name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 23, 2022 15:39:18 UTC 2022 年 12 月 24 日 (土) 0 時 39 分 18 秒 (日本時間) |
composite number 合成数 | 142045997618157375041780938954916463953592155801615115602813201757981378776999755641269568156714861653<102> |
prime factors 素因数 | 123432955470897095454692534106771740311768290587<48> 1150794753931407280583889759134928555854935518743581519<55> |
factorization results 素因数分解の結果 | N=142045997618157375041780938954916463953592155801615115602813201757981378776999755641269568156714861653 ( 102 digits) SNFS difficulty: 115 digits. Divisors found: r1=123432955470897095454692534106771740311768290587 (pp48) r2=1150794753931407280583889759134928555854935518743581519 (pp55) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.01 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 142045997618157375041780938954916463953592155801615115602813201757981378776999755641269568156714861653 m: 10000000000000000000000000000 deg: 4 c4: 1975 c0: -13 skew: 0.28 # Murphy_E = 6.189e-08 type: snfs lss: 1 rlim: 580000 alim: 580000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 580000/580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [290000, 650001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61468 x 61693 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115.000,4,0,0,0,0,0,0,0,0,580000,580000,25,25,45,45,2.2,2.2,20000 total time: 0.01 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 25, 2022 00:09:42 UTC 2022 年 12 月 25 日 (日) 9 時 9 分 42 秒 (日本時間) |
composite number 合成数 | 353688496910057395070355668348411056943744671753307895888297745754617113168281245611380524772429447354468934486041<114> |
prime factors 素因数 | 52526416123620954420873526048582114519131341442374789323<56> 6733535676175798633481893505916167437310934952456371341867<58> |
factorization results 素因数分解の結果 | N=353688496910057395070355668348411056943744671753307895888297745754617113168281245611380524772429447354468934486041 ( 114 digits) SNFS difficulty: 123 digits. Divisors found: r1=52526416123620954420873526048582114519131341442374789323 (pp56) r2=6733535676175798633481893505916167437310934952456371341867 (pp58) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.02 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 353688496910057395070355668348411056943744671753307895888297745754617113168281245611380524772429447354468934486041 m: 1000000000000000000000000000000 deg: 4 c4: 1975 c0: -13 skew: 0.28 # Murphy_E = 2.599e-08 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 770001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 78018 x 78243 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123.000,4,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.2,2.2,75000 total time: 0.02 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 26, 2022 23:38:05 UTC 2022 年 12 月 27 日 (火) 8 時 38 分 5 秒 (日本時間) |
composite number 合成数 | 25978985794894752145116831343459191472475237240834640821153643283010666991827570552154404823825962495431<104> |
prime factors 素因数 | 1075612202089938397472229314264226878953<40> 24152743660230895266245890353954592881722429052132068312372602927<65> |
factorization results 素因数分解の結果 | N=25978985794894752145116831343459191472475237240834640821153643283010666991827570552154404823825962495431 ( 104 digits) SNFS difficulty: 132 digits. Divisors found: r1=1075612202089938397472229314264226878953 (pp40) r2=24152743660230895266245890353954592881722429052132068312372602927 (pp65) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.04 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 25978985794894752145116831343459191472475237240834640821153643283010666991827570552154404823825962495431 m: 500000000000000000000000000000000 deg: 4 c4: 158 c0: -65 skew: 0.80 # Murphy_E = 9.846e-09 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [575000, 1175001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 139013 x 139238 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132.000,4,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,100000 total time: 0.04 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | December 30, 2022 00:44:02 UTC 2022 年 12 月 30 日 (金) 9 時 44 分 2 秒 (日本時間) |
composite number 合成数 | 7146008979926685236163225243402979352427604043820283657193669902529513049429908748972617587067308055355995343296419<115> |
prime factors 素因数 | 2991073848242320479181211880234030623443<40> 2389111517298704484702529148806204365393447914029947191525587674400804699633<76> |
factorization results 素因数分解の結果 | N=7146008979926685236163225243402979352427604043820283657193669902529513049429908748972617587067308055355995343296419 ( 115 digits) SNFS difficulty: 133 digits. Divisors found: r1=2991073848242320479181211880234030623443 (pp40) r2=2389111517298704484702529148806204365393447914029947191525587674400804699633 (pp76) Version: Msieve v. 1.54 (SVN 1043M) Total time: 0.03 hours. Scaled time: 0.00 units (timescale=0.000). Factorization parameters were as follows: n: 7146008979926685236163225243402979352427604043820283657193669902529513049429908748972617587067308055355995343296419 m: 1000000000000000000000000000000000 deg: 4 c4: 79 c0: -52 skew: 0.90 # Murphy_E = 8.403e-09 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1295001) Primes: , , Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 152580 x 152806 Total sieving time: 0.00 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.02 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,133.000,4,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,100000 total time: 0.03 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 17:11:58 UTC 2022 年 12 月 25 日 (日) 2 時 11 分 58 秒 (日本時間) |
composite number 合成数 | 2491201390879676908038269869105457719810040726890822346395842427850855004850232905506878088436648601<100> |
prime factors 素因数 | 2871719799068167245100071231580902378119488873<46> 867494590415136178009286127256359787751801586998601137<54> |
factorization results 素因数分解の結果 | 12/24/22 18:08:15, starting SIQS on c100: 2491201390879676908038269869105457719810040726890822346395842427850855004850232905506878088436648601 12/24/22 18:08:15, random seed: 6400218092483551829 12/24/22 18:08:16, ==== sieve params ==== 12/24/22 18:08:16, n = 102 digits, 336 bits 12/24/22 18:08:16, factor base: 117888 primes (max prime = 3274207) 12/24/22 18:08:16, single large prime cutoff: 491131050 (150 * pmax) 12/24/22 18:08:16, double large prime range from 10720431478849 to 11987128879489342 12/24/22 18:08:16, DLP MFB = 1.85 12/24/22 18:08:16, allocating 8 large prime slices of factor base 12/24/22 18:08:16, buckets hold 2048 elements 12/24/22 18:08:16, large prime hashtables have 1572864 bytes 12/24/22 18:08:16, using AVX2 enabled 32k sieve core 12/24/22 18:08:16, sieve interval: 12 blocks of size 32768 12/24/22 18:08:16, polynomial A has ~ 13 factors 12/24/22 18:08:16, using multiplier of 41 12/24/22 18:08:16, using multiplier of 41 12/24/22 18:08:16, using Q2(x) polynomials for kN mod 8 = 1 12/24/22 18:08:16, using SPV correction of 21 bits, starting at offset 36 12/24/22 18:08:16, trial factoring cutoff at 100 bits 12/24/22 18:08:16, ==== sieving started (46 threads) ==== 12/24/22 18:11:12, trial division touched 219649007 sieve locations out of 2845296033792 12/24/22 18:11:12, total reports = 219649007, total surviving reports = 89757308 12/24/22 18:11:12, total blocks sieved = 86832600, avg surviving reports per block = 1.03 12/24/22 18:11:12, dlp-ecm: 1 failures, 2031496 attempts, 78769745 outside range, 8498363 prp, 1619222 useful 12/24/22 18:11:12, 119310 relations found: 29864 full + 89446 from 2047062 partial, using 3617981 polys (2203 A polys) 12/24/22 18:11:12, on average, sieving found 0.57 rels/poly and 11778.53 rels/sec 12/24/22 18:11:12, trial division touched 219649007 sieve locations out of 2845296033792 12/24/22 18:11:12, ==== post processing stage (msieve-1.38) ==== 12/24/22 18:11:12, QS elapsed time = 176.3335 seconds. 12/24/22 18:11:12, begin singleton removal with 2076926 relations 12/24/22 18:11:13, reduce to 314066 relations in 11 passes 12/24/22 18:11:15, failed to read relation 262129 12/24/22 18:11:15, recovered 314065 relations 12/24/22 18:11:15, recovered 300863 polynomials 12/24/22 18:11:16, attempting to build 119309 cycles 12/24/22 18:11:16, found 119309 cycles from 314065 relations in 6 passes 12/24/22 18:11:16, distribution of cycle lengths: 12/24/22 18:11:16, length 1 : 29864 12/24/22 18:11:16, length 2 : 20456 12/24/22 18:11:16, length 3 : 19853 12/24/22 18:11:16, length 4 : 15837 12/24/22 18:11:16, length 5 : 11889 12/24/22 18:11:16, length 6 : 8261 12/24/22 18:11:16, length 7 : 5406 12/24/22 18:11:16, length 9+: 7743 12/24/22 18:11:16, largest cycle: 23 relations 12/24/22 18:11:16, matrix is 117888 x 119309 (36.6 MB) with weight 8642465 (72.44/col) 12/24/22 18:11:16, sparse part has weight 8642465 (72.44/col) 12/24/22 18:11:16, filtering completed in 3 passes 12/24/22 18:11:16, matrix is 111766 x 111830 (34.1 MB) with weight 8038285 (71.88/col) 12/24/22 18:11:16, sparse part has weight 8038285 (71.88/col) 12/24/22 18:11:16, saving the first 48 matrix rows for later 12/24/22 18:11:17, matrix is 111718 x 111830 (29.1 MB) with weight 7101679 (63.50/col) 12/24/22 18:11:17, sparse part has weight 6511337 (58.23/col) 12/24/22 18:11:17, matrix includes 64 packed rows 12/24/22 18:11:17, using block size 44732 for processor cache size 131072 kB 12/24/22 18:11:17, commencing Lanczos iteration 12/24/22 18:11:17, memory use: 22.6 MB 12/24/22 18:11:40, lanczos halted after 1768 iterations (dim = 111716) 12/24/22 18:11:40, recovered 16 nontrivial dependencies 12/24/22 18:11:41, prp46 = 2871719799068167245100071231580902378119488873 12/24/22 18:11:41, prp54 = 867494590415136178009286127256359787751801586998601137 12/24/22 18:11:41, Lanczos elapsed time = 28.1040 seconds. 12/24/22 18:11:41, Sqrt elapsed time = 1.2970 seconds. 12/24/22 18:11:41, SIQS elapsed time = 205.7351 seconds. 12/24/22 18:11:41, 12/24/22 18:11:41, |
software ソフトウェア | Yafu |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 24, 2022 22:27:24 UTC 2022 年 12 月 25 日 (日) 7 時 27 分 24 秒 (日本時間) |
composite number 合成数 | 31349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349<149> |
prime factors 素因数 | 63372205854177861822635835583889580852809<41> 1072775499260885185785346879300061000179439<43> 461125224823722254342343309889524575730052834441205731198138075499<66> |
factorization results 素因数分解の結果 | Number: n N=31349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 ( 149 digits) SNFS difficulty: 150 digits. Divisors found: Sun Dec 25 09:16:44 2022 found factor: 1072775499260885185785346879300061000179439 Sun Dec 25 09:16:55 2022 p41 factor: 63372205854177861822635835583889580852809 Sun Dec 25 09:16:55 2022 p43 factor: 1072775499260885185785346879300061000179439 Sun Dec 25 09:16:55 2022 p66 factor: 461125224823722254342343309889524575730052834441205731198138075499 Sun Dec 25 09:16:55 2022 elapsed time 00:05:00 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.300). Factorization parameters were as follows: # # N = 79x10^149-52 = 87(148)2 # n: 31349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 m: 10000000000000000000000000000000000000 deg: 4 c4: 395 c0: -26 skew: 0.51 # Murphy_E = 1.18e-09 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved special-q in [100000, 6750000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1401100 hash collisions in 12748561 relations (12597279 unique) Msieve: matrix is 329552 x 329782 (111.1 MB) Sieving start time : 2022/12/25 08:42:55 Sieving end time : 2022/12/25 09:11:36 Total sieving time: 0hrs 28min 41secs. Total relation processing time: 0hrs 1min 53sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 23sec. Prototype def-par.txt line would be: snfs,150,4,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 05:55:19 UTC 2022 年 12 月 27 日 (火) 14 時 55 分 19 秒 (日本時間) |
composite number 合成数 | 21944444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443<155> |
prime factors 素因数 | 953609709927383448458888804840738733057304630060483683804327277<63> 23011976719611522032390972046649225402650914518456086533881608792669600606975825034212776359<92> |
factorization results 素因数分解の結果 | Number: n N=21944444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 155 digits) SNFS difficulty: 155 digits. Divisors found: Tue Dec 27 16:41:37 2022 p63 factor: 953609709927383448458888804840738733057304630060483683804327277 Tue Dec 27 16:41:37 2022 p92 factor: 23011976719611522032390972046649225402650914518456086533881608792669600606975825034212776359 Tue Dec 27 16:41:37 2022 elapsed time 00:06:58 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.296). Factorization parameters were as follows: # # N = 79x10^154-52 = 87(153)2 # n: 21944444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 100000000000000000000000000000000000000 deg: 4 c4: 1975 c0: -13 skew: 0.28 # Murphy_E = 6.653e-10 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 6950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1560304 hash collisions in 12702168 relations (12367349 unique) Msieve: matrix is 425393 x 425623 (143.6 MB) Sieving start time : 2022/12/27 15:57:31 Sieving end time : 2022/12/27 16:34:22 Total sieving time: 0hrs 36min 51secs. Total relation processing time: 0hrs 2min 36sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 32sec. Prototype def-par.txt line would be: snfs,155,4,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 28, 2022 21:31:43 UTC 2022 年 12 月 29 日 (木) 6 時 31 分 43 秒 (日本時間) |
composite number 合成数 | 527960803073217328199198918700900680099466908337404381094344719332939735434658417603685285561230194168549658163<111> |
prime factors 素因数 | 4307987556850926287906468839460197537<37> 122553929440582852034582907488777011961975179629859557536302108676308246099<75> |
factorization results 素因数分解の結果 | 527960803073217328199198918700900680099466908337404381094344719332939735434658417603685285561230194168549658163=4307987556850926287906468839460197537*122553929440582852034582907488777011961975179629859557536302108676308246099 cado polynomial n: 527960803073217328199198918700900680099466908337404381094344719332939735434658417603685285561230194168549658163 skew: 17910.827 c0: -50195362049898468970930020 c1: -1858100905743112927860 c2: 1214261847169104689 c3: -8651614981717 c4: -1907298816 c5: -20160 Y0: -3256651293948453112526 Y1: 4925570082021587 # MurphyE (Bf=6.711e+07,Bg=3.355e+07,area=4.194e+12) = 1.445e-06 # f(x) = -20160*x^5-1907298816*x^4-8651614981717*x^3+1214261847169104689*x^2-1858100905743112927860*x-50195362049898468970930020 # g(x) = 4925570082021587*x-3256651293948453112526 cado parameters (extracts) tasks.lim0 = 1400000 tasks.lim1 = 2500000 tasks.lpb0 = 25 tasks.lpb1 = 26 tasks.sieve.mfb0 = 50 tasks.sieve.mfb1 = 52 tasks.I = 12 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 4307987556850926287906468839460197537 122553929440582852034582907488777011961975179629859557536302108676308246099 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 11711.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 12011/32.030/39.397/44.940/1.096 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 9432/31.430/34.891/39.840/0.895 Info:Polynomial Selection (size optimized): Total time: 827.06 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 264.16 Info:Polynomial Selection (root optimized): Rootsieve time: 249.44 Info:Generate Factor Base: Total cpu/real time for makefb: 2.44/0.403821 Info:Generate Free Relations: Total cpu/real time for freerel: 61.41/7.72762 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 5443620 Info:Lattice Sieving: Average J: 1906.12 for 106687 special-q, max bucket fill -bkmult 1.0,1s:1.179160 Info:Lattice Sieving: Total time: 16424.7s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 12.73/19.5748 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 18.900000000000006s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 109.82/87.6798 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 74.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 90.28/81.7769 Info:Filtering - Merging: Merged matrix has 307674 rows and total weight 48138119 (156.5 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 52.81/8.06911 Info:Filtering - Merging: Total cpu/real time for replay: 9.34/7.54725 Info:Linear Algebra: Total cpu/real time for bwc: 871.94/234.22 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 141.83, iteration CPU time 0.01, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (9728 iterations) Info:Linear Algebra: Lingen CPU time 27.82, WCT time 7.57 Info:Linear Algebra: Mksol: WCT time 79.06, iteration CPU time 0.02, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (4864 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 12.37/3.13504 Info:Square Root: Total cpu/real time for sqrt: 104.69/18.4089 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 42958/4665.47 Info:root: Cleaning up computation data in /tmp/cado.cv21y4zt 4307987556850926287906468839460197537 122553929440582852034582907488777011961975179629859557536302108676308246099 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 30, 2022 05:18:24 UTC 2022 年 12 月 30 日 (金) 14 時 18 分 24 秒 (日本時間) |
composite number 合成数 | 353160053017550599089700371413258714241916802430924683767524150916219572607881684599938350383932655083935740020525539099632093580424457991851<141> |
prime factors 素因数 | 2385618037799707064305116523556017647536698788394204554983<58> 148037132274232657736451191446624796412889288225339889510530956235261137689491549597<84> |
factorization results 素因数分解の結果 | Number: n N=353160053017550599089700371413258714241916802430924683767524150916219572607881684599938350383932655083935740020525539099632093580424457991851 ( 141 digits) SNFS difficulty: 158 digits. Divisors found: Fri Dec 30 16:03:06 2022 p58 factor: 2385618037799707064305116523556017647536698788394204554983 Fri Dec 30 16:03:06 2022 p84 factor: 148037132274232657736451191446624796412889288225339889510530956235261137689491549597 Fri Dec 30 16:03:06 2022 elapsed time 00:06:07 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.347). Factorization parameters were as follows: # # N = 79x10^157-52 = 87(156)2 # n: 353160053017550599089700371413258714241916802430924683767524150916219572607881684599938350383932655083935740020525539099632093580424457991851 m: 10000000000000000000000000000000 deg: 5 c5: 1975 c0: -13 skew: 0.37 # Murphy_E = 5.87e-10 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 7100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1713953 hash collisions in 14779383 relations (13943984 unique) Msieve: matrix is 409398 x 409625 (137.1 MB) Sieving start time : 2022/12/30 15:22:14 Sieving end time : 2022/12/30 15:56:40 Total sieving time: 0hrs 34min 26secs. Total relation processing time: 0hrs 2min 22sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 22sec. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 2, 2023 15:46:48 UTC 2023 年 2 月 3 日 (金) 0 時 46 分 48 秒 (日本時間) |
composite number 合成数 | 10040169372837951927922658499215741762635193532620187972162200562320144299298121887670797057226647083303117402459606757822114182187<131> |
prime factors 素因数 | 6034477946468450856938211334461464393170791366798652499571780253<64> 1663800822855562227732345617389030384104841108458364022197907397479<67> |
factorization results 素因数分解の結果 | Number: n N=10040169372837951927922658499215741762635193532620187972162200562320144299298121887670797057226647083303117402459606757822114182187 ( 131 digits) SNFS difficulty: 160 digits. Divisors found: Fri Feb 3 02:42:20 2023 prp64 factor: 6034477946468450856938211334461464393170791366798652499571780253 Fri Feb 3 02:42:20 2023 prp67 factor: 1663800822855562227732345617389030384104841108458364022197907397479 Fri Feb 3 02:42:20 2023 elapsed time 00:16:15 (Msieve 1.44 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 79x10^159-52 = 87(158)2 # n: 10040169372837951927922658499215741762635193532620187972162200562320144299298121887670797057226647083303117402459606757822114182187 m: 50000000000000000000000000000000 deg: 5 c5: 316 c0: -65 skew: 0.73 # Murphy_E = 3.956e-10 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20100000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1192411 hash collisions in 13155154 relations (12806921 unique) Msieve: matrix is 620273 x 620499 (173.8 MB) Sieving start time: 2023/02/03 00:08:31 Sieving end time : 2023/02/03 02:25:55 Total sieving time: 2hrs 17min 24secs. Total relation processing time: 0hrs 10min 28sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 11sec. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 06:58:16 UTC 2022 年 12 月 27 日 (火) 15 時 58 分 16 秒 (日本時間) |
composite number 合成数 | 32165427035538155281001242155503797719039636437842633050456724634466386965884940928803985190548804073136526521493915522676788922976098400474387118324635639<155> |
prime factors 素因数 | 2935363452830916821527281864928458743057091817346102794927<58> 10957902676248572988857763540410374973434627756676233291784558567776577094940593403052967722502457<98> |
factorization results 素因数分解の結果 | Number: n N=32165427035538155281001242155503797719039636437842633050456724634466386965884940928803985190548804073136526521493915522676788922976098400474387118324635639 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: Tue Dec 27 17:47:55 2022 p58 factor: 2935363452830916821527281864928458743057091817346102794927 Tue Dec 27 17:47:55 2022 p98 factor: 10957902676248572988857763540410374973434627756676233291784558567776577094940593403052967722502457 Tue Dec 27 17:47:55 2022 elapsed time 00:06:49 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.290). Factorization parameters were as follows: # # N = 79x10^160-52 = 87(159)2 # n: 32165427035538155281001242155503797719039636437842633050456724634466386965884940928803985190548804073136526521493915522676788922976098400474387118324635639 m: 100000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 4.26e-10 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14550000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1552513 hash collisions in 13670735 relations (12922734 unique) Msieve: matrix is 468238 x 468473 (160.1 MB) Sieving start time : 2022/12/27 16:46:56 Sieving end time : 2022/12/27 17:40:32 Total sieving time: 0hrs 53min 36secs. Total relation processing time: 0hrs 3min 13sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 27sec. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 4, 2023 23:06:53 UTC 2023 年 2 月 5 日 (日) 8 時 6 分 53 秒 (日本時間) |
composite number 合成数 | 306200661147653203376948835705104981309545092972014110758534317669602568068186103038750091152065974304252388583043585451<120> |
prime factors 素因数 | 274024640972221332604370145958350745789609607<45> 1117420170906066971713380832458754858435053241654006039927870813154021756093<76> |
factorization results 素因数分解の結果 | Number: n N=306200661147653203376948835705104981309545092972014110758534317669602568068186103038750091152065974304252388583043585451 ( 120 digits) SNFS difficulty: 163 digits. Divisors found: Sun Feb 5 10:01:52 2023 prp45 factor: 274024640972221332604370145958350745789609607 Sun Feb 5 10:01:52 2023 prp76 factor: 1117420170906066971713380832458754858435053241654006039927870813154021756093 Sun Feb 5 10:01:52 2023 elapsed time 00:15:53 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.100). Factorization parameters were as follows: # # N = 79x10^162-52 = 87(161)2 # n: 306200661147653203376948835705104981309545092972014110758534317669602568068186103038750091152065974304252388583043585451 m: 100000000000000000000000000000000 deg: 5 c5: 1975 c0: -13 skew: 0.37 # Murphy_E = 3.757e-10 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 20250000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1027654 hash collisions in 12107333 relations (11858753 unique) Msieve: matrix is 645010 x 645236 (181.8 MB) Sieving start time: 2023/02/05 07:43:56 Sieving end time : 2023/02/05 09:45:43 Total sieving time: 2hrs 1min 47secs. Total relation processing time: 0hrs 11min 10sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 43sec. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 27, 2022 08:46:40 UTC 2022 年 12 月 27 日 (火) 17 時 46 分 40 秒 (日本時間) |
composite number 合成数 | 219444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443<165> |
prime factors 素因数 | 25232946608169854850227508028387485342867462024608815925729<59> 8696742709129076460736675955971265111746949774945785746669357037043499355827214437187557575935796236601467<106> |
factorization results 素因数分解の結果 | Number: n N=219444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 165 digits) SNFS difficulty: 165 digits. Divisors found: Tue Dec 27 19:40:30 2022 p59 factor: 25232946608169854850227508028387485342867462024608815925729 Tue Dec 27 19:40:30 2022 p106 factor: 8696742709129076460736675955971265111746949774945785746669357037043499355827214437187557575935796236601467 Tue Dec 27 19:40:30 2022 elapsed time 00:09:49 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: # # N = 79x10^164-52 = 87(163)2 # n: 219444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 500000000000000000000000000000000 deg: 5 c5: 316 c0: -65 skew: 0.73 # Murphy_E = 2.525e-10 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1783457 hash collisions in 13876072 relations (12854350 unique) Msieve: matrix is 610092 x 610318 (209.1 MB) Sieving start time : 2022/12/27 17:53:21 Sieving end time : 2022/12/27 19:29:56 Total sieving time: 1hrs 36min 35secs. Total relation processing time: 0hrs 5min 18sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 13sec. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 28, 2022 22:54:34 UTC 2022 年 12 月 29 日 (木) 7 時 54 分 34 秒 (日本時間) |
composite number 合成数 | 119065827504717760460344532740541090100138519071883070925930628664393392642878508136454141125189164637514776987582727752551196307284506534708177222108043429<156> |
prime factors 素因数 | 171468921737890309230979998528235377957443796007818455946293739589741087<72> 694387217799872675421784601814014421445163311284734330792411791980061377503222983867<84> |
factorization results 素因数分解の結果 | Number: n N=119065827504717760460344532740541090100138519071883070925930628664393392642878508136454141125189164637514776987582727752551196307284506534708177222108043429 ( 156 digits) SNFS difficulty: 166 digits. Divisors found: Thu Dec 29 09:50:05 2022 p72 factor: 171468921737890309230979998528235377957443796007818455946293739589741087 Thu Dec 29 09:50:05 2022 p84 factor: 694387217799872675421784601814014421445163311284734330792411791980061377503222983867 Thu Dec 29 09:50:05 2022 elapsed time 00:09:28 (Msieve 1.54 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: # # N = 79x10^165-52 = 87(164)2 # n: 119065827504717760460344532740541090100138519071883070925930628664393392642878508136454141125189164637514776987582727752551196307284506534708177222108043429 m: 1000000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 2.716e-10 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 7700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1455766 hash collisions in 12536377 relations (11796100 unique) Msieve: matrix is 608253 x 608479 (209.0 MB) Sieving start time : 2022/12/29 08:55:47 Sieving end time : 2022/12/29 09:40:18 Total sieving time: 0hrs 44min 31secs. Total relation processing time: 0hrs 5min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 13sec. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 12:21:16 UTC 2022 年 12 月 31 日 (土) 21 時 21 分 16 秒 (日本時間) |
composite number 合成数 | 5059314480278054557596136332324098410529074448788194944348179841931156536598596553896657528303872969932217791566997409291858766527664777475039062301613<151> |
prime factors 素因数 | 2105696830081280853801984938903302228422595331<46> 92475484732160691073657115914548961849076623549<47> 25981798817806132631389176286691398242904331973272696736827<59> |
factorization results 素因数分解の結果 | Number: n N=5059314480278054557596136332324098410529074448788194944348179841931156536598596553896657528303872969932217791566997409291858766527664777475039062301613 ( 151 digits) SNFS difficulty: 167 digits. Divisors found: Sat Dec 31 22:42:47 2022 found factor: 92475484732160691073657115914548961849076623549 Sat Dec 31 22:44:14 2022 p46 factor: 2105696830081280853801984938903302228422595331 Sat Dec 31 22:44:14 2022 p47 factor: 92475484732160691073657115914548961849076623549 Sat Dec 31 22:44:14 2022 p59 factor: 25981798817806132631389176286691398242904331973272696736827 Sat Dec 31 22:44:14 2022 elapsed time 00:11:53 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.334). Factorization parameters were as follows: # # N = 79x10^166-52 = 87(165)2 # n: 5059314480278054557596136332324098410529074448788194944348179841931156536598596553896657528303872969932217791566997409291858766527664777475039062301613 m: 1000000000000000000000000000000000 deg: 5 c5: 395 c0: -26 skew: 0.58 # Murphy_E = 2.442e-10 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved special-q in [100000, 14950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1273846 hash collisions in 12208589 relations (11666567 unique) Msieve: matrix is 689065 x 689290 (238.1 MB) Sieving start time : 2022/12/31 21:12:33 Sieving end time : 2022/12/31 22:32:05 Total sieving time: 1hrs 19min 32secs. Total relation processing time: 0hrs 6min 44sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 10sec. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 31, 2022 15:31:06 UTC 2023 年 1 月 1 日 (日) 0 時 31 分 6 秒 (日本時間) |
composite number 合成数 | 201805791288932015347480934786066940341387909864429609172045118347852203057492494591261489643323903483084881208408856891876287769232420191<138> |
prime factors 素因数 | 4294554225601982572715351168472615191<37> 46991091668110023011855010498051167942261662805700764003548736482922309873693091198760898233337355001<101> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 201805791288932015347480934786066940341387909864429609172045118347852203057492494591261489643323903483084881208408856891876287769232420191 (138 digits) Using B1=27570000, B2=144286522396, polynomial Dickson(12), sigma=1:3580302005 Step 1 took 56164ms Step 2 took 22226ms ********** Factor found in step 2: 4294554225601982572715351168472615191 Found prime factor of 37 digits: 4294554225601982572715351168472615191 Prime cofactor 46991091668110023011855010498051167942261662805700764003548736482922309873693091198760898233337355001 has 101 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 3, 2023 11:07:20 UTC 2023 年 1 月 3 日 (火) 20 時 7 分 20 秒 (日本時間) |
composite number 合成数 | 394317415710499159013525906654298078829661771251529564729430528860428940265255425688163497781012384760728337514804511203334198360255669377893<141> |
prime factors 素因数 | 2366402017721249478441817715205454355551027902466806247522397<61> 166631625885026527913088079129767917959698716611077008771466838332427801181222569<81> |
factorization results 素因数分解の結果 | Number: n N=394317415710499159013525906654298078829661771251529564729430528860428940265255425688163497781012384760728337514804511203334198360255669377893 ( 141 digits) SNFS difficulty: 169 digits. Divisors found: Tue Jan 3 22:02:51 2023 p61 factor: 2366402017721249478441817715205454355551027902466806247522397 Tue Jan 3 22:02:51 2023 p81 factor: 166631625885026527913088079129767917959698716611077008771466838332427801181222569 Tue Jan 3 22:02:51 2023 elapsed time 00:13:38 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.295). Factorization parameters were as follows: # # N = 79x10^168-52 = 87(167)2 # n: 394317415710499159013525906654298078829661771251529564729430528860428940265255425688163497781012384760728337514804511203334198360255669377893 m: 1000000000000000000000000000000000 deg: 5 c5: 19750 c0: -13 skew: 0.23 # Murphy_E = 2.082e-10 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 7900000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1748244 hash collisions in 14262358 relations (13325926 unique) Msieve: matrix is 646711 x 646938 (224.0 MB) Sieving start time : 2023/01/03 20:55:25 Sieving end time : 2023/01/03 21:48:53 Total sieving time: 0hrs 53min 28secs. Total relation processing time: 0hrs 6min 4sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 6sec. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 11:49:45 UTC 2023 年 1 月 1 日 (日) 20 時 49 分 45 秒 (日本時間) |
composite number 合成数 | 6681954343300060210154437215176160455988311634691112658437170161454630558307633736701532416171792680827430468553095019629141999965226236714316830253427589823463<160> |
prime factors 素因数 | 7394491158769294780000143510385781205645963580466102814292811736224273347320257<79> 903639506739524463519253902400065412566181962717054676107929854442245113329921959<81> |
factorization results 素因数分解の結果 | Number: n N=6681954343300060210154437215176160455988311634691112658437170161454630558307633736701532416171792680827430468553095019629141999965226236714316830253427589823463 ( 160 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jan 1 22:44:56 2023 p79 factor: 7394491158769294780000143510385781205645963580466102814292811736224273347320257 Sun Jan 1 22:44:56 2023 p81 factor: 903639506739524463519253902400065412566181962717054676107929854442245113329921959 Sun Jan 1 22:44:56 2023 elapsed time 00:14:07 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.279). Factorization parameters were as follows: # # N = 79x10^170-52 = 87(169)2 # n: 6681954343300060210154437215176160455988311634691112658437170161454630558307633736701532416171792680827430468553095019629141999965226236714316830253427589823463 m: 10000000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 1.723e-10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 8150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1432131 hash collisions in 12177025 relations (11434151 unique) Msieve: matrix is 822045 x 822270 (284.4 MB) Sieving start time : 2023/01/01 21:34:36 Sieving end time : 2023/01/01 22:30:30 Total sieving time: 0hrs 55min 54secs. Total relation processing time: 0hrs 10min 3sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 0min 58sec. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 22, 2023 17:02:24 UTC 2023 年 1 月 23 日 (月) 2 時 2 分 24 秒 (日本時間) |
composite number 合成数 | 36245044165964617095553597838455461303536601165675692398249600213809917130683928466477646790347437630655011930017157407076480602930514247<137> |
prime factors 素因数 | 520533631308820549953863825365960180503272648419<48> 69630552160156721331734276329435011509068336038274806772319205144351889818241446102779213<89> |
factorization results 素因数分解の結果 | Number: n N=36245044165964617095553597838455461303536601165675692398249600213809917130683928466477646790347437630655011930017157407076480602930514247 ( 137 digits) SNFS difficulty: 174 digits. Divisors found: Mon Jan 23 03:58:53 2023 prp48 factor: 520533631308820549953863825365960180503272648419 Mon Jan 23 03:58:53 2023 prp89 factor: 69630552160156721331734276329435011509068336038274806772319205144351889818241446102779213 Mon Jan 23 03:58:53 2023 elapsed time 00:36:43 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: n: 36245044165964617095553597838455461303536601165675692398249600213809917130683928466477646790347437630655011930017157407076480602930514247 m: 10000000000000000000000000000000000 deg: 5 c5: 19750 c0: -13 skew: 0.23 # Murphy_E = 1.319e-10 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 35600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1221644 hash collisions in 12618705 relations (12182063 unique) Msieve: matrix is 1087584 x 1087811 (308.5 MB) Sieving start time: 2023/01/22 22:54:19 Sieving end time : 2023/01/23 03:22:00 Total sieving time: 4hrs 27min 41secs. Total relation processing time: 0hrs 32min 27sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 29sec. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 2, 2023 16:28:55 UTC 2023 年 1 月 3 日 (火) 1 時 28 分 55 秒 (日本時間) |
composite number 合成数 | 404682621210720706867375357341093364880414967220032998978507518453255539554704058928945315715489307367746988224153767575469439345536328051879359806025369<153> |
prime factors 素因数 | 61051742155741567048208260414457864312774034865506682345126929391<65> 6628518809150192640232952833445791448745224611207340211519394063928807273291021025914359<88> |
factorization results 素因数分解の結果 | Number: n N=404682621210720706867375357341093364880414967220032998978507518453255539554704058928945315715489307367746988224153767575469439345536328051879359806025369 ( 153 digits) SNFS difficulty: 176 digits. Divisors found: Tue Jan 3 03:07:05 2023 p65 factor: 61051742155741567048208260414457864312774034865506682345126929391 Tue Jan 3 03:07:05 2023 p88 factor: 6628518809150192640232952833445791448745224611207340211519394063928807273291021025914359 Tue Jan 3 03:07:05 2023 elapsed time 00:23:22 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.351). Factorization parameters were as follows: # # N = 79x10^175-52 = 87(174)2 # n: 404682621210720706867375357341093364880414967220032998978507518453255539554704058928945315715489307367746988224153767575469439345536328051879359806025369 m: 100000000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 1.088e-10 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1561462 hash collisions in 11820499 relations (10880473 unique) Msieve: matrix is 1071256 x 1071482 (373.2 MB) Sieving start time : 2023/01/03 01:22:18 Sieving end time : 2023/01/03 02:43:26 Total sieving time: 1hrs 21min 8secs. Total relation processing time: 0hrs 18min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 23sec. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 1, 2023 18:55:16 UTC 2023 年 1 月 2 日 (月) 3 時 55 分 16 秒 (日本時間) |
composite number 合成数 | 42144122228623861041760023899451592941126261656317350575080553955145850671105136248212875829545697031773467340972622324648443334827049057892153724686853167744275867955529949<173> |
prime factors 素因数 | 8923655355670156623166884853688019630304693904687701541<55> 4722742032147753670099866127093427199278437253023183078076244973935796353700366178179907604857259550208533810680460889<118> |
factorization results 素因数分解の結果 | Number: n N=42144122228623861041760023899451592941126261656317350575080553955145850671105136248212875829545697031773467340972622324648443334827049057892153724686853167744275867955529949 ( 173 digits) SNFS difficulty: 177 digits. Divisors found: Mon Jan 2 00:55:52 2023 p55 factor: 8923655355670156623166884853688019630304693904687701541 Mon Jan 2 00:55:52 2023 p118 factor: 4722742032147753670099866127093427199278437253023183078076244973935796353700366178179907604857259550208533810680460889 Mon Jan 2 00:55:52 2023 elapsed time 00:31:02 (Msieve 1.54 - dependency 5) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.329). Factorization parameters were as follows: # # N = 79x10^176-52 = 87(175)2 # n: 42144122228623861041760023899451592941126261656317350575080553955145850671105136248212875829545697031773467340972622324648443334827049057892153724686853167744275867955529949 m: 100000000000000000000000000000000000 deg: 5 c5: 395 c0: -26 skew: 0.58 # Murphy_E = 9.775e-11 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15800000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1587042 hash collisions in 11854510 relations (10884696 unique) Msieve: matrix is 1112112 x 1112342 (388.3 MB) Sieving start time : 2023/01/01 22:57:45 Sieving end time : 2023/01/02 00:24:31 Total sieving time: 1hrs 26min 46secs. Total relation processing time: 0hrs 20min 28sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 17sec. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 4, 2023 18:21:13 UTC 2023 年 1 月 5 日 (木) 3 時 21 分 13 秒 (日本時間) |
composite number 合成数 | 20947345159088632579719022451611667152820077494295075395927918617703720565521087966543235469426181461794052844645071010190217347351814298830263230501500772278766637244609<170> |
prime factors 素因数 | 10971938646764744940035525354855125822984167520656896176579<59> 1909174470754564321828642797902387950600985519863926583968625937504172380301981878726243836267085875796077942571<112> |
factorization results 素因数分解の結果 | Number: n N=20947345159088632579719022451611667152820077494295075395927918617703720565521087966543235469426181461794052844645071010190217347351814298830263230501500772278766637244609 ( 170 digits) SNFS difficulty: 178 digits. Divisors found: Thu Jan 5 04:52:47 2023 p59 factor: 10971938646764744940035525354855125822984167520656896176579 Thu Jan 5 04:52:47 2023 p112 factor: 1909174470754564321828642797902387950600985519863926583968625937504172380301981878726243836267085875796077942571 Thu Jan 5 04:52:47 2023 elapsed time 00:28:30 (Msieve 1.54 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.323). Factorization parameters were as follows: # # N = 79x10^177-52 = 87(176)2 # n: 20947345159088632579719022451611667152820077494295075395927918617703720565521087966543235469426181461794052844645071010190217347351814298830263230501500772278766637244609 m: 100000000000000000000000000000000000 deg: 5 c5: 1975 c0: -13 skew: 0.37 # Murphy_E = 9.571e-11 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 15850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1566001 hash collisions in 11827087 relations (10881589 unique) Msieve: matrix is 1109805 x 1110031 (387.7 MB) Sieving start time : 2023/01/05 02:58:27 Sieving end time : 2023/01/05 04:23:56 Total sieving time: 1hrs 25min 29secs. Total relation processing time: 0hrs 20min 34sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 38sec. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,6100000,6100000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 5, 2023 04:47:46 UTC 2023 年 1 月 5 日 (木) 13 時 47 分 46 秒 (日本時間) |
composite number 合成数 | 9797628436733458230145651864125140243938760618620759005948713005610239777761034066860650396540446362642821453358743849852852899266539879589205607562188728858795499<163> |
prime factors 素因数 | 3031553700814311213044204599581304316469089784072907<52> 3231883517056517667146647824932186535944103592653190176306588512798924790700900166934116936255540849550126511457<112> |
factorization results 素因数分解の結果 | Number: n N=9797628436733458230145651864125140243938760618620759005948713005610239777761034066860650396540446362642821453358743849852852899266539879589205607562188728858795499 ( 163 digits) SNFS difficulty: 180 digits. Divisors found: Thu Jan 5 15:42:43 2023 p52 factor: 3031553700814311213044204599581304316469089784072907 Thu Jan 5 15:42:43 2023 p112 factor: 3231883517056517667146647824932186535944103592653190176306588512798924790700900166934116936255540849550126511457 Thu Jan 5 15:42:43 2023 elapsed time 00:17:27 (Msieve 1.54 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.296). Factorization parameters were as follows: # # N = 79x10^179-52 = 87(178)2 # n: 9797628436733458230145651864125140243938760618620759005948713005610239777761034066860650396540446362642821453358743849852852899266539879589205607562188728858795499 m: 500000000000000000000000000000000000 deg: 5 c5: 316 c0: -65 skew: 0.73 # Murphy_E = 6.384e-11 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved special-q in [100000, 16200000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1959432 hash collisions in 15145930 relations (14033110 unique) Msieve: matrix is 904731 x 904956 (312.3 MB) Sieving start time : 2023/01/05 12:00:46 Sieving end time : 2023/01/05 15:24:49 Total sieving time: 3hrs 24min 3secs. Total relation processing time: 0hrs 12min 29sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 1min 2sec. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,6800000,6800000,27,27,52,52,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 6, 2023 18:57:24 UTC 2023 年 1 月 7 日 (土) 3 時 57 分 24 秒 (日本時間) |
composite number 合成数 | 178773950114488321022548598735489191795268314671995721963901469860831935905002811203214378222475879012194976438561139389527753963734950410239<141> |
prime factors 素因数 | 11025116072456649631453650078499<32> 16215153558438080916208199577864344587500089075536704289692298265057314360503885247634634234415928799343078261<110> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.0, --enable-asm-redc] [ECM] Input number is 178773950114488321022548598735489191795268314671995721963901469860831935905002811203214378222475879012194976438561139389527753963734950410239 (141 digits) Using B1=25020000, B2=96190324246, polynomial Dickson(12), sigma=1:3835192650 Step 1 took 49231ms Step 2 took 17233ms ********** Factor found in step 2: 11025116072456649631453650078499 Found prime factor of 32 digits: 11025116072456649631453650078499 Prime cofactor 16215153558438080916208199577864344587500089075536704289692298265057314360503885247634634234415928799343078261 has 110 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | January 19, 2023 16:06:56 UTC 2023 年 1 月 20 日 (金) 1 時 6 分 56 秒 (日本時間) |
composite number 合成数 | 588683425643144316838256246248799440969689912524892978888916782804800285581611723316351428017080849236881706477989115558011395103<129> |
prime factors 素因数 | 4288504644756637254772477013674398131789692615765660910867<58> 137270091653719251872406227516178402259062654638763620681269869607651909<72> |
factorization results 素因数分解の結果 | 588683425643144316838256246248799440969689912524892978888916782804800285581611723316351428017080849236881706477989115558011395103=4288504644756637254772477013674398131789692615765660910867*137270091653719251872406227516178402259062654638763620681269869607651909 cado polynomial n: 588683425643144316838256246248799440969689912524892978888916782804800285581611723316351428017080849236881706477989115558011395103 skew: 55581.426 c0: 73409447760626243649108570294 c1: 2999548184304036750207082 c2: -271340582038342152867 c3: -1663410052814269 c4: 34269426090 c5: 193680 Y0: -7113093144159891016073102 Y1: 60776323898216711 # MurphyE (Bf=2.684e+08,Bg=2.684e+08,area=9.547e+13) = 5.239e-07 # f(x) = 193680*x^5+34269426090*x^4-1663410052814269*x^3-271340582038342152867*x^2+2999548184304036750207082*x+73409447760626243649108570294 # g(x) = 60776323898216711*x-7113093144159891016073102 cado parameters (extracts) tasks.lim0 = 13124945 tasks.lim1 = 44217255 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.I = 14 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 4288504644756637254772477013674398131789692615765660910867 137270091653719251872406227516178402259062654638763620681269869607651909 Info:Square Root: Total cpu/real time for sqrt: 772.83/235.251 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 38210.8 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 38613/38.300/45.955/50.120/0.848 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 30635/37.700/41.223/46.760/0.953 Info:Polynomial Selection (size optimized): Total time: 4956.07 Info:Quadratic Characters: Total cpu/real time for characters: 71.38/30.7681 Info:Generate Factor Base: Total cpu/real time for makefb: 39.04/10.7635 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 307.89/290.841 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 265.1s Info:Square Root: Total cpu/real time for sqrt: 772.83/235.251 Info:Generate Free Relations: Total cpu/real time for freerel: 256.12/65.3096 Info:Filtering - Singleton removal: Total cpu/real time for purge: 152.01/159.115 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 101.9/104.079 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 103.9s Info:Filtering - Merging: Merged matrix has 1789797 rows and total weight 306447389 (171.2 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 458.71/127.669 Info:Filtering - Merging: Total cpu/real time for replay: 71.85/61.6741 Info:Linear Algebra: Total cpu/real time for bwc: 52579.1/13525.7 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 33655.02, WCT time 8608.69, iteration CPU time 0.14, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (56064 iterations) Info:Linear Algebra: Lingen CPU time 349.85, WCT time 88.86 Info:Linear Algebra: Mksol: CPU time 18240.94, WCT time 4699.18, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (28160 iterations) Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 23283951 Info:Lattice Sieving: Average J: 7712 for 55695 special-q, max bucket fill -bkmult 1.0,1s:1.070670 Info:Lattice Sieving: Total time: 79203.4s Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 5273.28 Info:Polynomial Selection (root optimized): Rootsieve time: 5270.75 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 214311/57534.6 Info:root: Cleaning up computation data in /tmp/cado.2_ouo32l 4288504644756637254772477013674398131789692615765660910867 137270091653719251872406227516178402259062654638763620681269869607651909 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 9, 2023 15:24:11 UTC 2023 年 4 月 10 日 (月) 0 時 24 分 11 秒 (日本時間) |
composite number 合成数 | 96870902159978539219267408093841637957830255357846743436075091491947299890973176541288340860358469457412516204744199468316367538480170119756625956089923<152> |
prime factors 素因数 | 64479964400052476995961744174594709175624915921805236693<56> 1502341123499436995194686644900851361035598067925649442316936759897804504312187433202405351069111<97> |
factorization results 素因数分解の結果 | Number: n N=96870902159978539219267408093841637957830255357846743436075091491947299890973176541288340860358469457412516204744199468316367538480170119756625956089923 ( 152 digits) SNFS difficulty: 185 digits. Divisors found: Mon Apr 10 01:10:14 2023 prp56 factor: 64479964400052476995961744174594709175624915921805236693 Mon Apr 10 01:10:14 2023 prp97 factor: 1502341123499436995194686644900851361035598067925649442316936759897804504312187433202405351069111 Mon Apr 10 01:10:14 2023 elapsed time 01:09:46 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.087). Factorization parameters were as follows: # # N = 79x10^184-52 = 87(183)2 # n: 96870902159978539219267408093841637957830255357846743436075091491947299890973176541288340860358469457412516204744199468316367538480170119756625956089923 m: 5000000000000000000000000000000000000 deg: 5 c5: 316 c0: -65 skew: 0.73 # Murphy_E = 4e-11 type: snfs lss: 1 rlim: 8800000 alim: 8800000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved special-q in [100000, 15600000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2546479 hash collisions in 24145013 relations (23012148 unique) Msieve: matrix is 1477971 x 1478196 (417.7 MB) Sieving start time: 2023/04/09 17:52:42 Sieving end time : 2023/04/10 00:00:04 Total sieving time: 6hrs 7min 22secs. Total relation processing time: 1hrs 2min 6sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 7sec. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8800000,8800000,28,28,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | February 16, 2023 10:38:16 UTC 2023 年 2 月 16 日 (木) 19 時 38 分 16 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | December 27, 2022 05:14:38 UTC 2022 年 12 月 27 日 (火) 14 時 14 分 38 秒 (日本時間) |
composite number 合成数 | 47610866819357668402474167061363732878540193223077483603370040894605360894390168302642046550903771406547002413651946073607211<125> |
prime factors 素因数 | 40732767922068683917651796465889171426832343650935772237<56> 1168859108972127724772176930899502918344377630922555128187222437756503<70> |
factorization results 素因数分解の結果 | 47610866819357668402474167061363732878540193223077483603370040894605360894390168302642046550903771406547002413651946073607211=40732767922068683917651796465889171426832343650935772237*1168859108972127724772176930899502918344377630922555128187222437756503 cado polynomial n: 47610866819357668402474167061363732878540193223077483603370040894605360894390168302642046550903771406547002413651946073607211 skew: 98051.719 c0: -41808274957503593480577814248 c1: -5612373152659550490597698 c2: -354192398178114511534 c3: 1171953225323509 c4: 12294951198 c5: 47880 Y0: -997857843383065869065425 Y1: 19774838437842253 # MurphyE (Bf=1.342e+08,Bg=1.342e+08,area=1.236e+14) = 2.607e-07 # f(x) = 47880*x^5+12294951198*x^4+1171953225323509*x^3-354192398178114511534*x^2-5612373152659550490597698*x-41808274957503593480577814248 # g(x) = 19774838437842253*x-997857843383065869065425 cado parameters (extracts) tasks.lim0 = 2377918 tasks.lim1 = 9209388 tasks.lpb0 = 27 tasks.lpb1 = 27 tasks.sieve.mfb0 = 57 tasks.sieve.mfb1 = 53 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 1168859108972127724772176930899502918344377630922555128187222437756503 40732767922068683917651796465889171426832343650935772237 Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 19925.9 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 20324/36.850/44.428/48.490/0.857 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 16097/36.480/39.786/45.200/0.938 Info:Polynomial Selection (size optimized): Total time: 2695.77 Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 2647.38 Info:Polynomial Selection (root optimized): Rootsieve time: 2598.42 Info:Generate Factor Base: Total cpu/real time for makefb: 12.98/1.92924 Info:Generate Free Relations: Total cpu/real time for freerel: 131.15/16.5031 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 11753359 Info:Lattice Sieving: Average J: 3785.13 for 199323 special-q, max bucket fill -bkmult 1.0,1s:1.153050 Info:Lattice Sieving: Total time: 90699.7s Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 30.65/72.4511 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 72.2s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 175.4/145.865 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 134.9s Info:Filtering - Singleton removal: Total cpu/real time for purge: 100/100.277 Info:Filtering - Merging: Merged matrix has 783942 rows and total weight 134575539 (171.7 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 155.26/23.4822 Info:Filtering - Merging: Total cpu/real time for replay: 25.92/21.1681 Info:Linear Algebra: Total cpu/real time for bwc: 6280.67/1655.01 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: WCT time 1042.9, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (24576 iterations) Info:Linear Algebra: Lingen CPU time 78.48, WCT time 21.37 Info:Linear Algebra: Mksol: WCT time 564.88, iteration CPU time 0.04, COMM 0.0, cpu-wait 0.0, comm-wait 0.0 (12288 iterations) Info:Quadratic Characters: Total cpu/real time for characters: 38.16/9.31125 Info:Square Root: Total cpu/real time for sqrt: 956.2/152.809 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire factorization: 208800/25583.4 Info:root: Cleaning up computation data in /tmp/cado.lhqoxjcr 1168859108972127724772176930899502918344377630922555128187222437756503 40732767922068683917651796465889171426832343650935772237 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] GenuineIntel Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz [Family 6 Model 58 Stepping 9] (4 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 24, 2022 09:39:35 UTC 2022 年 12 月 24 日 (土) 18 時 39 分 35 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | June 10, 2023 12:23:49 UTC 2023 年 6 月 10 日 (土) 21 時 23 分 49 秒 (日本時間) |
composite number 合成数 | 3344911465710263251197218337875053971185390637043324548032346112369791284054916435039514651454178529745797468460848440591763523878687987921<139> |
prime factors 素因数 | 769786322488027114265998233737604063751703147891<48> 4345246684689293623087273355085200273517255254599088654214785812909377581421413872433596331<91> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.4 [configured with GMP 6.2.1, --enable-asm-redc] [ECM] Input number is 3344911465710263251197218337875053971185390637043324548032346112369791284054916435039514651454178529745797468460848440591763523878687987921 (139 digits) Using B1=52820000, B2=288594456166, polynomial Dickson(12), sigma=1:3737011006 Step 1 took 96732ms Step 2 took 30754ms ********** Factor found in step 2: 769786322488027114265998233737604063751703147891 Found prime factor of 48 digits: 769786322488027114265998233737604063751703147891 Prime cofactor 4345246684689293623087273355085200273517255254599088654214785812909377581421413872433596331 has 91 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | January 13, 2023 17:06:31 UTC 2023 年 1 月 14 日 (土) 2 時 6 分 31 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 24, 2022 10:12:31 UTC 2022 年 12 月 24 日 (土) 19 時 12 分 31 秒 (日本時間) |
composite number 合成数 | 7726195311191933493471058361763119876995374527773877615730976562847023492904148246089821512817556925281096252117320796473928619<127> |
prime factors 素因数 | 28348197344984398366507572743177880877<38> 272546265188143153178343787098190963771058502448470061693199646192854064000524953939176247<90> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:980657191 Step 1 took 4375ms Step 2 took 2437ms ********** Factor found in step 2: 28348197344984398366507572743177880877 Found prime factor of 38 digits: 28348197344984398366507572743177880877 Prime cofactor 272546265188143153178343787098190963771058502448470061693199646192854064000524953939176247 has 90 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | January 27, 2023 17:23:00 UTC 2023 年 1 月 28 日 (土) 2 時 23 分 0 秒 (日本時間) |
composite number 合成数 | 123675933721652861913975161559605948974139942993096139819035717395459334673443873224803616702863808730300831005941850442885723140987661696882057879668116817380377<162> |
prime factors 素因数 | 5685811295723020916322908774187826414998760562353662636499772426520704954621141<79> 21751677516044954162476109151392348243918467682601502047148972671806521716290591797<83> |
factorization results 素因数分解の結果 | Number: n N=123675933721652861913975161559605948974139942993096139819035717395459334673443873224803616702863808730300831005941850442885723140987661696882057879668116817380377 ( 162 digits) SNFS difficulty: 192 digits. Divisors found: Fri Jan 27 15:22:22 2023 prp79 factor: 5685811295723020916322908774187826414998760562353662636499772426520704954621141 Fri Jan 27 15:22:22 2023 prp83 factor: 21751677516044954162476109151392348243918467682601502047148972671806521716290591797 Fri Jan 27 15:22:22 2023 elapsed time 02:19:01 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.103). Factorization parameters were as follows: # # N = 79x10^191-52 = 87(190)2 # n: 123675933721652861913975161559605948974139942993096139819035717395459334673443873224803616702863808730300831005941850442885723140987661696882057879668116817380377 m: 100000000000000000000000000000000000000 deg: 5 c5: 395 c0: -26 skew: 0.58 # Murphy_E = 2.394e-11 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved special-q in [100000, 52700000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1389606 hash collisions in 13390472 relations (12819463 unique) Msieve: matrix is 2107725 x 2107952 (598.3 MB) Sieving start time: 2023/01/26 15:08:08 Sieving end time : 2023/01/27 13:03:09 Total sieving time: 21hrs 55min 1secs. Total relation processing time: 2hrs 12min 23sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 2min 53sec. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,11000000,11000000,27,27,54,54,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 9, 2023 10:05:29 UTC 2023 年 1 月 9 日 (月) 19 時 5 分 29 秒 (日本時間) |
2350 | Ignacio Santos | January 20, 2023 09:36:38 UTC 2023 年 1 月 20 日 (金) 18 時 36 分 38 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 18, 2023 22:05:37 UTC 2023 年 2 月 19 日 (日) 7 時 5 分 37 秒 (日本時間) |
composite number 合成数 | 116661644958198029570494315858142319607753065708858236001822667097298187081380862134096018996304889324233505659132908885024526667186749462686982181403484967465180020372633<171> |
prime factors 素因数 | 348390579450132683062003660274948587179602607664313191235402012787792998044603921<81> 334858781607487577207540992966025015597250602117334640265207770898268507379387007839358473<90> |
factorization results 素因数分解の結果 | Number: n N=116661644958198029570494315858142319607753065708858236001822667097298187081380862134096018996304889324233505659132908885024526667186749462686982181403484967465180020372633 ( 171 digits) SNFS difficulty: 194 digits. Divisors found: Sun Feb 19 08:56:14 2023 prp81 factor: 348390579450132683062003660274948587179602607664313191235402012787792998044603921 Sun Feb 19 08:56:14 2023 prp90 factor: 334858781607487577207540992966025015597250602117334640265207770898268507379387007839358473 Sun Feb 19 08:56:14 2023 elapsed time 01:53:52 (Msieve 1.44 - dependency 4) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.102). Factorization parameters were as follows: # # N = 79x10^193-52 = 87(192)2 # n: 116661644958198029570494315858142319607753065708858236001822667097298187081380862134096018996304889324233505659132908885024526667186749462686982181403484967465180020372633 m: 100000000000000000000000000000000000000 deg: 5 c5: 19750 c0: -13 skew: 0.23 # Murphy_E = 2.033e-11 type: snfs lss: 1 rlim: 11600000 alim: 11600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 11600000/11600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 31400000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2060390 hash collisions in 14779524 relations (13489335 unique) Msieve: matrix is 1820842 x 1821067 (517.2 MB) Sieving start time: 2023/02/18 18:44:28 Sieving end time : 2023/02/19 07:02:02 Total sieving time: 12hrs 17min 34secs. Total relation processing time: 1hrs 39min 2sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 54sec. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,11600000,11600000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 9, 2023 10:05:36 UTC 2023 年 1 月 9 日 (月) 19 時 5 分 36 秒 (日本時間) |
2350 | Ignacio Santos | January 25, 2023 10:46:16 UTC 2023 年 1 月 25 日 (水) 19 時 46 分 16 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 10, 2023 04:45:34 UTC 2023 年 1 月 10 日 (火) 13 時 45 分 34 秒 (日本時間) |
composite number 合成数 | 2937879609653411856801036072176880178354015120702575507853286147981983660804790601991182341854226962647907232847030361019245847018218279370606106326093619994876010703288944025228362088637<187> |
prime factors 素因数 | 245665442255052160130109787213900987<36> 11958863984635159896920570863854129285646381445912175938371131496495337486957273182609551499682729469023919761163484011988238127228648260292206446750951<152> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3965785672 Step 1 took 9896ms Step 2 took 4582ms ********** Factor found in step 2: 245665442255052160130109787213900987 Found prime factor of 36 digits: 245665442255052160130109787213900987 Prime cofactor 11958863984635159896920570863854129285646381445912175938371131496495337486957273182609551499682729469023919761163484011988238127228648260292206446750951 has 152 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 9, 2023 10:06:40 UTC 2023 年 1 月 9 日 (月) 19 時 6 分 40 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | February 10, 2023 16:23:05 UTC 2023 年 2 月 11 日 (土) 1 時 23 分 5 秒 (日本時間) |
composite number 合成数 | 472286294057516022215497970186072837470441954215695208133862933068534254869465167699250738295289897438779712234674977241846488822415905836624838262291454944113730199672392808386063871487<186> |
prime factors 素因数 | 21104341634482455801295939857570341879750615157737729941<56> 22378631953429233489468603315786253934762951714163626922363533371316270136161179045453127059664601228398373745370805372639135715907<131> |
factorization results 素因数分解の結果 | Number: n N=472286294057516022215497970186072837470441954215695208133862933068534254869465167699250738295289897438779712234674977241846488822415905836624838262291454944113730199672392808386063871487 ( 186 digits) SNFS difficulty: 196 digits. Divisors found: Sat Feb 11 03:18:29 2023 prp56 factor: 21104341634482455801295939857570341879750615157737729941 Sat Feb 11 03:18:29 2023 prp131 factor: 22378631953429233489468603315786253934762951714163626922363533371316270136161179045453127059664601228398373745370805372639135715907 Sat Feb 11 03:18:29 2023 elapsed time 02:05:08 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: # # N = 79x10^195-52 = 87(194)2 # n: 472286294057516022215497970186072837470441954215695208133862933068534254869465167699250738295289897438779712234674977241846488822415905836624838262291454944113730199672392808386063871487 m: 1000000000000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 1.657e-11 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved special-q in [100000, 32000000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2197696 hash collisions in 15012384 relations (13564118 unique) Msieve: matrix is 2018749 x 2018974 (567.9 MB) Sieving start time: 2023/02/10 12:53:11 Sieving end time : 2023/02/11 01:13:03 Total sieving time: 12hrs 19min 52secs. Total relation processing time: 1hrs 56min 20sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 4min 47sec. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,12800000,12800000,27,27,53,53,2.5,2.5,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 9, 2023 10:06:32 UTC 2023 年 1 月 9 日 (月) 19 時 6 分 32 秒 (日本時間) |
2350 | Ignacio Santos | February 1, 2023 18:12:58 UTC 2023 年 2 月 2 日 (木) 3 時 12 分 58 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 14, 2023 04:56:50 UTC 2023 年 7 月 14 日 (金) 13 時 56 分 50 秒 (日本時間) |
composite number 合成数 | 63554865304458440286338238695614933378653576487133602016440423380485143983558317987745247937473496289062254872225064009298829014350969118476659455303348475437<158> |
prime factors 素因数 | 42225732475425084875628089846606829183610456932783733<53> 1505121677674784629657953871574835052979778997576372609600214820300135969162879215690825649524763220310489<106> |
factorization results 素因数分解の結果 | 63554865304458440286338238695614933378653576487133602016440423380485143983558317987745247937473496289062254872225064009298829014350969118476659455303348475437=42225732475425084875628089846606829183610456932783733*1505121677674784629657953871574835052979778997576372609600214820300135969162879215690825649524763220310489 cado polynomial n: 63554865304458440286338238695614933378653576487133602016440423380485143983558317987745247937473496289062254872225064009298829014350969118476659455303348475437 skew: 0.37 type: snfs c0: -13 c5: 1975 Y0: 1000000000000000000000000000000000000000 Y1: -1 # f(x) = 1975*x^5-13 # g(x) = -x+1000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 14100000 tasks.lim1 = 14100000 tasks.lpb0 = 28 tasks.lpb1 = 28 tasks.sieve.mfb0 = 55 tasks.sieve.mfb1 = 55 tasks.sieve.lambda0 = 2.5 tasks.sieve.lambda1 = 2.5 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 42225732475425084875628089846606829183610456932783733 1505121677674784629657953871574835052979778997576372609600214820300135969162879215690825649524763220310489 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 2593.3/143.168 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Merging: Merged matrix has 2319114 rows and total weight 395745356 (170.6 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 516.02/30.4607 Info:Filtering - Merging: Total cpu/real time for replay: 43.25/37.7866 Info:Linear Algebra: Total cpu time for bwc: 72912.5 Warning:Linear Algebra: some stats could not be displayed for linalg (see log file for debug info) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 102.37/78.9958 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 78.59999999999998s Info:Filtering - Singleton removal: Total cpu/real time for purge: 325.24/221.269 Info:Generate Free Relations: Total cpu/real time for freerel: 72.16/6.409 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 26522022 Info:Lattice Sieving: Average J: 3790.44 for 1533302 special-q, max bucket fill -bkmult 1.0,1s:1.076550 Info:Lattice Sieving: Total time: 480607s Info:Square Root: Total cpu/real time for sqrt: 2593.3/143.168 Info:Generate Factor Base: Total cpu/real time for makefb: 2.13/0.318395 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 437.08/323.486 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 228.90000000000003s Info:Quadratic Characters: Total cpu/real time for characters: 62.93/12.0475 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 916490/49719 42225732475425084875628089846606829183610456932783733 1505121677674784629657953871574835052979778997576372609600214820300135969162879215690825649524763220310489 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | January 9, 2023 10:05:48 UTC 2023 年 1 月 9 日 (月) 19 時 5 分 48 秒 (日本時間) |
2350 | Ignacio Santos | February 7, 2023 09:01:41 UTC 2023 年 2 月 7 日 (火) 18 時 1 分 41 秒 (日本時間) | |||
45 | 11e6 | 600 / 3694 | Dmitry Domanov | February 16, 2023 21:37:40 UTC 2023 年 2 月 17 日 (金) 6 時 37 分 40 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | January 9, 2023 10:27:24 UTC 2023 年 1 月 9 日 (月) 19 時 27 分 24 秒 (日本時間) |
composite number 合成数 | 2862882065970679160739161684138823694335412320139185758012709490721167730310046400167062161856364381306495588676754437384091479998089328804956601362336720356426662208164039<172> |
prime factors 素因数 | 30108671338408345023827117685677002963<38> 95084968506020485991362612749472604179641814712475980944376422229501006473081556479527131818564460774599798365669592105514209709189053<134> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3716152455 Step 1 took 8046ms Step 2 took 4434ms ********** Factor found in step 2: 30108671338408345023827117685677002963 Found prime factor of 38 digits: 30108671338408345023827117685677002963 Prime cofactor 95084968506020485991362612749472604179641814712475980944376422229501006473081556479527131818564460774599798365669592105514209709189053 has 134 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 / 2078 | Dmitry Domanov | January 9, 2023 10:05:57 UTC 2023 年 1 月 9 日 (月) 19 時 5 分 57 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | July 7, 2023 09:56:17 UTC 2023 年 7 月 7 日 (金) 18 時 56 分 17 秒 (日本時間) |
composite number 合成数 | 351537908069101846388142393984140313924125898116887489866411401386444471257453282381273155639182227131495795123918206695925146564859172580253<141> |
prime factors 素因数 | 11785681006670930341891312175399831505993267297830077<53> 29827543089798916512871191907476630221054037455323946428383103082942267644241479591944289<89> |
factorization results 素因数分解の結果 | 351537908069101846388142393984140313924125898116887489866411401386444471257453282381273155639182227131495795123918206695925146564859172580253=11785681006670930341891312175399831505993267297830077*29827543089798916512871191907476630221054037455323946428383103082942267644241479591944289 cado polynomial n: 351537908069101846388142393984140313924125898116887489866411401386444471257453282381273155639182227131495795123918206695925146564859172580253 skew: 0.73 type: snfs c0: -65 c5: 316 Y0: 5000000000000000000000000000000000000000 Y1: -1 # f(x) = 316*x^5-65 # g(x) = -x+5000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 15700000 tasks.lim1 = 15700000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 29827543089798916512871191907476630221054037455323946428383103082942267644241479591944289 11785681006670930341891312175399831505993267297830077 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 6198.99/1285.89 Info:HTTP server: Got notification to stop serving Workunits Info:Filtering - Merging: Merged matrix has 3120410 rows and total weight 531270935 (170.3 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 684.06/40.8071 Info:Filtering - Merging: Total cpu/real time for replay: 59.71/52.2428 Info:Linear Algebra: Total cpu/real time for bwc: 130277/21560.2 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 85835.68, WCT time 10542.11, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.05, comm-wait 0.0 (97792 iterations) Info:Linear Algebra: Lingen CPU time 602.69, WCT time 38.81 Info:Linear Algebra: Mksol: CPU time 43067.6, WCT time 10891.76, iteration CPU time 0.14, COMM 0.02, cpu-wait 0.06, comm-wait 0.0 (49152 iterations) Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 170.5/131.73 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 131.6s Info:Quadratic Characters: Total cpu/real time for characters: 101.29/65.9708 Info:Filtering - Singleton removal: Total cpu/real time for purge: 278.72/194.865 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 44245775 Info:Lattice Sieving: Average J: 3790.69 for 2043550 special-q, max bucket fill -bkmult 1.0,1s:1.176900 Info:Lattice Sieving: Total time: 708544s Info:Square Root: Total cpu/real time for sqrt: 6198.99/1285.89 Info:Generate Factor Base: Total cpu/real time for makefb: 2.34/0.358428 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 525.32/342.418 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 277.1s Info:Generate Free Relations: Total cpu/real time for freerel: 135.01/12.3562 Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.48292e+06/82579.3 29827543089798916512871191907476630221054037455323946428383103082942267644241479591944289 11785681006670930341891312175399831505993267297830077 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 9, 2023 10:06:08 UTC 2023 年 1 月 9 日 (月) 19 時 6 分 8 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 18, 2023 19:04:37 UTC 2023 年 2 月 19 日 (日) 4 時 4 分 37 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | June 28, 2023 03:57:32 UTC 2023 年 6 月 28 日 (水) 12 時 57 分 32 秒 (日本時間) |
composite number 合成数 | 328081704157934058168117989781024931578465757312388130098694966040361615761135682086217661689605948555159487164274954646603412874533810714373521176199091863<156> |
prime factors 素因数 | 7065155551043777064672053648894897975173526847131627902512942619616057<70> 46436586114436590800920203360595757869228810071104197686337014335233843105849895188559<86> |
factorization results 素因数分解の結果 | 328081704157934058168117989781024931578465757312388130098694966040361615761135682086217661689605948555159487164274954646603412874533810714373521176199091863=7065155551043777064672053648894897975173526847131627902512942619616057*46436586114436590800920203360595757869228810071104197686337014335233843105849895188559 cado polynomial n: 328081704157934058168117989781024931578465757312388130098694966040361615761135682086217661689605948555159487164274954646603412874533810714373521176199091863 skew: 0.92 type: snfs c0: -52 c5: 79 Y0: 10000000000000000000000000000000000000000 Y1: -1 # f(x) = 79*x^5-52 # g(x) = -x+10000000000000000000000000000000000000000 cado parameters (extracts) tasks.lim0 = 16200000 tasks.lim1 = 16200000 tasks.lpb0 = 29 tasks.lpb1 = 29 tasks.sieve.mfb0 = 56 tasks.sieve.mfb1 = 56 tasks.sieve.lambda0 = 2.6 tasks.sieve.lambda1 = 2.6 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 7065155551043777064672053648894897975173526847131627902512942619616057 46436586114436590800920203360595757869228810071104197686337014335233843105849895188559 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 3561.76/196.436 Info:HTTP server: Got notification to stop serving Workunits Info:Linear Algebra: Total cpu/real time for bwc: 119678/14746.1 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 78374.39, WCT time 9698.57, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.05, comm-wait 0.0 (93696 iterations) Info:Linear Algebra: Lingen CPU time 581.06, WCT time 37.42 Info:Linear Algebra: Mksol: CPU time 40013.31, WCT time 4931.74, iteration CPU time 0.05, COMM 0.01, cpu-wait 0.05, comm-wait 0.0 (47104 iterations) Info:Generate Factor Base: Total cpu/real time for makefb: 2.43/0.370795 Info:Generate Free Relations: Total cpu/real time for freerel: 136.68/12.6401 Info:Square Root: Total cpu/real time for sqrt: 3561.76/196.436 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 169.55/133.484 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 133.4s Info:Quadratic Characters: Total cpu/real time for characters: 84.91/16.3091 Info:Filtering - Singleton removal: Total cpu/real time for purge: 219.91/156.277 Info:Filtering - Merging: Merged matrix has 2991674 rows and total weight 508598893 (170.0 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 649.84/38.5113 Info:Filtering - Merging: Total cpu/real time for replay: 56.89/49.6458 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 43712857 Info:Lattice Sieving: Average J: 3789.85 for 1840671 special-q, max bucket fill -bkmult 1.0,1s:1.132890 Info:Lattice Sieving: Total time: 656930s Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 453.37/295.686 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 251.0s Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.37535e+06/70260.5 Info:root: Cleaning up computation data in /tmp/cado.35lh3j24 7065155551043777064672053648894897975173526847131627902512942619616057 46436586114436590800920203360595757869228810071104197686337014335233843105849895188559 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] 13th Gen Intel(R) Core(TM) i7-13700KF (24 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | January 9, 2023 10:06:16 UTC 2023 年 1 月 9 日 (月) 19 時 6 分 16 秒 (日本時間) | |
45 | 11e6 | 1200 / 4213 | Dmitry Domanov | February 16, 2023 21:37:19 UTC 2023 年 2 月 17 日 (金) 6 時 37 分 19 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | July 1, 2023 00:15:16 UTC 2023 年 7 月 1 日 (土) 9 時 15 分 16 秒 (日本時間) |
composite number 合成数 | 615207301498302339345232532785097965922187957511759025636233373827991153474753138335981060960034887705198891069370463819580724542877612684172818739681649690060118991994517646325888546241784256923029<198> |
prime factors 素因数 | 2542742971000512565859982852827279496681494758982419281406492833145492441500842758508705783<91> 241946318803992999386120445847159619048906378184922930067220763049111065556334272117477413490920237914538963<108> |
factorization results 素因数分解の結果 | Number: n N=615207301498302339345232532785097965922187957511759025636233373827991153474753138335981060960034887705198891069370463819580724542877612684172818739681649690060118991994517646325888546241784256923029 ( 198 digits) SNFS difficulty: 202 digits. Divisors found: Sat Jul 1 09:54:14 2023 prp91 factor: 2542742971000512565859982852827279496681494758982419281406492833145492441500842758508705783 Sat Jul 1 09:54:14 2023 prp108 factor: 241946318803992999386120445847159619048906378184922930067220763049111065556334272117477413490920237914538963 Sat Jul 1 09:54:14 2023 elapsed time 03:56:17 (Msieve 1.44 - dependency 3) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: # # N = 79x10^201-52 = 87(200)2 # n: 615207301498302339345232532785097965922187957511759025636233373827991153474753138335981060960034887705198891069370463819580724542877612684172818739681649690060118991994517646325888546241784256923029 m: 10000000000000000000000000000000000000000 deg: 5 c5: 395 c0: -26 skew: 0.58 # Murphy_E = 9.177e-12 type: snfs lss: 1 rlim: 16700000 alim: 16700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 16700000/16700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 33950000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 2672942 hash collisions in 15411207 relations (13355253 unique) Msieve: matrix is 2659424 x 2659649 (756.1 MB) Sieving start time: 2023/06/30 16:17:36 Sieving end time : 2023/07/01 05:57:36 Total sieving time: 13hrs 40min 0secs. Total relation processing time: 3hrs 41min 17sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 10min 38sec. Prototype def-par.txt line would be: snfs,202,5,0,0,0,0,0,0,0,0,16700000,16700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:23:12 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 12 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 14:59:38 UTC 2023 年 3 月 1 日 (水) 23 時 59 分 38 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 17, 2023 10:53:11 UTC 2023 年 9 月 17 日 (日) 19 時 53 分 11 秒 (日本時間) |
composite number 合成数 | 3254370974613052046059654202067164137607962769435486101689745762316653611142801071952250860151068127898270266122231394485398118769284431654695320752072687832205987054385010349067137<181> |
prime factors 素因数 | 3603803744029386064269263424403624460503977481<46> 649962219003341809874465424117174820657066634944103<51> 1389369666828780791443294989981796329224091252701471616865772262830539581430629313759<85> |
factorization results 素因数分解の結果 | Number: n N=3254370974613052046059654202067164137607962769435486101689745762316653611142801071952250860151068127898270266122231394485398118769284431654695320752072687832205987054385010349067137 ( 181 digits) SNFS difficulty: 204 digits. Divisors found: Sun Sep 17 20:28:51 2023 prp46 factor: 3603803744029386064269263424403624460503977481 Sun Sep 17 20:28:51 2023 prp51 factor: 649962219003341809874465424117174820657066634944103 Sun Sep 17 20:28:51 2023 prp85 factor: 1389369666828780791443294989981796329224091252701471616865772262830539581430629313759 Sun Sep 17 20:28:51 2023 elapsed time 02:53:51 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.099). Factorization parameters were as follows: # # N = 79x10^203-52 = 87(202)2 # n: 3254370974613052046059654202067164137607962769435486101689745762316653611142801071952250860151068127898270266122231394485398118769284431654695320752072687832205987054385010349067137 m: 5000000000000000000000000000000000 deg: 6 c6: 632 c0: -65 skew: 0.68 # Murphy_E = 8.518e-12 type: snfs lss: 1 rlim: 18300000 alim: 18300000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18300000/18300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49150000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3386547 hash collisions in 18431066 relations (16014478 unique) Msieve: matrix is 2301585 x 2301810 (653.1 MB) Sieving start time: 2023/09/16 21:00:43 Sieving end time : 2023/09/17 17:34:36 Total sieving time: 20hrs 33min 53secs. Total relation processing time: 2hrs 41min 9sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 7min 34sec. Prototype def-par.txt line would be: snfs,204,6,0,0,0,0,0,0,0,0,18300000,18300000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:23:21 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 21 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 17, 2023 11:42:14 UTC 2023 年 2 月 17 日 (金) 20 時 42 分 14 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | December 5, 2023 15:08:02 UTC 2023 年 12 月 6 日 (水) 0 時 8 分 2 秒 (日本時間) |
composite number 合成数 | 4002423120965841703492906236963712839246293706167692855843324263902890431767406467318077277390329172783111887566556294865118226671842867809197874962654076232219504868167031427002207476333<187> |
prime factors 素因数 | 274594109859180329309027267893634945603753260066769<51> 29682461483667019619187279803194279792361017686079733714613458886641<68> 491056957321710913723951369714431866943592544730279401144338259695277<69> |
factorization results 素因数分解の結果 | Number: n N=4002423120965841703492906236963712839246293706167692855843324263902890431767406467318077277390329172783111887566556294865118226671842867809197874962654076232219504868167031427002207476333 ( 187 digits) SNFS difficulty: 205 digits. Divisors found: Tue Dec 5 15:48:19 2023 prp51 factor: 274594109859180329309027267893634945603753260066769 Tue Dec 5 15:48:19 2023 prp68 factor: 29682461483667019619187279803194279792361017686079733714613458886641 Tue Dec 5 15:48:19 2023 prp69 factor: 491056957321710913723951369714431866943592544730279401144338259695277 Tue Dec 5 15:48:19 2023 elapsed time 02:59:52 (Msieve 1.44 - dependency 2) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.094). Factorization parameters were as follows: # # N = 79x10^204-52 = 87(203)2 # n: 4002423120965841703492906236963712839246293706167692855843324263902890431767406467318077277390329172783111887566556294865118226671842867809197874962654076232219504868167031427002207476333 m: 10000000000000000000000000000000000 deg: 6 c6: 79 c0: -52 skew: 0.93 # Murphy_E = 7.528e-12 type: snfs lss: 1 rlim: 18900000 alim: 18900000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 18900000/18900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 56650000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3703786 hash collisions in 20314138 relations (17250704 unique) Msieve: matrix is 2362583 x 2362808 (663.1 MB) Sieving start time: 2023/12/04 12:07:04 Sieving end time : 2023/12/05 12:48:01 Total sieving time: 24hrs 40min 57secs. Total relation processing time: 2hrs 47min 32sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 6min 43sec. Prototype def-par.txt line would be: snfs,205,6,0,0,0,0,0,0,0,0,18900000,18900000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:23:28 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 28 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | February 17, 2023 11:41:53 UTC 2023 年 2 月 17 日 (金) 20 時 41 分 53 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | April 30, 2024 02:51:04 UTC 2024 年 4 月 30 日 (火) 11 時 51 分 4 秒 (日本時間) |
composite number 合成数 | 52429809758103458482625557448338054670885474447303528247455959623471671045551284185231465000380945706343688419861102151586658776975800789022180066000502795238895432660081482561048872281248896651155407<200> |
prime factors 素因数 | 829943935029238103202528920386187901852339635801<48> 63172712692040346302852340530199582026790784772572844994428702020197911787450348952761590921341083765833492602319357472268258462618265222278191833864807<152> |
factorization results 素因数分解の結果 | Number: n N=52429809758103458482625557448338054670885474447303528247455959623471671045551284185231465000380945706343688419861102151586658776975800789022180066000502795238895432660081482561048872281248896651155407 ( 200 digits) SNFS difficulty: 206 digits. Divisors found: Tue Apr 30 12:37:57 2024 prp48 factor: 829943935029238103202528920386187901852339635801 Tue Apr 30 12:37:57 2024 prp152 factor: 63172712692040346302852340530199582026790784772572844994428702020197911787450348952761590921341083765833492602319357472268258462618265222278191833864807 Tue Apr 30 12:37:57 2024 elapsed time 03:38:35 (Msieve 1.44 - dependency 1) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.921). Factorization parameters were as follows: # # N = 79x10^205-52 = 87(204)2 # n: 52429809758103458482625557448338054670885474447303528247455959623471671045551284185231465000380945706343688419861102151586658776975800789022180066000502795238895432660081482561048872281248896651155407 m: 100000000000000000000000000000000000000000 deg: 5 c5: 79 c0: -52 skew: 0.92 # Murphy_E = 6.302e-12 type: snfs lss: 1 rlim: 19700000 alim: 19700000 lpbr: 27 lpba: 27 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 19700000/19700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 56/56 Sieved special-q in [100000, 49850000) Primes: , , Relations: Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4538336 hash collisions in 20910779 relations (16041097 unique) Msieve: matrix is 2614914 x 2615139 (734.7 MB) Sieving start time: 2024/04/29 10:13:41 Sieving end time : 2024/04/30 07:43:22 Total sieving time: 21hrs 29min 41secs. Total relation processing time: 3hrs 29min 43sec. Matrix solve time: 0.00 hours. Total square root time: 0hrs 3min 8sec. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,19700000,19700000,27,27,56,56,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:23:37 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 14:59:55 UTC 2023 年 3 月 1 日 (水) 23 時 59 分 55 秒 (日本時間) |
name 名前 | Eric Jeancolas |
---|---|
date 日付 | November 27, 2023 21:36:05 UTC 2023 年 11 月 28 日 (火) 6 時 36 分 5 秒 (日本時間) |
composite number 合成数 | 2149758717553117835117547982629784317731770296175202842030249793800240769208164024267693088730988162159787954220536723046515195829032456220391<142> |
prime factors 素因数 | 5520052682968102395063949036820260917041351714223195925455629<61> 389445326162576446605205952235230079003854112325771729437610926207737503733853379<81> |
factorization results 素因数分解の結果 | 2149758717553117835117547982629784317731770296175202842030249793800240769208164024267693088730988162159787954220536723046515195829032456220391=5520052682968102395063949036820260917041351714223195925455629*389445326162576446605205952235230079003854112325771729437610926207737503733853379 cado polynomial n: 2149758717553117835117547982629784317731770296175202842030249793800240769208164024267693088730988162159787954220536723046515195829032456220391 skew: 84653.151 c0: 17614942134832768549172686497006 c1: 847823456619504693884334013 c2: -11391132749541040020090 c3: -205759703398719909 c4: 1828648775500 c5: 3757200 Y0: -1628080137461233216550292266 Y1: 1359960629415224291 # MurphyE (Bf=5.369e+08,Bg=2.684e+08,area=2.023e+14) = 2.093e-07 # f(x) = 3757200*x^5+1828648775500*x^4-205759703398719909*x^3-11391132749541040020090*x^2+847823456619504693884334013*x+17614942134832768549172686497006 # g(x) = 1359960629415224291*x-1628080137461233216550292266 cado parameters (extracts) tasks.lim0 = 9457107 tasks.lim1 = 12662444 tasks.lpb0 = 28 tasks.lpb1 = 29 tasks.sieve.mfb0 = 58 tasks.sieve.mfb1 = 58 tasks.I = 13 tasks.linalg.m = 64 tasks.linalg.n = 64 tasks.linalg.characters.nchar = 50 cado log (extracts) Info:Square Root: Factors: 5520052682968102395063949036820260917041351714223195925455629 389445326162576446605205952235230079003854112325771729437610926207737503733853379 Info:Complete Factorization / Discrete logarithm: Square Root Info:Square Root: Total cpu/real time for sqrt: 1469.03/309.492 Info:HTTP server: Got notification to stop serving Workunits Info:Polynomial Selection (root optimized): Aggregate statistics: Info:Polynomial Selection (root optimized): Total time: 13030 Info:Polynomial Selection (root optimized): Rootsieve time: 13025.8 Info:Lattice Sieving: Aggregate statistics: Info:Lattice Sieving: Total number of relations: 34449308 Info:Lattice Sieving: Average J: 3786.64 for 1209606 special-q, max bucket fill -bkmult 1.0,1s:1.139550 Info:Lattice Sieving: Total time: 687143s Info:Polynomial Selection (size optimized): Aggregate statistics: Info:Polynomial Selection (size optimized): potential collisions: 69931.3 Info:Polynomial Selection (size optimized): raw lognorm (nr/min/av/max/std): 48577/43.250/50.892/55.470/0.913 Info:Polynomial Selection (size optimized): optimized lognorm (nr/min/av/max/std): 39804/41.020/45.492/51.590/1.098 Info:Polynomial Selection (size optimized): Total time: 35777.4 Info:Square Root: Total cpu/real time for sqrt: 1469.03/309.492 Info:Filtering - Duplicate Removal, splitting pass: Total cpu/real time for dup1: 294.41/241.047 Info:Filtering - Duplicate Removal, splitting pass: Aggregate statistics: Info:Filtering - Duplicate Removal, splitting pass: CPU time for dup1: 240.1s Info:Quadratic Characters: Total cpu/real time for characters: 106.64/28.0558 Info:Generate Free Relations: Total cpu/real time for freerel: 731.86/92.6589 Info:Filtering - Singleton removal: Total cpu/real time for purge: 667.74/550.817 Info:Generate Factor Base: Total cpu/real time for makefb: 14.79/2.08694 Info:Filtering - Duplicate Removal, removal pass: Total cpu/real time for dup2: 1092.79/925.683 Info:Filtering - Duplicate Removal, removal pass: Aggregate statistics: Info:Filtering - Duplicate Removal, removal pass: CPU time for dup2: 637.6s Info:Filtering - Merging: Merged matrix has 2183552 rows and total weight 372072115 (170.4 entries per row on average) Info:Filtering - Merging: Total cpu/real time for merge: 1199.19/167.853 Info:Filtering - Merging: Total cpu/real time for replay: 85.15/73.8677 Info:Linear Algebra: Total cpu/real time for bwc: 72612.3/18928.4 Info:Linear Algebra: Aggregate statistics: Info:Linear Algebra: Krylov: CPU time 45598.45, WCT time 11844.05, iteration CPU time 0.16, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (68608 iterations) Info:Linear Algebra: Lingen CPU time 364.84, WCT time 102.73 Info:Linear Algebra: Mksol: CPU time 25882.65, WCT time 6727.87, iteration CPU time 0.18, COMM 0.01, cpu-wait 0.0, comm-wait 0.0 (34304 iterations) Info:HTTP server: Shutting down HTTP server Info:Complete Factorization / Discrete logarithm: Total cpu/elapsed time for entire Complete Factorization 1.4019e+06/198984 Info:root: Cleaning up computation data in /tmp/cado.1z4h4j67 5520052682968102395063949036820260917041351714223195925455629 389445326162576446605205952235230079003854112325771729437610926207737503733853379 |
software ソフトウェア | cado-nfs-3.0.0 |
execution environment 実行環境 | Linux Ubuntu 22.04.1 LTS [5.15.0-46-generic|libc 2.35 (Ubuntu GLIBC 2.35-0ubuntu3.1)] Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 processeurs) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 23, 2022 17:18:49 UTC 2022 年 12 月 24 日 (土) 2 時 18 分 49 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 24, 2022 15:38:10 UTC 2022 年 12 月 25 日 (日) 0 時 38 分 10 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 6, 2023 12:38:27 UTC 2023 年 1 月 6 日 (金) 21 時 38 分 27 秒 (日本時間) |
name 名前 | Bob Backstrom |
---|---|
date 日付 | September 11, 2024 16:35:49 UTC 2024 年 9 月 12 日 (木) 1 時 35 分 49 秒 (日本時間) |
composite number 合成数 | 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987<180> |
prime factors 素因数 | 353630446077073708309918686042373327445112535594909355781432944639237719062127637398459<87> 794918546555639460017371326661588278350313437518966865772033812276485129457726473232397016793<93> |
factorization results 素因数分解の結果 | 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, **************************** 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, Starting factorization of 78999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, using pretesting plan: normal 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, no tune info: using qs/gnfs crossover of 100 digits 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, **************************** 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 2 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 2 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 3 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 3 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 3 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, div: found prime factor = 839 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, rho: x^2 + 3, starting 1000 iterations on C204 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, rho: x^2 + 2, starting 1000 iterations on C204 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, rho: x^2 + 1, starting 1000 iterations on C204 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, pm1: starting B1 = 150K, B2 = gmp-ecm default on C204 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, c25 = 3101480795362050491321317 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 0.00 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, scheduled 30 curves at B1=2000 toward target pretesting depth of 55.38 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, Finished 30 curves using Lenstra ECM method on C180 input, B1=2K, B2=gmp-ecm default 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 15.18 09/08/24 01:50:21 v1.34.5 @ TRIGKEY, scheduled 74 curves at B1=11000 toward target pretesting depth of 55.38 09/08/24 01:50:24 v1.34.5 @ TRIGKEY, Finished 74 curves using Lenstra ECM method on C180 input, B1=11K, B2=gmp-ecm default 09/08/24 01:50:24 v1.34.5 @ TRIGKEY, current ECM pretesting depth: 20.24 09/08/24 01:50:24 v1.34.5 @ TRIGKEY, scheduled 214 curves at B1=50000 toward target pretesting depth of 55.38 09/08/24 01:51:02 v1.34.5 @ TRIGKEY, nfs: commencing nfs on c209: 78999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948 09/08/24 01:51:02 v1.34.5 @ TRIGKEY, nfs: input divides 79*10^207 - 52 09/08/24 01:51:02 v1.34.5 @ TRIGKEY, nfs: using supplied cofactor: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 09/08/24 01:51:02 v1.34.5 @ TRIGKEY, nfs: commencing snfs on c180: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 09/08/24 01:51:02 v1.34.5 @ TRIGKEY, gen: best 3 polynomials: n: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 # 79*10^207-52, difficulty: 210.90, anorm: -5.15e+026, rnorm: 1.65e+047 # scaled difficulty: 214.32, suggest sieving rational side # size = 1.236e-014, alpha = 0.456, combined = 5.512e-012, rroots = 1 type: snfs size: 210 skew: 0.3662 c5: 1975 c0: -13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 n: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 # 79*10^207-52, difficulty: 209.80, anorm: -5.80e+026, rnorm: 2.34e+047 # scaled difficulty: 213.23, suggest sieving rational side # size = 8.406e-015, alpha = -0.468, combined = 4.402e-012, rroots = 1 type: snfs size: 209 skew: 0.7323 c5: 1975 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 n: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 # 79*10^207-52, difficulty: 211.90, anorm: 4.67e+032, rnorm: 1.84e+040 # scaled difficulty: 213.16, suggest sieving rational side # size = 1.256e-010, alpha = -0.154, combined = 3.926e-012, rroots = 2 type: snfs size: 211 skew: 0.2949 c6: 19750 c0: -13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 09/08/24 01:51:04 v1.34.5 @ TRIGKEY, test: fb generation took 1.6993 seconds 09/08/24 01:51:04 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 0 on the rational side over range 22600000-22602000 skew: 0.3662 c5: 1975 c0: -13 Y1: -1 Y0: 100000000000000000000000000000000000000000 m: 100000000000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 09/08/24 01:54:03 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 09/08/24 01:54:04 v1.34.5 @ TRIGKEY, test: fb generation took 1.6117 seconds 09/08/24 01:54:04 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 1 on the rational side over range 21400000-21402000 skew: 0.7323 c5: 1975 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 rlim: 21400000 alim: 21400000 mfbr: 56 mfba: 56 lpbr: 28 lpba: 28 rlambda: 2.60 alambda: 2.60 09/08/24 01:57:00 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 09/08/24 01:57:03 v1.34.5 @ TRIGKEY, test: fb generation took 2.4426 seconds 09/08/24 01:57:03 v1.34.5 @ TRIGKEY, test: commencing test sieving of polynomial 2 on the rational side over range 22600000-22602000 skew: 0.2949 c6: 19750 c0: -13 Y1: -1 Y0: 10000000000000000000000000000000000 m: 10000000000000000000000000000000000 rlim: 22600000 alim: 22600000 mfbr: 58 mfba: 58 lpbr: 29 lpba: 29 rlambda: 2.60 alambda: 2.60 09/08/24 01:59:51 v1.34.5 @ TRIGKEY, nfs: parsing special-q from .dat file 09/08/24 01:59:51 v1.34.5 @ TRIGKEY, gen: selected polynomial: n: 281107400213409866248516062948842657703809658046676551622878013339980435241007398694711531924307615943134758552385904847302997426229407445452205764087079882030826463906091055321987 # 79*10^207-52, difficulty: 209.80, anorm: -5.80e+026, rnorm: 2.34e+047 # scaled difficulty: 213.23, suggest sieving rational side # size = 8.406e-015, alpha = -0.468, combined = 4.402e-012, rroots = 1 type: snfs size: 209 skew: 0.7323 c5: 1975 c0: -416 Y1: -1 Y0: 200000000000000000000000000000000000000000 m: 200000000000000000000000000000000000000000 09/09/24 22:21:34 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/09/24 22:23:35 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 22189132 09/10/24 01:10:09 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/10/24 01:12:13 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 23418771 09/10/24 03:57:57 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/10/24 04:00:07 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 24633433 09/10/24 07:02:07 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/10/24 07:04:23 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 25950247 09/10/24 10:05:12 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/10/24 10:07:35 v1.34.5 @ TRIGKEY, nfs: raising min_rels by 5.00 percent to 27251971 09/10/24 13:24:14 v1.34.5 @ TRIGKEY, nfs: commencing msieve filtering 09/10/24 13:28:39 v1.34.5 @ TRIGKEY, nfs: commencing msieve linear algebra 09/10/24 16:54:19 v1.34.5 @ TRIGKEY, nfs: commencing msieve sqrt 09/10/24 16:58:08 v1.34.5 @ TRIGKEY, prp87 = 353630446077073708309918686042373327445112535594909355781432944639237719062127637398459 09/10/24 16:58:08 v1.34.5 @ TRIGKEY, prp93 = 794918546555639460017371326661588278350313437518966865772033812276485129457726473232397016793 09/10/24 16:58:08 v1.34.5 @ TRIGKEY, NFS elapsed time = 227225.7621 seconds. 09/10/24 16:58:08 v1.34.5 @ TRIGKEY, 09/10/24 16:58:08 v1.34.5 @ TRIGKEY, 09/08/24 01:59:51 v1.34.5 @ TRIGKEY, test: test sieving took 528.50 seconds |
software ソフトウェア | YAFU |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2000 | 1000 | Dmitry Domanov | February 7, 2023 12:23:46 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 46 秒 (日本時間) |
1000 | Dmitry Domanov | February 17, 2023 11:41:59 UTC 2023 年 2 月 17 日 (金) 20 時 41 分 59 秒 (日本時間) | |||
45 | 11e6 | 1000 / 3992 | Dmitry Domanov | March 1, 2023 14:58:17 UTC 2023 年 3 月 1 日 (水) 23 時 58 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:23:55 UTC 2023 年 2 月 7 日 (火) 21 時 23 分 55 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 12, 2023 18:35:44 UTC 2023 年 4 月 13 日 (木) 3 時 35 分 44 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:24:02 UTC 2023 年 2 月 7 日 (火) 21 時 24 分 2 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:00:22 UTC 2023 年 3 月 2 日 (木) 0 時 0 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 21:03:03 UTC 2023 年 2 月 7 日 (火) 6 時 3 分 3 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:00:27 UTC 2023 年 3 月 2 日 (木) 0 時 0 分 27 秒 (日本時間) |
composite cofactor 合成数の残り | 29099916237172041627500083019504363267243165913726333331784502262916129605196063135375918783397604969950435034135318741297810905025551904419216652424192803699<158> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 21:01:34 UTC 2023 年 2 月 7 日 (火) 6 時 1 分 34 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:00:35 UTC 2023 年 3 月 2 日 (木) 0 時 0 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 7, 2023 12:24:10 UTC 2023 年 2 月 7 日 (火) 21 時 24 分 10 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:00:43 UTC 2023 年 3 月 2 日 (木) 0 時 0 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:01:35 UTC 2023 年 2 月 24 日 (金) 7 時 1 分 35 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:29:31 UTC 2023 年 4 月 13 日 (木) 16 時 29 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:01:43 UTC 2023 年 2 月 24 日 (金) 7 時 1 分 43 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:29:47 UTC 2023 年 4 月 13 日 (木) 16 時 29 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 21:02:55 UTC 2023 年 2 月 7 日 (火) 6 時 2 分 55 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:00:51 UTC 2023 年 3 月 2 日 (木) 0 時 0 分 51 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2023 08:32:09 UTC 2023 年 4 月 15 日 (土) 17 時 32 分 9 秒 (日本時間) |
composite number 合成数 | 268914640949894178617969621573569513498786279845235982955571410226563359296644210673158488312283363963769596599992465121532221197421295023764070056971886430069875126354673222645791403358776517801526780018438315009<213> |
prime factors 素因数 | 2755005523627411928819611915220400269561641<43> 97609474334492225282808425573135468514106007863726078450512019929109738482390077425747363184756795195051411666789429990567759798400338309357048174815554155356474420410649<170> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:370071154 Step 1 took 41697ms Step 2 took 17235ms ********** Factor found in step 2: 2755005523627411928819611915220400269561641 Found prime factor of 43 digits: 2755005523627411928819611915220400269561641 Prime cofactor 97609474334492225282808425573135468514106007863726078450512019929109738482390077425747363184756795195051411666789429990567759798400338309357048174815554155356474420410649 has 170 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:01:51 UTC 2023 年 2 月 24 日 (金) 7 時 1 分 51 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:29:53 UTC 2023 年 4 月 13 日 (木) 16 時 29 分 53 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | December 30, 2022 09:04:17 UTC 2022 年 12 月 30 日 (金) 18 時 4 分 17 秒 (日本時間) |
composite number 合成数 | 3283072281305801818183045593741706975876012516903923108821691130636973964393119556277763298347392941706108423787363856485565384287148241603182724656520303997<157> |
prime factors 素因数 | 56024965930760586922979248390549974845486449<44> 58600165600515364713991093595831811130107768673904674484757361691586802106288148140469601648233376135518765787853<113> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:970048215 Step 1 took 23516ms Step 2 took 10140ms ********** Factor found in step 2: 56024965930760586922979248390549974845486449 Found prime factor of 44 digits: 56024965930760586922979248390549974845486449 Prime cofactor 58600165600515364713991093595831811130107768673904674484757361691586802106288148140469601648233376135518765787853 has 113 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 13:04:22 UTC 2022 年 12 月 25 日 (日) 22 時 4 分 22 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 21:02:47 UTC 2023 年 2 月 7 日 (火) 6 時 2 分 47 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:03:16 UTC 2023 年 3 月 2 日 (木) 0 時 3 分 16 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 8, 2023 20:53:02 UTC 2023 年 2 月 9 日 (木) 5 時 53 分 2 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:03:25 UTC 2023 年 3 月 2 日 (木) 0 時 3 分 25 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 23, 2023 22:01:59 UTC 2023 年 2 月 24 日 (金) 7 時 1 分 59 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 16:08:35 UTC 2024 年 9 月 13 日 (金) 1 時 8 分 35 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 23, 2023 22:02:06 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 6 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 16:28:55 UTC 2024 年 9 月 13 日 (金) 1 時 28 分 55 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 23, 2023 11:21:05 UTC 2023 年 2 月 23 日 (木) 20 時 21 分 5 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 13, 2023 07:30:01 UTC 2023 年 4 月 13 日 (木) 16 時 30 分 1 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 23, 2023 11:21:13 UTC 2023 年 2 月 23 日 (木) 20 時 21 分 13 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:05:18 UTC 2023 年 3 月 2 日 (木) 0 時 5 分 18 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 9, 2023 05:02:55 UTC 2023 年 2 月 9 日 (木) 14 時 2 分 55 秒 (日本時間) |
composite number 合成数 | 3425494829783976070640076125927001627089366714071667107520386318670797577582012744228045153807543050589988536322777114082027724079118971919517939892128504369988023330570681952658717531154822795331539<199> |
prime factors 素因数 | 497400177651656798845195037585713249<36> |
composite cofactor 合成数の残り | 6886798565204666108004061331812833275374765893905249555212594128106598928976033780926621075925693059572309174467345338870757345151007351883205476023654187013164211<163> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3215103859 Step 1 took 17173ms Step 2 took 7450ms ********** Factor found in step 2: 497400177651656798845195037585713249 Found prime factor of 36 digits: 497400177651656798845195037585713249 Composite cofactor 6886798565204666108004061331812833275374765893905249555212594128106598928976033780926621075925693059572309174467345338870757345151007351883205476023654187013164211 has 163 digits |
name 名前 | Erik Branger |
---|---|
date 日付 | March 18, 2024 19:58:44 UTC 2024 年 3 月 19 日 (火) 4 時 58 分 44 秒 (日本時間) |
composite number 合成数 | 6886798565204666108004061331812833275374765893905249555212594128106598928976033780926621075925693059572309174467345338870757345151007351883205476023654187013164211<163> |
prime factors 素因数 | 2274959797153401961251388377976826976541614517147<49> 3027217700208125908985993989326490514671133408033206222056773610437540235895157113043413355539835993921656847347913<115> |
factorization results 素因数分解の結果 | Number: 87772_240 N = 6886798565204666108004061331812833275374765893905249555212594128106598928976033780926621075925693059572309174467345338870757345151007351883205476023654187013164211 (163 digits) SNFS difficulty: 242 digits. Divisors found: r1=2274959797153401961251388377976826976541614517147 (pp49) r2=3027217700208125908985993989326490514671133408033206222056773610437540235895157113043413355539835993921656847347913 (pp115) Version: Msieve v. 1.52 (SVN unknown) Total time: 214.97 hours. Factorization parameters were as follows: n: 6886798565204666108004061331812833275374765893905249555212594128106598928976033780926621075925693059572309174467345338870757345151007351883205476023654187013164211 m: 1000000000000000000000000000000000000000000000000000000000000 deg: 4 c4: 79 c0: -52 skew: 1.00 type: snfs lss: 1 rlim: 500000000 alim: 150000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.8 alambda: 2.8 side: 1 Number of cores used: 8 Number of threads per core: 1 Factor base limits: 500000000/150000000 Large primes per side: 3 Large prime bits: 29/29 Total raw relations: 61463826 Relations: 15502106 relations Total pre-computation time approximately 1000 CPU-days. Pre-computation saved approximately 18 G rational relations. Total batch smoothness checking time: 51.34 hours. Total relation processing time: 0.65 hours. Pruned matrix : 11924325 x 11924550 Matrix solve time: 162.66 hours. time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,242,4,0,0,0,0,0,0,0,0,500000000,150000000,29,29,58,58,2.8,2.8,100000 total time: 214.97 hours. Intel64 Family 6 Model 165 Stepping 5, GenuineIntel Windows-10-10.0.22631-SP0 processors: 16, speed: 3.79GHz |
software ソフトウェア | GGNFS, NFS_factory, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 3350 | 1000 | Dmitry Domanov | February 8, 2023 20:53:30 UTC 2023 年 2 月 9 日 (木) 5 時 53 分 30 秒 (日本時間) |
2350 | Ignacio Santos | February 11, 2023 16:10:06 UTC 2023 年 2 月 12 日 (日) 1 時 10 分 6 秒 (日本時間) | |||
45 | 11e6 | 4480 | Ignacio Santos | February 11, 2023 17:14:38 UTC 2023 年 2 月 12 日 (日) 2 時 14 分 38 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:02:13 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 13 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:30:17 UTC 2023 年 4 月 13 日 (木) 16 時 30 分 17 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 8, 2023 20:53:17 UTC 2023 年 2 月 9 日 (木) 5 時 53 分 17 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:03:38 UTC 2023 年 3 月 2 日 (木) 0 時 3 分 38 秒 (日本時間) |
name 名前 | Ignacio Santos |
---|---|
date 日付 | September 12, 2024 16:29:39 UTC 2024 年 9 月 13 日 (金) 1 時 29 分 39 秒 (日本時間) |
composite number 合成数 | 181999344514344892151451975932817856702920434985133469716112890551362678060490469820401960346697681016519266948385126354953947933078180919679231207236861703382478810854418200003271576505502107090285093510136968283106687491<222> |
prime factors 素因数 | 34094584060170124018147762403545938026736799<44> 5338071999739091637233315476993057841780911643878423075807631917073268728360465603223318492749070253937324584896143978609767910005307320456516780377476076403964540202163740103709<178> |
factorization results 素因数分解の結果 | Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1:3718906839 Step 1 took 9515ms Step 2 took 4297ms ********** Factor found in step 2: 34094584060170124018147762403545938026736799 Found prime factor of 44 digits: 34094584060170124018147762403545938026736799 Prime cofactor 5338071999739091637233315476993057841780911643878423075807631917073268728360465603223318492749070253937324584896143978609767910005307320456516780377476076403964540202163740103709 has 178 digits |
software ソフトウェア | GMP-ECM |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | February 23, 2023 22:02:21 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 21 秒 (日本時間) |
name 名前 | yoyo |
---|---|
date 日付 | October 29, 2024 11:21:11 UTC 2024 年 10 月 29 日 (火) 20 時 21 分 11 秒 (日本時間) |
composite number 合成数 | 1414759711530027968649196444471432411175237592372259403496328833312237605704717672294039789519658945934178128037221984996768003469851150462319348928361683579003<160> |
prime factors 素因数 | 113793270183301845183437520399866254133923855258606375006381<60> 12432718641894091811787182504494371012520823928088389710229850764919369532708017063426474728143717063<101> |
factorization results 素因数分解の結果 | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] Input number is 1414759711530027968649196444471432411175237592372259403496328833312237605704717672294039789519658945934178128037221984996768003469851150462319348928361683579003 (160 digits) [Tue Oct 29 04:50:34 2024] Using MODMULN [mulredc:0, sqrredc:0] Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=0:5798530608432936854 dF=131072, k=4, d=1345890, d2=11, i0=71 Expected number of curves to find a factor of n digits: 35 40 45 50 55 60 65 70 75 80 34 135 614 3135 17884 111314 752662 5482978 4.3e+07 3.6e+08 Writing checkpoint to checkpnt at p = 61238123 Writing checkpoint to checkpnt at p = 110000000 Step 1 took 1071093ms Using 20 small primes for NTT Estimated memory usage: 472.20MB Initializing tables of differences for F took 796ms Computing roots of F took 33875ms Building F from its roots took 16985ms Computing 1/F took 6313ms Initializing table of differences for G took 641ms Computing roots of G took 28593ms Building G from its roots took 18813ms Computing roots of G took 29094ms Building G from its roots took 18375ms Computing G * H took 3907ms Reducing G * H mod F took 3922ms Computing roots of G took 29671ms Building G from its roots took 17641ms Computing G * H took 3594ms Reducing G * H mod F took 3953ms Computing roots of G took 28125ms Building G from its roots took 17422ms Computing G * H took 3703ms Reducing G * H mod F took 3890ms Computing polyeval(F,G) took 32562ms Computing product of all F(g_i) took 172ms Step 2 took 303594ms ********** Factor found in step 2: 113793270183301845183437520399866254133923855258606375006381 Found prime factor of 60 digits: 113793270183301845183437520399866254133923855258606375006381 Prime cofactor 12432718641894091811787182504494371012520823928088389710229850764919369532708017063426474728143717063 has 101 digits Peak memory usage: 617MB |
software ソフトウェア | GMP-ECM 7.0.5-dev [configured with GMP 6.1.2, --enable-asm-redc] [ECM] |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 11:29:09 UTC 2022 年 12 月 26 日 (月) 20 時 29 分 9 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 30, 2022 15:18:53 UTC 2022 年 12 月 31 日 (土) 0 時 18 分 53 秒 (日本時間) | |
50 | 43e6 | 5000 / 6453 | yoyo@Home | October 25, 2024 00:15:26 UTC 2024 年 10 月 25 日 (金) 9 時 15 分 26 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | March 2, 2023 10:25:05 UTC 2023 年 3 月 2 日 (木) 19 時 25 分 5 秒 (日本時間) |
composite number 合成数 | 21764821787414182656748292171917128812299432170240912118582853963621417815267591702390876384440609457710324015081171372198704937978880449111371965539807025602578093478317347<173> |
prime factors 素因数 | 90966038082528045873248227360165376495719<41> |
composite cofactor 合成数の残り | 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013<132> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2480942449 Step 1 took 35604ms ********** Factor found in step 1: 90966038082528045873248227360165376495719 Found probable prime factor of 41 digits: 90966038082528045873248227360165376495719 Composite cofactor 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 has 132 digits |
name 名前 | Ignacio Santos |
---|---|
date 日付 | March 16, 2023 12:12:55 UTC 2023 年 3 月 16 日 (木) 21 時 12 分 55 秒 (日本時間) |
composite number 合成数 | 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013<132> |
prime factors 素因数 | 2784564515997905475834856282536028942259162511506071205271841<61> 85924804154882575471976567349929911019865740054968507931036735620493893<71> |
factorization results 素因数分解の結果 | -> makeJobFile(): Adjusted to q0=4000000, q1=4100000. -> client 1 q0: 4000000 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 -> makeJobFile(): Adjusted to q0=4100001, q1=4200000. -> client 1 q0: 4100001 LatSieveTime: 89 LatSieveTime: 100 LatSieveTime: 101 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 -> makeJobFile(): Adjusted to q0=4200001, q1=4300000. -> client 1 q0: 4200001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 98 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 -> makeJobFile(): Adjusted to q0=4300001, q1=4400000. -> client 1 q0: 4300001 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=4400001, q1=4500000. -> client 1 q0: 4400001 LatSieveTime: 95 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=4500001, q1=4600000. -> client 1 q0: 4500001 LatSieveTime: 91 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=4600001, q1=4700000. -> client 1 q0: 4600001 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 151 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=4700001, q1=4800000. -> client 1 q0: 4700001 LatSieveTime: 97 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=4800001, q1=4900000. -> client 1 q0: 4800001 LatSieveTime: 97 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 150 LatSieveTime: 153 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=4900001, q1=5000000. -> client 1 q0: 4900001 LatSieveTime: 96 LatSieveTime: 97 LatSieveTime: 100 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=5000001, q1=5100000. -> client 1 q0: 5000001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5100001, q1=5200000. -> client 1 q0: 5100001 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 -> makeJobFile(): Adjusted to q0=5200001, q1=5300000. -> client 1 q0: 5200001 LatSieveTime: 99 LatSieveTime: 106 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 144 LatSieveTime: 145 -> makeJobFile(): Adjusted to q0=5300001, q1=5400000. -> client 1 q0: 5300001 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=5400001, q1=5500000. -> client 1 q0: 5400001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5500001, q1=5600000. -> client 1 q0: 5500001 LatSieveTime: 102 LatSieveTime: 103 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 -> makeJobFile(): Adjusted to q0=5600001, q1=5700000. -> client 1 q0: 5600001 LatSieveTime: 95 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=5700001, q1=5800000. -> client 1 q0: 5700001 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 152 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=5800001, q1=5900000. -> client 1 q0: 5800001 LatSieveTime: 97 LatSieveTime: 105 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 153 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=5900001, q1=6000000. -> client 1 q0: 5900001 LatSieveTime: 98 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=6000001, q1=6100000. -> client 1 q0: 6000001 LatSieveTime: 91 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 146 -> makeJobFile(): Adjusted to q0=6100001, q1=6200000. -> client 1 q0: 6100001 LatSieveTime: 108 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=6200001, q1=6300000. -> client 1 q0: 6200001 LatSieveTime: 106 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 157 LatSieveTime: 158 LatSieveTime: 161 -> makeJobFile(): Adjusted to q0=6300001, q1=6400000. -> client 1 q0: 6300001 LatSieveTime: 99 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 151 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=6400001, q1=6500000. -> client 1 q0: 6400001 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=6500001, q1=6600000. -> client 1 q0: 6500001 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=6600001, q1=6700000. -> client 1 q0: 6600001 LatSieveTime: 108 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=6700001, q1=6800000. -> client 1 q0: 6700001 LatSieveTime: 97 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 166 -> makeJobFile(): Adjusted to q0=6800001, q1=6900000. -> client 1 q0: 6800001 LatSieveTime: 81 LatSieveTime: 107 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 154 LatSieveTime: 156 LatSieveTime: 162 -> makeJobFile(): Adjusted to q0=6900001, q1=7000000. -> client 1 q0: 6900001 LatSieveTime: 104 LatSieveTime: 105 LatSieveTime: 105 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 153 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 155 LatSieveTime: 159 LatSieveTime: 165 -> makeJobFile(): Adjusted to q0=7000001, q1=7100000. -> client 1 q0: 7000001 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7100001, q1=7200000. -> client 1 q0: 7100001 LatSieveTime: 107 LatSieveTime: 114 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=7200001, q1=7300000. -> client 1 q0: 7200001 LatSieveTime: 106 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 155 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=7300001, q1=7400000. -> client 1 q0: 7300001 LatSieveTime: 107 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=7400001, q1=7500000. -> client 1 q0: 7400001 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 149 LatSieveTime: 152 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=7500001, q1=7600000. -> client 1 q0: 7500001 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 152 LatSieveTime: 155 -> makeJobFile(): Adjusted to q0=7600001, q1=7700000. -> client 1 q0: 7600001 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 154 LatSieveTime: 164 -> makeJobFile(): Adjusted to q0=7700001, q1=7800000. -> client 1 q0: 7700001 LatSieveTime: 103 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 153 LatSieveTime: 156 -> makeJobFile(): Adjusted to q0=7800001, q1=7900000. -> client 1 q0: 7800001 LatSieveTime: 105 LatSieveTime: 109 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=7900001, q1=8000000. -> client 1 q0: 7900001 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 150 LatSieveTime: 151 LatSieveTime: 151 LatSieveTime: 154 LatSieveTime: 160 -> makeJobFile(): Adjusted to q0=8000001, q1=8100000. -> client 1 q0: 8000001 LatSieveTime: 116 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 148 LatSieveTime: 151 LatSieveTime: 153 LatSieveTime: 154 LatSieveTime: 154 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=8100001, q1=8200000. -> client 1 q0: 8100001 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=8200001, q1=8300000. -> client 1 q0: 8200001 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=8300001, q1=8400000. -> client 1 q0: 8300001 LatSieveTime: 111 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=8400001, q1=8500000. -> client 1 q0: 8400001 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 157 -> makeJobFile(): Adjusted to q0=8500001, q1=8600000. -> client 1 q0: 8500001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 110 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 147 LatSieveTime: 150 LatSieveTime: 158 -> makeJobFile(): Adjusted to q0=8600001, q1=8700000. -> client 1 q0: 8600001 LatSieveTime: 97 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 146 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=8700001, q1=8800000. -> client 1 q0: 8700001 LatSieveTime: 99 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 112 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 146 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 147 LatSieveTime: 151 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=8800001, q1=8900000. -> client 1 q0: 8800001 LatSieveTime: 103 LatSieveTime: 105 LatSieveTime: 106 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 152 LatSieveTime: 159 -> makeJobFile(): Adjusted to q0=8900001, q1=9000000. -> client 1 q0: 8900001 LatSieveTime: 95 LatSieveTime: 103 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9000001, q1=9100000. -> client 1 q0: 9000001 LatSieveTime: 89 LatSieveTime: 101 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 148 LatSieveTime: 149 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9100001, q1=9200000. -> client 1 q0: 9100001 LatSieveTime: 100 LatSieveTime: 103 LatSieveTime: 104 LatSieveTime: 107 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9200001, q1=9300000. -> client 1 q0: 9200001 LatSieveTime: 104 LatSieveTime: 106 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 148 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=9300001, q1=9400000. -> client 1 q0: 9300001 LatSieveTime: 98 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 149 LatSieveTime: 149 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=9400001, q1=9500000. -> client 1 q0: 9400001 LatSieveTime: 101 LatSieveTime: 103 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 132 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 150 -> makeJobFile(): Adjusted to q0=9500001, q1=9600000. -> client 1 q0: 9500001 LatSieveTime: 107 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 147 LatSieveTime: 149 LatSieveTime: 151 -> makeJobFile(): Adjusted to q0=9600001, q1=9700000. -> client 1 q0: 9600001 LatSieveTime: 105 LatSieveTime: 108 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 142 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=9700001, q1=9800000. -> client 1 q0: 9700001 LatSieveTime: 107 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 141 LatSieveTime: 145 LatSieveTime: 145 LatSieveTime: 148 LatSieveTime: 152 -> makeJobFile(): Adjusted to q0=9800001, q1=9900000. -> client 1 q0: 9800001 LatSieveTime: 91 LatSieveTime: 98 LatSieveTime: 98 LatSieveTime: 104 LatSieveTime: 110 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 139 LatSieveTime: 142 LatSieveTime: 146 LatSieveTime: 153 -> makeJobFile(): Adjusted to q0=9900001, q1=10000000. -> client 1 q0: 9900001 LatSieveTime: 103 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 140 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=10000001, q1=10100000. -> client 1 q0: 10000001 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 144 -> makeJobFile(): Adjusted to q0=10100001, q1=10200000. -> client 1 q0: 10100001 LatSieveTime: 102 LatSieveTime: 106 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 130 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 147 -> makeJobFile(): Adjusted to q0=10200001, q1=10300000. -> client 1 q0: 10200001 LatSieveTime: 101 LatSieveTime: 106 LatSieveTime: 106 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 149 -> makeJobFile(): Adjusted to q0=10300001, q1=10400000. -> client 1 q0: 10300001 LatSieveTime: 99 LatSieveTime: 101 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 119 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 142 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 154 -> makeJobFile(): Adjusted to q0=10400001, q1=10500000. -> client 1 q0: 10400001 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 105 LatSieveTime: 107 LatSieveTime: 109 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 136 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 139 LatSieveTime: 141 LatSieveTime: 144 LatSieveTime: 145 LatSieveTime: 146 LatSieveTime: 148 -> makeJobFile(): Adjusted to q0=10500001, q1=10600000. -> client 1 q0: 10500001 LatSieveTime: 96 LatSieveTime: 101 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 112 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 136 LatSieveTime: 141 LatSieveTime: 143 LatSieveTime: 143 LatSieveTime: 144 LatSieveTime: 144 LatSieveTime: 146 LatSieveTime: 149 Thu Mar 16 12:01:50 2023 Thu Mar 16 12:01:50 2023 Thu Mar 16 12:01:50 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:01:50 2023 random seeds: 1d999c30 0ffde34a Thu Mar 16 12:01:50 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:01:50 2023 searching for 15-digit factors Thu Mar 16 12:01:51 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:01:51 2023 R0: -26025490056904909454930232 Thu Mar 16 12:01:51 2023 R1: 403388534529871 Thu Mar 16 12:01:51 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:01:51 2023 A1: -10364548874012366526606930 Thu Mar 16 12:01:51 2023 A2: -244554365540966371636 Thu Mar 16 12:01:51 2023 A3: -33083122419222 Thu Mar 16 12:01:51 2023 A4: -49006212727 Thu Mar 16 12:01:51 2023 A5: 20040 Thu Mar 16 12:01:51 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:01:51 2023 Thu Mar 16 12:01:51 2023 commencing relation filtering Thu Mar 16 12:01:51 2023 estimated available RAM is 65413.5 MB Thu Mar 16 12:01:51 2023 commencing duplicate removal, pass 1 Thu Mar 16 12:02:31 2023 found 2571006 hash collisions in 20027189 relations Thu Mar 16 12:02:52 2023 added 120556 free relations Thu Mar 16 12:02:52 2023 commencing duplicate removal, pass 2 Thu Mar 16 12:02:59 2023 found 2231064 duplicates and 17916681 unique relations Thu Mar 16 12:02:59 2023 memory use: 98.6 MB Thu Mar 16 12:02:59 2023 reading ideals above 720000 Thu Mar 16 12:02:59 2023 commencing singleton removal, initial pass Thu Mar 16 12:04:01 2023 memory use: 376.5 MB Thu Mar 16 12:04:01 2023 reading all ideals from disk Thu Mar 16 12:04:01 2023 memory use: 554.4 MB Thu Mar 16 12:04:02 2023 keeping 20258536 ideals with weight <= 200, target excess is 117662 Thu Mar 16 12:04:03 2023 commencing in-memory singleton removal Thu Mar 16 12:04:04 2023 begin with 17916681 relations and 20258536 unique ideals Thu Mar 16 12:04:16 2023 reduce to 5658207 relations and 5698195 ideals in 29 passes Thu Mar 16 12:04:16 2023 max relations containing the same ideal: 88 Thu Mar 16 12:04:17 2023 filtering wants 1000000 more relations Thu Mar 16 12:04:17 2023 elapsed time 00:02:27 -> makeJobFile(): Adjusted to q0=10600001, q1=10700000. -> client 1 q0: 10600001 LatSieveTime: 89 LatSieveTime: 101 LatSieveTime: 102 LatSieveTime: 102 LatSieveTime: 108 LatSieveTime: 108 LatSieveTime: 110 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 118 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 133 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 140 LatSieveTime: 141 LatSieveTime: 145 Thu Mar 16 12:06:48 2023 Thu Mar 16 12:06:48 2023 Thu Mar 16 12:06:48 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:06:48 2023 random seeds: 914e4bf8 fc71fa38 Thu Mar 16 12:06:48 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:06:49 2023 searching for 15-digit factors Thu Mar 16 12:06:49 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:06:49 2023 R0: -26025490056904909454930232 Thu Mar 16 12:06:49 2023 R1: 403388534529871 Thu Mar 16 12:06:49 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:06:49 2023 A1: -10364548874012366526606930 Thu Mar 16 12:06:49 2023 A2: -244554365540966371636 Thu Mar 16 12:06:49 2023 A3: -33083122419222 Thu Mar 16 12:06:49 2023 A4: -49006212727 Thu Mar 16 12:06:49 2023 A5: 20040 Thu Mar 16 12:06:49 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:06:49 2023 Thu Mar 16 12:06:49 2023 commencing relation filtering Thu Mar 16 12:06:49 2023 estimated available RAM is 65413.5 MB Thu Mar 16 12:06:49 2023 commencing duplicate removal, pass 1 Thu Mar 16 12:07:31 2023 found 2636988 hash collisions in 20425347 relations Thu Mar 16 12:07:52 2023 added 72 free relations Thu Mar 16 12:07:52 2023 commencing duplicate removal, pass 2 Thu Mar 16 12:07:59 2023 found 2283836 duplicates and 18141583 unique relations Thu Mar 16 12:07:59 2023 memory use: 98.6 MB Thu Mar 16 12:07:59 2023 reading ideals above 720000 Thu Mar 16 12:07:59 2023 commencing singleton removal, initial pass Thu Mar 16 12:09:02 2023 memory use: 376.5 MB Thu Mar 16 12:09:02 2023 reading all ideals from disk Thu Mar 16 12:09:02 2023 memory use: 561.5 MB Thu Mar 16 12:09:03 2023 keeping 20360986 ideals with weight <= 200, target excess is 118114 Thu Mar 16 12:09:04 2023 commencing in-memory singleton removal Thu Mar 16 12:09:05 2023 begin with 18141583 relations and 20360986 unique ideals Thu Mar 16 12:09:18 2023 reduce to 5971851 relations and 5942074 ideals in 29 passes Thu Mar 16 12:09:18 2023 max relations containing the same ideal: 91 Thu Mar 16 12:09:18 2023 filtering wants 1000000 more relations Thu Mar 16 12:09:18 2023 elapsed time 00:02:30 -> makeJobFile(): Adjusted to q0=10700001, q1=10800000. -> client 1 q0: 10700001 LatSieveTime: 102 LatSieveTime: 109 LatSieveTime: 110 LatSieveTime: 111 LatSieveTime: 111 LatSieveTime: 112 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 114 LatSieveTime: 115 LatSieveTime: 115 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 120 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 125 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 130 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 137 LatSieveTime: 137 LatSieveTime: 138 LatSieveTime: 139 LatSieveTime: 140 LatSieveTime: 143 Thu Mar 16 12:11:48 2023 Thu Mar 16 12:11:48 2023 Thu Mar 16 12:11:48 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:11:48 2023 random seeds: 5522f274 023451da Thu Mar 16 12:11:48 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:11:48 2023 searching for 15-digit factors Thu Mar 16 12:11:48 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:11:48 2023 R0: -26025490056904909454930232 Thu Mar 16 12:11:48 2023 R1: 403388534529871 Thu Mar 16 12:11:48 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:11:48 2023 A1: -10364548874012366526606930 Thu Mar 16 12:11:48 2023 A2: -244554365540966371636 Thu Mar 16 12:11:48 2023 A3: -33083122419222 Thu Mar 16 12:11:48 2023 A4: -49006212727 Thu Mar 16 12:11:48 2023 A5: 20040 Thu Mar 16 12:11:48 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:11:48 2023 Thu Mar 16 12:11:48 2023 commencing relation filtering Thu Mar 16 12:11:48 2023 estimated available RAM is 65413.5 MB Thu Mar 16 12:11:48 2023 commencing duplicate removal, pass 1 Thu Mar 16 12:12:31 2023 found 2696652 hash collisions in 20701769 relations Thu Mar 16 12:12:51 2023 added 65 free relations Thu Mar 16 12:12:51 2023 commencing duplicate removal, pass 2 Thu Mar 16 12:12:59 2023 found 2336892 duplicates and 18364942 unique relations Thu Mar 16 12:12:59 2023 memory use: 98.6 MB Thu Mar 16 12:12:59 2023 reading ideals above 720000 Thu Mar 16 12:12:59 2023 commencing singleton removal, initial pass Thu Mar 16 12:14:03 2023 memory use: 376.5 MB Thu Mar 16 12:14:03 2023 reading all ideals from disk Thu Mar 16 12:14:03 2023 memory use: 568.4 MB Thu Mar 16 12:14:04 2023 keeping 20460868 ideals with weight <= 200, target excess is 118648 Thu Mar 16 12:14:05 2023 commencing in-memory singleton removal Thu Mar 16 12:14:05 2023 begin with 18364942 relations and 20460868 unique ideals Thu Mar 16 12:14:17 2023 reduce to 6277733 relations and 6175622 ideals in 23 passes Thu Mar 16 12:14:17 2023 max relations containing the same ideal: 93 Thu Mar 16 12:14:17 2023 filtering wants 1000000 more relations Thu Mar 16 12:14:17 2023 elapsed time 00:02:29 -> makeJobFile(): Adjusted to q0=10800001, q1=10900000. -> client 1 q0: 10800001 LatSieveTime: 96 LatSieveTime: 102 LatSieveTime: 107 LatSieveTime: 108 LatSieveTime: 109 LatSieveTime: 109 LatSieveTime: 113 LatSieveTime: 113 LatSieveTime: 116 LatSieveTime: 116 LatSieveTime: 117 LatSieveTime: 119 LatSieveTime: 120 LatSieveTime: 121 LatSieveTime: 121 LatSieveTime: 122 LatSieveTime: 123 LatSieveTime: 123 LatSieveTime: 124 LatSieveTime: 124 LatSieveTime: 125 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 126 LatSieveTime: 127 LatSieveTime: 127 LatSieveTime: 128 LatSieveTime: 128 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 129 LatSieveTime: 130 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 131 LatSieveTime: 132 LatSieveTime: 132 LatSieveTime: 133 LatSieveTime: 134 LatSieveTime: 134 LatSieveTime: 135 LatSieveTime: 143 LatSieveTime: 147 LatSieveTime: 148 Thu Mar 16 12:16:51 2023 Thu Mar 16 12:16:51 2023 Thu Mar 16 12:16:51 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:16:51 2023 random seeds: 0c6bdf14 ca6b2a65 Thu Mar 16 12:16:51 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:16:52 2023 searching for 15-digit factors Thu Mar 16 12:16:52 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:16:52 2023 R0: -26025490056904909454930232 Thu Mar 16 12:16:52 2023 R1: 403388534529871 Thu Mar 16 12:16:52 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:16:52 2023 A1: -10364548874012366526606930 Thu Mar 16 12:16:52 2023 A2: -244554365540966371636 Thu Mar 16 12:16:52 2023 A3: -33083122419222 Thu Mar 16 12:16:52 2023 A4: -49006212727 Thu Mar 16 12:16:52 2023 A5: 20040 Thu Mar 16 12:16:52 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:16:52 2023 Thu Mar 16 12:16:52 2023 commencing relation filtering Thu Mar 16 12:16:52 2023 estimated available RAM is 65413.5 MB Thu Mar 16 12:16:52 2023 commencing duplicate removal, pass 1 Thu Mar 16 12:17:35 2023 found 2756460 hash collisions in 20978021 relations Thu Mar 16 12:17:56 2023 added 61 free relations Thu Mar 16 12:17:56 2023 commencing duplicate removal, pass 2 Thu Mar 16 12:18:04 2023 found 2390457 duplicates and 18587625 unique relations Thu Mar 16 12:18:04 2023 memory use: 98.6 MB Thu Mar 16 12:18:04 2023 reading ideals above 720000 Thu Mar 16 12:18:04 2023 commencing singleton removal, initial pass Thu Mar 16 12:19:08 2023 memory use: 689.0 MB Thu Mar 16 12:19:08 2023 reading all ideals from disk Thu Mar 16 12:19:08 2023 memory use: 575.4 MB Thu Mar 16 12:19:09 2023 keeping 20558903 ideals with weight <= 200, target excess is 119251 Thu Mar 16 12:19:10 2023 commencing in-memory singleton removal Thu Mar 16 12:19:11 2023 begin with 18587625 relations and 20558903 unique ideals Thu Mar 16 12:19:22 2023 reduce to 6587910 relations and 6410520 ideals in 23 passes Thu Mar 16 12:19:22 2023 max relations containing the same ideal: 97 Thu Mar 16 12:19:24 2023 removing 333829 relations and 314300 ideals in 19529 cliques Thu Mar 16 12:19:24 2023 commencing in-memory singleton removal Thu Mar 16 12:19:25 2023 begin with 6254081 relations and 6410520 unique ideals Thu Mar 16 12:19:28 2023 reduce to 6239225 relations and 6081290 ideals in 10 passes Thu Mar 16 12:19:28 2023 max relations containing the same ideal: 93 Thu Mar 16 12:19:30 2023 removing 238933 relations and 219405 ideals in 19529 cliques Thu Mar 16 12:19:30 2023 commencing in-memory singleton removal Thu Mar 16 12:19:30 2023 begin with 6000292 relations and 6081290 unique ideals Thu Mar 16 12:19:33 2023 reduce to 5991849 relations and 5853410 ideals in 9 passes Thu Mar 16 12:19:33 2023 max relations containing the same ideal: 93 Thu Mar 16 12:19:35 2023 relations with 0 large ideals: 441 Thu Mar 16 12:19:35 2023 relations with 1 large ideals: 1491 Thu Mar 16 12:19:35 2023 relations with 2 large ideals: 25288 Thu Mar 16 12:19:35 2023 relations with 3 large ideals: 180020 Thu Mar 16 12:19:35 2023 relations with 4 large ideals: 673993 Thu Mar 16 12:19:35 2023 relations with 5 large ideals: 1429060 Thu Mar 16 12:19:35 2023 relations with 6 large ideals: 1767121 Thu Mar 16 12:19:35 2023 relations with 7+ large ideals: 1914435 Thu Mar 16 12:19:35 2023 commencing 2-way merge Thu Mar 16 12:19:38 2023 reduce to 3310651 relation sets and 3172214 unique ideals Thu Mar 16 12:19:38 2023 ignored 2 oversize relation sets Thu Mar 16 12:19:38 2023 commencing full merge Thu Mar 16 12:20:18 2023 memory use: 362.8 MB Thu Mar 16 12:20:19 2023 found 1671641 cycles, need 1658414 Thu Mar 16 12:20:19 2023 weight of 1658414 cycles is about 116140665 (70.03/cycle) Thu Mar 16 12:20:19 2023 distribution of cycle lengths: Thu Mar 16 12:20:19 2023 1 relations: 242260 Thu Mar 16 12:20:19 2023 2 relations: 210786 Thu Mar 16 12:20:19 2023 3 relations: 202527 Thu Mar 16 12:20:19 2023 4 relations: 173313 Thu Mar 16 12:20:19 2023 5 relations: 146557 Thu Mar 16 12:20:19 2023 6 relations: 123160 Thu Mar 16 12:20:19 2023 7 relations: 102776 Thu Mar 16 12:20:19 2023 8 relations: 84151 Thu Mar 16 12:20:19 2023 9 relations: 68641 Thu Mar 16 12:20:19 2023 10+ relations: 304243 Thu Mar 16 12:20:19 2023 heaviest cycle: 26 relations Thu Mar 16 12:20:19 2023 commencing cycle optimization Thu Mar 16 12:20:21 2023 start with 9651178 relations Thu Mar 16 12:20:33 2023 pruned 176224 relations Thu Mar 16 12:20:33 2023 memory use: 336.0 MB Thu Mar 16 12:20:33 2023 distribution of cycle lengths: Thu Mar 16 12:20:33 2023 1 relations: 242260 Thu Mar 16 12:20:33 2023 2 relations: 215144 Thu Mar 16 12:20:33 2023 3 relations: 208500 Thu Mar 16 12:20:33 2023 4 relations: 175772 Thu Mar 16 12:20:33 2023 5 relations: 148453 Thu Mar 16 12:20:33 2023 6 relations: 123545 Thu Mar 16 12:20:33 2023 7 relations: 102296 Thu Mar 16 12:20:33 2023 8 relations: 82966 Thu Mar 16 12:20:33 2023 9 relations: 67828 Thu Mar 16 12:20:33 2023 10+ relations: 291650 Thu Mar 16 12:20:33 2023 heaviest cycle: 26 relations Thu Mar 16 12:20:34 2023 RelProcTime: 222 Thu Mar 16 12:20:34 2023 elapsed time 00:03:43 Thu Mar 16 12:20:34 2023 Thu Mar 16 12:20:34 2023 Thu Mar 16 12:20:34 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:20:34 2023 random seeds: da27a4a8 6650b47d Thu Mar 16 12:20:34 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:20:35 2023 searching for 15-digit factors Thu Mar 16 12:20:35 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:20:35 2023 R0: -26025490056904909454930232 Thu Mar 16 12:20:35 2023 R1: 403388534529871 Thu Mar 16 12:20:35 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:20:35 2023 A1: -10364548874012366526606930 Thu Mar 16 12:20:35 2023 A2: -244554365540966371636 Thu Mar 16 12:20:35 2023 A3: -33083122419222 Thu Mar 16 12:20:35 2023 A4: -49006212727 Thu Mar 16 12:20:35 2023 A5: 20040 Thu Mar 16 12:20:35 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:20:35 2023 Thu Mar 16 12:20:35 2023 commencing linear algebra Thu Mar 16 12:20:35 2023 read 1658414 cycles Thu Mar 16 12:20:37 2023 cycles contain 5795285 unique relations Thu Mar 16 12:20:49 2023 read 5795285 relations Thu Mar 16 12:20:55 2023 using 20 quadratic characters above 268434842 Thu Mar 16 12:21:10 2023 building initial matrix Thu Mar 16 12:21:47 2023 memory use: 733.2 MB Thu Mar 16 12:21:48 2023 read 1658414 cycles Thu Mar 16 12:21:49 2023 matrix is 1658233 x 1658414 (504.9 MB) with weight 156603251 (94.43/col) Thu Mar 16 12:21:49 2023 sparse part has weight 112445980 (67.80/col) Thu Mar 16 12:21:57 2023 filtering completed in 2 passes Thu Mar 16 12:21:58 2023 matrix is 1654194 x 1654375 (504.5 MB) with weight 156432942 (94.56/col) Thu Mar 16 12:21:58 2023 sparse part has weight 112393558 (67.94/col) Thu Mar 16 12:22:00 2023 matrix starts at (0, 0) Thu Mar 16 12:22:01 2023 matrix is 1654194 x 1654375 (504.5 MB) with weight 156432942 (94.56/col) Thu Mar 16 12:22:01 2023 sparse part has weight 112393558 (67.94/col) Thu Mar 16 12:22:01 2023 saving the first 48 matrix rows for later Thu Mar 16 12:22:01 2023 matrix includes 64 packed rows Thu Mar 16 12:22:01 2023 matrix is 1654146 x 1654375 (485.5 MB) with weight 126048491 (76.19/col) Thu Mar 16 12:22:01 2023 sparse part has weight 110727666 (66.93/col) Thu Mar 16 12:22:01 2023 using block size 8192 and superblock size 12582912 for processor cache size 131072 kB Thu Mar 16 12:22:06 2023 commencing Lanczos iteration (32 threads) Thu Mar 16 12:22:06 2023 memory use: 384.4 MB Thu Mar 16 12:22:08 2023 linear algebra at 0.1%, ETA 0h36m Thu Mar 16 12:22:08 2023 checkpointing every 3650000 dimensions Thu Mar 16 12:49:51 2023 lanczos halted after 26162 iterations (dim = 1654146) Thu Mar 16 12:49:52 2023 recovered 34 nontrivial dependencies Thu Mar 16 12:49:52 2023 BLanczosTime: 1757 Thu Mar 16 12:49:52 2023 elapsed time 00:29:18 Thu Mar 16 12:49:52 2023 Thu Mar 16 12:49:52 2023 Thu Mar 16 12:49:52 2023 Msieve v. 1.52 (SVN 927) Thu Mar 16 12:49:52 2023 random seeds: aff364a4 8e896857 Thu Mar 16 12:49:52 2023 factoring 239263160693755416227270258974090144583313050213076811283924223663271050689265150539756347362189777906896058229256047373461745367013 (132 digits) Thu Mar 16 12:49:53 2023 searching for 15-digit factors Thu Mar 16 12:49:53 2023 commencing number field sieve (132-digit input) Thu Mar 16 12:49:53 2023 R0: -26025490056904909454930232 Thu Mar 16 12:49:53 2023 R1: 403388534529871 Thu Mar 16 12:49:53 2023 A0: 4914144350808060223977260880475 Thu Mar 16 12:49:53 2023 A1: -10364548874012366526606930 Thu Mar 16 12:49:53 2023 A2: -244554365540966371636 Thu Mar 16 12:49:53 2023 A3: -33083122419222 Thu Mar 16 12:49:53 2023 A4: -49006212727 Thu Mar 16 12:49:53 2023 A5: 20040 Thu Mar 16 12:49:53 2023 skew 209506.95, size 8.963e-013, alpha -5.801, combined = 5.701e-011 rroots = 3 Thu Mar 16 12:49:53 2023 Thu Mar 16 12:49:53 2023 commencing square root phase Thu Mar 16 12:49:53 2023 reading relations for dependency 1 Thu Mar 16 12:49:53 2023 read 827552 cycles Thu Mar 16 12:49:54 2023 cycles contain 2900602 unique relations Thu Mar 16 12:50:01 2023 read 2900602 relations Thu Mar 16 12:50:09 2023 multiplying 2900602 relations Thu Mar 16 12:51:41 2023 multiply complete, coefficients have about 138.55 million bits Thu Mar 16 12:51:42 2023 initial square root is modulo 93893 Thu Mar 16 12:53:32 2023 sqrtTime: 219 Thu Mar 16 12:53:32 2023 prp61 factor: 2784564515997905475834856282536028942259162511506071205271841 Thu Mar 16 12:53:32 2023 prp71 factor: 85924804154882575471976567349929911019865740054968507931036735620493893 Thu Mar 16 12:53:32 2023 elapsed time 00:03:40 |
software ソフトウェア | GNFS, Msieve |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 6, 2023 21:02:38 UTC 2023 年 2 月 7 日 (火) 6 時 2 分 38 秒 (日本時間) | |
45 | 11e6 | 5480 | 1000 | Dmitry Domanov | March 1, 2023 15:03:55 UTC 2023 年 3 月 2 日 (木) 0 時 3 分 55 秒 (日本時間) |
4480 | Ignacio Santos | March 5, 2023 10:51:14 UTC 2023 年 3 月 5 日 (日) 19 時 51 分 14 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 4142 | 1792 | Dmitry Domanov | February 9, 2023 22:17:58 UTC 2023 年 2 月 10 日 (金) 7 時 17 分 58 秒 (日本時間) |
2350 | Ignacio Santos | September 12, 2024 16:38:28 UTC 2024 年 9 月 13 日 (金) 1 時 38 分 28 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 14, 2023 18:52:58 UTC 2023 年 4 月 15 日 (土) 3 時 52 分 58 秒 (日本時間) |
composite number 合成数 | 94975447256387697083400468895648471525557567096026951700699349414107958490215089599869719523925888554445336448146993355243591745771023514894610883519084544399631453896983433315063538212933256393303652003474769<209> |
prime factors 素因数 | 19692594709923688409998870619795791781<38> 4822901636650589473067580566807429988104164784690715938189733174123301470633814099328912408993458459798468559875758540961492321883872050219586099334808029004113182669727549<172> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:2441902224 Step 1 took 33977ms Step 2 took 15223ms ********** Factor found in step 2: 19692594709923688409998870619795791781 Found prime factor of 38 digits: 19692594709923688409998870619795791781 Prime cofactor 4822901636650589473067580566807429988104164784690715938189733174123301470633814099328912408993458459798468559875758540961492321883872050219586099334808029004113182669727549 has 172 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 23, 2023 11:21:20 UTC 2023 年 2 月 23 日 (木) 20 時 21 分 20 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | April 13, 2023 07:30:24 UTC 2023 年 4 月 13 日 (木) 16 時 30 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:02:29 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 29 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:30:34 UTC 2023 年 4 月 13 日 (木) 16 時 30 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:18:04 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 4 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:38:07 UTC 2024 年 10 月 4 日 (金) 0 時 38 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1000 | Dmitry Domanov | February 8, 2023 20:54:07 UTC 2023 年 2 月 9 日 (木) 5 時 54 分 7 秒 (日本時間) | |
45 | 11e6 | 1000 / 4213 | Dmitry Domanov | March 1, 2023 15:04:03 UTC 2023 年 3 月 2 日 (木) 0 時 4 分 3 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 25, 2023 16:52:45 UTC 2023 年 2 月 26 日 (日) 1 時 52 分 45 秒 (日本時間) |
composite number 合成数 | 183646293019308309965349901896647621520423977997540288079664828826323685256495481310646434262163789245379249165033532820007218278378488399339523363566260359101953502657716413915695502988240510820192164019193427594406663518217<225> |
prime factors 素因数 | 930133617592777009089070000891684020989<39> |
composite cofactor 合成数の残り | 197440765010292025398638066587340031363966466736283086195522774975054769797014264815187758825169448665769215834291997033133616913999749988770520753576513249644446691830454949990355072253<186> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @969cdeca2a91 with GMP-ECM 7.0.5-dev on Thu Feb 23 22:33:44 2023 Input number is 183646293019308309965349901896647621520423977997540288079664828826323685256495481310646434262163789245379249165033532820007218278378488399339523363566260359101953502657716413915695502988240510820192164019193427594406663518217 (225 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1219389364 Step 1 took 0ms Step 2 took 5895ms ********** Factor found in step 2: 930133617592777009089070000891684020989 Found prime factor of 39 digits: 930133617592777009089070000891684020989 Composite cofactor 197440765010292025398638066587340031363966466736283086195522774975054769797014264815187758825169448665769215834291997033133616913999749988770520753576513249644446691830454949990355072253 has 186 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:02:37 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 37 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 1, 2023 15:04:14 UTC 2023 年 3 月 2 日 (木) 0 時 4 分 14 秒 (日本時間) |
composite cofactor 合成数の残り | 25107996985098205531587946537826887263981349198943446225197200207313474968322355391770692245424089260321751069977766617924688224167751962256205160644861<152> |
---|
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 25, 2022 12:43:35 UTC 2022 年 12 月 25 日 (日) 21 時 43 分 35 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | December 29, 2022 15:04:21 UTC 2022 年 12 月 30 日 (金) 0 時 4 分 21 秒 (日本時間) | |
50 | 43e6 | 6454 | Ignacio Santos | January 29, 2024 08:42:51 UTC 2024 年 1 月 29 日 (月) 17 時 42 分 51 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2350 | Ignacio Santos | December 26, 2022 16:29:45 UTC 2022 年 12 月 27 日 (火) 1 時 29 分 45 秒 (日本時間) | |
45 | 11e6 | 4480 | Ignacio Santos | January 3, 2023 14:41:00 UTC 2023 年 1 月 3 日 (火) 23 時 41 分 0 秒 (日本時間) | |
50 | 43e6 | 1792 / 6453 | Dmitry Domanov | April 27, 2024 21:08:32 UTC 2024 年 4 月 28 日 (日) 6 時 8 分 32 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 15, 2023 07:13:08 UTC 2023 年 2 月 15 日 (水) 16 時 13 分 8 秒 (日本時間) |
composite number 合成数 | 95605868576226956753416667454726658832329437628041560694160195628287201748472522374995548702172589366272360209565392956402641124575008588863803078804939759567299122094399111099721346509447319232348666566747769623267884372406492011984381<236> |
prime factors 素因数 | 5970711096191689089307303940610662239<37> |
composite cofactor 合成数の残り | 16012476074618221621138392379637992999037376142269871558828354478966798687320829239116970928715260598868875866174572172060628528881654014172929421329275633882569127067836720012778471159889620657132579<200> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b80b9bafcc17 with GMP-ECM 7.0.5-dev on Fri Feb 10 13:06:10 2023 Input number is 95605868576226956753416667454726658832329437628041560694160195628287201748472522374995548702172589366272360209565392956402641124575008588863803078804939759567299122094399111099721346509447319232348666566747769623267884372406492011984381 (236 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:1537913796 Step 1 took 0ms Step 2 took 6152ms ********** Factor found in step 2: 5970711096191689089307303940610662239 Found prime factor of 37 digits: 5970711096191689089307303940610662239 Composite cofactor 16012476074618221621138392379637992999037376142269871558828354478966798687320829239116970928715260598868875866174572172060628528881654014172929421329275633882569127067836720012778471159889620657132579 has 200 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 9, 2023 22:18:12 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 12 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | March 1, 2023 15:04:33 UTC 2023 年 3 月 2 日 (木) 0 時 4 分 33 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:14 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 14 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:41:34 UTC 2024 年 10 月 4 日 (金) 0 時 41 分 34 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:25 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 25 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:45:02 UTC 2024 年 10 月 4 日 (金) 0 時 45 分 2 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 15, 2023 09:23:57 UTC 2023 年 2 月 15 日 (水) 18 時 23 分 57 秒 (日本時間) |
composite number 合成数 | 124075399702274498462848429604147505787384573386131582309569622666681585459320675873575913593086377030007882003751240097068456290511039355991131528939475924666041826841917967089689719075125947907117727071865040070036554167186342743<231> |
prime factors 素因数 | 24065670595705888353623219659579535417363609<44> 5155700906353037748719719081129792761158115346946545779344829978610541870844732794079660037458655553998089929418723597929920592633975141415997622143298593575838779933374806167146493711727<187> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b80b9bafcc17 with GMP-ECM 7.0.5-dev on Fri Feb 10 13:10:38 2023 Input number is 124075399702274498462848429604147505787384573386131582309569622666681585459320675873575913593086377030007882003751240097068456290511039355991131528939475924666041826841917967089689719075125947907117727071865040070036554167186342743 (231 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:4032124661 Step 1 took 0ms Step 2 took 5757ms ********** Factor found in step 2: 24065670595705888353623219659579535417363609 Found prime factor of 44 digits: 24065670595705888353623219659579535417363609 Prime cofactor 5155700906353037748719719081129792761158115346946545779344829978610541870844732794079660037458655553998089929418723597929920592633975141415997622143298593575838779933374806167146493711727 has 187 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 / 2078 | Dmitry Domanov | February 9, 2023 22:18:20 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 20 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:18:27 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 27 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:48:11 UTC 2024 年 10 月 4 日 (金) 0 時 48 分 11 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:18:34 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 34 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:51:00 UTC 2024 年 10 月 4 日 (金) 0 時 51 分 0 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:18:40 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 40 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:54:07 UTC 2024 年 10 月 4 日 (金) 0 時 54 分 7 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 09:00:17 UTC 2023 年 1 月 18 日 (水) 18 時 0 分 17 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | April 14, 2023 07:20:19 UTC 2023 年 4 月 14 日 (金) 16 時 20 分 19 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:36 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 36 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 15:57:39 UTC 2024 年 10 月 4 日 (金) 0 時 57 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:18:48 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 48 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:00:47 UTC 2024 年 10 月 4 日 (金) 1 時 0 分 47 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | April 15, 2023 17:16:49 UTC 2023 年 4 月 16 日 (日) 2 時 16 分 49 秒 (日本時間) |
composite number 合成数 | 3685568977833832699849759032005049950456884528980968157169939159976036099420730148262491020464962455054031102943645216354702550776536245083932962776312431158563079835794787956980535990490478231488472163564321658489057<217> |
prime factors 素因数 | 58672206662409133537595683928554725648079<41> 62816266636092802533604163002007272560295053429409102487602241759035320729435130364288447419935241281939625821056332858826120288413759433795292894821961965593743163707924021583<176> |
factorization results 素因数分解の結果 | Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1:286604691 Step 1 took 41430ms Step 2 took 16721ms ********** Factor found in step 2: 58672206662409133537595683928554725648079 Found prime factor of 41 digits: 58672206662409133537595683928554725648079 Prime cofactor 62816266636092802533604163002007272560295053429409102487602241759035320729435130364288447419935241281939625821056332858826120288413759433795292894821961965593743163707924021583 has 176 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:02:44 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 44 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:30:42 UTC 2023 年 4 月 13 日 (木) 16 時 30 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 09:00:09 UTC 2023 年 1 月 18 日 (水) 18 時 0 分 9 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | April 14, 2023 07:20:29 UTC 2023 年 4 月 14 日 (金) 16 時 20 分 29 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:42 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 42 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:04:17 UTC 2024 年 10 月 4 日 (金) 1 時 4 分 17 秒 (日本時間) |
name 名前 | Dmitry Domanov |
---|---|
date 日付 | February 15, 2023 12:32:58 UTC 2023 年 2 月 15 日 (水) 21 時 32 分 58 秒 (日本時間) |
composite number 合成数 | 65707840255898655549710533299164472051259420599955495662099204526129693695391025691553004582202660232045260291362816147307945603872250498068457634949485251116550022454875349513129190667031624154443979356469065113397407835833288601881784398129<242> |
prime factors 素因数 | 695709159284470961247432136834832797<36> |
composite cofactor 合成数の残り | 94447283579647606741654762911721620057484094737084750629044840088781938358380232206577949604116642237413603684379109207988267250568350792381804638043075790937489313697650073156076156412779474787869627317157<206> |
factorization results 素因数分解の結果 | Resuming ECM residue saved by @b80b9bafcc17 with GMP-ECM 7.0.5-dev on Fri Feb 10 13:32:59 2023 Input number is 65707840255898655549710533299164472051259420599955495662099204526129693695391025691553004582202660232045260291362816147307945603872250498068457634949485251116550022454875349513129190667031624154443979356469065113397407835833288601881784398129 (242 digits) Using B1=3000000-3000000, B2=5706890290, polynomial Dickson(6), sigma=3:2104385824 Step 1 took 0ms Step 2 took 6321ms ********** Factor found in step 2: 695709159284470961247432136834832797 Found prime factor of 36 digits: 695709159284470961247432136834832797 Composite cofactor 94447283579647606741654762911721620057484094737084750629044840088781938358380232206577949604116642237413603684379109207988267250568350792381804638043075790937489313697650073156076156412779474787869627317157 has 206 digits |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 9, 2023 22:18:55 UTC 2023 年 2 月 10 日 (金) 7 時 18 分 55 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:31:21 UTC 2023 年 4 月 13 日 (木) 16 時 31 分 21 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | February 23, 2023 22:02:53 UTC 2023 年 2 月 24 日 (金) 7 時 2 分 53 秒 (日本時間) | |
45 | 11e6 | 1000 / 4038 | Dmitry Domanov | April 13, 2023 07:31:41 UTC 2023 年 4 月 13 日 (木) 16 時 31 分 41 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:50 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 50 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:07:43 UTC 2024 年 10 月 4 日 (金) 1 時 7 分 43 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:19:03 UTC 2023 年 2 月 10 日 (金) 7 時 19 分 3 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:10:54 UTC 2024 年 10 月 4 日 (金) 1 時 10 分 54 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:01:57 UTC 2023 年 1 月 18 日 (水) 18 時 1 分 57 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:14:03 UTC 2024 年 10 月 4 日 (金) 1 時 14 分 3 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:02:05 UTC 2023 年 1 月 18 日 (水) 18 時 2 分 5 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:17:31 UTC 2024 年 10 月 4 日 (金) 1 時 17 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:02:14 UTC 2023 年 1 月 18 日 (水) 18 時 2 分 14 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:20:59 UTC 2024 年 10 月 4 日 (金) 1 時 20 分 59 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:02:22 UTC 2023 年 1 月 18 日 (水) 18 時 2 分 22 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:24:31 UTC 2024 年 10 月 4 日 (金) 1 時 24 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:19:12 UTC 2023 年 2 月 10 日 (金) 7 時 19 分 12 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:27:42 UTC 2024 年 10 月 4 日 (金) 1 時 27 分 42 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | January 18, 2023 09:02:31 UTC 2023 年 1 月 18 日 (水) 18 時 2 分 31 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:31:10 UTC 2024 年 10 月 4 日 (金) 1 時 31 分 10 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 09:00:02 UTC 2023 年 1 月 18 日 (水) 18 時 0 分 2 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | April 14, 2023 07:20:37 UTC 2023 年 4 月 14 日 (金) 16 時 20 分 37 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:19:18 UTC 2023 年 2 月 10 日 (金) 7 時 19 分 18 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:34:24 UTC 2024 年 10 月 4 日 (金) 1 時 34 分 24 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:19:26 UTC 2023 年 2 月 10 日 (金) 7 時 19 分 26 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:37:31 UTC 2024 年 10 月 4 日 (金) 1 時 37 分 31 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 2192 | 1792 | Dmitry Domanov | February 9, 2023 22:19:33 UTC 2023 年 2 月 10 日 (金) 7 時 19 分 33 秒 (日本時間) |
400 | Thomas Kozlowski | October 3, 2024 16:40:39 UTC 2024 年 10 月 4 日 (金) 1 時 40 分 39 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | January 18, 2023 08:59:50 UTC 2023 年 1 月 18 日 (水) 17 時 59 分 50 秒 (日本時間) | |
45 | 11e6 | 1792 / 4038 | Dmitry Domanov | April 14, 2023 07:20:47 UTC 2023 年 4 月 14 日 (金) 16 時 20 分 47 秒 (日本時間) |
level レベル | B1 | reported runs 報告された回数 | name 名前 | date 日付 | |
---|---|---|---|---|---|
35 | 1e6 | 1000 | Eric Jeancolas | December 22, 2022 01:00:00 UTC 2022 年 12 月 22 日 (木) 10 時 0 分 0 秒 (日本時間) | |
40 | 3e6 | 1792 | Dmitry Domanov | December 30, 2022 16:14:15 UTC 2022 年 12 月 31 日 (土) 1 時 14 分 15 秒 (日本時間) | |
45 | 11e6 | 3584 | Dmitry Domanov | December 30, 2022 16:14:15 UTC 2022 年 12 月 31 日 (土) 1 時 14 分 15 秒 (日本時間) | |
50 | 43e6 | 130 / 6675 | Dmitry Domanov | December 30, 2022 16:14:15 UTC 2022 年 12 月 31 日 (土) 1 時 14 分 15 秒 (日本時間) |