec 27 10:58:20 2022 relations with 5 large ideals: 395404 Tue Dec 27 10:58:20 2022 relations with 6 large ideals: 528267 Tue Dec 27 10:58:20 2022 relations with 7+ large ideals: 630775 Tue Dec 27 10:58:20 2022 commencing 2-way merge Tue Dec 27 10:58:21 2022 reduce to 1006247 relation sets and 959947 unique ideals Tue Dec 27 10:58:21 2022 commencing full merge Tue Dec 27 10:58:31 2022 memory use: 112.1 MB Tue Dec 27 10:58:32 2022 found 502444 cycles, need 496147 Tue Dec 27 10:58:32 2022 weight of 496147 cycles is about 35007400 (70.56/cycle) Tue Dec 27 10:58:32 2022 distribution of cycle lengths: Tue Dec 27 10:58:32 2022 1 relations: 57677 Tue Dec 27 10:58:32 2022 2 relations: 56077 Tue Dec 27 10:58:32 2022 3 relations: 56181 Tue Dec 27 10:58:32 2022 4 relations: 50445 Tue Dec 27 10:58:32 2022 5 relations: 46407 Tue Dec 27 10:58:32 2022 6 relations: 38921 Tue Dec 27 10:58:32 2022 7 relations: 34606 Tue Dec 27 10:58:32 2022 8 relations: 30161 Tue Dec 27 10:58:32 2022 9 relations: 25415 Tue Dec 27 10:58:32 2022 10+ relations: 100257 Tue Dec 27 10:58:32 2022 heaviest cycle: 22 relations Tue Dec 27 10:58:32 2022 commencing cycle optimization Tue Dec 27 10:58:32 2022 start with 3004418 relations Tue Dec 27 10:58:36 2022 pruned 59975 relations Tue Dec 27 10:58:36 2022 memory use: 101.8 MB Tue Dec 27 10:58:36 2022 distribution of cycle lengths: Tue Dec 27 10:58:36 2022 1 relations: 57677 Tue Dec 27 10:58:36 2022 2 relations: 57170 Tue Dec 27 10:58:36 2022 3 relations: 57936 Tue Dec 27 10:58:36 2022 4 relations: 51220 Tue Dec 27 10:58:36 2022 5 relations: 47285 Tue Dec 27 10:58:36 2022 6 relations: 39335 Tue Dec 27 10:58:36 2022 7 relations: 34904 Tue Dec 27 10:58:36 2022 8 relations: 30133 Tue Dec 27 10:58:36 2022 9 relations: 25328 Tue Dec 27 10:58:36 2022 10+ relations: 95159 Tue Dec 27 10:58:36 2022 heaviest cycle: 21 relations Tue Dec 27 10:58:36 2022 RelProcTime: 72 Tue Dec 27 10:58:37 2022 elapsed time 00:01:14 Tue Dec 27 10:58:37 2022 Tue Dec 27 10:58:37 2022 Tue Dec 27 10:58:37 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 10:58:37 2022 random seeds: 7ccd0f64 242828fd Tue Dec 27 10:58:37 2022 factoring 2137748937287583624544997197989361017306329969851513474643936657578026934331388840411717942743123333433914761877669 (115 digits) Tue Dec 27 10:58:37 2022 searching for 15-digit factors Tue Dec 27 10:58:37 2022 commencing number field sieve (115-digit input) Tue Dec 27 10:58:37 2022 R0: -15816139675004530664406 Tue Dec 27 10:58:37 2022 R1: 151532508919 Tue Dec 27 10:58:37 2022 A0: -57855034847159545866848725 Tue Dec 27 10:58:37 2022 A1: 11869751718067749267920 Tue Dec 27 10:58:37 2022 A2: -538473014913038942 Tue Dec 27 10:58:37 2022 A3: -64379486608116 Tue Dec 27 10:58:37 2022 A4: 254267287 Tue Dec 27 10:58:37 2022 A5: 2160 Tue Dec 27 10:58:37 2022 skew 49737.04, size 4.289e-011, alpha -4.245, combined = 4.866e-010 rroots = 3 Tue Dec 27 10:58:37 2022 Tue Dec 27 10:58:37 2022 commencing linear algebra Tue Dec 27 10:58:37 2022 read 496147 cycles Tue Dec 27 10:58:38 2022 cycles contain 1718587 unique relations Tue Dec 27 10:58:41 2022 read 1718587 relations Tue Dec 27 10:58:43 2022 using 20 quadratic characters above 134217402 Tue Dec 27 10:58:47 2022 building initial matrix Tue Dec 27 10:58:55 2022 memory use: 215.5 MB Tue Dec 27 10:58:55 2022 read 496147 cycles Tue Dec 27 10:58:55 2022 matrix is 495969 x 496147 (149.3 MB) with weight 46981820 (94.69/col) Tue Dec 27 10:58:55 2022 sparse part has weight 33669006 (67.86/col) Tue Dec 27 10:58:57 2022 filtering completed in 2 passes Tue Dec 27 10:58:57 2022 matrix is 495144 x 495322 (149.2 MB) with weight 46947395 (94.78/col) Tue Dec 27 10:58:57 2022 sparse part has weight 33658048 (67.95/col) Tue Dec 27 10:58:58 2022 matrix starts at (0, 0) Tue Dec 27 10:58:58 2022 matrix is 495144 x 495322 (149.2 MB) with weight 46947395 (94.78/col) Tue Dec 27 10:58:58 2022 sparse part has weight 33658048 (67.95/col) Tue Dec 27 10:58:58 2022 saving the first 48 matrix rows for later Tue Dec 27 10:58:58 2022 matrix includes 64 packed rows Tue Dec 27 10:58:58 2022 matrix is 495096 x 495322 (143.3 MB) with weight 37097208 (74.90/col) Tue Dec 27 10:58:58 2022 sparse part has weight 32622477 (65.86/col) Tue Dec 27 10:58:58 2022 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Tue Dec 27 10:59:00 2022 commencing Lanczos iteration (32 threads) Tue Dec 27 10:59:00 2022 memory use: 111.5 MB Tue Dec 27 10:59:06 2022 linear algebra at 2.4%, ETA 0h 3m Tue Dec 27 11:02:52 2022 lanczos halted after 7832 iterations (dim = 495094) Tue Dec 27 11:02:52 2022 recovered 32 nontrivial dependencies Tue Dec 27 11:02:52 2022 BLanczosTime: 255 Tue Dec 27 11:02:52 2022 elapsed time 00:04:15 Tue Dec 27 11:02:52 2022 Tue Dec 27 11:02:52 2022 Tue Dec 27 11:02:52 2022 Msieve v. 1.52 (SVN 927) Tue Dec 27 11:02:52 2022 random seeds: b8d35a00 f3a66349 Tue Dec 27 11:02:52 2022 factoring 2137748937287583624544997197989361017306329969851513474643936657578026934331388840411717942743123333433914761877669 (115 digits) Tue Dec 27 11:02:53 2022 searching for 15-digit factors Tue Dec 27 11:02:53 2022 commencing number field sieve (115-digit input) Tue Dec 27 11:02:53 2022 R0: -15816139675004530664406 Tue Dec 27 11:02:53 2022 R1: 151532508919 Tue Dec 27 11:02:53 2022 A0: -57855034847159545866848725 Tue Dec 27 11:02:53 2022 A1: 11869751718067749267920 Tue Dec 27 11:02:53 2022 A2: -538473014913038942 Tue Dec 27 11:02:53 2022 A3: -64379486608116 Tue Dec 27 11:02:53 2022 A4: 254267287 Tue Dec 27 11:02:53 2022 A5: 2160 Tue Dec 27 11:02:53 2022 skew 49737.04, size 4.289e-011, alpha -4.245, combined = 4.866e-010 rroots = 3 Tue Dec 27 11:02:53 2022 Tue Dec 27 11:02:53 2022 commencing square root phase Tue Dec 27 11:02:53 2022 reading relations for dependency 1 Tue Dec 27 11:02:53 2022 read 247549 cycles Tue Dec 27 11:02:53 2022 cycles contain 859314 unique relations Tue Dec 27 11:02:55 2022 read 859314 relations Tue Dec 27 11:02:57 2022 multiplying 859314 relations Tue Dec 27 11:03:16 2022 multiply complete, coefficients have about 35.54 million bits Tue Dec 27 11:03:16 2022 initial square root is modulo 126839 Tue Dec 27 11:03:38 2022 sqrtTime: 45 Tue Dec 27 11:03:38 2022 prp49 factor: 1498553051705127607333150205448159841993515207487 Tue Dec 27 11:03:38 2022 prp67 factor: 1426542046579630529530160098322187510544167418833600513636825224987 Tue Dec 27 11:03:38 2022 elapsed time 00:00:46 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 11:58:44 UTC 2022 年 12 月 24 日 (土) 20 時 58 分 44 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 18:28:35 UTC 2023 年 1 月 3 日 (火) 3 時 28 分 35 秒 (日本時間) |
composite number 合成数 | 9645949372711381128205220854016550798754688453671015171547361301963788275315457672109188021331902100010436211816149922593027599204025197411<139> |
prime factors 素因数 | 306510818481762983136170374217670071553377626999<48> 31470175899469281723873399942866895465467842142401425447476325415803146376567209850232105589<92> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 9645949372711381128205220854016550798754688453671015171547361301963788275315457672109188021331902100010436211816149922593027599204025197411 (139 digits) Using B1=30750000, B2=144289975846, polynomial Dickson(12), sigma=1:4193030826 Step 1 took 62091ms Step 2 took 22098ms ********** Factor found in step 2: 306510818481762983136170374217670071553377626999 Found prime factor of 48 digits: 306510818481762983136170374217670071553377626999 Prime cofactor 31470175899469281723873399942866895465467842142401425447476325415803146376567209850232105589 has 92 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 15:54:45 UTC 2023 年 1 月 5 日 (木) 0 時 54 分 45 秒 (日本時間) |
composite number 合成数 | 5015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<175> |
prime factors 素因数 | 3320127511315759534948097424117315618821<40> 242222689547156875896009001017529954409981047<45> 1514580455606918140657323367403797088031435323<46> 4117983474384740954023321563021962083053175073<46> |
factorization results 素因数分解の結果 | Number: n N=5015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873 ( 175 digits) SNFS difficulty: 177 digits. Divisors found: Thu Jan 5 02:46:39 2023 found factor: 242222689547156875896009001017529954409981047 Thu Jan 5 02:47:51 2023 found factor: 1514580455606918140657323367403797088031435323 Thu Jan 5 02:49:02 2023 p40 factor: 3320127511315759534948097424117315618821 Thu Jan 5 02:49:02 2023 p45 factor: 242222689547156875896009001017529954409981047 Thu Jan 5 02:49:02 2023 p46 factor: 1514580455606918140657323367403797088031435323 Thu Jan 5 02:49:02 2023 p46 factor: 4117983474384740954023321563021962083053175073 Thu Jan 5 02:49:02 2023 elapsed time 00:21:30 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.329). Factorization parameters were as follows: # # N = 79x10^176-25 = 87(175)5 # n: 5015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873 m: 100000000000000000000000000000000000 deg: 5 c5: 158 c0: -5 skew: 0.50 # Murphy_E = 1.201e-10 type: snfs lss: 1 rlim: 5800000 alim: 5800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1487507 hash collisions in 12004508 relations (11176471 unique) Msieve: matrix is 956317 x 956543 (332.3 MB) Sieving start time : 2023/01/05 01:18:46 Sieving end time : 2023/01/05 02:27:13 Total sieving time: 1hrs 8min 27secs. Total relation processing time: 0hrs 14min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 35sec. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 8, 2023 20:48:29 UTC 2023 年 1 月 9 日 (月) 5 時 48 分 29 秒 (日本時間) |
composite number 合成数 | 424615303118562650975917267083571564881063559758344425880075849196276933052035487129914444036401149654450600247528057500076664410889426260854817758574281208644987476073<168> |
prime factors 素因数 | 2139923473709189138370991868164207649050065350550577632740729229877<67> 198425461627637124766165404314565352833576990169535237328007492822692733214676858267486883465390437349<102> |
factorization results 素因数分解の結果 | Number: n N=424615303118562650975917267083571564881063559758344425880075849196276933052035487129914444036401149654450600247528057500076664410889426260854817758574281208644987476073 ( 168 digits) SNFS difficulty: 181 digits. Divisors found: Mon Jan 9 07:38:54 2023 prp67 factor: 2139923473709189138370991868164207649050065350550577632740729229877 Mon Jan 9 07:38:54 2023 prp102 factor: 198425461627637124766165404314565352833576990169535237328007492822692733214676858267486883465390437349 Mon Jan 9 07:38:54 2023 elapsed time 00:44:59 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.098). Factorization parameters were as follows: # # N = 79x10^180-25 = 87(179)5 # n: 424615303118562650975917267083571564881063559758344425880075849196276933052035487129914444036401149654450600247528057500076664410889426260854817758574281208644987476073 m: 1000000000000000000000000000000000000 deg: 5 c5: 79 c0: -25 skew: 0.79 # Murphy_E = 7.37e-11 type: snfs lss: 1 rlim: 7000000 alim: 7000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 29100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1196788 hash collisions in 13049966 relations (12687559 unique) Msieve: matrix is 1165564 x 1165789 (327.5 MB) Sieving start time: 2023/01/08 21:23:05 Sieving end time : 2023/01/09 06:53:43 Total sieving time: 9hrs 30min 38secs. Total relation processing time: 0hrs 38min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 55sec. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Erik Branger |
---|---|
date 日付 | January 15, 2023 16:08:50 UTC 2023 年 1 月 16 日 (月) 1 時 8 分 50 秒 (日本時間) |
composite number 合成数 | 2150212358281523120732171595972777782585920527701580602432204192321793011523884878040828465634218260077967733899598766732377728152361<133> |
prime factors 素因数 | 3987247707011958238025970289385124626106415845145133338796111<61> 539272329256135270719489138826445040337554180283886830819231593964543751<72> |
factorization results 素因数分解の結果 | Number: 87775_181 N = 2150212358281523120732171595972777782585920527701580602432204192321793011523884878040828465634218260077967733899598766732377728152361 (133 digits) SNFS difficulty: 183 digits. Divisors found: r1=3987247707011958238025970289385124626106415845145133338796111 (pp61) r2=539272329256135270719489138826445040337554180283886830819231593964543751 (pp72) Version: Msieve v. 1.52 (SVN unknown) Total time: 17.25 hours. Factorization parameters were as follows: n: 2150212358281523120732171595972777782585920527701580602432204192321793011523884878040828465634218260077967733899598766732377728152361 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 3 c3: 158 c0: -5 skew: 1.00 type: snfs lss: 1 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 26 mfbr: 58 mfba: 52 rlambda: 2.8 alambda: 2.8 side: 1 maxa: 10000000 maxb: 10000000 Number of cores used: 4 Number of threads per core: 1 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/26 Total raw relations: 18011482 Relations: 4905416 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 10.32 hours. Total relation processing time: 0.25 hours. Pruned matrix : 3779974 x 3780222 Matrix solve time: 6.57 hours. time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,183,3,0,0,0,0,0,0,0,0,10000000,10000000,29,26,58,52,2.8,2.8,100000 total time: 17.25 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22621-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 11, 2023 11:21:05 UTC 2023 年 1 月 11 日 (水) 20 時 21 分 5 秒 (日本時間) |
composite number 合成数 | 3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<184> |
prime factors 素因数 | 50528717225386918795444151819366610016977437010165031333207001135659963<71> 69487438112658818151068966007876192367498989943465232282666824409223036064561349400292301801900898094788705456997<113> |
factorization results 素因数分解の結果 | Number: n N=3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 184 digits) SNFS difficulty: 184 digits. Divisors found: Sat Jan 7 16:37:59 2023 prp71 factor: 50528717225386918795444151819366610016977437010165031333207001135659963 Sat Jan 7 16:37:59 2023 prp113 factor: 69487438112658818151068966007876192367498989943465232282666824409223036064561349400292301801900898094788705456997 Sat Jan 7 16:37:59 2023 elapsed time 01:19:55 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 79x10^184-25 = 87(183)5 # n: 3511111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 1000000000000000000000000000000000000 deg: 5 c5: 31600 c0: -1 skew: 0.13 # Murphy_E = 5.193e-11 type: snfs lss: 1 rlim: 7800000 alim: 7800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7800000/7800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 29510959) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1109896 hash collisions in 12348100 relations (12026459 unique) Msieve: matrix is 1562299 x 1562526 (443.5 MB) Sieving start time: 2023/01/07 04:25:49 Sieving end time : 2023/01/07 15:17:53 Total sieving time: 10hrs 52min 4secs. Total relation processing time: 1hrs 9min 19sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 25sec. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7800000,7800000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | March 26, 2023 03:03:35 UTC 2023 年 3 月 26 日 (日) 12 時 3 分 35 秒 (日本時間) |
composite number 合成数 | 14580166523939661190036372065463610149170114098958974892021618802853618327917242850239274095906048217462733055668295191355166271078158163306285093939331847<155> |
prime factors 素因数 | 115492953120786676291688503922719144445576820928900025004368243911<66> 126242910324504384666221154210168208826281590746019494495926255024709364736909897317283777<90> |
factorization results 素因数分解の結果 | Number: n N=14580166523939661190036372065463610149170114098958974892021618802853618327917242850239274095906048217462733055668295191355166271078158163306285093939331847 ( 155 digits) SNFS difficulty: 186 digits. Divisors found: Sun Mar 26 13:33:10 2023 prp66 factor: 115492953120786676291688503922719144445576820928900025004368243911 Sun Mar 26 13:33:10 2023 prp90 factor: 126242910324504384666221154210168208826281590746019494495926255024709364736909897317283777 Sun Mar 26 13:33:10 2023 elapsed time 00:59:40 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.106). Factorization parameters were as follows: # # N = 79x10^185-25 = 87(184)5 # n: 14580166523939661190036372065463610149170114098958974892021618802853618327917242850239274095906048217462733055668295191355166271078158163306285093939331847 m: 10000000000000000000000000000000000000 deg: 5 c5: 79 c0: -25 skew: 0.79 # Murphy_E = 4.612e-11 type: snfs lss: 1 rlim: 9100000 alim: 9100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 9100000/9100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 15750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1561883 hash collisions in 13819750 relations (13075810 unique) Msieve: matrix is 1370348 x 1370573 (386.4 MB) Sieving start time: 2023/03/26 07:00:53 Sieving end time : 2023/03/26 12:33:12 Total sieving time: 5hrs 32min 19secs. Total relation processing time: 0hrs 53min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 12sec. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9100000,9100000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) --------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 16, 2023 10:02:30 UTC 2023 年 2 月 16 日 (木) 19 時 2 分 30 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 12, 2023 01:05:16 UTC 2023 年 1 月 12 日 (木) 10 時 5 分 16 秒 (日本時間) |
composite number 合成数 | 58194171903260578151657756506894844506782913620224240060332029313557066873260608461361669141735962888904492200583668559669049324234219721323755168610888289430227551<164> |
prime factors 素因数 | 1092479243964719105483297548319956014572383571<46> 53267988590856853330065359868170433674797640606792730390693135259055918690713188747602165152375829315332674658826797381<119> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 58194171903260578151657756506894844506782913620224240060332029313557066873260608461361669141735962888904492200583668559669049324234219721323755168610888289430227551 (164 digits) Using B1=27890000, B2=144287213086, polynomial Dickson(12), sigma=1:1520825481 Step 1 took 66679ms Step 2 took 24907ms ********** Factor found in step 2: 1092479243964719105483297548319956014572383571 Found prime factor of 46 digits: 1092479243964719105483297548319956014572383571 Prime cofactor 53267988590856853330065359868170433674797640606792730390693135259055918690713188747602165152375829315332674658826797381 has 119 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 23, 2023 21:09:12 UTC 2023 年 1 月 24 日 (火) 6 時 9 分 12 秒 (日本時間) |
composite number 合成数 | 52279931159640560461843871600720978704007319627527661055855246607692449117435997838201607689894367563825220136029687772584313777728015170729556219598779313<155> |
prime factors 素因数 | 4575932621872691291156515685500077661511700538312866411546327734670405954487<76> 11424978355176283822652430532775549852471569576576243374541499597779235147197399<80> |
factorization results 素因数分解の結果 | Number: n N=52279931159640560461843871600720978704007319627527661055855246607692449117435997838201607689894367563825220136029687772584313777728015170729556219598779313 ( 155 digits) SNFS difficulty: 192 digits. Divisors found: Tue Jan 24 08:03:38 2023 prp76 factor: 4575932621872691291156515685500077661511700538312866411546327734670405954487 Tue Jan 24 08:03:38 2023 prp80 factor: 11424978355176283822652430532775549852471569576576243374541499597779235147197399 Tue Jan 24 08:03:38 2023 elapsed time 01:59:10 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.024). Factorization parameters were as follows: # # N = 79x10^191-25 = 87(190)5 # n: 52279931159640560461843871600720978704007319627527661055855246607692449117435997838201607689894367563825220136029687772584313777728015170729556219598779313 m: 100000000000000000000000000000000000000 deg: 5 c5: 158 c0: -5 skew: 0.50 # Murphy_E = 2.94e-11 type: snfs lss: 1 rlim: 10800000 alim: 10800000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 10800000/10800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 45400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1276823 hash collisions in 13122710 relations (12668012 unique) Msieve: matrix is 1949540 x 1949767 (550.6 MB) Sieving start time: 2023/01/23 12:59:04 Sieving end time : 2023/01/24 06:04:16 Total sieving time: 17hrs 5min 12secs. Total relation processing time: 1hrs 52min 52sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 40sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,10800000,10800000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 13:18:19 UTC 2023 年 1 月 10 日 (火) 22 時 18 分 19 秒 (日本時間) |
2350 | Ignacio Santos | January 18, 2023 10:51:33 UTC 2023 年 1 月 18 日 (水) 19 時 51 分 33 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 30, 2023 06:56:34 UTC 2023 年 6 月 30 日 (金) 15 時 56 分 34 秒 (日本時間) |
composite number 合成数 | 212883846146678876259781761076951302157835256770282492560317724509648995158369825969077214047155130314671841923163943233204603170581060877447<141> |
prime factors 素因数 | 14985449378663514168037272021626665333694185173956543008673<59> 14206036853975549129876040304011221885304815333696122232597692039781992033931590439<83> |
factorization results 素因数分解の結果 | 212883846146678876259781761076951302157835256770282492560317724509648995158369825969077214047155130314671841923163943233204603170581060877447=14985449378663514168037272021626665333694185173956543008673*14206036853975549129876040304011221885304815333696122232597692039781992033931590439 cado polynomial n: 212883846146678876259781761076951302157835256770282492560317724509648995158369825969077214047155130314671841923163943233204603170581060877447 skew: 0.32 type: snfs c0: -1 c5: 316 Y0: 100000000000000000000000000000000000000 Y1: -1 # f(x) = 316*x^5-1 # g(x) = -x+100000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 11300000 tasks.lim1 = 11300000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 14985449378663514168037272021626665333694185173956543008673 14206036853975549129876040304011221885304815333696122232597692039781992033931590439 Info:Square Root: Total cpu/real time for sqrt: 582.3/189.455 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 25861901 Info:Lattice Sieving: Average J: 1894.15 for 1757537 special-q, max bucket fill -bkmult 1.0,1s:1.158910 Info:Lattice Sieving: Total time: 361975s Info:Linear Algebra: Total cpu/real time for bwc: 68832.4/17714.3 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 44089.02, WCT time 11280.29, iteration CPU time 0.17, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (63232 iterations) Info:Linear Algebra: Lingen CPU time 407.02, WCT time 103.56 Info:Linear Algebra: Mksol: CPU time 23942.26, WCT time 6175.19, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (31744 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 4.74/2.31149 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 477.83/519.533 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 434.0s Info:Generate Free Relations: Total cpu/real time for freerel: 119.53/31.1475 Info:Square Root: Total cpu/real time for sqrt: 582.3/189.455 Info:Quadratic Characters: Total cpu/real time for characters: 72.7/31.4661 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 110.77/103.638 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 103.0s Info:Filtering - Singleton removal: Total cpu/real time for purge: 356.74/354.195 Info:Filtering - Merging: Merged matrix has 2022838 rows and total weight 346087975 (171.1 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 549.18/150.461 Info:Filtering - Merging: Total cpu/real time for replay: 77.52/68.6697 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 753433/199989 Info:root: Cleaning up computation data in /tmp/cado.swgtbi7b 14985449378663514168037272021626665333694185173956543008673 14206036853975549129876040304011221885304815333696122232597692039781992033931590439 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 13:18:29 UTC 2023 年 1 月 10 日 (火) 22 時 18 分 29 秒 (日本時間) |
2350 | Ignacio Santos | January 18, 2023 10:51:43 UTC 2023 年 1 月 18 日 (水) 19 時 51 分 43 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 26, 2023 03:53:04 UTC 2023 年 1 月 26 日 (木) 12 時 53 分 4 秒 (日本時間) |
composite number 合成数 | 409020548724413873736255029395965105247127118117118516496664102806862005332502752433873878739765932746210318460652962330291302876114962751158153637004247996071545274039<168> |
prime factors 素因数 | 13745068445231755932266868789198856611148776969368330668376941541252419577<74> 29757621822996849278230092877000927979933851368845642955048478514104583389599896439951203881007<95> |
factorization results 素因数分解の結果 | Number: n N=409020548724413873736255029395965105247127118117118516496664102806862005332502752433873878739765932746210318460652962330291302876114962751158153637004247996071545274039 ( 168 digits) SNFS difficulty: 193 digits. Divisors found: Wed Jan 25 20:22:56 2023 prp74 factor: 13745068445231755932266868789198856611148776969368330668376941541252419577 Wed Jan 25 20:22:56 2023 prp95 factor: 29757621822996849278230092877000927979933851368845642955048478514104583389599896439951203881007 Wed Jan 25 20:22:56 2023 elapsed time 02:34:11 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.105). Factorization parameters were as follows: # # N = 79x10^193-25 = 87(192)5 # n: 409020548724413873736255029395965105247127118117118516496664102806862005332502752433873878739765932746210318460652962330291302876114962751158153637004247996071545274039 m: 100000000000000000000000000000000000000 deg: 5 c5: 3160 c0: -1 skew: 0.20 # Murphy_E = 2.514e-11 type: snfs lss: 1 rlim: 11400000 alim: 11400000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 52900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1348720 hash collisions in 13246830 relations (12714143 unique) Msieve: matrix is 2169595 x 2169820 (616.3 MB) Sieving start time: 2023/01/24 20:43:00 Sieving end time : 2023/01/25 17:48:31 Total sieving time: 21hrs 5min 31secs. Total relation processing time: 2hrs 20min 38sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 9min 46sec. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 10, 2023 13:18:38 UTC 2023 年 1 月 10 日 (火) 22 時 18 分 38 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 28, 2022 05:06:14 UTC 2022 年 12 月 28 日 (水) 14 時 6 分 14 秒 (日本時間) |
composite number 合成数 | 151687397867733399541579294114690339887085938631225400822398875204328847790861214220883669170037595585180232986923071793261754661826001<135> |
prime factors 素因数 | 8222890057106961464870820189296787551318416731946397446531<58> 18446968987093716740945252314904519612701619166923577861295956136779000473371<77> |
factorization results 素因数分解の結果 | 151687397867733399541579294114690339887085938631225400822398875204328847790861214220883669170037595585180232986923071793261754661826001=8222890057106961464870820189296787551318416731946397446531*18446968987093716740945252314904519612701619166923577861295956136779000473371 cado polynomial n: 151687397867733399541579294114690339887085938631225400822398875204328847790861214220883669170037595585180232986923071793261754661826001 skew: 73717.914 c0: 1988740706998755507779397009088 c1: 24753479695210643832403835 c2: -1129150698923086844818 c3: -17126218970412671 c4: 268340194302 c5: 687240 Y0: -60694843702327594315925746 Y1: 108162696088342152601 # MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.205e-07 # f(x) = 687240*x^5+268340194302*x^4-17126218970412671*x^3-1129150698923086844818*x^2+24753479695210643832403835*x+1988740706998755507779397009088 # g(x) = 108162696088342152601*x-60694843702327594315925746 cado parameters (extracts) tasks.lim0 = 3341873 tasks.lim1 = 16407032 tasks.lpb0 = 27 tasks.lpb1 = 28 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 62 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 8222890057106961464870820189296787551318416731946397446531 18446968987093716740945252314904519612701619166923577861295956136779000473371 Info:Square Root: Total cpu/real time for sqrt: 944.23/280.351 Info:Filtering - Singleton removal: Total cpu/real time for purge: 86.33/84.0863 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 77.94/74.7486 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 74.6s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6290.55 Info:Polynomial Selection (root optimized): Rootsieve time: 6288.1 Info:Linear Algebra: Total cpu/real time for bwc: 29211.8/7527.99 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 18625.24, WCT time 4767.78, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (42752 iterations) Info:Linear Algebra: Lingen CPU time 260.12, WCT time 66.12 Info:Linear Algebra: Mksol: CPU time 10091.34, WCT time 2606.82, iteration CPU time 0.12, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (21248 iterations) Info:Generate Free Relations: Total cpu/real time for freerel: 247.87/63.015 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 17015300 Info:Lattice Sieving: Average J: 3793.44 for 655686 special-q, max bucket fill -bkmult 1.0,1s:1.259870 Info:Lattice Sieving: Total time: 216310s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 53395.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54361/39.570/48.225/52.860/0.965 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44499/38.540/43.055/48.910/1.057 Info:Polynomial Selection (size optimized): Total time: 11151.7 Info:Generate Factor Base: Total cpu/real time for makefb: 15.21/4.20369 Info:Square Root: Total cpu/real time for sqrt: 944.23/280.351 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 208.05/200.342 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 190.0s Info:Filtering - Merging: Merged matrix has 1359800 rows and total weight 232518026 (171.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 362.2/99.2529 Info:Filtering - Merging: Total cpu/real time for replay: 49.23/43.1935 Info:Quadratic Characters: Total cpu/real time for characters: 45.93/21.0866 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 455494/109586 8222890057106961464870820189296787551318416731946397446531 18446968987093716740945252314904519612701619166923577861295956136779000473371 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 16:16:46 UTC 2022 年 12 月 24 日 (土) 1 時 16 分 46 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 26, 2022 06:22:20 UTC 2022 年 12 月 26 日 (月) 15 時 22 分 20 秒 (日本時間) |
composite number 合成数 | 259931211276780059884836924793501446687982793358992736952001611832330025487376503529447775269330299388978506541079727382215507171<129> |
prime factors 素因数 | 4687302271433634040575031361833905334493818990499<49> 55454330918854704751578643725835819736246759942179105181659042304125446495867329<80> |
factorization results 素因数分解の結果 | 259931211276780059884836924793501446687982793358992736952001611832330025487376503529447775269330299388978506541079727382215507171=4687302271433634040575031361833905334493818990499*55454330918854704751578643725835819736246759942179105181659042304125446495867329 cado polynomial n: 259931211276780059884836924793501446687982793358992736952001611832330025487376503529447775269330299388978506541079727382215507171 skew: 37461.85 c0: -28260375176508093393141094695 c1: 1442327375409844922946703 c2: 230318367591869518158 c3: -1312276846311818 c4: -44114530088 c5: -476160 Y0: -3489255169617570068986436 Y1: 2056435483604593417 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.119e-07 # f(x) = -476160*x^5-44114530088*x^4-1312276846311818*x^3+230318367591869518158*x^2+1442327375409844922946703*x-28260375176508093393141094695 # g(x) = 2056435483604593417*x-3489255169617570068986436 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 4687302271433634040575031361833905334493818990499 55454330918854704751578643725835819736246759942179105181659042304125446495867329 Info:Square Root: Total cpu/real time for sqrt: 1348.88/401.729 Info:Generate Free Relations: Total cpu/real time for freerel: 251.88/64.8254 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 307.93/290.709 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 265.4s Info:Square Root: Total cpu/real time for sqrt: 1348.88/401.729 Info:Filtering - Singleton removal: Total cpu/real time for purge: 166.95/169.405 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 102.95/105.918 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 105.6s Info:Filtering - Merging: Merged matrix has 1688470 rows and total weight 287559258 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 427.14/120.565 Info:Filtering - Merging: Total cpu/real time for replay: 66.01/57.6108 Info:Linear Algebra: Total cpu/real time for bwc: 46289.1/12315.8 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 29595.1, WCT time 7814.94, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (52992 iterations) Info:Linear Algebra: Lingen CPU time 341.0, WCT time 88.43 Info:Linear Algebra: Mksol: CPU time 16048.03, WCT time 4297.19, iteration CPU time 0.15, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (26624 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 40.54/11.3609 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 23569644 Info:Lattice Sieving: Average J: 7585.91 for 57828 special-q, max bucket fill -bkmult 1.0,1s:1.071550 Info:Lattice Sieving: Total time: 82128s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 4925.34 Info:Polynomial Selection (root optimized): Rootsieve time: 4922.84 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 38210.8 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38583/38.160/45.815/49.410/0.851 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30644/37.190/41.087/46.630/0.927 Info:Polynomial Selection (size optimized): Total time: 4838.86 Info:Quadratic Characters: Total cpu/real time for characters: 65.23/29.4447 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 210909/58233.8 Info:root: Cleaning up computation data in /tmp/cado.tfgb8q4u 4687302271433634040575031361833905334493818990499 55454330918854704751578643725835819736246759942179105181659042304125446495867329 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 08:23:52 UTC 2022 年 12 月 24 日 (土) 17 時 23 分 52 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 10, 2023 14:49:05 UTC 2023 年 1 月 10 日 (火) 23 時 49 分 5 秒 (日本時間) |
composite number 合成数 | 846523206650932501991408953229960834804581520511586292009832977389122124897556113675701467771102601819612591851889436668792445242361297271772489109285356831489856181859439<171> |
prime factors 素因数 | 577770862242817088251923445351827611887<39> |
composite cofactor 合成数の残り | 1465153855915925557451918939435637373744903516754244323554851454629543017372412699976957299347136093324792981881729931429693308167297<133> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:34834611 Step 1 took 8998ms Step 2 took 4317ms ********** Factor found in step 2: 577770862242817088251923445351827611887 Found prime factor of 39 digits: 577770862242817088251923445351827611887 Composite cofactor 1465153855915925557451918939435637373744903516754244323554851454629543017372412699976957299347136093324792981881729931429693308167297 has 133 digits |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 13, 2023 16:10:18 UTC 2023 年 1 月 14 日 (土) 1 時 10 分 18 秒 (日本時間) |
composite number 合成数 | 1465153855915925557451918939435637373744903516754244323554851454629543017372412699976957299347136093324792981881729931429693308167297<133> |
prime factors 素因数 | 66720611018736199643626337965123270965968231505376264687<56> 21959538942239111865269636112127451621739406727284956066963879661793788326031<77> |
factorization results 素因数分解の結果 | 1465153855915925557451918939435637373744903516754244323554851454629543017372412699976957299347136093324792981881729931429693308167297=66720611018736199643626337965123270965968231505376264687*21959538942239111865269636112127451621739406727284956066963879661793788326031 cado polynomial n: 1465153855915925557451918939435637373744903516754244323554851454629543017372412699976957299347136093324792981881729931429693308167297 skew: 224175.899 c0: 26286954739869664540422204585220 c1: -516867838394385238480826888 c2: -3890412628615144311631 c3: 20073186933832253 c4: 34653473346 c5: 29520 Y0: -34551060327797468909718603 Y1: 22548270223231677101 # MurphyE (Bf=2.684e+08,Bg=1.342e+08,area=3.578e+14) = 1.642e-07 # f(x) = 29520*x^5+34653473346*x^4+20073186933832253*x^3-3890412628615144311631*x^2-516867838394385238480826888*x+26286954739869664540422204585220 # g(x) = 22548270223231677101*x-34551060327797468909718603 cado parameters (extracts) tasks.lim0 = 3341873 tasks.lim1 = 16407032 tasks.lpb0 = 27 tasks.lpb1 = 28 tasks.sieve.mfb0 = 51 tasks.sieve.mfb1 = 62 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 66720611018736199643626337965123270965968231505376264687 21959538942239111865269636112127451621739406727284956066963879661793788326031 Info:Square Root: Total cpu/real time for sqrt: 370.73/113.861 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 6218.54 Info:Polynomial Selection (root optimized): Rootsieve time: 6216.02 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 53395.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 54404/39.200/47.477/52.040/0.996 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 44462/38.230/42.261/48.070/0.954 Info:Polynomial Selection (size optimized): Total time: 11213.7 Info:Quadratic Characters: Total cpu/real time for characters: 38.84/17.8306 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 199.86/176.326 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 164.4s Info:Square Root: Total cpu/real time for sqrt: 370.73/113.861 Info:Generate Free Relations: Total cpu/real time for freerel: 249.76/64.7791 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 78.04/77.888 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 77.8s Info:Filtering - Singleton removal: Total cpu/real time for purge: 100.04/98.9785 Info:Filtering - Merging: Merged matrix has 1167438 rows and total weight 198497194 (170.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 294.48/82.2455 Info:Filtering - Merging: Total cpu/real time for replay: 41.82/36.589 Info:Generate Factor Base: Total cpu/real time for makefb: 15.08/4.25826 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 17013033 Info:Lattice Sieving: Average J: 3798.63 for 485617 special-q, max bucket fill -bkmult 1.0,1s:1.275680 Info:Lattice Sieving: Total time: 166887s Info:Linear Algebra: Total cpu/real time for bwc: 21286.9/5699.25 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 13510.17, WCT time 3585.29, iteration CPU time 0.09, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (36608 iterations) Info:Linear Algebra: Lingen CPU time 233.5, WCT time 60.48 Info:Linear Algebra: Mksol: CPU time 7346.98, WCT time 1979.41, iteration CPU time 0.1, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (18432 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 348605/95015.6 Info:root: Cleaning up computation data in /tmp/cado.7ijj1z0g 66720611018736199643626337965123270965968231505376264687 21959538942239111865269636112127451621739406727284956066963879661793788326031 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 10, 2023 13:18:46 UTC 2023 年 1 月 10 日 (火) 22 時 18 分 46 秒 (日本時間) |
2350 | Ignacio Santos | January 12, 2023 08:03:04 UTC 2023 年 1 月 12 日 (木) 17 時 3 分 4 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | January 12, 2023 08:44:00 UTC 2023 年 1 月 12 日 (木) 17 時 44 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 11:24:44 UTC 2022 年 12 月 24 日 (土) 20 時 24 分 44 秒 (日本時間) |
composite number 合成数 | 961756924233497254628906660928562657471927860987950411844090654983685542549760541438669217195379773167893108131754937<117> |
prime factors 素因数 | 9641881031062995243506713817181440363<37> 99747852222510337504793665732185877027705586110827184947230645096217129975893099<80> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4118490200 Step 1 took 4266ms Step 2 took 2281ms ********** Factor found in step 2: 9641881031062995243506713817181440363 Found prime factor of 37 digits: 9641881031062995243506713817181440363 Prime cofactor 99747852222510337504793665732185877027705586110827184947230645096217129975893099 has 80 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 23, 2023 20:39:52 UTC 2023 年 6 月 24 日 (土) 5 時 39 分 52 秒 (日本時間) |
composite number 合成数 | 3571832259523002147620662371425341923815982819034701028597264609472137447722391771221883124222900418220865830224935006216796654233073358200519950265626766135413134395840397874985870916694924833276817<199> |
prime factors 素因数 | 1129243950258795723553651507695487874774589371611700971025597331803<67> 3163029794141844694783590644583685658011808143026409603215997818163238501421206933225758372815443260854936439276604759300552920145539<133> |
factorization results 素因数分解の結果 | Number: n N=3571832259523002147620662371425341923815982819034701028597264609472137447722391771221883124222900418220865830224935006216796654233073358200519950265626766135413134395840397874985870916694924833276817 ( 199 digits) SNFS difficulty: 202 digits. Divisors found: Sat Jun 24 06:24:54 2023 prp67 factor: 1129243950258795723553651507695487874774589371611700971025597331803 Sat Jun 24 06:24:54 2023 prp133 factor: 3163029794141844694783590644583685658011808143026409603215997818163238501421206933225758372815443260854936439276604759300552920145539 Sat Jun 24 06:24:54 2023 elapsed time 02:29:16 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.816). Factorization parameters were as follows: # # N = 79x10^202-25 = 87(201)5 # n: 3571832259523002147620662371425341923815982819034701028597264609472137447722391771221883124222900418220865830224935006216796654233073358200519950265626766135413134395840397874985870916694924833276817 m: 10000000000000000000000000000000000000000 deg: 5 c5: 316 c0: -1 skew: 0.32 # Murphy_E = 1.448e-11 type: snfs lss: 1 rlim: 16600000 alim: 16600000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16600000/16600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 41100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2202278 hash collisions in 15593039 relations (14204669 unique) Msieve: matrix is 2174922 x 2175147 (620.1 MB) Sieving start time: 2023/06/23 11:10:43 Sieving end time : 2023/06/24 03:55:21 Total sieving time: 16hrs 44min 38secs. Total relation processing time: 2hrs 22min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 50sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16600000,16600000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 23:33:06 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 6 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:03:09 UTC 2023 年 2 月 20 日 (月) 15 時 3 分 9 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | May 4, 2024 15:43:34 UTC 2024 年 5 月 5 日 (日) 0 時 43 分 34 秒 (日本時間) |
composite number 合成数 | 926019896701840594727940722055146055154616928284469472448179396984288455131320016717014449952284852336796053384937206859507922658257689342575467921137761849383094863<165> |
prime factors 素因数 | 258530223296888474305213014036303158826929352991344063721183201343<66> 3581863214647931858091309184543485804524094896666749541592858771906203398919199228910285325100038641<100> |
factorization results 素因数分解の結果 | Number: n N=926019896701840594727940722055146055154616928284469472448179396984288455131320016717014449952284852336796053384937206859507922658257689342575467921137761849383094863 ( 165 digits) SNFS difficulty: 206 digits. Divisors found: Sat May 4 21:24:27 2024 prp66 factor: 258530223296888474305213014036303158826929352991344063721183201343 Sat May 4 21:24:27 2024 prp100 factor: 3581863214647931858091309184543485804524094896666749541592858771906203398919199228910285325100038641 Sat May 4 21:24:27 2024 elapsed time 03:13:07 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.085). Factorization parameters were as follows: # # N = 79x10^205-25 = 87(204)5 # n: 926019896701840594727940722055146055154616928284469472448179396984288455131320016717014449952284852336796053384937206859507922658257689342575467921137761849383094863 m: 100000000000000000000000000000000000000000 deg: 5 c5: 79 c0: -25 skew: 0.79 # Murphy_E = 6.784e-12 type: snfs lss: 1 rlim: 19700000 alim: 19700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19700000/19700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4579934 hash collisions in 21157610 relations (16663252 unique) Msieve: matrix is 2463837 x 2464062 (692.0 MB) Sieving start time: 2024/05/03 23:06:30 Sieving end time : 2024/05/04 18:10:54 Total sieving time: 19hrs 4min 24secs. Total relation processing time: 3hrs 4min 15sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 7sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19700000,19700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 14:21:29 UTC 2023 年 2 月 13 日 (月) 23 時 21 分 29 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | February 18, 2023 22:43:22 UTC 2023 年 2 月 19 日 (日) 7 時 43 分 22 秒 (日本時間) |
4480 | Ignacio Santos | April 27, 2024 10:17:59 UTC 2024 年 4 月 27 日 (土) 19 時 17 分 59 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 22, 2024 16:30:45 UTC 2024 年 2 月 23 日 (金) 1 時 30 分 45 秒 (日本時間) |
composite number 合成数 | 106720702465383316447146234380276933468422830124957784532252617359000337723741979061127997298210064167510976021614319486659912191827085444106720702465383316447146234380276933468422830124957784532252617359<204> |
prime factors 素因数 | 13252969558025548690936553629972883048247390757<47> 1198040588694528335851098381694775205121092043839752378830833772417051<70> 6721465022400332962602364161604074886582402025575715657195041322377910628399653918483737<88> |
factorization results 素因数分解の結果 | Number: n N=8052587912326175990400987329503069506524005841400339660537334080616151529515726092982672798827243143118879143248024553809276563439632094149713798723524999587 ( 157 digits) SNFS difficulty: 206 digits. Divisors found: Fri Feb 23 03:23:16 2024 prp70 factor: 1198040588694528335851098381694775205121092043839752378830833772417051 Fri Feb 23 03:23:16 2024 prp88 factor: 6721465022400332962602364161604074886582402025575715657195041322377910628399653918483737 Fri Feb 23 03:23:16 2024 elapsed time 03:18:32 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.080). Factorization parameters were as follows: # # N = 79x10^206-25 = 87(205)5 # # n: 106720702465383316447146234380276933468422830124957784532252617359000337723741979061127997298210064167510976021614319486659912191827085444106720702465383316447146234380276933468422830124957784532252617359 # # GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] # Input number is 106720702465383316447146234380276933468422830124957784532252617359000337723741979061127997298210064167510976021614319486659912191827085444106720702465383316447146234380276933468422830124957784532252617359 (204 digits) # Using B1=52220000, B2=288593765476, polynomial Dickson(12), sigma=1:70799118 # Step 1 took 169806ms # Step 2 took 53129ms # ********** Factor found in step 2: 13252969558025548690936553629972883048247390757 # Found prime factor of 47 digits: 13252969558025548690936553629972883048247390757 # Composite cofactor 8052587912326175990400987329503069506524005841400339660537334080616151529515726092982672798827243143118879143248024553809276563439632094149713798723524999587 has 157 digits # n: 8052587912326175990400987329503069506524005841400339660537334080616151529515726092982672798827243143118879143248024553809276563439632094149713798723524999587 m: 10000000000000000000000000000000000 deg: 6 c6: 316 c0: -1 skew: 0.38 # Murphy_E = 8.745e-12 type: snfs lss: 1 rlim: 19400000 alim: 19400000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19400000/19400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3716491 hash collisions in 19408293 relations (16647540 unique) Msieve: matrix is 2404750 x 2404975 (679.2 MB) Sieving start time: 2024/02/22 02:03:50 Sieving end time : 2024/02/23 00:03:31 Total sieving time: 21hrs 59min 41secs. Total relation processing time: 2hrs 54min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 18min 55sec. Prototype def-par.txt line would be: snfs,206,6,0,0,0,0,0,0,0,0,19400000,19400000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2200 | 1000 | Dmitry Domanov | February 22, 2023 04:55:32 UTC 2023 年 2 月 22 日 (水) 13 時 55 分 32 秒 (日本時間) |
1200 | Dmitry Domanov | November 20, 2023 10:50:07 UTC 2023 年 11 月 20 日 (月) 19 時 50 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 23:33:17 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 17 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:03:22 UTC 2023 年 2 月 20 日 (月) 15 時 3 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 23:33:25 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 25 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:03:28 UTC 2023 年 2 月 20 日 (月) 15 時 3 分 28 秒 (日本時間) |
composite cofactor 合成数の残り | 345792057917895077090744241127360188351057169209875531897263242686709830848444292181609685570023564149008586514099404093325936041296172677041087225879123208958418007411<168> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 14:21:36 UTC 2023 年 2 月 13 日 (月) 23 時 21 分 36 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 18, 2023 22:44:33 UTC 2023 年 2 月 19 日 (日) 7 時 44 分 33 秒 (日本時間) |
composite cofactor 合成数の残り | 3812063946680975058091176617765275994296182944432693635591357724343720337590376855719252392453635487592688659468076506814069807763016229721650548685802433672573101<163> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 14:21:45 UTC 2023 年 2 月 13 日 (月) 23 時 21 分 45 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 18, 2023 22:44:43 UTC 2023 年 2 月 19 日 (日) 7 時 44 分 43 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 14, 2023 08:28:41 UTC 2023 年 2 月 14 日 (火) 17 時 28 分 41 秒 (日本時間) |
composite number 合成数 | 26864176048419144454241197686725239853505258937470892826997767669137641610063315153460998739097739306232088107501262134698817822156315037843581956718385452703917278965840464849556607<182> |
prime factors 素因数 | 36003413532579979843211440859106610001<38> 746156361649135997391701781588096904521011023717064360753489207729511413665326555757266561026724472728072733624987363063798097453499526677286607<144> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3141258949 Step 1 took 9537ms Step 2 took 4765ms ********** Factor found in step 2: 36003413532579979843211440859106610001 Found prime factor of 38 digits: 36003413532579979843211440859106610001 Prime cofactor 746156361649135997391701781588096904521011023717064360753489207729511413665326555757266561026724472728072733624987363063798097453499526677286607 has 144 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 13, 2023 23:33:33 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:31:46 UTC 2023 年 2 月 24 日 (金) 18 時 31 分 46 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 23, 2024 20:56:37 UTC 2024 年 1 月 24 日 (水) 5 時 56 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 23:33:43 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 43 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:03:43 UTC 2023 年 2 月 20 日 (月) 15 時 3 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 22, 2023 04:56:20 UTC 2023 年 2 月 22 日 (水) 13 時 56 分 20 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:56:48 UTC 2024 年 1 月 24 日 (水) 5 時 56 分 48 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 23, 2024 23:21:02 UTC 2024 年 1 月 24 日 (水) 8 時 21 分 2 秒 (日本時間) |
composite number 合成数 | 118107019836573294208922365714836352960192034491140311678836361914062435959659614231180660871760164880588217633258585619345733741589370038581240345439400284868702325107095161774055749995933777417099450591<204> |
prime factors 素因数 | 13775714820614623401783269530496447999<38> |
composite cofactor 合成数の残り | 8573567424597991135896476348062154362675675524816598788680093632598612145232904087949908901746014662241340651600457360142166787516290297181161793484029040361835781409<166> |
factorization results 素因数分解の結果 | GPU: factor 13775714820614623401783269530496447999 found in Step 1 with curve 608 (-sigma 3:-1365393128) Computing 1792 Step 1 took 915ms of CPU time / 643328ms of GPU time Throughput: 2.786 curves per second (on average 359.00ms per Step 1) ********** Factor found in step 1: 13775714820614623401783269530496447999 Found prime factor of 38 digits: 13775714820614623401783269530496447999 Composite cofactor 8573567424597991135896476348062154362675675524816598788680093632598612145232904087949908901746014662241340651600457360142166787516290297181161793484029040361835781409 has 166 digits Peak memory usage: 9470MB |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 27, 2024 14:15:48 UTC 2024 年 1 月 27 日 (土) 23 時 15 分 48 秒 (日本時間) |
composite number 合成数 | 8573567424597991135896476348062154362675675524816598788680093632598612145232904087949908901746014662241340651600457360142166787516290297181161793484029040361835781409<166> |
prime factors 素因数 | 184501020149342524874564934663660561746797<42> 46468943194233841260155981682381191812441354704365540052115831555553682728472949785510095416971606616878462785037058490299397<125> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @39d3d7ea92f3 with GMP-ECM 7.0.5-dev on Tue Jan 23 21:35:15 2024 Input number is 8573567424597991135896476348062154362675675524816598788680093632598612145232904087949908901746014662241340651600457360142166787516290297181161793484029040361835781409 (166 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:2929574694 Step 1 took 0ms Step 2 took 7144ms ********** Factor found in step 2: 184501020149342524874564934663660561746797 Found prime factor of 42 digits: 184501020149342524874564934663660561746797 Prime cofactor 46468943194233841260155981682381191812441354704365540052115831555553682728472949785510095416971606616878462785037058490299397 has 125 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 22, 2023 04:56:43 UTC 2023 年 2 月 22 日 (水) 13 時 56 分 43 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:56:56 UTC 2024 年 1 月 24 日 (水) 5 時 56 分 56 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 23:33:51 UTC 2023 年 2 月 14 日 (火) 8 時 33 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:03:51 UTC 2023 年 2 月 20 日 (月) 15 時 3 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 24, 2023 10:05:43 UTC 2023 年 2 月 24 日 (金) 19 時 5 分 43 秒 (日本時間) |
composite number 合成数 | 53596528653247815729869818458703152985237685924895018181121303593494767468432912452514514469988261664826940379253751888028886792145197378825130611051326388318895742985974519467389652630093687936311679201071419031513<215> |
prime factors 素因数 | 161767009018444917647651340499399<33> 331319278130046027677261620493946570664596451845624266910611304785575051807833652844690061747614166034488981410374935637117060353857759007967955067190990122597251828279923279286696287<183> |
factorization results 素因数分解の結果 | GPU: factor 161767009018444917647651340499399 found in Step 1 with curve 581 (-sigma 3:-1567941192) GPU: factor 161767009018444917647651340499399 found in Step 1 with curve 690 (-sigma 3:-1567941083) GPU: factor 161767009018444917647651340499399 found in Step 1 with curve 1453 (-sigma 3:-1567940320) Computing 1792 Step 1 took 310ms of CPU time / 175554ms of GPU time Throughput: 10.208 curves per second (on average 97.97ms per Step 1) ********** Factor found in step 1: 161767009018444917647651340499399 Found prime factor of 33 digits: 161767009018444917647651340499399 Prime cofactor 331319278130046027677261620493946570664596451845624266910611304785575051807833652844690061747614166034488981410374935637117060353857759007967955067190990122597251828279923279286696287 has 183 digits Peak memory usage: 9428MB |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | February 24, 2023 09:31:53 UTC 2023 年 2 月 24 日 (金) 18 時 31 分 53 秒 (日本時間) |
composite cofactor 合成数の残り | 186904059188162303540272395130885103974027556268554945161231904528342528960645568808536349448886883884275517159975077639568345265668996948534195400224555432643504027<165> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 14:21:56 UTC 2023 年 2 月 13 日 (月) 23 時 21 分 56 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 18, 2023 22:44:53 UTC 2023 年 2 月 19 日 (日) 7 時 44 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:00 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 0 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:40:04 UTC 2024 年 1 月 30 日 (火) 15 時 40 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:08 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 8 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:40:17 UTC 2024 年 1 月 30 日 (火) 15 時 40 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:20:28 UTC 2023 年 2 月 14 日 (火) 15 時 20 分 28 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:00 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 0 秒 (日本時間) |
composite cofactor 合成数の残り | 311944428320445761764949349369756974574589726213478948954301419599431686323329088787478234544261887252687929394610307293851739385358809300912859168986817000462043<162> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 13, 2023 14:22:06 UTC 2023 年 2 月 13 日 (月) 23 時 22 分 6 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 18, 2023 22:45:04 UTC 2023 年 2 月 19 日 (日) 7 時 45 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 9, 2023 22:25:27 UTC 2023 年 2 月 10 日 (金) 7 時 25 分 27 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:11:47 UTC 2024 年 9 月 13 日 (金) 15 時 11 分 47 秒 (日本時間) |
name 名前 | yoyo |
---|---|
date 日付 | October 15, 2024 02:31:41 UTC 2024 年 10 月 15 日 (火) 11 時 31 分 41 秒 (日本時間) |
composite number 合成数 | 242533983454938960684072033787437825952050276967125979752115194057153116618445746209916048787901320837437364164761877182657163128478676487698129475093283489<156> |
prime factors 素因数 | 1308495830262098589578812743851743028036155380386236171<55> 185353271936952316871792169687949677066096711768185787601025849264735657409875677539367099331703011459<102> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 242533983454938960684072033787437825952050276967125979752115194057153116618445746209916048787901320837437364164761877182657163128478676487698129475093283489 (156 digits) [Mon Oct 14 20:22:34 2024] Using MODMULN [mulredc:0, sqrredc:0] Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:6452671852109345023 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+07 3.6e+08 Writing checkpoint to checkpnt at p = 110000000 Step 1 took 230187ms Using 20 small primes for NTT Estimated memory usage: 472.20MB Initializing tables of differences for F took 156ms Computing roots of F took 6672ms Building F from its roots took 3453ms Computing 1/F took 1250ms Initializing table of differences for G took 109ms Computing roots of G took 5500ms Building G from its roots took 3469ms Computing roots of G took 5610ms Building G from its roots took 3422ms Computing G * H took 672ms Reducing G * H mod F took 734ms Computing roots of G took 5594ms Building G from its roots took 3500ms Computing G * H took 703ms Reducing G * H mod F took 735ms Computing roots of G took 5578ms Building G from its roots took 3484ms Computing G * H took 719ms Reducing G * H mod F took 734ms Computing polyeval(F,G) took 6422ms Computing product of all F(g_i) took 47ms Step 2 took 59031ms ********** Factor found in step 2: 1308495830262098589578812743851743028036155380386236171 Found prime factor of 55 digits: 1308495830262098589578812743851743028036155380386236171 Prime cofactor 185353271936952316871792169687949677066096711768185787601025849264735657409875677539367099331703011459 has 102 digits Peak memory usage: 616MB |
software ソフトウェア | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 12:59:49 UTC 2022 年 12 月 25 日 (日) 21 時 59 分 49 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 29, 2022 17:52:52 UTC 2022 年 12 月 30 日 (金) 2 時 52 分 52 秒 (日本時間) | |
50 | 43e6 | 4000 / 6453 | yoyo@Home | October 2, 2024 15:00:50 UTC 2024 年 10 月 3 日 (木) 0 時 0 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:21:29 UTC 2023 年 2 月 14 日 (火) 15 時 21 分 29 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:14 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:21:37 UTC 2023 年 2 月 14 日 (火) 15 時 21 分 37 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:57:04 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 4 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:16 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 16 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:40:29 UTC 2024 年 1 月 30 日 (火) 15 時 40 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:21:45 UTC 2023 年 2 月 14 日 (火) 15 時 21 分 45 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:22 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 22 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 15, 2023 04:46:30 UTC 2023 年 2 月 15 日 (水) 13 時 46 分 30 秒 (日本時間) |
composite number 合成数 | 63303599370510131261999819081184369549782500749940653827217917389401526635034473748987270488999808925923915664857759064022149928020219974006710998515375250331503452824566329224482650384662443158640557<200> |
prime factors 素因数 | 1907926739593760084189093652197904709301<40> 33179261056946490241256246999715200407969315329528340848495747268149083318075115377403525803250503810703107845962428610667911199825245151848047160832117449490457<161> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:4229013283 Step 1 took 11425ms Step 2 took 5096ms ********** Factor found in step 2: 1907926739593760084189093652197904709301 Found prime factor of 40 digits: 1907926739593760084189093652197904709301 Prime cofactor 33179261056946490241256246999715200407969315329528340848495747268149083318075115377403525803250503810703107845962428610667911199825245151848047160832117449490457 has 161 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | February 14, 2023 06:21:54 UTC 2023 年 2 月 14 日 (火) 15 時 21 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 9, 2023 22:25:35 UTC 2023 年 2 月 10 日 (金) 7 時 25 分 35 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:12:03 UTC 2024 年 9 月 13 日 (金) 15 時 12 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 22, 2023 04:58:03 UTC 2023 年 2 月 22 日 (水) 13 時 58 分 3 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:57:11 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:22:01 UTC 2023 年 2 月 14 日 (火) 15 時 22 分 1 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:29 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 22, 2023 04:58:11 UTC 2023 年 2 月 22 日 (水) 13 時 58 分 11 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:57:21 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 21 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 25, 2023 16:51:45 UTC 2023 年 2 月 26 日 (日) 1 時 51 分 45 秒 (日本時間) |
composite number 合成数 | 5825128631513924497169241488510918166055308355619039350765236483347723530489481784957054080884268096357476011297789062936266164380839111301553624865504807178638410088693490115024473216004753549757588765223487291205704067<220> |
prime factors 素因数 | 554247979592763042126522570252257861461<39> |
composite cofactor 合成数の残り | 10509968183905644487382728071800880269534805074178368613832713127440513743768346751175805081344181014030808720145827885386397259345928556434318885836611205601929027486467055283971447<182> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b96c90559010 with GMP-ECM 7.0.5-dev on Fri Feb 24 09:51:22 2023 Input number is 5825128631513924497169241488510918166055308355619039350765236483347723530489481784957054080884268096357476011297789062936266164380839111301553624865504807178638410088693490115024473216004753549757588765223487291205704067 (220 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1779004637 Step 1 took 0ms Step 2 took 5556ms ********** Factor found in step 2: 554247979592763042126522570252257861461 Found prime factor of 39 digits: 554247979592763042126522570252257861461 Composite cofactor 10509968183905644487382728071800880269534805074178368613832713127440513743768346751175805081344181014030808720145827885386397259345928556434318885836611205601929027486467055283971447 has 182 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 24, 2023 09:32:23 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 23 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:12:33 UTC 2024 年 9 月 13 日 (金) 15 時 12 分 33 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 30, 2024 19:11:33 UTC 2024 年 1 月 31 日 (水) 4 時 11 分 33 秒 (日本時間) |
composite number 合成数 | 205303192257850700292525265213964008356906134627192104180531185278577044632249666716729190692449581154858926899561134144868596883157116443472416056545446805990996672296068287327650627688120250293357563107688482875646344431141<225> |
prime factors 素因数 | 639007241978792291870291352861883601623863131<45> 321284609579846374446976990384396837051686576822280368366486319707637197764107113594009041479626902249456417644493371862370637549229621313817507627900578830711983725163349411395711<180> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @e38494234146 with GMP-ECM 7.0.5-dev on Tue Jan 30 08:51:16 2024 Input number is 205303192257850700292525265213964008356906134627192104180531185278577044632249666716729190692449581154858926899561134144868596883157116443472416056545446805990996672296068287327650627688120250293357563107688482875646344431141 (225 digits) Using B1=11000000-11000000, B2=35133391030, polynomial Dickson(12), sigma=3:3111012474 Step 1 took 0ms Step 2 took 9828ms ********** Factor found in step 2: 639007241978792291870291352861883601623863131 Found prime factor of 45 digits: 639007241978792291870291352861883601623863131 Prime cofactor 321284609579846374446976990384396837051686576822280368366486319707637197764107113594009041479626902249456417644493371862370637549229621313817507627900578830711983725163349411395711 has 180 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:30 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 30 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:40:42 UTC 2024 年 1 月 30 日 (火) 15 時 40 分 42 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 22, 2023 13:31:43 UTC 2023 年 2 月 22 日 (水) 22 時 31 分 43 秒 (日本時間) |
composite number 合成数 | 15048435211036604609116170846376249603670790664842529311176611794380692872545520658097632622753069145152866278617888824633032744109251238729399039133620917410070985246475700380702782743527591691932384488381201<209> |
prime factors 素因数 | 305684907369158953331899748133941122613<39> |
composite cofactor 合成数の残り | 49228584232532723572849239057186062163471128503262889847855383543327421780367342308168977960741166183534246875454763457925534215662823929330088694768285119603981433380077<170> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3893862012 Step 1 took 11312ms Step 2 took 5242ms ********** Factor found in step 2: 305684907369158953331899748133941122613 Found prime factor of 39 digits: 305684907369158953331899748133941122613 Composite cofactor 49228584232532723572849239057186062163471128503262889847855383543327421780367342308168977960741166183534246875454763457925534215662823929330088694768285119603981433380077 has 170 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 10, 2023 14:59:29 UTC 2023 年 3 月 10 日 (金) 23 時 59 分 29 秒 (日本時間) |
composite number 合成数 | 49228584232532723572849239057186062163471128503262889847855383543327421780367342308168977960741166183534246875454763457925534215662823929330088694768285119603981433380077<170> |
prime factors 素因数 | 353394802818421498645240822807841672938959041<45> 139301947396852246344350361900054753119665521972506357325800365830529077050537377725059032688413263815931343494575403631889197<126> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1468469925 Step 1 took 23671ms Step 2 took 10407ms ********** Factor found in step 2: 353394802818421498645240822807841672938959041 Found prime factor of 45 digits: 353394802818421498645240822807841672938959041 Prime cofactor 139301947396852246344350361900054753119665521972506357325800365830529077050537377725059032688413263815931343494575403631889197 has 126 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 22, 2023 04:58:18 UTC 2023 年 2 月 22 日 (水) 13 時 58 分 18 秒 (日本時間) |
2350 | Ignacio Santos | March 1, 2023 11:04:50 UTC 2023 年 3 月 1 日 (水) 20 時 4 分 50 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 9, 2023 22:25:42 UTC 2023 年 2 月 10 日 (金) 7 時 25 分 42 秒 (日本時間) |
2350 | Ignacio Santos | September 13, 2024 06:25:48 UTC 2024 年 9 月 13 日 (金) 15 時 25 分 48 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 22, 2023 04:58:26 UTC 2023 年 2 月 22 日 (水) 13 時 58 分 26 秒 (日本時間) | |
45 | 11e6 | 1792 / 4213 | Dmitry Domanov | January 23, 2024 20:57:31 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:38 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 38 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:40:54 UTC 2024 年 1 月 30 日 (火) 15 時 40 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:22:08 UTC 2023 年 2 月 14 日 (火) 15 時 22 分 8 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:36 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 36 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:25:49 UTC 2023 年 2 月 10 日 (金) 7 時 25 分 49 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:01:28 UTC 2024 年 10 月 4 日 (金) 9 時 1 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:25:57 UTC 2023 年 2 月 10 日 (金) 7 時 25 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:04:35 UTC 2024 年 10 月 4 日 (金) 9 時 4 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:26:04 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 4 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:07:26 UTC 2024 年 10 月 4 日 (金) 9 時 7 分 26 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:26:14 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 14 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:10:33 UTC 2024 年 10 月 4 日 (金) 9 時 10 分 33 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | January 1, 2023 12:23:55 UTC 2023 年 1 月 1 日 (日) 21 時 23 分 55 秒 (日本時間) |
composite number 合成数 | 17272213758055833021204818503141012701306433772245934535487890886421329157921796737596402724000915405159621693248045039471013277643179273288144304183102958751360422851<167> |
prime factors 素因数 | 152574296699609537170284594538003654777<39> 113205265445605265368982645593285002667799892633924709389903053802861420355159334062174795212164191117033149047130075554129364763<129> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:1480068007 Step 1 took 23688ms Step 2 took 10328ms ********** Factor found in step 2: 152574296699609537170284594538003654777 Found prime factor of 39 digits: 152574296699609537170284594538003654777 Prime cofactor 113205265445605265368982645593285002667799892633924709389903053802861420355159334062174795212164191117033149047130075554129364763 has 129 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 13:12:38 UTC 2022 年 12 月 26 日 (月) 22 時 12 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:45:17 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 17 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:14:01 UTC 2024 年 10 月 4 日 (金) 9 時 14 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:45:26 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 26 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:17:30 UTC 2024 年 10 月 4 日 (金) 9 時 17 分 30 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:46 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 46 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:41:12 UTC 2024 年 1 月 30 日 (火) 15 時 41 分 12 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 0 | - | - | |
45 | 11e6 | 1792 / 4434 | Dmitry Domanov | January 23, 2024 20:57:44 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:26:27 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:20:39 UTC 2024 年 10 月 4 日 (金) 9 時 20 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:52 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 52 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:41:29 UTC 2024 年 1 月 30 日 (火) 15 時 41 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:22:49 UTC 2023 年 2 月 14 日 (火) 15 時 22 分 49 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:04:44 UTC 2023 年 2 月 20 日 (月) 15 時 4 分 44 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 14, 2023 22:04:13 UTC 2023 年 2 月 15 日 (水) 7 時 4 分 13 秒 (日本時間) |
composite number 合成数 | 54905628344911804707551233961122615048151562379987031009684649254293028540450500477631206498875867963485915097081124694177020106875837520257957249342880533745833810875277845458619076269124757059<194> |
prime factors 素因数 | 13729098539161615725130959583681614257<38> |
composite cofactor 合成数の残り | 3999215839867129716114851191319120924935509711767424405378881068190317288443133778756443957404102561001554660567602671331961179470129685082817784611827163187<157> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:2062998750 Step 1 took 11644ms Step 2 took 5295ms ********** Factor found in step 2: 13729098539161615725130959583681614257 Found prime factor of 38 digits: 13729098539161615725130959583681614257 Composite cofactor 3999215839867129716114851191319120924935509711767424405378881068190317288443133778756443957404102561001554660567602671331961179470129685082817784611827163187 has 157 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 14, 2023 06:22:57 UTC 2023 年 2 月 14 日 (火) 15 時 22 分 57 秒 (日本時間) |
2350 | Ignacio Santos | March 1, 2023 08:55:48 UTC 2023 年 3 月 1 日 (水) 17 時 55 分 48 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | March 7, 2023 12:19:15 UTC 2023 年 3 月 7 日 (火) 21 時 19 分 15 秒 (日本時間) |
name 名前 | Thomas Kozlowski |
---|---|
date 日付 | October 4, 2024 00:44:34 UTC 2024 年 10 月 4 日 (金) 9 時 44 分 34 秒 (日本時間) |
composite number 合成数 | 5143599913304865015115846512617420698068333762296080430401565845054984767791714700813541214769282043265102984012012160579695597544619952381214127171893282776116031771590859052847116260300919518720732099448319374128816863804083126538694258499162178764963652760629<262> |
prime factors 素因数 | 3653037200099785100849389044673066513<37> |
composite cofactor 合成数の残り | 1408033817220466361159736357419573285042731034392567084809183278472251041747838203009322120344339821752630955137670486195612478222029727338528958771147816483335402324946067382841657148126913982111699689287683449732151719208933<226> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.6 [configured with GMP 6.3.0, --enable-asm-redc] [ECM] Input number is 5143599913304865015115846512617420698068333762296080430401565845054984767791714700813541214769282043265102984012012160579695597544619952381214127171893282776116031771590859052847116260300919518720732099448319374128816863804083126538694258499162178764963652760629 (262 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3612840384 Step 1 took 16262ms Step 2 took 5358ms ** Factor found in step 2: 3653037200099785100849389044673066513 Found prime factor of 37 digits: 3653037200099785100849389044673066513 Composite cofactor 1408033817220466361159736357419573285042731034392567084809183278472251041747838203009322120344339821752630955137670486195612478222029727338528958771147816483335402324946067382841657148126913982111699689287683449732151719208933 has 226 digits |
execution environment 実行環境 | 2x Xeon E5-2698v4, 256GB DDR4, Ubuntu Server 24.04 |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | January 18, 2023 08:45:33 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 33 秒 (日本時間) |
2350 | Ignacio Santos | October 6, 2024 16:41:14 UTC 2024 年 10 月 7 日 (月) 1 時 41 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 14, 2023 06:23:05 UTC 2023 年 2 月 14 日 (火) 15 時 23 分 5 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 20, 2023 06:05:00 UTC 2023 年 2 月 20 日 (月) 15 時 5 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 24, 2023 09:32:58 UTC 2023 年 2 月 24 日 (金) 18 時 32 分 58 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 30, 2024 06:41:46 UTC 2024 年 1 月 30 日 (火) 15 時 41 分 46 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:44:11 UTC 2023 年 1 月 18 日 (水) 17 時 44 分 11 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:24:51 UTC 2024 年 10 月 4 日 (金) 9 時 24 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:45:40 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:28:21 UTC 2024 年 10 月 4 日 (金) 9 時 28 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:45:49 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 49 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:31:53 UTC 2024 年 10 月 4 日 (金) 9 時 31 分 53 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:26:35 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 35 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:34:58 UTC 2024 年 10 月 4 日 (金) 9 時 34 分 58 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 18, 2023 22:43:54 UTC 2023 年 1 月 19 日 (木) 7 時 43 分 54 秒 (日本時間) |
composite number 合成数 | 1490980980555909427623725470767808022043870699864584955246979112111389490471404777744749718081919024634214238868364308935033806578245832566610518965183706786322608650520663769634001915627462359807682326685256745981192879150329572852822247701011130456117504399809380912612472339<277> |
prime factors 素因数 | 1432503212571629294190868302792244639398889<43> 1040822085054385926058097346429311668523847960471330705352263023603623202972061958349964339634467008833404710150924279940319419151229214415859363476529964108259223193242128621396211032417611038424914775726053407213232564781015038161051<235> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 14:16:41 2023 Input number is 1490980980555909427623725470767808022043870699864584955246979112111389490471404777744749718081919024634214238868364308935033806578245832566610518965183706786322608650520663769634001915627462359807682326685256745981192879150329572852822247701011130456117504399809380912612472339 (277 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:75105523 Step 1 took 0ms Step 2 took 7594ms ********** Factor found in step 2: 1432503212571629294190868302792244639398889 Found prime factor of 43 digits: 1432503212571629294190868302792244639398889 Prime cofactor 1040822085054385926058097346429311668523847960471330705352263023603623202972061958349964339634467008833404710150924279940319419151229214415859363476529964108259223193242128621396211032417611038424914775726053407213232564781015038161051 has 235 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 18, 2023 08:44:03 UTC 2023 年 1 月 18 日 (水) 17 時 44 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 12, 2023 08:25:46 UTC 2023 年 2 月 12 日 (日) 17 時 25 分 46 秒 (日本時間) |
composite number 合成数 | 112655557658474788637180566817912499172471736695184382944540251489461736385153422737787499946619385845332229259404680625151894757960021071572700044300969943980965852603621555894808687387445436774156099281076395652789550201499610787964455476084045623<249> |
prime factors 素因数 | 1550472628077443420015123177730188863<37> |
composite cofactor 合成数の残り | 72658849707115138327676907221255592247320717747706431568337237970953332796366466532320746329132055197932519500871579749858856555724367023597985726830405147641681749597844273365882076034890189353323382936889696521<212> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @9d633d50bf34 with GMP-ECM 7.0.5-dev on Sat Feb 11 11:46:15 2023 Input number is 112655557658474788637180566817912499172471736695184382944540251489461736385153422737787499946619385845332229259404680625151894757960021071572700044300969943980965852603621555894808687387445436774156099281076395652789550201499610787964455476084045623 (249 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1970163790 Step 1 took 0ms Step 2 took 12490ms ********** Factor found in step 2: 1550472628077443420015123177730188863 Found prime factor of 37 digits: 1550472628077443420015123177730188863 Composite cofactor 72658849707115138327676907221255592247320717747706431568337237970953332796366466532320746329132055197932519500871579749858856555724367023597985726830405147641681749597844273365882076034890189353323382936889696521 has 212 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 9, 2023 22:26:42 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 42 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 23, 2024 20:57:59 UTC 2024 年 1 月 24 日 (水) 5 時 57 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:26:53 UTC 2023 年 2 月 10 日 (金) 7 時 26 分 53 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:38:13 UTC 2024 年 10 月 4 日 (金) 9 時 38 分 13 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 11:37:49 UTC 2023 年 1 月 19 日 (木) 20 時 37 分 49 秒 (日本時間) |
composite number 合成数 | 4772296758389983762556382924617733803322937260216137318517209819859142119263414626833076096377081037449887978445618946944660557723256618356274913570303667590411891063205817276695653226199953254720415730112317039183042306821421228208521395552720343411163052053<259> |
prime factors 素因数 | 16767324232463333009177745562899147611<38> 284618862987709561475100064938491338279787496383376669721648703390619291180791152439661343971244842182757767391006882347683918799639561958215477568984090471692606855198245265857792283091190484929804198570842138588985587023<222> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 11:49:04 2023 Input number is 4772296758389983762556382924617733803322937260216137318517209819859142119263414626833076096377081037449887978445618946944660557723256618356274913570303667590411891063205817276695653226199953254720415730112317039183042306821421228208521395552720343411163052053 (259 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:3597601414 Step 1 took 0ms Step 2 took 4669ms ********** Factor found in step 2: 16767324232463333009177745562899147611 Found prime factor of 38 digits: 16767324232463333009177745562899147611 Prime cofactor 284618862987709561475100064938491338279787496383376669721648703390619291180791152439661343971244842182757767391006882347683918799639561958215477568984090471692606855198245265857792283091190484929804198570842138588985587023 has 222 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | January 18, 2023 08:45:57 UTC 2023 年 1 月 18 日 (水) 17 時 45 分 57 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:43:55 UTC 2023 年 1 月 18 日 (水) 17 時 43 分 55 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:42:03 UTC 2024 年 10 月 4 日 (金) 9 時 42 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:46:05 UTC 2023 年 1 月 18 日 (水) 17 時 46 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:45:32 UTC 2024 年 10 月 4 日 (金) 9 時 45 分 32 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:43:48 UTC 2023 年 1 月 18 日 (水) 17 時 43 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:49:23 UTC 2024 年 10 月 4 日 (金) 9 時 49 分 23 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 19, 2023 11:38:15 UTC 2023 年 1 月 19 日 (木) 20 時 38 分 15 秒 (日本時間) |
composite number 合成数 | 7740480454451654110822578781600845223646401539557229265738823687215157912510297151482948197608124329633958555552840157569020589853156666134113310895445376788851382283980797782053064816017828911260350325123521438688921106662504531798365532786174816377697<253> |
prime factors 素因数 | 579164861178822406217645145097556198281<39> |
composite cofactor 合成数の残り | 13364900002214931567763559103996842116244493061223903552174484861317579513106532584404159403118110112846403953408079126479555308551073475810061222676650834002274689168209532962503141320156662308807011271886860397337<215> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @a1340af1335d with GMP-ECM 7.0.5-dev on Wed Jan 18 11:58:01 2023 Input number is 7740480454451654110822578781600845223646401539557229265738823687215157912510297151482948197608124329633958555552840157569020589853156666134113310895445376788851382283980797782053064816017828911260350325123521438688921106662504531798365532786174816377697 (253 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2924799665 Step 1 took 0ms Step 2 took 5344ms ********** Factor found in step 2: 579164861178822406217645145097556198281 Found prime factor of 39 digits: 579164861178822406217645145097556198281 Composite cofactor 13364900002214931567763559103996842116244493061223903552174484861317579513106532584404159403118110112846403953408079126479555308551073475810061222676650834002274689168209532962503141320156662308807011271886860397337 has 215 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:46:14 UTC 2023 年 1 月 18 日 (水) 17 時 46 分 14 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | January 23, 2024 20:58:07 UTC 2024 年 1 月 24 日 (水) 5 時 58 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:46:23 UTC 2023 年 1 月 18 日 (水) 17 時 46 分 23 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:52:51 UTC 2024 年 10 月 4 日 (金) 9 時 52 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:46:31 UTC 2023 年 1 月 18 日 (水) 17 時 46 分 31 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 00:56:21 UTC 2024 年 10 月 4 日 (金) 9 時 56 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:43:40 UTC 2023 年 1 月 18 日 (水) 17 時 43 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 01:00:37 UTC 2024 年 10 月 4 日 (金) 10 時 0 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 08:43:27 UTC 2023 年 1 月 18 日 (水) 17 時 43 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 4, 2024 01:04:28 UTC 2024 年 10 月 4 日 (金) 10 時 4 分 28 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 10:39:46 UTC 2022 年 12 月 30 日 (金) 19 時 39 分 46 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 10:39:46 UTC 2022 年 12 月 30 日 (金) 19 時 39 分 46 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 10:39:46 UTC 2022 年 12 月 30 日 (金) 19 時 39 分 46 秒 (日本時間) |